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CHAPTER 1

Introduction

1.1. Layout Rule Spacing of Symbolic Integrated Circuit Desgigns
The Increasing complexity of Very Large Scale Integrated (VLSI) circuits
bas made the use of computer aids for design, analysis, and data manage-

ment a necessity.

The huge volume of data associated with the integrated circuit (IC)
design process can only be managed effectively if the structure of the circuit
is exploited by the designer and the CAD programs. Some form of hierarchi-
cal technique must be used to reduce the number of objects the designer
must work with at any one time. A hierarchy can also reducs the amount of
data storage required by the CAD system if the IC designs include replica-
tions of structures. Designs use replicated structures if they contain very
regular structures, such as arrays. Cell-based design also uses replication to
make use of a hierarchy. Efficient tools are needed to manage this higrar-
chy.

The use of abstractions, or symbols, to represent components of a
design method (transistors, contacts, cells, efc.) can help reduce the com-
plexity of the design process. Symbolic IC design has been in use since the
early 1970s [Larsen?1]. The use of symbols to represent IC devices is a logi~
cal mapping between the electrical schematic of circuits and the semicon-
ductor process for creating the devices in silicon. In the circuit schematic,
each symbol represents a complete device on a functional level. The electri-

cal properties of each device-type are well modeled and the circuit-level
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device models are used as a basis for the electrical design of a circuit. In the
semiconductor IC process, several photographic masks are used to create
the circuit devices on the silicon through a series of chemical diffusions, oxi-
dations, and implantations. Each mask is composed of a pattern which can
be constructed from many rectangles. An individual mask contains the infor-
mation used in one processing step for all of the devices in the IC. Each
separate electrical device requires many mask steps, and hence, the mask
. representation of a single device includes many rectangles on many mask
layers. In a symbolic design, all this information is coalesced into a single
symbol that represents the circuit-level device.

Symbols contain information that is normally lost in present-day
rectangle-based IC layout systems. The electrical connectivity of the circuit,
as well as the placement of the components themselves, is lost when a design
is entered in a rectangle-based artwork system. This information must be
extracted from the mask rectangles if, for example, a circuit simulation or
testability analysis is to be performed. Layout rule and electrical rule
checking have more difficult tasks because they must reconstruct the ¢ircuit
devices from the mask artwork to identify their context correctly. When
symbols are used to represent individual devices, more information is avail-
able for use by auxiliary design tools. The symbols and their interconnec-
tions are strictly defined and the transformation of the symbols into
geometric mask shapes can be an error-free process. Thus, the design and
maintenance of IC's with symbols permits the design system to capture more
of the design intent than placing individual rectangles on multiple mask
layers.
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In addition to providing a layout capability, symbolic layout systems
may be used to guarantee that the spacing between elements in the design
satisfies the layout rules Eor the IC process. Even further, the system can be
used to compact the elements together to achieve 2 minimum size layout
that still satisfles all layout rules and maintains circuit connections. The
interconnection lines between invariant, primitive symbols (such as transis-
tors, contacts, or circuit cells) are stretched or shrunk to change the size of
the IC layout, while the dimensions of the symbols themselves remain
unchanged. Thus a symbolic layout system may be used in a number of
ways. It may merely provide a layout capability which allows IC mask art-
work to be generated from the symbols. It may also provide a spacing pro-
gram which is used to insure that the spacing between elements is correct.
In addition, the symbolic design system may provide a compaction program
which may be used not only to insure that the spacing between elements is

correct but also to attempt to minimize the final area of the layout.

The following section of this chapter presents a review of existing sym-
bolic design systems with a focus on spacing and compaction programs.
Chapter 2 of this report describes the CABBAGE system, its limitations, and
the additional capabilities that are useful in a compaction program. CAB-
BAGE is designed for an NMOS polysilicon gate, single-layer metallization pro-
cess. Details of pri.mit.ive circuit elements in the NMOS technology as well as
layout rules are hard-coded into the program. The concepts of protection
Jrames and terminal frames are introduced to extend the CABBAGE algo-
rithms to make them technology and process independent. The Python pro-
gram, an implementation of these algorithms, is presented and the features
of polygonal protection frames, box terminal frames, and mazimum as well

as minimum constraints are described.



Chapter 3 describes the specific algorithmic details of Python.

Chapter 4 presents two examples, a D-type flip/flop and a latch cell. For
both examples, a comparison is made between CABBAGE and Python with
respect to run-time, memory usage, and compaction efficiency. Python pre-
duces a layout which is 15% smaller than the CABBAGE result for the D-F/F
example and the Python layout is 15% larger than the CABBAGE layout for the
latch example. The reasons for these differences are explained. Overall,
Python runs approximately 2.5 times faster than CABBAGE and uses approxi-
roately 2.5 times the amount of memory. Protection frames are generated
for the D-F/F example and the D-F/F is used to construct a shift register
cell. This shift register cell is compacted with Python to demonstrate the
use of hierarchical compaction. Order dependencies for the algorithms in
Python are reported.

Chapter 5 provides a summary of the results. The problems associated
with necessary enhancements to Python are presented with recommenda-

tions for their solution.

1.2. Existing Symbolic Design Systems

1.2.1. Fixed Grid Systems

Fixed grid symbolic IC design systems have been in use within industry
since the early 1970s [Larsen?1]. The fixed grid represents the allowed loca-
tions of geometry for the IC layout. Quantizing the representation of the cir-
cuit in this manner allows efficient representation of the IC layout grid with
the array constructs found in high-level computer languages. Early pro-
grams only allowed layout of highly regular structures, such as programm-

eble logic arrays (PLAs). The SL/C program at AMI [Gibson76] allows arbi-
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trary layout of IC cells. Each grid point may contain zero or more symbols.
If two symbols overlap or are adjacent, simple rules assume the geometries
the symbols represent are~ connected. In SLIC, a circuit is created by draw-
ing the symbols representing the circuit on grid paper (See Fig. 1.1). This
hand-drawn symbolic form is digitized, and the SLIC system generates the
actual mask data from the symbols (See Fig. 1.2). The MASKS system from
Rockwell International [Larsen78] has a similar inpui format, but the layout
symbols are placed in a ‘discrete topological schematic’, which are entered
directly as program data. Figure 1.3 shows the symbolic representation of a
2 input NAND gate using this approach.

Neither of these ﬁxéd—grid symbolic layout systems provides the capabil-
ity to dynamically adjust the spacing between symbols to satisty spacing
rules. SLIC provides design rule checking and interactive editing to correct
any design errors. Both systems provide for generation of actual mask data

from the symbolic layout. Simple spacing rules are enforced through the
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Fig. 1.1 Symbolic Input for the SLIC system ([Gibson76])
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choice of the spacing between grid points.

The basic limitation of fixed-grid layout systems is the forced choice of
the worst-case design rule for the grid spacing. For example, any two inter-
connection lines one grid spacing apart must satisfy the spacing rules
regardless of their type. In a typical NMOS IC process, the metal to metal
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spacing rule is the largest and will determine the grid spacing. Lines of
another type (polysilicon, for example), might not require the largest spac-
ing rule, but they must be at least one grid spacing apart to guarantee that
the spacing rules are satisfled. Some area will be wasted as a result. A sys-
tem with a finer grid, with the grid spacing the greatest common divisor of all
of the spacing rules, would overcome this l.imit‘ation. The symbols used would
no longer be simple, since the would occupy many grid locaticns. Also, the
data storage required would increase at least an order of magnitude.
Current research at AMI and Rockwell International is being performed with
this method.

1.2.2. Relative Grid Systems

Relative grid systems only use the grid-based symbolic layout of the IC
cells to indicate the relative placement of symbols and to determine the
electrical connectivity of the circuit. The locations of symbeols are
represented as some fraction of the greatest commeon divisor of the spacing
rules. Although the representation of the elements is usually not a grid, the
cholce of the minimum resolution for symbol location makes the relative-
grid approach similar in most respects to the fixed-grid method using a finer
grid.

1.2.2.1. Systems Previous to Cabbage I

One of the first programs to use the relative-grid method is the FLOSS
program from RCA [Cho77]. FLOSS is similar to the SLIC program in that it
reads a digitized sketch of the layout. The spacing between objects is deter-
mined by the construction of the objects and the individual spacing rules
between the mask layers of the components that make up each object. Only
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orthogonal interconnection lines are .allowed and the interconnections to
cells must be points. While these restrictions are implicit in the nature of
fixed-grid layout systems, they are imposed on relative-grid systems only
through implementation difficulties.

FLOSS supports a hierarchy for circuit design, and results have been
published for the compaction of entire ICs. The IC shown in Figure 1.4 is 32%
smaller than the original symbolic sketch and 19% larger than a hand-drawn
layout of the same IC.

Another symbolic layout aid which uses a relative grid and provides
compaction is the ST/CKS program, developed at the Hewlett Packard Co
[Williams78]. This program compacts the symbolic layout by starting from
one side of the layout and sequentially placing elements as far to the side as
is possible, given the positions of the previously placed elements and the
spacing rules objects on different mask layers. The electrical connectivity of

the circuit is also a determining factor in the positioning of elements during
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Fig. 1.4 Symbolic IC Layout After FLOSS Compaction ({Cho77])
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Cabbage I has been used to design a complete digital filter IC at the
Katholieke Universiteit Leuven in Belgium [Hurt82). This IC has over 1500
NMOS transistors, included in over 9000 layout symbols, and has been suc-
cessfully fabricated ( Layout shown in Fig. 1.6). The computer time required -
to compact this example was over 4 CPU hours and demonstrates the need

for hierarchical compaction and layout.

1.2.2.3. Other Systems Since Cabbege I

The SL/M system [Dunlop80] combines a shear line algorithm used by
Akers [Akers70] with the graph representation of the IC symbols. SLIM is a
successor to the SL/P system [Dunlop?79]. In this program, multiple spacing
methods are used to optimize both speed and compaction efficiency. The IC
symbolic data is partitioneq automatically into optimal size groups calcu-
lated by the program [Dunlop79]. A loose initial placement guarantees a
layout-rule correct (although not optimal) relative placement of the parti-
tions. Critical path analysis, similar to the method used in CABBAGE, is

979

Fig. 1.8 KUL Digital Filter IC [DeMan82]
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coupled with a local-compaction method. This reduces the total computer
time required for solution of the compaction of each partition while main-
taining an efficient compa;:tion result. The local compaction procedure clus-
ters together objects on the critical path. Jogs are inserted as zero-length
lines perpendicular to the direction of the line into which they are inserted.
They allow the objects connected to the top and bottom parts of a line to
move independently in the direction parallel to the jog. In SLIM, jogs are
only inserted at contact locations. Global rift line compaction [Akers70]
removes the excess space between the locally compacted partitions. The
order dependency for the execution time of the composite algorithm is

approximately O(n¥/%).

1.2.2.4. MULGA

The MULGA system from Bell Telephone Laboratories provides a compac-
tion capability which diflers from other relative-grici layout systems. It uses
a virtual grid to perform compaction of the symbolic layout. This virtual
grid combines the ideas of both the fixed and relative-gr{d approaches to IC
layout. Symbols are placed at grid locations, as in fixed-grid layout. The
spacing between grid rows and columns is adjusted and takes on a real value,
dependent on the actual spacing required by objects on each row. Individual
rows and columns may have a unique spacing, so the grid spacing is non-
uniform. Given the non-uniformity of the grid, there is no area penaity when
two adjacent objects have a required spacing smaller than the worst-case
layout rule. The resulting compacted layout is more dense than could be
attained with fixed-grid layout but generally not as dense as in a compaction
with a true relative-grid compaction method. Objects that are originally

placed on a single row or column in the grid will remain on that row or
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column throughout the compaction, whether they are physically connected
or not. In a relative-grid system, this restriction is not made and objects
that are not physically ‘con.nected may move relative to one another to

achieve a more compact final resuit.

1.3. Program Characteristics

Python can perform hierarchical compaction of IC designs, through use
of a hierarchical database for storage of the symbolic IC layouts and the use
of abstractions of cell layouts. Spacing rules between mask layers in the IC
process are specified in an ASCII file. The program uses these spacing rules
to determine the minimum allowable distance between elements. All inter-
connections must be orthogonal. To allow technology and IC family indepen-
dence the compaction is performed on interconnected protection frames.‘
Protection frames are an abstraction of a cell, They reduce the amount of
data needed at each level in the hierarchy. These frames may be of arbi-
trary orthogonal polygon shape. For each symbol, a set of frames is allowed

on each mask layer in the IC process.

1.3.1. MFB - An Exercise in Terminal Independent Graphics

In preparation for the work on Python, a terminal-independent graphics
package was co-written with the author of Haowk. MFB, a Model Frame
Buffer, is a database approach to terminal independent graphics. An ASCII
file contains descriptions of the capabilities of graphics terminals which
implement a predefined standard set of graphical functions. An example
capability definition is the string 'GCS=E*dA’, which defines the sequence for
Graphics Clear Screen as '~[*dA’. The qualification of a terminal includes
many of these definitions, and the predefined capabilities are a part of the
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definition of the model frame buffer. Not all video terminals will have a full
set of capabilities for example, black and- white graphics terminals do not

have a video lookup table for color mapping.

There are two levels within the program package. A set of low level rou-
tines communicates with the ASCII database file and retrieves and parses the
capabilities for a desired terminal specified within the file. A second level of
routines executes primitive operations such as SetColor, Drawline, atc., and
provides a graphical interface to the high-level applications program which is
using MFB.

MFB requires that the high-level application program make its requests
to the graphics interface based on the presence or absence of certain capa-
bilities. For example, setting the color to blue on a black and white terminal
would produce unpredictable results! If the high-level application program is
to be truly graphics terminal independent, it must map its function onto the
capabilities present in the many graphics terminals on which it may be used.

MFB is used by both the KIC [KellerB1] and the Hawk graphics editors
and fulfills its purpose in providing terminal independent graphics editing.
See Appendices B and C for more detailed descriptions of the routines used

in MFB.



CHAPTER 2

Compaction Algorithms

2.1. Cabbage

2.1.1. Introduction

The CABBAGE program was designed to work with an NMOS polysilicon
gate integrated circuit process and is described in detail in [Hsueh79]. After
a brief overview of how the program is used, this chapter describes the capa-
bilities and limitations of CABBAGE. Enhancements necessary to make a use-
ful production system are described, and the concepts of protaction frames
and terminal frames are introduced in order to accomplish the implementa-

tion of the Python program.

In a typical design session the engineer can lay out an NMOS cell using
the GRLIC graphics editor and the symbolic layout is saved in an intermedi-
ate flle. The PRSLI/ compactor reads this symbolic intermediate format and
represents the physical topology of the cell with vertices and edges of a
graph. The vertices of the graph represent the positions of electrically con-
nected subgroups of objects within the cell and the edges of the graph
represent the minimum required separation between groups that is imposed
by the integrated circuit layout rules. Solution of the longest path through
this graph using the Critical Path Method (CPM) [Thesen?78] yields a minimal
area for the entire cell while satisfying ail of the layout rules. The com-
pacted form is saved in the same intermediate form that was produced by

the graphics editor GRLIC. Thus the designer is able to re-edit the com-

211 ' 14
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pacted version of his cell, make topological changes which allow anot.h.er
compaction step with the PRSLI program and perhaps obtain a better result.
Interaction between the &esigner and the computer in this fashion minimizes
much of the tedium involved in IC layout. The conputer programs allow the
designer to focus on the higher-level topological plicement considerations of
the layout process without requiring explicit attexstion to the exact spacing

requirements between objects being placed.

2.1.2. Capabilities and Limitations of the System

The primitive objects, or symbols, available in the CABBAGE program

« Enhancement transistors
¢ Depletion transistors

» Diffusion-metal contacts

s Polysilicon-metal contacts
e Buried contacts

s Butting contacts.

The transistors are polysilicon-gate and there is a tingle layer of metal avail-
able for interconnections. An active-area mask is defined to complete the
implementation of approximately 60 layout rules A single bounding rec-
tangular polygon surrounds the cell. This rectangle is user-defined on
another defined mask called RUNX. Each point gructure (transistor, con-

tact, afc.) is allowed only one interconnection point per side.

The construction of the NMOS primitives that CABBAGE uses are encoded
directly into the program. This means that thereis a special-purpose sub-
routine for transistors, one for contacts, and oxe for lines. In order to
change the characteristics of the primitives, suwch as the polysilicon or
diffusion extensions in a transistor, it is necessary to change some numbers

in these special-purpose subroutines and to recompile the program. To

[ 4
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extend CABBAGE to other IC technologies, it is necessary to write these
special-purpose subroutir;gs that understand the construction of each primi-
tive in the target technology. This requires an intimate knowledge of the
CABBAGE program itself.

The spacing analysis in CABBAGE is performed separately in both the X
and Y directions. This separation is used for ease of implementation and for
efficiency of the compaction algorithms since most IC geometry is orthogo-
pal. Since the analysis is decoupled, the compaction process consists of
elternating compactions in each axis direction. Iteration is required since
spacing rules in the direction perpendicular to compaction are ignored and
design-rule violations may be generated in this direction. In order to guaran-
tee a legally spaced layout, successive iterations in the two axis directions
are required until convergence is acheived (no elements change position
relative to one another) in both directions. Only then is the resulting layout

guaranteed to meet all spacing rules.

In order to preserve electrical connectivity and in order to minimize the
amount of memory required by the program, CABBAGE recognizes groups of
topologically connected elements which share a common centerline in one or
the other directions of compaction. Tﬁese groups move as a unit and this

keeps the electrical {connectivity) properties of the circuit correct.

CABBAGE uses the vertices of a graph to represent the locations of the
groups of primitives and the locations of the lines interconnecting them.
Edg'es are added to the graph to represent the minimum spacing require-
ment between groups. This minimum required spacing is found by tracing
the right side of a primary group (P) and comparing it with the left side of a
neighbor group (N) which is to the right of the primary group (See Fig. 2.1).
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Fg. 2.1 X Graph Primary and Neighbor Edges of Two Elements
Each primary edge segment, or interval, is compared to each neighbor inter-
val. The two intervals which generate the maximum spacing requirement
determine the minimum auovfable spacing between the two groups. The
reference points for each group and the analysis routines are designed to
ensure that the generated graph is a single-source, single-sink; acyclic

digraph [Hsueh79].

Once the entire constraint graph with edges representing the spacing
requirements has been generated, the Critical Path Method [Thesen?8] (also
referred to as the PERT method) is used to solve for the longest path from
the graph source to graph sink. This step determines the positions of the

centerlines of all groups.

An additional capability in CABBAGE is the ability to automatically insert
jog points into appropriate interconnect lines in the IC layout. A byproduct
of the longest pal;.h analysis can be used to determine a ‘torque’ on each
interconnect line perpendicular to the direction of compaction. The lines

which have greatest torque are then jogged. To maximize the effectiveness

([
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of the inserted jog, it is necessary to examine the geometry surrounding the
line which is to be jogged and insert the jog where it will allow the greatest
area savings upon subsequent compactions. CABBAGE does not do this.

CABBAGE was one of the first IC layout programs to use a relative-grid
symbolic approach. Although the general concepts of symbolic layout have
been in use for many years, e. g. [Larsen71], CABBAGE was one of the first
layout compaction programs to use symbolic representations of the primi-
tive devices available in a semicondutor process rather than symbolic
representations for separate mask geometries. It is this difference which

allows CABBAGE to compact layouts efficiently.

2.2. Desdired Enhancements A major limitation of the CABBAGE system is
the absence of a true hierarchy. With the order dependencies of the algo-
rithms used in CABBAGE greater than linear, the computation time neces-
sary for compaction of cells soon becomes impractical as the size of the cells
increases. Although CABBAGE is extremely fast for the compaction of small,
lower-level cells, the compaction of an entire IC design is almost impossible.
An example of a 1500 transistor IC designed with CABBAGE [Hurt82] took
several CPU hours for the complete compaction of the entire design on a VAX
11/780 32 bit minicomputer running the VAX/VMS operating system. Since
the design was composed of only 20-30 cells, the use of true hierarchy might
have reduced substantially the total compaction time.

