

Copyright © 1982, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

LAYOUT RULE SPACING OF SYMBOLIC

INTEGRATED CIRCUIT ARTWORK

by

M. W. Bales

Memorandum No. UCB/ERL M82/72

4 May 1982

Ut

LAYOUT RULE SPACING OF SYMBOLIC

INTEGRATED CIRCUIT ARTWORK

by

Mark W. Bales

Memorandum No. UCB/ERL M82/72

4 May 1982

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Hark W. Bales

Author

layout Rule Spacing of

Symbolic Integrated

Circuit Artwork

mie

RESEARCH PROJECT

Submitted to the Department of Electrical Engineering and Computer

Sciences, University of California, Berkeley, in partial satisfaction of the

requirements for the degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee: Crd-^^X^JE^,. pA^arfth AHvisnr

-b/^/fp Date

CHAPTER 1

Introduction

1.1. Layout Rule Spacing of Symbolic Integrated Circuit Designs

The increasing complexity of Very Large Scale Integrated (VLSI) circuits

has made the use of computer aids for design, analysis, and data manage

ment a necessity.

The huge volume of data associated with the integrated circuit (IC)

design process can only be managed effectively If the structure of the circuit

is exploited by the designer and the CAD programs. Some form of hierarchi

cal technique must be used to reduce the number of objects the designer

must work with at any one time. A hierarchy can also reduce the amount of

data storage required by the CAD system if the IC designs include replica

tions of structures. Designs use replicated structures if they contain very

regular structures, such as arrays. Cell-based design also uses replication to

make use of a hierarchy. Efficient tools are needed to manage this hierar

chy.

The use of abstractions, or symbols, to represent components of a

design method (transistors, contacts, cells, etc.) can help reduce the com

plexity of the design process. Symbolic IC design has been in use since the

early 1970s [Larsen7l]. The use of symbols to represent IC devices is a logi

cal mapping between the electrical schematic of circuits and the semicon

ductor process for creating the devices in silicon. In the circuit schematic,

each symbol represents a complete device on a functional level. The electri

cal properties of each device-type are well modeled and the circuit-level

1.1 * " l

1.1 2

device models are used as a basis for the electrical design of a circuit. In the

semiconductor IC process, several photographic masks are used to create

the circuit devices on the silicon through a series of chemical diffusions, oxi

dations, and implantations. Each mask is composed of a pattern which can

be constructed from many rectangles. An individual mask contains the infor

mation used in one processing step for all of the devices in the IC. Each

separate electrical device requires many mask steps, and hence, the mask

representation of a single device includes many rectangles on many mask

layers. In a symbolic design, all this information is coalesced into a single

symbol that represents the circuit-level device.

Symbols contain information that is normally lost in present-day

rectangle-based IC layout systems. The electrical connectivity of the circuit,

as well as the placement of the components themselves, is lost when a design

is entered in a rectangle-based artwork system. This information must be

extracted from the mask rectangles if, for example, a circuit simulation or

testability analysis is to be performed. Layout rule and electrical rule

checking have more difficult tasks because they must reconstruct the circuit

devices from the mask artwork to identify their context correctly. When

symbols are used to represent individual devices, more information is avail

able for use by auxiliary design tools. The symbols and their interconnec

tions are strictly denned and the transformation of the symbols into

geometric mask shapes can be an error-free process. Thus, the design and

maintenance of IC's with symbols permits the design system to capture more

of the design intent than placing individual rectangles on multiple mask

layers.

1.1 3

In addition to providing a layout capability, symbolic layout systems

may be used to guarantee that the spacing between elements in the design

satisfies the layout rules for the IC process. Even further, the system can be

used to compact the elements together to achieve a minimum size layout

that still satisfies all layout rules and maintains circuit connections. The

interconnection lines between invariant, primitive symbols (such as transis

tors, contacts, or circuit cells) are stretched or shrunk to change the size of

the IC layout, while the dimensions of the symbols themselves remain

unchanged. Thus a symbolic layout system may be used in a number of

ways. It may merely provide a layout capability which allows IC mask art

work to be generated from the symbols. It may also provide a spacing pro

gram which is used to insure that the spacing between elements is correct.

In addition, the symbolic design system may provide a compaction program

which may be used not only to insure that the spacing between elements is

correct but also to attempt to minimize the final area of the layout.

The following section of this chapter presents a review of existing sym

bolic design systems with a focus on spacing and compaction programs.

Chapter 2 of this report describes the CABBAGE system, its limitations, and

the additional capabilities that are useful in a compaction program. CAB

BAGE is designed for an NMOS polysilicon gate, single-layer metallization pro

cess. Details of primitive circuit elements in the NMOS technology as well as

layout rules are hard-coded into the program. The concepts of protection

frames and terminal frames are introduced to extend the CABBAGE algo

rithms to make them technology and process independent. The Python pro

gram, an implementation of these algorithms, is presented and the features

of polygonal protection frames, box terminal frames, and rnaxinuum as well

as minimum constraints are described.

1.1 *

Chapter 3 describes the specific algorithmic details of Python.

Chapter 4 presents two examples, a D-type flip/flop and a latch cell. For

both examples, a comparison is made between CABBAGE and Python with

respect to run-time, memory usage, and compaction efficiency. Python pro

duces a layout which is 15% smaller than the CABBAGE result for the D-F/F

example and the Pythonlayout is 15/5 larger than the CABBAGE layout for the

latch example. The reasons for these differences are explained. Overall,

Python runs approximately 2.5 times faster than CABBAGE and uses approxi

mately 2.5 times the amount of memory. Protection frames are generated

for the D-F/F example and the D-F/F is used to construct a shift register

cell. This shift register cell is compacted with Python to demonstrate the

use of hierarchical compaction. Order dependencies for the algorithms in

Python are reported.

Chapter 5 provides a summary of the results. The problems associated

with necessary enhancements to Python are presented with recommenda

tions for their solution.

1.2. Existing Symbolic Design Systems

1.2.1. fixed Grid Systems

Fixed grid symbolic IC design systems have been in use within industry

since the early 1970s [Larsen7l]. The fixed grid represents the allowed loca

tions of geometry for the IC layout. Quantizing the representation of the cir

cuit in this manner allows efficient representation of the IC layout grid with

the array constructs found in high-level computer languages. Early pro

grams only allowed layout of highly regular structures, such as programm

able logic arrays (PLAs). The SUC program at AMI [Gibson76] allows arbi-

1.2.1 °

trary layout of IC cells. Each grid point may contain zero or more symbols.

If two symbols overlap or are adjacent, simple rules assume the geometries

the symbols represent are connected. In SUC, a circuit is created by draw

ing the symbols representing the circuit on grid paper (See Fig. 1.1). This

hand-drawn symbolic form is digitized, and the SUC system generates the

actual mask data from the symbols (See Fig. 1.2). The MASKS system from

Rockwell International [Larsen78] has a similar input format, but the layout

symbols are placed in a 'discrete topological schematic*, which are entered

directly as program data. Figure 1.3 shows the symbolic representation of a

2 input NAND gate using this approach.

Neither of these fixed-grid symbolic layout systems provides the capabil

ity to dynamically adjust the spacing between symbols to satisfy spacing

rules. SUC provides design rule checking and interactive editing to correct

any design errors. Both systems provide for generation of actual mask data

from the symbolic layout. Simple spacing rules are enforced through the

SYMBOLIC VER3/0A/

Fig. 1.1 Symbolic Input for the SUC system([Cibson?6])

1.2.1

TOPOLOGICAL s/ERStQN

T'2

1 ' U *}r > .• •W> >>i /-t-rrtff >}.'.vW-r. d-r

Fig. 1.2 Mask Layer Output from the SUC system ([<xibson?8])

<AB)

Y - ——t*X — (Vqq) m

«» I I *

„ IM «M • — — (B) l-»

<* III **

mm n n WWyi I I (A) •»
a —— K X K — — ,

(GRO)

NOTE: TOPOLOGICAL SCHEMATIC SYMBOLS

ARE ROTATED Ma COUNTERCLOCKWISE

Fig. 1.3 MASKS System Input ([Larsen78])

choice of the spacing between grid points.

The basic limitation of fixed-grid layout systems is the forced choice of

the worst-case design rule for the grid spacing. For example, any two inter

connection lines one grid spacing apart must satisfy the spacing rules

regardless of their type. In a typical NMOS IC process, the metal to metal

1.2.1 7

spacing rule is the largest and will determine the grid spacing. Lines of

another type (polysilicon* for example), might not require the largest spac

ing rule, but they must be at least one grid spacing apart to guarantee that

the spacing rules are satisfied. Some area will be wasted as a result. A sys

tem with a finer grid, with the grid spacing the greatest common divisor of all

of the spacing rules, would overcome this Limitation. The symbols used would

no longer be simple, since the would occupy many grid locations. Also, the

data storage required would increase at least an order of magnitude.

Current research at AMI and Rockwell International is being performed with

this method.

1.2.2. Relative Grid Systems

Relative grid systems only use the grid-based symbolic layout of the IC

cells to indicate the relative placement of symbols and to determine the

electrical connectivity of the circuit. The locations of symbols are

represented as some fraction of the greatest common divisor of the spacing

rules. Although the representation of the elements is usually not a grid, the

choice of the minimum resolution for symbol location makes the relative-

grid approach similar in most respects to the fixed-grid method using a finer

grid.

1.2.2.1. Systems Previous to Cabbage I

One of the first programs to use the relative-grid method is the FLOSS

program from RCA [Cho77]. FLOSS is similar to the SUC program in that it

reads a digitized sketch of the layout. The spacing between objects is deter

mined by the construction of the objects and the individual spacing rules

between the mask layers of the components that make up each object. Only

1.2.2.1 8

orthogonal interconnection lines are .allowed and the interconnections to

cells must be points. While these restrictions are implicit in the nature of

fixed-grid layout systems, they are imposed on relative-grid systems only

through implementation difficulties.

FLOSS supports a hierarchy for circuit design, and results have been

published for the compaction of entire ICs. The IC shown in Figure 1.4 is 32%

smaller than the original symbolic sketch and 19% larger than a hand-drawn

layout of the same IC.

Another symbolic layout aid which uses a relative grid and provides

compaction is the STICKS program, developed at the Hewlett Packard Co

[Williams78]. This program compacts the symbolic layout by starting from

one side of the layout and sequentially placing elements as far to the side as

is possible, given the positions of the previously placed elements and the

spacing rules objects on different mask layers. The electrical connectivity of

the circuit is also a determining factor in the positioning of elements during

Kg. 1.4 Symbolic IC Layout After FLOSS Compaction ([Cho77])

1.2.2.2 10

Cabbage I has been used to design a complete digital filter IC at the

Kathoiieke Universiteit Leuven in Belgium [Hurt82]. This IC has over 1500

NMOS transistors, Included in over 9000 layout symbols, and has been suc

cessfully fabricated (Layout shown in Fig. 1.6). The computer time required

to compact this example was over 4 CPU hours and demonstrates the need

for hierarchical compaction and layout.

1.2.2.3. Other Systems Since Cabbage I

The SUM system [DunlopBO] combines a shear line algorithm used by

Akers [Akers70] with the graph representation of the IC symbols. SUM is a

successor to the SUP system [Dunlop79]. In this program, multiple spacing

methods are used to optimize both speed and compaction efficiency. The IC

symbolic data is partitioned automatically into optimal size groups calcu

lated by the program [Dunlop79]. A loose initial placement guarantees a

layout-rule correct (although not optimal) relative placement of the parti

tions. Critical path analysis, similar to the method used in CABBAGE, is

Pig. 1.6 KUL Digital Filter IC [DeMan62]

1.2.2.3 n

coupled with a local-compaction method. This reduces the total computer

time required for solution of the compaction of each partition while main

taining an efficient compaction result. The local compaction procedure clus

ters together objects on the critical path. Jogs are inserted as zero-length

lines perpendicular to the direction of the line into which they are inserted.

They allow the objects connected to the top and bottom parts of a line to

move independently in the direction parallel to the jog. In SUM. jogs are

only inserted at contact locations. Global rift line compaction [AkersTO]

removes the excess space between the locally compacted partitions. The

order dependency for the execution time of the composite algorithm is

approximately 0(n3/8).

1.2.2.4. HULGA

The MULGA system from Bell Telephone Laboratories provides a compac

tion capability which differs from other relative-grid layout systems. It uses

a virtual grid to perform compaction of the symbolic layout. This virtual

grid combines the ideas of both the fixed and relative-grid approaches to IC

layout. Symbols are placed at grid locations, as in fixed-grid layout. The

spacing between grid rows and columns is adjusted and takes on a real value,

dependent on the actual spacing required by objects oneach row. Individual

rows and columns may have a unique spacing, so the grid spacing is non

uniform. Given the non-uniformity of the grid, there is no area penalty when

two adjacent objects have a required spacing smaller than the worst-case

layout rule. The resulting compacted layout is more dense than could be

attained with fixed-grid layout but generally not as dense as in a compaction

with a true relative-grid compaction method. Objects that are originally

placed on a single row or column in the grid will remain on that row or

1.2.2.4 12

column throughout the compaction, whether they are physically connected

or not. In a relative-grid system, this restriction is not made and objects

that are not physically connected may move relative to one another to

achieve a more compact final result.

1.3. Program Characteristics

Python can perform hierarchical compaction of IC designs, through use

of a hierarchical database for storage of the symbolic IC layouts and the use

of abstractions of cell layouts. Spacing rules between mask layers in the IC

process are specified in an ASCII file. The program uses these spacing rules

to determine the minimum allowable distance between elements. All inter

connections must be orthogonal. To allow technology and IC family indepen

dence the compaction is performed on interconnected protection frames.

Protection frames are an abstraction of a cell. They reduce the amount of

data needed at each level in the hierarchy. These frames may be of arbi

trary orthogonal polygon shape. For each symbol, a set of frames is allowed

on each mask layer in the IC process.

1.3.1. MFB - An Exercise in Terminal Independent Graphics

In preparation for the work on Python, a terminal-independent graphics

package was co-written with the author of Hawk. MFB, a Motel /rame

buffer, is a database approach to terminal independent graphics. An ASCII

file contains descriptions of the capabilities of graphics terminals which

implement a predefined standard set of graphical functions. An example

capability definition is the string 'GCS=E*dA\ which defines the sequence for

Graphics Clear Screen as '~[*dA\ The qualification of a terminal includes

many of these definitions, and the predefined capabilities are a part of the

1.3.1 13

definition of the model frame buffer. Not all video terminals will have a full

set of capabilities for example, black and white graphics terminals do not

have a video lookup table for color mapping.

There are two levels within the program package. A set of low level rou

tines communicates with the ASCII database file and retrieves and parses the

capabilities for a desired terminal specified within the file. A second level of

routines executes primitive operations such as SetColor, DratnLine, etc., and

provides a graphical interface to the high-level applications program which is

using MFB.

MFB requires that the high-level application program make its requests

to the graphics interface based on the presence or absence of certain capa

bilities. For example, setting the color to blue on a black and white terminal

would produce unpredictable results! If the high-level application program is

to be truly graphics terminal independent, it must map its function onto the

capabilities present in the many graphics terminals on which it may be used.

MFB is used by both the WC [KellerBl] and the Hawk graphics editors

and fulfills its purpose in providing terminal independent graphics editing.

See Appendices B and C for more detailed descriptions of the routines used

in MFB.

CHAPTER 2

Compaction Algorithms

2.1. Cabbage

2.1.1. Introduction

The CABBAGE program was designed to work with an NMOS poiysilicon

gate integrated circuit process and is described in detail in [Hsueh79]. After

a brief overview of how the program is used, this chapter describes the capa

bilities and limitations of CABBAGE. Enhancements necessary to make a use

ful production system are described, and the concepts of protection frames

and terminal frames are introduced in order to accomplish the implementa

tion of the Python program.

In a typical design session the engineer can lay out an NMOS cell using

the GRLIC graphics editor and the symbolic layout is saved in an intermedi

ate file. The PRSLI compactor reads this symbolic intermediate format and

represents the physical topology of the cell with vertices and edges of a

graph. The vertices of the graph represent the positions of electrically con

nected subgroups of objects within the cell and the edges of the graph

represent the minimum required separation between groups that is imposed

by the integrated circuit layout rules. Solution of the longest path through

this graph using the Critical Path Method (CPM) [Thesen78] yields a minimal

area for the entire cell while satisfying all of the layout rules. The com

pacted form is saved in the same intermediate form that was produced by

the graphics editor GRUC. Thus the designer is able to re-edit the com-

2.1.1 14

2.1.1 15

pacted version of his cell, make topological changes which allow another

compaction step with the PRSU program and perhaps obtain a better result.

Interaction between the designer and the computer in this fashion minimizes

much of the tedium involved in IC layout. The conputer programs allow the

designer to focus on the higher-level topological placement considerations of

the layout process without requiring explicit atteition to the exact spacing

requirements between objects being placed.

2.1.2. Capabilities and Limitations of the System

The primitive objects, or symbols, available in the CABBAGE program

are:

• Enhancement transistors
• Depletion transistors
• Diffusion-metal contacts
• Polysilicon-metal contacts
• Buried contacts
• Butting contacts.

The transistors are poiysilicon-gate and there is a lingle layer of metal avail

able for interconnections. An active-area mask is defined to complete the

implementation of approximately 60 layout rules A single bounding rec

tangular polygon surrounds the cell. This rectangle is user-defined on

another defined mask called RUNX. Each point structure (transistor, con

tact, etc.) is allowed only one interconnection point per side.

The construction of the NMOS primitives that CABBAGE uses are encoded

directly into the program. This means that there is a special-purpose sub

routine for transistors, one for contacts, and o&e for lines. In order to

change the characteristics of the primitives, such as the polysilicon or

diffusion extensions in a transistor, it is necessary to change some numbers

in these special-purpose subroutines and to recompile the program. To

2.1.2 16

extend CABBAGE to other IC technologies, it is necessary to write these

special-purpose subroutines that understand the construction of each primi

tive in the target technology. This requires an intimate knowledge of the

CABBAGE program itself.

The spacing analysis in CABBAGE is performed separately in both the X

and Y directions. This separation is used for ease of implementation and for

efficiency of the compaction algorithms since most IC geometry is orthogo

nal. Since the analysis is decoupled, the compaction process consists of

alternating compactions in each axis direction. Iteration is required since

spacing rules in the direction perpendicular to compaction are ignored and

design-rule violations may be generated in this direction In order to guaran

tee a legally spaced layout, successive iterations in the two axis directions

are required until convergence is acheived (no .elements change position

relative to one another) in both directions. Only then is the resulting layout

guaranteed to meet all spacing rules.

In order to preserve electrical connectivity and in order to minimize the

amount of memory required by the program, CABBAGE recognizes groups of

topologically connected elements which share a common centerline in one or

the other directions of compaction. These groups move as a unit and this

keeps the electrical (connectivity) properties of the circuit correct.

CABBAGE uses the vertices of a graph to represent the locations of the

groups of primitives and the locations of the lines interconnecting them.

Edges are added to the graph to represent the minimum spacing require

ment between groups. This minimum required spacing is found by tracing

the right side of a primary group (P) and comparing it with the left side of a

neighbor group (N) which is to the right of the primary group (See Fig. 2.1).

2.1.2 17

N

N N

N

Fig. 2.1 XGraph Primary andNeighbor Edges of Two Elements

Each primary edge segment, or interval, is compared to each neighbor inter

val. The two intervals which generate the maximum spacing requirement

determine the minimum allowable spacing between the two groups. The

reference points for each group and the analysis routines are designed to

ensure that the generated graph is a single-source, single-sink,- acyclic

digraph [Hsueh79].

Once the entire constraint graph with edges representing the spacing

requirements has been generated, the Critical Path Method [Thesen78] (also

referred to as the PERT method) is used to solve for the longest path from

the graph source to graph sink. This step determines the positions of the

centerlines of all groups.

An additional capability in CABBAGE is the ability to automatically insert

jog points into appropriate interconnect lines in the IC layout. A byproduct

of the longest path analysis can be used to determine a 'torque' on each

interconnect line perpendicular to the direction of compaction. The lines

which have greatest torque are then jogged. To maximize the effectiveness

2.1.2 18

of the inserted jog, it is necessary to examine the geometry surrounding the

line which is to be jogged and insert the jog where it will allow the greatest

area savings upon subsequent compactions. CABBAGE does not do this.

CABBAGE was one of the first IC layout programs to use a relative-grid

symbolic approach. Although the general concepts of symbolic layout have

been in use for many years, e. g. [Larsen7l], CABBAGE was one of the first

layout compaction programs to use symbolic representations of the primi

tive devices available in a semicondutor process rather than symbolic

representations for separate mask geometries. It is this difference which

allows CABBAGE to compact layouts efficiently.

2.2. Desired Enhancements A major limitation of the CABBAGE system is

the absence of a true hierarchy. With the order dependencies of the algo

rithms used in CABBAGE greater than linear, the computation time neces

sary for compaction of cells soon becomes impractical as the size of the cells

increases. Although CABBAGE is extremely fast for the compaction of small,

lower-level cells, the compaction of an entire IC design is almost impossible.

An example of a 1500 transistor IC designed with CABBAGE [Hurt82] took

several CPU hours for the complete compaction of the entire design on a VAX

11/780 32 bit minicomputer running the VAX/VMS operating system. Since

the design was composed of only 20-30 cells, the use of true hierarchy might

have reduced substantially the total compaction time.

A second desired enhancement is the ability to have more tn^ri one

interconnect line per side of an object. CABBAGE requires each interconnect

line to terminate on the exact center of the object to which it is connected

for purposes of determining electrical connectivity. This has the effect of

limiting the interconnections to primitives to a single connection per side. If

2.2 19

the use of a hierarchy is to be effective, it is necessary to allow many inter

connection lines per side of a higher level cell, such as an ALU or register

file.

A compaction program should also store connectivity information in the

description of the IC layout. This facilitates having multiple interconnections

per side of each object, since they are no longer required to terminate on

the exact center to specify the electrical connectivity.

Since lines will no longer be required to terminate on the center of the

objects to which they connect, sliding contacts are a natural extension of the

concept of terminals. If a line is allowed to connect to an object within a

specified range along the side of the cell, the compaction program has more

flexibility to arrange the interconnect and can potentially obtain a more

compact final result (See Fig. 2.2).

Another logical extension to the hierarchy of cells is to allow cells to

have complex shapes. To keep the program efficient, these shapes can be

J
7-fc

\.±.
X.;,!

♦ *

Fig. 2.2 Sliding Contacts on the Boundary of a Cell

2.2 20

restricted to rectangular polygons. Polygons are more general than bound

ing boxes, and allow compaction of odd shaped cells to obtain more optimal

compaction results. At the same time, they can provide a method for rout

ing over or through cells providing the geometry within the cell permits it.

Technology and process independence is also an important requirement

for a general purpose compaction program. Technology independence

implies that the program is easy to extend to new IC technologies, rather

than being limited to a single technology. This calls for a general model for

compaction which pays little or no regard to geometric construction of the

devices which are primitives in a specific IC technology. Process indepen

dence implies abstraction of the specification of the spacing rules used by

the program. Over the life of an IC technology, the spacing rules associated

with the process will change many times and the compaction program must

allow such updates in spacing rules to be made easily, with a minimal impact

on the IC designs already entered Into symbolic form.

It is also necessary to allow user constraints, both fixed and relative.

Fixed constraints fix the size of an object, such as an interconnect line. Rela

tive constraints fix the relative positions of two or more objects. An example

of the need for these capabilities is found in standard cell design, where the

pitch of cells and the location of busses within the cells are rigidly specified.

The increased extent of the information necessary for representation of

the IC layout and related symbolic information calls for a comprehensive and

efficient unified IC database. This database must be capable of storing logic

information, such as electrical connectivity, as well as physical information,

such as the geometric properties of a given cell There must be a mechan

ism for storing information of a higher level, e.g. simulator modelling data, to

2.2 21

make the (database general enough to be used by a large suite of IC CAD

tools. Attthe same time,, the database must be specific enough to the prob

lems associated with the storage of IC data to be more efficient than a gen

eral purpose database molded for use with ICs.

The last requirement for a useful compaction program is a powerful

graphics input editor. This editor must be capable of quick layout and edit

ing of the symbolic designs, as well as providing an interface to the auxiliary

tools, such as the spacing program.

2.3. New Concepts in Python

In order to enhance the capabilities of CABBAGE, it is necessary to intro

duce some new concepts. These concepts are protection frames and termi

nal frames and they are required to augment the symbolic representation in

order to make it process and technology independent. Once the symbolic

model is sufficient to allow a more general spacing process, the spacing algo

rithms must be modified to accomodate more general shapes and to allow

more flexible constraints to be used in the spacing process. The scope of

these changes is described at the end of this chapter. Some important

issues which have been bypassed in Python are described in detail.

2.3.1. Protection Frames

Protection frames are used to define the limits of the geometry con

tained within a cell - to 'protect' all of the geometry contained inside them.

The only rule concerning protection frames as used here is that no geometry

appear outside its protection frame. Given this single restriction, there are

many valid interpretations of frames.

2.3.1 22

On the simplest level, a single bounding box could be used (See Figs 2.3

and 2.4 for illustrations of bounding box protection frames). Although the

derivation of this box is easy and efficient, it does not provide a true

representation of the internal geometries it bounds. Quite large unused

areas within the cell are possibly 'invisible' outside the cell (the area dep-

Fig. 2.3 Geometry of Cell

Call Geometry

Bounding Box;

•^*i

Fig. 2.4 Geometry of Cell with Simple Bounding Box

2.3.1 23

icted in Fig. 2.5).

The bounding box model of protection frames can be extended by mak

ing a separate bounding box for each mask layer in the IC process (Fig 2.6).

Since the limits of each layer are most likely different, less unused area

within the cell is 'invisible' outside the cell.

ssSSJ

y-y.

%/v/y/y/yA
v////y////4

Fig. 2.5 'Invisible' Areas Within Bounding Box

) :

Fig. 2.6 Cell Geometry with Per-layer Bounding Rectangles

2.3.1 24

Per-layer sets of bounding rectangular polygons form the basis of pro

tection frames as used in Python (Fig. 2.7). These allow an arbitrary tradeoff

between spacing efficency and computational efficency. The closer a frame

approximates a bounding box, the smaller the amount of information neces

sary to process to correctly space that frame. This will mean less computer

time for spacing the frame. It will also mean the greatest area loss (barring

a bounding box bigger than the actual cell geometry). On the other extreme,

merging the geometry internal to the cell to form the protection frames will

provide the greatest area efficiency, since all of the unused area within the

cell may be used at the next level in the hierarchy. This approach reduces

the effectiveness of the hierarchy however, since the amount of information

contained in these merged protection frames is roughly comparable to exa

mining all of the interior geomtries individually. The only gain remaining at

this point would be due to multiple instances of the same cell.

Fig. 2.7 Protection frames as used in Python

2.3.1 25

Protection frames define 'inviolate' regions. Thus it makes no sense to

allow geometries to be slarger than their protection frames. The reverse

argument is not as obvious. The frames may be larger than the geometries

within them.

ILayout rules may be included in the protection frames [Lock82]. It is

not only guaranteed that no geometry appears outside the frame but it is

also jguaranteed that geometry will not appear within one half of the max

imum rule inside of the frame as well (Fig. 2.8). This has a few advantages,

such as reducing the computation necessary to detect situations where there

is no possibility of conflict between cells. This method taken as a whole, how

ever, is quite cumbersome.

2f protection frames were generated for each combination of mask

layers with a spacing rule, there could be as many as
pi2 - ml

protection

frames, where m is the number of masks. Multiplied over the number of

7T

rL
•f 111111

r ^
' ijuj_i •» i i i 11 i • • *r -

Fig. 2.8 Protection Frames With Rule

2.3.1 26

cells likely to appear in even a modest chip design, the amount of data

storage required becomes very large.

The alternate approach is to include the worst case design rule (the

maximum of the layer-to-layer spacing rules) and have only one protection

frame for the geometry on each layer. Thus, we would have a mavimnm 0f m

protection frames for each cell, with a corresponding reduction in data

storage. Having only one such protection frame will not produce the best

compaction unless all of the spacing rules are equal.

An additional problem with including spacing rules in the protection

frames occurs when the spacing rules must be changed. All protection

frames of all cells must then be recomputed. If the spacing rules had not

been included, a simple spacing rule matrix could have been changed and

the same information would now be available to use with all of the cells.

Thus the interpretation of protection frames without spacing rule is

better. Only one set of frames is required for each mask layer in the IC pro

cess. An auxiliary set of spacing rules is used to determine conflicts between

cells. If the spacing rules change, the protection frames remain unchanged.

2.3.2. Terminal Frames

These complement protection frames and define allowable areas of

interconnection within the protection frames. One of the key differences

between Python and CABBAGE is this idea of terminal connections that are

areas instead of points. Rather than requiring a connection at the exact

center of a point structure such as a contact, the entire contact area is suit

able for termination of the interconnecting line. The connection is limited so

that the line always remains within the boundaries of the terminal frame.

Thus if a line is the same width as its terminal frame, the effect is the same

2.3.2 27

as the point terminals in CABBAGE. If, however, the terminal frame is under

than the interconnect line, the interconnect can move between two con

straints. This movement allows a spacing program to take maximum advan

tage of the instances and interconnections on the most constraining path

through the IC geometry to obtain the most area efficient spacing solution.

There are two major restrictions on terminal frames. First, they must

have at least one edge coincident with a protection frame edge. With the

definition of protection frames presented above, it is not possible for a termi

nal frame to exist outside a protection frame (See Fig 2.9). To permit this

would allow connection to a terminal at a point where there could not possi

bly exist geometries since frames define 'inviolate' areas on mask layers. On

the other hand, having the terminal frame entirely within the boundaries of

its protection frame would require interconnect to cross the 'inviolate' area

of the frame (See Fig. 2.10). This is in violation of the restrictions placed on

protection frames. So terminal frames must share at least part of one edge

Ail Geometry
Exists Within The
Protection Frame

;,i:: Protection Frame

Terminal Frame

:No Geometry Exists
Outside The

Protection Frame
To Connect To

Fig. 2.9 Terminal Frame Outside Protection Frame

2.3.2 28

Protection
Frame
Violation by the
Interconnection

Fig. 2.10 Routing to an Isolated Terminal Frame

with a protection frame to permit external connections to the cell. They

may have many edges in common Objects such as contacts have protection

frames and terminal frames that are entirely coincident. An interconnect

line may connect to a contact from any one of four sides.

More than one interconnection line may terminate on the same terminal

frame. There is no restriction to the total number of interconnections on

each terminal frame or even the number of interconnections per side of the

terminal frame. However, each interconnect line must end in a terminal

frame. This is a convention used to simplify the treatment of interconnec

tions, and is not directly related to their nature.

2.&3. Hierarchical Spacing Using Protection and Terminal Frames

These two simple concepts of protection and terminal frames together

provide the basis for a true hierarchical spacing. As each cell is designed,

the elements within the cell are spaced according to the layout spacing rules

by Python. After each cell is properly spaced, protection frames are

2.3.3 29

automatically generated from the geometry internal to the cell. This is done

only once, and the protection frames are stored with the cell. The terminal

frames are defined explicitly by the user, who labels the signals which are to

be exported to the next level in the hierarchy. The geometry that imple

ments these electrical nets defines the physical implementation of the termi

nal frames. Alternatively, the user can define local terminals when laying

out his cell. These terminals can automatically be used as terminal frames.

After the terminal frames and protection frames have been established

for a cell, the cell can be placed at the next level in the hierarchy. The spac

ing program only need look at the protection frames of the cell at that level

and need never look at the geometries contained within the ceil.

The use of protection frames with terminal frames is intended for a

bottom-up implementation style with Python A top-down design style may

require additional tools such as interconnect routers. If a cell is placed in its

unspaced (original input) form and later compacted, the old terminal loca

tions of the cell may not be at the same locations as the new terminals. The

interconnections to the instances of the cell may require patching to physi

cally connect to the now smaller cell (See Fig. 2.11). In the example shown,

spacing of the cell yields a cell that is much smaller than the original. Most

of the interconnect lines that terminated on the cell now are left uncon

nected. Three possibilities exist to maintain the physical implementation of

the lines connecting to the instances. Since the order of the terminals along

any given side of an instance is unchanged (Python does not re-arrange the

topology of the layout) a simple program can be used to patch the old termi

nal locations to the new ones, adding jogs in the interconnection lines if

necessary. This tool does not have to concern itself with proper spacing of

2.3.3

a

a

r^^i

30

i-

Fig. 2.11 Top-Down Implementation Before andAfterSpacing

the newlines; Python can resolve any design-rule violations when compacting

the cell containing the newly compacted instance. Alternatively, a machine-

based routing program or a human designer can patch the interconnections

back to the proper terminals in the cell to restore the electrical connections

(See Fig. 2.12). Over multiple levels of the hierarchy of a complete IC design.

a

a

n^i

Fig. 2.12 Interconnect Patched to Cell of Fig. 2.11

2.3.3 31

hand correction of this problem would make the top down design approach

intractable. Allowing Python to correct for any design-rule violations pro

duced removes any difficulty associated with a top-down implementation

An even more serious problem exists if the result of the spacing of a cell

instance is larger than the original cell (See Fig. 2.13). At this point, the

interconnect lines are violating the protection frames of the cell and must be

moved out to properly connect to the cell. There may not be enough space

to accomodate the expanded cell. A spacing of the current level in the

hierarchy may be necessary in order to satisfy all design rules. Since this

will expand the current level of the hierarchy, this single cell expansion

could ripple up the entire hierarchy to the top chip level. Conceivably,

change in a single low level inverter cell could require the re-spacing of the

entire IC unless precautions are taken during the top-down design phase.

Protection
Frame

Violation

Fig. 2.13 Cell Which Crows - Before end After Spacing

2.3.4 32

2.3.4. Overview of Python

Python is based on the original CABBAGE program. It includes most of

the enhancements described above. It uses the general concepts of

representing the circuit topology with a graph and solving a longest path

problem through the graph to space the IC elements. However, the mapping

of the IC topology onto the graph and the algorithm used to solve the longest

path through the graph are quite different from the CPM method used in

CABBAGE. Some items specific to the Python program are:

• Arbitrary Complexity Polygon Protection Frames (A set per mask layer)
• Terminal Areas (Frames)
• Box (only) Terminal Frames
• Constraint Edges with Upper and Lower Bounds

The specific implementation of the Python algorithms is described in the fol

lowing chapter.

CHAPTER 3

Python

3.1. Python as a Part of an IC Design System

While Python can be used as a stand-alone utility, it is designed to be

incorporated as an integral part of a complete design system. To communi

cate with other tools in this design system, a comprehensive database is

necessary, capable of efficiently representing and managing the information

required for the symbolic design of Integrated circuit layouts. Several

unique types of information are required for the spacing process performed

by Python. Electrical circuit connectivity must be known to distinguish

between objects that are physically tied together (expressing an electrical

connection) and objects that are merely touching or overlapping (perhaps in

violation of a layout spacing rule). The geometric construction of cells is also

required and provides the means for determining the minimum allowable

separation between objects with a given set of layout spacing rules. The phy

sical placement of the cells relative to one another establishes a precedence

in the topology of the circuit. The remainder of this section describes the

environment in which Python resides and the other programs that it uses.

3.1.1. The Squid Database

The Squid database [Keller82] provides a general framework to support

the requirements of Python as well as other layout programs. At the same

time, Squid is tailored for the representation of integrated circuit data so as

to allow efficient management of this information

3.1.1 33

3.1.1 34

Squid provides a procedural interface to a general-purpose file system

where different views, or representations, of a circuit are stored. It allows

an application program, such as Python to create, alter, and delete these

views, as well as create, alter, and delete logic and geometric information

within individual views. The many Squid operations used by Python are

described in Section 3.2.2. This section describes the transformation of the

symbolic data from the database into the Python internal format.

3.1.2. The Fang Manhattan Polygon Package

As described earlier, protection frames and terminal frames provide

the basis for a true hierarchy in the spacing system. It is important that

these frames can be generated automatically. If the user were required to

specify these frames, iterations on the design of a single cell would require

respecification by the designer of the protection and terminal frames and

such a process would be error-prone as well as tedious. The Fang program

[Moore82] is a Manhattan polygon package which can be used to generate

automatically protection and terminal frames through a sequence of grow,

merge, and shrink operations on the individual mask geometries. Python

also uses Fang to remove any overlaps which might be present in protection

frames retrieved from the Squid database. Such overlaps would prevent a

legal circuit spacing from being generated.

3.1.3. The Hawk Graphics Editor

With the ability to represent comprehensive symbolic information in the

Squid database, this information must be entered into the database graphi

cally or under program control. In CABBAGE, the GRUC program is a graph

ics editor which provides rudimentary graphics entry and editing capabilities

3.1.3 35

of the symbolic primitives. For Python, a more powerful entry system is

required, both to provide the basis for a system that is more useful in a pro

duction sense, and to allow the designer to exploit the added enhancements

in Python In addition, this entry system should provide a clean, simple

interface to the spacing program, shielding the designer from the tedious

parts of the spacing process.

The .ffatijfc graphics editor [Keller82] is the front-end for Python It has

many powerful features which ease layout for designers.

