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Abstract

We study the problem of stabilization of nonlinear plants. We show

that given a nonlinear plant P, if there exists a (nonlinear) compensa

tor F, possibly unstable, which stabilizes P, then, with P, := P(I-F(-P))"

any Cdefined by C := F+Q(I-P.|Q)~' for some finite-gain stable Qwill

stabilize P.

Keywords: Nonlinear feedback, nonlinear stability, compensator
design, multiple-loop systems.

+

This work was supported by the National Science Foundation under Grant
ECS-8119763.

The authors are with the Department of Electrical Engineering and Com
puter Sciences, and the Electronics Research Laboratory, University of
California, Berkeley, CA 94720.



1. Introduction

The Q-parametrization method, used by Newton et al. [New. 1] for

the conventional linear single-input single-output systems, was correctly

established by Zames [Zam. 1] for a \/ery general class of JJ_near multiple-

input multiple-output systems; this method has proven to be useful in

controller design [Des. 1], [Gus. 1]. The method has been extended to

the nonlinear case by Desoer and Liu [Des. 2] who used input/output

representations. In all the cases above, the method requires that the

plant be stable. Since unstable plants do occur in practice, it is of

interest to find out whether this method extends to unstable plants.

For the linear case, Zames obtained a "decomposition principle" [Zam.

2, p. 307]: he described a "two-stage feedback scheme" for a class of

linear plants which are stabilizable by stable linear compensators.

Namely, given an unstable linear plant, Zames proposed to stabilize it

by a stable linear compensator first, then use the Q-parametrization to

obtain the class of all linear stabilizing compensators. For the non

linear case, Anantharam and Desoer [Ana. 1] showed that given an

unstable nonlinear plant (specified by its input-output map P) which

can be stabilized by an incrementally stable compensator F, then, for

any finite-gain stable map Q, with P^ := P(I-F(-P))~ »the compensator

C := F+ Q(I-P-,Q) will also stabilize P.

In this paper, we show that the assumption that the nonlinear

plant P be stabilizable by an incrementally stable compensator is not

necessary. Roughly speaking, we show that given a nonlinear plant P,

if there exists a (nonlinear) compensator F, possibly unstable, which

stabilizes P, then, with P1 := P(I-F(-P)) ,any C defined by
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C := F+ Q(I-P-jQ)" , for some finite-gain stable Qwill also stabilize P,

II. Definitions and Notations

Let (jC, INI) be a normed space of 'time functions': T -»• 1/ where T

is the time-set (typically 1R+ or IN), V is a normed space (typically

IR, IRn, Cn,...) and IMI is the chosen norm on jC. Let £ be the corres

ponding extended space [Wil. 1], [Des. 3], [Vid. 1]. A nonlinear causal

m n. I m.

map P : n JC J -*• n £ is said to be finite-gain (f.g.) stable iff
j=l e k=l e

m n.

3 y(P) <<»• s.t. VT>0, V(uru2,...,uj e n £Q3
j •

IIP(u1,u2,...,um)ilT <y(P)(llu1lT+flu2lT+ ... +llumllT).

P is said to be incrementally (inc.) stable iff a) P is f.g. stable, b)

m n.

3 y(P) <°°. s.t. VT>0, V (u.,,u2,...,um), (u1,u2,...,um) e n £Q3,
j *

flP(uru2 um) - P(u1,u2,...,um)ilT<y(P)(Ilu1-u1llT+ilu2-u2i!T

+ ... +flu -u llT).
m m T

m n.

A nonlinear system Nwith input (u,,u«,...,u_) e n X J and outputI c m j=1 e
% m.

(z,,...,z0) e n I is said to be f.g. stable iff 3 y(N) < °° s.t.
1 * k=l e

m n.

V T > 0, V(u, ,u«,...,u ) € n JC J, for any corresponding outputi t. m j=1 e

(z1,z2,...,zJl), Bz1DT+Bz2iT+.-. .+lz£nT <y(N)(lla1llT+llu2flT+...+Ou IT).