A second desired enhancement is the ability to have more than one
interconnect line per side of an object. CABBAGE requires each interconnect
line to termminate on the exact center of the object to which it is connected
for purposes of determining electrical connectivity. This has the effect of

limiting the interconnections to primitives to a single connection per side. If
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the use of a hierarchy is to be effective, it is necessary to allow many inter-
connection lines per side of a higher level cell, such as an ALU or register

file.

A compaction program should also store connectivity information in the
description of the IC layout. This facilitates having multiple interconnections
per side of each object, since they are no longer required to terminate on

the exact center to specify the electrical connectivity.

Since lines will no longer be required to terminate on the center of the
objects to which they connect, sliding contacts are a natural extension of the
concept of terminals. If a line is allowed to connect to an object within a
specified range along the side of the cell, the compaction program has more
flexibility to arrange the interconnect and can potentially obtain a more
compact final result (See Fig. 2.2).

Another logical extension to the hierarchy of cells is to allow cells to

have complex shapes. To keep the program efficient, these shapes can be

XN N

Fig. 2.2 Sliding Contacts an the Boundary of a Cell
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restricted to rectangular polygons. Polygons are more general than bound-
ing boxes, and allow compaction of odd shaped cells to obtain more optimal
compaction results. At the same time, they can provide a method for rout-

ing over or through cells providing the geometry within the cell permits it.

Technology and process independence is also an important requiremgnt
for a general purpose compaction program. Technology independence
implies that the program is easy to extend to new IC technologies, rather
than being limited to a single technology. This calls for a general model for
compaction which pays little or no regard to geometric construction of the
devices which are primitives in a specific IC technology. Process indepen-
dence implies abstraction of the specification of the spacing rules used by
the program. Over the life of an IC technology, the spacing rules associated
with the" process will change many times and the compaction program must
allow such updates in spacing rules to be made easily, with a minimal impact
on the IC designs already entered into symbolic form.

It is also necessary to allow user constraints, both fixed and relative.
Fixed constraints fix the size of an object, such as an interconnect line. Rela-
tive constraints fix the relative positions of two or more objects. An example
of the need for these capabilities is found in standard cell design, where the

pitch of cells and the location of busses within the cells are rigidly specified.

The increased extent of the information necessary for representation of
the IC layout and related symbolic information calls for a comprehensive and
eflicient unified IC database. This database must be capable of storing logic
information, such as electrical connectivity, as well as physical information,
such as the geometric properties of a given cell. There must be a mechar-

ism for storing information of a higher level, e.g. simulator modelling data, to
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make thedatabase general enough to be used by a large suite of IC CAD
tools. At:the same time, the database must be specific enough to the prob-
lems associated with the storage of IC data to be more efficient than a gen-

eral purpose database molded for use with ICs.

The last requirement for a useful compaction program is a powerful
graphics input editor. This editor must be capable of quick layout and edit-
ing of the symbolic designs, as well as providing an interface to the auxiliary

tools, such as the spacing program.

2.3. New Concepts in Python

In order to enhance the capabilities of CABBAGE, it is necessary to intro-
duce some new concepts. These concepts are protection frames and termi-
nal frames and they are required to augment the symbolic representation in
order to make it process and technology independent. Once the symbolic
model is sufficient to allow a more general spacing process, the spacing algo-
rithms must be modified to accomodate more general shapes and to allow
more flexible constraints to be used in the spacing process. The scope of
these changes is described at the end of this chapter. Some important
issues which have been bypassed in Python are described in detail.

2.8.1. Protection Frames

Protection frames are used to define the limits of the geometry con-
tained within a cell - to 'protect’ all of the geometry contained inside them.
The only rule concerning protection frames as used here is that no geometry
appear outside its protection frame. Given this single restriction, there are

many valid interpretations of frames.
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On the simplest level, a single boundihg box could be used (See Figs 2.3
and 2.4 for illustrations of bounding box protection frames). Although the
derivation of this box is easy and eflficient, it dees not provide a true
representation of the internal geometries it bounds. Quite large unused

areas within the cell are possibly 'invisible’ outside the cell (the area dep-

Fig. 2.3 Geometry of Cell

Cell Geometry

.
.

Bounding Boxg

Fig. 2.4 Geometry of Cell with Simple Bounding Box
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icted in Fig. 2.5).

The bounding box model of protection frames can be extended by mak-
Ing a separate bounding box for each mask layer in the IC process (Fig 2.6).
Since the limits of each layer are most likely different, less. unused area

within the cell is 'invisible’ outside the cell.
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Fig. 2.5 'Invisible' Areas Within Bounding Box

Fig. 2.8 Cell Geometry with Per-layer Bounding Rectangles
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Per-layer sets of bounding rectangular polygons form the basis of pro-
bect.ioﬁ frames as used in Python (Fig. 2.7). These allow an arbitrary tradeofl
between spacing eflicency and computational efficency. The closer a frame
approximates a bounding box, the smaller the amount of information neces-
sary to process to correctly space that frame. This will mean less computer
time for spacing the frame. It will also mean the greatest area loss (barring
a bounding box bigger than the actual cell geometry). On the other extreme,
merging the geometry internal to the cell to form the protection frames will
provide the greatest area efficiency, since all of the unused area within the
cell may be used at the next level in the hierarchy. This approach reduces
the effectiveness of the hierarchy however, since the amount of information
contained in these merged protection frames is roughly comparable to exa-
mining all of the interior geomtries individually. The only gain remaining at

this point would be due to multiple instances of the same cell.

Fig. 2.7 Protection irames as used in Python
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Protection frames define 'inviolate' regions. Thus it makes no sense to
allow geometries to be :larger than their protection fnames. The reverse
argument is not as obvious. The frames may be larger than the geometries

within them.

Layout rules may be included in the protection frames [Lock82]. It is
not only guaranteed that no geometry appears outside the frame but it is
also jguaranteed that geometry will not appear within one half of the max-
imum rule inside of the frame as well (Fig. 2.8). This has a few advantages,
such as reducing the computation necessary to detect situations where there
i8 no possibility of conflict between cells. This methed taken as a whole, how-

ever, is quite cumbersome.

It protection frames were generated for each combination of mask

2 - )

2

frames, where m is the number of masks. Multiplied over the number of

layers with a spacing rule, there could be as many as protection

Fig. 2.8 Protection Frames With Rule
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cells likely to appear in even m modest chip design, the amount of data

storage required becomes very large.

The alternate approach is to include the worst case design rule (the
maximum of the layer-to-layer spacing rules) and have only one protection
frame for the geometry on each layer. Thus, we would have a maximum of m
protection frames for each cell, with a corresponding reduction in data
storage. Having only one such protection frame will not produce the best
compaction unless all of the spacing rules are equal.

An additional problem with including spacing rules in the protection
frames occurs when the spacing rules must be changed. All protection
frames of all cells must then be recomputed. If the spacing rules had not
been included, a simple spacing rule matrix could have been changed and

the same information would now be available to use with all of the cells.

Thus the interpretation of protection frames without spacing rule is
better. Only one set of frames is required for each mask layer in the IC pro-
cess. An auxiliary set of spacing rules is used to determine conflicts between
cells. If the spacing rules change, the protection frames remain unchanged.

2.3.2. Terminal Frames

These complement protection frames and define allowable areas of
interconnection within the protection rames. One of the key differences
between Python and CABBAGE is this idea of terminal connections that are
ereas instead of points. Rather than requiring a connection at the exact
center of a point structure such as a contact, the entire contact area is suit-
able for termination of the interconnecting line. The connection is limited so
that the line always remains within the boundaries of the terminal frame.

Thus if a line is the same width as its terminal frame, the eflect is the same
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as the point terminals in CABBAGE. If, however, the terminal frame is wider
than the interconnect line, the interconnect can move between two con-
straints. This movement allows a spacing program to take maximum advan-
tage of the instances and interconnections on the most constraining path

through the IC geometry to obtain the most area efficient spacing solution.

There are two major restrictions on terminal frames. First, they must
have at least one edge coincident with a protection frame edge. With the
definition of protection frames presented above, it is not possible for a termi-
nal frame to exist outside a protection frame (See Fig 2.9). To permit this
would allow connection to a terminal at a point where there could not possi-
bly exist geometries since frames define ‘inviolate’ areas on mask layers. On
the other hand, having the terminal frame entirely within the boundaries of
its protection frame would require interconnect to cross the 'inviolate’ area
of the frame (See Fig. 2.10). This is in violation of the restrict.io.hs placed on

protection frames. So terminal frames must share at least part of one edge
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Fig. 210 Routing to an Isolated Terminal Frame
with a protection frame to permit external connections to the cell. They
may have many edges in common. Objects such as contacts have protection
frames and terminal frames that are entirely coincident. An interconnect

line may connect to a contact from any one of four sides.

More than one interconnection line may terminate on the same terminal
frame. There is no restriction to the total number of interconnections on
each terminal frame or even the number of interconnections per side of the
terminal frame. However, each interconnect line must end in a terminal
frame. This is a convention used to simplif}f the treatment of interconnec-

tions, and is not directly related to their nature.

2.3.3. Hierarchical Spacing Using Protection and Terminal Frames

These two simple concepts of protection and terminal frames together
provide the basis for a true hierarchical spacing. As each cell is designed,
the elements within the cell are spaced according to the layout spacing rules

by Python. After each cell is properly spaced, protection frames are
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automatically generated from the geometry internal to the cell. This is done
only once, and the protection frames are stored with the cell. The terminal
frames are defined explicitly by the user, who labels the signals which are to
be exported to the next level in the hierarchy. The geometry that imple-
ments these electrical nets defines the physical implementation of the termi-
nal frames. Alternatively, the user can define local terminals when laying
out his cell. These terminals can automatically be used as terminal frames.

After the terminal frames and protection frames have been esteblished
for a cell, the cell can be placed at the next level in the hierarchy. The spac-
ing program only need look at the protection frames of the cell at that level

and need never look at the geometries contained within the cell.

The use of protection frames with terminal frames is intended for a
bottom-up implementation style with Python. A top-down design style may
require additional tools such as interconnect routers. If a cell is placed in its
unspaced (original input) form and later compacted, the old terminal loca-
tions of the cell may not be at the same locations as the new terminals. The
interconnections to the instances of the cell may require patching to physi-
cally connect to the now smaller cell (See Fig. 2.11). In the example shown,
spacing of the cell yields a cell that is much smaller than the original. Most
of the interconnect lines that terminated on the cell now are left uncon-
nected. Three possibilities exist to maintain the physical implementation of
the lines connecting to the instances. Since the order of the terminals along
any given side of an instance is unchanged (Python does not re-arrange the
topology of the layout) a simple program can be used to patch the old termi-
nal locations to the new ones, adding jogs in the interconnection lines if

necessary. This tool does not have to concern itself with proper spacing of
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Fig. 2.11 Top-Down Implementation Before and After Spacing
the new lines; Python can resolve any design-rule violations when compacting
the cell containing the newly compacted instance. Alternatively, a machine-
based routing program or a human designer can patch the interconnections
back to the proper terminals in the cell to restore the electrical connections

(See Fig. 2.12). Over multiple levels of the hierarchy of a complete IC design,

Fig. 2.12 Interconnect Patched to Cell of Fig. 2.11
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hand correction of this problem would make the top down design approach
intractable. Allowing Python to correct for any design-rule violations pro-

duced removes any difficulty associated with a top-down implementation.

An even more serious problem exists if the result of the spacing of a cell
instance is larger than the original cell (See Fig. 2.13). At this point, the
interconnect lines are violating the protection frames of the cell and must be
moved out to properly connect to the cell. There may not be enough space
to accomodate the expanded cell. A spacing of the current level in the
hierarchy may be necessa;ry in order to satisfy all design rules. Since this
will expand the current level of the hierarchy, this single cell expansion
could .r'ipple up the entire hierarchy to the top chip level. Conceivably,
change in a single low level inverter cell could require the re-spacing of the

entire IC unless precautions are taken during the top-down design phase.

I Protection
Frame

! Violation

Fig. 2.13 Cell Which Grows - Before and After Spacing
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2.3.4. :Overview of Python

Python is based on the original CABBAGE program. It includes most of
the enhancements described above. It uses the general concepts of
representing the circuit topology with a graph and solving a longest path
problem through the graph to space the IC elements. However, the mapping
of the IC topology onto the graph and the algorithm used to solve the longest
path through the graph are quite different from the CPM method used in
CABBAGE. Some items specific to the Python program are:

« Arbitrary Complexity Polygon Protection Frames (A set per mask layer)
» Terminal Areas (Frames)

« Box (only) Terminal Frames

« Constraint Edges with Upper and Lower Bounds

The specific implementation of the Python algorithms is described in the fol-

lowing chapter.



CHAPTER 3

Python

3.1. Python as a Part of an IC Design System

While Python can be used as a stand-alone utility, it is designed to be
incorporated as an integral part of a complete design system. To communi-
cate with other tools in this design system, a comprehensive database'is
necessary, capable of efficiently representing and managing the information
required for the symbolic design of integrated circuit layouts. Several
unique types of information are required for the spacing process performed
by Python. Electrical circuit connectivity must be known to distinguish
between objects that are physically tied together (expressing an electrical
connection) and objects that are merely touching or overlapping (perhaps in
violation of a layout spacing rule). The geometric construction of cells is also
required and provides the means for determining the minimum allowable
separation between objects with a given set of layout spacing rules. The phy-
sical placement of the cells relative to one another establishes a precedence
in the topology of the circuit. The remainder of this section describes the

environment in which Python resides and the other programs that it uses.

3.1.1. The Squid Database

The Squid database {Keller82] provides a general framework to support
the requirements of Python as well as other layout programs. At the same
time, Squid is tailored for the representation of integrated circuit data so as

to allow eflicient management of this information.
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Squid provides a procedural interface to a general-purpose file system
where different views, or representations, of a circuit are stored. It allows
an application program, such as Python, to create, alter, and delete these
views, as well as create, alter, and delete logic and geometric information
within individual views. The many Squid operations used by Python are
described in Section 3.2.2. This section describes the transformation of the

symbolic data from the database into the Python internal format.

3.1.2. The Fang Manhattan Polygon Package

As described earlier, protection frames and terminal framses provide
the basis for a true hierarchy in the spacing system. It is important that
these frames can be generated automatically. If the user were required to
specify these frames, iterations on the design of a single cell would require
respecification by the designer of the protection and terminal frames and
such a process would be error-prone as well as tedious. The fang program
[MooreB82] is a Manhattan polygon package which can be used to generate
automatically protection and terminal frames through a sequence of grow,
merge, and shrink operations on the individual mask geometries. Python
also uses Fang to remove any overlaps which might be present in protection
frames retrieved from the Squid database. Such overlaps would prevent a

legal circuit spacing from being generated.

3.1.3. The Hawk Graphics Editor

With the ability to represent comprehensive symbolic information in the
Squid database, this information must be entered into the database graphi-
cally or under program control. In CABBAGE, the GRLIC program is a graph-
ics editor which provides rudimentary graphics entry and editing capabilities
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of the symbolic primitives. For Python, a more powerful entry system is
required, both to provide«\the basis for a system that is more useful in a pro-
duction sense, and to allow the designer to exploit the added enhancements
in Python. In addition, this entry system should provide a clean, simple
interface to the spacing program, shielding the designer from the tedious
parts of the spacing process.

The Hawk graphics editor [Keller82] is the front-end for Python. It has

many powerful features which ease layout for designers.
3.2. Algorithms Used in Python

3.2.1. General Overview

Python properly spaces interconnected cells which represent the mask

o topology of an IC. This spacing is a process of shrinking or expanding the

lengths of the interconnection lines between these cell instances to obtain a
minimum area for the entire layout. Electrical connectivity is preserved at
all times. The semiconductor process defines a set of spacing rules
(minimum spacings between mask layers) which are used to determine the
minimum allowable separation between cells. Each cell instance is
represented by a set of protection frames and terminal frames on many
mask layers. At the lowest level, the actual mask geometries of the primi-
tives will define their protection and terminal frames. Additional frames may
be introduced to express more complex design rules (such as transistor
active area to active area spacing in an NMOS process). At higher levels in
the hierarchy, the protection frames and terminal frames are generated to
preduce the optimum computation time/area saving tradeoffs. The widths of

interconnections are also taken into account during the spacing process.
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Taken as a whole, this guarantees a compacted layout which satisfies all
spacing rules for a given process, and which occupies a minimal amount of

area given the latter constraint.

The spacing process is decoupled into separate problems for the X and Y
directions. This allows the program to use the orthogonal structure of the
instances and lines to best advantage. One point worth noting is that this
decoupling introduces the possibility of the minimal area derived by the pro-
gram being a local minimum, and larger than the global minimum area. In
CABBAGE, this eflect was often observed. Also, the initial direction of spacing
hes a large eflect on the aspect ratio of the final layout. That is, an initial X
spacing might yield a tall narrow cell whereas an initial Y spacing would yield

a short wide cell.

For each spacing direction, each instance and interconnect line is
represented by two vertices in a graph, which represent the coordinate posi-
tions of the lower and upper sides of the bounding box surrounding each
instance and line. This bounding box is for use as a reference only and has
no bearing on the complexity or number of protection frames used within
each instance. Edges in the graph have upper and lower bounds, which
represent the smallest and largest distances (orthogonal distances because
of the decoupling into X and Y graphs) respectively between the locations
represented by its source and sink vertices. Edges are added to each graph
to preserve the shape of the instances and width of the lines. Additional
edges are added to preserve the electrical connectivity. Next, edges are
added between vertices in each graph to indicate the spacing requirements
between two objects. The result is a complete constraint graph, with vertices

corresponding to the physical locations of the instances and lines, and with
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edges corresponding to the spacing constraints necessary to preserve shape
and electrical connectivity, as well as keeping objects spaced apart by the
proper spacing rule. Figﬁre 3.1 shows the edges and vertices for the graph
that is generated for a single object. The source and the sink of the graph
are global.

This graph is now processed using a modified Critical Path Method (CPM)
algorithm. Finding the longest path from the source of the graph (lower
edge of the topology) to the sink (upper edge of topology) yields the spacing
rule correct positions of the vertices of the graph (and hence the instances
and lines they represent). This method itself is iterative at two levels. The
modified CPM algorithm is iterative, requiring as many iterations as the
number of vertices in the graph in the worst case. Since the spacing process
is decoupled into separate X and Y spacings, layout rules may be violated
during a spacing in the direction perpendicular to the spacing. Thus, it is

also necessary to iterate between X and Y spacings until no instance moves

H Y Sink
)k (Weights are min/max)

I g
Y Source W

Fig. 3.1 Edges and Vertices for a Single Cell
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for both an X and Y spacing. Only then is a completely error-free layout
guaranteed. Changes during a spacing iteration may change the spacing
requirements in the perpendicular direction. This requires that the edges

used to express spacing constraints be recomputed during each iteration.

The algorithms in Python are derived from those used in CABBAGE. The
graph representation of the topology is slightly different, due to the intro-
duction of sliding contacts and polygonal protection frames. The spacing
rule analysis is performed on an edge-segment by edge-segment basis,
rather than on an object-by-object basis, as is done in CABBAGE. This is
necessary because of the complex shapes that protection frames can have.
The longest path analysis is modified to allow mazimum constraints, as well
as the minirnum constraints generated in CABBAGE. The minimum con-
straints represent the minimum allowable spacing imposed by the spacing
rules. The maximum constraints are used to preserve electrical connec-
tivity, and to preserve the shape of objects. The modifications to the longest
path algorithm make it iterative in nature, in contrast to the Critical Path
Method used in CABBAGE which is a single-pass algorithm.