3.2. Algorithms Used in Python

3.2.1. General Overview

Python properly spaces interconnected cells which represent the mask

topology of an IC. This spacing is a process of shrinking or expanding the

lengths of the interconnection lines between these cell instances to obtain a

minimum, area for the entire layout. Electrical connectivity is preserved at

all times. The semiconductor process defines a set of spacing rules

(minimum spacings between mask layers) which are used to determine the

minimum allowable separation between cells. Each cell instance is

represented by a set of protection frames and terminal frames on .many

mask layers. At the lowest level, the actual mask geometries of the primi

tives will define their protection and terminal frames. Additional frames may

be introduced to express more complex design rules (such as transistor

active area to active area spacing in an NMOS process). At higher levels in

the hierarchy, the protection frames and terminal frames are generated to

produce the optimum computation time/area saving tradeoffs. The widths of

interconnections are also taken into account during the spacing process.

3.2.1 36

Taken as a whole, this guarantees a compacted layout which satisfies all

spacing rules for a given process, and which occupies a minimal amount of

area given the latter constraint.

The spacing process is decoupled into separate problems for the X and Y

directions. This allows the program to use the orthogonal structure of the

instances and lines to best advantage. One point worth noting is that this

decoupling introduces the possibility of the minimal area derived by the pro

gram being a local minimum, and larger than the global minimum area. In

CABBAGE, this effect was often observed. Also, the initial direction of spacing

has a large effect on the aspect ratio of the final layout. That is, an initial X

spacing might yield a tall narrow cell whereas an initial Y spacing would yield

a short wide cell.

For each spacing direction, each instance and interconnect line is

represented by two vertices in a graph, which represent the coordinate posi

tions of the lower and upper sides of the bounding box surrounding each

instance and line. This bounding box is for use as a reference only and has

no bearing on the complexity or number of protection frames used within

each instance. Edges in the graph have upper and lower bounds, which

represent the smallest and largest distances (orthogonal distances because

of the decoupling into X and Y graphs) respectively between the locations

represented by its source and sink vertices. Edges are added to each graph

to preserve the shape of the instances and width of the lines. Additional

edges are added to preserve the electrical connectivity. Next, edges are

added between vertices in each graph to indicate the spacing requirements

between two objects. The result is a complete constraint graph, with vertices

corresponding to the physical locations of the instances and lines, and with

3.2.1 37

edges corresponding to the spacing constraints necessary to preserve shape

and electrical connectivity, as well as keeping objects spaced apart by the

proper spacing rule. Figure 3.1 shows the edges and vertices for the graph

that is generated for a single object. The source and the sink of the graph

are global.

This graph is now processed using a modified Critical Path Method (CPM)

algorithm. Finding the longest path from the source of the graph (lower

edge of the topology) to the sink (upper edge of topology) yields the spacing

rule correct positions of the vertices of the graph (and hence the instances

and lines they represent). This method itself is iterative at two levels. The

modified CPM algorithm is iterative, requiring as many iterations as the

number of vertices in the graph in the worst case. Since the spacing process

is decoupled into separate X and Y spacings,' layout rules may be violated

during a spacing in the direction perpendicular to the spacing. Thus, it is

also necessary to iterate between X and Y spacings until no instance moves

H

i
O.,>0..w/w....'j

X :
Source :__

Y(.) Sink

(Weights are min/max)

H/H ; x
: Sink

Y f) Source W

Fig. 3.1 Edges end Vertices for a Single Cell

3.2.1 36

for both an X and Y spacing. Only then is a completely error-free layout

guaranteed. Changes during a spacing iteration may change the spacing

requirements in the perpendicular direction. This requires that the edges

used to express spacing constraints be recomputed during each iteration

The algorithms in Python are derived from those used in CABBAGE. The

graph representation of the topology is slightly different, due to the intro

duction of sliding contacts and polygonal protection frames. The spacing

rule analysis is performed on an edge-segment by edge-segment basis,

rather than on an object-by-object basis, as is done in CABBAGE. This is

necessary because of the complex shapes that protection frames can have.

The longest path analysis is modified to allow maximum constraints, as well

as the mi™™"™ constraints generated in CABBAGE. The minimum con

straints represent the minimum allowable spacing imposed by the spacing

rules. The mavimnm constraints are used to preserve electrical connec

tivity, and to preserve the shape of objects. The modifications to the longest

path algorithm make it iterative in nature, in contrast to the Critical Path

Method used in CABBAGE which is a single-pass algorithm.

The specific algorithms used in each subsection of the program are

described below. The Python program is divided into 5 major subsections.

They are Readin, BuHdgraph, Sranalyze, Lngpth, and Update subsections.

3.2.2. Transforming Data into Internal Form

The Readin phase of the program transforms the symbolic IC data from

the Squid database into the internal data structures used by Python. Each

cell withinSquid is described by several views, or representations of the cell.

The view from which the layout geometric information is read is termed the

input view, and the view where the spaced layout is stored is termed the

3.2.2 39

output view. The input viewis opened for reading only, and copied to the out

put view. The output view is then opened for reading, and the input data is

read from the output view. This is necessary to facilitate update at the end

of the spacing process. The only coordinates that will be updated are the

locations of instances and the paths of interconnect lines. An instance gen

erator returns a different instance each time it is envoked. until all instances

have been returned. Each instance is opened in turn for reading. Squid

reads each ceil type only once, and successive opens of the same cell return

immediately.

Next, a special generator is invoked to read in all of the interconnect

local to the cell being spaced. The only legal geometry for representing

interconnect is the geometry-type line. Each line has a mask layer associ

ated with it. If the mask layer of a line has no spacing rules to any other

layer (including itself), the line is ignored, since no constraints will ever be

generated because of it. The orientation of the line is considered next. The

line must be either horizontal or vertical to work with the spacing algorithms

used in Python. Also, Python requires each interconnect line to be a single

segment joining two instances. This requires that special instances be

created to jog wires. Each line has four intervals created for it. Intervals

are edge segments which represent the bounding-box edges of the line. One

interval is created for each edge of the bounding box. These intervals con

tain the mask layer of the line, as well as a net-id which defines the electrical

net to which the interconnect belongs. They are used for spacing rule

analysis. The vertical intervals are used in the X spacing analysis and the

horizontal intervals are used in the Y spacing analysis.

3.2.2 40

The same special generator used above to generate the interconnect is

now invoked to generate protection frames and terminal frames both local to

the cell being spaced and local to each instance within the cell. Instances

are also specified with a bounding box and, like Lines, they have intervals for

each side of the bounding box. The difference is that instances contain

polygonal protection frames on many mask layers. Each interval represents

an edge of one of these polygons. Squid currently maintains the polygon pro

tection frames as rectangles within the database. Each rectangle is decom

posed into four intervals, which are labelled with the mask number and given

a NULL net-id (which indicates no connection to any net). As for the case of

lines above, the horizontal and vertical intervals are kept separate for use in

the decoupled spacing analyses.

Terminals are generated in the same step as protection frames. They

too are represented with a bounding box, but have no intervals created since

they are not used directly in the spacing analyses. Each terminal has an

associated mask layer and net-id and points back to the instance to which

the terminal belongs. If the net-id of a terminal is NULL, it means the termi

nal is 'floating' (not connected to any line) and it is ignored. As the terminals

and protection frames are generated by Squid in a depth-first fashion, transi

tions from instance to instance are detected. It is at this point that a new

internal form is generated for the instance and all successive protection

frames and terminal frames are owned by this instance until the next transi

tion occurs.

After all instances and lines have been read, some conditioning is neces

sary before the analysis can proceed. There may be overlaps between the

polygonal protection frame edges since they are represented in Squid with

3.2.2 41

rectangles. The Fang [Moore82] polygon package is used to remove any such

overlaps, generating true polygons for the protection frames. At the same

time, Fang determines the contour of the corners of the intervals. This infor

mation is necessary to properly handle corner-to-corner constraints in the

spacing rule analysis.

Each interval has a net-id associated with it. For each interval, all asso

ciated terminals are checked to see if they share a common edge. If so, the

part of the interval which overlaps the terminal is split from the rest of the

interval and labelled with the net-id of the terminal. Using net-ids with inter

vals allows the spacing rule analyzer to ignore rules between intervals on the

same mask layer with the same net-id. Although a constraint must be added

to keep the topology of the circuit from changing, the value of the constraint

is adjusted to allow the two intervals to touch.

Intervals must have their coordinates specified relative to the bounding

box edges of the instance to which they belong. This removes the need to

update the interval coordinates since they will always be correct. Even lines,

which change length, will always have the correct values for their interval

coordinates since the endpoints of the intervals along the length of a line are

expressed relative to the endpoints of the line itself.

3.2.3. X and Y Graph Construction

During the Buildgraph phase of the program, the 'permanent' parts of

the X and Y graphs are constructed. These are the parts which are static

through the iterative X and Y spacings. The vertices which represent the

locations of the 4 edges of the bounding box for each instance or line do not

change. The edges added to preserve shape, width, and electrical connec

tivity, are also invariant. These parts provide the basis for the constraint

3.2.3 42

graphs.

The Readin phase created lists of instances, lines, and terminals. Termi

nals contribute no vertices to the graph but are used to determine the upper

and lower bounds of the edges added between instances and the lines con

necting to them. Since the terminals are areas instead of points, any line

whose width is smaller than the terminal to which it connects generates an

edge with different upper and lower bounds. The provision of these 'sliding

interconnects', which can connect to a terminal within a range of positions,

allows the spacing program to take advantage of non-critical connection

points and achieve a smaller overall size for the integrated circuit. For each

instance, two vertices are allocated in each of the graphs. In the X graph, an

edge is added between the right and left vertices with the same upper and

lower bound, which is the width of the bounding box. This also occurs in the

Y graph, between the bottom and top vertices. Now the bounding box of the

instance will maintain its shape during the spacing process. Note that a sin

gle vertex in each graph would have been sufficient to represent the

instance, since its shape will not change. Two vertices were added since they

are necessary for lines, and it was desired to treat lines and instances in a

consist manner in the constraint graph.

A line requires two vertices in each of the X and Y graphs because its

endpoints can move independent of one another. The shrinking and growing

of interconnect lines along their length provides the compaction - instances

only change their location, they do not change their shape. Note that three

vertices spread between two graphs would be sufficient to represent lines

since either the X values are always equal (vertical lines) or the Y values are

always equal (horizontal lines). Two vertices were used in each graph.

3.2.3 43

instead of two in one and one in the other, so that the algorithms need not

consider the orientation of lines. The edges of a line are expanded to include

the width of the line by the time spacing rule analysis has been performed.

To maintain the orthogonal nature of the lines, an edge is added between the

vertices of the line in the graph perendicular to the orientation of the line.

This edge has fixed and equal upper and lower bounds equal to the width of

the line. It would not be necessary if three vertices were used to represent

the line instead of four but simplicity of the algorithms was deemed more

important than saving a small amount of space.

Each line has an additional edge added between its vertices in the graph

parallel to its orientation. This edge has a lower bound of zero and an upper

bound of infinity and serves to keep the upper coordinate (in the axis parallel

to its orientation) greater than or equal to the lower coordinate. The idea of

coverage (described in Section 3.2.4) will not work if the topology of the sym

bolic IC can change. One possible change occurs when a line 'changes polar

ity', i. e., the length of the line defined as the upper coordinate minus the

lower coordinate becomes negative. Since this would destroy the integrity of

the spacing process it is forbidden Addition of this edge with zero lower

bound and infinite upper bound keeps the line lengths greater than or equal

to zero.

Edges are now added to the graphs to preserve electrical connectivity

between instances and the lines which interconnect them. Terminals,

although not directly represented in the constraint graphs, determine the

upper and lower bounds of the edges which bind instances and their lines

together. The terminals and lines are individually sorted into their respec

tive lists by net-Jd. Each terminal is compared only with lines of the same

3.2.3 44

neMd to prevent the Ofa2) time complexity that would occur if each termi

nal were checked against each other line. There will still be a problem with

global signals, which are likely to have many terminals and lines in the same

net. Examples of this are WD, GND, and CLKsignals in an integrated circuit.

Terminals which are checked against lines are compared to see if either

of the line's endpoints is contained within the terminal. If one or the other

endpoint is contained within the terminal, two constraint edges are added,

one to each of the graphs. This fixes the vertices representing the instance

of the terminal to the vertices representing the endpoint of the line con

tained within the terminal. Since the terminals are area frames rather than

points, the edge added to the graph perpendicular to the line orientation is

given some 'slop', by means of different, but finite, lower and upper bounds

on the constraint. These bounds are fixed to allow the lower edge of the line

to drop as far as to coincidewith the lower edge of the terminal frame and to

allow the upper edge of the line to rise far enough as to coincide with the

upper edge of the terminal frame. Obviously, the smallest width a terminal

frame can have is the width of the line that is connected to it. In this case,

these upper and lower boundswould be equal and the interconnect line would

be coupled rigidly with the instance of the terminal.

The graph parallel to the orientation of the line has an edge added to it

to fix the endpoint of the line to the edge of the terminal frame with which it

intersects. This edge is added to prevent terminals frames from merging.

Objects should be allowed to merge, but this is a subject which needs exten

sive algorithmic development for the compaction model used in Python

before a suitable method can be determined.

3.2.3 45

Two additional points should be noted about terminals. First, more than

one line may end on a single terminal. This will not cause any problems

unless the sum of the widths of the wires is greater than the width of the ter

minal. In the latter case, an overconstraining condition will be generated

and the layout cannot be spaced correctly. The second point worthy of note

is that the two or more line's ending on a single terminal do not have to enter

from a single side if the protection frames will permit entry from multiple

sides. A clear example of this is a contact between two mask layers. In a

contact, the protection frame and the terminal frame coincide on all four

edges. Assuming the two mask layers may overlap In an arbitrary fashion

without violating layout rules (such as for polysiiicon and metal in an NMOS

process), there may be lines entering the terminal from all four sides on

each mask layer.

At this point, all of the vertices for instances and lines have been

created and all of the edges for preserving instance shape, line width, line

length (greater than or equal to zero), and electrical connectivity have been

added to these vertices. This constitutes the complete 'permanent' portion

of the graph. All of these parts will remain unchanged throughout the itera

tions of spacing rule analyses and the determination of the longest path. The

only parts to be added are the edges which express minimum spacing

requirements between objects. These edges must be generated before each

iteration. The reason for this is that movement of an instance or line in one

direction disturbs the edges added for spacing in the perpendicular direc

tion. Therefore, before each iteration, the graphs must be returned to the

'permanent' state and the spacing rule analysis will add edges for the

current iteration. Notation is made of this 'permanent' state immediately

after the graph Is constructed. This makes the process of returning the

3.2.3 46

graph to the proper state very fast.

The last thing done in the BaUdgraph subsection is to generate the two

interval queues that will be used in the spacing rule analysis. Since the

interval coordinates are expressed relative to the appropriate bounding box

edges of their instance or line, it is not necessary during the iterative loop of

spacing rule analyses and longest path solutions to update the intervals coor

dinates. This is true for instances, which only change location, and it is also

true for lines, which change shape (length) as well as changing location.

Now the information has been generated to allow the iterative loop of

spacing rule analysis followed by longest path solution to be executed.

3.2.4. Element Spacing Rule Analysis

In Python, each of the four sides of an object has a per-layer set of pro

tection frame edges associated with it. These edges, called intervals, are

developed from the protection frames as the symbolic data is read from the

Squid database. They consist of the edges of the polygons that form the indi

vidual protection frames on each mask layer for the cell. They are formed

during part of the Buildgraph phase, and are used in the spacing rule

analysis.

The idea in the spacing analysis is to compare all right-side edges

against all overlapping left-side edges and determine the magnitudes of the

constraints necessary between objects. Each object has only two vertices to

represent it in each coordinate axis direction, but has many intervals. Only

a single constraint is generated between any two objects. Each primary

(right-side) edge (P) of an instance or line is compared with each neighbor

(left-side) edge (N) of an instance to the right of it. The interval constraint

which forces the maximum separation between the two instances defines the

3.2.4 47

minimum allowed spacing.

First, the intervals are sorted by center coordinate, with conflicts in

center coordinate being further sorted by lower coordinate. This list is then

traversed in reverse order. Left-side edges are ignored in favor of primary

edges, or right-side edges. When a primary edge is found, the interval list is

scanned forward from this point, in search of a left-side edge, or neighbor

edge that overlaps the primary edge. Several features make this search

efficient. If the neighbor edge is below the primary edge a distance greater

tha" the maximum spacing rule, there cannot be any interaction between

the neighbor edge and the primary edge. The next neighbor edge is then

found. If the neighbor edge is above the primary edge a distance greater

than the mavimnm spacing rule, there can be no interaction between the pri

mary edge and the neighbor edge. Furthermore, since the intervals are

sorted In two directions, no further neighbor edge with the same center

coordinate can possibly overlap the primary edge. Thus, these neighbor

intervals can be skipped at substantial computational savings.

Once it has been determined that a primary edge and neighbor edge

might overlap, there are several cases to ignore. The first is when both the

primary edge and neighbor edge belong to the same instance. Since the pri

mary edge is a right-side edge, and the neighbor edge is a left-side edge,

overlapping intervals may belong to the same instance only if they are inte

rior to a concavity in a protection frame of if they belong to protection

frames on different mask layers as illustrated in Figs. 3.2 and 3.3. These

cases of overlapping intervals should be ignored, since it is assumed the con

struction of the instance protection frames is correct.

3.2.4

p N |

Pig. 3.2 Primary end Neighbor from Same Instance (Same Mask Layer)

N

Bounding Box

48

Fig. 3.3 Primary and Neighbor from Same Instance (Different Haak Layers)

Another case to ignore occurs when there exists no rule between the

mask layers of the primary and neighbor intervals. Since there is no rule,

the two intervals are not constrained relative to one another. They may even

overlap if the rest of the circuit topology permits.

3.2.4 49

If the primary and neighbor instances have a 'permanent' edge (one

preserving electrical connectivity or instance shape), the spacing rule

between them should be ignored. Otherwise, overconstraints are easily

introduced into the constraint graph, and no solution can be attained.

If the overlap between primary and neighbor edges is not ignored for

one of the above-mentioned reasons, the two intervals are checked more

closely for overlap. The two types of overlap are solid overlap and corner

overlap and are illustrated in Figs. 3.4 and 3.5. Solid overlap occurs when the

themselves overlap. Corner overlap occurs when the intervals do not directly

overlap, but the distance by which they miss is less than the spacing rule

between the mask layers of the two terminals. Corner overlap is necessary

to prevent overconstraining conditions from being generated. Since the

spacing rule analysis is decoupled, the spacing rules in the direction perpen

dicular to the direction of spacing are ignored. This means that relative

movement of instances and lines during a spacing may violate design rules in

Solid Interval Overlap

Fig. 3.4 Solid Interval Overlap

3.2.4

P to N
Spacing Rule

50

Corner Interval
Overlap

N

Fig. 3.5 Corner Interval Overlap

in the perpendicular direction. Also, if corner constraints are ignored, it is

possible to generate a compacted layout that cannot be legally solved in the

perpendicular direction, as shown in Fig. 3.6. The situation in Fig. 3.6 is

corrected if corner constraints are applied, as illustrated in Fig. 3.7.

After Y
>•

Spacing

•t: Minimum Spacing

Spacing
Violations

Fig. 3.8Overconstraint Introduced When Corner Constraints Ignored

3.2.4

o •

After Y
♦•»•

Spacing

•»:

51

Minimum Spacing

NO
Spacing
Violations

Fig. 3.7 Overconstraint Avoided When Corner Constraints Checked

M either a solid or corner constraint is necessary, the vertices

representing the center positions of the primary and neighbor intervals are

checked. If a constraint is already present between the instances which con

tain the primary and neighbor edges, the value of the constraint is updated

to the maximum of its current value and the new required spacing imposed

with the current primary and neighbor edges. If no constraint is present,

one is added.

The concept of coverage is used to limit further the interval search.

Give mz objects arranged in an m*m matrix, in the worst case, where there

is a spacing requirement between each object and every other object, there

77l2pi. —1]
are constraints required [Hsueh79]. Given n objects, the aver

age case would then generate nlfi constraints and the worst case, with all n

objects in a line, would generate n2 constraints. The idea of coverage is that

a constraint generated between a primary edge and a neighbor edge shields

the overlapping interval of the primary edge from successive neighbor edges

3.2.4 52

with higher center coordinates. Implicit in the concept of coverage is the

assumption that a right-side edge of the neighbor's instance will generate a

constraint with successive neighbor edges (See Fig. 3.8). Thus in Python,

each interval is covered by the solid overlap of a neighboring interval that

causes a constraint to be generated. This works properly for NMOS and Bipo

lar IC processes. However, there can be a problem, as illustrated in Fig. 3.9.

If there are three objects, on mask layers A, B, and C. and there are spacing

rules between mask layers A and B, mask layers A and C, but not mask layers

B and C, an improper cover is generated, as seen in the figure. The primary

edge in object 1 is covered by its neighbor edge in object 2, and there is no

constraint generated between objects 1 and 3. Since there is no spacing rule

between mask layers B and C, no constraint is generated between objects 2

and 3. Thus, object 3 is free to move relative to object 1. The subsequent

spacing process may overlap objects 1 and 3, in violation of the spacing rule

between mask layers A and C. Thus it is important to verify for new IC tech

nologies that the spacing rules are denned to prevent this case. Not using

Constraint Not Generated Due to B Covering A

Fig. 3.8 Coverage of a Primary Interval

3.2.4

N

.5.

53

Constraint Should Be Generated Since No Constraint
Exists between B and C but is Not Due to Coverage

Fig. 3.8 ImproperCoverage of a Primary Interval

coverage would change the order dependencies of the spacing rule analysis

from 0(n) to average 0(n15), and worst case 0(n*). These super-linear

order dependencies quickly increase analysis time to an impractical size for

real cells.

A concept which also increases the order dependency of the analysis,

but one which is necessary for area efficient spacing, is the concept of mer-

gability. Objects are not permitted to merge in Python. If two intervals over

lap and a spacing requirement exists between them, the spacing is allowed to

drop to zero provided the two intervals are in the same electrical net and on

the same layer. Thus two lines connected to a single terminal could have

zero spacing without violating any spacing rules. Under these conditions, the

possible overlap resulting from the Inaccuracies of the IC process (the basis

for the spacing rules) would not damage the electrical performance of the

circuit. If the lines were on two different mask layers, polysilicon and

diffusion for example, the results of ignoring spacing rules could be disas

trous even if the two lines were electrically equivalent. In a similar way.

3.2.4 54

Ignoring the spacing rules between object on the same mask layer but in

different electrical nets could quite easily destroy the electrical properties

of the circuit. Therefore, only the spacing rules between intervals on the

same mask layer that are electrically equivalent are ignored, by setting

them to zero.

Rather than set the spacing requirement to zero for objects that are in

the same net, they should be allowed to merge, which means that no spacing

requirement should be added to the constraint graph in the first place.

There are several problems with this. Given three objects A, B, and C (See

Rg. 3.10) if B, and C can be merged, then no constraint is added between

them. There is a spacing requirement between objects A and B which keeps

them properly spaced. There should also be a constraint between objects A

and C, but object B covers object C, so this constraint is not generated. Dur

ing the subsequent spacing process, object C overlaps object A, in violation of

spacing rules (See Fig. 3.11). The program should recognize that objects B

Constraint Between A 8c C Should Be Generated Since
B 8c C Can Merge and Have Rejected Constraint

Fig. 3.10 Objects 9 and C can Merge

3.2.4 55

.B

C Overlaps A in Violation of Spacing Rules

Fig. 3.11 Possible Result of Spacing Fig. 3.10

and C cab be merged, and hence could change relative placement during the

spacing process, when the spacing requirement between objects A and B is

determined. Although this is trivial for the case with simple rectangles, it is

not generally trivial for the case when arbitrary rectangular polygons are

used as protection frames, as shown in Fig. 312. What is necessary is to store

<•!'

\\

Neighbor Intervals
Must Relate Other
Objects Which Can
Merge Back to
Primaries Which
Overlap

Fig. 3.12 Problems with Merging of Arbitrary Rectagons

3.2.4 58

the information as to the mergability of a right-side interval with it

corresponding left-side interval(s). This is not easy to do in a general

fashion. Thus, Python does not allow objects to merge, with some loss in the

area efficiency of the program.

3.2.5. Element Placement

At this point, the entire graph representing the locations of the

instances, with constraints for spacing rule separation, preservation of

electrical connectivity, and preservation of instance shape and line width,

has been constructed. Next, to Insure that the graph is connected and to

provide a starting point and ending point, a graph source and sink are

defined and added to the graph. Each vertex with no predecessors has an

edge added to it directed from the graph source to the vertex, with lower

bound of zero and upper bound of infinity. Each vertex with no successors

has a directed edge added to it directed from the vertex to the defined graph

sink, also with lower bound of zero and upper bound of infinity. The graph is

now connected.

CABBAGE requires the constraint graph to be acyclic. This requirement

is necessary for solution with the Critical Path Method. Python only requires

that cycles be of non-positive weight. Given the Polygonal protection frames

of Python, cycles in the constraint graph are legal (Shown in Fig. 3.13). In

this case, the two interior intervals of the U-shaped polygon A generate con

straints between the exterior intervals of the box B. Since the right-side

intervals are referenced to the right-side vertices and vice versa, a legal

cycle is generated for the X directed graph. The cycle runs from the left side

of polygon A to the right side of polygon A (an edge added to preserve the

width of polygon A), from the right side of polygon A to the left side of box B

3.2.5 57

Fig. 3.13 Legal Cycle in Constraint Graph

(an edge added to express the spacing constraint between interval Ipr and

interval /K), from the left side of the box B to the right side of the box B (an

edge added to preserve the width of box B), and finally from the right side of

box B to the left side of polygon A (an edge added to express the spacing con

straint between interval 1^ and interval fpl). Thus, the algorithm used in

Python does not require an acyclic graph.

The solution of the Python constraint graph with upper and lower bounds

on the lengths of the edges is derived from the longest path problem in graph

theory. What is needed is the minimum value of the positions of all instances

and interconnect lines (vertices in the graph) subject to satisfying the

minimum spacing requirement between objects and preserving the electrical

connectivity of the circuit as well as preserving the shape of instances and

the width of lines. (Lines are allowed to stretch and shrink - this is how the

final spacing is performed.) See Appendix D for a derivation of the algorithm

used in Python. It is an iterative algorithm, and is presented in a psuedo-

programming language which follows the control structures of the C

3.2.5 5Q

programming language [Kernighan78].

1) Schedule-all Vertices to be Examined.

2) Hake the position of each scheduled vertex the maximum of:
Its current position
The maximum of its predecessors current positions
rplusthe lower weight of the edge joining them

The maximum of its successors current positions
minus the upper weight of the edge joining them

If a Vertex Changes:
Far Each of Its Predecessors and Successors

H that Vertex Is Not Scheduled

Schedule for Current Iteration

Hse If that Vertex WAS Scheduled
Schedule for Next Iteration

Else If that Vertex IS Scheduled

Do Nothing

3) If the Next Iteration Queue is Empty
Converged (=> DONE)

Ebe If the Iteration Count is Greater than the Number of Vertices
An Over-constraining Condition has been Encountered

Hae

Goto Step 2) and Continue Iterating

This algorithm is guaranteed to converge in v steps, where v is the number

of vertices in the graph If an overconstraining condition (positive cycle)

exists in the graph, the existence of this overconstraint is detected when

convergence is not reached on the \u +lis* iteration. Unfortunately, detec

tion of the location of the positive cycle is an Op'J problem. The time

required for detection of the positive cycles becomes intractable for even a

small number of vertices. For this reason, Python only reports the existence

of overconstraining conditions. The program makes no attempt to discover

their location. A related point is that the solution of the graphs generated

for representing IC topology in Python is well behaved, i.e., the number of

iterations for convergence is typically a small fraction of v, the number of

vertices in the graph. If an error is present in the layout. Python takes sub-

3.2.5 59

stantially longer to detect its presence than the program does to solve the

equivalent graph without the error. Because the solution of the constraint

graph generally takes fewer steps than the maximum. Python provides a

maximum iteration count. If the iteration count rises above this value, the

spacing process is terminated. At this point, the program may be run again

with this maximum count disabled to determine if the input actually contains

an overconstraint. Alternatively, the user may examine the input topology in

a graphics editor to apply his heuristic knowledge in search of the overcon

straint.

Once the longest path analysis has been performed, all spacing rules are

satisfied. There is one (or many equivalent) critical paths through the graph.

A critical path is denned as a path from the graph source to the sink where

the difference in the positions of each pair of vertices on the path is equal to

the lower bound of the edge connecting them. Note that although the spac

ing between two vertices in the graph is at the lower bound of the edge con

necting them, they will not be on the critical path unless they lie on a path

from.source to sink where all of the edges are at their lower bound length.

At this point, the IC topology has the minimum size. The problem with

the solution is that all objects are at their minimum coordinate location pos

sible while still satisfying design rules. This has the observed effect of 'pul

ling' objects to the left or bottom side of the circuit. While this effect is not a

problem for the objects on the critical path (these objects could not have

there positions changed without increasing the overall size of the cell or

violating a spacing rule) there is 'slack' in the spacing among objects not on

the critical path. This slack is distributed on the upper side of groups of con

nected objects not on the critical path. If the slack were distributed more

3.2.5 60

evenly, the geometric yield of the IC would be improved since fewer objects

would be at their minimum required spacing apart. To accomplish a more

equitable slack distribution, a reverse pass is made through the graph to

determine the maximum coordinate locations of all objects while still satisfy

ing all spacing rules. The critical path objects can now be determined easily

by noting which have the equal lower and upper positions. The rest of the

objects have different lower and upper positions, which define the 'slack'

around each object. Note that this 'slack' may be shared among other

objects not on the critical path; if more than one object is on a path not on

the critical path, the slack belongs to both of them.

If the average position is taken for each object, it can be shown that all

spacing rules are still satisfied, if the spacing rules are satisfied when all

objects are at their lower positions and when all objects are at their upper

positions. If there is a single object between two objects on the critical path,

the non-critical object is properly spaced in the middle of the slack space

(See Fig. 3.14). If there is more than one group between two groups on the

critical path, this averaging technique has the effect of bunching the non-

critical path groups together in the center of the slack space (See Fig. 3.15).

Although this is not optimum, the averaging technique is more desirable than

placing all of the slack space on the upper side of a non-critical path group.

The optimum solution would be to apportion the slack between the non-

critical path groups evenly. Figure 16 shows this phenomenon on a simple

example. What is necessary is to first determine the non-critical subgraphs

of the constraint graph. Next, the sum of the excess distances between all

groups in the subgraph should be maximized. An alternative approach (to

minimize total line length) is to move each object to a lower or upper posi

tion to minimize the total line length. Note that the lower and upper

3.2.5

'/yyy/A
yy/y/<y•'////y/>
fa/}/fay///.

•//'/'/'
//////A

v4//

fay/A

Non—critical
Path Object
is Spaced

Evenly
Between

Critical Path
Objects

Pig. 3.14 Non-critical Path Object Spacing

Multiple Objects Are Clustered
Together at Min Spacing

Between Critical Path Objects

Min Spacing

61

fa/fa
fay///fay///
//Y*%6//

IP
fay///

'fa%4,'/-fa//
W/>y/
</Fixed>>

Fig. 3.15 Multiple Objects Not an the Critical Path
im

positions in this case may be different from the lower and upper positions

computed in the forward and reverse passes of the longest path algorithm;

since the slack is shared among possibly many non-critical path groups.

placement of one group at its upper position followed by placement of an

adjacent group at its lower position would most likely result in design rule

3.2.5 62

violations.

In Python, the current approach to this problem is to average the lower

and upper coordinate locations of each group. The critical path groups have

equal upper and lower bounds so they do not move. The non-critcal-path

groups are bunched together in the center of their available slack space.

Although this is not the best possible solution to non-critical group place

ment, it is efficient and simple from computational and conceptual

viewpoints.

3.2.6. Updating the Symbolic Data

After the spacing process, the instances and lines have left, bottom,

right, and top location which reflect the instances new locations and the lines

new paths. All that is necessary is to update this information in the Squid

database in the output view which was copied from the input view during the

Readin phase. The only possible problem is caused by local terminals. They

are stored as instances but their instance*id actually refers to a terminal.

'/&M
fa////
fa///fay/yy

Multiple Objects Should Be
Evenly Spaced at Greater Than

Minimum Spacing

:'• > Min Spacin*

Pig. 3.16 Even Placement of Non-critical Path Objects

fa/fayyyy//

fa//fayyyy

yy/yy/y

y////--/>

3.2.6 63

Attempting to retrieve an instance with the terminal-dd will result in an error

being returned from Squid.

Each instance in turn is retrieved from the database. Instances have a

transformation matrix [Newman80] which determines the translation and

rotations and mirrorings of the instance. Instances are only translated in

Python Thus to update the Ts and Tv values of the matrix (locations

matrix[2][0] and matrix[2][l]), incremental distances are computed by sub

tracting the old from the new values of the left and bottom bounding box and

adding these differences to the Tz and Ty. The instance is then updated in

Squid. If the retrieval fails, the instance is assumed to be a local terminal

and the terminal is retrieved from the database. Terminals just have a rec

tangle which can be directly updated from the bounding box of the pseudo-

instance of the terminal. All local terminals are then updated in Squid.

Lines are retrieved from the database using their geoid field. They

return a path in an auxiliary array variable. This variable is updated with the

new path of the line. This new path is derived by removing the width from

the bounding box of the line and again by representing each line as an

orthogonal path. Each line is then updated in the Squid database.

Finally, the newly updated output view is saved on disk and the entire

spacing process is complete. The end result is a version of the symbolic lay

out of an integrated circuit which is of minimal area while satisfying all lay

out rules. The spacing maintains the absolute locations of the left and bot

tom portions of the cell as constants.

3.3. Implementation Issues

3.3.1 64

3.3.1. Data Structures

The data structures of Python are quite complex. This choice was made

so that the program would run efficiently after the setup phase with very few

patch-up steps. Each of the data structures is listed and then followed by a

brief description. They are grouped by the major program subsection in

which they are most heavily used. The C programming language [Ker-

nighan78] struct is similar to the Pascal record construct. The Glossary of

Terms (Appendix E) explains unfamiliar terms.

Readin

struct INSTANCE \
ctype 1; /0left (lowerx) coordinate */
ctype b; /* bottom (lowery) coordinate V
ctype r; /*right (upperx) coord */
ctype t; /* top (upper y) coord */
instype type; /'true instance or local terminal */
int instid; /*used to id instance in Squid V
struct INSTANCE *next; /'pointer to next INSTANCE V
struct INTVLHD *xfe; /* left and right frame edges V
struct INTVLHD *yfe; /'bottom and top frame edges */
structVERTEX *vl; /*left coordinate vertex */
structVERTEX *vb; /* bottom coordinate vertex */
structVERTEX *vr; /'right coordinate vertex */
structVERTEX *vt; /* top coordinate vertex */

1:

Each Squid instance has a corresponding INSTANCE struct in Python

The bounding box I, b, r, and t values are taken directly from the Squid

instance. This bounding box is used to perform a rough check for intersec

tion in spacing rule analysis. Also, it defines the location of the instance and

is updated after each longest path calculation. Any other data structure that

references a bounding box does it indirectly through an INSTANCE struct, so

that updating this information in one place will guarantee that all routines

will use the correct values.

3.3.1 85

Local terminals have instances created for them so Python can treat

them in a consistent manner with instances. The type field distinguishes the

two cases and is used when the spaced layout is updated in the database.

The instid is used to identify the particular instance in Squid. This field

is used to retrieve the Squid instance when its location is to be updated after

spacing.

Instances are linked together, so a next member is included to provide

the link.

Two sets of frame edges are provided for the X and Y sides of the

instance. The X sides (vertical lines) are used in the X spacing rule analysis

and the Y sides (horizontal lines) are used in the Y spacing rule analysis.

These edges are the edges of the polygons which form the protection frames

for the instance. They consist of one set of edges per active mask layer. See

the definitions of the INTVLHD and INTRVL structures for more details.

A vertex in the constraint graph is associated with each bounding box

edge of an instance. The left and right vertices are in the x-directed graph

and the bottom and top vertices are in the y-directed graph. Edges are

added from the lower vertex to the upper vertex in each graph to fix the dis

tance between lower and upper edges since instances change only their loca

tion during the spacing process. Each vertex has a pointer to the coordinate

to which it is linked and so has access to the correct bounding box informa

tion at all times. See the definition of the VERTEX structure for more details.

struct LINE \
ctype 1; /'left (lower x) coordinate '/
ctype b; /'bottom (lower y) coordinate '/
ctype r; /'right (upper x) coord */
ctype t; /'top (uppery) coord'/
ntype netid; /'integer net id '/

3.3.1 66

int geoid; /'geometry id used with database */
otype orientation; /'HORIZONTAL or VERTICAL */
struct LINE mext; /'pointer to next LINE */
ctype width; /'width of the line '/
int mask; /'integer mask number '/
structVERTEX *vl; /* left coordinate vertex */
structVERTEX *vb; /* bottom coordinate vertex */
struct VERTEX *vr; /'right coordinate vertex '/
struct VERTEX *vt; /'top coordinate vertex '/

The LINE struct represents a line, or piece of interconnect, in the

Python data structure. Although it also has a bounding box, this box must be

derived from the endpoints and width retrieved from the Squid database.

This derivation is performed later on in the construction of the constraint

graph so the width of a line is explicitly stored along with the bounding box.

The geoid identifies the line to the Squid database and is used to retrieve

each particular line when updating path information after spacing. Since a

LINE is part of the physical implementation of a net, which connects two ter

minals, it has an integer net-id associated with it. There is also a next

member to link the lines together.

