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ABSTRACT

An analytic study of various approximations of the power flow equa

tions for electric power systems is presented. The approximate models

examined are the decoupled power flow, the linearized decoupled power

flow (including the DC load flow) and the adjoint network sensitivity

model, all of which are commonly used in steady-state security assess

ment. Error bounds on the difference between the solution of each of

the approximate models and the solution of the full power flow are

derived. The results are applied to the steady-state contingency analy

sis problem, resulting in a proposed new approach to the problem.
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I. INTRODUCTION

The steady-state behavior of a power transmission network is

modelled by a set of nonlinear algebraic equations referred to as the

power flow [1,2]. Their role in power systems is the basic mathematical

model for many aspects of power systems planning and operation. Included

in these categories are the problem of state estimation, security assess

ment, optimal economic operation, optimal transmission and generation

expansion and power system control and stability assessment. Most of

the work on power flow has consentrated on the numerical aspects of

obtaining a solution [see 1 and its references]. Both Newton-Raphson

techniques [3] and the fast decoupled load flow [4] have been successfully

employed and their convergence properties are well known from both numeri

cal studies [1] and a few theoretical investigations [5,6].

The power flow equations are nonlinear and often large scale (as

many as three thousand unknowns). Approximate models are often substi

tuted for the power flow in certain applications [7,8,9,10,11]. In this

paper, we present an analytic investigation of the effects of the error

introduced by various approximations. Two such commonly used approximate

models are considered in Section 2. They are the decoupled power flow

and the linearized decoupled power flow. The decoupled power flow model

is based on observations on many typical power systems concluding that

whereas the interactions between real power flows and phase angles and

between reactive power flows and voltage magnitudes are strong, the

interactions between real power and voltage magnitude and between

reactive power and phase angles are weak. In Section 3, we derive suffi

cient conditions on the solution of the decoupled power flow for the full
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power flow to have a solution and a bound between the two solutions.

Similar results are presented in Section 4 relating the solution of the

linearized decoupled power flow to the existence of a solution to the

decoupled power flow as well as an error bound between the two solutions

Direct application of these results to the problem of finding steady-

state security regions [12] is also indicated in Section 3.

One problem of current interest in the operations context where

approximate models are employed is contingency analysis. Here, the con

cern is with the steady-state performance of the system with respect to

a large list of conjectured events, called contingencies. Typical con

tingencies are loss of a generator or removal of a transmission line

from the base case. Of particular interest is the ability of the con

tingent network to supply the load demand while operating within the

equipment limitations. This is termed the (steady-state) security of

the contingent system. For large systems and typically long lists of

contingencies, it is computationally impractical to solve the power flow

for each contingency. Instead, it has been proposed to use either

decoupled power flow [7,11] or the adjoint network sensitivity approach

[8,9,13]. The latter model is examined in Sections 5 and 6. Here

sufficient conditions on the solution of the sensitivity model for the

decoupled power flow to have a solution and a bound between the two

solutions are derived.

In Section 7, an example of how the analytic results of this paper

can be applied is discussed. Specifically, a scheme for contingency

analysis is proposed. In this scheme, using one of the approximate

power flow models, contingencies can be classified as one of secure,
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insecure or "unknown" using both the approximate solution and the error

bounds. This scheme is completely reliable: no insecure contingency

can be classified as secure and vice-versa. Moreover, no power flow

solutions are rquired for those contingencies classified as either

secure or insecure cases.

The analytic tools used in this paper are degree theory and fixed

point theorems [14, Ch. 6]. These have been successfully used in the

study of steady-state [12] and dynamic [15] security regions of power

systems. The.techniques used here are similar to those in [2].

The notation used in this paper is standard. If GC]Rn, then G, G°

and Gdenote the boundary, interior and closure of G. For x,y €IRn,

x 5 y implies x. £y. for each i = l,...,n where x. denotes the i-th com

ponent of x. If x e]Rn then [x] is the nxn diagonal matrix with i, i-th

entry x.. For the matrix Ae]Rnxm, [A]., means the i,j-th entry. For
nx eiR , 11x0, and llxll are the £,' and l norms, £ |x. I and

max {| x^ | i=l,...,n} respectively. For x e]Rn, Xe]R, if^x^) is the set
{y e]Rn|Ilx-yll^ <_ A} while Bjx.A) is its interior. The statement "x := E"

means x is defined by the expression E.

2. POWER FLOW MODELS AND APPROXIMATIONS

2.1 Power Flow Equations

The steady-state behavior of a power transmission network is repre

sented by the power flow equations. These are derived by modeling the

transmission equipment as branches of a linear time invariant RLC

circuit in sinusoidal steady-state. The nodes are called buses and

represent generator stations and load-center substations.

Suppose the transmission network has N + 1 buses and let Y be the
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(N+l) X(N+l) node (bus) admittance matrix, with Y.. =G.. +jBk- as the
k,i-th element. Throughout this work, the following assumptions are

made.

(Al) The network is connected.

(A2) The matrix Y is symmetric and in particular B. . = B.. . D

Remarks. 1. In assumption Al, the term connected has the following

meaning. For each pair, of buses, there is a path of lines, not

incident on the ground node, between the two buses and each line in the

path has nonzero B...

2. Assumption A2 holds if there are no phase shifting transformers

in the system. •

Using the standard model of transmission lines and transformers [2, p.

189 and p. 122], we have

Fact 1. Gkk > 0, Bkk < 0; G^ < 0, Bki >0 for i f k

lBkkl^40Bki and 6kkiJ0lGkil D
iYk i^k

We now derive the power flow equations. Let Ek be the voltage phasor

at bus k and Sk = Pk + jQk be the injected couplex power at bus k. E

and S are vectors of Ek and Sk respectively. Then we have

S* = [E*]YE (1)

where [E*] is a diagonal matrix with k, k-th entry E£, the complex conjugate
of E. . There are three types of buses.
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(i) Slack bus: At this bus, the voltage magnitude and phase angle

are specified. The latter is set to zero. This bus is numbered 0, and

it usually corresponds to a generator bus.

(ii) PQ bus: At this bus, the injected real and reactive powers

(Pk and Qk) are specified. The subscripts {!,...,NQ} correspond to all

PQ buses in the network. They are normally load buses.

(iii) PV bus: At this bus, the real injected power {?.) and the

voltage mangitude (|Ek|) are specified. PV buses are usually generator

buses and are numbered Nn + 1,..., N.

j6kLet Ek = Vk e and 0kl- := ek - e... It is easy to show that equa

tion (1) can be expressed as

JQ Vi(Gki s1n eki-Bki C0S ek1> =\ k- 1'-"' NQ (2)

N

.lQ Vi(Gki cos 6ki+BkT s1n 6ki> =Pk *- I.-; N. (3)

Here, VQ, V^ +^,...,V^ and 9Q are assumed fixed. The unknowns are

V:= (V1,...fVp| )T €]R Qand 6 := (er...,9N)T €IRN and they are the
state variables. The variables P := (P,,...,PM)T eiRn and Q := (Q,,

N I IN I
A \T 0...,QM ) e]R x are the inputs.