The specific algorithms used in each subsection of the program are
described below. The Python program is divided into 5 major subsections.

They are Readin, Buildgraph, Sranalyze, Lngpth, and Update subsections.

8.2.2. Transforming Data into Internal Form

The Readin phase of the program transforms the symbolic IC data from
the Squid database into the internal data structures used by Python. Each
cell within Squid is described by several views, or representations of the cell.
The view from which the layout geometric information is read is termed the

input view, and the view where the spaced layout is stored is termed the

ty



3.2.2 39

output view. The input view is opened for reading only, and copied to the out-
put view. The output view is then opened for reading, and the input data is
read from the output view. This is necessary to facilitate update at the end
of the spacing process. The only coordinates that will be updated are the
locations of instances and the paths of interconnect lines. An instance gen-
erator returns a different instance each time it is envoked, until all instances
have been returned. Each instance is opened in turn for reading. Squid
reads each cell type only once, and successive opens of the same cell return

immediately.

Next, a spe_cial generator is invoked to read in all of the interconnect
local to the cell being spaced. The only legal geometry for representing
interconnect is the geometry-type line. Each line has a mask layer associ-
ated with it. 1f the mask layer of a line has no spacing rules to any other
layer (including itself), the line is ignored, since no constraints will ever be
generated because of it. The orientation of the line is considered next. The
line must be either horizontal or vertical to work with the spacing algorithms
used in Python. Also, Python requires each interconnect line to be a single
segment joining two instances. This requires that special instances be
created to jog wires. Each line has four intervals created for it. Intervals
are edge segments which represent the bounding-box edges of the line. One
interval is created for each edge of the bounding box. These i.ﬁtervals con-
tain the mask layer of the line, as well as a net-id which defines the electrical
net to which the interconnect belongs. They are used for spacing rule
analysis. The vertical intervals are used in the X spacing analysis and the

horizontal intervals are used in the Y spacing analysis.
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The same special generator used above to generate the interconnect is
now invoked to generate protectiod frames and terminal frames both local to
the cell being spaced and local to each instance within the cell. Instances
are also specified with a bounding box and, like lines, they have intervals for
each side of the bounding box. The difference is that instances contain
polygonal protection frames on many mask layers. E;aeh interval represents
an edge of one of these polygons. Squid currently maintains the polygon pro-
tection frames as rectangles within the database. Each rectangle is decom-
posed into four intervals, which are labelled with the mask number and given
a NULL nat-id (which indicates no connection to any net). As for the case of
lines above, the horizontal and vertical intervals are kept separate for use in

the decoupled spacing analyses.

Terminals are generated in the same step as protection frames. They
too are represented with a bounding box. but have no intervals created since
they are not used directly in the spacing analyses. Each terminal has an
associated mask layer and net-id and points back to the instance to which
the terminal belongs. If the net<d of a terminal is NULL, it means the termi-
nal is 'floating’ (not connected to any line) and it is ignored. As the terminals
and protection frames are generated by Squid in a depth-first fashion, transi-
tions from instance to instance are detected. It is at this point that a new
internal form is generated for the instance and all successive protection
frames and terminal frames are owned by this instance until the next transi-

tion occurs.

After all instances and lines have been read, some conditioning is neces-
sary before the analysis can proceed. There may be overlaps between the

polygonal protection frame edges since they are represented in Squid with
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rectangles. The Fang [Moore82] polygon package is used to remove any such
overlaps, generating true polygons for the protection frames. At the same
time, Fang determines the contour of the corners of the intervals. This infor-
mation is necessary to properly handle corner-to-corner constraints in the
spacing rule analysis.

Bach interval has a net-id associated with it. For each interval, all asso-
ciated terminals are checked to see if they share a common edge. If so, the
part of the interval which overlaps the terminal is split from the rest of the
interval and labelled with the net-id of the terminal. Using net-ids with inter-
vals allows the spacing rule analyzer to ignore rules between intervals on the
same mask layer with the same net-<id. Although a constraint muét be added
to keep the topology of the circuit from changing, the value of the constraint

is adjusted to allow the two intervals to touch.

Intervals must have their coordinates 'speciﬁed relative to the bounding
box edges of the instance to which they belong. This removes the need to
update the interval coordinates since they will always be correct. Even lines,
which change length, will always have the correct values for their interval
coordinates since the endpoints of the intervals along the length of a line are

expressed relative to the endpoints of the line itself.

3.2.3. Xand Y Graph Construction

During the Buildgroph phase of the program, the ‘permanent’ parts of
the X and Y graphs are constructed. These are the parts which are static
through the iterative X and Y spacings. The vertices which represent the
locations of the 4 edges of the bounding box for each instance or line do not
change. The edges added to preserve shape, width, and electrical connec-

tivity, are also invariant. These parts provide the basis for the constraint
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graphs.

The Readin phase created lists of instances, lines, and terminals. Termi-
nals contribute no vertices to the graph but are used to determine the upper
and lower bounds of the edges added between instances and the lines con-
necting to them. Since the terminals are areas instead of points, any line
whose width is smaller than the terminal to which it connects generates an
edge with different upper and lower bounds. The provision of these 'sliding
interconnects', which can connect to a terminal within a range of positions,
allows the spacing program to take advantage of non-critical coanection
points and achieve a smaller overall size for the integrated circuit. For each
instance, two vertices are allocated in each of the graphs. In the X graph, an
edge is added between the right and left vertices with the same upper and
lower bound, which is the width of the bounding box. This also occurs in the
Y graph, between the bottom and top vertices. Now the bounding box of the
instance will maintain its shape during the spacing process. Note that a sin-
gle vertex in each graph would have been sufficient to represent the
instance, since its shape will not change. Two vertices were added since they
are necessary for lines, and it was desired to treat lines and instances in a

consist manner in the constraint graph.

A line requires two vertices in each of the X and Y graphs because its
endpoints can move independent of one another. The shrinking and growing
of interconnect lines along their length provides the compaction - instances
only change their location, they do not change their shape. Note that three
vertices spread between two graphs would be sufficient to represent lines
since either the X values are always equal (vertical lines) or the Y values are
always equal (horizontal lines). Two vertices were used in each graph,
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instead of two in one and one in the other, so that the algorithms need not
consider the orientation of lines. The edges of a line are expanded to include
the width of the line by the time spacing rule analysis has been performed.
To maintain the orthogonal nature of the lines, an edge is added between the
vertices of the line in the graph perendicular to the orientation of the line.
This edge has fixed and equal upper and lower bounds equal to the width of
the line. It would not be necessary if three vertices were used to represent
the line instead of four but simplicity of the algorithms was deemed more

important than saving a small amount of space.

Each line has an additional edge added between its vertices in the graph
parallel to its orientation. This edge has a lower bound of zero and an upper
bound of infinity and serves to keep the upper coordinate (in the axis parallel
to its orientation) greater than or equal to the lower coordinate. The idea of
coverage (described in Section 3.2.4) will not work if the topology of the sym-
bolic IC can change. One possible change occurs when a line ‘changes polar-
ity’, i. e., the length of the line defined as the upper coordinate minus the
lower coordinate becomes negative. Since this would destroy the integrity of
the spacing process it is forbidden. Addition of this edge with zero lower
bound and infinite upper bound keeps the line lengths greater than or equal

to zero.

Edges are now added to the graphs to preserve electrical connectivity
between instances and the lines which interconnect them. Terminals,
although not directly represented in the constraint graphs, determine the
upper and lower bounds of the edges which bind instances and their lines
together. The terminals and lines are individually sorted into their respec-
tive lists by net-id. Each terminal is compared only with lines of the same
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net-id to prevent the O(n?) time complexity that would occur if each termi-
nal were checked against each other line. There will still be a problem with
global signals, which are likely to have many terminals and lines in the same
net. Examples of this are VDD, GND, and CLK signals in an integrated circuit.

Terminals which are checked against lines are compared to see if either
of the line's endpoints is contained within the terminal. If one or the other
endpoint is contained within the terminal, two constraint edges are added,
one to each of the graphs. This fixes the vertices representing the instance
of the terminal to the vertices representing the endpoint of the line con-
tained within the terminal. Since the terminals are area frames rather than
points, the edge added to the graph perpendicular to the line orientation is
given some 'slop’, by means of different, but finite, lower and upper bounds
on the constraint. These bounds are fixed to allow the lower edge of the line
to drop as far as to coincide with the lower edge of the terminal frame and to
allow the upper edge of the line to rise far enough as to coincide with the
upper edge of the terminal frame. Obviously, the smallest width a terminal
frame can have is the width of the line that is connected to it. In this case,
these upper and lower bounds would be equal and the interconnect line would

be coupled rigidly with the instance of the terminal.

The graph parallel to the orientation of the line has an edge added to it
to fix the endpoint of the line to the edge of the terminal frame with which it
intersects. This edge is added to prevent terminals frames from merging.
Objects should be allowed to merge, but this is a subject which needs exten-
sive algorithmic development for the compaction model used in Python

before a suitable method can be determined.
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Two additional points should be noted about terminals. First, more than
one line may end on a single terminal. This will not cause any problems
unless the sum of the widihs of the wires is greater than the width of the ter-
minal. In the latter case, an overconstraining condition will be generated
and the layout cannot be spaced correctly. The second point worthy of note
is that the two or more linés enﬁin.g on a single terminal do not have to enter
from a single side if the protection frames will permit entry from multiple
sides. A clear example of this is a contact between two mask layers. In a
contact, the protection frame and the terminal frame coincide on all four
edges. Assuming the two mask layers may overlap in an arbitrary fashion
without violating layout rules (such as for polysilicon and metal in an NMOS
‘process).—' there may be lines entering the terminal from all four sides on

each mask layer.

At this point, all of the vertices for instances and lines have been
created and all of the edges for preserving instance shape, line width, line
length (greater than or equal to zero), and electrical connectivity have been
added to these vertices. This constitutes the complete 'permanent’ portion
of the graph. All of these parts will rernain unchanged throughout the itera-
tions of spacing rule analyses and the determination of the longest path. The
only parts to be added are the edges which express minimum spacing
requirements between objects. These edges must be generated before each
iteration. The reason for this is that movement of an instance or line in one
direction disturbs the edges added for spacing in the perpendicular direc-
tion. Therefore, before each iteration, the graphs must be returned to the
'permanent’ state and the spacing rule analysis will add edges for the
current iteration. Notation is made of this 'permanent’ state immediately

after the graph is constructed. This makes the process of returning the
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graph to the proper state very fast.

The last thing done in the Fuildgraph subsection is to generate the two
interval queues that will be used in the spa.cing rule analysis. Since the
interval coordinates are expressed relative to the appropriate bounding box
edges of their instance or line, it is not necessary during the iterative loop of
spacing rule analyses and longest path solutions to update the intervals coor-
dinates. This is true for instances, which only change location, and it is also

true for lines, which change shape (length) as well as changing location.

Now the information has been generated to allow the iterative loop of

spacing rule analysis followed by longest path solution to be executed.

3.2.4. Element Spacing Rule Analysis

In Python, each of the four sides of an object has a per-layer set of pro-
tection frame edges associated with it. These edges, called intervals, are
developed from the protection frames as the symbolic data is read from the
Squid database. They consist of the edges of the polygons that form the indi-
vidual protection frames on each mask layer for the cell. They are formed
during part of the Buildgraph phase, and are used in the spacing rule

analysis.

The idea in the spacing analysis is to compare all right-side edges
against all overlapping left-side edges and determine the magnitudes of the
constraints necessary between objects. Each object has only two vertices to
represent it in each coordinate axis direction, but has many intervals. Only
a single constraint is generated between any two objects. Each primary
(right-side) edge (P) of an instance or line is compared with each neighbor
(left-side) edge (N) of an instance to the right of it. The interval constraint

which forces the maximum separation between the two instances defines the
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minimum allowed spacing.

First, the intervals are sorted by center coordinate, with conflicts in
center coordinate being further sorted by lower coordinate. This list is then
traversed in reverse order. Left-side edges are ignored in favor of primary
edges, or right-side edges. When a primary edge is found, the interval list is
scanned forward from this point, in search of a left-side edge, or neighbor
edge that overlaps the primary edge. Several features make this search
eflicient. If the neighbor edge is below the primary edge a distance greater
than the maximum spacing rule, there cannot be any interaction between
the neighbor edge and the primary edge. The next neighbor edge is then
found. If the neighbor edge is above the primary edge a distance greater
than the maximum spacing rule, there can be no interaction between the pri-
mary edge and the neighbor edge. Furthermore, since the intervals are
sorted In two directions, no further neighbor edge with the same center
coordinate can possibly overlap the primary edge. Thus, these neighbor

intervals can be skipped at substantial computational savings.

Once it has been determined that a primary edge and neighbor edge
might overlap, there are several cases to ignore. The first is when both the
primary edge and neighbor edge belong to the same instance. Since the pri-
mary edge is a right-side edge, and the neighbor edge is a left-side edge,
overlapping intervals my belong to the same instance only if they are inte-
rior to a concavity in a protection frame of if they belong to protection
frames on different mask layers as illustrated in Figs. 3.2 and 3.3. These
cases of overlapping intervals should be ignored, since it is assumed the con-

struction of the instance protection frames is correct.
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Fig. 3.2 Primary and Neighbor from Same [nstance (Same Mask Layer)

T Ceeeeens Bounding Box

Fig. 3.3 Primary and Neighbor from Same [nstance (Different Mask Layers)
Another case to ignore occurs when there exists no rule between the
mask layers of the primary and neighbor intervals. Since there is no rule,
the two intervals are not coastrained relative to one another. They may even

overlap if the rest of the circuit topology permits.
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If the primary and neighbor instances have a 'permanent’ edge (one
preserving electrical connectivity or instance shape), the spacing rule
between them should be ignored. Otherwise, overconstraints are easily

introduced into the constraint graph, and no solution can be attained.

It the overlap between primary and neighbor edges is not ignored for
one of the above-mentioned reasons, the two intervals are checked more
closely for overlap. The two types of overlap are solid overlap and corner
overlap and are illustrated in Figs. 3.4 and 3.5. Solid overlap occurs when the
themselves overlap. Corner overlap occurs when the intervals do not directly
overlap, but the distance by which they miss is less than the spacing rule
between the mask layers of the two terminals. Corner overlap is necessary
to prevent overconstraining conditions from being generated. Since the
spacing rule analysis is decoupled, the spacipg rules in the direction perpen-
dicular to the direction of spacing are ignored. This means that relative

movement of instances and lines during a spacing may violate design rules in

R R R R R sresaense Solid !ntervo' Over'cp

Fig. 3.4 Solid Interval Overlap
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Fig. 8.5 Corner Interval Overlap
in the perpendicular direction. Also, if corner constraints are ignored, it is
possible to generate a compacted layout that cannot bg legally solved in the
perpendicular direction, as shown in Fig. 3.6. The situation in Fig. 3.6 is

corrected if corner constraints are applied, as illustrated in Fig. 3.7.

e nitiee Minimum Spacing
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Fig. 3.8 Overcenstraint, Introduced When Corner Constraints [gnared



3.2.4 51

' ' Minimum Spacing
i acing
Spacing V'I%Ictions

Fig. 3.7 Overconstraint Avoided When Corner Constraints Checked
It either a solid or corner constraint is necessary, the vertices
representing the center positions of the primary and neighbor intervals are
checked. If a constraint is already present between the instances which con-
tain the primary and neighbor edges, the value of the constraint is updated
to the maximum of its current value and the new required spacing imposed
with the current primary and neighbor edges. If no constraint is present,

one is added.

The concept of coverage is used to limit further the interval search.
Give m? objects arranged in an m*m matrix, in the worst case, where there

is a spacing requirement between each object and every other object, there

(]
are ) 1 constraints required [Hsueh79]. Given n objects, the aver-

age case would then generate n'® constraints and the worst case, with all n
objects in a line, would generate n? constraints. The idea of coverage is that
a constraint generated between a primary edge and a neighbor edge shields

the overlapping interval of the primary edge from successive neighbor edges
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with higher center coordinates. Implicit in the concept of coverage is the
assumption that a right-side edge of the neighbor's instance will generate a
constraint with successive neighbor edges (See Fig. 3.8). Thus in Python,
each interval is covered by the solid overlap of a neighboring interval that
causes a constraint to be generated. This works properly for NMOS and Bipo-
lar IC processes. However, there can be a problem, as illustrated in Fig. 3.9.
If there are three objects, on mask layers A, B, and C, and there are spacing
rules between mask layers A and B, mask layers A and C, but not mask layers
B and C, an improper cover is generated, as seen in the figure. The primary
edge in object 1 is covered by its neighbor edge in object 2, and there is no
constraint generated between objects 1 and 3. Since there is no spacing rule
between mask layers B and C, no constraint is generated between objects 2
and 3. Thus, object 3 is free to move relative to object 1. The subsequent
spacing process may overlap objects 1 and 3, in violation of the spacing rule
between mask layers A and C. Thus it is important to verify for new IC tech-

nologies that the spacing rules are defined to prevent this case. Not using
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Exists between B and C but is Not Due to Coverage

Fig. 3.6 Improper Coverage of a Primary [nterval

coverage would change the order dependencies of the spacing rule analysis
“from O(n) to average O(n!S), and worst case 0(n®). These super-linear
order dependencies quickly increase analysis time to an impractical size for

real cells.

A concept which also increases the order dependency of the analysis,
but one which is necessary for area efficient spacing, is the concept of mer-
gability. Objects are not permitted to merge in Python. If two intervals over-
lep and a spacing requirement exists between them, the spacing is allowed to
drop to zero provided the two intervals are in the same electrical net and on
the same layer. Thus two lines connected to a single terminal could have
zero spacing without violating any spacing rules. Under these conditions. the
possible overlap resulting from the Inaccuracies of the IC process (the basis
for the spacing rules) would not damage the electrical performance of the
circuit. If the lines were on two different mask layers, polysilicon and
diffusion for example, the results of ignoring spacing rules could be disas-

trous even if the two lines were electrically equivalent. In a similar way,
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lgnoring the spacing rules between object on the same mask layer but in
different electrical nets could quite easily destroy the electrical properties
of the circuit. Therefore, only the spacing rules between intervals on the
same mask layer that are electrically equivalent are ignored, by setting

them to zero.

Rather than set the spacing requirement to zero for objects that are in
the same net, they should be allowed to merge, which means that no spacing
requirement should be added to the constraint graph in the first place.
There are several problems with this. Given three objects A, B, and C (See
Fig. 3.10) if B and C can be merged, then no constraint is added between
them. There is a spacing requirement beﬁween objects A and B which keeps
them properly spaced. There should also be a constraint between objects A
and C, but object B covers object C, so this constraint is not generated. Dur-
ing the subsequent spacing process, object C overlaps object A, in violation of

spacing rules (See Fig. 3.11). The program should recognize that objects B
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Constraint Between A & C Should Be Generated Since
B & C Can Merge and Have Rejected Constraint

Fig. 310 Objects B and C can Merge
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C Overlaps A in Violation of Spacing Rules

Fig. 3.11 Possible Result of Spacing Fig. 3.10
and C cab be merged, and hence could change relative placement during the
spacing process, when the spacing requirement between objects A and B is
determined. Although this is trivial for the case with simple rectangles, it is
not generally trivial for the case when arbitrary rectangular polygons are

used as protection frames, as shown in Fig. 312. What is necessary is to store
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Fig. 3.12 Problems with Merging of Arbitrary Rectagons
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the information as to the mergability of a right-side interval with it
corresponding left-side interval(s). This is not easy to do in a general
fashion. Thus, Python does not allow objects to merge, with some loss in the

area efficiency of the program.