Lines also contain an orientation which is one of HORIZONTAL or VERTI

CAL. Different than instances, all of the geometry for a line is contained on a

single mask layer. Thus, lines contain an integer mask number. This

number is related to an actual mask name by the Squid database.

Lines are similar to instances since they also contain a vertex for each

of the bounding box edges. In the direction perpendicular to the line's orien

tation, a fixed-length edge is added to keep the two sides of the line spaced

at the line width. In the direction parallel to the line's orientation, an edge Is

added to keep the length of the line from becoming negative. As in the case

of Instances, each vertex has a pointer to the coordinate to which it is linked.

3.3.1

struct TERMINAL \
ctype 1;
ctype b;
ctype r;

ctype t;

ntype netid;
struct TERMINAL ♦next;

int mask;
struct INSTANCE •owner;

i:

67

/'left (lower x) coordinate */
/'bottom (lower y) coordinate */
/'rigfit (upper x) coord */
/'top (upper y) coord '/
/'integer net id '/
/'pointer to next TERMINAL '/
/'integer mask number '/
/'element tfiat 'owns' term */

The bounding box information for terminals is read directly from the

Squid database. Terminals contribute no vertices to either of the constraint

graphs and only serve to generate the proper constraint between an instance

and the lines that connect to it. Local terminals, ie. terminals that exist

outside of any instance in the cell being spaced, are treated specially in the

readin phase. They have instances constructed to represent them although

there are not really such instances in their Squid representation. Creation of

these special instances is necessary to treat local terminals in a manner con

sistent with the treatment of instances.

Terminals, like lines, are also part of the physical implementation of a

net so they also contain nei-ids. Since their geometry is entirely on one

mask layer, they contain an integer mask number as well.

Buildgraph

struct INTRVL \ /'interval

ctype high;
ctype •hbase;
ctype low;
ctype •ibase;
ctype center;
ctype •cbase;
itype type;
ntype netid;
int mask;
struct INTRVL •next;

structVERTEX •owner;

J:

list type '/
/'high coordinate */
/'high coord base origin '/
/'low coordinate '/

/'low coord base origin '/
/'centerline of interval '/
/*center coord base origin '/
/ * type of interval '/
/ * 0 unless over term or line '/
/'integer mask number */
/ 'pointer to next interval '/
/ ' owner of interval '/

3.3.1 68

INTRVL structs are kept in lists headed by INTVLQ structs. They are

sorted from high to low by the absolute location of the center coordinate,

which is the center coordinate plus the center base origin. They are then

sorted by the absolute location of the lower coordinate, which is the low coor

dinate plus the low base origin. The high, low, and center members are

specified relative to the corresponding base origins of their parent instance.

Therefore, lines, which change dimension during the course of the spacing

process, can be treated in the same manner as instances, which do not

change dimension, without the need for special case processing.

The type field is a bit field and contains information about the convexity

of the intervals endpoints (used in spacing rule analysis) as well as denning

whether the interval is an upper or lower interval. This is necessary since

intervals are kept in lists according to their orientation .

If an interval overlaps a terminal frame edge (in an instance) or if it

overlaps the edge of a line, it carries the net-id of the geometry it overlaps.

This information is used in spacing rule analysis to obtain more optimal

results by ignoring spacing requirements between intervals of the same net-

id.

Intervals are associated with a single mask so they carry an integer

mask number.

Interval lists are linked so they have a next entry.

Since intervals are sorted in a global list, they have a owner pointer to

the vertex which represents the bounding box edge corresponding to the

cbase coordinate.

3.3.1 69

Spacing Rule Analysis

struct INTVLQ \\
struct INTRVL
struct INTVLQ
struct INTVLQ

/'protection frame edge list head '/
•intrvl; /'pointer to first interval */
•next; /'pointer to next list head '/
•prev; /'pointer to previous list head '/

J;

These structs head the lists of projected frame edges for the spacing

analysis queues. They are doubly linked together, and point to their respec

tive intrvls. One set of lists is initially provided for each of the two sets (X

(right and left) and Y (top and bottom)) of frame edges for each instance.

The frame edges of all instances and lines are linked together, sorted, and

used in the spacing rule analysis to determine the minimum spacing allowed

between objects.

Longest Path Calculation

/ ' current real location '/
/'new loc during iterations '/
/ *used for forward pass 'loc' */
/'coord, for vertex to update '/
/'predecessor edges pointer */
/ ' 'permanent' edges pointer */
/*successor edges pointer '/
/''permanent' edges pointer */
/'used for pred. count in CPM */
/ *ptr used to link vertices */

/'ptr used to schedule vertic&Z
/ *used for scfieduling queues '/

struct VERTEX \
ctype loc;
ctype newloc;
ctype loloc;
ctype •coordinate;
struct EDGE •pred;
struct EDGE •permpred;
struct EDGE •succ;

struct EDGE •permsucc;
int refcnt;
structVERTEX •next;

struct VERTEX •nextq;
sstat

J:
schedule

The VERTEX struct and the EDGE struct (below) are used to space the

elements properly. Each VERTEX contains a Zoc and newloc to compute the

longest path to each vertex in the forward and backward passes. There is

also a loloc to store the forward pass value during the backward pass calcula

tions. As stated above, each vertex points to a coordinate. There are lists of

3.3.1 70

predecessor and successor edges as well as the 'permanent' successor and

predecessor edges (those preserving shape of instances, width of lines, and

electrical connectivity between lines and terminals). A reference count

serves in the first iteration of the forward and backward passes. It counts

the number of predecessors or successors. A schedule status word is used

during the forward and backward passes to record the scheduling informa

tion of each vertex.

The vertices are scheduled for the event-driven longest-path solution in

queues by the nextq member. Queues are maintained for the current and

next iteration queues during the course of the solution. As the position of a

vertex changes, it causes its predecessors and successors to be scheduled,

since they may change. Using two queues maintains the notion of iterations,

while at the same time minimizing the amount of data to be examined. The

notion of iterations must be kept so that over-constraining conditions can be

detected.

struct EDGE \
ctype lobnd;
ctype hibnd;
struct VERTEX ♦pred;

struct VERTEX •succ;
struct EDGE •nextpred;
struct EDGE •nextsucc;

i;

/* lower bound */

/* upper bound '/
/' predecessor vertex pointer */
/* successor vertex pointer */
/'ptr to next pred edge '/
/'ptr to next succ edge '/

The EDGE struct links two vertices together in the constraint graph. It

contains the lobnd and hibnd, which indicate the lower and upper magnitudes

of the constraints imposed by the edge. Each EDGE contains pointers to its

source and sink vertices, under the names pred and succ. The lists are dou

bly threaded, once from the source vertex and once from the sink vertex

through the nextpred and nextsucc members.

3.3.1 71

Global Structures

struct ERROR \
pstat errnum;
char *errmsg;

3.3.2. Squid/Python Conventions

Python expects the following restrictions on its input from Hawk

through Squid:

• All lines are single segment (two endpoints) ending on terminal frames
• Intersecting lines must have a pseudo-instance at the intersection point
• All protection and terminal frames must be in the instance bounding box
• Orthogonal Edges (integral multiples of 90 degrees on all edges)
• No overconstraining conditions may occur
• Electrical connectivity must be explicitly expressed in the net ids
• Protection frames of objects must not overlap

These restrictions were "made for several reasons. All lines must be a single

line segment in order to keep the model of the symbolic integrated circuit

data simple. From this restriction follows the next point, that is. lines which

intersect must have a psuedo-instance (which can be viewed as a layer-to-

same-layer contact) added at their intersection point to keep the model con

sistent. By keeping the model simple, the Python program can be made

more efficient. By treating lines and instances in a consistent manner,

implementation of the algorithms is simpler and the program can be made

more compact and easier to maintain.

The algorithms for spacing analysis and subsequent longest path solu

tion are decoupled into separate X and Y spacings and hence are are an

order of magnitude less complex when used with orthogonal geometries.

If overconstraints are present in the graph, the analysis will take much

longer (v iterations) to determine an error is present and the algorithms

3.3.2 72

have no way to determine exactly where the error is. The order of time com

plexity to find the objects contributing to the overconstraint is 0(2V), where

v is the number of vertices in the graph (the solution is non-deterministic

polynomially bounded). Although it will always be possible for the user to

enter a layout which is overconstrained, proper conditioning of the input as

it is entered into the Squid database (with Hawk) can detect many of these

errors as they are introduced. Chapter 4 describes the types of overcon-

straints which can occur in Python

Explicit electrical connectivity is absolutely essential for a proper spac

ing. As the levels in the hierarchy increase, the shapes of protection frames

and terminal frames become more complex. This makes it impossible for

the program to derive the connectivity of the circuit directly from the lay

out, as was done in CABBAGE. CABBAGE required all interconnect to ter

minate at the exact center of the instance it was connected to. This was not

an unreasonable restriction since there were no sliding contacts and each

instance was allowed only one interconnect to terminate per side of the

instance. Python cannot make this restriction so it becomes necessary to

add the physical connectivity information to the Squid database.

Because the spacing rule interval analysis is performed scanning from

left to right, constraints may not be generated between instances if their

protection frames overlap. This is an artifact of the implementation of the

spacing rule analysis algorithm and should be fixed.

3.3.3. Constraint Graph Construction

The constraint graph used in Python has the values of vertices represent

the physical coordinate locations of bounding box edges of the instances and

lines that make up the IC cell. The analyses are decoupled so there are

3.3.3 73

separate graphs for both X and Y directions. The X graph contains vertices

to represent the right and left sides of the bounding boxes and the Y graph

contains vertices to represent the top and bottom sides of the bounding

boxes. Each vertex has a pointer back to the coordinate which caused the

vertex to be allocated. After each longest path analysis, these coordinates

are easily updated from the new locations of the objects stored in the graph

vertices. Since the intervals used in the spacing rule analysis have their

dimensions specified relative to specific coordinates of the bounding box of

the instance or line to which they belong, the intervals belonging to lines

(which grow and shrink) are properly adjusted automatically, since the

bounding box locations are updated at the end of each longest path analysis.

Three locations are required in each vertex. During the longest path

analysis, the location at the past and present iterations is necessary to

determine when a vertex changes location. The third location is used to

store the minimum possible coordinate location while doing the reverse pass

through the graph (to determine the maximum possible coordinate loca

tions).

Each vertex has a pointer to its predecessors and successors. To keep

track of the 'permanent' part of the graph (which remains static throughout

the entire series of analyses) pointers are kept to the permanent predeces

sors and successors. Since new edges are added at the beginning of the edge

lists, returning the graph to its permanent state is done merely by copying

the permanent pointer over the temporary one.

Edges are added between vertices and have lower and upper bounds

which represent the minimum and maximum differences in position between

the two vertices each edge connects together. They also contain pointers to

3.3.3 74

their predecessor vertex (source vertex) and successor vertex (sink vertex).

They are linked together and they have two link fields since they appear in

both the successor list of their predecessor vertex and the predecessor list

of their successor vertex.

Edges are added for a number of reasons. The first is to preserve the

shape of the instances. Specifically, this means keeping a constant spacing

between the two bounding box edges which appear in each graph of each

instance. These edges have fixed upper and lower bounds which are equal,

and are merely the difference in location between the upper and lower

bounding box edges.

Edges are also added to preserve the width of lines. These are only

added between vertices of lines which are perpendicular to the direction of

spacing. These edges are also fixed, and their equal lower and upper bounds

are just the width of the line.

In the direction parallel to the direction of spacing, lines can stretch

and shrink. However, because of the problems with the merging of elements,

it is not possible to let the length of lines drop below zero. Thus an edge with

zero lower bound and infinite upper bound is added between the vertices of

lines parallel to the spacing direction. A line can be as long as is necessary

allow the surrounding geometry to satisfy the spacing rules, but it can never

drop below zero length.

Edges are next added between instances and lines to preserve the

electrical connectivity of the circuit. The size of the terminal frames each

line terminates on determine the magnitude of the lower and upper bounds

of the edge. If the terminal is wider than the line that terminates in it. the

lower and upper bounds are unequal and provide the 'slop' in the sliding ter-

3.3.3 75

minals. If the width of the line and its terminal are equal, the lower and

upper bounds of the edge are equal and fix that endpoint of the line rigidly to

the instance which owns the terminal.

Edges are added to express the minimum allowable spacing require

ments between objects. This reason is perhaps the most important of all.

Each edge is the maximum of all of the spacing requirements generated by

overlaps of the intervals of two objects. With the addition of these spacing

requirements, the constraint graph is now complete and represents the

topology of the IC cell.

CHAPTER 4

Results

4.1. Examples

4.1.1. CABBAGE I Latch Example

As a comparison between the CABBAGE and Python programs, the latch

block example from [Hsueh79] was compacted with both programs. The

gate-level schematic for this block is shown in figure 4.1. The program cab-

4.1.1

lCLK

(BUS
BUSPOUL y-Cf-^n11

y•ADDR

ENABLE

TBGEN "U

DIOXE5

BUSFLAG
DIOFLAG '

1.CLK
171

$°-£~
12

ROM r<?T

B

10

X

14

o

3>
17

15

Kg. 4.1 Gate-level Schematic for latch-Driver Block

76

4.1 1 77

tasqmd (Appendix (J) was used to translate the i.AHHA(iK symbolic intormedi

nl.e flic and enter the data into the Squid database Uoth programs used the

same design rules The input for both programs is shown in r'lgurc 4 .2

There arc two observable differences in compaction method. Python does

not permit objects to merge but uses sliding contacts CAIJIJAGE permits

objects to merge but uses point contacts for terminals Objects arc permit

ted to merge in CABBAGR when the merging will not affect the circuit electri

cal performance and will help decrease the size of the layout. Since CAH-

UAGh is written for a specific technology the rules defining permissible

merging are well known Python is technology independent, and no general

purpose method for expressing or determining permissible merging has been

implemented Sliding contacts imply that each endpomt an interconnect

line must terminate within the area of its terminal frame, but it can tnr-

minate anywhere within that area. The compaction program can place the

endpoint anywhere within its terminal frame to obtain minimum size Tor the

total layout The results of the compactions are shown in Figures 4 3 and 4 4

Fig. 4.2 I.nlch-Drivcr Mock Input Symbolic l-nyout

4 1 1 70

Fig, 4.3 (nlch-Drivcr Ulock Compacted with the CAM3AGK Program

CAJH3AGK compacts the cell to a size approximately 15% smaller than the size

of the cell as compacted with the Python program. The difference in size in

this example can be attributed to the ability to merge objects within CAH-

UAGM

4.1.2. A Iwiv I.cvc! NMOS Kxamplc

A Turthcr comparison or the CAI3UAGF and Python programs was made

for the example of an NMOS D-type Hip/nop, taken from |Ilsuch79] Hie

schematic diagram for the circuit is shown in Figure 4.5. Cnbtosquixi was

used to translate the CAIJI3AGIJ ASCII symbolic intermediate file and enter it

into the Squid database. The conventions or Python were observed, so inter

sections of interconnection lines had laycr-to-same-laycr terminals added

This is apparent in Figure 4.6. which shows the input to both compaction pro-

4 ! C

Fig. 4.4 hatch-Driver Hlock Compacted witli the Python Program

GND B

VDD B

PHIO B

GND B

B GND

B VDD

B PHI1

BSET

a phio

a GND

7\)

Fig. 4.!> Schematic for D-typc Flip/Flop

grams, displayed in the input format for Python This same input was com

pactcd with equal spacing rules in both programs.

4 I 2 00

The outputs from GAHHAGK and Python <\r(shown in Figure*; 4 I and 4 0

The result obtained with Python is approximately 20% smaller than the

results obtained with GAHUAGl'J This difference in sr/c can be directl) attri

buted to the use or the sliding contacts If merging were allowed in Python,

the size difference might have been even larger

A. 1.3 Hierarchical Spacing or the l«w l.cvcl NMOS Kxaniplc

To demonstrate tin use of the hierarchy, the D-typc flip flop example of

the previous section is used in a shift-register cull The Squid cell for the

compacted version of the flip /flop hits protection frames generated for it

using the program fratrw (Appendix II) The protection frames arc used to

place multiple instances of the cell within a shift register cell and the termi

nals of the flip/flops are interconnected The resulting cell is shown m

Fig. 4.0 I) Klip/Flop Symbolic Input Layout

Bl

Kif; 4 ? Compacted Output from the CADMAGK Program

Figure -i 9 This register cell is compacted with Python, and the output is

shown in Figure " 10 Using hierarchy in this manner greatly reduces the

Fig i.tt Compacted Output from ihc Python Program

n

i i n

K-I;iil!i!

P&irtiH

Fig. 4 0 Shift Register Cell Made From D-lype Klip/Flops

1ii:'.:{:::: I ::::;r

P| ;:';;;:;;;V;
ti3tsfe«ifsffl
V: lT}i'::.{!?'}::: ijjj

^{.::;;':;ii:Mf

jnBmn

it* llX't

w i ppyuuiui

02

Fig. 4.10 Compacted Result of Kigurc 4.0

time required Tor the compaction of a complete circuit The greater the

regularity, or repetition, of cells used in the layout, the greater the savings

4.1.3 83

in the overall compaction time.

4.2. Results

In spite of the greater complexity of the spacing rule analysis and long

est path algorithm. Python is approximately 2.5 times faster than CABBAGE

on the same examples. Even more important, the percentage difference in

run times for small and larger input ceils is much smaller for Python which

implies that the overall order dependencies in Python are lower than those in

CABBAGE.

The time /memory tradeoffs between the two programs seem almost

linear; Python uses approximately 2.5 times more memory than CABBAGE.

The larger memory usage of Python stems from the graph representation for

the IC topology which has many more vertices and edges than the

corresponding graph in CABBAGE. Here is a comparison between CABBAGE

and Python in tabular form.

4.2.1. Run-times and Order Dependencies of Algorithms

All times reported are for a Digital Equipment Corporation VAX 11/780

32 bit minicomputer running the 4.1BSD version of the VAX/Virtual UNDCT

operating system [Fabry82][Ritchie78]. CABBAGE was compiled from the rat-

for programming language [Kernighan76] using the UNIX f77

eompiler[Feldman78]. Python is written entirely in the C programming

language [Kernighan78], and was compiled with the UNIX cc compiler [John-

sonBO].

The readin phase is 0(n), or linear with time, with number of objects. A

greater number of different master cells called within the cell being spaced

tUNDCisa Trademark of Bell Laboratories.

4.2.1 M

tends to increase the readin time above linear order and alarger number of

calls to the same master cells within the cell being spaced tends to decrease

the time below linear order. The two factors roughly cancel for the IC cell

examples described here resulting in 0(n) linear order dependence.

The bvAldgraph phase is also approximately 0(n). The one exception

lies in the routine P^cktermlme, which derives the connectivity of terminal

frames and interconnect lines. The terminals and nets are sorted bynet id.

and then compared on an object by object basis. This comparison is 0{mz),

but m, the number of terminals and lines in each net. is generally small.

Exceptions to this include global signals, such as VDD, GND, and CLKsignals.
Fortunately, the hierarchy helps to reduce the number of terminals and lines

in global nets, and the observed order dependence is only slightly above
linear.

The sranalyze has the worst order dependence of any subsection,

observed to be approximately 0(n17). Comparison of each primary (right-

side edge) with every other neighbor (left-side edge) is an 0(n2) operation.

The savings in the current implementation comes from sorting the intervals

prior to the sranalyze phase. This sorting is 0(niogn) dependent, and lowers

the order dependency of the analysis through the ability to ignore many

comparisons when there is no possibility of interaction between sets of inter

vals.

The Ingpth phase has a proven order dependence of Ofr3) [Lawler76].

This is fortunately a worst case order dependence, and only is true for com

pletely connected graphs. The graphs generated by IC layouts seems to have

a constant regularity somewhere between 3 and 5. Thus, the observed order

dependence is only slightly above linear.

4.2.1 85

The update portion of the program is also linear, 0(n). A single pass is

required through all of the instance and line data structures, and only the

root Squid cell requires updating.

The following table gives CPU times (broken down into true cpu and sys

tem times) for the D Flip /flop and Latch examples presented in the previous

section

Example

dfl

intik

Elements

98
290

Run Times and Memory Usage

CABBAGE Pvthon

User System Memory User System

20.3
197.7

1.5
5.4

125544

166664

11.9
72.4

2.8

7.7

Memory
417764
750636

System time is mainly disk I/O time, and User time is the CPU time.

Again, the difference in memory utilization stems from the more flexible

graph representation of the IC layout used in Python.

4.2.2. Program Status

Python consists of -4000 lines of C code, with ~1000 of the 4000 lines

being comments. In addition, the Squid database has -2000 lines of C code.

4.2.3. Non-Optimal Results of Python

There are still algorithmic improvements that could be made to Python

that would improve its performance and/or improve the area efficiency of

the spacing process. The ability to merge elements is the single most impor

tant feature lacking from Python Components of elements may safely

merge if they are on the same mask layer and in the same electrical net.

Python cannot permit merging, since topology changes might occur which

could cause unexpected design-rule violations. The related problem of line

lengths changing sign is a less severe problem, but will need to be introduced

for jog generation to work properly. When an interconnect line is in the

4.2.3 86

critical path, and the surrounding objects are also in the critical path, the

spacing efficiency will benefit from the insertion of jogs, or zero length lines

inserted perpendicular to the line somewhere along its length. Aside from

the problem of determining where the jog should be inserted to permit the

smallest area result after a subsequent series of compactions, if the length of

interconnect lines cannot drop below zero length, the orientation of the wire

will have to determined by which way the surrounding geometry will move.

Several overconstraining conditions can occur which cannot be detected

easily. The data structuring for the spacing rule analysis imposes an 0(n17)

dependency on the analysis, when it is possible to reorganize the data,

obtaining an 0(n) dependency on both the sorting of intervals and the spac

ing rule analysis itself.

As is readily apparent in the A-B comparison of the latch-driver exam

ple. CABBAGE gains a great deal of area efficiency through the merging of

instances during the spacing process. Given the more general nature of

Python, it is difficult to implement a general merging strategy. Therefore,

although the sliding contacts provide a good deal of area efficiency, they are

not alone sufficient to produce a well-minimized layout.

Related to the problems with the ability to merge is the need to keep

the lengths of lines from dropping below zero. This problem is shared

between CABBAGE and Python It stems from the fact that if two edges can

merge, then they can change relative position. Figure 4.11 shows how a third

edge can be covered when it should not be covered, resulting in a spacing

rule violation after the spacing process. In addition, a problem not encoun

tered in the normal merging problems is the change in sign of the length of

the lines. Top becomes bottom, and vice versa, which requires some adjust-

4.2.3 87

Constraint Between A & C Should Be Generated Since
B & C Can Merge and Have Rejected Constraint

Fig. 4.11 Lncorrectly Covered Edge

ment of the bounding box parameters and vertices associated with lines.

This patch-up step would have to be done after each spacing iteration.

If the sum of the widths of several different lines terminating on a single

terminal frame is greater than the width of the terminal frame, an overcon-

straining condition will be generated, and the spacing analysis will fail. Since

the general detection of overconstraining conditions in the graph is an NP-

complete problem [Lawler76], this analysis is not performed in Python. All

that is reported is the existence of an error somewhere in the graph. Also, if

an object is initially placed within a concavity that is too small for it and the

wrong initial direction of compaction is chosen an overconstraining condi

tion will be discovered, even though it would not have occurred if the initial

direction of compaction were chosen differently (See Fig. 4.12).

The intervals used in the spacing rule analysis could be organized into a

two-dimensional bin data structure. This would make the sorting time linear

with a slightly worse coefficient than the current version due to the overhead

of computing the bin locations. It would also make the interval analysis

4.2.3

'" Spacing
Rule
Violations

•••• Minimum Spacing

88

Fig. 4.12 Overconstraining Initial Condition

almost linear. The current method effectively has bins in one dimension

only.

CHAPTER 5

Summary

5.1. Snmmary of Python Characteristics

Python is symbolic IC layout spacing aid based on the CABBAGE pro

gram. The increasing complexity of integrated circuit designs makes the use

of traditional, non-hierarchical design-aids expensive, both in design time

and in actual computer cost. Python reduces tedium involved in IC layout.

The use of symbols that need only be placed relative to one another makes

the layout process very similar to the initial layout sketching that is part of

most IC design methods.

The algorithms used in Python have been described and their derivation

from the CABBAGE approach has been explained. The major extensions to

CABBAGE are in the areas of the longest path solution and the spacing rule

analysis.

The implementation of the algorithms in Python is completely different

from the implementation of the CABBAGE algorithms. Python is written in

the C programming language [Kernighan78], uses the Squid [Keller82] data

base to store the intermediate symbolic format, and has the Hawk viewport

manager [Keller82] as its input editor.

A detailed comparison of Python and CABBAGE has illustrated the

speed/memory tradeoffs possible. "While Python is approximateiy 2.5 times

faster than CABBAGE for large circuits, the additional capabilities of Python,

including hierarchy, sliding contacts, technology, and process independence

5.1 89

5.1 90

make it a more powerful aid for symbolic IC design.

5.2. Open Research Questions

Although the Python program provides a solid basis for future work,

many important questions remain unanswered. Some of the more interest

ing research questions are presented in this section Most deal with making

the program useful as a production program and with extensions to the pro

gram which will allow it to track the ever-changing state of the art in IC

design and layout.

5.2.1. Error Detection in Over-Ccnstruiiiing Conditions

The most important shortcoming of Python is the inability to determine

the location within the graph of positive cycles which represent over-

constraining conditions. The number of iterations of the longest path algo

rithm to even determine the existence of an overconstraint is equal to the

worst case number, i.e. the number of vertices in the graph. Since there

are two vertices for each instance and each interconnect line in each of the X

and Y graphs, the number of vertices grows linearly. The time for each itera

tion grows as a small fraction of the number of vertices in the graph. Thus,

although the total time for solution of the longest path algorithm has an

order dependence only slightly above linear, the actual time can grow prohi

bitively large for complex layouts.

The complexity of any algorithm to determine the locations within the

graph of all positive cycles is at least 0{2V) where v is again the number of

vertices in the graph. This time becomes totally impractical for very small

cells.

5.2.1 91

At present, there are very few ways to generate overconstraints in the

layout topology since there is no way to enter user-defined constraints. If

more than one interconnect line terminates through the same side of a ter

minal frame and the total width of the lines is greater than the width of the

terminal frame, an overconstraining situation will be created. The spacing

between the interconnect lines is not counted since they will be of the same

net and their spacing requirements will thus drop to zero. Also, if an over-

constrained condition such as is illustrated in Fig. 4.12 is created in the ini

tial layout and the wrong initial direction for spacing is chosen (X in the case

of the figure), an overconstraining condition will be entered into the graph

and the spacing will fail. If the other spacing direction had been chosen first,

or if the original layout had not included the box in the notch, the overcon-

straint never would have been generated because the corner constraint

checking in the Y direction would have prevented it.

What is necessary for future work is to develop fast heuristics to dis

cover the location of overconstraints in a layout.

5.2.2. Jog Generation and Placement

Jog generation was not added to Python because the jog insertion algo

rithms in CABBAGE are not sufficient and no better solution could be found.

The algorithms to find the proper lines to insert jogs on are very sound. The

process consists of finding all interconnect lines perpendicular to the spac

ing direction which are on the critical path (i.e., have their endpoints con

nected to two vertices which have equal minimum and maximum allowed

positions for the minimum area). CABBAGE places the jog at the middle of

each such line. Figure 5.1 shows that this form of jog insertion requires a

large number of jog insertions to have any real effect. The line segment is

5.2.2

C;

m

92

Only After Jog C is
Inserted Can the Layout
Compact to a Smaller
Size

Fig. 5.1 Worst Case Jog Insertion

split in half by the first jog. The second jog splits the top half of the line, and

so on until finally the jog point is high enough to allow the right side to slip

past the left side to yield the desired, compact result. A human designer,

with his knowledge of the circuit topology, could properly place the jog the

first time to allow the compaction to gain the most benefit from the jog.

What is required is to examine the geometry surrounding each interconnect

line on the critical path to determine where jogs should be inserted. There

does not seem to be a rigorous algorithm for determining the optimum loca

tions for jog insertion; the algorithms developed will have to be heuristic in

nature.

5.2.3. More Complex Design Rules

Python only satisfies spacing rules. The types of layout rules found in

industry semiconductor processes include:

• Reflection Design Rules
• Mutual Capacitance Rules
• Minimum Width Rules

• Minimum Area Rules

5.2.3 93

• Minimum Enclosure Rules
• Minimum Overlap Rules
• Contact Design Rules

The reflection design rules state that when certain line types cross cer

tain other line types at right angles {e.g. metal lines crossing diffusion lines

in an NMOS process), the line which is applied second in the semiconductor

process must be shrunk where the two lines overlap. These rules stem from

an unfortunate byproduct of the photolithographic process used to build

mask layers on the IC. The three-dimensional effects of patterning devices

on the silicon cause blooming to occur when the photoresist for a line type is

run at right angles over the valley created by the processing for a previous

layer. If the crossing line is narrowed down over the valley, the blooming and

the narrowed line offset, and the net result is a line of almost constant width

over the valley.

Mutual capacitance rules require long parallel runs of interconnect lines

to be further apart than the minimum spacing. This extra space is required

to minimize the mutual capacitance that might induce crosstalk between the

signals on the two lines. Implementation of this design rule could be added

easily to Python When overlaps are determined in the spacing rule analysis,

the magnitude of the overlap could be used to index into a three dimensional

spacing rule table. The first two dimensions relate the spacing rules for the

various mask layers as in the normal case. The third additional dimension

relates length of overlap to spacing rule. Thus, when comparing the spacing

requirement between two adjacent metal lines for example, the length of the

overlap would be used to determine an appropriate spacing requirement

which keeps this capacitance within acceptable limits.

5.2.3 94

The minimum width and minimum area layout rules can be processed

during the input phase, before the spacing program is invoked. Whm a user

requests a line or geometry of less than minimum width, the input eiitor can

either refuse the request (with an appropriate error message), or increase

the width to the minimum width allowed and warn the user. Minimim area

violations would be detected when the graphical specification of each

geometry was completed; only when the exact dimensions of the geometry

are known is it possible to discover all minimum area violations.

The minimum enclosure rules and the minimum overlap rules are used

most heavily in systems that use the sticks form of symbolic layout, where

devices are implied by the crossing of the appropriate line types. Kinimum

enclosure rules define the distance one mask layer (such as contact cut)

must be contained with the mask layer surrounding it (such as metal or

polysilicon). Minimum overlap rules define the minimum extension of two

line types on either side of an intended intersection. This rule is uied most

often for transistors in the particular example of an NMOS process. Both the

minimum enclosure rules and the minimum overlap rules are part of the

construction of primitives in the IC technology and are included as a part of

the leaf cells in the input editor. Since Python (after CABBAGE) models the

symbolic data with explicitly placed primitives, such as transistors and con

tacts, including these layout rules in the design of the primitives is the obvi

ous thing to do.

There are several different types of layout rules associated with contacts

between interconnect lines on different mask layers. Aside from the

minimum enclosure rule mentioned above, there are two cases whicl require

changing the shape of the contact to ensure correct electrical operation.

5.2.3 95

The first case concerns polysilicon-metal and diffusion-metal contacts. At

the stage where the metal layer is added to the IC. the polysilicon or

diffusion is opened to the metal via the contact cut. The vertical depth of the

contact cut is very great; it is on the order of one half the minimum

geometry. The walls of the depression for the contact are very steep. To

insure proper metal coverage of the step, the size of the metal cap of the

contact is often increased. The second case concerns a polysilicon-diffusion

buried contact. In order to prevent the formation of an active transistor

should the contact window misalign, the contact window is lengthened along

the direction of the diffusion line.

Again, both of these layout rules can be dealt with during the input

phase. No absolute topology changes are made in Python, so the contacts

will retain their original shape throughout the complete spacing process.

Addition of the dynamic determination of the contact sizes, as done in CAB

BAGE, is a complication that is best left to the input editor.

5.2.4. Complex Terminal Frames

Python only allows rectangles as terminal frames which are the allow

able interconnection areas between cells and a higher-level representation.

A slightly more powerful data structure can allow arbitrary Manhattan

polygons as terminal frames. This can have an advantage as seen in Fig. 5.2.

During the first Y spacing, the interconnect and attached fixed geometry can

slide to the top of the first segment of boxes. During the successive X spac

ing, the endpoint of the interconnect is free to slide so that the following Y

spacing will allow the interconnect to slide up further, yielding a final result

that is more compact than if the terminals had been restricted to boxes.

5.2.4

After X and Y
Spacings, the
Result is: =>

96

Fig. 5.8 Spacing Savings Resulting From Complex Terminal Frame

Note that although more than one terminal can have the same name

(and hence be electrically equivalent) in the definition of a cell, factoring

polygonal terminal frames does not allow the same flexibility as having true

polygons for terminals. This happens because each interconnect line is

bound to the terminal it ends on and cannot change terminals during the

spacing analyses, even if the new terminals are electrically equivalent.

The terminal frame edges are used to label the appropriate protection

frame intervals with the correct, non-zero net. If the edges for terminals are

managed in much the same way as the polygon edges for protection frames,

the example of Fig. 5.2 is possible. Since polygons are stored in the database

as boxes, the Fang polygon package must be used to merge the boxes into

true polygons and to develop the individual edges of the polygon. These

edges may then be used to compare against the protection frame edges, as

the edges of the box terminals are compared now.

55.5 97

5J2.5. Constraints (Fixed and Relative)

No user-defined constraints are allowed by Python. This restriction is

primarily due to the lack of adequate heuristic algorithms to determine

where overconstrained situations exist in the graph It is possible to inten

tionally generate overconstraints if user-defined constrains are permitted. It

is almost as easy to introduce unintentional problems. Adding a mechanism

to allow user specified constraints is simple. Lines could be labeled as fixed

by the input editor. Normally, an edge is added for each line between the

two vertices that are in the graph parallel to the direction of the line. This

edge has zero lower bound, and infinite upper bound, and serves to keep the

length of the line greater than zero. In fixed lines, the lower and upper

bounds of the edge are set equal to the length of the line as read in from the

input editor. The length of the line is thus fixed at the input value, and

remains at the same length throughout all spacing iterations.

Given this capability of fixed length lines, relative constraints between

two objects can be expressed as follows. Define a new mask layer for con

straints only; a mask layer with no physical meaning; similar to the RUNX

mask layer used in CABBAGE. Add a terminal on this new mask layer for

each instance. The geometries which can be added on this new mask layer

allow the specification of many types of relative constraints. Connecting two

(or more) instances with fixed length lines on the constraint layer fixes the

two (or more) objects rigidly relative to one another. They may move any

where within the IC layout, subject to the spacing constraints. They must

move with one another, however. Figure 5.3 displays how two objects would

be fixed relative to one another.

5.2.5

B

All Lines Fix*

A

96

Fig. 5.3 Rigid Relative Constraints

Constraints in one direction only can be made by connecting two objects

together with a fixed line in that direction and an unconstrained line in the

other direction. Figures 5.4 and 5.5 show objects constrained in the X and Y

directions only, respectively.

Solid Lines Fixed
Dotted Line Normal

Fig. 5.4 X Only Relative Constraint

5.2.6

Solid Lines Fixed
Dotted Line Normal

99

Fig. 5.5 Y Only Relative Constraint

5.2.8. 45-Degree Interconnect

45-degree interconnections are not allowed in Python, however they are

used heavily in many IC technologies. They are almost impossible to add to

Python because of the separation of the X and Y spacings. Stretching and

shrinking 45 degree lines necessitates movement in both axis directions (See

Fig. 5.6). The decoupling of the spacing process introduces a high probability

of an oscillatory condition that will never converge if 45 degree interconnect

lines are allowed. Figure 5.7 illustrates one such example. During the first X

compaction object B moves to the left, because of the spacing requirement

between it and object C. This horizontal movement implies a vertical move

ment, in order to keep the angle of the line at 45 degrees. In the example

shown the required vertical movement violates the spacing rule between

objects B and D in the Y direction During the subsequent Y spacing, B and D

are spaced farther apart. This vertical movement implies a necessary hor

izontal movement, which moves B back to its original position. The next X

spacing moves B to the left (and hence down) and the resulting oscillatory

5.2.6

V7

Movement in
One Direction
Implies
Movement In
The Other
Direction

Fig. 5.6 Shrinking a 45 Degree Line

STATE 1 •••:•:<• STATE 2

100

Fig. 5.7 Oscillatory 45 Degree Example

condition will never converge. What is required to determine the proper

location for objects connected with 45 degree lines is the surrounding

geometry in both directions at the same time.

5.2.7 101

5.2.7. Incremental (Interactive) Spacing

This is an interesting idea from the point of view of program implemen

tation. Algorithms for incremental graph update and solution must be

developed before this idea could be exploited. Given the use of a true hierar

chy, interactive spacing may be of debatable usefulness. In a limited way

however, it might find use in technologies where the size of devices is very

closely related to the actual parasitics of the circuit. Only when the circuit

is compacted can the parasitics be accurately extracted. These vaiues might

then be used to compute the size of devices yet to be added.