NQ
Equations (2) and (3) are known as the power flow equations. We

shall define the power flow functions Q: lRn x IR ^ -*IR ^ and P : IRN
NQ N

xIR H ->IR by the expressions on the left hand sides of (2) and (3),

respectively. That is, the k-th component of Qis Qk where

Qk(6,V) := jo Vi(Gki sin e^-B,. cos ek1) (4)
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for k =l,...,Ng and the k component of Pis Pk where, for k =1,...,N,

Pk(6.V) :- jo VkV.(Gk. cos 6k.+Bk. sin efc1) (5)

2.2 Decoupled Power Flow Equations

The following simplifying assumptions are used to produce the decoupled

power flow expressions.

(SA1): The line conductances are negligible i.e. G,. =0.

(SA2): The phase angles across branches, 6.., are small so that

cos 6ki - 1 and sin e.. * e. ..

(SA3): Voltage magnitudes, V., are close to unity and do not thus affect

real power flows.

~ No
Under these simplifying assumptions, Q is approximated by Q : IR ^

0 *" N N ~
-*-IR x and P by P : IR +IR where the k-th components of Q and P are given

by

VV> :=" j0Wki k=1 NQ <6>
N

Pk(e) := I Bki(ek-e.) k =l, ..., n (7)

In this paper,

Q(V) = Q (8)

P(6) = P (9)

will be referred to as the decoupled power flow equations. Solutions

N0 Nto them, VG1R\ 0 eiR , are often [16] used as approximations to V

and 6, the solutions of power flow equation (2) and (3). In Section 3,
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it is shown that, under certain conditions on V and e, the power flow

has a solution and a bound on the error between it and V and 6 is

derived.

Sometimes the equations

j0Wki(9k-V =i5k k=1 N <10>
are used in place of P(e) = P in the decoupled power flow. In this

paper, attention will be restricted to P(6) = P, although an analysis

similar to the one presented here can be performed for the more compli

cated model. The P-6 equations used here are commonly referred to as

the DC load flow equations.

2.3 P-6 Equations .

Suppose that there are I lines in the network, excluding shunts.

Nx£
Let A eiR be the reduced node incidents matrix of the network obtained

by deleting all shunts and the ground node. The slack bus is taken as

reference. Let [y] e]Rm be the.diagonal matrix with elements

{Bki|Mi;k,i=0,...,N} and define J eiRNxN by

Jp := A[y]AT (11)

It is simple to show that

P(e) =Jp6 (12)

and that, under assumptions Al and A2, J is nonsingular. Thus, we can

define z €1R+ by

zp := max{ej[j"1ek|k=l,...,N} (13)
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where ek := (0,...,0,1,0,...,0)T, with the 1 in the k-th position.
Finally, we define RQ C]RN by

Re := {6GlRN|-<5 ^ AT6 ^ 6} (14)

1 £for some fixed 6eir+. rq is a polytope such that the angle difference

across the m-th line is less than 6m. RQ might be interpreted as the

security constraint set on 9 imposed by thermal limitations on line

current flow [12]. However, in general, we do not assume this to be the

case. RQ will be used as a region of validity for the approximations.

Thus it will usually be larger than the security constraint set.

2.4 Q-V Equations

Consider the network Wq obtained by deleting from the power trans

mission network the slack bus, all PV buses (i.e. {0,NQ+1,...,N}) all

lines incident with them and all shunts. In general, WQ will not be

connected. Suppose it has sseparate parts, NQ1, ..., WQ ,and that the

PQ buses are numbered so that

the buses of NQ, are {!,...,NQ,}

the buses of WQ2 are {Nq,+1,...,Nq2}

the buses of Wqs are {Nq(s-1)+1,...,Nq}

Using the above bus numbering system, it can be seen that the Q-V

relationship of the decoupled power flow, Q, further decouples into s

separate functions. Consider bus k in WQ.. The decoupled approximation

1 • TTWe assume that 0 < 6. < j V i= 1, ..., £.
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to the reactive power injection is

N

Qk(V) - - I VV B - I VkV.B (15)
K i^W K1 K1 i=0,NQ+l Kn K1

which depends only on V. for buses i in AL. (V. for PV and slack buses

are assumed constant). As an immediate consequence, the Jacobian of Q

will be block diagonal, each block corresponding to a separate part of

Nq.

We thus partition all the relevant variables and functions accord

ing to which separate part they belong.

(v\...,Vs) := V (16)

(QV),...^^)) := Q(v) (17)

(Q1(V1K...,QS(VS)) := Q(V) (18)

(Q1(9,V),...,QS(9,v)) := Q(9,V) (19)

where VJ', QJ'(VJ), QJ'(VJ) and QJ'( ,V) ejR Qj, and nQ. is the number of
buses in WQ..

We further define, for each separate part AL., j = 1, ..., s, the

associated network M? .by the following procedure (see Figure 1).

(1) Let Mj c {0,NQ+1,...,N} be aset of PV or slack buses such that
for each k € m. there is a bus i in AL. such that

Bki > °

(2) Append to AL. a fictitious bus f.. For each k e M., find a bus
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i in A/gj such that Bkl- >0 and append a line of value Bki to AL. between
bus i and bus f..

J

For each j = l,...,s, let A«. be the reduced node incidence matrix

of AL., taking f. as the reference node. Let [yQ.] be the diagonal

matrix of the B^. 's such that ki is a line in A/?., ordered so as to be
"n-rnn-iconsistent with A-.. Define BQ. €]R *> ^J to be the node admittance of

Wq.» i.e.,

BQj := WAQJ (20)

Since W?. is connected and [yQ.] is positive definite diagonal, BQ. is
positive definite symmetric [17, p. 768] and thus nonsingular. Hence,

we can define z . to be the smallest diagonal entry in B"., i.e.,

zq. :=max{ejB-Jek|k=l,...,nQ.} (21)

nni
where e. is as before except e. €IR WJ.

M N
Let V1", )T SIR Qsuch that Vm <v!J Vi=1, ..., Nn and define
NQ ' 1 Q

Rv C]R **

Rv := {V e]R Q|Vm =< V=< V^1} (22)

The set Rv has the same form as the constraints on voltage magnitude

imposed by security of operation [12] and, in the results below,it can

be interpreted as such. However, it is not necessary that this be the

case as Rv will be the region of validity of the results. The following

assumption will be made throughout this work.

(A3): V Ve Rv, je {l,...,s} and for each bus k of AL.

-10-



•Jo VlHl >- "I j. Bki (23)
l€WQj n

Remark. Suppose V. = 1 V i = 0, 1 N. Then, by fact 1,

-vkBkk >- j0 ViBki w

from which Eq. (23) easily follows. Now suppose that for each bus k in

A/» either

"Bkk > lQ Bki (25)
i7k

or there exists i e {0,Nq+1,...N} such that Bk1 >0. Then there exists

aVm and Z1 with V1? <V^ Vie {1,...,NQ} such that Assumption A3
holds. •

N0 NnxNn
For V e]R v, let J (V) eiRg g be the Jacobian of Q i.e.