3.2.5. Element Placement

At this point, the entire graph representing the locations of the
instances, with constraints for spacing rule separation, preservation of
electrical connectivity, and preservation of instance shape and line width,
bas been constructed. Next, to insure that the graph is connected and to
provide a starting point and ending point, a graph source and sink are
defined and added to the graph. Each vertex with no predecessors has an
edge added to it directed from the graph source to the vertex, with lower
bound of zero and upper bound of infinity. Each vertex with no successors
has a directed edge added to it directed from the vertex to the defined graph
sink, also with lower bound of zero and upper bound of infinity. The graph is

now connected.

CABBAGE requires the constraint graph to be acyclic. This requirement
is necessary for solution with the Critical Path Method. Python only requires
that cycles be of non-positive weight. Given the Polygonal protection frames
of Python, cycles in the constraint graph are legal (Shown in Fig. 3.13). In
this case, the two interior intervals of the U-shaped polygon A generate con-
straints between the exterior intervals of the box B. Since the right-side
intervals are referenced to the right-side vertices and wice versa, a legal
cycle is generated for the X directed graph. The cycle runs from the left side
of polygon A to the right side of polygon A (an edge added to preserve the
width of polygon A), from the right side of polygon A to the left side of box B
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Fig. 3.13 Lega! Cycle in Constraint Graph
(an edge added to express the spacing constraint between interval [, and
interval /). from the left side of the box B to the right side of the box B (an
edge added to preserve the width of box B), and finally from the right side of
box B to the left side of polygon A (an edge added to express the spacing con-
straint between interval /,, and interval [;). Thus, the algorithm used in

Python does not require an acyclic graph.

The solution of the Python constraint graph with upper and lower bounds
on the lengths of the edges is derived from the longest path problem in graph
theory. What is needed is the minimum value of the positions of all instances
and interconnect lines (vertices in the graph) subject to satisfying the
minimum spacing requirement between objects and preserving the electrical
connectivity of the circuit as well as preserving the shape of instances and
the width of lines. (Lines are allowed to stretch and shrink - this is how the
final spacing is performed.) See Appendix D for a derivation of the algorithm
used in Python. It is an iterative algorithm, and is presented in a psuedo-

programming language which follows the control structures of the C
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programming language [Kernighan78].

1) Schedule‘all Vertices to be Examined.

2 Heke the position of each scheduled vertex the maximum of:
Its current pogition
The maximum of its predecessors current positions
plus the lower weight of the edge joining them
The maximum of its successors current positions
minus the upper weight of the edge joining them -
K a Vertex Changes:
Foar Each of Its Predecessors and Successors
B that Vertex Is Not Scheduled
Schedule for Current [teration
Else If that Vertex WAS Scheduled
Schedule for Next [teration
Else If that Vertex IS Scheduled
Do Nothing
3) I the Next [teration Queue is Empty
Converged (=> DONE)
Else If the [teration Count is Greater than the Number of Vertices
An Over-constraining Condition has been Encountered

Else
Goto Step 2) and Continue [terating

This algorithm is guaranteed to converge in v steps, where v is the number
of vertices in the graph. If an overconstraining condition (positive cycle)
. exists in the graph, the existence of this overconstraint is detected when

convergence is not reached on the [u + llst iteration. Unfortunately, detec-
tion of the location of the positive cycle is an 0[2"] problem. The time

required lor detection of the positive cycles becomes intractable for even a
small number of vertices. For this reason, Python only reports the existence
of overconstraining conditions. The program makes no attempt to discover
their location. A related point is that the solution of the graphs generated
for representing IC topology in Python is well behaved, i.e., the number of
iterations for convergence is typically a small fraction of v, the number of

vertices in the graph. If an error is present in the layout, Python takes sub-
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stantially longer to detect its presence than the program does to solve the
equivalent graph without the error. Because the solution of the constraint
graph generally takes fewer steps than the maximum, Python provides a
maximum iteration count. If the iteration count rises above this value, the
spacing process is terminated. At this point, the program may be run again
with this maximum count disabled to determine if the input actually contains
an overconstraint. Alternatively, the user may examine the input topology in
a graphics editor to apply his heuristic knowledge in search of the overcon-

straint.

Once the longest path analysis has been performed, all spacing rules are
satisfied. There is one (or many equivalent) critical paths through the graph.
A critical path is defined as a path from the graph source to the sink where
the difference in the positions of each pair of vertices on the path is equal to
the lower bound of the edge connecting them. Note that although the spac-
ing between two vertices in the graph is at the lower bound of the edge con-
necting them, they will not be on the critical path unless they lie on a path
from.source to sink where all of the edges are at their lower bound length.

At this point, the IC topology has the minimum size. The problem with
the solution is that all objects are at their minimum coordinate location pos-
sible while still satisfying design rules. This has the observed effect of 'pul-
ling’ objects to the left or bottom side of the circuit. While this effect is not a
problem for the objects on the critical path (these objects could not have
there positions changed without increasing the overall size of the cell or
violating a spacing rule) there is 'slack’ in the spacing among objects not on
the critical path. This slack is distributed on the upper side of groups of con-
nected objects not on the critical path If the slack were distributed more
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evenly, the geometric yield of the IC would be improved since fewer objects
would be at their minimum required spacing apart. To accomplish a more
equitable slack distribution, a reverse pass is made through the graph to
determine the maximum coordinate locations of all objects while still satisfy-
ing all spacing rules. The critical path objects can now be determined easily
by noting which have the equal lower and upper positions. The rest of the
objects have different lower and upper positions, which define the ‘'slack’
around each object. Note that this 'slack’ may be shared among other
objects not on the critical path; if more than one object is on a path not on

the critical path, the slack belongs to both of them.

If the average position is taken for each object, it can be shown that all
spacing rules are still satisfied, if the spacing rules are satisfied when all
objects are at their lower positions and when all objects are at their upper
positions. If there is a single object between two objects'on the critical path,
the non-critical object is properly spaced in the middle of the slack space
(See Fig. 3.14). If there is more than one group between two groups on the
critical path, this averaging technique has the effect of bunching the non-
critical path groups together in the center of the slack space (See Fig. 3.15).
Although this is not optimum, the averaging technique is more desirable than
placing all of the slack space on the upper side of a2 non-critical path group.
The optimum solution would be to apportion the slack between the non-
critical path groups evenly. Figure 16 shows this phenomenon on a simple
example. What is necessary is to first determine the non-critical subgraphs
of the constraint graph. Next, the sum of the excess distances between all
groups in the subgraph should be maximized. An alternative approach (to
minimize total line length) is to move each object to a lower or upper posi-

tion to minimize the total line length. Note that the lower and upper
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Fig. 3.15 Mult.ipl:r Objects Not an the Critical Path
positions in this case may be different from the lower and upper positions
computed in the forward and reverse passes of the longest path algorithm;
since the slack is shared among possibly many non-critical path groups.
placement of one group at its upper position followed by placement of an

adjacent group at its lower position would most likely result in design rule
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violations.

In Python, the current approach to this problem is to average the lower
and upper coordinate locations of each group. The critical path groups have
equal upper and lower bounds so they do not move. The non-critcal-path
groups are bunched together in the center of their available slack space.
Although this is not the best possible solution to non-critical group place-
ment, it is efficient and simple from computational and conceptual

viewpoints.

3.2.6. Updating the Symbolic Data

After the spacing process, the instances and lines have left, bottom,
right, and top location which reflect the instances new locations and the lines
new paths. All that is necessary is to update this information in the Squid
database in the output view which was copied from the input view during the
Readin phase. The only possible problem is caused by local terminals. Tﬁey
are stored as instances but their instance-id actually refers to a terminal.

S
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Fig. 3.18 Even Placement of Non-critical Path Objects
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Attempting to retrieve an instance with the terminal-id will result in an error

being returned from Squid.

Each instance in turn is retrieved from the database. Instances have a
transformation matrix [Newman80] which determines the translation and
rotations and mirrorings of the instance. Instances are only translated in
Python. Thus to update the 7; and 7, values of the matrix (locations
matrix{2]{0] and matrix(2][1]). incremental distances are computed by sub-
tracting the old from the new values of the left and bottom bounding box and
adding these differences to the 7; and 7j. The instance is then updated in
Squid. If the retrieval fails, the instance is assumed to be a local terminal
and the terminal is retrieved from the database. Terminals just have a rec-
tangle which can be directly updated from the bounding box of the pseudo-

instance of the terminal. All local terminals are then updated in Squid.

Lines are retrieved from the database using their geoid field. They
return a path in an auxiliary array variable. This variable is updated with the
new path of the line. This new path is derived by removing the width from
the bounding box of the line and again by representing each line as an

orthogonal path. Each line is then updated in the Squid database.

Finally, the newly updated output view is saved on disk and the entire
spacing process is complete. The end result is a version of the symbolic lay-
out of an integrated circuit which is of minimal area while satisfying all lay-
out rules. The spacing maintains the absolute locations of the left and bot-

tom portions of the cell as constants.

3.3. Implementation Issues
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3.3.1. Data Structures

The data structures of Python are quite complex. This choice was made
so that the program would run efficiently after the setup phase with very few
patch-up steps. Each of the data structures is listed and then followed by a
brief description. They are grouped by the major program subsection in
which they are most heavily used. The C programming language [Ker-
nighan?78] struct is similar to the Pascal record construct. The Glossary of

Terms (Appendix E) explains unfamiliar terms.

Readin

struct INSTANCE

ctype L; /*left (lower z) coordinate */

ctype b; /*bottom (lower y) coordinate */
ctype r; /*right (upper z) coord */

ctype t; /*top (upper y) coord */

instype type: /*true instance or local terminal */
int instid; /*used to id instance in Squid */

struct INSTANCE  *next; /*pointer to next INSTANCE */
struct INTVLHD *xfe; /*left and right frame edges */
struct INTVLHD *yte; /v*bottom and top frame edges */
struct VERTEX *vl;  /*left coordinate vertez */
struct VERTEX *vb; /*bottomn coordinate vertez */
struct VERTEX *r, /*right coordinale vertez */
struct VERTEX *vt, /*top coordinale vertex */

J:

Each Squid instance has a corresponding INSTANCE struct in Python.
The bounding box [, b, 7, and ¢ values are taken directly from the Squid
instance. This bounding box is used to perform a rough check for intersec-
tion in spacing rule analysis. Also, it defines the location of the instance and
is updated after each longest path calculation. Any other data structure that
references a bounding box does it indirectly through an INSTANCE struct, so
that updating this information in one place will guarantee that all routines

will use the correct values.
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Local terminals have instances created for them so Python can treat
them in a consistent manner with instances. The type field distinguishes the

two cases and is used when the spaced layout is updated in the database.

The instid is used to identify the particular instance in Squid. This field
is used to retrieve the Squid instance when its location is to be .updat.ed after
spacing.

Instances are linked together, so a nezt member is included to provide

the link.

Two sets of frame edges are provided for the X and Y sides of the
instance. The X sides (vertical lines) are used in the X spacing rule analysis
and the Y sides (horizontal lines) are used in the Y spacing rule analysis.
These edges are the edges of the polygons which form the protection frames
for the instance. They consist of one set of edges per'active mask layer. See

the definitions of the INTVLHD and INTRVL structures for more details.

A vertex in the constraint graph is associated with each bounding box
edge of an instance. The left and right vertices are in the x-directed graph
and the bottom and top vertices are in the y-directed graph. Edges are
added from the lower vertex to the upper vertex in each graph to fix the dis-
tance between lower and upper edges since instances change only their loca-
tion during the spacing process. Each vertex has a pointer to the coordinate
to which it is linked and so has access to the correct bounding box informa-
tion at all times. See the definition of the VERTEX structure for more details.

struct LINE § :
ctype L; /*left (lower z) coordinate */
ctype b: /*bottomn (lower y) coordinate */
ctype r; /*right (upper z) coord */
ctype t /*top (upper y) coord ¢/

ntype netid; /*integer net id */
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int geoid; /*geomelry id used with database */
otype orientation; /*HORIZONTAL or VERTICAL */
struct LINE - *next; /*pointer to next LINE */

etype width; /*width of the line */

int mask; /?integer mask number */

struct VERTEX *vl, /*left coordinate vertez */

struct VERTEX *vb; /*bottomn coordinale vertex */

struct VERTEX *r, /*right coordinate vertez */

. struct VERTEX *vt, /*top coordinaie vertez °/

The LINE struct represents a line, or piece of interconnect, in the
Python data structure. Although it also has a bounding box, this box must be
derived from the endpoints and width retrieved from the Squid database.
This derivation is performed later on in the construction of the constraint
graph so the width of a line is explicitly stored along with the bounding box.
The geoid identifies the line to the Squid database and is used to retrieve
each particular line-when updating path information after spacing. Since a
LINE is part of the physical implementation of a net, which connects two ter-
minals, it has an integer net-id associated with it. There is also a nez!

member to link the lines together.

Lines also contain an orientation which is one of HORIZONTAL or VERTI-
CAL. Different than instances, all of the geometry for a line is contained on a
single mask layer. Thus, lines contain an integer mask number. This

number is related to an actual mask name by the Squid database.

Lines are similar to instances since they also contain a vertex for each
of the bounding box edges. In the direction perpendicular to the line's orien-
tation, a fixed-length edge is added to keep the two sides of the line spaced
at the line width. In the direction parallel to the line's orientation, an edge is
added to keep the length of the line from becoming negative. As in the case

of instances, each vertex has a pointer to the coordinate to which it is linked.
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struct TERMINAL §
ctype L, /*left (lower z) coordinate */
ctype b; / *bottom (lower y) coordinate */
ctype r; /*right (upper z) coord */
ctype t: /*top (uppery) coard */
ntype netid; /*integer net id */
struct TERMINAL  *next; / *pointer to next TERMINAL */
int mask; / *integer mask nmumber */
struct INSTANCE  *owner; / *element that ‘ouns’ term */

i

The bounding box information for terminals is read directly from the
Squid database. Terminals contribute no vertices to either of the constraint
graphs and only serve to generate the proper constraint between an instance
and the lines that connect to it. Local terminals, i.e. terminals that exist
outside of any instance in the cell being spaced, are treated specially in the
readin phase. They have instances constructed to represent them although
there are not really such instances in their Squid representation. Creation of
these special instamés is necessary to treat local terminals in a manner con-

sistent with the treatment of instances.

Terminals, like lines, are also part of the physical implementation of a
net so they also contain net-ids. Since their geometry is entirely on one

mask layer, they contain an integer mask number as well.

Buildgraph
struct INTRVL { / *interval list type */

ctype high; / *high coordinate */
ctype *hbase; / * high coord base origin */
ctype low; 7 *low coordinate */
ctype *lbase; 7 *low coord base origin */
ctype center; / *centerline of interval */
ctype *cbase; / *center coord base origin */
itype type: /*type of interval */
ntype netid; /* 0 unless over term or line */
int mask; / *integer mask number */
struct INTRVL *next. / *pointer to next interval */

struct VERTEX *owner; / *owner of interval */
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INTRVL. structs are kept in lists headed by INTVLQ structs. They are
sorted from high to low by the absolute location of the center coordinate,
which is the center coordinate plus the center base origin. They are then
sorted by the absolute location of the lower coordinate, which is the low coor-
dinate plus the low base origin. The high, low, and center members are
specified relative to the corresponding base origins of their parent instance.
Therefore, lines, which change dimension during the course of the spacing
process, can be treated in the same manner as instances, which do not

change dimension, without the need for special case processing.

The type field is a bit field and contains information about the convexity
of the intervals endpoints (used in spacing rule analysis) as well as defining
whether the interval is an upper or lower interval. This is necessary since

intervals are kept in lists according to their orientation. .

It an interval overlaps a terminal frame edge (in an instance) or if it
overlaps the edge of a line, it carries the net-id of the geometry it overlaps.
This information is used in spacing rule analysis to obtain more optimal
results by ignoring spacing requirements between intervals of the same net-
id,

Intervals are associated with a single mask so they carry an integer

mask number.
Interval lists are linked so they have a nezt entry.

Since intervals are sorted in a global list, they have a owner pointer to
the vertex which represents the bounding box edge corresponding to the
cbase coordinate.
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Spacing Rule Analysis
struct INTVLQ '} /*protection frame edge list head */
struct INTRYL *intrvi; /7 * pointer to first interval */
struct INTVLQ *next; /* pointer to nezt list head */
struct INTVLQ *prev, /* pointer to previous list head */

'

These structs head the lists of projected frame edges for the spacing
analysis queues. They are doubly linked together, and point to their respec-
tive intruls. One set of lists is initially provided for each of the two sets (X
(right and left) and Y (top and bottom)) of frame edges for each instance.
The frame edges of all instances and lines are linked together, sorted, and
used in the spacing rule analysis to determine the minimum spacing allowed

between objects.

Longest Path Calculation
struct VERTEX §

ctype loc; /?current real location */
ctype newloc; /*new loc during iterations */
ctype loloc; /*used for forward pass 'loc’ ¢/
ctype *coordinate; /*coord. for vertez to update */
struct EDGE *pred; / * predecessor edges pointer */
struct EDGE *permpred; /?'permanent’edges pointer */
struct EDGE *succ; / *successor edges pointer */
struct EDGE *permsucc; /*'permanent’edges poinler */
int refent; /*used for pred. count in CPM */
struct VERTEX *next; / *ptr used to link vertices */
struct VERTEX *nextq; / * ptr used to schedule vertics/
sstat schedule / *used for scheduling queues */

5

The VERTEX struct and the EDGE struct (below) are used to space the
elements properly. Each VERTEX contains a loc and newloc to compute the
longest path to each wvertex in the forward and backward passes. There is

also a loloc to store the forward pass value during the backward pass calcula-

tions. As stated above, each vertex points to a coordinate. There are lists of
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predecessor and successor edges as well as the ‘permanent’ successor and
predecessor edges (those preserving shape of instances, width of lines, and
electrical connectivity between lines and terminals). A reference count
serves in the first iteration of the forward and backward passes. It counts
the number of predecessors or successors. A schedule status word is used
during the forward and backward passes to record the scheduling informa-

tion of each vertex.

The vertices are scheduled for the event-driven longest-path solution in
queues by the neztq member. Queues are maintained for the current and
next iteration queues during the course of the solution. As the position of a
vertex changes, it causes its predecessors and successors to be scheduled,
since they may change. Using two queues maintains the notion of iterations,
while at the same time minimizing the amount of data to be examined. The

notion of iterations must be kept so that over-constraining conditions can be

detected.
struct EDGE {

ctype lobnd; /* lower bound */
ctype hibnd; /* upper bound */
struct VERTEX *pred; / * predecessor vertez pointer */
struct VERTEX *succ; /* successor vertez pointer */
struct EDGE *nextpred; /*pir to nezxt pred edge */
struct EDGE *nextsuce; /*pir to nezt succ edge */

R

The EDGE struct links two vertices together in the constraint graph. It
contains the lobnd and hidnd, which indicate the lower and upper magnitudes
of the constraints imposed by the edge. Each EDGE contains pointers to its
source and sink vertices, under the names pred and succ. The lists are dou-

bly threaded, once from the source vertex and once from the sink vertex

through the neztpred and neztsucc members.
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Global Structures

struct ERROR §
pstat errnum;
char *errmsg;

B
8.3.2. Squid/Python Conventions

Python expects the following restrictions on its input from Hawk
through Squid:

* All lines are single segment (two endpoints) ending on terminal frames

* Intersecting lines must have a pseudo-instance at the intersection point
* All protection and terminal frames must be in the instance bounding box
» Orthogonal Edges (integral multiples of 90 degrees on all edges)

« No overcounstraining conditions may cccur

» Electrical connectivity must be explicitly expressed in the net ids

* Protection frames of objects must not overlap

These restrictions were 'made for several reasons. All lines must be a single
line segment in order to keep the model of the symbolic integrated circuit
data simple. From this restriction follows the next point, that is, lines which
intersect must have a psuedo-instance (which can be viewed as a layer-to-
same-layer contact) added at their intersection point to keep the model con-
sistent. By keeping the model simple, the~ Python program can be made
more efficient. By treating lines and instances in a consistent manner,
implementation of the algorithms is simpler and the program can be made

more compact and easier to maintain.