5.3. Acknowledgements

Several people have contributed to Python, both by making direct

technical contributions to the ideas and concepts, implemented in the pro

gram, and by contributing related software utilities which allow Python to fit

in well as part of an IC design system. Ken Keller provided the Squid data

base, and the graphical input capabilities of Hawk. Peter Moore provided the

Fang polygon package. Dan Fitzpatrick provided the CADRC package. Pro

fessor Karp pointed to the proper references which contained the informa

tion necessary to derive the longest path algorithm for Python. Numerous

discussions with Ken Keller, Professor Richard Newton, Professor Alberto

Sangiovanni-Vincentelli, Peter Moore, Tom Quarles, Jim Kleckner. and other

members of the IC CAD group at Berkeley were invaluable. Discussions with

Min-Yu Hsueh, the author of the CABBAGE program, with Jack Hurt. Ian

Getreu. and John Crawford of Tektronix, and with Wayne Wolf, and Bill McCalla

of Hewlett Packard were very helpful. Discussions with Professor John

Ousterhaut and Dave Wallace of Computer Science at Berkeley stimulated

thought as to new approaches to spacing. Finally, special thanks are due to

5.3 102

Professor Richard Newton, who provided the encouragement and motivation

which prompted this work. This work was supported in part by Hewlett-

Packard Co., Corporate Design Aids, Tektronix, Inc., and the Digital Equip

ment Corporation. Their assistance is gratefully acknowledged.

APPENDIX A

User Manual

This appendix contains the UNCCt manual pages for the stand-alone ver

sion of Python.

fUNDC ia a Trademark of Bell Laboratories.

A.1

PYTHON (CAD) CAD Toolbox User's Manual PYTHON(CAD)

NAME

python - A spacing program for symbolic integrated circuit layouts

SYNOPSIS

python [options] squidceil [[options] squidcell] ...
DESCRIPTION

Python is a successor to the CABBAGE I program. It takes as input the symbolic
layout of an integrated circuit cell, and adjusts the locations of objects within
the cell to obtain as output the minimal area representation of the cell which
satisfies all spacing rules. The interconnect between instances is stretched or
shrunk to satisfy the spacing rules.

The available options are:

-i <inview> Change input view from default 'layout' to '<inyiew>\

-o <outview> Change output view from default 'spaced* to '<outview>\

-r <rulename> Change rules name (in .cadre file) from default 'python' to
'<rulename>'.

-e <errorfile> Change error file from default 'pythonerr* to '<errorfile>\

-m# Specify a number # limit to the number of iterations. Default is
40. Specifying no number, or a number less than zero means to
iterate until the solution is reached or the existence of an over-

constraint is discovered.

-R Do-not perform a reverse pass spacing. Normally, the minimum
and maximum positions of all objects are calculated. Each
object is then placed at the average of its minimum and max
imum allowable locations. Using this option prevents the deter
mination of the maximum allowable positions of the objects. All
objects are placed at their minimum location. This has the
visual effect of pulling all objects toward the lower left corner of
the layout as much as is possible. Using this option saves time
for the spacing process.

-y Perform the initial spacing in the y (vertical) direction. Nor
mally, the compaction is performed as successive iterations in
the x and y directions. Using this option causes the first itera
tion to start with the y direction. The initial direction of spac
ing has a great deal to do with the final aspect ratio of the
spaced cell.

FILES

~cad/.cadre - Read first for spacing rules
~/.cadrc —Read last for spacing rules
pythonerr - Default error { and statistics) file
<squidcell>/Layout —Default input view
<squidcell>/spaced —Default output view

SEE ALSO

hawk(cad), squid(3cad), fang(3cad), cabtosquid(cad)
ADTHQR

Mark Bales

First Edition 3/31/82

PYTHON (CAD) CAD Toolbox User's Manual PYTHON (CAD)

DIAGNOSTICS

All error messages are self explanatory. They appear in the error file, which is
'pythonerr' by default.

BUGS

It is possible to generate overconstraining conditions by ending too many lines
in a single terminal frame. The program does not detect this.
Detection of the existence of overconstraining conditions takes 0(v) iterations,
where v is approximately twice the number of objects in the cell being spaced.
To space a cell with no overconstraining condition takes < 40 iterations. Thus,
detection of the existence of overconstraining conditions in large cells takes
much longer than spacing of the same cell without the overconstraint. Detec
tion of where the overconstraints are takes 0(2~u) time, and is hence unfeasi
ble for large cells.

Merging is not currently allowed. This reduces greatly the area efficiency the
program can obtain when spacing a layout.
The interfacing between python and other programs in the design system is still
a bit primitive.

First Edition 3/31/82

APPENDIX B

GRAPHCAP

This appendix contains the section 3 and 5 manuals fromUNKt for graph-

cap, a low level database interface for terminal independent graphics.

tUNDCis a Trademark of Bell Laboratories.

B.l

GRAPHCAP (3) CAD Toolbox User's Manual GRAPHCAP (3)

NAME

ggetent, ggetnum, ggetflag, ggetstr, gencod, gdecod, gputs - terminal indepen
dent graphics operation routines

SYNOPSIS

char PC;
char *BC;
char*UP;
short ospeed;

ggetent(bp, name)
char *bp, *name;

ggetnum(id)
char *id;

ggetflag(id)
char Id;

char *

ggetstr(id, area)
char Id, **area;

char *

gencod(pm. x, y. z. t)
char *pm;

gdecod(pm. x. y, z. t)
char *pm;
int «x, *y. «z, *t;

gputs(cp, affcnt, outc)
register char *cp;
int affcnt;
int (*outc)();

DESCRIPTION

These functions extract and use capabilities stored in the terminal graphics
capability data base file grapkcap(5). These are low level routines; see mfb(3)
for a higher level package.

Ggetent extracts the entry for terminal name into the buffer at bp. Bp should be
a character buffer of length 4096 and must be retained through all subsequent
calls to ggetnum, ggetflag, and ggetstr. Ggetent will look in the environment for
a GRAPHCAP variable. If found, and the value does not begin with a slash, and
the terminal type name is the same as the environment string TERM, the
GRAPHCAP string is used as the entry, instead of reading the graphcap file. If it
does begin with a slash, the string is used as a path name rather than
/cad/etc/graphcap. This can speed up entry into programs that call ggetent, as
well as to help debug new terminal descriptions or to make one for your termi
nal if you don't have write permission on the file /cad/etc/graphcap. Ggetent
returns -1 if it cannot open the graphcap file, 0 if the terminal name given does
not have an entry, and 1 if all goes well.

Ggetnum gets the numeric value of capability id, returning 0 if is not given for
the terminal. Ggetfiag returns 1 if the specified capability is present in the
terminal's entry, 0 if it is not. Ggetstrgets the string value of capability id, plac
ing it in the buffer at area, advancing the area pointer. It decodes the abbrevia
tions for this field described in GRAPHCAP(5), except for sequences beginning

First Edition

GRAPHCAP(3) CAD Toolbox User's Manual GRAPHCAP(3)

FILES

with ".which are dynamically interpreted by the routines gencod and gdecod.

Gencod returns a pointer to a formatted string using the values x, y, z, and t and
using the string pm as a formatting template! See GRAPHCAP(5), for a descrip
tion of the formatting conventions. (Note that all programs using graphcap
should turn off XTABS, since gencod may now output a tab. Note that programs
using graphcap should in general turn off XTABS anyway since some terminals
use control I for other functions, such as nondestructive space.) If. a X sequence
is given which is not understood, then gencod returns OOPS.
Gdecod returns the values x, y, z, and t having decoded them from the input
stream using the format string pm. The same formatting conventions are fol
lowed as in gencod.

Gputs decodes the leading padding information of the string cp; affcnt gives the
number of lines affected by the operation, or 1 if this is not applicable, outc is a
routine which is called with each character in turn. The external variable
ospeed should contain the output speed of the terminal as encoded by stty (2).
The external variable PC should contain a pad character to be used (from the pc
capability) if a null (~@) is inappropriate.

/cad/etc/graphcap data base

SEE ALSO

kic(l), mfb(3). graphcap(5)

AUTHOR . .
Mark Bales (Much of it stolen from termcap(3).) Giles Biilingsly is taking over
development

BOGS

The pointer returned by gencod points to a static buffer area which is overwrit
ten upon each call.

First Edition

GRAPHCAP(5) CAD Toolbox User's Manual

NAME

graphcap - graphics terminal capability data base
SYNOPSIS

/cad/etc/graphcap
DESCRIPTION

Graphcap is a data base describing graphics terminals, used, e.g., by fcic(l) and
mfb{3). Terminals are described in graphcap by giving a set of capabilities
which they have, and by describing how operations are performed. Padding
requirements and initialization sequences are included ingraphcap.
Entries in graphcap consist of a number of ':' separated fields. The first entry
for each terminal gives the names which are known for the terminal, separated
by T characters. The first name is always 2characters long and is used by older
version 6 systems which store the terminal type in a 16 bit word in a systemwide
data base. The second name given is the most common abbreviation for the ter
minal, and the last name given should be a long name fully identifying the termi
nal. The second name should contain no blanks; the last name may well contain
blanks for readability.

CAPABILITIES

The Parms column indicates which of the four possible paramters are used in
the encoding of string variable.

Name Type
ACS string
APT boolean
BDE string X
BDF string X
BDH numeric
BDR boolean
BDS string X
BDW numeric
BLD boolean
BLE string
BLS string XYZT
BXO string
BXl string
BX2 string
BX3 string
BX4 string
BX5 string
BX6 string
BX7 string
CBK string
CBU string
CCY string
CGN string
CHO numeric
CMD boolean
CMG string
CMN boolean
CRD string
CWH string

First Edition

ParmsDescription
Alphanumeric Clear Screen
Accurately Positionable Text
Box Pattern Define End
Box pattern Define Format
Box Definition Height (number of rows)
Box Definition Row major
Box pattern Define Start
Box Definition Width (number of columns)
BLinkers Defineable
BLinkers End
BLinkers Start
BoX type 0 (solid)
BoX type 1
BoX type 2
BoX type 3
BoX type 4
BoX type 5
BoX type 6
BoX type 7
set to Color BlacK
set to Color BiUe
set to Color CYan
set to Color GreeN
Character Height Offset
Character Mode Destructive
set to Color MaGenta

Character Mode Non-destructive
set to Color ReD
set to Color WHite

9/28/81

GRAPHCAP (5)

GRAPHCAP (5)

CWO numeric

CYL string
DBP boolean

DBS string XYZT
DLP boolean

DLS string XY
DMO string
GCD numeric

GCH numeric

GCS string X
GCW numeric

GFD numeric

GFE string
GFS string
GID numeric

GIE string
GIS string
GME string
GMS string
GPC string
GTE string
GTS string
IBS string
ICS string
ILS string
LD3 string
LDD string
LDO string
LLD string
LPD string
LPW numeric

LSO string
Ld3 string
Ldd string
Lsd string
MPS string XY
MXC numeric

MYC numeric

NBL numeric

NBS numeric

NCS numeric

NLS numeric

NMO string
NPB numeric

PDB boolean

PDE string
PDF string XYZT
PDR string
PDS string
PRI boolean

RLS boolean

SBS string X

First Edition

CAD Toolbox User's Manual GRAPHCAP (5)

Character Width Offset

set to Color YeLlow

Defineable Box Patterns
Draw Box Sequence
Defineable Line Patterns

Draw Line Sequence
Destructive Mode On

Graphcis Clear screen Delay
Graphics Character Height
Graphics Clear Screen (in current color)
Graphics Character Width
Graphics Finish Delay
Graphics Finish End
Graphics Finish Start
Graphics Initialization Delay
Graphics Initialization at End
Graphics Initialization at Start
Graphics Mode End
Graphics Mode Start
Graphics Pad Character (default is NULL)
Graphics Text End
Graphics Text Start
Initialize predefined Box Styles
Initialize predefined Color Styles
Initialize predefined Line Styles
Line type dot dot dashed
Line type long Dot Dashed
Line type DOtted
Line type Long Dashed
Line Pattern Define
Line Pattern Width (in bits)
Line type SOlid
Line type dot dot dot
Line type short dot dashed
Line type short dashed
Move Pen Sequence
Maximum X Coordinate
Maximum Y Coordinate
Number of BLinkers

Number of Box Styles
Number of Color Styles
Number of Line Styles
Non-destructive Mode On

Number of Pointing device Buttons
Pointing Device has Buttons
Pointing Device End
Pointing Device coordinate Format
Pointing Device initiate Read
Pointing Device Start
Pointing Read Immediately returns coordinates
Reissue Line Style before each line
Set Box Style

9/28/81

GRAPHCAP (5) CAD Toolbox User's Manual

SCS string X Set Color Style
SLS string X Set Line Style
TOH string Text Orientation Horizontal
TOV string Text Orientation Vertical (read from bottom)
VLT boolean Video Lookup Table present
VTE string XYZT Video Table Entry
VTI numeric Video Table maximum Intensity
VTL numeric Video lookup Table Length
VWM string X Video Write Mask

A Sample Entry

GRAPHCAP(5)

The following entry, which describes the Aed 512. is among the more complex
entries in the graphcap file as of this writing. (This particular aed entry may be
outdated, and is used as an example only.)

al|aed|aedj|aed512|Advanced Electronics Design Model 512:\
iAPT:CHO#3:CWO#l:CMN:MXC#511:MYC#482:GCH#9:GCW#6:NCS#256:\
:NLS#1:NBS#16:VLT:VTI#255:VTLJ2^
:SCS=C%X%h2[%X^h2:VWM=L%X%h2:GMS=\E:GME=-A:GCS='\120-L\E,\l60:\
:GTS=-A:GTE=\E:GIS=\E\E\E\E\E\E\E\E\E\E0:GID#2:\
rGIEsNE'NieOVlSNOeNOllLGlHHH.A
:GFS=\E\E\E\E\E\E\E\E\E\E0:GFE=\E'\100~L~A:\
:GFD#2:GCD#0:BLD:NBL#8:BLS=\E4%X%h2%Y%h2%Z%h2%T%h21DlD:\
:BLE=\E4%X%h2%Y%h2%Z%h2%T%h21D00:\
:DLS=Q%X%»#6%�xC%R%Y%»#8%|%R%hl%X%h2%Y%h2A%Z%»#6%�xC%)P8

K%»#6%�xC%R%Y%»#8%|%R%hl%X%h2%Y%h2o%Z%»#6%�xC%R%T%»#8%|%R%hl%Z%h2%T%h2:\
:MPS=Q%X%»#6%�xC%R%Y%»#8%|%R%hl%X%h2%Y%h2:\
:ICS=K00080000000000FF00FFFF00FT00FF00FFFF0000FFFFFF00FFFF:ILS=~@:\

;CBK=COO[00:CBU=C01[01:CCY=C02[02:CGN=C03[03:\
:CMG=C04[04:CRD=C05[05:CWH=C06[06:CYL=C07[07:\
:EBK='\120~L\E'\160:EBU=M20~L\E'\160:ECY='\120~L\E'\160:\

:EGN=,\120-L\E,\160:EMG='\120-L\E,\160:ERD='\120-L\E'\160:\
:EWH='\120-L\E,\160:EYL=,\120-L\E'\160:\
:LD3=01AE55:LDD=01BE11:LDO=01AA55:LLD=01FC11:\
:LSO=0lFF55:Ld3=01A855:Ldd=0lBE55:Lsd=01FC55:\
PDS=c%X%h2%Y%h202U:PDE=d:PDR=j:PRl:\
PDF=%hl%«#8%R%»#2%�x300%X%h2%|%X%X%h2%|%R%�x3FF%Y:\
;BDE=~@:BDF=0%Y%h2:BDH#8:BDR:BDS=.%X%h2:BDW#8:BX0=''00:\
:BX1="01:BX2="02:BX3=',03:BX4="04:BX5="05:BX6="06:BX7="07:\
:DBP:D1P:IBS=,00FFTTFFFFFFFFFFFF.01FE82BAAAA2BE80FF,021824428181422S
:LPW#8:LPD=01%X%h255:SBS='*%X%h2:SLS=~@:

Entries may continue onto multiple lines by giving a \ as the last character of a
line, and that empty fields may be included for readability (here between the
last field on a line and the first field on the next). Capabilities in graphcap are of
three types: Boolean capabilities which indicate that the terminal has some par
ticular feature, numeric capabilities giving the size of the terminal or the size of
particular delays, and string capabilities, which give a sequence which can be
used to perform particular terminal operations.

Types of Capabilities

All capabilities have three letter codes. For instance, the fact that the Aed has
accurately positionable text (i.e., graphics text may be positioned with lower
left corner at any pixel on the screen) is indicated by the capability APT. Hence

First Edition 9/28/81

GRAPHCAP (5) CAD Toolbox User's Manual GRAPHCAP (5)

the description of the Aed includes APT. Numeric capabilities are followed by
the character '#' and then the value. Thus MXC which indicates the maximum
value of the X coordinate on the terminal screen gives the value '511' for the
Aed. Formatting in String Capabilities

Most of the string variables have a primitive formatting capability to be used in
encoding numbers into ASCII strings and decoding ASCII strings into numbers.
An example of the former si the capability DBS (for Draw Box Sequence), which
takes four numbers (X. Y, Z, and T) and generates the proper sequence to draw a
box from lower left corner (X.Y) to upper right corner (Z.T). An example of a
string decode is the capability PDF (for Pointing Device Format), which takes
an ASCII string from the input stream and extracts from it an x and y coordi
nate, a key (if one was pushed) and a buttonmask (if a cursor button was
pushed).

String Formatting

Most of the string variables have a primitive formatting capability which uses
four variables (X, Y, Z, and T) to generate a formatted string (with gencod), or
generates four variables (X, Y, Z, and T) from a formatted string (with gdecod).
All operations begin with a percent sign ", and they are listed below:

Com Command Description encod/(decod)
%X set value/(X variable) to the X variable/(value)
%Y set value /(Y variable) to the Y variable/(value)
%Z set value/(Z variable) to the Z variable/(value)
%T set value/(T variable) to the T variable/(value)
%d output/(input) value in variable length decimal format
%d2 output/(input) value converting to/(from) two decimal digits
%d3 output/(input) value converting to/(from) three decimal digits
%. output/(input) least significant byte of value

withoutconversions

%hl output/(input) least significant four bits
converting to/(from) one ASCII hex character

%h2 output/(input) least significant byte
converting to/(from) two ASCII hex characters

%h3 output/(input) least significant twelve bits
converting to/(from) three ASCII hex characters

%h4 output/(input) least significant sixteen bits
converting to/(from) four ASCII hex characters

%ol output/(input) least significant three bits
converting to/(from) one ASCII octal character

%o2 output/(input) least significant six bits
converting to/(from) two ASCII octal characters

%o3 output/(input) least significant nine bits
converting to/(from) three ASCII octal characters

%o4 output/(input) least significant twelve bits
converting to/(from) four ASCII octal characters

%o5 output/(input) least significant fifteen bits
converting to/(from) five ASCII octal characters

%o6 output/(input) least significant sixteen bits
converting to/(from) six ASCII octal characters

%R store/(retrieve) value ln/(from) a temporary register
%+x add x to value

First Edition 9/28/81

GRAPHCAP (5) CAD Toolbox User's Manual GRAPHCAP (5)

%-x subtract x from value
%»x shift value right by x bits
%<<x shift value left by x bits
%jx OR x with value
%&x AND x with value
%-x XOR x with value

%~ Complement value (1's complement)
%% gives %
%B BCD (2 decimal digits encoded in one byte)
%D Delta Data (backwards bed)

Where x can be:

(1) One byte - the numeric value of this byte is used as x

(2) The character "#" followed by an ASCII number which is
Hex if the first character sequence is 'Ox' or 'OX',
octal if the first digit is 0, and decimal otherwise.

(3) The character "%" followed by X, Y, Z, T, or R - the value
of X, Y, Z, T, or R respectively is used as x.

These formatting commands are very similar to those found in termcap(5), but
are more numerous due to the more rigorous requirements of graphics termi
nals.

Miscellaneous See mfb(5) for a description of how
FILES

/cad/etc/graphcap file containing terminal descriptions

SEE ALSO

kic(l), mfb(3), graphcap{3)
AUTHOR

Mark Bales (Much of it stolen from termcap(3)) Giles Billingsly is taking over
development

BUGS

First Edition 9/28/81

APPENDIX C

HFB

This appendix contains the section 3 and 5 manuals from UHK| for mfb, a

medium level Model /Vame Buffer which interfaces between a high-level

application program and the low-level graphcap routines.

f UNIXis a Trademark of Bell Laboratories.

C.l

MFB(3) CAD Toolbox User's Manual MFB (3)

NAME

mfb - a Model Frame Buffer graphics package
SYNOPSIS

MFBBegin(displayName)
char *displayName;

MFT3End()

MFBSetNaiveMode()
MFBUpdateQ

MFBDenneColor(colorId,r.g,b)
int colorld. r, g, b;

MFBDenneLmeStyleCstyleHstyleDenniUon)
int styleld, styleDefinition;

MFBDefineBoxStyie(styleIcLstyleDefiniUon)
int styleld, *styleDefinition;

HFBSetColor(colorld)
int colorld;

MFBSetLineStyle(styleld)
int styleld;

MFBSetBoxStyie(styleld)
Int styleld;

MFBSetChanneLMask(channeLMask)
int channelMask;

MFBLine(xl,yl.x2.y2)
int xl, yl, x2, y2;

HFBBox(l.b.r.t)
int 1, b. r, t;

MFBText(text,x.y)
char *text;
int x, y;

MFBSetTextMode(destructiveP.colorld)
int destructiveP, colorld;

MFBPoint(x,y.key.buttonMask)
int *x, *y, "buttonMask;
char *key;

HFBSetCursorfcolorld);
int colorld;

HFBError(errnum,termname)
int errnum;
char *termname;

HFBBlinker(colorId. r.g, b,onP)
int colorld. r, g, b, onP;

MFBPutchar(c)
char c;

First Edition

MFB(3) CAD Toolbox User's Manual MFB(3)

char HFBGetcharO

HFBUngetcharO
HFFTrapO

MFBFloodO

INSCRIPTION

These functions form the core set of a medium-level terminal independent
graphics package. They use the low level routines in graphcap(3) to achieve ter
minal independence, and provide a basis for writing high-level graphics pack
ages. See mfb(5) for a detailed introduction to the Model Frame Buffer.
MFBBegin is called to initialize the package for terminal displayName. It reads
the set of capabilities from the terminal database, turns off user messages, sets
the terminal in cbreak mode, and diverts all signals to call the routine MFBTrap
if a termination signal is encountered. MFBTrap calls MFBEnd, and then calls
exit(2).
MFBEnd must be the last routine called before program exit, and resets the ter
minal parameters to their state at run time.

MFBSetNaiueMode establishes a simple mode of operation with eight colors,
eight line types, and eight box styles predefined (within the limitations of the
terminal).

MFBUpdate flushes the buffer used to improve system efficiency. It should be
called whenever a sequence of commands is considered complete, such as at the
end of a plot or before a read.

MFBDefine Color sets the color identified by colorld to the value defined by the
intensity triple r. g, b. The intensities are normalized to 1000.
MFBDefine LineStyle sets the line style identified by styleld to the bit pattern
contained in styleDefiniUon. The pattern is taken from the low order bits. The
length of the pattern depends upon the terminal used. MFBDefineBoxSlyle sets
the box style identified by styleld to the bit pattern pointed to by
styleDefinition. The pattern is an array of integers which provide bit patterns
for the individual rows (columns) of the pattern. The pattern may be row or
column major, depending on the terminal, and it may be of different bit widths
and heights.

MFBSetColor, MFBSetLine Style, and MFBSetBoxStyle set the current color,
linestyle, and boxstyle respectively. These attributes are used when drawing
lines, boxes, and text.

MFBlxne draws a line from point (xl.yl) to point (x2,y2). MFBBox draws a box
from the point (left, bottom) to the point (right, top). Note that the points must
be given in the proper order. This is due to the idiosyncrasies of some graphics
terminals.

MFBSetTextMode sets the text writing mode to either destructive, with the
background bits in each character ceil of the text being erased, or non
destructive, where these background bits are not changed. Not all terminals will
have both capabilities. MFBText is the routine used to output the string text
with the lower left hand corner at the point (x,y).
MFBPoint is used to read a pointing device associated with the terminal (a
tablet, joystick, mouse, etc.). It turns the graphics cursor on and decodes the
cursor position, returning it in x and y. The routine also determines if a button
on the cursor was pressed (if such buttons exist), or if a key on the terminal

First Edition

MFB(3) CAD Toolbox User's Manual MFB(3)

FILES

keyboard was depressed. This information is returned in key and buttonMask.
After the cursor position has been entered, the cursor itself is turned off.

MFBSetCursor sets the color of the in MFBPoint to colorld.

MFBBlinker is for those few color graphics terminals which allow certain colors
to blink between two colors. The color identified by colorld is made to blink
between the color it is set to and the color defined by the triple r, g, b. Again,
the intensities are normalized to 1000. The flag onP determines whether the
blinker is being set or cleared.

MFBFlood floods the screen with the current color as defined in MFBDefine Color.
MFBError is used with the error indications returned by the routines MFBBegin,
MFBEnd, MFBSetColor, MFBSetLineStyle, MFBSetBoxStyle, MFBPoint, and
MFBBlinker. Passing the returned error status errnum along with displayName
yields a pointer to a formatted string containing an error message which
explains the problem. If no error is encountered, the indication MFBOK is
returned. See mfb(5) for a more detailed explanation of the errors that can
occur.

MFBPutchar, MFBGetchar, and MFBUngetchar replace the familiar I/O functions
for use with this package.

/cad/etc/graphcap terminal database
/cad/include/mfb.h file defining the MFB structure

SEE ALSO

kic(l), graphcap(3). mfb(5)
AUTHOR

Mark Bales and Ken Keller Giles Billingsly is taking over development
DIAGNOSTICS

See the description of MFBError above.

BUGS

First Edition

MFB (5) CAD Toolbox Use r's Manual MFB (5)

NAME

mfb - a Model Frame Buffer intermediate-level graphics package
SYNOPSIS

MFBBegin(displayName)
char *displayName;

HFBEndO
MFBSetNaiveMode()

MFBUpdate()

HFBDefineColor(colorId,r.g.b)
int colorld, r, g, b;

HFBDefineLineStyie(styleld, styleDefiniUon)
int styleld, styleDefinition;

MFBDefineBoxStyle(styleId, styleDefiniUon)
int styleld, •styleDefiniUon;

HFBSetColor(colorld)
int colorld;

MFBSetLineStyie(styleld)
int styleld;

MFBSetBoxStyle(styleld)
int styleld;

!OT3SetOianneLMask(channelMask)
int channelMask; '

MFBLine(xl,y1,x2,y2)
int xl. yl. x2, y2;

MFBBox(i.b,r,t)
int 1, b, r, t;

MFBText(text.x.y)
char *text;
int x, y;

MFBSetTextMode(destructiveP. colorld)
int destructiveP, colorld;

l£FBPoint(x.y. key,buttonMask)
int *x. *y, *buttonMask;
char 'key;

HFBSetCursor(coiorld);
int colorld;

HFBError(errnuml term name)
int errnum;
char *termname;

iOT^BUnker(colorId.r,g.b,onP)
int colorld, r, g, b, onP;

HFBPutchar(c)
char c;

First Edition 9/29/81

MFB(5) CAD Toolbox User's Manual MFB(5)

char MFBGetcharO
HFBUngetcharO

HFBTrapO
MFBFlood()

DESCRIPTION

Mfb is a medium level terminal independent graphics package intended as a
basis for high level graphics packages. It uses the graphics terminal database
management routines in graphcap(3) and provides for the high level user an
unintelligent interface to a predefined set of operations, as well as the relevant
additional information necessary to make the high level package truly terminal
independent.

This document describes the data structure that defines the Model Frame
Buffer. For a shorter description of the mfb routines, see mfb(3).
The MFB Data Structure

Here is the mfb data structure, which will be broken up and discussed in
separate components.

/* MFB structure definiUon. •/

struct MFB

int initializedP;

int naiveModeP;

/•Initialization*/
char *startSequencel, *startSequence2, *endSequencel. *endSequence2;
unsigned startDelayTime, endDelayl ime; /* In Seconds •/

/•Resolution.*/
int maxX.maxY;

/•Text font.*/

int textPositionableP;
intfontHeight.fontWidth.fontXOffset.fontYOffset;
char *graphicsTextStart, *graphicsTextEnd;
int destructiveP.orP;
char *destrucUveON,*orON;

int numberOfColors; /* number of color styles */
int numberOfLineStyles; /* number of line styles */
int numberOfBoxStyles;

/• Naive user mode parameters •/
int naiveColors. naiveLineStyles, naiveBoxStyles, naiveEraseStyles;
char *naiveLineInit, maiveColorlnit, *naiveBoxInit;
char ♦naiveLineSet[8], *naiveColorSet[8], •naiveBoxSet[8], *naiveErase[8];

char *displayName;
char *screenFlood;

First Edition 9/29/81

MFB (5) CAD Toolbox User" s Manual MFB (5)

unsigned floodDelayTime;
char *graphicsON;
char •graphicsOfT;

/•true if display has a VLT.V
int vltP;
/•Max value of red, green, or blue intensity.'/
int maxintensity;
int widthOfVLT; /♦ = Ceiling(log base 2 (maxintensity) • 3) •/
int lengthOfVLT;
char *VLTentry;
char *setForegroundColor;

/•true if display has a channel mask: also known as memory
plane write enable mask.*/

int channelMaskP;
char *channelMaskSet;

/•true if pointing device has buttons.*/
int buttonsP;
int numberOfButtons;
char *enablePointingDevice;
char *disablePointingDevice;
int readlmmediateP;
char *readPointingDevice;
char *formatPointingDevice;

/*true if has blinkers.*/

int blinkersP;
int numberOfBlinkers;
char *blinkerON, •blinka.-OFf;

char *pointingDeviceName;
int pointingDeviceld;

/* Line drawing parameters. V
int linePatternDefineP;
char *linePatternDefine;
int UnePatternWidth;
char •setLineStyle;
int *linePatterns;
char *movePenSequence;
char •drawLineSequence;

/• Box drawing parameters. */
int boxPatternDefineP;
int boxRowMajorP;
int boxDefineHeight;
int boxDefineWidth;
char *boxDe fine Start;

char *boxDefineFormat;
char *boxDefineEnd;

First Edition 9/29/81

MFB(5) CAD Toolbox User's Manual MFB(5)

char *setBoxStyle;
int *boxPatterns;
char *drawBoxSequence;

/* Section of 'current' variables */
int ForegroundColorld;
int CursorColorlld;

int CursorColor2Id;
int BoxStyle;
int LineStyle;
int *VLTcopy;
int channelMask;
int textMode;

/* Kludge section (sigh!) */
int reissuelineStyleP;
i;

Naive User Mode

/* Define Macros for MFB naive user mode.

/* Macros for Line Styles. */
#define DOTDOTDASHED 0
#define LONGDOTDASHED 1
^define DOTTED 2
#define LONGDASHED 3
#define SOLID 4
#define DOTDOTDOT 5
#define SHORTDOTDASHED 6
#define SHORTDASHED 7

/* Macros for Color Styles. V
#define BLACK 0
^define BLUE 1
^define CYANS
#define GREEN 3
#define MAGENTA 4
#define RED 5
#define WHITE 6
#define YELLOW 7

/* Macros for Box Styles. */
#define BOXTYPEO 0
#define BOXTYPE1 1
#define BOXTYPE2 2
#define BOXTYPE3 3
#define B0XTYPE4 4
#define BOXTYPE5 5
#define B0XTYPE6 6
#define B0XTYPE7 7

First Edition 9/29/81

MFB(5) CAD Toolbox User's Manual MFB(5)

FILES

Error Diagnostics
#define MFBOK 1
#define MFBBADENT -10
#define MFBBADTTY -20
#define MFBBADNLN -30
#define MFBNODFLP -40
^define MFBNODFBP -50
#define MFBBADNCO -60
#define MFBNODFCO -70
^define MFBNOBLNK -80
#define MFBTMBLNK -90
#define MFBBADNBX -100
#define MFBBADSIG -110
#define MFBBADSTT -120
#define MFBBADCHM -130
#define MFBBADWRT -140
#define MFBPNTERR -150
#define MFBNOPTFT -160

/cad/etc/graphcap terminal database
/cad/include/mfb.h file defining the MFB structure

SEE ALSO

kic(l), graphcap(3), mfb(3), graphcap(5)
AUTHOR

Mark Bales and Ken Keller Giles Billingsly is taking over development

DIAGNOSTICS

BUGS

First Edition 9/29/81

APPENDIX D

A CPM Algorithm for Acyclic Digraphs with Lower/Upper! Bounds

This appendix describes the derivation and implementation of tthe criti

cal path method (CPM) algorithm used in Python. A simple CPM was used in

CABBAGE [Hsueh79] to solve the critical path problem in a single-source,

single-sink (or multiple equivalent sinks) acyclic directed graph with lower

bounds on the lengths of the edges [Thesen78]. The constraint graph in

Python is different in that upper bounds are placed on the lengths of some

edges, in addition to the lower bounds placed on all edges. The new CPM

algorithm is an iterative one based on the shortest path problem, and is

guaranteed to converge in 0(v*) time and within 0(v) iterations. Since this

convergence rate is for a completely connected graph, and the graphs gen

erated by integrated circuit mask artwork are far from complete, the

expected convergence time is approximately 0{vls).

The spacing problem is decoupled into X and Y graphs, corresponding to

the placement of the elements in the X and Y directions. A typical X-graph

generated in the spacing process performed by Python has the form shown in

Fig. D.l (although a real graph would be much larger). In order to space the

elements (corresponding to vertices in the graph) in a layout-rule correct

fashion, it is necessary to find the longest path to each vertex subject to the

constraints of the lower and upper bounds on each of the edges. This can be

expressed as the following linear program:

Given:

D.l

SOURCE

Fig. D.1 ATypical Python Constraint Graph

linear position of the ; th vertex
length of the edge joining vertices k (source) and j (sink)
lower bound of the kj th edge
upper bound of the kj th edge

set of edges of the graph

Minimize the total length of the edges in the graph:

2 ekj Yekj € E

D.2

SINK

D.l

subject to the length constraints a*;- < ekj £ bkj, expressed in linear program

form as:

-ekj ;> -bkj | D.3

Physically, this corresponds to the addition of the extra edges in Fig. D.2.

The shortest path problem is very similar to the linear program described

above. The solution [Lawler76] is an iterative one, guaranteed to converge in

0{v) steps, with a maximum Oiv2) calculations at each iteration (for a

t Some of the bkj mayactually be « (is., no upper bound) which implies that condition D.3
above has no meaning.

D.3

SOURCE

Pig. D.2 Physical Correspondence ofLower and Upper Bounds

complete graph) and thus 0(v3) time complexity. Given up as the position
of the j th vertex at the mth iteration, the recursion formula is:

£//—» =mini Up min(U? +akj))
D.4

The shortest path problem can be turned into a longest path problem by
inverting the signs of all of the edge weights and inverting the signs of the

resulting positions. This transformation can be reflected in the recursion for
mula above as:

C//"+l> =max(Up, max(Ujp +akj))
D.5

Applying this formula to the graph of Fig. D.2 yields the correct final spac-
ings. In physical terms, during each iteration each vertex is assigned the
maximum of its current position and the current position of each of its

predecessors plus the weight of the edge connecting the two vertices. Thus,

when convergence is achieved, the position of each vertex is equal to the
longest path from the source to that vertex.

D.4

Each edge with a finite upper bound in Fig. D.l corresponds to a reverse

edge with negative branch weight in Fig. D.2. Therefore, finding the max

imum of the values of the predecessors plus the edge weight in Fig. D.2 can

be related back to Fig. D. 1 by taking the maximum of all the values of each of

the predecessors plus the lower bound and the values of the successors

minus the upper bound. Changing the algorithm in this way to work with

graphs of the form D. 1 yields the following formula:

L//m+1> =max(Up, max(U? +akj), max(Up - bjt))

Equation D.6 is the basis for the critical path method used in Python.

•\ 11111 m.'

to

A...fclll».

•t" • 1" ')• •

•y,

Fig. D.3 Sample Symbolic Layout

D.6

D.5

Since this algorithm is derived directly from the shortest path problem,

It too is guaranteed to converge in at most n steps. This provides a useful

indication of negative cycles, which will cause the number of iterations to

extend beyond the maximum allowed.

Fig. D.3 shows a simple symbolic layout with protection frames, terminal

frames, and interconnect all of a single layer. Assume a spacing rule of 1

between objects, consider interconnect lines to be of zero width, and choose

the reference point for each object as the lower left corner (to assure a

digraph with no negative cycles). Examining the geometry for a horizontal

compaction we obtain the graph shown in Fig. D.4. Using equation D.6 itera-

tively on this graph, we find the vertex positions converge to their proper

minimum allowed spacings in eight iterations, much lower than the upper

bound of 19 guaranteed by the shortest path algorithm. The values at each

iteration are illustrated in Table D.l, where each entry is a triple of the form:

Up. max(Uk + akj), max(Ut - bfl)

Boldface indicates which member of the triple is maximum at each iteration,

and when the remaining values change to italics, this indicates the maximum

has reached its convergence value.

Note the number of vertices whose values change at each timepoint. This

number is never greater than 50% of the number of vertices. It suggests that

a different approach, processing only the vertices whichwould change, would

greatly improve the order dependencies of the algorithm. Two modifications

were made along these lines.