In case the system N is specified by its input-output map, then the f.g.

stability (inc. stability, resp.) of the system N is equivalent to the

-2-



f.g. stability (inc. stability, resp.) of its input-output map. S(P,F)

denotes the system shown in Fig. 1, with (e2,u3) as input and (y2,y3) as

output. S(P,C) and SfP^C-F) are defined similarly (see Fig. 2 and

Fig. 3, resp.).

III. Main Result

Theorem:

n. n. n. n.

Let P :£ _"* -»- £_° and F :£ ° ->• je 1 be nonlinear causal maps such
e e e e

that

(A.l) (i) The I/O map of the system ^(P.F), i|i := (i|>2,^3) : (e£,u3) +(y2;
n. n n n.

y,) is a well-defined causal map from £x£^£x£\ and
o e e e e

(ii) ^(P.F) is inc. stable.
_i n- n-Let P] := P(I-F(-P))"1 and let Q: £ ° +£' be f.g. stable such that

-1 no no(I-P-jQ) is a well-defined causal map from £ -*• jC . Let

C:= F+ Qd-^Q)"1 (1)

satisfy the following condition:

(A.2) The map H: (lUyiUjU*) -»• (y, ,y2,y3,e2) associated with the system
3
S(P,F,C-F) shown in Fig. 4 is a well-defined causal map from

n n. n n. n n. n.

jcA°xjc1xje0^ jc1xje°xi:1xjc1.
e e e e e e e

Under these conditions

3
(i) S(P,F,C-F) is f.g. stable, and

(ii) ]S(P,C) is f.g. stable.

Comments

(a) 3S(P,F,C-F) is f.g. stable iff the map (uru2,u3) h- {y^9y2^^ is
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f.g. stable.

(b) Note that by (A.l), P-,(-) =^2(*,0) is a well-defined incremen-
n. n

tally stable causal map from £-*•£.
e e

(c) Note that none of the maps P, F, C-F, C are required to be

stable.

Proof:

We first prove (i).

By (A.l), P-j := P(I-F(-P)) is inc. stable. Since Q is f.g. stable,

it follows that, with C-F := Q(I-P-|Q) ,the system S(P-|,C-F), shown in

Fig. 3, is f.g. stable [Theorem N, Des. 2].
3

Fig. 4 shows the system S(P,F,C-F) with input (u,,u2,u3) and output

(y-i»y2»y3»e2)« Wnen u3= °» ^ 1S 9lven in terms °f e2 b<y
y2 = P(I-F(-P))" e£. Hence, if we set u3 =0 and consider only the out-

3 1
put (ylsy2»e^), then the system S(P,F,C-F) reduces to S(P-|,C-F) of

Fig. 3. Now S(P^,C-F) has (u^,u2) as input and (y,,y2,e2) as output,

and is f.g. stable. By (A.2) it follows that, for the system S(P,F,C-F),

the partial map (u^Ug,©) •* (y-j^*^) is f.g. stable.

Next consider the system S(P,F,C-F) with (un,u2,U3) as input and

call (y-|9y2>y3»e2) the corresponding output. Define

Ay2 := ^2^ "^2(i2'0) (2)

To S(P,F,C-F), apply (^-AVg.u^O). Call (y-j t^^Z^V the corres

ponding output. We claim that y, =y-i» ^ =^2 + A^2 and ^2 = ®2*
To prove this, consider the equations defining y,, y*, and i«:

y, = (C-F)(ury2)
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52 =*1 + U2

y2 -^h^

By (A.2), these equations have a unique solution. Writing the equations

defining y-j» y2» and e^, using (2), and invoking the uniqueness, we

easily conclude that ^ = y}9 y2 =y2 +Ay2, e£ = e2- Since, by (A.l),
1 °nS(P,F) is inc. stable, 3 y<> <°° s.t. V T > 0, V (u, ,iufu,)€ £ °

n. n c i ^ j e
x £ "• x £ °

e e

llAy2ilT =8*2^2,u3^ " *2^2,0^DT -V^T 1 Y2( ^11^2^+11"3!^)