The algorithms for spacing analysis and subsequent longest path solu-
tion are decoupled into separate X and Y spacings and hence are are an

order of magnitude less complex when used with orthogonal geometries.

If overconstraints are present in the graph, the analysis will take much

longer (v iterations) to determine an error is present and the algorithms
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have no way to determine exactly where the error is. The order of time com-
plexity to find the objects contributing to the overconstraint is O(2¥), where
v is the number of vertices in the graph (the solution is non-deterministic
polyncmially bounded). Although it will always be possible for the user to
enter a layout which is overconstrained, proper conditioning of the input as
it is entered into the Squid database (with Hawk) can detect many of these
errors as they are introduced. Chapter 4 describes the types of overcon-

straints which can occur in Python

Explicit electrical connectivity is absolutely essential for a proper spac-
ing. As the levels in the hierarchy increase, the shapes of protection frames
and terminal frames become more complex. This makes it impossible for
the program to derive the connectivity of the circuit directly from the lay-
out, as was done in CABBAGE. CABBAGE required all interconnect to ter-
minate at the exact center of the instance it was connected to. This was not
an unreasonable restriction since there were no sliding contacts and each
instance was allowed only one interconnect to terminate per side of the
instance. Python cannot make this restriction so it becomes necessary to

add the physical connectivity information to the Squid database.

Because the spacing rule interval analysis is performed scanning from
left to right, constraints may not be generated between instances if their
protection frames overlap. This is an artifact of the implementation of the

spacing rule analysis algorithm and should be fixed.

3.3.3. Constraint Graph Construction

The constraint graph used in Python has the values of vertices represent
the physical coordinate locations of bounding box edges of the instances and

lines that make up the IC cell. The analyses are decoupled so there are
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separate graphs for both X and Y directions. The X graph contains vertices
to represent the right and left sides of the bounding boxes and the Y graph
contains vertices to represent the top and bottom sides of the bounding
boxes. Each vertex has a pointer back to the coordinate which caused the
vertex to be allocated. After each longest path analysis, these coordinates
are easily updated from the new locations of the objects stored in the graph
vertices. Since the intervals used in the spacing rule analysis have their
dimensions specified relative to specific coordinates of the bounding box of
the instance or line to which they belong, the intervals belonging to lines
(which grow and shrink) are properly adjusted automat.ically. since the
bounding box locations are updated at the end of each longest path analysis.

Three locations are .rgquired in each vertex. During the longest p;th
analysis, the location at the past and present iterations is necessary to
determine when a vertex changes location. The third location is used to
store the minimum possible coordinate location while doing the reverse pass
through the graph (to determine the marimum possible coordinate loca-
tions).

Each vertex has a pointer to its predecessors and successors. To Keep
track of the ‘permanent’ part of the graph (which remains static throughout
the entire series of analyses) pointers are kept to the permanent predeces-
sors and successors. Since new edges are added at the beginning of the edge
lists, returning the graph to its permanent state is done merely by copying

the permanent pointer over the temporary one.

Edges are added between vertices and have lower and upper bounds
which represent the minimum and maximum differences in position between

the two vertices each edge connects together. They also contain pointers to
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their predecessor vertex (source vertex) and successor vertex {sink vertex).
They are linked together and they have two link fields since they appear in
both the successor list of their predecessor vertex and the predecessor list

of their successor vertex.

Edges are added for a number of reasons. The first is to preserve the
shape of the instances. Speciﬁcaily. this means keeping a constant spacing
between the two bounding box edges which appear in each graph of each
instance. These edges have fixed upper and lower bounds which are equal,
and are merely the difference in location between the upper and lower

bounding box edges.

Edges are also added to preserve the width of lines. These are only
added between vertices of lines which are perpendicular to the direction of
spacing. These edges are also fixed, and their equal lower and upper bounds

are just the width of the line.

In the direction parallel to the direction of spacing. lines can stretch
and shrink. However, because of the problems with the merging of elements,
it is not possible to let the length of lines drop below zero. Thus an edge with
zero lower bound and infinite upper bound is added between the vertices of
lines parallel to the spacing direction. A line can be as long as is necessary
allow the surrounding geometry to satisfy the spacing rules, but it can never

drop below zero length.

Edges are next added between instances and lines to preserve the
electrical connectivity of the circuit. The size of the terminal frames each
line terminates on determine the magnitude of the lower and upper bounds
of the edge. If the terminal is wider than the line that terminates in it, the

lower and upper bounds are unequal and provide the 'slop’ in the sliding ter-
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minals. If the width of the line and its terminal are equal, the lower and
upper beunds of the edge are equal and fix that endpoint of the line rigidly to

the instance which owns the terminal.

Edges are added to express the minimum allowable spacing require-
ments between objects. This reason is perhaps the most important of all.
Each edge is the maximum of all of the spacing requirements generated by
overlaps of the intervals of two objects. With the addition of these spacing
requirements, the constraint graph is now complete and represents the

topology of the IC cell.



Results

4.1. Examples

4.1.1. CABBAGE I Latch Example

As a comparison between the CABBAGE and Python programs, the latch
block example from [Hsueh79] was compacted with both programs. The

gate-level schematic for this block is shown in figure 4.1. The program cab-

IBUS 3 - 11
BUSPOLL HH ‘—’.,. [} D UT
ADDR—

ENABLE

DIOXES
BUSFLAG

9
8
A T
a

TBGEN [T
r' 17

<

ROM

Fig. 4.1 Gate-level Schematic for Latch-Driver Block
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tosquid (Appendix G) was used Lo Lransiate the CABBAGE symbolic intermedi
ate file and enler the data into Lhe Squid database  Bolh programs used the
same design rules  The inpul for bolh programs 1s shown in Figure 4.2
There are Lwo observable differences in compacltion method. Pylhon docs
nol permit objecls Lo merge bul uses sliding conlacts CABBAGE permils
objects Lo merge bul uses point contacts for terminals Objecls are permit
ted to merge 1n CABBAGE when the merging will not affect the circuil electri-
cal performance and will help decrease Lhe size of the layout. Since CAD-
BAGE 1s writlen for a specific lechnology the rules defining permissible
merging are well known. Python 1s technology independent, and no general
purpose method lor expressing or determining perrmmssible merging has been
implemented  Shding contacls imply that cach endpoint an interconnect
line must lerminate within the arca ol its lermmal frame, bul 1t can ter-
minalte anywhere within thal arca. The compaclion program can place Lhe
endpoinl anywhere within ils Lerminal frame to oblain minimum size [or the

total layout The resulls of the compactions are shown in Figures 4. 3 and 4 4

Fig. 4.2 Lalch-Driver Dlock Input Symbolic Layout



Fig. 4.3 (atch-Driver Block Compacted with the CABBAGE Program

CABBAGE compacts the cell Lo a size approximately 157% smaller than the size
of the cell as compacled with the Python program. The difference in size in
this example can be allribuled Lo the ability to merge objects within CAB-

BAGIH.

4.1.2. Alow level NMOS Fixample

A Turther comparison of the CABBAGE and Python programs was made
for the example of an NMOS D-type flip/flop, taken from [lsueh?9] The
schematic diagram for the circuit is shown in Figure 4.5. Cabtosquid was
used Lo translate the CABBAGE ASCIl symbolic intermediate file and enter it
into the Squid database. The conventions of Pylhon were observed, so inter-
seclions of interconneclion lines had layer-to-same-layer terminals added

This is apparent in Figure 4.6, which shows Lhe inpul lo bolh compaclion pro-
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I"ig. 4.5 Schematic for D-type Fhip/Ilop
grams, displayed in Lhe inpul formal for Pylhon. This same mmpul was com-

pacled with equal spacing rules in both programs
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The oulputs from CABBAGE and 'ython are shownon Fipares 4 ¢ and a4 8
The resull oblamed with Python 1s approximalely 207% snmialler than the
results eblained with CABBAGE  This difTerence in size can be directly attri-
buled to the use of the shding contacts Il merging were allowed 1in Python,

the size difference might have been even larger

4.1.3 lherarchical Spacing of Lthe low Level NMOS Fixample

To demonstrate Lhe use of Lhe tierarchy. the D-type Mip Nop example of
Lhe previous section s used in o shift-register cell The Squid cell for the
compacled version of Lhe Mip/flop has proleclion lrames gencrated for it
using the program frame (Appendix t1) The protection framies are used Lo
place multiple instances of the celi within a shift regisier cell and the term)-

nals of the Mip/Nops are interconnected  The resulting cell s shown n

i 4.6 D Fhip/Flop Symbohe Input Layout



tip 4.7 Compacted Ouiput from the CABBAGE Propgram
Figure 4 9 This register cell 1s compacted with Python, and the output is

shown in Figure 4 10 Using hierarchy in this manner greally reduces the

Fig 4.8 Compacted Output from the Python Propgram
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Fip. 4.0 Shift Register Cell Moade From D-1ype Fhip/Flops

Fip. 4.10 Compacted Resull of Fipure 4.9

time required for the compacltion of a complele circuil. The grealer the

regularily, or repelition, of cells used 1n the layoul, the grealter the savings
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in the overall compaction time.

4.2. Results

In spite of the greater complexity of the spacing rule analysis and long-
est path algorithm, Python is approximately 2.5 times faster than CABBAGE
on the same examples. Even more important, the percentage difference in
run times for small and larger input cells is much smaller for Python which
implies that the overall order dependencies in Python are lower than those in
CABBAGE.

The time/memory tradeoffs between the two programs seem almost
linear; Python uses approximately 2.5 times more memory than CABBAGE.
The larger memory usage of Python stems from the graph representation for
the IC topology which has many more vertices and edges than the
corresponding graph in CABBAGE. Here is a corﬁparison between CABBAGE
and Python in tabular form.

4.2.1. Run-times and Order Dependencies of Algorithms

All times reported are for a Digital Equipment Corporation VAX 11/780
32 bit minicomputer running the 4.1BSD version of the VAX/Virtual UNKX}
operating system [FabryB82][Ritchie78]. CABBAGE was compiled from the rat-
for programming language [Kernighan76] using the UNX f77
compiler[Feldman78]. Python is written entirely in the C programming
language [Kernighan?78), and was compiled with the UNX cc compiler [John-
sonB0].

‘The readin phase is O(n), or linear with time, with number of objects. A

greater number of different master cells called within the cell being spaced

tUNIX is a Trademark of Bell Labaratories.
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tends to increase the readin time above linear order and a larger number of
calls to the same master cells within the cell being spaced tends to decrease
the time below linear order. The two factors roughly cancel for the IC cell

examples described here resulting in O(n) linear order dependence.

The buildgraph phase is also approximately O(n). The one exception
lies in the routine P_cktermiine, which derives the connectivity of terminal
frames and interconnect lines. The terminals and nets are sorted by net id,
and then compared on an object by object basis. This comparison is O(m?),
but m, the number of terminals and lines in each net, is generally small.
Exceptions to this include global signals, such as VDD, GND, and CLK signals.
Fortunately, the hierarchy helps to reduce the number of terminals and lines
in global nets, and the observed order dependence is only slightly above
linear.

The sranalyze has the worst order dependence of any subsection,
observed to be approximately O(n!?). Comparison of each primary (right-
side edge) with every other neighbor (left-side edge) is an O(n?) operation.
The savings in the current implementation comes from sorting the intervals
prior to the sranalyze phase. This sorting is O(nlogn) dependent, and lowers
the order dependency of the analysis through the ability to ignore many
comparisons when there is no possibility of interaction between sets of inter-

vals.

The ingpth phase has a proven order dependence of O(v?) [Lawler78].
This is fortunately a worst case order depeqdence. and only is true for com-
pletely connected graphs. The graphs generated by IC layouts seems to have
a constant regularity somewhere between 3 and 5. Thus, the observed order

dependence is only slightly above linear.
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The update portion of the program is also linear, O(n). A single pass is
required through all of the instance and line data structures, and only the

root Squid cell requires updating.

The following table gives CPU times (broken down into true cpu and sys-

tem times) for the D Flip/flop and Latch examples presented in the previous

section.
Run Times and Memory Usage
Example Elements CABBAGE Pytho
User | System ' Memory | User | System | Memory|
dff 98 20.3 1.5 1256644 | 11.9 2.8 417764
jntlk 290 197.7 5.4 166664 | 72.4 7.7 750838

System time is mainly disk 1/0 time, and User time is the CPU time.
Again, the difference in memory utilization stems from the more flexible

graph representation of the IC layout used in Python.

4.2.2. Program Status

Python consists of ~4000 lines of C code, with ~1000 of the 4000 lines

being comments. In addition, the Squid database has ~2000 lines of C code.
4.2.3. Non-Optimal Results of Python

There are still algorithmic improvements that could be made to Python
that would improve its performance and/or improve the area efficiency of
the spacing process. The ability to merge elements is the single most impor-
tant feature lacking from Python. Components of elements may safely
merge if they are on the same mask layer and in the same electrical net.
Python cannot permit merging, since topology changes might occur which
could cause unexpected design-rule violations. The related problem of line
lengths changing sign is a less severe problem, but will need to be introduced

for jog generation to work properly. When an interconnect line is in the
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critical path, and the surrounding objects are also in the critical path, the
spacing efficiency will benefit from the insertion of jogs, or zero length lines
inserted perpendicular to‘.the line somewhere along its length. Aside from
the problem of determining where the jog should be inserted to permit the
smallest area result after a subsequent series of compactions, if the length of
interconnect lines cannot drop below zero length, the orientation of the wire
will have to determined by which way the surrounding geometry will move.
Several overconstraining conditions can occur which cannot be detected
easily. The data structuring for the spacing rule analysis imposes an O(n!7)
dependency on the analysis, when it is possible to reorganize the data,
obtaining an O(n) dependency on both the sorting of intervals and the spac-
ing rule analysis itself.

As is readily apparent in the A-B comparison of the latch-driver exam-
ple, CABBAGE gains a great deal of area efficiency through the merging of
instances during the spacing process. Given the more general nature of
Python, it is difficult to implement a general merging strategy. Therefore,
although the sliding contacts provide a good deal of area efficiency, they are

not alone sufficient to produce a well-minimized layocut.

Related to the problems with the ability to merge is the need to keep
the lengths of lines from dropping below zero. This problem is shared
between CABBAGE and Python. It stems from the fact that if two edges can
merge, then they can change relative position. Figure 4.11 shows how a third
edge can be covered when it should not be covered, resulting in a spacing
rule violation after the spacing process. In addition, a problem not encoun-
tered in the normal merging problems is the change in sign of the length of

the lines. Top becomes bottom, and vice versa, which requires some adjust-
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Constraint Between A & C Should Be Generated Since
B & C Can Merge and Have Rejected Constraint

Fig. 4.11 Incorrectly Covered Edge
ment of the bounding box parameters and vertices associated with lines.

This patch-up step would have to be done after each.spacing iteration.

If the sum of the widths of several different lines terminating on a single
terminal frame is greater than the width of the terminal frame, an overcon-
straining condition will be generated, and the spacing analysis will fail. Since
the general detection of overconstraining conditions in the graph is an NP-
complete problem [Lawler76], this analysis is not performed in Python. All
that is reported is the existence of an error somewhere in the graph. Also, if
an object is initially placed within a concavity that is too small for it and the
wrong initial direction of compaction is chosen, an overconstraining condi-
tion will be discovered, even though it would not have occurred if the initial

direction of compaction were chosen differently (See Fig. 4.12).

The intervals used in the spacing rule analysis could be organized into a
two-dimensional bin data structure. This would make the sorting time linear
with a slightly worse coeflicient than the current version due to the overhead

of computing the bin locations. It would also make the interval analysis
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almost linear. The current method effectively has bins in one dimension

only.



CHAPTER 5

Summary

5.1. Summary of Python Characteristics

Python is symbolic IC layout spacing aid based on the CABBAGE pro-
gram. The increasing complexity of integrated circuit designs makes the use
of traditional, non-hierarchical design-aids expensive, both in design time
and in actual computer cost. Python reduces tedium involved in IC layout.
The use of symbols that need only be placed relative to one another makes
the layout process very similar to the initial layout sketching that is part of

most IC design methods.

The algorithms used in Python have been described and their derivation
from the CABBAGE approach has been explained. The major extensions to
CABBAGE are in the areas of the longest path solution and the spacing rule
analysis.

The implementation of the algorithms in Python is completely different
from the implementation of the CABBAGE algorithms. Python is written in
the C programming language [Kernighan78], uses the Squid [Keller82] data-
base to store the intermediate symbolic format, and has the Hawk viewport

manager [Keller82] as its input editor.

A detailed comparison of Python and CABBAGE has illustrated the
speed/memory tradeoffs possible. While Python is approximately 2.5 times
faster than CABBAGE for large circuits, the additional capabilities of Python,

including hierarchy, sliding contacts, technology, and process independence

5.1 89
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make it a more powerful aid for symbolic IC design.

5.2. Open Research Questions

Although the Python program provides a solid basis for future work,
many important questions remain unanswered. Some of the more interest-
ing research questions are presented in this section. Most deal with making
the program useful as a production program and with extensions to the pro-
gram which will allow it to track the ever-changing state of the art in IC
design and layout.

5.2.1. Error Detection in Over-Constraining Conditions

The most important shortcoming of Python is the inability to determine
the location within the graph of positive cycles which represent over-
constraining conditions. The number of iterations of the longest path alge-
rithm to even determine the ezistence of an overconstraint is equal to the
worst case number, i.e. the number of vertices in the graph. Since there
are two vertices for each instance and each interconnect line in each of the X
and Y graphs, the number of vertices grows linearly. The time for each itera-
tion grows as a small fraction of the number of vertices in the graph. Thus,
although the total time for solution of the longest path algorithm has an
order dependence only slightly above linear, the actual time can grow prohi-

bitively large for complex layouts.

The complexity of any algorithm to determine the locations within the
graph of all positive cycles is at least O(2¥) where v is again the number of
vertices in the graph. This time becomes totally impractical for very small

cells.
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At present, there are very few ways to generate overconstraints in the
layout topology since there is no way to enter user-defined constraints. If
more than one interconnect line terminates through the same side of a ter-
minal frame and the total width of the lines is greater than the width of the
terminal frame, an overconstraining situation will be created. The spacing
between the interconnect lines is not counted since they will be of the same
net and their spacing requirements will thus drop to zero. Also, if an over-
constrained condition such as is illustrated in Fig. 4.12 is created in the ini-
tial layout and the wrong initial direction for spacing is chosen (X in the case
of the figure), an overconstraining condition will be entered into the graph
and the spacing will faii. If the other spacing direction had been chosen first,
or if the original layout had not included the box in the notch, the overcon-
straint never would have been generated because the corner constraint

checking in the Y direction would have prevented it.

What is necessary for future work is to develop fast heuristics to dis-

cover the location of overconstraints in a layout.

5.2.2. Jog Generation and Placement

Jog generation was not added to Python because the jog insertion algo-
rithms in CABBAGE are not sufficient and no better solution could be found.
The algorithms to find the proper lines to insert jogs on are very sound. The
process consists of finding all interconnect lines perpendicular to the spac-
ing direction which are on the critical path (i.e., have their endpoints con-
nected to two vertices which have equal minimum and maximum allowed
positions for the minimum area). CABBAGE places the jog at the middle of
each such line. Figure 5.1 shows that this form of jog insertion requires a

large number of jog insertions to have any real effect. The line segment is
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Fig. 5.1 Worst Case Jog Insertion
split in half by the first jog. The second jog splits the top half of the line, and
so on until finally the jog point is high enough to allow the right side to slip
past the left side to yield the desired, compact result. A human designer,
with his knmowledge of the circuit topology. could properly place the jog the
first time to allow the compaction to gain the most benefit from the jog.
What is required is to examine the geometry surrounding each interconnect
line on the critical path to determine where jogs should be inserted. There
does not seem to be a rigorous algorithm for determining the optimum loca-
tions for jog insertion; the algorithms developed will have to be heuristic in

nature.