The first modification was to make the algorithm 'event-driven' at each

iteration. Note that with positive upper bounds on the lengths of the graph

Fig. D.4 Horizontal Graph from Geometry in Fig. D.3

V
E

R
T

E
X

IT
R

3
A

T
I0

N

U
L

1
2

A
4

fi
B

7
A

0
0

0
0

0
0

0
0

0
0

1
0

0
,0

,-1
•0

,0
,0

a
o

.o
0

,0
.1

1
.0

,
i

1
,0

.i
1

,0
,1

1
.0

.1
2

0
0

,1
,-1

1
.1

,-1
1

,1
,2

2
,1

,2
2

2
,2

2
,2

,2
2

.2
,2

2
2

.2
3

0
0

,0
,—

0
,3

—
3

,3
,—

3
,3

,—
3

3
,—

3
,3

,—
3

,3
,-

3
3

,—
4

0
0

,3
,-2

3
,3

,-2
3

,3
,1

3
,3

,1
3

,3
,i

3
3

.
i

3
3

,1
3

3
.1

5
0

0
,0

,-1
0

,0
,0

0
,0

,0
0

,0
,0

0
,0

,0
0

,0
.0

0
,0

,0
0

.0
,0

6
0

0
,1

,-5
1

,1
,-3

L
i.-e

1
.1

,-2
1

.1
.-2

l,i.-
2

1
.1

,-2
1

,1
,-2

7
0

0
,0

,—
0

,1
,—

i,j,—
1

.1
,-"

l,i,—
1

.1
.-"

l.i,—
1

.1
.—

8
0

o
.i,-;

1
.1

.-J
1

,1
.0

1
,1

.0
1

.J
.0

1
.1

,0
l.i.0

1
.1

,0
fi

0
0

,0
,-1

0
,0

,0
0

,0
,0

0
,0

,0
a

,o
,o

0
,0

,0
0

.0
.0

0
,0

,0
1

0
0

0
,5

,-3
5

5
,0

5
5

,5
5

5
,5

5
,a

5
8

5
,5

6
,5

.5
8

6
.6

1
1

0
0

,3
-2

3
.3

-1
8

8
.

i
8

,8
,6

8
8

,6
8

,9
,5

9
,9

,5
a

9
.7

1
2

0
o

,i.t
l,3

,t
3

.8
.T

a
,a

,t
8

8
.r

8
8

.T
8

.9
.T

9
,9

.t
1

3
0

0
,1

.-2
1

A
-1

0
.8

,1
0

,8
,6

8
5

,5
8

5
,5

3
5

,5
3

8
,7

1
4

0
0

.7
,-./

1
.7

,0
7

,7
,7

7
.7

,7
7

,7
,7

7
,7

,7
7

,7
.7

7
.7

,7
1

5
0

0
,1

,-2
i.a

-
i

0
,8

,1
8

,5
,5

8
5

,5
8

5
,5

0
,8

,6
8

,8
.6

1
6

0
0

.1
.T

l.l.t
l,6

\t
8

.5
.t

a
5

.1
8

5
.T

8
.5

.T
8

,8
,1

1
7

0
0

,1
,-6

1
.4

,-5
4

,4
,-5

4
,4

,2
4

.4
.2

4
,4

,2
4

,4
,2

4
.4

.2
1

R
J
L

a
r
w

S
.?

,fl
3

•*?..*?
a

,7,n
3

.?
,,?

a
,?

./?
,

*
S

3

C
H

A
N

G
Es

n
8

5
2

1
i

J
i

0

D
.7

T
able

D
.1

Iteratio
n

s
of

E
qn.

D
.8

A
pplied

to
th

e
G

raph
of

Fig.D
.4

edges,
th

e
first

iteratio
n

of
eq

u
atio

n
D

.6
is

equivalent
to

th
e

unm
odified

C
PM

,

w
ith

lo
w

er
b

o
u

n
d

s
only.

A
t

e
a
c
h

iteratio
n

,
a

v
ertex

can
ch

an
g

e
p

o
sitio

n
o

n
ly

if
o

n
e

of
its

p
red

ecesso
rs

o
r

su
ccesso

rs
h

as
ch

an
g

ed
p

o
sitio

n
a
t

th
e

p
rev

io
u

s

Iteratio
n

.
T

h
u

s,
a
n

ev
en

t
q

u
eu

e
is

m
ain

tain
ed

,
an

d
w

h
en

th
e

p
o

sitio
n

of
a

v
e
r

te
x

ch
an

g
es,

all
of

its
p

re
d

e
c
e
sso

rs
a
n

d
su

c
c
e
sso

rs
a
re

sc
h

e
d

u
le

d
to

b
e

e
x

a
m

in
e
d

.

T
h

e
seco

n
d

m
o

d
ificatio

n
w

as
to

allow
th

e
ch

an
g

ed
p

o
sitio

n
s

of
v

ertices
to

be
u

sed
d

u
rin

g
th

e
c
u

rre
n

t
Iteratio

n
.

T
he

logic
of

th
e

'ev
en

t-d
riv

en
'

alg
o

rith
m

is
show

n
in

S
ectio

n
3.2.5.

T
his

m
odified

C
PM

alg
o

rith
m

p
erfo

rm
s

less

th
a
n

o
n

e
q

u
a
rte

r
th

e
n

u
m

b
e
r

of
o

p
eratio

n
s

as
eq

u
atio

n
D

.6.

T
T

h
e
se

v
e
rtic

e
s

h
a
v

e
n

o
su

c
c
e
sso

rs.

APPENDIX E

Glossary of Terms

This appendix contains definitions of the terms used in this report. Also

summarized here are the descriptions of several other layout spacing aids

which are compared and contrasted with CABBAGE in Chapter 1. In addition,

many of the auxiliary programs and utilities that are used by or use Python

are described. Terms that appear in boldface begin definitions of that par

ticular term. Words that appear in italics during the definitions are them

selves defined.

Actual Terminals

As contrasted with formal terminals, actual terminals are

represented by physical geometries. This geometry is part of the

instance of a master cell, or can also be a local terminal in the

definition of the cell. It binds the formal terminal, which contains

the net-id and name of the terminal, to the geometry which imple

ments a particular instance of a terminal.

Bounding Box

This is defined as the box surrounding a cell such that no geometry

local to the cell or contained within any instance in the cell extends

beyond the box boundaries. In common usage the term bounding

box refers to the minimum size box that encapsulates the cell.

Bounding boxes are used to do quick checks to determine that an

object is definitely not of interest. One example of this usage is

checking to see whether or not a particular cell intersects with an

E.1

E.2

area of interest that is being displayed on a graphics device.

Another usage is found in Python, where the upper and lower coor

dinates of intervals are used to quickly determine if there is a pos

sible overlap between the intervals.

Bounding Polygon

An extension of the bounding box idea, this is a polygon which com

pletely encapsulates a cell, including all instances and geometries

within the cell. Using a bounding polygon rather than a bounding

box allows a closer representation of the limits of the geometries

internal to a cell.

CABBAGEThe predecessor of the Python program, CABBAGE is a layout comp-

acter for symbolic integrated circuit layouts, consisting of a suite

of two separate programs which communicate through a symbolic

intermediate file. The program PRSU takes a layout entered

through the graphics editor GRUC and compacts the primitives

according to a set of spacing rules, which define the minimum

allowed spacing between objects on the different mask layers in the

semiconductor process. CABBAGE was one of the first spacing pro

grams to use the idea of coverage to limit the order complexity of

the spacing rule analysis. Doing so drops the observed order from

the worst case value of 0(n2) to 0(n1-2). The ideas contained in

CABBAGE were extended and built upon to form the Python system.

Cabtosquid

This is a computer program that interprets the symbolic intermedi

ate file used by CABBAGE and enters the data into the Squid data

base, obeying the conventions required by Python (such as expli-

E.3

citly labeling connectivity, etc.).

Constraint

A constraint is the spacing requirement between two objects. It is

represented in Python by an edge in a graph which represents the

topology and spacing requirements of the IC layout. Constraints

may have minimum and maximum values in Python, and can be

used to express spacing requirements between objects imposed by

the spacing rules, or to express fixed spacing requirements

between objects for preservation of electrical connectivity. Also,

constraints may be used to preserve the shape of objects, e.g., to

keep the width of interconnect lines constant.

Constraint Graph

This is the graph containing the constraints. It represents the

topology of the IC. While the edges in the constraint graph are

interpreted as lengths indicating minimum and maximum spacings

between objects, the vertices in the constraint graph are inter

preted as the locations of the reference points for the geometries

in the IC layout. Solution of the longest path problem from the

source of the graph to the sink of the graph determines the loca

tions of the primitives in the IC that require a minimal area for the

entire layout.

Cover When checking intervals for overlap, if a primary and a neighbor

overlap, the neighbor is said to cover or shield the primary. It is no

longer necessary to check for design rule constraints between the

primary and any other neighbor over the overlapping part of the

interval. Thus, this limits the search required in the spacing rule

E.4

analysis from a worst case 0{n2) time complexity to an observed

complexity of only 0(nlA). As the size of cells becomes larger, this

savings in computation can be extremely large. The idea of cover

age assumes that given two objects that have a spacing rule

between them, and object to the right of the second will be covered

by the second over its interval and may not require a constraint

(See Fig. E.l). Put in another way, if there is a rule between objects

A and B, there is no need for a rule between objects A and C, since

the rule between objects B and C will keep objects A and C from

coming too close. Note that this premise falls short when there

exists three mask layers and one mask layer has a spacing rule to

both of the other two but the other two have no spacing rule

between them. In this case, a spacing constraint is ignored that

may cause a layout rule violation. The concept of coverage also

must be modified if objects are allowed to merge. When merging

two objects, the intervals in the two objects should not be used as

Constraint Not Generated Due to B Covering A

Pig. E.l Coverage of a Primary Interval

E.5

covers.

Critical Path

A path from the source of the constraint graph to the sink where

the difference between the location of every pair of vertices on the

path is equal to the lower bound of the constraint edge joining the

two vertices is a critical path. There may be more than one

equivalent critical path in a given topology. The critical path fixes

the minimal area required for the IC layout. If any object is moved

in a manner such that the distance from source to sink in the con-

straint graph is lessened, a layout rule must be violated.

Decoupled Spacing Analysis

In order to take advantage of the rectilinear nature of the

geometries that are spaced by Python, the spacing analysis is

decoupled into separate passes for the X and Y dimensions of the IC

layout. Layout rules are ignored in the direction perpendicular to

the direction of spacing. Hence, layout rules can be violated in the

direction perpendicular to the spacing direction. This fact requires

that the spacing process be iterated between the X and Y directions

until neither spacing causes the ceil bounds to change and all con

straints are satisfied. Only then is a layout-rule-correct layout

guaranteed.

Edge In Python, an edge is the constraint edge added to the graph which

represents the IC topology. Vertices in the graph represent the

locations of reference points of the geometries within a cell. Each

edge has a lower and an upper bound, which are the minimum and

maximum allowed distances between the two vertices the edge

E.6

joins.

Edge Tracing

A term used in CABBAGE, edge tracing is used to develop all of the

edges (really called intervals) that occur on a particular side of a

group of interconnected elements. CABBAGE grouped intercon

nected elements together to save memory space. Since these

groups contained interconnect lines, which change shape, it was

necessary to dynamically develop these edges during each spacing

rule analysis. Since each group is represented individually in

Python and since the interval edges are expressed relative to the

bounding box coordinates of the instance that owns them, it is only

necessary to do the edge tracing in Python once, before the first

analysis.

Fang This is a rectilinear polygon package written by Peter Moore. It

allows arbitrary logical operations on rectilinear mask data, as well

as providing a grow/shrink capability. This package is used in

Python for developing the edges of the protection frames from the

box representation of polygons stored in the Squid database. It is

used by the frame generation program to do the

grow/merge/shrink operation used for removing the holes in the

geometry and producing the frames.

Fixed Constraint

An edge in the constraint graph that has the same lower and upper

bound on its length, and hence fixes the distance between two ver

tices. This is the major cause of overconstraining conditions. When

a fixed constraint exists between two vertices and the upper bound

E.7

is less than the sum of the lower bounds on another path between

the two vertices, this creates an overconstraining condition.

Fixed Grid

In both the SLIC and MULGA systems, an equally spaced grid is used

to represent the allowed positions. In SLIC, the grid spacing is

determined by the largest of the spacing rules. The designer

places geometry in the grid cells, and this grid is then translated

into the actual IC layout. Since the fixed grid spacing is determined

by the worst case spacing rule, the resulting layout is not as com

pact as the spacing rules allow. In MULGA. the fixed grid is later

mapped into real values, and the spacings between grid points are

not necessarily uniform. This overcomes the disadvantage of the

simpler fixed grid systems. Fixed grid methods are contrasted with

the relative grid methods used in FLOSS, CABBAGE. STICKS, and

Python.

FLOSS One of the earliest spacing programs to use a relative grid and a

graph representation of the IC topology. FLOSS is from RCA. The

Anished ZayCut Starting from Sketch program makes use of

hierarchy, and is designed for the COS/MOS technology. It relies on

the initial relative placement of the objects in the same manner as

CABBAGE and Python FLOSS is written in PL/I and consists of ~50

procedures. The major difference between the FLOSS and CABBAGE

programs is the input format. FLOSS digitizes a hand-drawn sketch

and takes information about the cells from either a standard

library or a previously denned cell. The results show a layout ~19%

larger than the equivalent hand-drawn layout.

E.8

Formal Terminals

As contrasted with actual terminals, formal terminals are the

definitions of a terminal associated with the master cell of an

instance. An example would be the drain, gate, and source termi

nals of an NMOS transistor. While they are specified in the

definition of the transistor (the master cell) as formal terminals,

they do not have a net or physical location associated with them

until the master cell is instanced. At this point, actual terminals in

each instance are created for each of the formal terminals in the

master cell.

Graph According to [Bondy76], en graph defined as:

... an ordered triple (V(G), E(G), cpG) consisting of a nonempty
set y(G) of vertices, a set E{G), disjoint from V(G), ofedges, and
an incidence function <pc that associates with each edge of G an
unordered pair of (not necessarily distinct) vertices of G.

In Python, a graph is used to represent the physical topology of the

IC mask data. The locations of the vertices represent the locations

of the reference points of the primitives, and the lengths of the

edges represent the minimum and maximum allowable spacing

between the two vertices each edge joins.

Graphcap

A terminal independent graphics package developed initially by the

author and Ken Keller, with ongoing development by Giles Billingsly

and Ken Keller. This package is used by Hawk to provide a graphics

terminal independent editor, which, in addition to its many other

capabilities, is the input editor for Python. The graphcap routines

themselves are a low level package for dealing with an ASCII data

base representation of a defined standard set of capabilities of a

E.9

graphics terminal. The Model Frame Buffer, or MFB, is the set of

terminal independent graphics routines that interface a high-level

applications program, such as Hawk, to the low level graphcap rou

tines.

Hawk Hawk is the graphics editor which is the input editor for Python,

and it stores the IC designs in the Squid database. Hawk is very

powerful, and has the intelligence necessary to allow symbolic lay

out. It also provides a clean user interface to the Python program

itself. See [Keller82] for a description of Hawk.

Hierarchical Design

If a designer encapsulates functional blocks of his design and uses

these blocks in other blocks, it is called hierarchical design There

are two forms of hierarchical design: top down and bottom up. In

the top down design the system level considerations are given first

priority and the design is narrowed along functional lines until a

particular implementation is achieved. In the bottom up approach,

the low level cells are designed first and used to build up more and

more complex cells until finally the entire system is designed.

Python is designed for use in a hierarchical design style. This type

of design style has several advantages for a spacing program. If

only the master cell of each different subcell is spaced instead of

each instance of each master cell, great computational savings can

be realized in the spacing of a regular structure. In addition, the

greater-than-linear order dependencies of the algorithms in the

Python imply that merely dividing the spacing process up into m

spacings each of — elements will improve the computational per-

E.10

formance. Another very important point is that very large circuits

will not fit into virtual memory on the computer. This requires

reducing the size of larger circuits through the use of hierarchy.

Instance When a cell is designed and laid out, this cell is called a master cell.

When the master cell is used in another cell, it is called aninstance

of the master cell, and has all of the characteristics of the master

cell, in addition to its own unique name, translation, and optional

mirrorings and rotations about the coordinate axes. Instances are

physically placed and then connected with lines. They do not

change form during the spacing process; they only change transla

tion. Lines grow or shrink to space the instances according to the

layout rules.

Interval In Python, an interval is an edge of a. protection frame. These inter

val edges are used in the spacing rule analysis to determine the

minimum spacing required between any pair of objects. All pri

maries (right-side intervals) are compared against all neighbors

(left-side intervals) to check for the spacing requirement. Cover

age is used to limit the depth of the search. Since the intervals are

compared in sorted order, lines may be routed through cells, and

concave and convex objects may 'fit' together, if doing so does not

violate any spacing rules (Fig. E.2).

Jog Ajog is a line of one orientation that connects two lines in the per

pendicular orientation (See Fig. E.C). Jogs introduce great latitude

in the spacing analysis for Python. Two objects joined by a straight

line are fixed relative to one another in the dimension perpendicu

lar to the length of the line. Two objects joined by a jogged line are

E.ll

: Cell A
Cell B

Pig. E.2 Routing through Cells and Concave/Convex Interaction

it • i: Line Width

Fig. S.3 A Jog

not fixed at all relative to one another.

Jog Generation

A property of the CABBAGE program was the ability to determine

which lines on the critical path would benefit from insertion of jogs.

The idea was that splitting critical path lines would allow a more

E.12

compact final result. Determining which interconnection lines are

on the critical path is not very difficult. Determining where on the

line to place the jog requires examination of the surrounding

geometry. CABBAGE placed the jog in the middle. In the worst

case, this could mean 0(n logn) jog insertions to find the proper

location. In Fig. E.4,

Layout Rules

These include the minimum allowable spacings between objects on

the same and different mask layers in the semiconductor IC pro

cess. They take their values from considerations of the possible

misalignment between mask layers during processing of the IC.

They are designed to preserve the electrical properties of the IC

even under worst-case conditions. Not all mask layers have rules

for every other mask layer. Here is an example table of the

Mead/Conway NMOS spacing rules which are used by Python:

•

c::

fi

Only After Joq C is
Inserted Can the Layout
Compact to a Smaller
Size

F5g. S.4 3inar7 Search Jog insertion

E.13

spacerule ND ND 3
spacerule ND NP 1
spacerule ND NC 3
spacerule ND NB 2
spacerule NP NP 2
spacerule NP NC 3
spacerule NP NB 2
spacerule NM NM 3
spacerule NC NC 2
spacerule NC NB 1
spacerule NB NB 2
spacerule NT NC 2

ND is diffusion. NP is polysilicon. NC is contact cut. NM is metal for

interconnections, NB is the buried contact window cut, and NT is a

special mask for the active area of transistors (necessary for imple

mentation of the full Mead/Conway layout rule set). Layout rules

also include additional rules, such as:

Minimum Area Rules •'
Minimum Width Rules
Minimum Enclosure Rules

These rules are not directly checked by as they are easier to check

in the input phase.

Leaf Cell A leaf cell is a cell that simply contains no instances. It can be

looked at as the leaf of a tree; the smallest unit which cannot

'branch' into anything smaller. It is the atom of hierarchical

design.

line In Python, a line is a path on one of the IC mask layers that is used

for interconnecting terminals on instances, lines grow and shrink

along their length, and this allows the spacing program to change

the size of the layout to satisfy the design rules.

Local Interconnect

This is interconnect local to an instance. In the hierarchy, if the

E.14

level of the instances within a cell is 0, the level of the local inter

connect is also 0. Local interconnect, instance protection frames,

and local and instance terminals are the only geometries used to

do the spacing in Python.

Local Terminals

Local terminals are at the same level in the hierarchy as the local

interconnect described above. They are used to communicate the

signals between the cell and the next level in the hierarchy where

the instance in which the local terminals are used is placed.

Longest Path

The longest path through the graph is defined as the longest path

from the source of the constraint graph to the sink of the con

straint graph while satisfying the minimum constraints on all of the

edges joining vertices on the path. Solution of this longest path

determines the locations of the primitives that requires the smal

lest area while satisfying ail spacing rules. The algorithm to solve

this problem is an iterative one, guaranteed to converge in v itera

tions, if there are no overconstraining conditions (v is the number

of vertices in the graph). See Appendix D for a discussion of the

algorithm.

Merging When two similar objects are interconnected, often they may

'merge', or overlap, in a certain fashion. An example of this is two

NMOS transistors connected by their gates. The polysilicon exten

sion past the end of the transistor is 2X. When the gates of the two

transistors are connected, if no merging is allowed, the spacing

between the source and drain regions of the two transistors is 4X.

E.15

The required spacing is only 3X, and IX of space is being wasted. If

the primitives are allowed to merge, the diffusion to diffusion spac

ing of 3X can be met. CABBAGE allows merging, since the rules for

merging the specific NMOS primitives known to the program are

well understood. Python is a more general program, and does not

allow merging, since there is not yet a general convention for how

and when arbitrary objects can merge.

HFB See the definition of Graphcap.

Model Frame Buffer

See the definition of Graphcap.

MULGA MULGA is one of the most recent IC spacing programs. It uses the

concept of a virtual grid to obtain an efficient compaction result

without sacrifice of computation time. Integer grids are used to

represent the IC layout in a matrix form. The spacing analysis

maps the integer grid spacing into a real value which satisfies the

spacing rules while minimizing total area required for the layout.

Corner constraints are checked, and a form of recursion is used to

check constraints that extend over multiple grid rows or columns.

Jog generation is intentionally avoided. The author feels that such

drastic topological changes as can be introduced with jog genera

tion are better introduced by the human designer. MULGA has

been used to design several NMOS and CMOS ICs, which have been

fabricated.

NeighborA neighbor is a left-hand-side interval, and all neighbors to the right

of a primary are compared against it for possible overlap, which

would require a constraint between the objects which the primary

E.16

and neighbor belong to.

Overconstraint

An overconstraint in the constraint graph is generated when two

paths exist between a pair of vertices and the sum of the lower

bounds of the edges in the first path is greater than the sum of the

upper bounds of the edges in the second path. In this case, there

can be no location for the vertices on the two paths that will satisfy

all of the constraints. The graph is said to be overconstrained. The

nature of the longest path algorithm that solves for the locations of

all of the vertices is such that v iterations are required to detect

the existence of an overconstraint, where v is the number of ver

tices in the graph. Detection of the location of an overconstraint is

an 0(2 v) time complexity problem. For even very small graphs,

this time complexity becomes prohibitively large. For this reason,

no detection of the location of overconstraining conditions is done

in Python.

Primary Aprimary is a right-side-edge interval, and is compared in the left-

to-right scan of neighbors for possible overlap.

Protection Frame

A protection frame, in the implementation of Python, is used to sur

round the geometry within a cell, to reduce the amount of data it is

necessary to examine in order to space the cell when it is used at a

greater level in the hierarchy.

Python The program developed for this report. Python is a layout rule spac

ing program for symbolically designed IC layouts, and is based on

the ideas contained within the CABBAGE program. Python extends

E.17

the critical path algorithm used to solve for the minimum area lay

out to include upper as well as lower constraints on the edges in the

graph. With these upper bounds, each object can be represented

individually, rather than as groups of connected objects, as was

done in the CABBAGE program. Fixed bound edges preserve electri

cal connectivity. Edges with different lower and upper bounds but

with a finite upper bound can be used for sliding contacts, or termi

nal frames.

Rectangular Polygon

A polygon where the angle between the edge segments at each of its

vertices is some integral multiple of 90 degrees. These polygons

are used in Python as protection frames for ceils. This allows

almost any arbitrary shaped object to appear within a leaf cell. As

long as the protection frame is a rectangular polygon, Python can

space instances of the cell.

Relative Constraint

A relative constraint relates two (or more) objects to one another,

while making no restrictions on the movement of the group as a

whole.

Relative Grid

Contrasted to the fixed grid approach, the relative grid serves only

to indicate the initial relative placement and interconnection of the

objects in the layout. The spacing between objects is determined

through analysis of the spacing requirements between objects. This

approach is used by the FLOSS. CABBAGE, STICKS, and Python pro

grams.

E.18

SUC The SUC (Symbolic Layout of integrated Circuits) system is a fixed

grid symbolic layout aid from AMI which provides an interactive

environment for detection and correction of errors in the symbolic

layout. No automatic spacing is done. The types of checking that

are available to the designer are:

• Design Rule Checking (Boolean Equation Input)
• Network Comparison (Between Logic Deck and Layout)
• Netiist Trace (Includes Device Sizes)
• Parasitic Extraction (Capacitances and Resistances)

Once the layout is error free, masks are generated and the circuit

can be fabricated. Examples are presented which show circuit sizes

within 10% of hand-drawn circuit size.

Sliding Contacts

See Terminal Frames.

SUP/SLIM

The SLIM program [DunlopBO], and previously the SLIP program

[Dunlop78]. are from Bell Laboratories. A novel use of multiple

spacing methods makes SUM an interesting example. The IC sym

bolic data is partitioned automatically, into an optimal size calcu

lated by the author[Dunlop79]. A loose initial placement which is

design rule correct (although not optimal) is generated. Critical

path detection, similar to the method used in CABBAGE, is coupled

with a local compaction method to reduce total run-time required,

while maintaining an efficient compaction result. The local compac

tion procedure clusters together groups of objects on the critical

path. Jogs are inserted in the layout, but only at contact locations.

Global rift line compaction [Akers70] removes the excess space

between the locally compacted partitions. The order dependency

E.19

for the composite algorithm is approximately 0{n^2).

Spacing Rules

See layout rules (which are a superset of spacing rules).

Squid This is the database used by Python to store and retrieve the sym

bolic IC information. It stores logic information, such as electrical

connectivity, as well as geometric information, relating to the phy

sical layout of the circuit.

STICKS This program is a high-level layout aid from Hewlett-Packard Co.

[Williams78]. As in CABBAGE and FLOSS, STICKS uses a relative grid

approach with the designer's initial placement of the circuit ele

ments determining to a great degree the possible efficiency of the

compaction. STICKS takes a stick diagram as input, with the ele

ments represented by symbols, and the interconnection lines

represented by zero-width sticks. The spacing process is separated

into X and Y compactions. The spacing algorithm works by taking

groups of elements and placing them as far to one side as is possi

ble, given the ftxed topology of the previously placed elements and

the spacing requirements between the elements. Interactive

optimization is possible. The designer may perform a local compac

tion by identifying an area to be compacted and a direction to com

pact the elements. This helps alleviate the problems that can occur

when compaction in one direction prevents efficient compaction in

the perpendicular direction. A second capability with the interac

tive program is the user introduction of jog points. Cells may be

encapsulated, so there is a form of hierarchy in STICKS.

E.20

TerminalA terminal is used to connect between levels in the hierarchy.

When a cell is designed, all of the signals that are required at the

next level (VDD. GND, inputs, and outputs) are terminated on local

terminals in the cell. When this newly created master cell is

placed, each instance has only the protection frames and terminals

(which are also frames) visible for connection. All of the interior

components of the ceil are no longer visible. This partitioning of

the design and implementation assists both the human designer

and the computer tools that work on the layout. The designer sees

less information at any one time and is less likely to be confused or

overwhelmed. He can match the logic partitioning to the logical

partitioning present in his mind at the time of the design. At the

same time, the computer tools that work on his layout must work

with less information at a time, and this greatly reduces the compu

tation time required for the tasks of design rule checking or layout

rule spacing.

Terminal Frame

The terminal frame is the normal geometric implementation of a

terrriinal. Instead of point connections, as are made in CABBAGE,

the terminal frames only require that the lines interconnecting

them terminate somewhere within the terminal frame. With this

'slop', the spacing program may yield a better compaction result,

since it may place each terminal to the best advantage.

Vertex In the Python constraint graph, the vertices represent the locations

of the reference points of each instance and interconnection line in

the layout. Specifically, the bounding box edges of the instances

E.21

and interconnection lines are represented. The spacing analysis is

separated in the X and Y directions, so there are two graphs. The

vertices for the top and bottom bounding box edges are in the Y

graph, and the vertices for the right and left bounding box edges

are in the X graph. Each vertex is responsible for updating its

related coordinate. Storing what is actually the transformational

information for each instance in only one place insures the

integrity of the data.

APPENDIX F

Python Listing

This appendix contains a listing of the Python program. The program is

approximately 4000 lines of the C programming language. Approximately

1000 of the 4000 lines are comments. The size of the compiled program is

74752 bytes of instructions. 13312 bytes of data, and 10820 bytes of common

storage on a VAX 11/780 32 bit minicomputer running the 4.1BSD version of

the UNIXf operating system.

•fUNIX is a Trademark of Bell Laboratories.

F.l

Appendix F can be obtained from Pamela Bostelman
c/o Industrial Liaison Program
499 Cory Hall
University of California
Berkeley, CA 94720
(415) 642-4370

APPENDIX G

Cabtosquid Program Listing

This appendix contains the manual entry and program listing for the

cabtosquid program, a translator from the CABBAGE intermediate format

into the Squid database. The input conventions of Python are observed.

G.l

CABTOSQUID (CAD) CAD Toolbox User's Manual CABTOSQUID (CAD)

NAME

cabtosquid —A translator from CABBAGE I format into the squid database

SYNOPSIS

cabtosquid [-e#] [-NO] cabbagelfile ...

DESCRIPTION

Cabtosquid provides a means to translate cells generated with the CABBAGE I
system into the squid database format. The conventions for interfacing to
pytTion are observed, so translated cells may be spaced with python. The set of
spacing rules used is the Mead/Conway rules with lambda equal to two microns.

The program creates squid master cells for each different sized CABBAGE I
primitive. Then, a master cell for the top level CABBAGE I cell is created, with
the lower level master cells instanciated. Squid requires a separate directory
for each master cell, so be in the directory where you want the output before
invoking cabtosquid.

The -e§ option takes a number and expands the CABBAGE I file before transla
tion. This expansion multiplies the center locations of all point structures and
the endpoints of all wires by the expansion factor. The width of all wires and size
of all devices is preserved.

The -0 and -N options allow translation of intermediate files generated by older
and newer versions of the CABBAGE I program respectively. The default version
is IB. These options are additive - typing '-N -N -N -0 -N' would set up for using
version IE files.

FILES

c2s.out - Root squid cell of CABBAGE I instance
[0-9]♦bytO-9]". * - Squid master cells for CABBAGE I primitives

SEE ALSO

cabbage(cad). hawk(cad), python(cad). squid(3cad), cadrc(3cad)
AUTHOR

Mark Bales

DIAGNOSTICS

Various self explanatory error diagnostics. Most report problems with queries to
the squid database. A few report errors in the CABBAGE I input file, such as the
wrong version, or overlapping transistors, etc.

BUGS

The change from point terminals in CABBAGE I to terminal areas in python
creates a problem. It is possible for a line segment to have both endpoints con
tained within a single terminal frame. In CABBAGE I, this presented no
difficulty, since only the endpoint terminating at the center of the terminal was
considered connected to the terminal. "With the terminal frames used in python,
it is no longer possible to determine which of the two possible endpoints should
be bound to the terminal. This is the reason for the -e option. Expanding the
layout will eventually move one of the endpoints out of such a terminal, and the
connectivity can be uniquely determined.

The RUNX line type is currently ignored. It should be passed through to allow
circuits spaced with python to retain a rectilinear aspect ratio.

First Edition 3/31/82

index Appendix g index

allocpoints allocpoints.c 1
checkversion checlcversion.c 1
connet conneLc 1
equivalence equivalence,c 1
genbutcnt gen.c 8
gencont gen.c 4
genpriraitives :. gen.c 1
gentran gen.c 1
init init.c 1
main main.c 1
P_getlsg c2smem.c 1
P_getnethd c2smem.c 2
P_getpoint c2smem.c 2
P-getsqcell c2smem.c 3
P_memstat c2smem.c 4
P_retlsg c2smem.c 1
P__retnethd c2smem.c 3
P_retpoint c2smem.c 2
P_retsqcell c2smem.c 3
readcabbage readcabbage.c
sortcabbage sortcabbage.c
splitlvrire splitwires.c
splitwires splitwires.c
strsav utils.c •
writesquid yrritesquid.c

May 3 18:371982 Page 1 of index

cabtosquid.h Appendix g cabtosquid.h

^include <stdio.h>
^include "drules.h"

/*

* these are some global defines
*/

#define TRUE 1
#define FALSE 0
#define OK 1
/* Here are some orientation defines for the CABBAGE I file V
#define HORIZONTAL 0 /* Orientations for the CABBAGE I file V
#define VERTICAL 2 /* Orientations for the CABBAGE I file V
#define NORTH 0 /♦ Orientations for the CABBAGE I file V
#define EAST 2 /* Orientations for the CABBAGE I file V
#define SOUTH 4 /• Orientations for the CABBAGE I file V
#defijae WEST 6 /♦ Orientations for the CABBAGE I file V
/* Here are some type ids used with the spoin? data structure V
#define ULINE 1 /* Upper Line endpoint for point struct V
#define LLINE 10 /♦ Upper Line endpoint for point struct V
#define DRAIN 2 /• Tran or load drain terminal for point */
#define GATE 3 /• Tran or load gate terminal fir point V
#define SOURCE 4 /* Tran or load source terminal for point V
#define POINT 5 /* Point structure id for point struct V

* 77iese are the types of elements in the cabbage file

/* Variable Length Lines (may stretch or shrink during compaction) V
#define DIFF 1 /* Diffusion interconnection line V
#define POLY 2 /* Polysilicon interconnection line V
#define METAL 3 /* Metal interconnection Line V
#defip.e RUNX 4 /* Runx (bounding box) interconnection Line *V
/* Fixed length Lines (will only change Location during compaction) V
#define FDIFF 5 /* Diffusion interconnection line V
#de£Lne FPOLY 6 /* Polysilicon interconnection line */
#define FMETAL 7 /* Metal interconnection Line V
^define FRUNX 8 /* Runx (bounding box) interconnection line V
/* Transistor devices V
^define TRAN 9 /* Enhancement transistor V
^define LOAD 10 /* Depletion transistor (Load) V
#define D_M_CNT 11 /* Diffusion-Metal contact V
#define P_M_CNT 12 /• Polysilicon-Metal contact V
^define BUR_CNT 13 /• Buried (Polysilicon-Diffusion) contact V
#define BUT_CNT 14 /* Butting (Polysilicon-Diffusion) contact V
#defiae TERM 15 /* Line terminator (local terminal to Squid) */
/* Here are a few extra types needed for the CABBAGE/Python conventions V
#define D_D_CNT 16 /* Diffusion-Diffusion contact V
#define P_P_CNT 17 /* Polysilicon-Polysilicon contact V
#define M_M_CNT 18 /* Metal-Metal contact V
/*

* These are the Layer definitions in cabbage

#define DIFFLEVEL 0 /» Diffusion layer V
#deflne POLYLEVEL 1 /* Polysilicon Layer */
jjtdefine HETALLEVEL 2 /• Metal Layer V
jjEdeflne RESERVEDLEVEL 3 /* Runx (bounding box) layer */
#deflne ACTCVELEVEL 4 /• Active area (Diffusion Se Polysilicon) V
#defizie CONTACTLEVEL 5 /* Contact window cut V
#define BURIEDLEVEL 6 /• Buried contact window cut V
#define IMPLAxNTLEVEL 7 /* Implant Layer (Depletion Loads only) V
#deflne EXTRALEVEL 8 /♦ Unused layer V

* 77tts is the structure for the data from the cabbage intermediate file

struct Isg {

Apr 1223:20 1982 Page 1of cabtosquid.h

cabtosquid.h

int type;
int orientation;
int x_center;
int x3eft_offset;
int x_right_ofIset;
int y_center;
int y_bottom__o£set;
int y_top__ofiset;
char "name;
struct lsg %ext;
int instanciated;
int instid;

Appendix G cabtosquid.h

/♦ Integer type of element (Values 1-15) */
/* Integer orientation (0 or 2) V
/* Integer element x center; —1 => Horiz Line V
/• Integer offset to Left of center; •'rive # V
/* Integer offset to right of center; +ive # */
/* Integer element y center; —1=> Vert Line V
/* Integer offset below center; +we # V
/* Integer offset above center; -rive # V
/* Pointer to name derived from [xy]_mcenter */
/* Pointer to next like—type element in array V
/* Flag indicating if element been instanced V
/* Id of instance in Squid database */

/*

* This is the structure for "points'. Each line has two, each transistor
* has 3, and each contact has 1 only. These points are sorted and used
* to determine electrical connectivity.
*/

struct point (
int x; /* X coordinate of "point' V
int y; /* Y coordinate of 'point' */
struct point "next; /* Next 'point* in linked list V
struct point "nextinnet; /* Next "point in the same electrical net V
struct point "nextatpoint; /* Next "point* at the same X & Y */
struct nethd tietid; /* Pointer to nethd net id structure V
int type; /* Type of "point* (See above) V
struct lsg "element; /* Pointer to the element owning the "point' */

This structure is in a doubly linked list of nets and points to
a list of "points' in the same net linked by the "nextinnef field.

struct nethd {
struct nethd •next;
struct nethd "prev;
struct point •points
int net;

/* Pointer to next nethd V
/* Pointer to previous nethd V
/* Pointer to List of "points' in net V
/* Squid net id (Used upon readout) V

/♦

* This structure is used by the routines which generate primitives for
* each different type of device. The names for the devices are generated
* from their size and type. Each different primitive is created only once.
V

struct sqcell j
struct sqcell "next; /* Pointer to next sqcell in list */
char "name; /* Pointer to generated name */

/*

* this is an in—line max(a,b) macro
*/

#define max(a, b) ((a) > (b) ? (a) : (b))
/* Here are the external variables and global type declarations */
char ^printf();
extern struct lsg "elements;
extern struct point "points;
extern struct nethd nethead;
extern unsigned int num_elements;
extern int versfig;
extern char version[3];
extern int expfactor;

Apr 12 23:20 1982 Page 2 of cabtosquid.h

cabtosquid.h Appendix g cabtosquid.h

Apr 12 23:371982 Page 3 0f cabtosquid.h

private,h

* These are the global variables
V

struct lsg "elements;
struct point *points;
struct nethd nethead = { NULL, NULL,
nnsigned int num_elements;
int versfig = 1; ~*
char version[3] = "1A";
int expfactor = 1;

Apr 12 23:32 1982

Appendix G private,h

/* Pointer to CABBAGE I elements
/* Pointer to "points' list V

NULL j; /' Nethd head struct V
/• Number of CABBAGE I elements
/* Default version "IB' V

/* Expansion factor V

V

Page 1 of private.h

drules.h Appendix G drules.h

/*

* these are the design rules the translation program must know about
U^xnformatvm consists of the size of overlaps from the 'bounding '

* box of each element to one of the edges of a component of the
foment For example, the variable D_L_PJTRAN represents the
Delta-Length-of Polysilicon-in a TRANsistor' and represents the

change vn length required for a VERTICAL transistor to accurately
depict the polystiiton gate as a box. They are expressed in lambda

2, since the default units in Squid are 2 * user lambda.