Jq(V) :-fyQ(V) (26)

Its elements are, for k, i =1, ..., NQ,

[Jq(V)]ki =- VkBki k * i (27)

CJq<V)]kk =-Vkk "j0 ViBki (28)
We can now establish the following useful lemma.

Lemma 1

Under assumptions Al, A2 and A3, VVe Ry, J (V) is nonsingular.

-11-



Proof

Suppose Ve rv, j <= {l,...,s}, k is a bus in AL. and u eiR w. Then

the k-th component of J (V)u is

(Jq(V)u)k =(-2VkBkk-jQ V.Bk.)uk - f VkBk.u.
iYk iYk

Vk[( I Bk.)uk- I Bk.Ui]
iO/(
i7k

+ uk^2VkBkk-,L ViBki" Wki] (29)
i^
i7k

iGWQJ mQ3

N

i7k l€WQj

Partitioning V, u and JQ(V) into

(v\...,Vs) := V (30)

(u\...,us) := u (31)

Jn := -MJ(Vd) (32)
* 3VJ

we get

ujT[Vj]"1J^uj =(uj)TBQjuj

+ I "T[-2VkBkk"^ Wki" I VkBki]keAL. v£ k kK i=0 k n K1 ,_e KK1
yj k iVk 1fc!VQj

i7k

>(uj)T BQj uj

>0 V uJ* i 0 (33)
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=* JJ* is nonsingular.

But J (V) =diag{jL...,J*}
Thus JQ(V) is nonsingular. D

Corollary 1. Under Assumptions Al, A2 and A3, either

(1) VVe Rv det{Jq(V)} >0
or

(2) VV€ Rv det{Jq(V)} <0

Proof

V-• det{Jq(V)} is a continuous function of Rv -*IR which is never
zero and Ry is connected and compact. •

2.5 Linearized Decoupled Power Flow

The decoupled load flow dependency of reactive power on voltage

magnitude, Q, is nonlinear and it is often convenient to linearize it.

0 N0
To this end, V is taken as a fixed vector in IR w and the Jacobian

0 N0xN0J_(V ) EIR * is used to linearize it. The linearized decoupled power
- N0 N0flow expression is then Q : IR w -»-3R ^ defined by

Q(V) =Q(V°) +Jq(V°)(V-V°) (34)

and P (which is already linear). The linearized decoupled power flow

equations are

Q(V) = Q (35)

P(6) = P (36)

where V and 8 are approximations to the solution of the power flow
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equations, (2) and (3). In Section 4, it is shown that, under certain

conditions, if V solves Eq. (35) then the decoupled power flow will have

a solution, V and a bound on the difference between V" and V is derived.

This can be coupled with the results of Section 3, to derive sufficient

conditions for the existence of a solution of the power flow equations

and a bound on the difference between it and the solution of the linearized

decoupled power flow.

3. ANALYSIS OF DECOUPLING APPROXIMATION

In this section, the relationship between the solutions of the power

flow equations and the decoupled power flow equations is analyzed. It

is shown that if the decoupled power flow equations have a solution in

RQ x Ry then, under certain conditions, the power flow equations also

have a solution in RQ x Ry. In fact, it is shown that a power flow

solution falls within a hyperbox, centered on the decoupled power flow

solution. The dimensions of this hyperbox form a bound on the error

introduced into the power flow solution by decoupling.

Before giving the main result, the following definitions are

required. For each k, i =0, 1, ..., N, let

<J>ki := max{|l-VkV. Vk€{Vm,V^},V. e{Vm,V^}} (37)

where Vm := Vk := Vk for k=0, NQ+1, ..., N. Also

6 if line r is between buses k and i

6ki := 0 if k=i or Bki =0 (38)

Let
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N N ,M„M-m . wMwM,£P := & \lQ f5ki*ki+(6ki-s1" «m>WBki+ vkvi'lGkiI w

and, for each j = 1, ..., s, let

V? N
eqj := I "ml ^Ed-cos 6 )B .+sin 6..|G .|] (40)
qj k^/n. V? i=0 n K1 K1 K1 K1

Remark. It is easy to show that

ep >max{IIP(e)-P(e,V)ll1|e e rq, VeRy} (41)

eqj >max{0[uj]'1(Qj(Vj)-Qj(e,V))ll1|e eR0, U, V€Ry} (42)

where Uis partitioned in the same way as V and [UJ] is a diagonal

nQJ XnQJ matnx witn u3 as lts diagonal entries. D
Let Ry and R° denote the interiors of Ry and RQ, respectively.

Theorem 1. (Decoupling Analysis)

Suppose that PemN and QeiR Qand that the decoupled power flow
equations

p(e) = p

(43)
Q(V) = Q

have asolution (e,V) e rq xRy. Further, suppose that Assumptions Al,

A2 and A3 hold and that

"-^qlSfl) x- xB~(V%£qs)C4
(44)

Bje.ZpCp) CR°
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Consider the power flow equations

P(a,U) = P

(45)

Q(a,U) = Q

Under the above conditions

(1) Existence. The power flow equations have at least one solution

(a,U) in RQ x Ry.

(2) Bound. This solution satisfies

la-ell < znenoo - p p

"^'-i^qj j =1' -'S
(46)

The parameters z , z .= , e0 and e . are defined in Eqs. (13), (21), (39)

and (40), respectively. •

Remark. UJ and VJ are the partitionings of Uand V respectively. That

is

(u\...,Us) := U (47)

(v\...,Vs) := V (48)

where UJ\ Vj sir *• V j =1, ..., s

Similarly,

^•Vql) X"- X̂ (^.z^j)
N={V€RQ|IIVJ-VJll00<zqjeqj., j =1 s} (49)

. ^. n«.

where IIVJ-VJII is the infinity norm of VJ - VJ in IR gj. •
oo •»
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Proof

Theorem 1 is established by proving a series of claims. First,

the problem is posed as an existence of solution within an open set. In

the first claim, s + 1 sufficient conditions for the existence problem

are derived using the theory of degree of mappings [14, Ch. 6]. In the

second and third claims, it is shown that these conditions are satisfied.

For any e > 0, let

ep ;= ZP£P +£
(50)

3qj := Zqj£qj +£ j =1* •"• S

n Nn
For any (e,V) eflT x IR \ let

Se(6,V) := Bje.B*) xBJV1.^) x... xBjV8^) (51)

Since SQ{Q9\I) c (RQxRy)°, ;| e >0 Ve € (0,e)

5£(6,V) c rq x Ry

Our approach is to show that, V• e e (0,e), the power flow equations

have a solution in S£(e,V) and thus, they have a solution in Sq(9,V).

We thus fix an e in (0,e).

Claim 1

Consider conditions (CP) and (CQj) for j = 1, ..., s defined below.