5.2.3. More Complex Design Rules

Python only satisfies spacing rules. The types of layout rules found in

industry semiconductor processes include:

» Reflection Design Rules

» Mutual Capacitance Rules
» Minimum Width Rules

¢ Minimum Area Rules
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* Minimum Enclosure Rules
e Minimum Overlap Rules
e Contact Design Rules

The reflection design rules state that when certain line types cross cer-
tain other line types at right angles (e.g. metal lines crossing diffusion lines
in an NMOS process), the line which is applied second in the semiconductor
process must be shrunk where the two lines overlap. These rules stem from
an unfortunate byproduct of the photolithographic process used to build
mask layers on the IC. The three-dimensional effects of patterning devices
on the silicon cause blooming to occur when the photoresist for a line type is
run at right angles over the valley created by the processing for a previous
layer. If the crossing line is narrowed down over the valley, the blooming and
the narrowed line offset, and the net result is a line of almost constant width

over the valley.

Mutual capacitance rules require long parallel runs of interconnect lines
to be further apart than the minimum spacing. This extra space is required
to minimize the mutual capacitance that might induce crosstalk between the
signals on the two lines. Implementation of this design rule could be added
easily to Python. When overlaps are determined in the spacing rule analysis,
the magnitude of the overlap could be used to index into a three dimensional
spacing rule table. The first two dimensions relate the spacing rules for the
various mask layers as in the normal case. The third additional dimension
relates length of overlap to spaciné rule. Thus, when comparing the spacing
requirement between two adjacent metal lines for example, the length of the
overlap would be used to determine an appropriate spacing requirement

which keeps this capacitance within acceptable limits.
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The minimum width and minimum area layout rules can be processed
during the input phase, before the spacing program is invoked. When a user
requests a line or geome&y of less than minimum width, the input editor can
either refuse the request (with an appropriate error message), or increase
the width to the minimum width allowed and warn the user. Minimum area
violations would be detected when the graphical specification of each
geometry was completed; only when the exact dimensions of the geometry

are known is it possible to discover all minimum area violations.

The minimum enclosure rules and the minimum overlap rules are used
most heavily in systems that use the sticks form of symbolic layout, where
devices are implied by the crossing of the appropriate line types. Minimum
enclosure rules define the distance one mask layer (such as contact cut)
must be contained with the mask layer surrounding it (such as metal or
polysilicon). Minimurn overlap rules define the minimum extensim of two
line types on either side of an intended intersection. This rule is wed most
often for transistors in the particular example of ‘an NMOS process. Both the
minimum enclosure rules and the minimum overlap rules are part of the
construction of primitives in the IC technology and are included as a part of
the leaf cells in the input editor. Since Python (after CABBAGE) muedels the
symbolic data with ezplicitly placed primitives, such as transistors and con-
tacts, including these layout rules in the design of the primitives is the obvi-
ous thing to do.

There are several different types of layout rules associated withcontacts
between interconnect lines on different mask layers. Aside from the
minimum enclosure rule mentioned above, there are two cases whick require

changing the shape of the contact to ensure correct electrical operation.



5.2.3 85

The first case concerns polysilicon-metal and diffusion-metal contacts. At
the stage where the metal layer is added to the IC, the polysilicon or
diffusion is opened to the metel via the contact cut. The vertical depth of the
contact cut is very great: it is on the order of one half the minimum
geometry. The walls of the depression for the contact are very steep. To
insure proper metal coverage of the step, the size of the metal cap of the
contact is often increased. The second case concerns a polysilicon-diffusion
buried contact. In order to prevent the formation of an active transistor
should the contact window misalign, the contact window is lengthened along

the direction of the diffusion line.

Again, both of these layout rules can be dealt with during the input
phase. No absolute topology changes are made in Python, so the contacts
will retain their original sﬁape throughout the complete spacing process.
Addition of the dynamic determination of the contact sizes, as done in CAB-

BAGE, is a complication that is best left to the input editor.

5.2.4. Complex Terminal Frames

Python only allows rectangles as terminal frames which are the allow-
able interconnection areas between cells and a higher-level representation.
A slightly more powerful data structure can allow arbitrary Manhattan
polygons as terminal frames. This can have an advantage as seen in Fig. 5.2.
During the first Y spacing, the interconnect and attached fixed geometry can
slide to the top of the first segment of boxes. During the successive X spac-
ing, the endpoint of the interconnect is free to slide so that the following Y
spacing will allow the interconnect to slide up further, yielding a final result

that is more compact than if the terminals had been restricted to boxes.
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Fig. 5.2 Spacing Savings Resulting From Complex Terminal Frame

Note that although more than one terminal can have the same name
{and hence be electrically equivalent) in the definition of a cell, factoring
polygonal terminal frames does not allow the same flexibility as having true
polygons for terminals. This happens because each interconnect line is
bound to the terminal it ends on and cannot change terminals during the

spacing analyses, even if the new terminals are electrically equivalent.

The terminal frame edges are used to label the appropriate protection
frame intervals with the correct, non-zero net. If the edges for terminals are
managed in much the same way as the polygon edges for protection {rames,
the example of Fig. 5.2 is possible. Since polygons are stored in the database
as boxes, the Fang polygon package must be used to merge the boxes into
true polygons and to develop the individual edges of the polygon. These
edges may then be used to compare against the protection frame edges, as

the edges of the box terminals are compared now.
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5.2.5. Constraints (Fixed and Relative)

No user-defined constraints are allowed by Python. This restriction is
primarily due to the lack of adequate heuristic algorithms to determine
where overconstrained situations exist in the graph. It is possible to inten-
tionally generate overconstraints if user-defined constrains are permitted. It
is almost as easy to introduce unintentional problems. Adding a mechanism
to allow user specified constraints is simple. Lines could be labeled as fixed
by the input editor. Normally, an edge is added for each line between the
two vertices that are in the graph parallel to the direction of the line. This
edge has zero lower bound, and infinite upper bound, and serves to keep the
length.of the line greater than zero. In fixed lines, the lower and upper
bounds of the edge are set equal to the length of the line as read in from the
input editor. The length of the line is thus fixed at the input value, and

remains at the same length throughout all spacing iterations.

Given this capability of fixed length lines, relative constraints between
two objects can be expressed as follows. Define a new mask layer for con-
straints only; a mask layer with no physical meaning; similar to the RUNX
mask layer used in CABBAGE. Add a terminal on this new mask layer for
each instance. The geometries which can be added on this new mask layer
allow the specification of many types of relative constraints. Connecting two
(or more) instances with fixed length lines on the constraint layer fixes the
two (or more) objects rigidly relative to one another. They may move any-
where within the IC layout, subject to the spacing constraints. They must
move with one another, however. Figure 5.3 displays how two objects would

be fixed relative to ocne another.
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All Lines Fixed

Fig. 5.3 Rigid Relative Constraints
Constraints in one direction only can be made by connecting two objects
together with a fixed line in that direction and an unconstrained line in the
other direction. Figures 5.4 and 5.5 show objects constrained inthe Xand Y

directions only, respectively.

B

Solid Lines Fixed
Dotted Line Normal

Fig. 5.4 X Only Relative Constraint
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Solid Lines Fixed
Dotted Line Normal

Fig. 5.5 Y Only Relative Constraint

5.2.8. 45-Degree Interconnect

45-degree interconnections are not allowed in Python, however they are
used heavily in many IC technologies. They are almost impossible to add to
Python because of the separation of the X and Y spacings. Stretching and
shrinking 45 degree lines necessitates movement in both axis directions (See
Fig. 5.8). The decoupling of the spacing process introduces a high probability
of an oscillatory condition that will never converge if 45 degree interconnect
lines are allowed. Figure 5.7 illustrates one such example. During the first X
compaction, object B moves to the left, because of the spacing requirement
between it and object C. This horizontal movement irnplies a vertical move-
ment, in order to keep the angle of the line at 45 degrees. In the example
shown, the required vertical movement violates the spacing rule between
objects B and D in the Y direction. During the subsequent Y spacing, Band D
are spaced farther apart. This vertical movement implies a necessary hor-
izontal movemnent, which moves B back to its original position. The next X

spacing moves B to the left (and hence down) and the resulting oscillatory
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Fig. 5.8 Shrinking a 45 Degree Line
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condition will never converge. What is required to determine the proper

location for objects connected with 45 degree lines is the surrounding

geometry in both directions at the same time.
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5.2.7. Incremental (Interactive) Spacing

This is an interesting idea from the point of view of program implemen-
tation. Algorithms for incremental graph update and solution must be
developed before this idea could be exploited. Given the use of a true hierar-
chy, interactive spacing may be of debatable usefulness. In a limited way
however, it might find use In technologies where the size of devices is very
closely related to the actual parasitics of the circuit. Only when the circuit
is compacted can the parasitics be accurately extracted. These vaiues might

then be used to compute the size of devices yet to be added.
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APPENDIX A

User Manual

This appendix contains the UNIX}{ manual pages for the stand-alone ver-
sion of Python.

+UNTX is a Trademark of Bell Laboratories.
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PYTHON ( CAD)

NANE

CAD Toolbox User's Manual PYTHON(CAD)

python — A spacing program for symbolic integrated circuit layouts

SYNOPSIS

python [options] squidcell [ {options] squidcell ] ...

DESCRIPTION

Python is a successor to the CABBAGE [ program. It takes as input the symbolic
layout of an integrated circuit cell, and adjusts the locations of objects within
the cell to obtain as output the minimal area representation of the cell which
satisfies all spacing rules. The interconnect between instances is stretched or
shrunk to satisfy the spacing rules.

The available options are:

4 <inview>
-0 <outview>
-r <rulename>

-e <Lerrorfile>
-m#

Change input view from default 'layout’ to '<inview>'.
Change output view from default 'spaced’ to '<outview>'.

Change rules name {in .cadrc file) from default ‘python’ to
‘<rulename>’.

Change error file from default ‘pythonerr’ to '<errorfile>’.

Specify a number # limit to the number of iterations. Default is
40. Specifying no number, or a number less than zero means to
fterate until the solution is reached or the existence of an over-
constraint is discovered.

Do not perform a reverse pass spacing. Normally, the minimurn
and maximum positions of all objects are calculated. Each

object is then placed at the average of its minimum and max- -

imum allowable locations. Using this option prevents the deter-
mination of the maximum allowable positions of the objects. All
objects are placed at their minimum location. This has the
visual effect of pulling all objects toward the lower left corner of
the layout as much as is possible. Using this option saves time
for the spacing process.

Perform the initial spacing in the y (vertical) direction. Nor-
mally, the compaction is performed as successive iterations in
the x and y directions. Using this option causes the first itera-
tion to start with the y direction. The initial direction of spac-
ing has a great deal to do with the final aspect ratio of the
spaced cell.

FILES .
~cad/.cadrc — Read first for spacing rules
~/.cadrec — Read last for spacing rules
pythonerr — Default error { and statistics ) file
<squidcell>/layout — Default input view
<squidcell>/spaced — Default output view

SFE ALSO
hawk(cad), squid(3cad), fang(3cad), cabtosquid(cad)

AUTHCOR

Mark Bales

First Edition

3/31/82 1
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DIAGNOSTICS
All error messages are self explanatory. They appear in the error file, which is
‘pytheonerr’ by default. :

BUGS .
It is possible to generate overconstraining conditions by ending too many lines
in a single terminal frame. The program does not detect this.

Detection of the ezistence of overconstraining conditions takes O( v ) iterations,
where v is approximately twice the number of objects in the cell being spaced.
To space a cell with no overconstraining condition takes < 40 iterations. Thus,
detection of the ezistence of overconstraining conditions in large cells takes
much longer than spacing of the same cell without the overconstraint. Detec-
tion of where the overconstraints are takes O 2~v ) time, and is hence unfeasi-
ble for large cells.

Merging is not currently allowed. This reduces greatly the area efliciency the
program can obtain when spacing a layout.

The interfacing between python and other programs in the design system is still
a bit primitive.

First Edition 3/31/82 2
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APPENDIX B

GRAPHCAP

This appendix contains the section 3 and 5 manuals from UNKX} for graph-

cap, a low level database interface for terminal independent graphics.

tUNIX is a Trademark of Bell Labaratories.

B.1



GRAPHCAP(3) CAD Toolbox User's Manual GRAPHCAP(3)

NAME

ggetent, ggetnum, ggetflag, ggetstr, gencod, gdecod, gputs — terminal indepen-
dent graphics operation routines

SYNOPSIS

char PC;

char *BC;

char *UP;

short ospeed;
gaetent(bp, name)
char *bp, *name;
gegetnum(id)

char *id;

ggetflag(id)

char *id;

char *

ggetstr(id, area)
char *id, **area;
char *

gencod(pm, x, y, z, t)
char *pm;
gdecod(pm, x, y, z, t)
char *pm;

int *x, *y, *z, *t;
gputs(cp, affent, outc)
register char *cp;
int affcnt;

int (*outc)():

DESCRIPTION

These functions extract and use capabilities stored in the terminal graphics
capability data base file graphcap(5). These are low level routines; see myb(3)
for a higher level package.

Ggetent extracts the entry for terminal name into the buffer at bp. Bp should be
a character buffer of length 4096 and must be retained through all subsequent
calls to ggetnum, ggetflag, and ggetstr. Ggetent will look in the environment for
a8 GRAPHCAP variable. If found, and the value does not begin with a slash, and
the terminal type name is the same as the environment string TERM, the
GRAPHCAP string is used as the entry, instead of reading the graphcap file. If it
does begin with a slash, the string is used as a path name rather than
/cad/etc /graphcap. This can speed up entry into programs that call ggetent, as
well as to help debug new terminal descriptions or to make one for your termi-
nal if you don’t have write permission on the file /cad/etc/graphcap. Ggetent
returns —1 if it cannot open the graphcap file, 0 if the terminal name given does
not have an entry, and 1 if all goes well.

Ggetnum gets the numeric value of capability id, returning 0 if is not given for
the terminal. Ggetflag returns 1 if the specified capability is present in the
terminal’s entry, 0 if it is not. Ggetsér gets the string value of capability id, plac-
ing it in the buffer at arec, advancing the arec pointer. It decodes the abbrevia-
tions for this field described in GRAPHCAP(S), except for sequences beginning

First Edition 1
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with ', which are dynamically interpreted by the routines gencod and gdecod.

Gencod returns a pointer to a formatted string using the values x, y, z, and t and
using the string pm as a formatting template. See GRAPHCAP(S), for a descrip-
tion of the formatting conventions. (Note that all programs using graphcap
should turn off XTABS, since gencod may now output a tab. Note that programs
using graphcap should in general turn off XTABS anyway since some terminals
use control I for other functions, such as nondestructive space.) If a X sequence
is given which is not understood, then gencod returns OOPS.

Gdecod returns the values z, y, 2z, and t having decoded them from the input
stream using the format string pm. The same formatting conventions are fol-
lowed as in gencod.

Gputs decodes the leading padding information of the string cp, affcnt gives the
pumber of lines affected by the operation, or 1 if this is not applicable, outc is a
routine which is called with each character in turn. The external variable
ospeed should contain the output speed of the terminal as encoded by stty (2).
The external variable PC should contain a pad character to be used (from the pe
capability) if a null (~@) is inappropriate.

FILES
/cad/etc/graphcap data base
SEE, ALSO
kic(1), mfb(3), graphcap(5)
AUTHOR .
Mark Bales (Much of it stolen from termcap(3).) Giles Billingsly is taking over
development
BOGS

The pointer returned by gencod points to a static bufler area which is overwrit-
ten upon each call.

First Edition 2
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NAME

graphcap — graphics terminal capability data base
SYNOPSIS ,

/cad/etc/graphcap
DESCRIPTION )

Graphcap is a data base describing graphics terminals, used, e.g.. by kic{l1) and
mfb(3). Terminals are described in graphcap by giving a set of capabilities
which they have, and by describing how operations are performed. Padding
requirements and initialization sequences are included in graphcap.

Entries in graphcap consist of a number of *:' separated fields. The first entry
for each terminal gives the names which are known for the terminal, separated
by ‘|' characters. The first name is always 2 characters long and is used by older
version 8 systems which store the terminal type in a 16 bit word in a systemwide
data base. The second name given is the most common abbreviation for the ter-
minal, and the last name given should be a long name fully identifying the termi-
nal. The second name should contain no blanks; the last name may well contain
blanks for readability.

CAPABILITIES
The Parms column indicates which of the four possible paramters are used in
the encoding of string variable.

Name Type ParmsDescription
ACS string Alphanumeric Clear Screen
APT boolean Accurately Positionable Text

BDE string X Box Pattern Define End
BDF string X Box pattern Define Format

BDH nurneric Box Definition Height ( number of rows )
BDR boolean Box Definition Row major

BDS string X Box pattern Define Start

BDW numeric Box Definition Width ( nwmber of columns )
BLD boolean BLinkers Defineable

BLE string BLinkers End

BLS string XYZT Blinkers Start

BX0 string BoX type O ( solid )

BX1 string BoX type 1

BX2 string BoX type 2

BX3 string BoX type 3

BX4 string BoX type 4

BX5 string BoX type 5

BX6 string BoX type 6

BX7 string BoX type 7

CBK string set to Color BlacK

CBU string set to Color BlUe

CCY string set to Color CYan

CGN string set to Color GreeN

CHO numeric Character Height Offset

CMD boolean Character Mode Destructive
CMG string set to Color MaGenta

CMN boolean Character Mode Non-destructive
CRD string set to Color ReD

CWH string set to Color WHite

First Edition 9/28/81 1
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CWO numeric Character Width Offset

CYL string set to Color YeLlow

DBP boolean Defineable Box Patterns

DBS string XYZT Draw Box Sequence

DLP boolean Defineable Line Patterns

DLS string XY Draw Line Sequence

DMO string Destructive Mode Cn

GCD numeric Graphcis Clear screen Delay

GCH numeric Graphics Character Height

GCS string X Graphics Clear Screen (in current color)
GCW numeric Graphics Character Width

GFD numeric Graphics Finish Delay

GFE string Graphics Finish End

GFS string Graphics Finish Start

GID numeric Graphics Initialization Delay

GIE string Graphics Initialization at End

GIS string Graphics Initialization at Start
GME string Graphics Mode End

GMS string Graphics Mode Start

GPC string Graphics Pad Character (default is NULL)
GTE string Graphics Text End

GTS string Graphics Text Start

IBS string Initialize predefined Box Styles
ICS string Initialize predefined Color Styles
ILS string _Initialize predefined Line Styles
LD3 string Line type dot dot dashed

LDD string Line type long Dot Dashed

LDO string Line type DOtted

LLD string Line type Long Dashed

LPD string Line Pattern Define

LPW numeric Line Pattern Width {in bits)

LSO string Line type SOlid

1d3 string Line type dct dot dot

Ldd string Line type short dot dashed

Lsd string Line type short dashed

MPS string XY  Move Pen Sequence

MXC numeric Maximum X Coordinate

MYC numeric Maximum Y Coordinate

NBL numeric Number of BLinkers

NBS numeric Number of Box Styles

NCS numeric Number of Color Styles

NLS numeric Number of Line Styles

NMO string Non-destructive Mode On

NPB numeric Number of Pointing device Buttons
PDB boolean Pointing Device has Buttons

PDE string Pointing Device End

PDF string XYZT Pointing Device coordinate Format
PDR string Pointing Device initiate Read

PDS string Pointing Device Start

PRI boolean Pointing Read Immediately returns coordinates
RLS boolean Reissue Line Style before each line