#define VERSION "(Mead/Conway Design Rules 3/21/82V\n"
#^*e 2-?-P_DMCNT 9 '* Delta-Width in Diffusion in a Diff-Metal Contact V

',\ 7l,ia^ngth in ^fusion tn a Diff-Metal Contact */
/• Delta-Width in Diffusion in a Buried Contact V
/* Delta-Length in Diffusion in a Buried Contact */
/* Delta-Width in Diffusion in a Transistor */
/* Delta-Length in Diffusion in a Transistor V
/* Delta-Width in Polysilicon

•u, -_ ^---- - /0 Delta-Length in Polysilicon
!wefint D-IU^cvrV '/.^"^^ *>***«>" ™« Buried Contact V*rf*[Iie P-k-P-iy0^ ° '* Delta-Length in Polysilicon in a Buried Contact V

/* Delta-Width in Polysilicon in a Transistor V
/• Delta-Length in Polysilicon in a Transistor V
/• Delta-Width in Metal in a Diff-Metal Contact •/
/* Delta-Length in Metal in a Diff-Metal Contact */
/* Delta-Width in Metal in a Poly-Metal Contact V
/* DeLta-Length in Metal in a Poly-Metal Contact V
/* Delta-Width in Contact Cut in a Diff-Metal Contact V
/• Delta-Length in Contact a in a Diff-Metal Contact V
y,\ ^Ita-Width in Contact Cut in a Poly-Metal Contact V
/' Delta-Length in Contact a in a Poly-Metal Contact V
/* Delta-Width in Implant in a Transistor V
/* Delta-Length in Implant in a Transistor */
/* Delta-Width in Buried Cut in a Buried Contact V
/• DeLta-Length in Buried Cut in a Buried Contact V
/• Delta-Width in Metal in a Butting Contact V
/* Delta-Length in Metal in a Butting Contact V
/* Delia-Width in Contact in a Butting Contact */
/* Delta-Length in Contact in a Butting Contact V
/* Delta-Offset in Diffusion in a Butting Contact V

#define D_L~D DMCNT 0
#define D_W~DiBUCNT 0
#define D_L_D BUCNT 0
#define D_W D~TRAN ^
#define D_Ll)_TRAN 0
#define D W P PMCNT 0
^define D^LTp'PMCNT 0

#define DlvTp~TRAN 0
#define D_L PJERAN 4
#define D_W_M_DMCNT 0
#define D_L_M DMCNT 0
#define D_W M~PMCNT 0
#define D_L3j_PMCNT 0
#define D_W C_DMCNT 2
#define D_L C DMCNT 2
#define D W_CJ?MCNT 2
#define D_L C_PMCNT 2
#define D_W""l_TRAN 1
#define D L I TRAN 1
#define D W_B BUCNT 2
#define D L B "BUCNT 2
#define D_W_M~ BTCNT 0
#define D L_M*BTCNT 0
#define D_W ClBTCNT 2
^define D_L_C_BTCNT 2
#define D_0 D BTCNT 2

Mar 30 14:12 1982
Page 1 of drules.h

allocpoints.c Appendix g allocpoints.c

^include "cabtosquid.h"

struct point *
allocpoints(ele) CllloCpOVnts
struct lsg "ele;
I
/*

* Macro for insert sorting point into element list.
*/

^define INSERT(point,elem,xcoord,ycoord,ttype) \
point = P_getpoint(); \
point—>element = elem; \
point-> type = ttype;\
point->nextinnet = NULL; \
point ->netid = NULL; \
point->x = xcoord; \
point->y = ycoord; \
for(tmppnt = <kpointhead; tmppr.t->next != NULL; tmppnt = tmppnt->next) j\

if(point->x <= tmppnt->next->x) \
break; \

\ \
for(; tmppnt->next != NULL icic tmppnt->next->x == point->x; tmppnt = \

tmppnt->next) (\
if(point->y <= tmppnt->next->y) \

break; \

I \
if(tmppnt—>next—>x == point->x && tmppnt->next->y == point—>y) { \

point—>nextatpoint = tmppnt—>next->nextatpoint; \
tmppnt->next->nextatpoint = point; \

I \ ,
else } \

point—>next = tmppnt—>next; \
tmppnt—>next = point; \

I

/*

* Macro for adding a new net to the netlist.
V

^define ADDNET(pointl,point2) \
tmpnet = P_getnethd(); \
point1—>nextinnet = point2; \
point2->nextinnet = (struct point r)NULL; \
point 1—>netid = tmpnet; \
point2->netid = tmpnet; \
tmpnet—>points = pointl; \
tmpnet—>prev = NULL; \
tmpnet—>next = nethead.next; \
nethead.next = tmpnet; \
if(tmpnet->next != NULL) \

tmpnet—>next—>prev = tmpnet; \

/•
* This routine allocates "point' data structures for each of the elements.
* One "point' is allocated for each terminal of the element. Thus, lines
* have two points, transistors and loads have three points each, and
9 the plethora of contacts each have a single point.
V

struct point pointhead, ^^getpointO;
struct point "tmppnt, "pnt, "pntl;
struct nethd tmpnet, *P_getnethd();

/♦ Initialize the head of the point list V
pointhead.next = (struct point *)NULL;

Mar 30 14:12 1982 Page 1 of allocpoints.c

allocpoints. c Appendix g allocpoints. c

...allocpoints
/* For all of the elements in the element list ... V
for{ : ele != NULL; ele = ele->next) |

/* If the element is RUNX, ignore it. V
if(ele->type == FRUNX |j ele->type == RUNX)

continue;
/* If the element is a horizontal line ... V
if(ele->x_center < 0) { /♦ =>HORIZONTAL line V

/* Insert lower point V
INSERT(pntl,ele,ele->xJeft_offset,ele->y_center,tIINE);
/* Insert upper point V
JNSERT(pnt,ele,ele->x_right_offset.ele->y_center,ULINE);
/* Add a new net with the two points V
ADDNET(pntl, pnt);

/* Else if the element is a vertical line ... */
e&se if(ele->y_center < 0) (/♦ => Vertical Line V

/* Insert Lower point V
INSERT(pnt,ele,ele->x_center,

ele->y_bottom_offset,LLINE);
/* Insert upper point */
INSERT(pntl.ele,ele->x_center,ele->y_top_-offset,ULLNE);
/* Add a new net with the two points *7
ADDNET(pnt, pntl);

/* Else if the element is some sort of transistor ... V
else if(ele->type == TRAN || ele->type == LOAD) {

/* Insert a point for the drain terminal V
INSERT(pnt,ele,ele->x_center,ele->y_center,DRAIN);
/* Insert a point for the gate terminal */
INSERT(pnt,ele,ele->x_center,ele->y_center,GATE);
/* Insert a point for the source terrnxnal */
INSERT(pnt,ele,ele->x_center,ele->y_center,SOURCE);

else j /* Some sort of contact */
/* Insert a single point for the structure */
INSERT(pnt,ele,eie->x_cer.ter,ele->y_center,POINT);

return(pointhead.next); /* Return a pointer to sorted list V

May 3 18:31 1982 Page 2 of allocpoints.c

c2smem.c Appendix g c2smem.c

/* UNTUBRARY (to shut lint up about unused functions) V

^include "cabtosquid.h"

/* global free list pointers and initializers V
struct lsg *P_lsgfree = (struct lsg "5NULL;
struct lsg P__lsginit;
struct point "P_pointfree = (struct point ")NULL;
struct point P__pointinit;
struct nethd *P_nethdfree = (struct nethd *)NULL;
struct nethd P_nethdinit;
struct sqcell *P_sqcellfree = (struct sqcell *)NULL;
struct sqcell P—sqcellinit;

#ifdef MDEBUG
/* memory management stat variables0/
int P_lsgget = 0;
int P_lsgret = 0;
int PJsgsys = 0;
int P_pointget = 0;
int P_pointret = 0
int P_pointsys = 0
int P_nethdget = 0
int P_nethdret = 0
int P_nethdsys = 0
int P_sqcellget = 0
int P_sqcellret = 0
int P_sqcellsys = 0
#endif

#define MEMBLKSIZ 1C24

/* lsg rnanagement V

struct lsg *
PgetisgQ P-getlsg
struct lsg "tmplsg;
int i;
char *malloc();
#Lfdef MDEBUG

P lsgget+-f;
#endif

H(PJsgfree == (struct lsg ")NULL) |
#ifdef MDEBUG

P_lsgsys++;
printf("P getlsg: Calling malloc\n");

#endif
/* (=> Have to get a new block v

P_lsgfree = (struct lsg •) malloc(MEMBLKSIZ * sizeaf(struct lsg));
/* Link the block together V
far{ i = 0; i < MEMBLKSIZ; i++)

(FMsgfree + i)->next = P_lsgfree + i + 1;
(PJsgfree + MEMBLKSIZ - l)->next = (struct lsg "JNULL;

tmplsg = P_lsgfree;
P_lsgfree =~P_lsgfree->next;
tmplsg = P_lsginit;
return(tmplsg);

p__retisg(lsg) Pjretlsg
struct lsg lsg;

May 3 18:31 1982 Page 1 ofc&mem.c

c2smem.c Appendix g c2smem.c

...P-retlsg
i

if(lsg != (struct lsg ")NULL) {
#ifdef MDEBUG

P lsgret+*;
#endtf

lsg—>next = P_lsgfree;
P Isgfree = lsg;

i !
/* point management V

struct point *
P_getpoint() P^getpoint
struct point tmppoint;
int i;
char "malloc();
#ifdei MDEBUG

P_pointget++;
#endif

tf(P_pointfree == (struct point ^NULL) \
#ifdef MDEBUG

P__pointsys++;
printf("P_getpoint: Calling malloc\n");

#endif

I

/* (=> Have to get a new block V
P_pointfree = (struct point *) malloc(MEMBLKSIZ ' sizeof(struct point))
/* link the block together V
for(i = 0; i < MEMBLKSIZ; i++)

(P^pointfree + i)->next = P_pointfree + i + 1;
' (P_pointfree + MEMBLKSIZ - l)->next = (struct point *)NULL;

tmppoint = P__pointfree;
P_pointfree = P_pointfree->next;
tmppoint = P_pointinit;
return(tmppoint);

P_retpoint(point) P-Tetpoint
struct point ^point;

if(point != (struct point ^NULL) {
#ifdef MDEBUG

P_pointret-r+;
#endif

point->next = P_pointfree;
P_pointfree = point;

/* nethd management */

struct nethd * •-,,,»
p_getnethd() P^ge trie tad
struct nethd tmpnethd;
int i;
char "mallocO;
#ifdef MDEBUG

P_nethdget++;
#endif ~

if(P__nethdfree == (struct nethd *)NULL) \
#ifdef MDEBUG

May 3 18:31 1982 Page 2 of c2smem.c

c2smem.c Appendix G c2smem.c

...P-getnethd
P_nethdsys-i-r;
printf("P_getnethd: Calling malloc\n");

#endif
/* (=> Have to get a new block V

P__nethdfree = (struct nethd *) malloc(MEMBLKSIZ * sizeof(struct nethd);
/* link the block together V
for(i = 0; i < MEMBLKSIZ; i-r+)

(P_nethdfTee + i)->next = P nethdfree •*• i -»• 1;
(P_nethdfree + MEMBLKSIZ - l)->nexl = (struct nethd *)NULL;

tmpnethd = P_nethdfree;
P_nethdiree = P_nethdiree->next;
♦tmpnethd = P_nethdinit;
return(tmpnethd);

P_retnethd(nethd) P^Xetnethd
struct nethd *nethd;

if(nethd != (struct nethd ")NULL) j
#ifdef MDEBUG

P_nethdret++;
#endif

nethd->next = P_nethdfree;
P_nethdfree = nethd;

\

/* sqcell management */

struct sqcell *
p_getsqceii() P^getsqcell
struct sqcell tmpsqcell;
int i;
char "malloc();
#ifdef MDEBUG

P sqcellget-r+;
#endif

if(P_sqcellfree == (struct sqcell *)NULL) \
#ifdef MDEBUG

P__sqcellsys-r-i-;
printf("P getsqcell: Calling malice\n");

#endif
/* (-> Have to get a new block */

P_sqcellfree = (struct sqcell ♦) malloc(MEMBLKSIZ * sizeof(struct sqcell);
/* link the block together */
for(i = 0; i < MEMBLKSIZ; i++)

(P_sqcellfree + i)->next = P sqcellfree + i + 1;
(P_sqceilfree + MEMBLKSIZ - l)->next = (struct sqcell ^NULL;

tmpsqcell = P_sqcellfree;
P_sqcellfree = P_sqcellfree->next;
"tmpsqcell = P__sqcellinit;
return(tmpsqcell);

P_retsqcell(sqcell) PjXQtSQOZll
struct sqcell "sqcell;

if(sqcell != (struct sqcell ^NULL) {
#ifdef MDEBUG

P_sqcellret++;
#endif

May 3 18:31 1982 Page 3 of c2smem.c

c2smem.c

1

#ifdef MDEBUG
P_memstatQ

#endif

Appendix G

sqcell->next = P_sqcellfree;
P_sqcellfree = sqcell;

"getlsg called %d timesXn", P_lsgget);
"malloc called %d timesXn". P_lsgsys);

l("retlsg called %d times\n", PJsgret);
"%d remain allocXn", P_lsgget - PJsgret);
"getpcint called %d times\n", P_pointget);
"malloc called %d times\n", P_pointsys);
"retpoint called %d timesXn", P_pcintret);
"%d remain alloc\n", P_pointget - P_pointret);
"getnethd called %d times\n", P_nethdget);
"malloc called %d times\n", P nethdsys);
"retnethd called %d timesXn", P_nethdret);
"%d remain allocXn". P_nethdget - P_nethdret);
"getsqcell called %d times\n", P_sqcellget);
"malloc called %d times\n", P_sqcellsys);

r("retsqcell called %d timesXn", P_sqcellret);
f("%d remain allocXn", P_sqcellget - P_sqcellret);

Mar 30 14:55 1982

c2smem.c

..P-jretsqcell

Pjmemstat

Page 4 of c2smem.c

checlcversion.c Appendix g checlcversion.c

^include "cabtosquid.h"

checkversion(fp) . checkversiOTL
FILE fp;
/*

* This routine checks the version number of CABBAGE I as
* stored in the intermediate file against the version
* number specififed on the run-line of cabtosquid.
0 If they are not equal, or the formats are incorrect, the
* routine returns an error status.
V

I
long int first_byte_count,second_byte_count;
int i;
struct lsg lsg, ^_getlsg();
short int getshortint();
int status;
long int getlongintQ;
char "callocQ;

if(versfig == 0) j /* If the original binary version ... */
/* Binary byte count preceeds and follows each record V
if((first_byte_count = getlongint(fp)) != 4)

return(NULL);
version[0l = getc(fp); /* Read 1st byte of version V
version\l' = getc(fp); /* Read 2nd byte of version V
version!2J = '\0'l /* Terminate version string with NULL */
if(strcmp(version, "1A") != 0) /* Version must be 1A */

return(NULL);
else \ /* Read number of elements and second byte count */

num_elements = (unsigned)getshortint(fp);
second_byte_count = getlongint(fp);
if(first_byte_count != seccnd_byte_count)

return(NULL);
I

else if(versflg == 1) j /• If the ASCII version V
/* Lfse scanf to read in version number and number of elements */
status =s fscanf(fp, "%2s %d", version, &r.um_elements);
if(status != 2) /* // there aren't two things scanned */

return(NULL);
/* This version must be IB */
else if(strcmp(version, "IB") != 0)

return(NULL);
I
else

return(NULL);
/* For each element in the file ... V
for{ i = num_elements; i > 0; i—) j

lsg ="P_getlsg(); /* Get element data structure */
lag->next = elements; /* Link it in to list */
elements = lsg;

return(0K);

Apr 12 23:25 1982 Page 1 of checkversion.c

connet.c

^include "cabtosquid.h"

connet(point)
struct point 'point;
/<

This routine connects nets at a point. When properly sorted,
the %nestinnet' field will link points at the same X and Y
coordinates together. Simple rules are followed to equivalence
nets of the points that coincide. Transistors are respective
of the orientation of the lines intersecting them, and will only
equivalence nets in a proper fashion. The source of a transistor
is defined to be the top or right side of the transistor, depending
on its orientation. All contacts are considered to equivalence
all nets that coincide with their reference point. If lines
intersect without a contact, a same—layer—contact is added
This is necessary for the python data model (all interconnect
lines are two segments only).

V

Appendix G connet.c

connet

register int trans = 0, lines = 0, conts = 0, terms = 0;
register int W = 0, L = 0, type;
register struct point "left, bottom, "right, "top, "tmppnt;
register struct lsg "transistor, "contact, "terminal;
register int errfig = FALSE;
struct point ^^getpointO;
struct lsg "P_getlsg0;
int delta;

/* For each point at this coordinate ... */
for(tmppnt = point; tmppnt != NULL; tmppnt = tmppnt—>nextatpoint) {

/* If the element type is a transistor or Load ... V
if(tmppnt—>element—>type == TRAN || tmppnt—>element—>type •

LOAD) {
/* Record the presence of a transistor V
trans++;
/* Record a pointer to the transistor V
transistor = tmppnt—>element;
/* Switch on point type V
stritch(tmppnt->type) j

case DRAIN: /* If point for drain ... V
/• // HORIZONTAL orientation ... V
if(tmppnt->element~>orientation ==

HORIZONTAL) {
/* Bottom represents drain */
bottom = tmppnt;

Apr 12 23:25 1982

/' Else
else \

/* Left represents drain V
left = tmppnt;

break;
case GATE: /* If point for gate ... */

/* If HORIZONTAL orientation ... V
if(tmppnt—>element—>orientation ==

HORIZONTAL) j
/* Left represents gate */
left = tmppnt;
/* Right represents gate V
right = tmppnt;

/• Else
else \

V

Page 1 of connet.c

equivalence.c Appendix g equivalence.c

^include "cabtosquid.h"

equivalence(pointl, point2) 2QV/LvCtlQTLC2
struct point "pointl, *point2;
/*

* This routine equivalences the nets between two points. If
* neither of them is yet in a net, a new net is created and
* the two points are placed in it. If one or the other point
* is in a net, the one not in a net is added to the net of the
* other one. If both are in a net, the two nets are merged.
V

I
struct nethd "tmpnet, *P_getnethd();
struct point "tmppnt;

/'If they are already in the same net, ignore them */
if(pointl->netid != NULL && pointl->netid == point2->netid)

/* Already in same net */
return;

/* If the first point is not yet in a net ... */
if(pointl->netid == NULL) { /• Not in a net yet V

/* If the second point is not yet in a net ... V
if(point2->netid = NULL) \ /* Not in a net yet */

/* Create a new net */
tmpnet = P__getnethd();
/* And point to the new net */
tmpnet—>points = pointl;
pointl—>nextinnet = point2;
point2->nextinnet = (struct point *)NULL;
/* Set the netid to point to the net head V
pointl—>netid = tmpnet;
point2—>netid = tmpnet;
/* And link the new net into the netlist V
tmpnet—>next = nethead.next;
tmpnet—>prev = NULL;
nethead.next = tmpnet;
if(tmpnet->next != NULL)

tmpnet—>next—>prev = tmpnet;

else j /* Add pointl into point2s net */
pointl—>netid = point2->netid;
pointl—>nextinnet = point2—>netid->points;
point2—>netid—>points = pointl;

else if(point2->netid == NULL) {
/* Add pointZ into poinl's net */

/* Put point2 into pointVs net V
point2->netid = pointl->netid;
point2—>nextinnet = pointl—>netid—>points;
point l->netid—>points = point2;

else { /* Merge two nets together V
/* Add point2 list to pointl list V
/* Save pointer to po\nt2 net head V
tmpnet = point2—> netid;
/» For all points in point2 net list ... V
for(tmppnt = tmpnet—>points; tmppnt != NULL; tmppnt =

tmppnt—>nextinnet) |
/* Reset net id to point to pointl net id V
tmppnt->netid = point l->netid; /* Reset Netid */
/* Break immediately before end of point2 List V

Apr 12 23:33 1982 Page 1 of equivalence, c

equivalence, c Appendix g equivalence.c

...equivalence
if(tmppnt->nextinnet == NULL) /* End of point2 list */

break;

i
/* End of point2 list gets head of pointl list V
tmppnt—>nextinnet = pointl—>netid->points;
/* Head of pointl list gets head of point2 list V
pointl—>netid—>points = tmpnet-> points;
/* Unlink tmpnet from net list V
if(tmpnet->prev != NULL) j

tmpnet->prev->next = trapnet->next;

else \ /* Unlink tmpnet from net list head */
nethead.next = tmpnet->next;

/* Patch next net list head around tmpnet V
if(tmpnet->next != NULL)

tmpnet—>next—>prev = tmpnet—>prev;
/* Return the removed net list head to memory management V
P_retnethd(tmpnet);

Apr 12 23:35 1982 Page 2 of equiualence.c

connet.c Appendix g connet.c

...connet

/* Bottom represents gate V
bottom = tmppnt;
/* Top represents gate */
top = tmppnt;

break;
case SOURCE: /* If point for source ... V

/•If HORIZONTAL orientation ... V
if(tmppnt->element—>orientation ==

HORIZONTAL) \
/* Top represents source V
top = tmppnt;

/* Else ... V
else (

/* Right represents source V
right = tmppnt;

break;

. !
/* Else if the element is a line ... V
else if(tmppnt->element->type < FRUNX) {

lines++; /* Record that a Line is present V

/* Else if the element is a terminal ... */
else if(tmppnt->element->type == TERM) {

terms*-*-; /* Record that a terminal is present */
terminal = tmppnt->element; /* Record the term V

/* Else ... (-> a contact) V
else {

conts-^+; /* Record thai a contact is present V
contact = tmppnt->element; /* Record the contact V

i '
/* There can only be one transistor or one contact at any coordinate V
if((trans / 3 «+• conts + terms) > 1) { /* Illegal condition V

fprintf(stderr, "Multiple point structures overlapping.Xn");
fprintf(stderr, "X = %d, Y = %d.\n", point->x, point->y);
errflg-r+; /* Prepare to bomb after this routine */

else if(trans == 0) j /* No transistors => easy time V
/'Go through lines — compute contact width, height */
for(tmppnt = point; tmppnt != NULL; tmppnt =

tmppnt—>nextatpoint) \
/* Choose a line type from the line endpoints */
if(tmppnt->element->type < FRUNX)

type = tmppnt->element->type % 4;
/* Choose the width and height from the data */
if(tmppnt->element->orientation == VERTICAL) {

delta = tmppnt->element->x_left_offset +
tmppnt-> element->x_right_offset;

W = max(delta, W);

else

delta = tmppnt—>element—>y_top_on*set +
tmppnt->element->y_bottom~o^et;

L = max(delta, L); ""

Apr 12 23:25 1982 Page 2 of connet. c

connet.c Appendix g connet.c

...connet
/* If no contacts or terminals either ... '/
if(conts == 0 &lc terms == 0) {

/* Must put a same—layer contact */
/* Set up default width and height if necessary V
if(L == 0)

I — W'

else if(W== 6)
W = L;

/* Get a point from memory management V
tmppnt = P_getpoint();
/* Link into point list */
tmppnt->nextatpoint = point->nextatpoint;
point->nextatpoint = tmppnt;
/* Initialize coordinate values */
tmppnt—>x = point—>x;
tmppnt->y = point->y;
/* Initialize net pointer */
tmppnt—>nextinnet = NULL;
/* Initialize type */
tmppnt->type = POINT;
/* Get an element from memory management V
contact = P__getlsgO;
/* Create contact from line intersection */
contact->x__center = tmppnt—>x;
contact->x__left_offset = W / 2;
contact->xZright_offset = W / 2;
contact—>y_center = tmppnt->y;
contact->y_bottom_of!set = L / 2;
contact->y_top_offset = L / 2;
/* Un—rotated orientation V
contact->orientation = HORIZONTAL;
/" Link into elements list */
contact—>next = elements;
elements = contact;
tmppnt—>element = contact;
/* Switch on the type of contact */
switch(type) J

case DIFF: /* Generate a D-D contact V
contact->type = D_D_CNT;
break;

case POLY: /* Generate a P-P contact V
contact->type = P_P_CNT;
break;

case METAL: /* Generate a M—M contact */
contact->type = M_M_CNT;
break;

gencont(contact);

else ii(terms != 0) (/* Line terminator present V
switch(type) { /* Figure out Line type '*/

case DIFF:
terminal—>name = "ND";
break;

case METAL*
terminal->name = "NM";
break;

case POLY:
terminal->name = "NP";
break;

default:

fprintf(stderr. "Bad type %d.\n",
type);

break;

Apr 12 23:25 1982 Page 3 of connet. c

connet.c Appendix g connet.c

...connet

/* For all points at this coordinate V
for(tmppnt = point; tmppnt != NULL; tmppnt =

tmppnt->nextatpoint) j
/* Equivalence the nets of the points */
equivalence(point, tmppnt);

I

else { /* A transistor V
/* For all of the coordinate points ... */
for(tmppnt = point; tmppnt != NULL; tmppnt =

tmppnt->nextatpoint) \
/* Skip over the ONE transistor at this coordinate */
if(tmppnt->element == transistor) {

continue;

1
/* If the line found is a vertical line */
if(tmppnt->element->orientation == VERTICAL) {

/* If the point is the upper endpoint */
if(tmppnt->type == UUNE) j

/* Peel line back into terminal frame */
tmppnt->element->y_top_of?set =

bottom->element—>y_center —
bottom->element->y~bottom_offset;

/* Equivalence the nets of the points */
equivalence(bottom, tmppnt);

/' Else, if the point is the lower endpoint V
else }

/* Peel line back into terminal frame */
tmppnt->element—>y_bottom__ofiset =

top—>element—>y__center +
top->element—>y_top_of2set;

/* Equivalence the nets of the points */
equivalence(top, tmppnt);

. /• Else, the line is HORIZONTAL ... V
else |

/* If the point is the upper endpoint V
if(tmppnt->type == ULINE) \

/* Peel line back into terminal frame */
tmppnt->element->x_right_on*set =

left->element->x_center —
left->element->x~left_offset;

/* Equivalence the nets of the points V
equivalence(left, tmppnt);

/* Else, if the point is the lower endpoint V
else |

/* Peel line back into terminal frame */
tmppnt->element->x_left_oftfset =

right->element->x_center +
right->element->x__right_oflset;

/* Equivalence the nets of the points V
equivalence(right, tmppnt);

Apr 12 23:25 1982 Page 4 of connet.c

connet. c Appendix g connet. c

...connet
return(errfig); /* Die if overlapping point structures exist V

Jlpr 12 23:33 1982 page 5 of connet.c

gen.c Appendix g gen.c

^include "cabtosquid.h"
^include "sq.h"

genprimitives() genprimitives
This routine supervises generation of Squid master cells

from the point structure elements read from the CABBAGE I
file. Separate routines are used for transistors and
contacts. Each routine keeps track of the master cells
which have already been generated, so that the same
cells are not generated more than once.

V

\
register struct lsg "tmpele;

/• For all of the CABBAGE I elements '/
for(tmpele = elements; tmpele != NULL; tmpele = tmpele->next) j

/* Switch on the type of element */
smtch(tmpele—>type) }

case TRAN: /* Enhancement transistor V
gentran(tmpele, FALSE);
break;

case LOAD: /* Depletion Load V
gentran(tmpele, TRUE);
break;

case D_M_CNT: /* Diffusion-Metal contact V
gencont(tmpele);
break;

c33*5 P_M_CNT: /♦ Polysilicon-Metal contact V
gencont(tmpele);
break;

case BUR_CNT: /* Buried (Poly-Diffusion) contact V
gencont(tmpele);
break;

case BUT_CNT: /* Butting contact V
genbutcnt(tmpele);
break;

t !
return(OK);

gentran(element, loadf.g) gQTltTCLTl
struct lsg "element;
int loadftg;

* This routine generates master cells for transistor (enhancement
* and depletion) CABBAGE I elements. Each different size of
0 master cell is created only once. A transistor master cell
0 consists of a polysilicon protection frame coincident with
0 the transistor gate, a diffusion protection frame coincident
0 with the diffusion source—channel—drain, an active area
0 protection frame coincident with the active area of the
0 transistor (defined as overlap of polysilicon and diffusion),
0 two terminal frames at the ends of the gate protection
0 frame (defined as polysilicon and (NOT diffusion)), and one
0 terminal frame at each end of the diffusion protection
0 frame for the source and drain regions (defined as
0 diffusion and (NOT polysilicon)). A depletion transistor
0 also has an implant protection frame surrounding the active
0 area of the device.
*

0 NOTE: The W and L generated for identification of the device
0 are bounding box values, *NOT* active area values.

Apr 12 23:35 1982 Page 1 of gen.c

gen.c Appendix g gen.c

...gentran
\
char name[BUFSIZ], 'strsavQ;
static struct sqcell transistors = { NULL j;
struct sqcell "tmptran, *P getsqcellO;
int W, L;
SQView view;
FILE 'stream;
SQStatus status;
SQGeo geo;
SQTerm term;

/* If the element is horizontal ... */
if(element->orientation == HORIZONTAL) {

/* Get W and L directly V
W = element->x_right_of?set + element->x_left_of!set;
L = element->y__top_or!set - element->y_bottom_crTset;

else \ /* Element is vertically oriented */
/♦ Get W and L from opposite coordinates V
W = element->y_top_ofeet + element->y_bottom_offset;
L = element->x_right_cf?set + element->x_left_offset;

/* Generate the name of the device from W and L V
if(loadfig) {

sprintf(name. "%dby%dl", W, L);

else {
sprintf(name, "%dby%dt", W, L);

/* Check to see if this transistor has already been generated */
for(tmptran = ^transistors; tmptran->next != NULL; tmptran =

tmptran->next) (
/* If it has been generated ... V
if(strcmp(name, tmptran->next->name) == 0) (

/* Set name pointer to saved name */
element->name = tmptran->next->name;
return; /* ReUim happy V

/* Get a Squid cell from memory management V
tmptran->next = P_getsqcell();
tmptran = tmptran->next;
/«• Save the name */
tmptran—>name = strsav(name);
element->name = tmptran->name;
/* Set up to open a view with the masterCell's name */
view.cell = tmptran->name;
view.view = "layout";
view, mode = "w";
/* If the view cannot be created, assume it already exists ... */
if((status = SQ(sqCreate, sqView, view, ^stream)) <= 0) \

/* ... and open the already existing view ... V
if((status = SQ(sqOpen, sqView, view, 3cstream)) <= 0) \

fprintf(stderr, "Couldn't open view %s/layout.%d\n",
name, status);

exit(2);
J
/* ... and delete it. (Show no mercy!) V
SQ(sqRra.sqView);
/* Now if the view cannot be created ... V
if((status = SQ(sqCreate, sqView, view, ^stream)) <= 0) {

/* Holler like mad! V

fprintf(stderr, "Couldn't create view %s/layout.%d\n".
name, status);

exit(3);

Apr 12 23:35 1982 Page 2 of gen.c

gen.c Appendix g gen.c

...gentran
I

1
/* Prepare to create terminals on the device */
tenn.instID = NULL;
term.netID = NULL;
term.name = "d";
/* Create the drain terminal V

if(SQ(sqCreate,sqTerm,term) <= 0) {
fprintf(stderr, "No master term.Xn");

term.name = "g";
/* Create the gate terminal V
if(SQ(sqCreate,sqTerm,term) <= 0) \

fprintf(stderr, "No master term.Xn");
!
term.name = "s";
/* Create the source terminal V
if(SQ(sqCreate.sqTerm.term) <= 0) \

fprintf(stderr, "No master term.Xn");
\
/0 Prepare to generate the diffusion protection frame ... V
geo.layer = "ND";
geo.manhattanP = sqTrue;
geo.geoType = sqRect;
/♦ Add in the offsets to properly define the diffusion rectangle V
geo.def.rect.l = -W / 2 -f D_W_D_TRAN;
geo.def.rect.b = -L / 2 + D_L_D_TRAN;
geo.def.rect.r = W / 2 - D_W_D_TRAN;
geo.def.rect.t = L / 2 - D_L_D_TRAN;
geo.function =* sqFrame;
/* Create the frame V
if((status = SQ(sqCreate, sqGeo, <kgeo)) <= 0) |

fprintf(stderr, "Couldn't create geometry! %d\n", status);
exit(4);

I
/0 Prepare to generate the diffusion source terminal frame ... V
geo.function = sqTermArea;
geo.implements.term = "s";
geo.def.rect.b = L / 2 - D_L_P_TRAN;
&((status = SQ(sqCreate, sqC-ec, <kgeo)) <= 0) j

fprintf(stderr, "Couldn't create geometry! %d\n", status);
exit(5);

/* Prepare to generate the diffusion drain terminal frame ... V
geo.implements.term = "d";
geo.def.rect.b = -L / 2 + D_L_D_TRAN;
geo.def.rect.t = -L / 2 + D_L_P_TRAN;
if((status = SQ(sqCreate, sqGeo, &geo)) <= 0) {

fprintf(stderr, "Couldn't create geometry! %d\n", status);
exit(6);

I
/0 Prepare to generate the polysilicon protection frame ... V
geo.layer = "NP";
/* Add in the offsets to properly define the polysilicon rectangle */
geo.def.rect.l = -W / 2 + D_W_P_TRAN;
geo.def.rect.b = -L / 2 + D_L_P_TRAN;
geo.def.rect.r = W / 2 - D_W_P_TRAN;
geo.def.rect.t = L / 2 - D_L_P_TRAN;
geo.function = sqFrame;
U((status = SQ(sqCreate, sqGeo, <kgeo)) <= 0) j

fprintf(stderr, "Couldn't create geometry! %d\n", status);
exit(7);

Apr 12 23:35 1982 Page 3 of gen.c

gen.c Appendix g gen.c

...gentran
/0 Prepare to generate the polysilicon gate terminal frames ... V
geo.function = sqTermArea;
geo.implements.term = "g";
geo.def.rect.r = -W / 2 -*• D_W_D_TRAN;
if((status = SQ(sqCreate, sqGeo, &geo)) <= 0) {

fprintf(stderr. "Couldn't create geometry! %d\n", status);
exit(8);

geo.def.rect.r = W / 2 - D_W P TRAN;
geo.def.rect.l = W / 2 - D_W_jCTRAN;
if((status = SQ(sqCreate, sqGeo,""<kgeo)) <= 0) j

fprintf(stderr, "Couldn't create geometry! %d\n", status);
exit(9);

/* If this is depletion device, generate implant protection frame */
if(loadfig) \

geo.layer = "NT";
geo.function = sqFrame;
geo.def.rect.l = -W / 2 + D_W_I_TRAN;
geo.def.rect.b = -L / 2 + D_L I TRAN;
geo.def.rect.r = W / 2 - D_W_T_TRAN;
geo.def.rect.t = L / 2 - D_L_I_TRAN;
if((status = SQ(sqCreate, sqGeo, &geo)) <= 0) {

fprintf(stderr, "Couldn't create geometry! %d\n",
status);

exit(lO);

i f
/* Generate an active area protection frame V
geo.layer = "NT";
geo. function = sqFrame;
geo.def.rect.l = -W / 2 + D_W_D_TRAN;
geo.def.rect.b = -L / 2 + D_L P_TRAN;
geo.def.rect.r = W / 2 - D_W "D TRAN;
geo.def.rect.t = L / 2 - D_L_"P_TRAN;
if((status = SQ(sqCreate, sqG~eo, <kgeo)) <= 0) j

fprintff stderr, "Couldn't create geometry! %d\n", status);
exit(ll);

1
/* Save the view of the transistor V
if(SQ(sqSave, sqView) <= 0) j

fprintf(stderr, "Couldn't save view %s.\a", name);
exit(12);

gencont(element) gQTLCOTlt
struct lsg "element;
/•

0 This routine generates diffusion-metal, poLysilicon-metal, and
0 polysilicon-diffusion (buried) contacts, as well as all
* same—Layer contacts for intersections of Lines. Contacts
0 are single terminal devices and have the same name V for
* all terminals on all Layers. Each layer has a protection
0 frame with a coincident terminal frame.
V

char name[BUFSIZ], «strsav();
static struct sqcell contacts = { NULL j;
struct sqcell "tmpcnt, •P_getsqcell();
int D_W_L1, D__L_L1, D_W_L2, D_L_L2, D_W_LC, D_L_LC;
char layerl, 1ayer2, 'layerc; "~ ~"
int W, L;
SQView view;