CP: V t € [0,1], (0,V) € J (8,V) such that ||e-B|| =e^ =
e 00 P

P(e) - P(e) t t(P(e)-p(e,v)}
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CQj: Vt e [0,1], (0,V) es£(6,V) such that || vJ-Vj|| = 3e.
oo qj

QJ(VJ) - Qj(Vj) f t{Qj(vj)-Qj(e,V)}

If (CP) and (CQj) are satisfied Vj = 1, ..., s, then the power fl ow

equations (45) have a solution in 5 (6,V). •

Proof of Claim 1

Define the homotopy

H: ]RN xlR Qx [0,1] - ]RN xFQby

H(e.V.t) := (l-t)(P(0),Q(V)) + t(P(6,V),Q(0,V)) (52)

Thus H(-,0) is the decoupled power flow expression and H(-,l) is the

full power flow expression.

By the conditions of this theorem, the equation

H(6,V,0) = (P,Q) (53)

has at lease one solution is S (6,V). Further, by Corollary 1, the

Jacobians of H(6,V,0) at all solutions in S (8,V) will be nonsingular

and have determinants of one sign. Thus [14, p. 152]

deg[H(.,O),S£(0,V),(P,Q)] f 0 (54)

Thus, by the homotopy invariance theorem [14, p. 156], if

Strictly speaking, in order that the degree in (54) be defined, we need
to show that (53) has no solution on the boundary of Se(8,V). However,
this is established as a by-product of the subsequent analysis.
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H(0,V,t) f (P,Q) Vte [0,1], (8,V)G ase(e,v) (55)

then

deg[H(.,l),se(e,V),(P,Q)] f 0 (56)

and from the Kronecker existence theorem [14, p. 161], the equation

H(6,V,1) = (P,Q) (57)

has a solution in S£(8,V). Thus, Eq. (55) is sufficient and it is

simple to show that CP and CQj imply Eq. (55). •

Claim 2

CP is satisfied.

Proof of Claim 2

Let (8,v) €j (efV) such that De-ell = £. Let t e [0,1] and

Y := 0 - 0. Then,

P(6) - P(0) t - t(P(0,V) - P(e)) (58)

*• YT(P(e+y)-P(e)) >|YT(P(0,V)-P(0))| (59)

<= YTJpY >ByB. Dp(e,v)-p(e)01 (60)

But, from lemma A (see Appendix).

T 1 2 (&ZYT0 v>2I|Y|2.-L- (61)
H P P

and since (0,V) e r x Ry, from Eq. (41)
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M,, OP(0,v)-p(e)ll1 <fp£p (62)

(3£)2
Since -£— > 3^e Ve >0, Eqs. (61) and (62) establish (60) and

p H y
thus CP. •

Claim 3

CQj is satisfied V j = 1, ..., s.

Proof of Claim 3

Let je {1, ..., s}, te [0,1], (e,V) ede,}) such that IIVJ'-Vj0

=BL. Let u := v - V=(u1,...,^,...^5). Thus IIJII =(£.. It is
HJ °° qj

thus required to show that

Qj(Vj+uj) - Q(Vd) f t{Qj(Vj)-QJ(6,V)} (63)

This is achieved by establishing that

(uJ*)T[Vj+ 1 ^{(ft^Vj-^V3)}

> KuJy^'+lu^'^Q^v^-Q^e.v)}! (64)

which is sufficient for Eq. (63).

To examine the left hand side of (64), let k € N. and by Taylor's
j

theorem [18, p. 190], we note that

~ ~ ~ ~ fl ~ ~Qk(V+u)-Qk(V) =j Q^(V+Xu)dX u (65)

Define U(X) := V+Xu e]R ^ and U^X) := V., i =0, NQ +1, ..., N.
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A
uk[Qk(V+u)-Qk(V)] =uk J Uk(X)dX[vk( I Bk.)- \ u.Bk.]

ie/QJ 1^Qj

+ u
2 f

t-2V*>Bkk- I \™*U
i€Woi

N

- I U.(X)B..]dX
i=0 n K1
i^k

(66)

Noting that U(X) e Ry for all Xe [0,1], by Assumption A3, the second

term is positive and thus

uk[Qk(V+u)-Qk(V)] >uk(Vk+ 1 uk)[uk( I B,.)- I u.B,.]
iGWQJ 16WQ1

(^)T[Vj+luj]"1(QJ"(Vj)-Qj(Vj)) >(ul)TBqjul

> 1 UUJ[|2
— Z . oo

qj

(6£.)2
= qj

z .
qj

where the second inequality follows from Lemma A (see Appendix)

Now consider the right hand side of Eq. (62)

|(uj)T[vj+ i uJD"1i:Qd(vJ)-Qd(e.v)>l

<HuJ H^II CVJ+1 uJ ]~1 {QJ (VJ") -QJ* (6,V) >II1

< Bfc.e •
- qj qj
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which follows from Eq. (42) and the fact that VJ +j u^ € R and
(e,V) e Re x Ry.

(6£.)2
Since *» > BLe . Ve >0, Eqs. (67) and (68) establish (64)

qj MJ HJ

and thus CQj. D

Thus CP and CQj, j = 1, ..., s hold for e e (0,F) and Theorem 1 is

established. •

In many situations it would be useful to calculate the errors in the

real power flows in the transmission lines introduced by the decoupling

approximation. Line flows are particularly significant since they are

limited by equipment constraints and area interchange agreements. Bounds

on the decoupling errors in line flows can be obtained directly from

Theorem 1. However, the following Corollary will lead to a tighter bound.

The proof is omitted as it is a minor modification of the proof of

Theorem 1. First, however, a few definitions are required. Let y eiR+

be defined by

y := min{yjm =1,...,£} (69)

and let t €IR+ have m-th component
P

e.

Tpm := T^ (70)
V

Here y eiR is the vector of Bk1 values (k?H) used in the definition of

J . Let C(0,t ) C]RN be defined by

C(e,Tp) := {0 eiRN|-Tp i AT(0-0) i Tp} (71)

-22-



The corollary is stated for the lossless case (i.e., G.. = 0) for

simplicity. A similar but more complicated result can be derived in

the same fashion in the more general case.

Corollary 2. Suppose that the consitions of Theorem 1 hold except that,

instead of Fjfl.Z e ) c r° we have that

C(0,xp) c R° (72)

Also, suppose that 6k1 =0 for k, i= 0, 1, ..., N.

1. Existence. The power flow equations have at least one solution

(a,U) in RQ x Ry.

2. Bounds. This solution satisfies

-xp <AT(ct-0) *xp (73)

"^liVqj j=1, ..., S (74)

The parameters z ., e . and t are defined in Eqs. (21), (40) and (70)

respectively. The set C(0,t ) is defined in Eq. (71). •

Remarks. 1. Equation (73) implies that the error in the voltage angle

difference across transmission line m (m e {!,...,I}) is smaller than

Tpm*
2. The steady state security region is defined to be a set of power

injections (P,Q) such that the power flow equations (45) have a solution

(a,u) which lies in the security constraint set RQ xRy [12]. Theorem

1 above, combined with the results of [12], can be used to find a

steady state security region. We describe below the basic ideas of the
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approach. Let the security constraint set be defined by

Re := {e : "6 1aTq 1 6* (75)

Rv := {V : Vm <V<VM} (76)

Let

where

and

tkV

where

R~ := {0 : -j,! < 8 <$1} (77)

(j) := <t> - z e
P P

(J) := min i 6. (78)
J

1 := (1,...,1)T

Rr, := {V : Vm <V<VM} (79)

VM •= VM - z eVi • Vi zqjeqj
(80)

V"1 := Vm + z .e .
i i qj qj

with bus i in the separate part j. For simplicity, let us consider the

systems without PV buses.