SBS string X Set Box Style

First Edition 9/28/81 2
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SCS string X Set Color Style
SLS string X Set Line Style

TOH string Text Orientation Horizontal R
TOV string Text Orientation Vertical (read from bottom)

VLT boolean Video Lookup Table present

VTE string XYZT Video Table Eatry

VT! numeric Video Table maximurn Intensity *
VIL numeric Video lookup Table Length

VWM string X Video Write Mask

A Sample Entry

The following entry, which describes the Aed 512, is among the more complex
entries in the graphcap file as of this writing. (This particular aed entry may be
outdated, and is used as an example only.)

al]aed|aedjlaed512]Advanced Electronics Design Model 512:\
:APT:CHO#3: CWO#1: CMN:MXC#51 1:MYC#482: GCH#9: GCW#6:NCS#256:\
:NLS#1:NBS#16:VLT:VTI#255: VIL#258:VTE=KZXZh201 ZYZh27%Z7Zh27%T%h2:\
'SCS=CZX%Zh2[ ZX%h2: VWM =LZ%ZX%h2:GMS=\E:GME=~A:GCS="\120~L\E'\160:\
:GTS=-~A:GTE=\E:GIS=\E\E\E\E\E\E\E\E\E\EQ:GID#2:\
:GIE=\E'\160\~15\08\011LG1HHH.:\
:GFS=\E\E\E\E\E\E\E\E\E\EQ:GFE=\E'\100~L~A:\
:GFD#2:GCD#0:BLD:NBL#8:BLS=\E47ZX7%h27%YZh2%7%h2%T%h2 1 D1D:\
BLE=\E47ZXZh2ZY7%h2Z%ZZh2Z%TZh21D00:\

:DLS=Q%X%> > #6%& fOXCZREY %> > #8%|ZRZh L TXZh2ZYZh2AR L% > > #8% & HOXCTRR
%> > §#6%& fOXCARZY %> > #8%|%R%N1 ZXZh2 %Y Zh20% 2% > > #6%& #OXCARZT> > #8Z|%RZN 1 ZZZh2%TZh2:\
‘MPS=Q7%X7%> > #6%&#0xCARZY %> > #8%|ZRZh 1% XZh27% Y Zh2:\
:ICS=K00080000000000FFOOFFFFOOFFO0FFOOFFFFO000FFFFFFOOFFFF:ILS=~@:\
;:CBK=C00[00:CBU=C01[01:CCY=C02[02:CGN=C03[03:\
:CMG=C04{04:CRD=C05[05:CWH=C06[06:CYL=C07[07:\
:EBK='\120~L\E'\160:EBU="\120~L\E'\160:ECY="\120~L\E'\160:\
:EGN="\120~L\E'\160:EMG="\120~L\E'\180:ERD="\120~L\E'\1860:\
:EWH='\120~L\E'\160:EYL="\120~L\E'"\160:\
:LD3=01AES5:.LDD=01BE11:LDO=01AA55:LLD=01FCi1:\
:LSO=01FF55:Ld3=01A855:Ldd=01BES5:Lsd=01FC55:\
:PDS=¢Z%X%hR27% YZh202U:PDE=d:PDR=j: PRl:\
:PDF=%h1% < <#BZR%> > #2%& #0x300%X%h2%| ZXZXANR2%|%RZ&HOXSFFHY:\
‘BDE=~@:BDF=0%Y%h2:BDH#8:BDR:BDS=,%X%h2: BDW#8: BX0="00:\
:BX1="01:BX2="02:BX3="03:BX4¢="04:BX5="05:BX6="06:BX7="07:\
:DBP:.DLP:IBS=,00FFFFFFFFFFFFFFFF,01 FEBRBAAAARBEBOFF,021824428181422R
'LPW#8:LPD=01%2X%h255:5BS="%X%h2:SLS=~@:

Entries may continue onto multiple lines by giving a \ as the last character of a
line, and that empty fields may be included for readability (here between the
last field on a line and the first field on the next). Capabilities in graphcap are of
three types: Boolean capabilities which indicate that the terminal has some par-
ticular feature, numeric capabilities giving the size of the terminal or the size of
particular delays, and string capabilities, which give a sequence which can be
used to perform particular terminal operations.

Types of Capabilities
All capabilities have three letter codes. For instance, the fact that the Aed has

accurately positionable text { i.e., graphics text may be positioned with lower
left corner at any pixel on the screen ) is indicated by the capability APT. Hence
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the description of the Aed includes APT. Numeric capabilities are followed by
the character '# and then the value. Thus MXC which indicates the maximum
value of the X coordinate on the terminal screen gives the value '511' for the
Aed. Formatting in String Capabilities

Most of the string variables have a primitive formatting capability to be used in
encoding numbers into ASCII strings and decoding ASCII strings into numbers.
An example of the former si the capability DBS ( for Draw Box Sequence ), which
takes four numbers (X, Y, Z, and T) and generates the proper sequence to draw a
box from lower left corner (X.Y) to upper right corner (Z,T). An example of a
string decode is the capability PDF ( for Pointing Device Format ), which takes
an ASCII string from the input stream and extracts from it an x and y coordi-
nate, a key (if one was pushed) and a buttonmask (if a cursor button was
pushed).

String Formatting

Most of the string variables have a primitive formatting capability which uses
four variables (X, Y, Z, and T) to generate a formatted string (with gencod), or
generates four variables (X, Y, Z, and T) from a formatted string (with gdecod).
All operations begin with a percent sign ', and they are listed below:

Com Command Description encod/(decod)
ZX set value /(X variable) to the X variable /{value)
%Y set value /(Y variable) to the Y variable/(value)

% set value/(Z variable) to the Z variable /(value)
%T set value /(T variable) to the T variable /(value)
%d output/(input) value in variable length decimal format

Z%d2  output/(input) value converting to/{from) two decimal digits
%d3  output/(input) value converting to/(from) three decimal digits
%. output/(input) least significant byte of value
withoutconversions
Zhl  output/(input) least significant four bits
converting to/(from) one ASCIl hex character
Zh2  output/(input) least significant byte
converting to/(from) two ASCII hex characters
%h3 output/(input) least significant twelve bits
converting to/(from) three ASCII hex characters
Zh4  output/(input) least significant sixteen bits
converting to/(from) four ASCII hex characters
%ol output/(input) least significant three bits
converting to/(from) one ASCII octal character
%02  output/(input) least significant six bits
converting to/(from) two ASCII octal characters
%o3  output/(input) least significant nine bits
converting to/(from) three ASCII octal characters
Z%o4  output/(input) least significant twelve bits
converting to/(from) four ASCII octal characters
%05  output/(input) least significant fifteen bits
converting to/(from) five ASCII octal characters
%08  output/(input) least significant sixteen bits
converting to/(from) six ASCII octal characters
%R store/(retrieve) value in/(from) a temporary register
Z+x  add x to value
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7a-X
7Za>>X
7<<X
Z|x
%&x
7~X
%~
7%

%D

(1)
(2)

(3

subtract x from value

shift value right by x bits

shift value left by x bits

OR x with value

AND x with value

XOR x with value

Complement value ( 1's complement )
gives Z

BCD (2 decimal digits encoded in one byte)
Delta Data (backwards bed)

Where x can be:

One byte - the numeric value of this byte is used as x
The character "#" followed by an ASCII number which is
Hex if the first character sequence is '0x’ or '0X’,

octal if the first digit is 0, and decimal otherwise.

The character "%" followed by X, Y, Z, T, or R - the value
of X, Y, Z, T. or R respectively is used as x.

These formatting commands are very similar to those found in termcap(5), but
are more numerous due to the more rigorous requirements of graphics termi-

nals.

Miscellaneous See mfb(5) for a description of how

FILES

/cad/etc/graphcap file containing terminal descriptions

SEE ALSO

kic(1), mfb(3), graphcap{3)

AUTHOR

Mark Bales { Much of it stolen from termcap(3) ) Giles Billingsly is taking over
development

BUGS

First Edition
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APPENDIX C

MFB

This appendix contains the section 3 and 5 manuals from UNIX} for mfb, a
medium level Model Frame PBuffer which interfaces between a high-level

application program and the low-'level grapheap routines.

tUNIX is a Trademark of Bell Laboratories.
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NAME
mfb — a Model Frame Buffer graphics package

SYNOPSIS
MFBBegin(displayName)
char *displayName; -
MFBEnd()
MFBSetNaiveMode()
MFBUpdate()
MFBDefineColor(colorld,r,g,b)
int colorld, r, g, b;
MFBDefineLineStyle(styleld,styleDefinition)
int styleld, styleDefinition;
MFBDefineBoxStyle(styleld, styleDefinition)
int styleld, *styleDefinition;
MFBSetColor(colorld)
int colorld;
MFBSetLineStyle(styleld)
int styleld;

MFBSetBoxStyle(styleld)
int styleld;

MFBSetChannelMask(channelMask)
int channelMask;

MFBLine(x1,y1,x2,y2)

int x1, y1, x2, y2,
MFBBox(l1,b,r,t)

intl b, r ¢

MFBText(text,x,y)

char *text;

int x, y;
MFBSetTextMode(destructiveP,colorld)
int destructiveP, colorld;
MFBPoint(xz,y key,buttonMask)
int *x, *y, *buttonMask;

char *key;
MFBSetCursor(colorld);

int colorld;

MFBError(errnum, termname)
int errnum;
char *termname;

MFBBlinker(colorld,r.g,b,onP)
int colorld, r, g, b, onP;

MFBPutchar(c)
char c;

First Edition 1
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char MFBGetchar()
MFBUngetchar()
MFBTrap()
MFBFlood()
DESCRIPTION
These functions form the core set of a medium-level terminal independent
graphics package. They use the low level routines in graphcap(3) to achieve ter-

minal independence, and provide a basis for writing high-level graphics pack-
ages. See mfb(5) for a detailed introduction to the Model Frame Bufler.

MFBBegin is called to initialize the package for terminal displayName. It reads
the set of capabilities from the terminal database, turns off user messages, sets
the terminal in cbreak mode, and diverts all signals to call the routine MFBTrap
if a;.e)rmination signal is encountered. MFBTrap calls MFBEnd, and then calls
exit(2).

MFBEnd must be the last routine called before program exit, and resets the ter-
minal parameters to their state at run time.

MFBSetNaiveldode establishes a simple mode of operation with eight colors,
eight line types, and eight box styles predefined { within the limitations of the
terminal ).

MFBUpdate flushes the buffer used to improve system efficiency. It should be
called whenever a sequence of cormnmands is considered complete, such as at the
end of a plot or before a read.

MFBDefine Color sets the color identified by color/d to the value defined by the
intensity triple 7 g, b. The intensities are normalized to 1000.
MFBDefineLineStyle sets the line style identified by style/d to the bit pattern
contained in styleDefinition. The pattern is taken from the low order bits. The
length of the pattern depends upon the terminal used. MFBDefineBozSlyle sets
the box style identified by style/d to the bit pattern pointed to by
style Definition. The pattern is an array of integers which provide bit patterns
for the individual rows (columns) of the pattern. The pattern may be row or
column major, depending on the terminal, and it may be cf different bit widths
and heights.

MFBSetColor, MFBSetlineStyle, and MFBSetBozStyle set the current color,
linestyle, and boxstyle respectively. These attributes are used when drawing
lines, boxes, and text.

MFBLine draws a line from point (z1,y!) to point (z2y2). MFBBoz draws a box
from the point (left, bottom) to the point (right, top). Note that the points rmust
be given in the proper order. This is due to the idiosyncrasies of some graphics
terminals.

MFBSetTeztHode sets the text writing mode to either destructive, with the
background bits in each character cell of the text being erased, or non-
destructive, where these background bits are not changed. Not all terminals will
have both capabilities. MFBTezt is the routine used to output the string fezt
with the lower left hand corner at the point (z,y).

MFBPoint is used to read a pointing device associated with the terminal ( a
tablet, joystick, mouse, ete. ). It turns the graphics cursor on and decodes the
cursor position, returning it in z and y. The routine also determines if a butten
on the cursor was pressed ( if such buttons exist ), or if a key on the terminal

First Edition 2
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keyboard was depressed. This information is returned in key and buttonMask.
After the cursor position has been entered, the cursor itself is turned off.

MFBSetCursor sets the color of the in MFBPoint to color/d.

HFBBlinker is for those few color graphics terminals which allow certain colors
to blink between two colors. The color identified by color/d is made to blink
between the color it is set to and the color defined by the triple r, g, b. Again,
the intensities are normalized to 1000. The flag onP determines whether the
blinker is being set or cleared.

MFBFlood floods the screen with the current color as defined in MFBDefineColor.

MFBError is used with the error indications returned by the routines MFBBegin,
MFBEnd, MFBSetColor, MFBSetLlineStyle, MFBSetBozStyle, MFBPoint, and
MFBBlinker. Passing the returned error status errnum along with displayName
yields a pointer to a formatted string containing an error message which
explains the problem. If no error is encountered, the indication MFBOK is
returned. See mfb(5) for a more detailed explanation of the errors that can
occur.

MFBPutchar, MFBGetchar, and MFBUngetchar replace the familiar 1/0 functions
for use with this package.

FILES
/cad/etc/graphcap terminal database
/cad/include/mfb.h file defining the MFB structure

SEE ALSO
kic(1), grapheap(3), mfb(5)
AUTHOR
Mark Bales and Ken Keller Giles Billingsly is taking over development

DIAGNOSTICS
See the description of MFBErTor above.

BUGS
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NAME

mfb — a Model Frame Buffer intermediate-level graphics package

SYNOPSIS

MFBBegin(displayName)
char *displayName;

MFBEnd()
MFBSetNaiveMode()
MFBUpdate()

MFBDefineColor(colorld,r,g.b)
int colorid, r, g. b;

MFBDefineLineStyle(styleld,styleDefinition)

int styleld, styleDefinition;

MFBDefineBoxStyle(styleld, styleDefinition)

int styleld, *styleDefinition;

MFBSetColor{colorld)

int colorld;
MFBSetLineStyle(styleld)

int styleld;
MFBSeltBoxStyle(styleld)

int styleld;
MFBSetChannelMask(channelMask)
int channelMask; -
MFBLine(x1,y1,x2,y2)

int x1, y1, x2, y2;
MFBBox(Lb.r,t)

intl, b, r t

MFBText(text,x,y)

char *text;

int x, y;
MFBSetTextMode(destructiveP,colorld)
int destructiveP, colorld;
MFBPoint(x,y.key,buttonMask)
int *x, *y, *buttonMask;

char *key,;
MFBSetCursor({colorld);

int colorld;

MFBError(errnum,termname)
int errnum;

char *termnarme;
MFBBlinker(colorld,r,g,b,onP)
int colorid, r, g. b, onP:
MFBPutchar(c)

char c;
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char MFBGetchar()
MFBUngetchar()
MFBTrap()
MFBFlood()

DESCRIPTION
HMfb is a medium level terminal independent graphics package intended as a
basis for high level graphics packages. It uses the graphics terminal database
management routines in graphcap(3) and provides for the high level user an
unintelligent interface to a predefined set of operations, as well as the relevant
additional information necessary to make the high level package truly terminal
independent.

This document describes the data structure that defines the Model Frame
Buffer. For a shorter description of the mjb routines, see mfb(3).

The MFB Data Structure

Here is the mfb data structure, which will be broken up and discussed in
separate components.

/* MFB structure definition. */
struct MFB
int initializedP;

int naiveModeP;

/ *Initialization*/
char *startSequencel, *startSequence2, *endSequencel, *endSequence2;
unsigned startDelayTime, endDelay’ ime; /* In Seconds */

/ *Resolution.*/
int maxX,maxY;

/*Text font.*/

int textPositionableP;

int fontHeight,fontWidth,fontXOffset,fontYOfIset,
char *graphicsTextStart, *graphicsTextEnd:

int destructiveP,orP;

char *destructiveON, *orON;

int numberOfColors; /* number of color styles */
int numberOfLineStyles; /* number of line styles */
int numberOfBoxStyles;

/* Naive user mode parameters */

int naiveColors, naiveLineStyles, naiveBoxStyles, naiveEraseStyles:

char *naivelinelnit, *naiveColorlnit, *naiveBoxlnit,

char *naiveLineSet[8], *naiveColorSet[8], *naiveBoxSet[8], *naiveErase[8):

char *displayName;
char *screenfFlood;

First Edition 9/29/81 2
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unsigned floodDelayTime;
char *graphicsON;
char *graphicsOFT;

/*true if display has a VLT.*/

int vitP;

/*Max value of red, green, or blue intensity.*/

int maxIntensity;,

int widthOfVLT; /* = Ceiling( log base 2 ( maxIntensity ) *3) */
int lengthOfVLT;

char *VLTentry;

char *setForegroundColor;

/*true if display has a channel mask: also known as memory
plane write enable mask.*/

int channelMaskP;

char *channelMaskSet,

/*true if pointing device has buttons.*/
int buttonsP;

int numberOfButtons;

char *enablePointingDevice;

char *disablePointingDevice;

int readlmmediateP;

char *readPointingDevice;

char *formatPointingDevice;

/*true if has blinkers.*/

int blinkersP;

int numberCOfBlinkers;

char *blinkerON, *blinks . Or i,

char *pointingDeviceName;
int pointingDeviceld;

/* Line drawing parameters. */
int linePatternDefineP,

char *linePatternDefine;

int linePatternWidth;

char *setLineStyle;

int *linePatterns;

char *movePenSequence;

char *drawLineSequence;

/* Box drawing parameters. */
int boxPatternDefineP;

int boxRowMajorP;

int boxDefineHeight;

int boxDefineWidth;

char *boxDefineStart;

char *boxDefineFormat;

char *boxDefineEnd;

First Edition 9/29/81
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char *setBoxStyle;
int *boxPatterns;
char *drawBoxSequence;

/* Section of 'current’ variables */
int ForegroundColorld;

int CursorColortid;

int CursorColor2ld;

int BoxStyle;

int LineStyle;

int *VLTcopy:

int channelMask;

int textMode;

/* Kludge section (sigh!) */
int reissuelineStyleP;
i

Naive User Mode
/* Define Macros for MFB naive user mode. */

/* Macros for Line Styles. */
#define DOTDOTDASHED O
#define LONGDOTDASHED 1!
#define DOTTED 2
#define LONGDASHED 3
#define SOLID 4
#define DOTDOTDOT &
#define SHORTDOTDASHED 6
#define SHORTDASHED 7

/* Macros for Color Styles. */
#idefine BLACK 0

#define BLUE 1

fidefine CYANZ

#define GREEN 3
#define MAGENTA 4
#define RED 5

#define WHITE 6
#define YELLOW 7

/* Macros for Box Styles. */
#define BOXTYPEO
#define BOXTYPE!L
#define BOXTYPE2
#define BOXTYPE3
#define BOXTYPE4
#define BOXTYPES
#define BOXTYPES
#define BOXTYPE?

N WO
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FILES

Error Diagnostics
#define MFBOK 1

#define MFBBADENT -10
#define MFBBADTTY -20
#define MFBBADNLN -30
ffdefine MFBNODFLP -40
#define MFBNODFBP -50
f#idefine MFBBADNCO -60
f#define MFBNODFCO -70
#define MFBNOBLNK -80
#define MFBTMBLNK -90
#define MFBBADNBX -100
#define MFBBADSIG -110
#define MFBBADSTT -120
#define MFBBADCHM -130
#define MFBBADWRT -140
f#define MFBPNTERR -150
#define MFBNOPTFT -160

CAD Toolbox User's Manual

/cad/etc/graphcap terminal database

/cad/include /mfb.h file defining the MFB structure

Mark Bales and Ken Keller Giles Billingsly is taking over development

SEE ALSO
kic(1), graphcap(3), mfb(3), graphcap(5)
AUTHOR
DIAGNOSTICS
BUGS
First Edition 9/29/81
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APPENDIX D

A CPM Algorithm for Acyclic Digraphs with Lower/Upper' Bounds

This appendix describes the derivation and implementation of!the criti-
cal path method (CPM) algorithm used in Python. A simple CPM was used in
CABBAGE [Hsueh79] to solve the critical path problem in a single-source,
single-sink (or multiple equivalent sinks) acyclic directed graph with lower
bounds on the lengths of the edges [Thesen78]. The constraint graph in
Python is different in that upper bounds are placed on the lengths of some
edges, in addition to the lower bounds placed on all edges. The new CPM
algorithm is an iterative one based on the shortest path problem, and is
guaranteed to converge in O(v%) time and within O(v) iterations. Since this
convergence rate is for a completely connected graph, and the graphs gen-
erated by integrated circuit mask artwork are far from complete, the

expected convergence time is approximately O(v!?®).