Apr 12 23:35 1982 Page 4 of gen. c

gen.c Appendix g gen.c

...gencont
FILE stream;
SQStatus status;
SQGeo geo;
SQTerm term;

/• Choose Wand L from orientation (HORIZONTAL default) V
if(element->orientation == HORIZONTAL) {

W = element->x_right_offset •*• element->x_left_offset;
L = eleraent->y_top_o£set + element->y_bottom_offset;

else

W = element->y_top_offset + eleraent->y_bottom_offset;
L = element->x__right_offset + element->x_left_offset;

/• Switch on type of contact */
switch(element—>type) }

case D_M_CNT: /• Diffusion-Metal contact V
/* Generate contact name V
sprintf(name, "/Sdby%ddmc", W, L);
/* Define the layers for the contact V
layerl = "ND";
layer2 = "NM";
layerc = "NC";
/* Set the proper offsets for the contact V
D W LI = D W D_DMCNT;
D L~L1 = D"L "D_DMCNT;
D"W L2 = D~W" M_DMCNT;
D L L2 = D L "M DMCNT;
D"W~ LC = D" W ClDMCNT;
D_LjLC = DJLjC__DMCNT;
break;

case P_M_CNT: /• Polysilicon-Metal contact V
/* Generate contact name V
sprintf(name, "%dby%dpmc", W, L);
/* Define the layers for the contact V
layerl = "NP";
layer2 = "NM";
layerc = "NC";
/* Set the proper offsets for the contact V
D W LI = D W P PMCNT;
D~L3l = D~L"PjPMCNT;
D W_L2 = D~VT_M PMCNT;
D~L_L2 = D"L M"PMCNT;
D WJLC = D~ W_C"lPMCNT;
0_LC = d3_C_PMCNT;
break;

case BUR_CNT: /* Polysilicon-Diffusion (Buried) contact V
/* Generate contact name V
sprintf(name, "%dby%dburc", W, L);
/* Define the Layers for the contact */
layerl = "ND";
layer2 = "NP";
layerc = "NB";
/• Set the proper offsets for the contact V
D W LI = D W D BUCNT;
D L~L1 = DlT) "BUCNT:
D 1T.L2 = D~W"_pLbUCNT;
D~L L2 a D\P BUCNT;
D"W"LC = D~ W_B_BUCNT;
DiLJLC = D3_B_BUCNT;
break;

ease D_D_CNT: /• Diffusion-diffusion (same-layer) contact V

Apr 12 23:351982 Page 5 of gen. c

gen.c Appendix G gen.c

...gencont
/* Generate contact name */
sprintf(name. "%dby%ddterm". W, L);
layerl = "ND";
layer2 = NULL;
layerc = NULL;
/0 All offsets are zero for this case V
UJff LI = 0;
D.LJL1 = 0;
break;

case P_P_CNT: /• Poly-poly (same-Layer) contact •/
/* Generate contact name V
sprintf(name, "%dby%dpterm", W, L);
layerl = "NP";
layer2 = NULL;
layerc = NULL;
/• All offsets are zero for this case */
D W LI = 0;
dIlJTLI = 0;
break;

case M_M_CNT: /* Metal-metal (same-layer) contact */
/* Generate contact name V
sprintf(name, "%dby%dmterm". W, L);
layerl = "NM";
layer2 = NULL;
layerc = NULL;
/"All offsets are zero for this case V
D W LI = 0;
D__LrLl = 0;
break;

j
/* Check to see if this contact has been generated already V
for(tmpcnt = ^contacts; tmpcnt->next != NULL; tmpcnt =

tmpcnt—>next) (
/* If it has already been generated ... */
if(strcmp(name, tmpcnt->next->name) == 0) {

element—>name = tmpcnt—>next->name;
return; /♦ Return happy V

i '
/♦ Get a Squid cell from memory management "/
tmpcnt->next = P_getsqcell();
tmpcnt = tmpcnt—>next;
/* Save the name of the master cell V
tmpcnt—>name = strsav(name);
element—>name = tmpcnt—>name;
/* Prepare to create a view of the new master cell V
view.cell = tmpcnt->name;
view.view = "layout";
view,mode = "w";
/* If the view cannot be created, assume it already exists ... V
if((status = SQ(sqCreate, sqView, view, Astream)) <= 0) {

/* ... and open the already existing view ... V
if((status = SQ(sqOpen, sqView, view, «Scstream)) <= 0) f

fprintf(stderr, "Couldn't open view %s/layout.%d\n'\
name, status);

exit(13);

/* ... and delete it. (Show no mercy!) V
SQ(sqRm.sqVlew);
/♦ Now if the view cannot be created ... */
if((status = SQ(sqCreate, sqView, view, &stream)) <= 0) |

Apr 12 23:35 1982 Page 6 of gen.c

gen.c Appendix g gen.c

...gencont
/0 Holler Like mad! V

fprintf(stderr. "Couldn't create view %s/layout.%d\n".
name, status);

exit(l4);

/* Generate a single terminal V for the contact V
term.instID = NULL;
term.netID = NULL;
term.name = "i";
if(SQ(sqCreate,sqTerm,term) <= 0) {

fprintf(stderr, "No master term.Xn");

/* Generate the first layer of the contact V
geo.manhattanP = sqTrue;
geo.geoType = sqRect;
geo.layer = layerl;
geo.function = sqFrame;
geo.def.rectl = -W / 2 + D_W_L1;
geo.def.rectb = -L / 2 + D L~Ll;
geo.def.rect.r = W / 2 - D_WJL1;
geo.def.rect.t = L / 2 - D_L_Xl;
if((status = SQ(sqCreate, sqGeo, &geo)) <= 0) {

fprintff stderr, "Couldn't create geometry! %d\n", status);
exit(l5);

I
/• Generate the terminal of the first layer of the contact V
geo.function = sqTermArea;
geo.implements.term = "i";
geo.def.recU = -W / 2 + D_W_Ll;
geo.def.rect.b = -L / 2 +• D~L~Ll;
geo.def.rect.r = W / 2 - D_W_Il;
geo.def.rectt = L / 2 - D ~L Xl;
if((status = SQ(sqCreate, sqGeo, &geo)) <= 0) (

fprintf(stderr, "Couldn't create geometry! %d\n", status);
exit(16);

if((geo.layer = layer2) != NULL) {
/* Generate the second Layer of the contact V
geo.function = sqFrame;
geo.def.rectl = -W / 2 + D_W_L2;
geo.def.rect.b = -L / 2 + D~L~L2;
geo.def.rectr = W / 2 - D_WJl2;
geo.def.rectt = L / 2 - DJXJL2;
if((status = SQ(sqCreate, sqGeo, &geo)) <= 0) {

fprintf(stderr, "Couldn't create geometry! %d\n",
status);

exit(l8);

/» Generate the terminal of the second layer of the contact V
geo.function = sqTermArea;
geo.implements.term = "i";
geo.def.rectl = -W / 2 + D_W_L2;
geo.def.rectb = -L / 2 + D~L~L2;
geo.def.rectr = W / 2 - D_WjL2;
geo.def.rectt = L / 2 - D~LJL2;
if((status = SQ(sqCreate, sqGeo, &geo)) <= 0) }

fprintf(stderr, "Couldn't create geometry! %d\n",
status);

exit(19);

if((geo.layer = layerc) != NULL) {

Apr 12 23:351982 Page 7of gen.c

gen.c Appendix g gen.c

...gencont
/0 Generate the contact hole Layer of the contact V
geo.function = sqFrame;
geo.def.rectl = -W / 2 + D W_LC;
geo.def.rectb = -L / 2 + D_L_LC;
geo.def.rectr = W / 2 - D W_LC;
geo.def.rectt = L / 2 - D LJ-C;
if((status = SQ(sqCreate, sqGeo, &geo)) <= 0) j

fprintf(stderr, "Couldn't create geometry! %d\n",
status);

exit(20);

/* Generate the contact hole terminal of the contact V
geo.function = sqTermArea;
geo.implements.term = "i";
geo.def.rectl = -W / 2 + D_W_LC;
geo.def.rectb = -L / 2 + D_L_LC;
geo.def.rectr = W / 2 - D_W_LC;
geo.def.rectt = L / 2 - D_L_LC;
if((status = SQ(sqCreate, sqGeo. &geo)) <= 0) {

fprintf(stderr. "Couldn't create geometry*. %d\n",
status);

exit(120);
I

/♦ Save the master cell view V
if(SQ(sqSave. sqView) <= 0) [

fprintf(stderr, "Couldn't save view %s.\n", name);
exit(21);

genbutcnt(element) genbutCTlt
struct lsg "element;
/*

* This routine handles butting contacts. A special routine
0 is required since butting contacts are not symmetric.
* It is not implemented at this time.
V

char name[BUFSIZ], "strsavO;
static struct sqcell contacts = { NULL j;
struct sqcell "tmpcnt, ^^etsqcellO;
int W, L;
SQView view;
FILE stream;
SQStatus status;
SQGeo geo;
SQTerm term;

if(element->orientation = HORIZONTAL) {
W = element->x_right_offset + element->x_left_oflset;
L —element—>y3°P_o^set + element->y_bottom_offset;

I
else

W = element->y_top_oflset + element->y_bottom_oflset;
L = element->x ~right-0ftset •»- element->x_ieft_oflset;

sprintf(name, ,,%dby%dbutc", ff, L);
for{ tmpcnt = <kcontacts; tmpcnt—>next != NULL; tmpcnt =

tmpcnt—>next) \
if(strcmp(name, tmpcnt->next->name) == 0) }

element—>name = tmpcnt->next->name;
return;

!

tmpcnt—>next = P_getsqceU();

Apr 12 23:35 1982 Page 8 of gen. c

gen.c Appendix g gen.c

...genbutcnt
tmpcnt = tmpcnt—>next;
tmpcnt—>name = strsav(name);
element—>name = tmpcnt—>name;
view.cell = tmpcnt—>name;
view,view = "layout";
view,mode = "w";
if((status = SQ(sqCreate, sqView, view, tetream)) <= 0) {

if((status = SQ(sqOpen, sqView. view, ^stream)) <= 0) {
fprintf(stderr, "Couldn't open view %s/layout.%d\n",

name, status);
e»t(22);

SQ(sqRm,sqView);
if((status = SQ(sqCreate, sqView, view, tetream)) <= 0) {

fprintf(stderr, "Couldn't create view %s/layout%d\n",
name, status);

exit(23);

I j
tenn.instID = NULL;
term.netID = NULL;
term.name = "i";
if(SQ(sqCreate,sqTerm,term) <= 0) {

fprintf(stderr, "No master term.Xn");

printf("Sorry, genbutcnt not finished yet.Xn");

Apr 12 23:351982 Page 9 of gen.c

init.c Appendix g init.c

^include "cabtosquid.h"

FILE • .
init(argcargv) VTVlt
int argc;
char "argvTJ;
/♦

* This routine parses the run tine arguments and set options
0 accordingly. It allows the following options: V followed
0 immediately by a number allows an expansion factor, which
0 changes the locations of all elements without changing their
0 size (other than line length). This is necessary in some
0 cases. Python allows terminal AREAS, whereas CABBAGE I
* requires terminals to connect at specific points. Since
0 the translation of contacts into Squid format changes
0 these terminal points on contacts to terminal areas, problems
* con occur. One such problem occurs when BOTH endpoints of
* a line end up within a terminal frame. Since there is no
0 explicit connectivity within the Squid database, there is
* no way to determine which endpoint is connected to the
0 terminal frame. Expanding the layout pushes contacts farther
0 apart, so only one endpoint is contained within each terminal
* frame.
0 The second options allow newer or older versions of
0 the CABBAGE I format to be translated.
*/

\
char %
FILE "fp, «fopen();

fp = (FILE ")NULL;
while(—argc > 0 ScSc («*+argv)[0] == '-'){

fbr(s = argv[OJ + l;*s != 'X0';s++){
switch(<s)i

V: /• Expansion factor V
expfactor = atoi(++s);
if(expfactor < 1)

expfactor = 1;
%— = '\0';
>rintf("Exp factor is %d.\n", expfactor);

case 'N't /* Version newer than default V
versfig++;
break;

case '0': /* Version older than default V
versflg—;
break;

default;

fprintf(stderr,
"cabtosquid: illegal option: %c\n", ^);

argc = —1;
break;

if(argc < 0)
fprintf(stderr,"usage: cabtosquid [-N0e#] inpfilXn");

else if(argc == 0)
fp = stdin:

else if((fp ss fopen("argv."r")) = NULL)

Apr 12 23:351982 Page 1 of init. c

illit.C Appendix G init.C

...inii

fprintf(stderr,"cabtosquid: can't open %s\n'\ *&rgv);
return(fp);

Apr 3 15:371982 Page 2 of init.c

main, c Appendix g main. c

^include "cabtosquid.h"
^include "private.h"

main(argc,argv) TTLOXTL
/*

0 Main checks call syntax issuing error messages if syntax or usage
0 1s incorrect, it sets the flags for the options, and attempts to read
0 in the file(s) specified issuing an error message if the file does not
0 exist. It then reads in the cabbage file (from stdin if no input is
0 specified) and writes it out again in Squid format, suitable for viewing
0 with Hawk, or spacing with Python (CABBAGE II)
V

int argc;
char *argv[];

FILE fp, "InitO;

if((fp = init(argc, argv)) == NULL)
; /* Do nothing — all error messages will have been written V

else if(checkversion(fp) == NULL)
fprintf(stderr. "Cabbage file not created by version %.2s\n",

version);
else if(readcabbage(fp) == NULL)

fprintf(stderr, "Cabbage file read failureXn");
else if(SQBeginO <= 0)

fprintf(stderr /'Couldn't SQBegin.\n");
else if(genprimitivesO ass NULL)

fprintf(stderr, "Squid primitives generation failure.Xn");
else if(splitwires() == NULL)

fprintf(stderr, "Problem Splitting Wires.Xn");
else if(sortcabbage() ==s NULL)

fprintf(stderr, "Cabbage file sort failureXn");
else if(writesquidQ = NULL)

fprintf(stderr, "Squid output file write failureXn");
else if(SQEndO <= 0)

fprintf(stderr, "Couldn't SQEnd.Xn");
exit(O);

Apr 12 23:38 1982 Page 1 of main, c

readcabbage.c Appendix g readcabbage.c

^include "cabtosquid.h"

readcabbage(fp) T2 CLCic CZ-6 b CLQ Q
FILE "fp; a
/0

0 This routine reads in the elements from the CABBAGE I intermediate
0 file, after *checkversion' has verified the version number and
0 determined the number of elements contained within the file.
V

i
struct lsg "tele;
long int first_byte_count, second_byte_count;
int junk, status; ~~ "~ ""
short int getshortintQ;
long int getlongintQ;

/* Scan through already allocated element list V
for(ele = elements; ele != NULL; ele = ele—>next) (

if(versflg == 0) { /0 This is older binary format V
if((first byte count = getlongint(fp)) != 18)

" return(NULL);
/•

• cabbage has 1 user unit = 1 integer, whereas Squid has 1 user unit
0 sz 2 integers, all numbers read in from the cabbage file are multiplied
0 by 2 to maintain compatibility with Squid and to prevent roundoff in integer
* division.
V

/• Read in the element's members V
ele—>type = getshortint(fp);
ele->orientation = getshortint(fp);
ele->x_center = 2 * getshortint(fp);

%ele->x_left_offset = 2 ♦ getshortint(fp);
ele->x_right_offset = 2 * getshortint(fp);
ele—>y_center = 2 * getshortint(fp);
ele—>y_bottom_offset = 2 * getshortint(fp);
ele->y~top-offset = 2 * getshortint(fp);
junk =~getshortint(fp);
second^byte_count = getlongint(fp);
if(first3yte~c°unt != second_byte_count)

return(NULL);

else if(versflg == 1) j /• The newer ASCII format V
/* Read in the element's members V
status = fscanf(fp, " %d %d %d %d %d %d %d %d %d",

&ele—>type, &ele—>orientation, &ele->x_center.
&ele->x_left_offset, &ele->x_right_offset,
icele—>y3center, &ele->y_bottom_offset,
&ele->y~top_offset, #junk);

if(status != 9 f /• Complain if error occurs V
return{ NULL);

ele->x_center •= 2 0 expfactor;
if(ele->x_center < 0) } /* => a line V

eie->x_left_offset •= 2 » expfactor;
ele->x"right offset •= 2 • expfactor;

\ t
else |

ele->x_left_offset •= 2;
ele->x_right_offset *= 2;
/• In case of an odd size object V
ele->x_left_oflset = ele—>x_right_offset

= (ele-^x left_offset +
ele->x right offset) / 2;

1
ele—>y_center "= 2 * expfactor;

Apr 12 23:38 1982 Page 1 of readcabbage.c

readcabbage.c

return(OK);

Apr 916:061982

Appendix G readcabbage.c

...readcabbage
if(ele->y_center < 0) { /* => a line V

ele—>y_bottom_offset *= 2 * expfactor;
ele—>y_top_offset *= 2 # expfactor;

else

ele—>y_bottom_offset *= 2;
ele->y_top_offset •= 2;
/* m case "of an odd size object V
ele->y_bottom_offset = ele->y_top_offset

= (ele—>y_bottom_offset +~ ""
ele—>y_top_offset)"/ 2;

Page 2 of readcabbage.c

sortcabbage. c Appendix g sortcabbage.c

^include "cabtosquid.h"

sortcabbage() sortc abb age
0 This routine sorts the element data read in from the CABBAE I
0 intermediate file into ^points', suitable for generating
0 Squid instances, after the nets of connected objects are
0 made equal.
V

i
struct point "tmppnt, *allocpoints();
register int errflg = FALSE;

points = allocpoints(elements); /• Allocate ^points' */
for(tmppnt = points; tmppnt != NULL; tmppnt = tmppnt->next) {

if(connet(tmppnt) == TRUE) { /• Connect nets at point V
errflg+-r;

ietum(errflg);

Apr 1223:43 1982 page 1of sortcabbage. c

splitwires.c Appendix g splitwires.c

^include "cabtosquid. h"

splitwiresO SplituriTeS
0 This routine is used after read in to split long wires that
0 cross at contacts, other lines, etc. It has a horrible
0 n002 sort of dependency. (What a hack!)
V

\
struct lsg line;
struct lsg "pstruct;

/* For every element ... V
for< line = elements; line != NULL; line = line->next) \

if(line->type > FRUNX) /* ... that is a Line V
continue;

/* For every element ... V
tori pstruct = elements; pstruct != NULL; pstruct =

pstruct—>next) {
/* Check to see if line intersects line V
if(pstruct->type <= FRUNX) j

/* If the lines are not the same type ... V
if(line—>type != pstruct->type)

continue; /* Ignore the line V
/* If the line is vertical V
if(pstruct->orientation == VERTICAL) {

/* Check the bottom endpoint V
split lwire(line, pstruct—>x_center,

pstruct->y_bottom_oflset);
/* Check the top endpoint V
split lwire(Hne, pstruct—>x_center,

pstruct->y_top_offser);

else (/• => the line is horizontal 0/
/0 Check the left endpoint •/
split lwire(line, pstruct—>x_left_offset.

pstruct—>y_center);"" ""
/* Check the right endpoint v
split lwire(line,pstruct—>x_right_offset,

pstruct->y_center); ""

/* Ignore metal lines crossing transistors V
else if(line->type == METAL && (pstruct->type ==

TRAN || pstruct->type == LOAD || pstruct->type
= BUR_CNT))

continue;
/• Ignore poly lines crossing diff—metal contacts */
else if(line->type == POLY it&t pstruct->type = D_M_CNT)

continue; "" ~
/* Ignore diff bines crossing poly—metal contacts V
else if(line->type == DIFF && pstruct->type = P_M_CNT)

continue; ~
else /• See if the point structure splits the line V

split lwire(line, pstruct—>x_center,
pstruct—>y_center);

i
return(OK);

splitlwire{ line, x_center, y—center) SplztlWZTS
struct lsg line; "
int x_center, y_center,

Apr 12 23:431982 Page 1 of spliturires. c

splitwtres. c Appendix g splitwires.c

...split Iwire
/0

0 This routine handles splitting one line at x_center, y center.
0 It makes sure the point actually splits the line. ~

struct lsg tmpline. ^.getlsgO;
if(line->orientation == HORIZONTAL) J

if(y_center = line->y__center <3c& x_center > line->x left offset
idt x_center < line—>x right_offset) \ ~ "

tmpline = P_getlsg(3; "
tmpline = line;
line->next = tmpline;
line->x_right_offset = tmpline->x_left_offset =

x_center; "" "~

i l
else j /• => Vertical Orientation V

if(x_center == line->x_center && y_center >
line->y_bottom_offset && y_center < line->y top offset) {

tmpline = P_getlsgO; "" ~"
tmpline = tine;
line—>next = tmpline;
line->y_top_ofiset = tmpline->y_bottom_oflset =

y—center, ""

Apr 1223:451982 Page 2of spHturires.c

Utils. C Appendix G Utils. C

#include "cabtosquid.h"
#include "sq.h"

long int getlongint(fp)
FILE "fp;

unsigned int bytel, byte2, byte3, byte4;
long int value;
/0

0 this function reads a 32-bit integer from a file where it is stored
0 in the format:
0 MSB: byte4:byte3t'byte2:bytel :LSB

V

bytel = getcffp);
byte2 = getc(fp);
byte3 = getcCfpl;
byte4 = getc(fp);
value = (byte4 « 24) | (byte3 « 16) | (byte2 « 8) | bytel;
return(value);

short int getshortint(fp)
FILE fp;

unsigned int bytel, byte2;
short int value;
/♦

• this function reads a 16—bit integer from file fp. it is used
0 to maintain portability between machines of different word size
0 and uses getc to do this.
V

bytel ss getc(fp);
byte2 = getc(fp);
value = (byte2 « 8) | bytel;
return(value);

char *
strsav(string) SZTSaV
char string;

0 This routine calls the virtual memory allocator to save a string.
V

char tiewstring, "malloc(), ^trcpy();
/* Get a pointer to the new string V
newstring = malloc((unsigned)(strlen(string) + 1));
/* Copy the string into the new string V
strcpy(newstring, string);
/* Return the pointer to the new string V
return(newstring);

\

Apr 12 23:46 1982 Page 1 of utils. c

writesquid. c Appendix g wxitesquid. c

^include "cabtosquid.h"
^include "sq.h"

writesquidO TJUTltesquid
0 This routine writes out the squid for the CABBAGE I cell.
0 It instanciates primitives which have had master cells
0 created for them previously.
V

\
SQView view;
FILE stream;
struct nethd tmpnet;
SQNet sqnet;
SQTerm term;
struct point tmppnt, tmppntl;
SQInst inst;
char cif[20];
char trmnam[20];
SQGeo geo;
SQIntegerPoint path[2];
SQProp ishorizontal, isvertical;

/♦ Initialize some local variables V
ishorizontal.name = "ishorizontal";
ishorizontal.valueType = sqBool;
ishorizontal.value.bool = sqTrue;
isvertical.name = "ishorizontal";
isvertical.valueType = sqBool;
isvertical.value.bool = sqFalse;
/* Prepare the master view of the top level instance V
view.cell = "c2s.out";
view.view = "layout";
view.mode = "V;
/0 If the view cannot be created, assume it already exists ... V
if(SQ(sqCreate, sqView, view, tetream) <= 0) {

/* ... and open the already existing view ... V
if(SQ(sqOpen, sqView, view, ^stream) <= 0) (

fprintf(stderr, "Can't open cell /5s.\n". view.cell);
exit(25);

\
/• ... and delete it. V
SQ(sqRm. sqView);
/* If the view still cannot be created ... V
if(SQ(sqCreate, sqView, view, ^stream) <= 0) }

/0 Holler like mad' V
fprintf(stderr, "Can't create cell %s.\n", view.cell);
exit(26);

sqnetname = ""; /* Make sure no name is specified V
/* And create nets for all of the top level nets in the circuit V
for(tmpnet = nethead.next; tmpnet != NULL; tmpnet = tmpnet->next) j

if(SQ(sqCreate, sqNet, teqnet) <= 0) f
fprintf(stderr, "Can't generate net!\n");
exit(27);

\
tmpnet—>net = sqnet.netlD;

/* For each "poinf data structure ... V
tor{ tmppnt = points; tmppnt != NULL; tmppnt = tmppnt->next) {

/• For each element at this coordinate ... V
fbr(tmppntl = tmppnt; tmppntl != NULL; tmppntl =

tmppnt l->nextatpoint) {

Apr 12 23:46 1982 Page 1 of uwitesquad. c

writesquid.c Appendix g writesquid.c

...writesguid
/* If the element is a terminal ... v
if(tmppntl->element->type == TERM) \

term.instID = NULL;
term.netID = tmppntl—>netid—>net;
/* Generate a local terminal name V
sprintf(trmnam, "T%dX%dY",

tmppnt l->element->x_center,
tmppntl—>element—>y_center);

term,name = trmnam;
if(SQ(sqCreate,sqTerm,term) <= 0) }

fprintf(stderr, "Bad term creation.\n");
exit(100);

geo.layer = tmppntl ->element->name;
geo.manhattanP = sqTrue;
geo.geoType = sqRect;
geo.def.rectl = tmppnt l->element—>x_center —

tmppnt l->element—>x_left_offset;
geo.def.rect.b = tmppntl—>element—>y_center —

tmppntl—>element->y_bottom_offset;
geo.def.rectr = tmppntl—>element—>x_center +

tmppnt l->element->x_right_offset;
geo.def.rectt = tmppntl—>element->y_center +•

tmppntl->element—>y_top_offset;'
geo.function = sqTermArea;
geo.implements.term = term.name;
if(SQ(sqCreate, sqGeo, &geo) <= 0) {

fprintf(stderr, "No geometry!\n");
exit(128);

I l
/0 Else if the element is not a line ... V
else if(tmppnt l->element->type > FRUNX) {

/* Generate an instance for it V
inst.name = tmppntl—>element->name;
if(inst.name == NULL) j

continue;

1
inst.masterCell = tmppntl ->element—>name;
inst.masterView = "layout";
/* Key transformation off of orientation */
if(tmppntl—>element—>orientation ==

HORIZONTAL) {
sprintf(cif, "T %d %d", tmppntl->x,

tmppntl—>y);

else J
sprintf(cif, "R 0 -1 T %d %d",

tmppntl—>x, tmppntl—>y);

inst.cif = cif;
if(!tmppntl—>element->instanciated) \

tmppnt1—>element—>instanciated++;
if(SQ(sqCreate, sqlnst, &inst) <= 0) j

fprintf(stderr, "No inst.\n");
I
tmppntl—>element->instid = inst.instTD;

term.instID = tmppntl—>element—>instid;
lf(tmppntl->netid != NULL) {

term.netID = tmppnt 1—>netid—>net;

else (
term.netID = NULL;

Apr 12 23:46 1982 Page 2 of writesguid. c

writesquid.c Appendix g writesquid.c

...writesquid
I
/* Bind the formal and octttoi terminals V
«witch(tmppntl—>type) \

POINT:
term.name = "i";
if(SQ(sqUpdate,sqTerm.term) <=

0)1
fprintf(stderr,

"No termAn");

break;
DRAIN:

term.name = "d";
iff SQ(sqUpdate.sqTerm.term) <=

0)1
fprintf(stderr,

"No termAn");

break;
GATE:

term.name = "g";
if(SQ(sqUpdate,sqTerm,term) <=

0) \
fprintf(stderr,

"No term.\n");
I
break;

case SOURCE:
term.name = "s";
if(SQ(sqUpdate,sqTerm,term) <=

0) I
fprintf(stderr,

"No term.\n");
J
break;

i '
/* Else, if the element is a line ... V
else if(tmppntl—>type == ULINE) \

/* Switch on the mask Layer V
switch(tmppntl—>element->type % 4) (

case DIFF:
geo.layer = "ND";
break;

case POLY:
geo.layer = "NP";
break;

case METAL
geo.layer = "NM";
break;

i
/• Create a geometry for the line V
geo.manhattanP = sqTrue;
geo.geoType = sqLine;
if(tmppnt l->element^>orientation == VERTICAL) {

/* Don't output 0 length lines V
if(tmppntl—>element—>yp_bottom_offset =

tmppntl—>element—>y_top_offset)
continue;

path[0].x =
tmppnt 1—>element—>x_centen

path[0].y = ~
tmppntl—>element—>y bottom offset;

path[l].x =

Apr 12 23:461982 Page 3 of writesguid. c

writesquid.c Appendix g writesquid.e

...writesquid
tmppntl->element->x center;

path[l].y =
tmppntl—>element—>y_top_offset;

geo.def.line.width = ~" ""
tmppntl—>element->x_right_offset +
tmppntl->element->x left offset;

\ " "
else {

/* Don't output 0 length lines V
if(tmppntl—>element—>x_left_offset ==

tmppnt l->element->x_right_offset)
««rmtiwii«»'

path(0].x =
tmppnt 1—>element->x_left_offset;

path[0].y = ~ "
tmppnt l->element->y center;

path[l].x =
tmppnt l->element->x right offset;

path[l].y =
tmppnt l->element->y_center;

geo.def.line.width =
tmppntl—>element->y_top_offset +
tmppnt l->element->y~bottom_offset;

geo.prop = ishorizontal;
I
geo.def.line, path = path;
geo.def.line.nPath = 2;
geo.function = sqlnterconnect;
geo.lmplements.net = tmppntl->netid->net;
if(SQ(sqCreate, sqGeo, &geo) <= 0) |

fprintf(stderr, "No geometry!\n");
exit(28);

if(tmppnt l->element->orientation = VERTICAL) {
geo.prop = isvertical;

1

geo.prop = ishorizontal;

if(SQ(sqPutProp, sqGeo, geo) <= 0) (
fprintf(stderr, "No prop.Xn");
exit(29);

J
/0 Save the created view V
if(SQ(sqSave, sqView) <= 0) J

fprintf(stderr, "Couldn't save cell/view %s/%s.\n",
view.cell, view.view);

J
return(OK);

Apr 22 16:00 1982 Page 4 of writesguid. c

Sq.h Appendix G sq.h.

/0

Public types for Squid DBMS.

Copyright Ken Keller 1981
V

^define SQMAXLAYERS 20
#define SQMAXDEPTH 100

typedef int SQStatus;
#define SQ0UT0FVM -1
^define SQUNKNOWNLAYER -2
#denne SQENDGEN -3
^define SQUNKNOWNCURRENTvTEW -4
^define SQTOOMANYLAYERS -5
#define SQUNKNOWNDEMON -6
#define SQUNKNOWNOPERATION -7
#define SQUNKNOWOBJECT -8
#define SQHIERARCHYISTOODEEP -10
^define SQRECURSrVEHTERARCHY -11
#define SQCANNOTPARSETRANSFORMATION -20
#define SQNONHANHATTANTRANSFORMATION -21
#define SQUNTYPEDVALUE -30
#define SQUNKNOWNPARM -31
#define SQUNKNOWTERM -40
#define SQUNKNOWNPROP -41
#define SQUNTYPEDGE0 -50
#denne SQCANNOTCREATEVIEW -62
#define SQCANNOTCREATECELL -63
#define SQCELLDOESNOTEXIST -64
#define SQCANNOTOPENVIEW -65
#define SQVIEWEXISTS -67
#denne SQVTEWDOESNOTEXIST -68
#define SQNOTAVTEW -69
#define SQCORRUPTVTEW -70
#define SQCANNOTSAVEVTEW -71
#define SQCANNOTRMVTEW -72
#de£ne SQTRTVTALGEN -73
#define SQCANNOTCPVIEW -74
#define SQDEGENERATEPATH -75

typedef enum |sqGeo,sqTerm,sqNet,sqViewfsqInst,sqParmJ SQObjectType;

typedef enum {sqCreate,sqUpdate,sqGet,sqDelete,sqBeginGen,sqGen,
sqBeginPropGen,sqGenProp,sqPutProp,sqGetProp,sqRmProp,
sqSave,sqOpen,sqClose,sqRm,sqCpj SQOperationType;

typedef enum (sqFalse.sqTruej SQBcol;

typedef struct SQBB SQBB;
struct SQBB

int Lb.r.t;

typedef struct SQRealPoint SQRealPoint;
struct SQRealPoint j

float x,y; J;

typedef struct SQIntegerPoint SQIntegerPoint;
struct SQIntegerPoint |

Snt x.y; 1;

typedef enum fsqInteger.sqReal,sqString.sqBool{ SQValueType;

typedef struct SQParm SQParm;

Apr 22 16:00 1982 Page 1 of sq.h

Sq.h. Appendix G Sq.h.

struct SQParm {
char *name;
int instID;
SQValueType valueType;
union [

int integer;
float real;
char "string;
SQBool bool; \

value; J;

typedef struct SQProp SQProp;
struct SQProp {

char "name;
SQValueType valueType;
union {

int integer;
float real;
char string;
SQBool bool;]

value; j;

typedef struct SQView SQView;
struct SQView {

char •cell, *view, *mode;
SQBB bb;
SQProp prop; j;

typedef «»«niT" (sqFrame.sqActiveArea.sqlnterconnect.sqTermAreaj SQFunction;

typedef enum (sqPlot,sqRect,sqLine,sqPolygon,sqCircle,sqLabel| SQGeoType;

typedef struct SQGeo SQGeo;
struct SQGeo f

char ^ayer;
SQBB bb;
SQBool manhattanP.filledP;
int geoID;
SQGeoType geoType;
union f

SQBB rect;
struct |

int nPath;
SQRealPoint *path; j

plot;
struct {

int nPath;
SQIntegerPoint *path; j

polygon;
struct {

int width;
int nPath;
SQIntegerPoint *path;)

line;
struct {

SQIntegerPoint Lenten
SQIntegerPoint *beginAngle, *endAngle;
SQIntegerPoint *InnerRadius, "buterRadius; {

circle;
struct {

SQIntegerPoint position;
int height;
int angle;
char justification;

Apr 22 16:00 1982 Page 2 of sq.h

Sq.h Appendix G Sq.h

char label;
char font; j

label; }
def;
SQFunction function;
union j

char term;
int net; \

implements;
SQProp prop; J;

typedef struct SQTerm SQTerm;
struct SQTerm \

int instID;
char •name;
int netTD;
SQProp prop; \;

typedef struct SQNet SQNet;
struct SQNet {

char *name;
int netTD;
SQProp prop; {;

typedef struct SQInst SQInst;
struct SQInst j

char •name;
char tnasterCell, •masterView;
char tit;
int matrix[3][3];
int instID;
SQBB bb;
SQProp prop;
SQFunction function;
union {

char term;
int net; J

implements; {;

extern SQStatus
SQO.
SQAttachDeraonQ,
SQDetachDemonO,
SQSpecialGenQ.
SQGenNetTerm(),
SQBeginLayerGenQ,
SQGenLayer(),
SQEndQ,
SQCurrentVlewO.
SQBegin().
SQPopSpecialGen();

extern int SQSpecialBeginGen(),
SQBeginNetTermGenO,
SQLayerNameToNumberO;

extern char •SQLayerNumberToNameO;

Apr 22 16:00 1982 Page 3 of sq.h

APPENDIX H

Frame Program Listing

This appendix contains the manual entry and program listing for the

frame program, which generates protection frames for Squid cells from the

geometry contained within the cell. It uses the Fang Manhattan polygon

package [Moore82] to generate the frames.

H.1

FRAME (CAD) CAD Toolbox User's Manual FRAME (CAD)

NAME

frame - Generates protection frames for squid cells.

SYNOPSIS

frame [-i <inview>] [-o <outview>] [-e <errfil>] [-a#] cell...
DESCRIPTION

Frame generates protection frames for symbolic IC cells stored in the squid
database. The fang Manhattan polygon package is used to generate the frames
with a grow/merge/shrink algorithm. This algorithm take the boxes which
comprise the geometries contained within a cell (polygons are factored into
boxes), and expands each box about its center. The individual boxes are
merged together, and the resulting polygon(s) are shrunk by the expansion fac
tor to obtain a set of protection frames for the cell. The operations are per
formed on a per/layer basis, so there is a set of protection frames for each
mask layer.

By adjusting the magnitude of the grow/shrink factor, tradeoffs can be made in
the complexity of the protection frames. A zero grow/shrink factor would have
the effect of simply merging the geometries on each mask layer. While this
would allow all of the unused area within the cell to be used for routing at
greater levels in the design hierarchy, the number of boxes required to
represent these complex frames is almost as great as in the original cell itself.
An infinite grow/shrink factor, on the other hand, would remove all interior
'holes' from the cell, leaving a set of bounding polygons for the protection
frames. These polygons would require fewer boxes to represent, but would not
allow routing in areas that are actually unused within the cell.

The options available -with frame are:

-i <inview> Change the squid input view from the default 'layout' to ^inviewy.

-o <outview>
Change the squid output view from the default 'framed' to *<out-
view>'.

-e <errfil> Change the error reporting file from the default 'framerr' to
,<errfil>'.

-a# Change the amount of the grow/shrink from the default amount of
200 to number #.

FILES

<cell> /layout - Default input view
<cell> /framed - Default output view

SEE ALSO

hawk(cad), python(cad), fang(3cad), squid(3cad)
AUTHOR

Mark Bales (Supervisory code)
Ken Keller (Squid DBMS)
Peter Moore (Fang polygon package)

DIAGNOSTICS

Error messages are self explanatory and detail errors encountered in the squid
database procedural interface.

BOGS

First Edition 4/1/82

FRAME (CAD) CAD Toolbox User's Manual FRAME (CAD)

The objects used to define the protection frames are the terminals local to the
cell, the interconnect local to the cell, and the protection frames of the
instances contained within the cell. Local geometries are NOT included, so there
may be some problems in generating protection frames for leaf cells (cells
which contain no instances). ..