Corollary Consider a power system with only PQ buses and the slack bus,

and assume that there are no constraints on slack bus injections. If the

power injections (P,Q) satisfy
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Qk(Vm) <Qk <Qk(VM) (81)

then the power flow equations have a solution on the security constraint

sex Kq a Kii .

Proof. If conditions 81 and 82 are satisfied, applying Theorems 1 and

2 of [12], we know that there exists a solution of the decoupled power

flow equations in R~ X R~. Theorem 1 above then implies that there exists

a solution of the power flow equations in RQ X Ry*

4. ANALYSIS OF LINEARIZING APPROXIMATION

In Section 2.5, the linearized decoupled power flow expression

- NQ N0-Q : IR w -• K Hwas defined by

Q(V) =Q(V°) +Jq(V°)(V-V°) (83)
N

where V° is fixed in IR Qand Jq(V°) =-^ Q(V°). In the decoupled power
flow model, the real power-voltage angle relationship (i.e. the DC load

flow, P) is linear and is thus not considered here. In this section, we

examine the relationship between the solution of the linearized decoupled

power flow equations

Q(V) = Q (84)

and the solution of the decoupled power flow equations

Q(V) =9 (85)
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.0Suppose V G Ry. Then by Lemma 1, Eq. (84) has a unique solution, V. We

derive conditions on V under which Eq. (85) has a solution, V, and a

bound on the difference between V and V. It is then possible to combine

the results of this section with those of Section 3 to obtain bounds on

the difference between the solution of the full power flow and the

linearized decoupled power flow.

The following definitions simplify the statement and proof of the
N xN

theorem. Let JQ eiR Q Qbe

v=^=vv0) (86)
N xN

and BeiR ^ Qbe defined by [B]ki := Bki, k,i =1, ..., NQ. Thus Bis
the first Nq rows and columns of B. Using the bus numbering convention

introduced in Section 2, J« and B are block diagonal i.e.

,1 ,s
block diag(Jg,...,Jg) := JQ (87)

block diag(B\...,Bs) := B (88)

where i • nQ.xnoi
J* and BJ eiR gj yj, j = l,...,s.

n0iFor each j = 1, ..., s, define e- : IR WJ ^IR+ by

» = ^ H[u]BjuiL (89)] min^lk^.} l

which is quadratic in u.
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Theorem 2. (Linearization Analysis)

Suppose V° g R and Assumptions Al, A2 and A3 hold. The linearized

decoupled power flow equation

Q(V) = Q (90)

has aunique solution V=V° +J« qwhere q := Q- Q(V°). Let v := J^q
and let v and V be partitioned according to their s separate parts, i.e.,

(v\...,vs) := v , (V1,...,?2): =7
where . _. nn.

vJ, VJ gir gJ, j = i, ..., s.

Suppose that

(91)

BC0(V1,e1(v1)) x ... xBjP.e^f)) c r£ (92)

Then

1. Existence. The decoupled power flow equations

Q(V) = Q (93)

has asolution V=(V1,...,?5) GRy.
2. Error Bound. For each j = 1, ..., s

IIVJ'-VJ'llco<ej(VJ) (94)

The parameter e..(vJ) is defined in Eq. (89). •

Proof

Define the map A : IR w-*]R * by

A(u) := Q(V+u) - Q (95)
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Nnand the region Sy CIR * by

5V := BjO.^fv1)) x... xBJO, es(vs)) (96)
where . nn.

BjCe..^)) cir gJ for j= 1, ..., s.

Now suppose A has a zero in Sy i.e. ] y* G Sy such that A(y*) = 0.

Then the theorem is established by setting V = V + y*. Thus it is

sufficient to establish that A has azero in Sy. This is achieved in

the following two claims. First, however, A and y are partitioned, i.e.,

1 s(y ,...,y*) := y (97)

(aV) AS(ys)) := A(y) (98)

Claim 1

Suppose that for each j =1, ..., s for all yJ gjr Qj' such that

iyJlloo=ej(vj)

(u^^+ly^-^^yJ) >0 (99)

Then A has a zero in Sy.

Proof of Claim 1

It follows from the hypothesis that V j = 1, ..., s and

V•pJlC0-eJ(vJ)

Aj(yj) +- wyj Va) >0 (100)
Thus

A(y) f - u>y Va) >0, y G3Sy (101)
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NQ NQDefine $ : IR H-* IR w by

$(y) := y - A(y)

From Eq. (101)

$(y) ?« Xy V X > 1, y G as
V

This is precisely the condition of the Leray-Schauder fixed point theorem

[14, p. 162]. Thus $ has a fixed point in Sv, i.e., ] y* GSy such

that $(y*) = y*. This is equivalent to A(y*) = 0. •

Claim 2

The condition of Claim 1 is satisfied.

Proof of Claim 2

Fix j G{l,...,s} and yj ER Qj* such that llyJY =e .(v0*).
J

Now

Aj(yj) =QJ'(Vj+yj) - QJ'(VJ')

+Qj(Voj+vj) - Qj(Voj) - jJ vj (102)

Using an argument similar to the one employed in the proof of Theorem 1

(uj)T[Vj+ ^iJ]"1(Qj(Vj+yJ)-QJ(Vd))

>V»i;r-- (Qi^))ZT- (103)
zqj J Zqj

Let k GAL and vj =0 for i =0, NQ +1, ..., N. Then
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Qk(V°+v) - Qk(V°) - Q^(V°)v

"-Jo {(vK)(v?+vi)-vk«vrv?vk>Bki
=-\I viBk1 (104)

Thus

I(yj)T[Vj+ \ ^YW^Wj-qV^-J^') |

- i(vV[vj+^ujrV]BJV|

<1^1,, DCVJ+ J- ud]"1[vj]8dvdD1

<[e^')]2 J-
J Zqj

<(yj)T[Vj+5-uJ]"1(Qj(\TjV)-Qj(Vd)) ' (by (103))

Thus, by Eq. (102),

(K3)Tr*,+ 7tfJ]"W) >0 D

5. REAL POWER CONTINGENCY ANALYSIS

In this section, the decoupled power flow model is used to examine

the dependency of the angles of the complex bus voltages on transmission

line susceptances. We have the following application in mind. Suppose

that the system is being operated securely with real power injections
** N o
PGIR and with transmission line susceptances y £1R . We refer to this

as the base case situation. In Section 2, the real power part of the

decoupled power flow expression was written as
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P(e,y) = A[y]ATe (105)

where the dependence on y is now shown explicitly. Then, according to

this model, the base bus angles, 6 are given by the solution of

P(6b,y) =P (106)

Consider the contingency of y changing to y + £ for £ Gfl^. This can

represent the outage or addition of any number of lines. The problem of

interest is then whether the contingent network has a secure solution.

That is, using the decoupled power flow model, does

Rec,y+£) =P (107)

~c N
have a secure solution 6 gjr"? Here we assume that the real power

injections, P, remain at their base level, P.