(3)

3Thus, for S(P,F,C-F), the map (u,,u2,U3) h- Ay2 is f.g. stable, conse

quently, so is the map (u-. ,u2,u3) »• (u-|-Ay2,u2,0); finally, using

the f.g. stability of the partial map (u-|,u2,0) «• (yi>y2>e2) proved

earlier, we see that the composed map (u,.Ug^) «• (y-ij^jio) 1S f#9*

stable; and hence by (3), (u-pUg^) h- (y-jO^ej;) is f.g. stable. Now,

by (A.l), ty^ :(£^3) ^^3 is ^*9* stable, consequently, for the system
3 - -S(P,F,C-F), the map (u-|,u2,u3) b- (y^ 9y^9y39e^) is f.g. stable. Thus,

(i) is proved.
3

Consider the equations of S(P,F,C-F) written in terms of the

e.'s:
1

51 " ul - Pi2 (4)

i§ =u2 +(C-F)^ (5)

e2 =e£ + Fe3 (6)

-5-



i3 = u3 - Pi2 (7)

If we set u3 = u,, then (4) and (7) show that e"3 = e,, and the equations

(4)-(6) reduce to

el = ul • Pi2

e2 = u2 + Ce1

The last two equations describe S(P,C). Hence the proof of (i) implies

that ^(PjC) is f.g. stable. •

Corollary

Let P : £ n *• £ ° F : £ ° + £ \ and N : £ ° * £ n + £ 1 x £ ° be
ee ee eeee

nonlinear causal maps such that

(A.l) (i) for the system S(P,F) shown in Fig. 1, i|> : (e^^) »• ^2^3)
n. n n n.

is a well-defined causal map from JC x £ ° -*- £ ° x £ n,
r . e e e e

(ii) S(P,F) is inc. stable;

(A.3) For the nonlinear feedback system S shown in Fig. 5,

S : (v,,u,,u2,U3) h- (yi,y2,y3,y^) is a well-defined causal map from
n'. nrt n. nrt n. nrt n. n'

£ n x£°xjC1 x £ ° •* £ n x £ ° x £ 1 x £ °.

Under these conditions,

S is f.g. stable if and only if

S is f.g. stable (see Fig. 6).
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Comments

(a) The corollary yields a simplification in the stability analysis

of a class of nonlinear feedback systems containing a minor-loop: if

the minor-loop S(P,F) is.inc. stable, then to check the stability of

S of Fig. 5, it is enough to check the stability of S of Fig. 6, where

the minor-loop ^(P.F) is replaced by the map P(I-F(-P))"1.
(b) From a synthesis point of view, the corollary may be useful in

designing two-input compensators for a class of nonlinear plants, namely,

the class of all nonlinear plants P which are stabilizable under the

configuration 's(P,F) of Fig. 1, for some nonlinear compensator F.

(c) In actual design, a minor-loop is not necessary. Consider the

system S of Fig. 5, instead of putting F as a feedback around P, we may

put F in parallel with N such that F takes e, as input and such that F

feeds its output into the summing node associated with y, and iu. The

resulting system S with input (v,, u,,u2) is "equivalent" to the system

S with input (v,,u,.UgjU,). Hence S is f.g. stable if S is f.g. stable.
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Figure Captions

Fig. 1 shows the system S(P,F) in which F stabilizes P.

Fig. 2 shows the system S(P,C).

Fig. 3shows the system ^(P^C) in which P] =P(I-F(-P)"1.
Fig. 4shows the system 3S(P,F,C-F) in which the structure of P-j

is shown in detail.

Fig. 5 shows the system S with the two-input compensator N.

Fig. 6 shows the system S : it differs from S in that the internal

structure of P-j is ignored and the input u3 is absent.
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