The grow/merge/shrink algorithm for generating the protection frames some
times removes large unused area which should be left unprotected.

First Edition 4/1/82

index Appendix H

F_addframe readin.c
F_addline readin.c
F_addterm readin.c
F_error frame.c
F_frame •. frames
F—readin readin.c
F_update update.c
main main.c

index

May 317:321982 Page 1 of index

frame.h Appendix H frame h

/• Copyright -C- 1982 Mark W. Bales All Rights Reserved V
#indude "sq.h"
^include "fang.h"
^include <setjmp.h>
#indnde <stdio.h>

/* Typedefs V
•typedef enum \ FOK. FBADSQOPEN, FBADSQGET. FBADSQGEN,

FBADSQPROP. FBADSQLTNE, FBADSQTERM, FNOLTNEORTENT,
FBADSQFRAHE. FLEAFCELL, FBADSQSAVE, FBADSQCOPY. FBADSQDEL,
FBADSQUPDATE, F_FA FRAME. F FA TO BOX. F FA ADD BOX.
FBADSQCREATE } fstat; ~ "

/•**•*• ^defines 000*00/
#denne EVER ;;
#define TRUE 1
#deflne FALSE 0
#define FATAL 0

le NONFATAL 1

/* Some macro definitions V
#define F_max(a.b) ((a) > (b) ? (a) : (b))
#define F_min(a,b) ((a) < (b) ? (a) : (b))
/»

9 ALIGN - compute smallest number >- x which is exactly
* divisible by size.
V

.#define ALIGN(x, size) ((x) % (size) ? (x) + (size) - (x) % (size) : (x))
#deflne malloc P__vmalloc

•extern fa_geometry F_ingec[SQMAXLAYERS];
•extern fa_geometry F_outgeo[SQMAXLAYERS];
.extern fa_box_list F_outbox[SQMAXLAYERS];
extern char 'tfMnview;
extern char ^"outview;
extern char ^"erfilnam;
extern char ^"version;
extern FILE «F~errfil;
extern fa_coord F_amount;
extern jmp—buf F^errorenv;

Mar 31 18:42 1982 Page 1 of frame.h

private.li Appendix H

fa_geometry F_ingeo[SQMAXLAYERS];
fa_geometry F outgeo[SQMAXLAYERS];
fa_box__list F_outbox[SQMAXLAYERS];
char Y_inview = "layout";
char ^_outview = "framed";
char «F_ernlnam = NULL;
char ^version = "Frames version 0.0";
FILE •F_errfil;
fa_coord F_amount = 200;
jmp_buf Fjjerrorenv;

Apr 315:371982

private,h

Page 1 ofprwate.h

main.c Appendix H

/• Copyright -C- 1982 Mark W. Bales All Rights Reserved V
^include "frame.h"

main(argc, argv)
int argc;
char ^rgv[];
/♦

* This routine is the executive for using frames as a standalone
0 program. It allows a user to generate protection frames for
0 many cells, changing the input and/or output views for each cell.
•/

I
char *s;
FILE •fopenQ:

if(SQBeginO <= 0)
exit(lOO);

/♦ Initialize the squid database V

while(—argc > 0) j
if((*4-+argv)[0] == '-' && Cargv)[0] != '\(T) \

tor{ s = argv[0] + 1; * fs -\0'; s++)
•witch(«s) {

main.c

mown

#ifdef RDEBUG

#endif

#ifdef RDEBUG

#endif

#ifdef RDEBUG

#endif

Y: /* Change %inviev/ V
F_inview = «H-+argv;
argc—;

printf("Changing to input view %%s'\n",
F_inview);

#ifdef RDEBUG

#endif

Apr 315:371982

break;

/* Change "outui&vf V
F_outview = *4-+argv;
argc—;

prlntf("Changing to out view %%s'\n",
F_outview);

break;

case 'e': /* Change Fjerrfil V
F_ernlnam = *4-+argv;
argc—;

printf("Changing to error file %%s'\n",
F_erfilnam ;;

if((F_errfil = fopen(F erfilnam,
*V')) == NULL)1

fprintf(stderr,

break;

"Couldn't open %s!\n",
F_erfilnam T

'a':

F amount = atoi(++s);
iff F_amount < 0)

F_amount = 0;
%— - 'NC;

printf("Amount of grow/shrink %d.\n",
F_amount);

Page 1 of main, c

main.c Appendix h mam.c

...Tnaxn,

break;

default:
fprintf(stderr,

"55s: illegal option: %c\n",
F_version, ^);

argc = —if
break;

I

if(F.errfil == NULL) {
if((F errfil = fopen("framerr", 'V')) ==

NULL) |
fprintf(stderr,

"Couldn't open error file framerr.'Nn");
F_errfil = stderr;
F_erfilnam = "> stderr";

else \
F_erfilnam = "framerr";

J
if(F_frame(*rgv, F_inview, F outview, F amount)

!= (int)FOK)
fprintf(stderr,

"frame: Error occurred in file %s. See file %s for details.\n",

, ™><
if(argc < 0) [/* => an illegal option was specified V

fprintf(stderr,
"usage: frame [-i inview] [-o outview] [-e errfil] file ...\n");

if(SQEndQ <= 0) /• Wrap up the squid database V
exit(200);

exit(0);
I

Mar 31 19:171982 Page 2 of main, c

frame, c Appendix h frame. c

finclude "frame.h"
^include "private.h"

F^frameC cell, inview, outview, amount) Fl^TCLTTie
char ^:ell, Inview, Outview;
fa coord amount;
I
register int layer;
register int status;

/* Set up for "longjmp' from down inside hierarchy V
if((status = setjmp(F_errorenv)) != 0) { /* JSrror occurred! V

retnrn(status);
1
/* Initialize all of the input and output geometries V
for(layer = 0; layer < SQMAXLAYERS; layer++) {

fa_init(&(F_ingeo[layer]));
fa_init(Jc(F_outgeo[layer]));

/0 Read in squid view and generate fa_geometries V
F_readin(cell, inview, outview);
/* Generate box lists for merged frames V
fcr(layer = 0; layer < SQMAXLAYERS; layer++) |

/* Temporary hack V
if(F_ingeo[layer].count <= 0)

continue;
if(fa_frame(F_ingeo[layer], amount, &(F outgecflayer])) !=

FA OK) I
F_error(FATAL, F.FA FRAME. FILE , LINE ,

"FA_ERR0R: %s\n", fa err string J;
\
if(fa_to_box(F outgeo[layer], fc(F outbox[layer])) != FA OK)j

F.errorr FATAL, F FA TO BOX FILE , LTNE_ ,
"FA_ERR0R: %s\n", fa_err_stfing)f~

F update(cell, outview);
return((int)FOK);

/* VARARGS5 V
F_error{ fatalflag, errornum, filename, linenum, format, arguments) FL£TTOT
int fatalflag;
fstat errornum;
char 'filename;
Int linenum;
char format;
/♦

♦ This routine takes an error number, a filename, and a line number
* and prints out an appropriate error message. If no message
0 exists for a particular number, the number alone is printed
V

i
#ifndef HAWK

fprintf(F_errfil, "%s(line %d): ", filename, linenum);
_doprnt(format, ^arguments, F_errfil);

char errbuf[BUFSIZ];
register int i;
struct _iobuf _strbuf;

sprintf(errbuf, "%s(line %d): ", filename, linenum);
i = strlen(errbuf);
_strbuf._flag = I0WRT+ IOSTRG;
_strbuf._ptr = &{errbuf[i]);

Mar 31 19:171982 Page 1 of frame, c

frame, c Appendix h frame, c

...F-Brror
_strbuf. cnt = BUFSIZ;
.doprntf format, ^arguments, k strbuf);
putc('\0', &_strbuf);

#endif
iff(fatalflag) {

longjmp(F_errorenv, (int)errornum);

Apr 1 00:41 1982 page 2offrame.c

readin.c Appendix h readin.c

/* Copyright -C- ig82 Mark W. Bales All Rights Reserved V
/• UNTUBRARY V
^include "frame.h"
^include <ctype.h>

F readin(cell, inview, outview) FjTBddiTl
char tell, inview, Outview;
/«

This routine is responsible for reading the data from the
Squid database and generating the faaeometries for fang.
The special generator in Squid is run twice, the first
time to get the local interconnect and the second time to
get instance protection frames, local terminals, and
terminals contained within instances.

•/

\
FILE *cellfil, nnstfil;
SQStatus cstat, SQ();
SQView cellview, instview;
int cellgen, i;
int mask[4«SQMAXLAYERS+l][2];
int linepath[2J, instids[2], level;
SQGeo geo;
SQInst inst;
SQStatus status;
#ifdef RDEBUG

printf("Reading cell %s, with inview %s and outview %s\n",
cell, inview, outview);

#endif
/* Initialize the number of instances to zero. V
/* Set up for readin the *cell' with svnvieW */
cellview.mode = "r";
cellview.cell = cell;
cellview.view = inview;
/* KLUDGE (necessary since Squid may not have proper bounding box) V
cellview.bb.l = -1000000000;
cellview.bb.b = -1000000000;
cellview.bb.r = 1000000000;
cellview.bb.t = 1000000000;
/* Open the cell with current view sinview' */
if((status = SQ(sqOpen, sqView, cellview, fccellfil)) <= 0) \

F_error(FATAL, FBADSQOPEN, FILE . LINE ,
"Couldn't open cell %s inview %s. Status = %d.\n",
cell, inview, status);

I
/* Copy the "invieuf to %outviev/ V
cellview.view = outview;
jf(SQ(sqCp, sqView, cellview) <= 0) { /0 If the copy fails V

/* Open the xoutvievf V
if((status = SQ(sqOpen, sqView, cellview, fccellfil)) <= 0) f

F_error< FATAL, FBADSQOPEN, FILE , LINE .
"Can't open cell %s to rm outview %s. "sTatus = %d\n",

cell, outview, status);
i
/* And remove it V
if((status = SQ(sqRm, sqView, cellview)) <= 0) {

F_error(FATAL, FBADSQCOPY. FILE . LINE ,
"Can't remove cell %s view Zs. Status~"= %d.\}r.
cell, outview, status);

I
/• Set up to open the "invievf V
cellview.view = inview;

Apr 1 00:41 1982 Page 1 ofreadin. c

readin.c Appendixh readin.c

...F-read£n
/• Open the cell with current view xinview' */
if((status = SQ(sqOpen. sqView, cellview, &cellfil)) <= 0) {

F_error(FATAL. FBADSQOPEN, FILE , LINE
"Can't open cell %s view %s after rm. Status = %d.\n",

cell, inview, status);
J
/* Set up to open the ^outview' V
cellview.view = outview;
/* And copy the ^inview' to the soutvievf V
if((status = SQ(sqCp, sqView, cellview)) <= 0) J

F_error(FATAL. FBADSQCOPY, __FILE , LINE ,
"Can't copy cell %s view %s to view %s. Status = %d.\n",

cell, inview, outview, status);

I l
/* Open the cell with current view %outview' V
cellview.mode = "w"; /• Necessary for updating later on V
if((status = SQ(sqOpen, sqView, cellview, fccellfil)) <= 0) {

F_error(FATAL, FBADSQOPEN, FILE , LINE
"Can't open cell %s outview %s. Status = %d.\n",
cell, outview, status);

#ifdef RDEBUG
printf("Opened Cell Froperly.\n");

#endif
/* Open all of the masters of the instances in *cell' V
if((status = SQ(sqBeginGen, sqlnst, fcceUgen)) <= 0) {

F_error(FATAL, FBADSQGEN. FILE , __UNE .
"Can't Begin Instance Generator. Status = %d.\n",
status);

/* Read in to VM all of the instances in the current view V
«hile((cstat = SQ(sqGen, sqlnst, cellgen, Must)) > 0) \

/0 Fill in the holes in the instance ♦/

inst.cif = NULL;
if((status = SQ(sqGet, sqlnst, fcinst)) <= 0) {

F_error(FATAL, FBADSQGET. FILE , LINE ,
"Can't get instance ID = %d. Status = %d.\n",
inst.instID, status);

/• Fill in the instance sviev/ structure V
instview.mode = "r";
instview.cell = inst.masterCell;
instview.view = inst.masterView;

#ifdef RDEBUG

#endfif

printf("Opening master cell %s with view %s in instance.\n".
instview.cell, instview.view);

/* Open the master cell of the instance in %cell' V
xf((status = SQ(sqOpen, sqView, instview, Jtinstfil)) <= 0) \

F_error(FATAL, FBADSQOPEN, FILE , LINE ,
"Can't open instance master %s view %s. Status = %d.\n",

inat.masterCell, inst.masterView, status);

. »
/* Check to make sure that exit status was SSQENDGEN' V
if(cstat != SQENDGEN) j

F_error(FATAL, FBADSQGEN, FILE , LINE ,
"Squid returned bad status %d from instance generator.Xn",
cstat);

Apr 1 00:41 1982 Page 2ofreadxn.c

readin. c Appendix h readin. c

...F-readin
/* Open the cell again to insure the "outvievf is %current' V
if((status = SQ(sqOpen, sqView, cellview, fccellfil)) <= 0) {

F_error(FATAL. FBADSQOPEN, FILE . LINE
"Can't reopen cell %s view %s after instgen. Status = %d.\n",

cell, outview, status);
{
/• Set up mask for special generator V
for(i = 0; i < SQMAXLAYERS; i++) |

maskriiro] = i;
mask[ij[lj = (int)sqlnterconnect;

mask[SQMAXLAYERS][0] = -1;
#ifdef RDEBUG

printf("Looking for local interconnect.\n");
#endif

/0 Begin a generator to retrieve all interconnect local to the cell V
if((status = SQSpecialBeginGen(cellview.bb, mask, 1, &cellgen)) <= 0) |

F_error(FATAL, FBADSQGEN. __FILE , LINE ,
"Can't begin interconnect generator. Status = %d.\n",
status);

#ifdef RDEBUG
printf("Generator started properly.Nn");

#endif
level s 1;
/* Read all of the interconnect local to the cell V
while{(cstat = SQSpecialGen(cellgen, Acgeo, linepath, 2, NULL, 0,

instids, <Sdevel)) > 0) {
/* LATER - Check to insure geo is Manhattan V

/• ASSERT(geo.manhattanP, FNONMANHATTAN);0/
/♦ Make sure the function is interconnect V
if(geo.function != sqlnterconnect) }

F_error(NONFATAL, FBADSQGEN, FILE . LINE
"Intcon. local to cell %s view %s has function %d.\n",

cell, outview, geo.function);
continue;

J
/♦ Add the line V
F„.addline(&geo);
level = 1;

1
/* Check to make sure that exit status was ^SQENDGEN' V
if(cstat != SQENDGEN) \

F_error(FATAL. FBADSQGEN, FILE . LINE ,
"Squid returned bad status %d from instance generatorAn",
cstat);

/* Set up mask for special generator V
tori i = 0; i < SQMAXLAYERS; i++)

maskfi *2]f0] = i;
mask 'i ^2J[1J_ = (int)sqFrame;
mask
mask

mask[2«SQHAXLAYERS][0] a -1;
#if<fef RDEBUG

prlntf("Looking for terminals and frames.\n");
#endif

/* Begin a generator to retrieve all terminals and frames V
if((status = SQSpecialBeginGen(cellview.bb, mask. 2, &cellgen)) <= 0) {

F_error(FATAL, FBADSQGEN, FILE , ..LINE
"Can't begin frame and terminal generator. Status = %d.\n",
status);

1

m
i«2+l
i«2+l

— \ULIi

int)sqTermArea;

Apr 1 00:41 1982' Page 3 of readin. c

readin. c Appendix h readin. c

...F-readin
#ifdef RDEBUG

printf("Generator started properly.\n");
#endif

level = 2;
/* Read all of the local terminals, and all of the terminals and

0 protection frames of the instances. V
while((cstat = SQSpecialGen(cellgen, &geo. linepath, 2, NULL. 0,

instids, Adevel)) > 0) |
/• Add a frame if the function is xframe' V
if(geo.function == sqFrame) {

F_addframe(&geo, instids, level);

else \
F_addterm(&geo, instids. level);

\
level = 2;

\
/* Check to make sure that exit status was *SQENDGEN' V
if(cstat != SQENDGEN) \

F_error(FATAL, FBADSQGEN, FILE__. LINE .
"Squid returned bad status %d from instance generatorAn",
cstat);

1 l
F_addline(geo) F-ClddLine
SQGeo <geo;
/♦

* This routine adds a line to the Fang data structures which was
0 obtained from the Squid database.
V

i
register int layer;
SQBB bb;
SQIntegerPoint pointl, *point2;
SQStatus status;

/m All lines must be geometries with type ssqLine" V
if(geo—>geoType != sqLine) {

F_error(NONFATAL, FBADSQLINE, FILE , LINE ,
"Line on layer %s has type %d not *sqline'. IgnoredAn",
geo—Mayer, geo—>geoType);

return;

layer = SQLayerNameToNumber(geo->layer);
#ifdef RDEBUG

printf("Starting a new line layer = %s.\n", geo—>layer);
#endif

/* This is how the orientation of lines is communicated V
geo—>prop.name = "ishorizontal";
/* All lines must have this property to work with Fang V
if((status = SQ(sqGetProp, sqGeo, geo)) <= 0) f

F_error(FATAL. FNOLINEORIENT, FILE__, _LINE ,
"Line: mask %s (%d,%d) to (%d,%d) No property "ishorizontal'. Status = %d.\n",

geo—>layer, geo—>def.line.path[0].x, geo—>def.line.pathfO].y,
geo—>def.line.path[l].x, geo—>def.line.path[l].y, status);

/* The property must be of type boolean V
if(geo—>prop.valueType != sqBool) {

F_error(FATAL, FBADSQPROP, FILE LINE ,
"Line: mask %s (%d,£d) to (%d,%d) Bad property Mshorizontal'An",

geo—>layer, geo->def.line.path[0].x, geo->def.line.path[0].y.
geo—>def.line.path[l].x, geo->def.line.path[l].y);

Apr 1 00:41 1982 Page 4 of readin. c

readin. c Appendix h readin. c

...F-addline
/* Get the two endpoints of the line from the path V
pointl = geo->def.line.path;
point2 = &pointl[l];
bb.l = F_min(point l->x, point2->x);
bb.r = F_max(pointl—>x. point2—>x);
bb.b = F_min(pointl—>y, point2—>y);
bb.t = F_max(pointl—>y, point2->y);
/• Augment the coordinates of the line by the line width V
if(geo->prop.value.boo!) J /• => HORIZONTAL line V

bb.b —= geo—>def.line.width / 2;
bb.t += geo->def.line.width / 2;

else { /* => VERTICAL line V
bb.l —= geo->def.line.width / 2;
bb.r += geo—>def.line.width / 2;

i
/* Add this box to the geometry V
fa_add_box(&(F_ingeo[layer]), bb.l, bb.b, bb.r, bb.t);

F_addframe(geo, instids, level) F-Q.ddfTCL77ie
SQGeo *£eo;
int instids[];
int level;

* 77its routine adds in protection frames (boxes) for the instances
0 in the cell. Level 0 (local) frames are ignored Instance ids
0 are watched and the routine allocates a new instance structure
0 when the instance ID changes from its previous value.
V

I
register int layer;
char ^QLayerNumberToNameO;
SQBB bb;
SQStatus status;

/* Frames must be geometries of type *sqRec? */
if(geo—>geoType != sqRect) {

F_error(NONFATAL. FBADSQFRAME, FILE . LINE ,
"Frame on layer %s has type %d not *sqFrame'.\n",
geo—>layer, geo—>geoType);

return;

fifdef RDEBUG
printf("Found a frame for instance %d.\n", instids[0]);

#endif
if(level != 1) j /* Delete local protection frames V

if((status = SQ(sqDelete, sqGeo, geo)) <= 0) \
F error(FATAL, FBADSQDEL. FILE , LINE .
"'Can't delete local protection frame. Status = /5d.\n",

status);
I
return;

i
layer = SQLayerNameToNumbeH geo—Mayer);

#ifdef RDEBUG
printf("Instanciating a frame for instance £d.\n", instids[0]);

#endif
/* This mxn-max stuff is necessary since Squid confuses

0 corners of bounding boxes upon rotational transforms V
bb.l = F_min(geo—>def.rect.l, geo—>def.rect.r);
bb.b = F^minf geo—>def.rect.b, geo—>def.rect.t);
bb.r = F_max(geo—>def.rect.l, geo—>def.rect.r);
bb.t s= F_max(geo—>def.rect.b, geo—>def.rect.t);

Apr 1 00:41 1982 Page 5 of readin.c

readin.c Appendix h readin.c

...F-addframe
/0 Add the box to the appropriate fajgemoetry V
fa_add_box(&(F_ingeo[layerj). bb.l, bb.b, bb.r, bb.t);

F_addterm(geo, instids, level) F—£Utd£@T77l
SQGeo *geo;
int instids[];
int level;
/•

* This routine adds a terminal into the Fang data structures
0 read in from the Squid database.
v

\
register int layer;
SQBB bb;

/0 all terminals must be expressed with rectangular geometries V
if(geo->geoType != sqRect) {

F_error(NONFATAL. FBADSQTERM. FILE . LINE ,
Term on layer %s has type %d not *sqRect'An",
geo->layer. geo->geoType);

return;
J
layer = SQLayerNameToNumber(geo->*layer);

#ifdef RDEBUG
printf("Starting a new terminal %s, layer = %s.\n",

geo—>implements.term, geo—>layer);
#endif

/0 If a terminal within an instance ... V
if(level = 1) \

return; /* Ignore it. V

/• This man—max stuff is necessary since Squid confuses
* corners of terminal boxes upon rotational transforms */

bb.l = F_min(geo—>def.rect.L geo—>def.rect.r);
bb.b = F_minr geo->def.rect.b, geo->def.rect.t);
bb.r = F_maxC geo—>def.rect.l, geo—>def.rect.r);
bb.t = F_max(geo->def.rect.b, geo->def.rect.t);
/* Add the box to the appropriate fa gemoetry V
fa_add_box(&(F_ingeo[layerJ), bb.l, bb.b. bb.r. bb.t);

Mar 31 20:04 1982- Page 6 of readin. c

update.c Appendix h update.c

^include "frame.h"

F_update(ceU, outview) F-Upddte
char ^:ell, *butview,

\
SQStatus status;
SQGeo geo;
SQView view;
char ^QLayerNumberToNameO;
fa_box boxptr;
register int layer, i, count;
#ifdef UDEBUG

printf("Updating cell %s view %s.\n", cell, outview);
jjEendif

/* Make sure the current view is soutviavf V
view,mode = "w";
view.cell = cell;
view,view = outview;
if((status = SQ(sqOpen, sqView, view)) <= 0) |

F_error(FATAL. FBADSQOPEN, FILE , LINE .
"Can't reopen *%s' as current view. Squid returned %d.\n",
outview, status);

for(layer = 0; layer < SQMAXLAYERS; layer-H-) {
if((count = F_outbox[layer].count) <= 0)

continue;
boxptr = F_.outboxtlayerl.list;
tar\ i = 0; 7 < count; i++) {

geo.layer = SQLayerNumberToName(layer);
geo.manhattanP = sqTrue;
geo.geoType = sqRect;
geo.def.rectl = boxptr->left;
geo.def.rect.b = boxptr—>bottom;
geo.def.rectr = boxptr->right;
geo.def.rectt = boxptr->top;
geo.function = sqFrame;
if((status = SQ(sqCreate, sqGeo, &geo)) <= 0) {

F error(FATAL. FBADSQCREATE. FILE , LINE ,
"Can't create box mask %s (%d %d) (%d %d).\n",

SQLayerNumberToName(layer), geo.def.recti,
geo.def.rect.b, geo.def.rect.r,
geo.def.rect.t);

#ifdef UDEBUG

#endif

printf("Frame box: layer %s: (J5d.%d) (%d,%d).\n"
geo.layer, geo.def.rect.l, geo.def.rectb,
geo.def.rect.r, geo.def.rect.t);

boxptr = boxptr->next;

/* Save the contents of the view V
if((status a SQ(sqSave, sqView, view)) <= 0) |

F_error(FATAL, FBADSQSAVE, FILE , LINE ,
"Can't save */5s' as output view. Squid returned %d.\n",
outview, status);

Apr 2216:00 1982 Page 1 of update, c

Sq.hAppendixHSq.h.

PublictypesforSquidDBMS.

CopyrightKenKeller1981
V

#defineSQMAXLAYERS20
#defineSQMAXDEPTH100

typedefintSQStatus;
^defineSQOUTOFVM-1
^defineSQUNKNOWNLAYER-2
#defineSQENDGEN-3
#defineSQUNKNOWNCURRENTVIEW-4
#defineSQTOOMANYLAYERS-5
#defineSQUNKNOWNDEMON-6
#defineSQUNKNOWNOPERATION-7
#defineSQUNKNOWNOBJECT-8
#defineSQHIERARCHYISTOODEEP-10
#defineSQRECURSIVEHIERARCrlY-11
#defineSQCANNOTPARSETRANSFORMATION-20
#defineSQNONMANHATTAOTRANSFORMATION-21
#defineSQUNTYPEDVALUE-30
#defineSQUNKNOTVNPARM-31
#defineSQUNKNOWNTERM-40
#defineSQUNKNOWNPROP-41
#defineSQUNTYPEDGEO-50
^defineSQCANNOTCREATEVIEW-62
^defineSQCANNOTCREATECELL-63
#defineSQCELLDOESNOTEXIST-64
#defineSQCANNOTOPENVIEW-65•
#defineSQVETWEXISTS-67
#defineSQVTEWDOESNOTEXIST-68
#defineSQNOTAVTEW-69
#defineSQCORRUPTVIEW-70
^defineSQCANNOTSAVEVTEW-71
#defineSQCANNOTRMVffiW-72
#defineSQTRIVIALGEN-73
#defineSQCANNOTCPVTEW-74
#defineSQDEGENERATEPATH-75

typedefennm{sqGeo,sqTerm,sqNet,sqView,sqInsttsqParm}SQObjectType;

typedefenum{sqCreate,sqUpdate,sqGet,sqDelete,sqBeginGen,sqGen,
sqBeginPropGen,sqGenProp,sqPutProp,sqGetProp,sqRmProp,
sqSave,sqOpen,sqClose,sqIon,sqCp|SQOperationType;

typedefenumJsqFalse.sqTrueJSQBool;

typedefstructSQBBSQBB;
structSQBB{

intLb.r.t;j;

typedefstructSQRealPointSQRealPoint;
structSQRealPoint(

floatx,y;J;

typedefstructSQIntegerPointSQIntegerPoint;
structSQIntegerPoint{

intx.y;J;

typedefenumfsqlnteger.sqReal.sqString.sqBooljSQValueType;

typedefstructSQParmSQParm;

Apr2216:001982Page1ofsq.h

Sq.h. Appendix H Sq.h.

struct SQParm {
char •name;
int instID;
SQValueType valueType;
union (

int integer;
float real;
char *string;
SQBool bool; j

value; };

typedef struct SQProp SQProp;
struct SQProp {

char %ame;
SQValueType valueType;
union {

int integer;
float real;
char ^string;
SQBool bool; j

value; };

typedef struct SQView SQView;
struct SQView {

char •cell, «view, ^node;
SQBB bb;
SQProp prop; J;

typedef enum {sqFrame,sqActiveArea.sqlnterconnect.sqTermAreaJ SQFunction;

typedef «nmw {sqPlot,sqRect,sqLine,sqPolygon,sqCircle,sqLabelJ SQGeoType";

typedef struct SQGeo SQGeo;
struct SQGeo {

char ^ayer;
SQBB bb;
SQBool manhattanP.nlledP;
int geoID;
SQGeoType geoType;
union f

SQBB rect;
struct {

int nPath;
SQRealPoint *path; j

plot;
struct {

int nPath;
SQIntegerPoint «path; J

polygon;
struct \

int width;
int nPath;
SQIntegerPoint «path; j

line;
struct \

SQIntegerPoint Lenten
SQIntegerPoint ^eginAngle, •endAngie;
SQIntegerPoint *lnnerRadius, •buterRadius;)

circle;
struct {

SQIntegerPoint position;
int height;
int angle;
char ^justification;

Apr 22 16:00 1982 Page 2 of sq.h

sq.h

char label;
char font; J

label; {
def;
SQFunction function;
union [

char •term;
int net; J

implements;
SQProp prop; j;

typedef struct SQTerm SQTerm;
struct SQTerm {

int instID;
char •name;
int netID;
SQProp prop; j;

typedef struct SQNet SQNet;
struct SQNet {

char *name;
int netID;
SQProp prop; };

typedef struct SQInst SQInst;
struct SQInst {

char •name;
char •masterCell, •masterVlew;
char *cif;
int matrix[3][3];
int instID;
SQBB bb;
SQProp prop;
SQFunction function;
union {

char •term;
int net; j

implements; j;

extern SQStatus
SQO.
SQAttachDemcnQ,
SQDetachDemonQ,
SQSpecialGen(),
SQGenNetTermO.
SQBeginLayerGen(),
SQGenLayeK).
SQEnd(),
SQCurrentViewO,
SQBeginO.
SQPopSpecialGenO;

extern int SQSpecialBeginGen(),
SQBeginNetTermGenO,
SQLayerNameToNumberO;

extern char •SQLayerNumberToName();

Mar 31 18:64 1982

Appendix H sq.h

Page 3 of sq.h

fang.h Appendix h fang.h

typedef int fa_coord;

typedef enum |FA_OK, FA_ERRORJ fa_status;

typedef struct fa_box fa_box;

struct fa_box (
fa_coord left, right, bottom, top;
fa box •next;

I; "

typedef struct fa_box_list fa_box_list;

struct fa_box_list {
int count;
fa box 'list;

); "
/* The eight different types of simple vertices. The shape

0 is described by the position of a equivelently shaped
0 corner in a square, while the sense is POS if vertex is
0 concave (as in a square) or NEG if convex.
V

typedef enum j
NO VERTEX = 0,
UPPER RIGHT NEG,
UPPER~LEFT POS.
LOWER~RIGHT_P0S.
LOWER LEFT_NEG,
UPPER" RIGHT POS,
L0WER"LEFT_P0S.
UPPER"LEFT_NEG,
LOWER~RIGHT NEG,
LEFT DIAGONAL, /• UPPER LEFT_POS and LOWER_RIGHT_P0S V
RIGHT_DIAGONAL /• UPPERZRIGHT_P0S and LOWER_LEFT_POS V

] fa_verteJT_type;

typedef struct fa_vertex fa_vertex;

struct fa_vertex {
fa_coord x,y;
fa~vertex_type type;
fa~vertex •hext;

I;

typedef struct fa_geometry fa_geometry;

struct fa_geometry {
int count; /* number of vertices V
int status; /• indicates whether the geometry is sorted, merged,

etc. V
fa box bb; /• the bounding box V
fa~vertex ^iead, •tail; /• pointers to the vertex list •/

I:

typedef struct fa_edge fa_edge;

/* if the edge is horizontal, then low is the low x end,
if the edge is vertical, then low is the low y end. V

struct fa.edge \
fa_coord low, high;
fa^coord center.

Mar 31 18:54 1982 Pa9e * offang.h

fang.h Appendix h fang.h

struct i
unsigned int edge : 2; /* direction the edge points,

either FAJ.EFT, FA RIGHT,
FA UP. or FA DOWN V

unsigned int low corner : 1; /• FA"CONCAVE or FAJCONVEX V
unsigned int high_corner : 1; /• FAZCONCAVE or FAJCONVEX V
unsigned int

J type;
fa_edge "next;

'»

#define FA LEFT 0
#define FA~RIGHT 1
#define FA UP 2
#define FA DOWN 3
#define FAZCONCAVE 0
#define FAJCONVEX 1

fa—status fa^mergeQ;
fa—status fa_fraraeO;
fa_status fa_to_edgeQ;
fa~status fa~to_box();
fa_status fa_add_box();

extern char fa_err_stringQ; /* String containing error messages
"" "~ * after a fang routine returns FAJERRQR

V

Mar 31 18:54 1982 Page 2of fang.h

References

[Akers70] S.IB. Akers, J. M. Geyer, and D. L. Roberts. "IC Mask Layout

with a Single Conductor Layer", Proceedings of the 7th

Annual Design Automation Conference, June 1970, pp 7-16.

[Bales80] M. W. Bales, "The CABTOCIF Program", CADMAN on Berkeley

UNCCf System, University of California at Berkeley, Berkeley.

CA. June 1980.

[Bondy76] J. JA. Bondy, U. S. R. Murty, Qraph Theory with Applications,

North Holland. New York. 1976.

[Cho77j Y. E. Cho, A. J. Korenjak, and D. E. Stockton, "FLOSS: An

Approach to Automated Layout for High-Volume Designs",

Proceedings of the 14th Annual Design Automation Confer

ence, June 1977, pp. 138-141.

[DeManB2] H. DeMan, Private Communication, Apr 1982.

[Dunlop78] A.:E. Dunlop, "SUP: Symbolic Layout of Integrated Circuits

with Compaction", Cbmputer-Aided Design, Vol. 10, No. 6,

Nov 1978, pp. 387-391.

[Dunlop79] A. E. Dunlop. 'Integrated Circuit Mask Compaction", PhD

Thesis, Carnegie-Mellon University, Pittsburgh. PA. 17 Oct

tUNDC is a Trademark ofSell laboratories.

R.1

R.2

1979.

[DunlopBO] A. E. Dunlbp, "SUM - The Translation of Symbolic Layouts

Into Mask Data", Proceedings of the 17th Annual Design

Automation Conference, June 1980, pp. 595-602.

[Feldman78] S. I. Feldman and P. J. Weinberger, "A Portable Fortran 77

Compiler", UNIX System Documentation, August 1978.

[Gibson78] Dave Gibson and Scott Nance, "SUC - Symbolic Layout of

integrated Circuits". Proceedings of the 13th Annual Design

Automation Conference, June 1976, pp. 434-440.

[Hsueh79] M. Y. Hsueh and D. 0. Pederson, "Computer-Aided Layout of

LSI Circuit Building-Blocks". Proceedings of the 1979 IEEE

International Symposium on Circuits and Systems, pp.

474-477.

[Hsueh79]

[Hurt82]

M. Y. Hsueh, "Symbolic Layout and Compaction of Integrated

Circuits". PhD Thesis, UCB/ERL M79/80, University of Cali

fornia at Berkeley. Berkeley. CA, 10 Dec 1979.

J. Hurt, Private Communication. Mar 1982.

[JohnsonflO] S. C. Johnson, "A Tour Through the Portable C Compiler",

UNIX System Documentation, 1980.

[Keller8l] K. H. Keller. "KIC: AGraphics Editor for Integrated Circuits",

MS Report, University of California at Berkeley, Berkeley,

R.3

CA, June 1981.

[KellerBl] K H. Keller. "Squid: A Database System for Integrated Cir

cuits", Preliminary Draft, University of California at Berke

ley, Berkeley, CA, December 1981.

[Keller82] K H. Keller, Private Communication, April 1982.

[Kernighan76] B. W. Kernighan and P. J. Plauger. Software Tools, Addison-

Wesley, Reading. MA, 1976.

[Kernighan78] B. W. Kernighan and D. M. Ritchie, The C Programtning

Language, Prentice-Hail, London, 1978.

[Larsen7l] R P. Larsen, "Computer-Aided Preliminary Layout Design of

Customized MOS Arrays", IEEE Transactions on Computers,

Vol. C-20, No. 5, May 1971, pp. 512-523.

[Larsen78] R. P. Larsen, "Versatile Mask Generation Techniques for Cus

tom Microelectronics Devices", Proceedings of the 15th

Annual Design Automation Conference, June 1978, pp. 193-

198.

[Lawier76] E. L. Lawler, Combinatorial Optimization: Networks and

Matroids, Holt, Rinehart, and Winston, 1976.

[Lock81] E. Lock, 'Techniques for the Construction of Parameterized

Functional Modules". MS Report, University of California at

Berkeley, Berkeley, CA, Dec 1981.

R.4

[Mead80] C. A. Mead and L A. Conway, Introduction to VLSI Systems,

Addison-Wesley, Reading, MA, 1960.

[Moore82] P. Moore, "The FANG Manhattan Polygon Package", CADMAN

on Berkeley UNIX System, May 1982.

[Newman80] W. M. Newman and R. F. Sproul, Principles of Interactive

Computer Graphics, McGraw-Hill, New York, 1980.

[Ritchie78] D. M. Ritchie and K. Thompson, "The UNDC Time-sharing Sys

tem", The Bell System Technical Journal, Vol. 57, No. 6,

Part 2, July - August 1978.

[Thesen78] A. Thesen, Computer Methods in Operations Research,

Academic Press, 1978, Chapter V.

[WesteBl] N. H. E. Weste. "Virtual Grid Symbolic Layout", Proceedings

of the 18th Annual Design Automation Conference", June

1981, pp. 225-233.

[Weste8l] N. H. E. Weste, "MULGA - An Interactive Symbolic Layout Sys

tem for the Design of Integrated Circuits", The Bell System

Technical Journal, Vol. 60, No. 6, July - August 1981, pp.

823-857.

[Williams78] J. D. Williams, "STICKS - A graphical compiler for high level

LSI design", AFIPS Conference Proceedings, Vol. 47, June

1978. pp. 289-295.

	Copyright notice 1982
	ERL-82-72 (1 of 3)
	ERL-82-72 (2 of 3)
	ERL-82-72 (3 of 3)