One approach to contingency analysis - the adjoint sensitivity

method - is to leave the contingent decoupled power flow equations (107)

unsolved. Instead, Eq. (106) is linearized in (e ,y) and used to approxi

mate Eq. (107). The resulting linear equation is solved to yield an

approximation, 8*c, to the contingent angles, 6°, defined by

e* := eb - [^(^.y)]-1 Ap(eb,y)s (108)

Note that [19] if ab := AT0b, then

§(6b,y) =A[y]ATGlRNxN
(109)

|(eb,y)=A[ab]GlRNx*
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The main result of this section, Theorem 3, gives a bound on Ue0-^!! ,
00

the error between the linearized approximation and the exact solution to

the contingent DC load flow.

We make the following assumption.

(A4). The contingent network is connected and all the components of

y + £ are non-negative.

Remark. In Assumption A4, the word "connected" has the same meaning as

in Assumption Al, i.e., we ignore shunts. •

Define J" G]RNxN by
P

J^ := A[y+dAT (110)

so that V 0 GIRN

P(e,y+s) =J^e (ill)

Under Assumption A4, J' is nonsingular. Define z' GIR+ by
r r

zp := max teJ(Jp)"1ek|k»l N} (112)

Remark. It is obviously undesirable to calculate (J')" since this

amounts to solving the contingent DC load flow. However, it is a simple

matter to use the Shemon-Morrison-Woodbury formula [14, p. 50] (also

known as the Matrix line Inversion lemma or Housholder's formula) to

calculate the diagonal entries of (J')-1 based on a few elements of J"1
P P

without further matrix inversion [20]. The required entries of J"1 are

those which can be found using the approach of [21]. Also there is no

need to calculate z' exactly as any upper bound will suffice and simple
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upper bounds, not involving matrix inversions, can be found. •

Define KgirNx£ by

K:= . J-W] (113)

—c ~b
so that 0 =6 + K£. Note that J is nonsingular under Assumptions Al

and A2.

Theorem 3

Let 6 be the solution of the base case DC load flow equations

P(8b,y) =P (114)

and suppose that assumptions Al, A2 and A4 hold.

1. Existence. The DC load flow equations for the contingent case

P(ec,y+d = P (115)

~c N
have a unique solution 9 GIR.

2. Bound. Let 8° be obtained by the sensitivity method (Eq. (108)),

then

•SSe^.lz' lACtfA1!^ (116)

where z' and K are defined in Eqs. (112) and (113) respectively. •

Proof

Define h : IRN +]RN by

h(u) := P(6c+y,y+£)-P(eb,y) (117)
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It is sufficient to show that h has a zero in BjO^) where

6 := zMlA[C]ATK^ll1 (118)

This in turn is implied by [14, 6.3.4, p. 163]

yTh(y) >0 Vllull^ =6 (119)

Observe that

yTh(y) =yT{P(ec+u,y+C)-P(ec,y+?)}

+yT{P(eb+Kc,y+c)-P(eb,y)} (120)

Examining the first term in Eq. (120),

UT{P(6c+y,y+?)-P(ec,y+^)}

=y Jpy

>JrlM^ =f5- (121)
P P

where the inequality follows from Lemma A in the Appendix. Similarly

for the second term

|yT{P(eb+K?,yH)-P(eb,y)}|

<HyO^ OAO+^^J^+KCj-AQr^e5^

=3llAC^3ATK^»1 (122)

-fr (123)
P
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where (122) follows from (113). Equations (121) and (123) establish

(119) through (120). •

6. REACTIVE POWER CONTINGENCY

In this section, the dependency of the magnitude of bus voltages on

transmission line susceptances is examined using the decoupled power

flow model. Existence results and bounds similar to those in the pre

vious section are denied, the application again being contingency

analysis.

Suppose the transmission system has I lines, including shunts and

let y gir be the vector of transmission line susceptances including

shunts. Note that for reactive power considerations, shunts are signi

ficant in the decoupled model.

Let A be the reduced bus incidence matrix of the entire network with

(W+l]vl)
the ground node taken as reference. Thus A girv* '' . The columns of

A are assumed to be ordered compatibly with the ordering of y, and the

rows are ordered so that rows 1 through N refer to buses 1 through N and

row N+l refers to bus 0 (the slack bus). Let

Av := first NQ rows of A

AR := rows Nq+1 through N+l of A

So

AV
A =

and

N
AVGI

Let

nx£ _ (N-Nn+l)x£
4 , A„GIR Q •Ay G]R , „v

VR:=(VNq+1,...,Vn,V0)TG]R Q

-35-



Using these definitions, the decoupled power flow expression for

reactive power can be written as

Q(V,y) =[V]A[y](A^V+AjvR) (124)

where Q(V,y) is written for Q(V). Here, the explicit dependence on y

is shown. Compare this to the original expression,

*k(V>y) =' Jo W" 025)
where each Bkl-, k f i occurs in four places (i.e., B. ., B.. and as a

component of B.. and B.. ).

The reactive power contingency analysis problem is as follows.

The base case is the system operating securely with reactive injections

N0 5 ~h Nn
Q gir * and with transmission line susceptances y gir . Then, V gir ^,

the base case bus voltage magnitudes, is, according to the decoupled

power flow model, the solution of

Q(Vb,y) = Q. (126)

Consider, as in Section 5, the contingency of y changing to y + £, for

some £ GIR representing the loss or addition of any number of lines.

One is interested in the solution of the contingent decoupled power flow

model

Q(Vc,y+I) = Q (127)

Rather than solving Eq. (127), Eq. (126) is linearized in y and

the resulting linear equation can be solved to yield

V° - Vb - [^ Q(Vb,y)]-] ± Q(Vb,y)£ (128)

-36-



V° is then an approximation to the contingent bus voltages Vc. The main

result of this section is to show that Eq. (127) has a solution and

derive a bound on the difference between Vc and lc. First, however,

Eq. (124) is used to calculate the derivatives in Eq. (128).

Let a(V) := AyV +A^VR €]RAf so that

Q(V,y) = [V]Av[y]a(V)

- [V]Av[a(V)]y (129)

Thus

^•Q(V.y) =[V]Av[a(V)]

^Q(V,y) =[V]r(V,y)

where r(V,y) G]R * ^ is defined by

[r(V,y)]ki =- Bk- k f i k, i = 1, ..., N

[r(V,y)]kk =-2Bkk- jJtBk. k=l,...,NQ
Q

i=0 *k
i7k

Thus, from Eq. (128),

(130)

(131)

V°= Vb - [r(Vbiy)]"1Av[a(Vb)]i (132)

The contingent network Q relationship is now examined in the same

fashion as the base case was treated in Section 2.4. Thus B is replaced

by B', the bus susceptance matrix of the contingent case. Throughout

the rest of this work, Assumption A4 is presumed to be in force.

Consider the network, NA, obtained by deleting all the PV buses,
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the slack bus and all the shunts from the contingent system. Note that

M^ may have a different line to bus incidence structure than WQ. NX in
general will not be connected and will have s' separate parts WA,,

..., Wqs,. We will assume throughout that buses have been numbered so

that

the n^ buses of M' are {1,...^}

the nfe buses of W' 2 are (N^+l N^}

the n^s, buses of W^, are {N^si.1j+1,...,Nq}

Remark. This may require that the buses be re-numbered for the contin

gent case. However, we require the re-numbering only for the computation

of the error bound. •

Using the same reasoning as in Section 2.4, we see that Q(«,y+£),

the contingent Q-V decoupled power flow relationship, further decouples

into s' separate function and that its Jacobian is block diagonal.

We thus partition all relevant functions and variables according

to which separate part they pertain. Note that this may be a different

partitioning to the one used in Sections 2, 3 and 4, where the partition

was performed on the base case separate parts. We refer to the parti

tioning used in this section as the contingent partitioning. It is as

follows.

V := (v\...,Vs')

Q(V,H) := (Q1(V1,y+C)>...»QS'(Vs,,y+|))

^^ ... n'
VJ,QJ(VJ,y+C) eIR Qa V j. = l,...,s'

-38-
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For each contingent separate part Wi., j = !,...,s1, the contingent

associated network, Wi?, is defined using an identical procedure as is

used to define the base associated entwork W?. from the base separate

part A/q. for j = l,...,s in Section 2.4. That is, for each Wg., a group

of PV or slack buses M'. is selected so that for each bus in Ml there is
j j

a line (of non-zero susceptance) in the contingent network connecting it

to some bus in. Wg.. Wg^ is then constructed by appending to WA. a
fictitious bus, f'., and, for each bus i in M'., a line from f*. to bus k

J j j

in Wi. of susceptance B'. where Bj". >0.

Define Ag. to be the reduced bus incidence of Ni^ taking f'. as
reference and let [yi.] be the diagonal matrix of B'. of lines in WA?,

numbered so as to be consistent with Ag.. Define

B" •= A' f"v' 1(A' V GTR "J ^J

and

z^. := min{eJ(B^j.)"1ek|k=l,...,n^.} (134)
n' .

where e. =(0,... ,0,1,0,... ,0)T GIR Qj' with the one in the kth position.
N

We define the region R^ cjr Q, analogously to Ky by
N

RJ := {VG1R Q| Vm' I VI VM'}

and we make the following assumption.

(135)

(A5): VVGf^, for each j G{!,...,s'} and for each bus k in W'.

"1 Wki^k l , Bki (136)

The following lemma is the contingent analog of Lemma 1.
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Lemma 2

Under assumptions A4 and A5, -^ Q(V,y+!) is nonsingular V VGR^.
•

Under Assumptions Al, A2 and A3, if Vb Gr then r(Vb,y) is non-
singular and we can define for £ ew u(£), g(£) gir ^ by

u(l) := - [r(Vb,y)]-\[a(Vb)]£ (137)

g(5) := [V°+u(i)]Av[i]Aju(^

+[u(i)]Av[j]A^u(i)

+[u(i)]Av[i]a(Vb) (138)

Note that since u(£) is linear in £, g(£) is quadratic and cubic in £.

Using the contingent partitioning

(<il(l),-..>9S\i)) := g(l) (139)
where

i - nmgJ(S) eiR gj j = 1, ..., s'.

We then define d.(£) GIR+ by

min{v£ IkfiM^

Theorem 4

flow

d,(£) := J^ e. 1^(5)1, (140)
J min{V?1 kSN® } '

Let V be the solution of the base case decoupled reactive power

Q(Vb,y) =Q (141)

Suppose that V G Ry and Assumptions Al, A2, A3, A4 and A5 hold. Let
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Q

V be the sensitivity approximation to the contingent voltage magnitudes

defined in Eq. (128) and let

(Vcl,...,Vcs') := 1°
n'.

where V0,3 GIR ^ be the contingent partitioning of V°. Also, suppose

B<o(Vcl,d1(£))x...xBo(Vcs,,ds,(l)) c(R')° (142)

Then

1. Existence. The decoupled reactive power flow equations

Q(Vc,y+£) =Q (143)

have asolution Vc=*(Vcl,...,Vcs') (contingent partitioning) in R^
and

2. Bounds. For each j G {l9...s'}

IIVCJ'-VCJ'llco<dj(£) 044)

where d.(£) is defined in Eq. (140). •

Proof

Define the map A' : IR w +IR ^ by

. mZtrJb

'Q

A'(y) := Q(V%,y+£)-Q(Vb,y) (145)
N,

and the region Sy CIR ^ by

Sy := BjO.d^S)) x...x BjO^U)) (146)

The proof then proceeds along identical lines to that of Theorem 2

(linearization analysis) with A replaced by A' and Sy replaced by S^.
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Also, contingent partitioning is used instead of the base partitioning

used in Theorem 2. •

7. CONTINGENCY CLASSIFICATION

The analytic results of this paper are now applied to the contin

gency analysis problem, which is central to steady-state security assess

ment [19,22] and to transmission readability evaluation [16]. It is

presented as an example of how approximate power system models can be

used with these results to yield completely reliable qualitative infor

mation. First, however, current practices in contingency analysis are

briefly reviewed.

The contingency analysis problem is to test whether the system in

steady state can operate within security constraints for each case in a

given list of contingencies (generator and line outages). To avoid

costly computation of solving a power flow for each case, the automatic

contingency selection method [7,8,9,10,11,13] has been proposed. In

this approach, contingencies are first ranked according to a performance

index, which is defined in such a way to reflect the deviations from the

desired operating conditions. Power flows are then solved to test system

security of each case starting from the top of the ranking and stopped

when the case does not give problems. To evaluate the performance index

for each contingency, either direct substitition from an approximate

power flow solution (e.g., DC load flow) is employed [11] or lineariza

tion is used to evaluate the change in performance index from the base

case [8]. A novel information theoretic approach to optimal selection

of the performance index and threshold is given in [23].

In [11], it is shown that contingency selection using the adjoint
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network sensitivity method [8] can fail to capture all the insecure

contingencies. The proposed remedy was to increase the accuracy of the

model (in this case, DC load flow was advocated) and to use direct sub

stitution for performance index evaluation. Several other modifications

to this basic method aimed at improving reliability have been suggested

[16], However, there remains one possible cause of failure which is

intrinsic to the contingency selection method. It is the effect of the

error introduced by the case of approximations. The form of the per

formance index cannot overcome this problem: complete reliability is thus

impossible with the contingency selection approach.

To overcome this, the following contingency classification scheme

is proposed. For each contingency, one of the approximate models is

solved. Using the results of this paper, it is then possible to classify

the contingency into one of three categories: secure, insecure or "un

certain." Suppose the sufficient conditions for power flow solution

existence are satisfied. Then secure classification occurs when the

approximate solution and all solutions falling within the error bound

(and thus the power flow solution) are secure. Similarly, a contingency

is classified as insecure when the approximate solution and all solutions

within the error bound are insecure. The "uncertain" classification is

applied when either the sufficient conditions on the approximate model

are not satisfied or when one possible solution falling within the error

bound is secure and another is insecure. For "uncertain" contingencies,

a more accurate model can be used to achieve classification as either

secure or insecure. In the final instance, this may include the use of

a full power flow.
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To illustrate this idea, consider a contingency described by chang

ing the bus addmittance matrix elements from {G-.+jB..} to {GI.+jB1..}.

Let this be equivalent to changing y to y + £ (Section 5) and y to y + I

(Section 6). Suppose that the contingent network Wi has been parti

tioned, according to the procedure described in Section 6 and that Ry

and R' have been chosen as

N

R^ := {V GIR Q|V1"' ^V<VM'} (147)

R' := {6 GIRN|-6' S(A')T 6<6'} (148)

where A1 is the reduced node incidence matrix of the contingent network,

ignoring shunts and taking the slack bus as reference. Suppose also

that Assumptions Al, A2, A3, A4 and A5 hold and that the base case

decoupled power flow has a solution 6 , V . Then 6^ and V0, the sensi

tivity approximations to voltage angles and magnitudes, can be calculated

from equations (108) and (128) respectively. Let A', A'. gir+

j = 1, ..., s' be defi ned by

XI := zMlACelA^+e') (149)

Xqj == ¥~5) +Zqj£qj • °50)

where z', z*. and d.(i) are defined in equations (112), (134) and (140).
r HJ J

The parameters e' and e'. can be found from equations (39) and (40) using
K MO

M

contingent parameters (i.e. change 6.., Vk, Vk, B.., G.., WQ. to 6!.,

Vm\ vJJ', B^., G^., W^. respectively). Let (V01,...,^') =V0 be the
contingent partitioning of Vc.

Then, by Theorems 3 and 4 and Theorem 1 applied to the contingent

network, if
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Bje^) c(r^)° (15i)

and

BJ^.X^) x... xB-jf5''^,) c(R«)° (152)

then the conti ngent power flow equations have a solution (ac,Uc) g r»

x Ry and

"^-e0!^! A' (153)

iU^i^ j=1, ..., s1 (154)

The contingency classification procedure is then applied as follows.

Suppose the security constraints on the power flow solution are that

0 GRS, V G R* [12].

1) If Eqs. (151) and (152) hold and

Bje^) CrS (155)

BJV01^) x ... xBJV05'.^) CR* (156)

then the contingency is classified secure.

2) If Eqs. (151) and (152) hold and

BJ^A') n R* =* (157)

[BooO^1. ' )x... xBJV05'̂ ,)] ORj =* (158)

then the contingency is classified insecure.

3) If neither 1) or 2) above holds, then the contingency is classified

uncertain.

If the uncertain classification occurs, then the contingent decoupled
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power flow can be solved for 0C and Vc. Let (Vcl,. ..,VCS') = Vc be the

contingent partitioning of Vc. Let A := z'e" and A . := z'..e'., j= 1,

..., s'. Then from Theorem 1 applied to the contingent case, if

B"co(eC,Ap) c(R£)° (159)

foo(VCl,Xqi) *... xBjVcs',Aqs.) C(R')° (160)

then the contingent power flow has a solution (ac,Uc) GR' x Ry and

flaC-5Clw<Xp (161)

•U^-V^l.i Aqj j =1, ..., s« (162)

Thus the contingency classification scheme could continue by

repeating steps 1), 2) and 3) with 0°, lc9 A' and A', replaced by 0C, Vc,

A and A . respectively. For the remaining uncertain cases, a full power
r HJ

flow analysis is required.

The advantage of this scheme is that the results are exact. If a

contingency is classified as secure or insecure then it is secure or

insecure respectively. The use of the bounds extracts completely

reliable information from the approximate solutions. The use of these

results is not restricted to contingency analysis - in fact they should

find application in any area where approximate power flow models are

used. Similar results for the transient stability model and an applica

tion to dynamic security assessment can be found in [15].

8. CONCLUSIONS

In this paper, an analysis of various approximate power flow models

was presented. The results include the following:
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. the error bound between the solution of the DC load flow equa

tions and the solution of the full power flow equations

• the error bound between the solution of the decoupled power flow

equations and the solution of the full power flow equations

. the error bound between the solution using adjoint netowrk

sensitivity method and the solution of the DC load flow equations

A sensitivity method for reactive power flow is proposed in Sec. 6.

Similar error bounds are obtained for reactive power flow approxima

tions.

A sample application to contingency analysis is presented to illus

trate the use of these results. These results should be useful in the

analysis of other applications where approximate models of power flow

are used, for example, optimal power flow [24, 25, 26] and state

estimation [27].
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APPENDIX

In this appendix, the problem of finding

min{vTA[y]ATv|ll.vll =3}

nx£
where A gir is the reduced node incidence matrix of some network, W,

and [y] gir is a diagonal positive semidefinite matrix is examined.

Noting that G := A[y]A is the node conductance matrix of an Jl-branch,

n-node electric circuit, concepts from electrical circuit theory are

employed.

Lemma A

Let A gir be the reduced node incidence matrix of an n-node

^-branch network, Nand [y] e]RAxil be a diagonal positive semidefinite

matrix. Let G:= A[y]AT GlRnxn. With each branch, i, of W, we associate

[y].^ as a conductance so that Gis a node conductance matrix. Suppose

the resulting electrical circuit is connected (i.e. between each node

of W and the reference node there is a path of branches, each with non

zero [y]..j). Then

2

where

min{v Gv |HvIloo=3>=

z := max{[G~ ]kk|k=l,...,n} •

Proof

Let a GIR+, k G {!,...,n} and consider the problem

Pk := inf{vTGv|vk=a}

Since Gis strictly positive definite [17, p. 768], Pk has a unique
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global minimizer [28, p. 226]. From-a simple application of Lagrange

multiples, the minimizer of P. is

where

h ••- ^"^kk
ek := (0,...,0,1,0 0) G]Rn with the 1in the k-th position,

k k
Consider the j-th component of v , v.

j

♦ -^•i&'^ki

i^-»"Vl.|
where the inequality follows directly from the fact that the voltage

gain of a circuit of strictly passive linear resistive circuit is less

than unity [17, p. 777]. Thus (lvklloo <|a| and vk solves

P£ =min{vTGv|llvIloo <|a|,vk=a}
2

and by substitution ?} =^- . The lemma follows. •
K zk
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FIGURE CAPTION

Figure 1: Example of constructionof associated network.

(a) Original network showing all buses but only those lines

which connect a PV (or slack) bus to a PQ bus. Note

that N= 11, N« =6 and nQ1 = 3, nQ2 = 3, s= 2. M1

can be taken as any non-empty subset of {7,8,9,10} and

M2 as any non-empty subset of {10,11,0}.

(b) Possible construction of the associated network N?,.

Suppose we choose M] = {7,8,9} then the value of the

lines (1,^), (2,^) and (3,^) are B] y, B2 Qand B3 g

respectively. Other choices are possible.



I

:*:
o

>
CL

oO

(f)
UJ

<

c/)

-J (/) UJ O)
-1 3 X 3
< CD h- GO

00 o 2 —

~~l

%°



J

(b)


	Copyright notice 1982
	ERL-82-71