The spacing problem is decoupled into X and Y graphs, corresponding to
the placement of the elements in the X and Y direciions. A typical X-graph
generated in the spacing process performed by Python has the form shown in
Fig. D.1 (although a real graph would be much larger). In order to space the
elements (corresponding to vertices in the graph) in a layout-rule correct
fashion, it is necessary to find the longest path to each vertex subject to the
constraints of the lower and upper bounds on each of the edges. This can be

expressed as the following linear program:

Given:

D.1



SOURCE SINK
1/ /" \___1/1

Fig. D.1 A Typical Python Constraint Graph

U; - linear position of the jth vertex
¢x; - length of the edge joining vertices k (source) and j (sink)
a.; - lower bound of the kjth edge

- upper bound of the kjth edge

ky
TE } - set of edges of the graph

Minimize the total length of the edges in the graph:

2 €5 Veb,- Q[E} D.1

subject to the length constraints a,; < exj < by;, expressed in linear program

form as:

ek,- = akj D.2

—ekj = -bb) T D.3

Physically, this corresponds to the addition of the extra edges in Fig. D.2.
The shortest path problem is very similar to the linear program described
above. The solution [Lawler786] is an iterative one, guaranteed to converge in

O(v) steps, with a maximum O(v?% calculations at each iteration (for a

t Some of the bk,- may actually be = (i.¢., no upper bound) which implies that condition D.3
ebove heas no meaning.
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SOURCE

D.3

Fig. D.2 Physical Correspondence of Lower and Upper Bounds

complete graph) and thus O(v9) time complexity. Given U as the position

of the jth vertex at the mth iteration, the recursion formula is:

M+1) = o m i ,
Uf min{ Uj .tg}iz}( U+ ay ) D.4

The shortest path problem -can be turned into a longest path problem by
inverting the signs of all of the edge weights and inverting the signs of the
resulting positions. This transformation can be reflected in the recursion for-

mula above as:

Uj(m+l) = maz( U;“. rgg}t( o + o )) D.5

Applying this formula to the graph of Fig. D.2 yields the correct final spac-
ings. In physical terms, during each iteration, each vertex is assigned the
maximum of its current position and the current position of each of its
predecessors plus the weight of the edge connecting the two vertices. Thus,
when convergence is achieved, the position of each vertex is equal to the

longest path from the source to that vertex.
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Each edge with a finite upper bound in Fig. D.1 corresponds to a reverse
edge with negative branch weight in Fig. D.2. Therefore, finding the max-

imum of the values of the predecessors plus the edge weight in Fig. D.2 can

be related back to Fig. D.1 by taking the maximum of all the values of each of -

the predecessors plus the lower bound and the values of the successors
minus the upper bound. Changing the algorithm in this way to work with
graphs of the form D.1 yields the following formula:

Ufm+D = maz( UP, IEaX( U + a; ), I{}a;(( Ur-by)) D.8
=j =

Equation D.6 is the basis for the critical path method used in Python.

Fig. D.3 Sample Symbolic Layout

.
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Since this algorithm is derived directly from the shortest path problem,
it too is guaranteed to converge in at most n steps. This provides a useful
indication of negative cybles. which will cause the number of iterations to

extend beyond the maximum allowed.

Fig. D.3 shows a simple symbolic layout with protection frames, terminal
frames, and interconnect all of a single layer. Assume a spacing rule of !
between objects, consider interconnect lines to be of zero width, and choose
the reference point for each object as the lower left corner (to assure a
digraph with no negative cycles). Examining the geometry for a horizontal
compaction, we obtain the graph shown in Fig. D.4. Using equation D.6 itera-
tively on this graph, we find the vertex positions converge to their proper
minimum allowed spacings in eight iterations, much lower than the upper
bound of 19 guaranteed by the shortest path algorithm. The values at each

iteration are illustrated in Table D.1, where each entry is a triple of the form:

o, T}J?C( Ue + aj ), r?%x( U -by)

Boldface indicates which member of the triple is maximum at each iteration,
and when the remaining values change to italics, this indicates the maximum

has reached its convergence value.

Note the number of vertices whose values change at each timepoint. This
number is never greater than 50% of the number of vertices. It suggests that
a different approach, processing only the vertices which would change, would
greatly improve the order dependencies of the algorithm. Two modifications

were made along these lines.

The first modification was to make the algorithm ‘event-driven’ at each

iteration. Note that with positive upper bounds on the lengths of the graph
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Fig. D.4 Harizontal Graph from Geometry in Fig. D.3
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ON
VERTEX |5 1 2 3 | 4 5 ! 8 | = 8|
0)0 o ] ] /] 0 (4] (] 0
1 0] 00,-1 0,0,0 00,0 0,0,1 1,01 10,1 1,0,1 1,01
20! 0,1,-1} 1,111 1,1,2 21,2 2221 222 222 22.2
3100003~ | 33 | 3J~ | 33« | 83~ | 35, | 33,-=
410 03-2} 33-2( 3314 331} 3351} 331 8§31 331
S| 0] Q0-~1 Q00| 000| 000 000| 000 0,0,0 0,0,0
80| 01~3| 1,1-3| L{-2] 1,12 L L-2 1,1-2| L1-2| 11,2
q O po.IB O-ﬂ.LU ﬂ— &..e u.. &.AB H-N.é A~-‘N.ls H-N.u8 H.ﬂ-la
8O0} O01-1| 1,1-2 11,0 1,1,0 1,1,0 11,0 11,0 1,1,0
810 00-! Q00| Q00| 000! Q00| 000 00,0 0,0,0
10§ 0} 0,5-3 55,0 55,5 55,5 585 86,5 86,6 8,6.8
1140} 032! 3,8-1 88,1 88,8 8,8.8 8,8,6 99,6 8.9,7
12] 0 oLt 1.3 3.8t 88,1 838, 88,1 8,9,t 9,9,t
130 0,1-2 | 1.8-7 88,1 B8 6} 886| 886 886 88,7
140} 0,7-¢ 70 77 7.7 2P| wA”7| A7 77,7
1540 0,1-2 | 1,8-1 8681 Bg6; 886 886 88,6 838.8
18| 0 Lt L1t | 18t} 88t 84+ 88t | 8461 881
171 0] 0,18 | 1,4-5| 44-5] 442 442 442 442 44,2
1810

03-7 ! 330 333t 3331 333! 333 2.3 333
8

Table D.1 Iterations of Eqn. D.8 Applied to the Greph of Fig. D.4
edges, the first iteration of equation D.6 is equivalent to the unmodified CPM,
with lower bounds only. At each iteration, a vertex can change position only
if one of its predecessors or successors has changed position at the previous
fteration. Thus, an event queue is maintained, and when the position of a ver-
tex changes, all of its E.mﬂm.ommmonm and successors are scheduled to be

examined.

The second modification was to allow the changed positions of vertices to
be used during the current {teration. The logic of the 'event-driven’ algo-
rithm is shown in Section 3.2.5. This modified CPM algorithm performs less

than one quarter the number of operations as equation D.86.

t+ These vertices have no successors.



APPENDIX E

Glossary of Terms

This appendix contains definitions of the terms used in this report. Also
summarized here are the descriptions of several other layout spacing aids
which are compared and contrasted with CABBAGE in Chapter 1. In addition,
many of the auxiliary programs and utilities that are used by or use Python
are described. Terms that appear in boldface begin definitions of that par-
ticular term. Words that appear in italics during the definitions are them-
selves defined.

Actual '}‘ermjnals
As contrasted with formal terminals, actual terminals are .
represented by physical geometries. - This geometry is part of the
instance of a master cell, or can also be a local terminal in the
definition of the cell. It binds the formal terminal, which contains
the net-id and name of the terminal, to the geometry which imple-

ments a particular instance of a terminal.

Bounding Box
This is defined as the box surrounding a cell such that no geometry
local to the cell or contained within any instance in the cell extends
beyond the box boundaries. In common usage the t:erm bounding
boz refers to the minimum size box that encapsulates the cell.
Bounding bozes are used to do quick checks to determine that an
object is definitely not of interest. One example of this usage is

checking to see whether or not a particular cell intersects with an

E.1
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area of interest that is being displayed on a graphics- device.
Anocther usage is found in Python, where the upper and lower coor-
dinates of infervals are used to quickly determine if there is a pos-

sible overlap between the intervals.

Bounding Polygon
An extension of the bounding boz idea, this is a polygon which com-
pletely encapsulates a cell, including all instances and geometries
within the cell. Using a bounding polygon rather than a bounding
boz allows a closer representation of the limits of the geometries

internal to a cell.

CABBAGEThe predecessor of the Python program, CABBAGE is a layout comp-
acter for symbolic integrated circuit layouts, consisting of a suite
of two separate programs which communicate through a symbolic
intermediate file. The 'program PRSLI takes a layout entered
through the graphics editor GRLIC and compacts the primitives
according to a set of spa.ciﬁg rules, which define the minimum
allowed spacing between objects on the different mask layers in the
semiconductor process. CABBAGE was one of the first spacing pro-
grams to use the idea of coverage to limit the order complexity of
the spacing rule analysis. Doing so drops the observed order from
the worst case value of O(n? to O(n!?). The ideas contained in
CABBAGE were extended and built upon to form the Python system.

Cabtosquid
This is a computer program that interprets the symbolic intermedi-
ate file used by CABBAGE and enters the data into the Squid data-

base, obeying the conventions required by Python (such as expli-
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citly labeling connectivity, etc.).

Constraint

A constraint is the spacing requirement between two objects. It is
represented in Python by an edge in a graph which represents the
topology and spacing requirements of the IC layout. Constrainis
may have minimum and maximum values in Python, and can be
used to express spacing requirements between objects imposed by
the spacing rules, or to express fixed spacing requirements
between objects for preservation of electrical connectivity. Also,
constrainis may be used to preserve the shape of objects, e.g., to

keep the width of interconnect lines constant.

Constraint Graph

Cover

This is the graph containing the constraints. ‘lt represents the
topology of the IC. While the edges in the constraint graph are
interpreted as lengths indicating minimum and maximurm spacings
between objects, the vertices in the constraint greph are inter-
preted as the locations of the reference points for the geometries
in the IC layout. Solution of the longest path problem from the
source of the graph to the sink of the greph determines the loca-
tions of the primitives in the IC that require a minimal area for the

entire layout.

When checking intervals for overlap, if a primary and a neighbor
overlap, the neighbor is said to cover or shield the primary. It isno
longer necessary to check for design rule constraints between the
primary and any other meighbor over the overlapping part of the

interval. Thus, this limits the search required in the spacing rule



..

-------------

E.4

analysis from a worst case O{n%) time complexity to an observed
complexity of only O(n!!). As the size of cells becomes larger, this
savings in computation can be extremely large. The idea of cover-
age assumes that given two objects that have a spacing rule
between them, and object to the right of the second will be covered
by the second over its interval and may not require a constraint
(See Fig. E.1). Put in another way, if there is a rule between objects
A and B, there is no need for a rule between objects A and C, since
the rule between objects B and C will keep objects A and C from
comihg too close. Note that this premise falls short when there
exists three mask layers and one mask layer has a spacing rule to
both of the other two but the other two have no spacing rule
between them. In this case, a spacing constraint is ignored that
may cause a layout rule violation. The concept of coverage also
must be modified if objects are allowed to merge. When merging

two objects, the intervals in the two objects should not be used as

oooooooooooooooooo ....T

.
-----------

Constraint Not Generated Due to B Covering A

Fig. E.1 Coverage of a Primary /nterval

)



E.S

covers.

Critical Path

A path from the source of the constraint graph to the sink where
the difference between the location of every pair of vertices on the
path is equal to the lower bound of the constraint edge joining the
two vertices is a critical path. There may be rore than one
equivalent critical path in a given topology. The critical path fixes
the minimal area required for the IC layout. If any object is moved
in a manner such that the distance from source to sink in the con-

straint groph is lessened, a layout rule must be violated.

Decoupled Spacing Analysis

In order to take advantage of the rectilinear nature of the
geometries that are spaced by Python, the spacing analysis is
decoupled into separate passes for the X and Y dimensions of the IC
layout. Layouf rules are ignored in the direction perpendicular to
the direction of spacing. Hence, layout rules can be violated in the
direction perpendicular to the spacing direction. This fact requires
that the spacing process be iterated between the X and Y directions
until neither spacing causes the cell bounds to change and all con-
straints are satisfled. Only then is a layout-rule-correct layout

guaranteed.

In Python, an edge is the constraint edge added to the graph which
represents the IC topology. Vertices in the graph represent the
locations of reference points of the geometries within a cell. Each
edge has a lower and an upper bound, which are the minimum and

maximum allowed distances between the two vertices the edge
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joins.

Edge Tracing

A term used in CABBAGE, edge ¢racing is used to develop all of the
edges (really called intervals) that occur on a particular side of a
group of interconnected elements. CABBAGE grouped intercon-
nected elements together to save memory space. Since these
groups contained interconnect lines, which change shape, it was
necessary to dynamically develop these edges during each spacing
rule analysis. Since each group is represented individually in
Python and since the inferval edges are expressed relative to the
bounding boz coordinates of the instance that owns them, it is only
necessary to do the edge tracing in Python once, before the first

analysis.

This is a rectilinear polygon package written by Peter Moore. It
allows arbitrary logical operations on rectilinear mask data, as well
as providing a grow/shrink capability. This package is used in
Python for developing the edges of the protection frames from the
box representation of polygons stored in the Squid database. It is
used by the frame generation program to do ‘the
grow/merge/shrink operation used for removing the holes in the

geometry and producing the frames.

Fixed Constraint

An edge in the constraint graph that has the same lower and upper
bound on its length, and hence fixes the distance between two ver-
tices. This is the major cause of overconstraining conditions. When

a fized constraint exists between two vertices and the upper bound

.

@
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is less than the sum of the lower bounds on another path between

the two vertices, this creates an overconstraining condition.

Fixed Grid

"

FLOSS

In both the SL/C and MULGA systems, an equally spaced grid is used
to represent the allowed positions. In SLIC, the grid spacing is
determined by the largest of the spacing rules. The designer
places geometry in the grid cells, and this grid is then translated
into the actual IC layout. Since the fized grid spacing is determined
by the worst case spacing rule, the resulting layout is not as com-
pact as the spacing rules allow. In MULGA, the fized grid is later
mapped into real values, and the spacings between grid points are
not necessarily uniform. This overcomes the disadvantage of the
simpler fized grid systems. Fized grid methods are contrasted with
the relative grid methods used in FLOSS, CABBAGE, ST/CKS, and

Python.

One of the earliest spacing programs to use a relative grid and a
graph representation of the IC topology, FLOSS is from RCA. The
Finished LayOut Starting from Sketch program makes use of
hierarchy, ’and is designed for the COS/MOS technology. It relies on
the initial relative placement of the objects in the same manner as
CABBAGE and Python. FLOSS is written in PL/] and consists of ~50
procedures. The major difference between the FLOSS and CABBAGE
programs is the input format. FLOSS digitizes a hand-drawn sketch
and takes information about the cells from either a standard
library or a previously defined ceil. The results show a layout ~19%
larger than the equivalent hand-drawn layout.
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Formal Terminals

Graph

As contrasted with actual terminals, formal terminals are the
deflnitions of a terminal associated with the master cell of an
instance. An example would be the drain, gate, and source termi-
nals of an NMOS transistor. While they are specified in the
definition of the transistor (the master cell) as formal terminals,
they do not have a net or physical location associated with them
until the master cell is instanced. At this point, actual terminals in
each instance are created for each of the formal terminals in the

master cell.
According to [Bondy786], a graph defined as:

... an ordered triple ( V(G), ESG) ¢c ) consisting of a nonempty
set V(G) of vertices, a set £(G), disjoint from V(G), of edges, and
an tncidence function ¢¢ that associates with each edge of G an
unordered pair of (not necessarily distinct) vertices of G.

In Python, a graph is used to represent the physical topology of the
IC mask data. The locations of the vertices represent the locations
of the reference points of the primitives, and the lengths of the
edges represent the minimum and maximum allowable spacing

between the two vertices each edge joins.

Graphcap

A terminal independent graphics package developed initially by the
author and Ken Keller, with ongoing development by Giles Billingsly
and Ken Keller. This package is used by Hawk to provide a graphics
terminal independent editor, which, in addition to its many other
capabilities, is the input editor for Python. The graphcaop routines
themselves are a low level package for dealing with an ASCII data-

base representation of a defined standard set of capabilities of a

.
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graphics terminal. The Hodel Frame Buffer, or MFB, is the set of
terminal independent graphics routines that intertace a high-level

applications program, such as Hawk, to the low level graphcap rou-

tines.

Hawk  Hawk is the graphics editor which is the input editor for Python,
and it stores the IC designs in the Squid database. Hawk is very
powerful, and has the intelligence necessary to allow symbolic lay-
out. It also provides a clean user interface to the Python program
itself. See [Keller82] for a description of Hawk.

Hierarchical Design

If a designer encapsulates functional blocks of his design and uses
these blocks in other blocks, it is called hierarchical design. There
are two forms of hierarchical design: top down and bottom up. In
the top down design the system level considerations are given first
priority and the design is narrowed along functional lines until a
particular implementation is achieved. In the bottom up approach,
the low level cells are designed first and used to build up more and
more complex cells until finally the entire system is designed.
Python is designed for use in a hierarchical design style. 'I'his type
ol design style has several advantages for a spacing program. If
only the master cell of each different subcell is spaced instead of
each instance of each master cell, great computational savings can
be realized in the spacing of a regular structure. In addition, the
greater-than-linear order dependencies of the algorithms in the

Python imply that merely dividing the spacing process up into m

spacings each of ;—elements will improve the computational per-
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formance. Another very important point is that very large circuits
will not fit into virtual memory on the computer. This requires

reducing the size of larger circuits through the use of hierarchy.

Instance When a cell is designed and laid out, this cell is called a master cell.

Interval

Jog

When the master cell is used in another cell, it is called an instance
of the master cell, and has all of the characteristics of the master
cell, in addition to its own unique name, translation, and optional
mirrorings and rotations about the coordinate axes. Instances‘are
physically placed and then connected with lines. They do not
change form during the spacing process; they only change transla-
tion. Lines grow or shrink to space the instances according to the

layout rules,

In Python, an interval is an edge of a protection frame. These inter
val edges are used in the spacing rule analysis to determine the
minimum spacing required between any pair of objects. All pri-
maries (right-side intervals) are compared against all neighbors
(left-side intervals) to check for the spacing requirement. Cover-
age is used to liit the depth of the search. Since the intervals are
compared in sorted order, lines may be routed through cells, and
concave and convex objects may 'fit' together, if doing so does not
violate any spacing rules (Fig. E.2).

A jog is a line of one orientation that connects two lines in the per-
pendicular orientation (See Fig. E.C). Jogs introduce great latitude
in the spacing analysis for Python. Two objects joined by a straight
line are fixed relative to one another xn the dimension perpendicu-

lar to the length of the line. Two objects joined by a jogged line are
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.....................
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Fig. B.2 Routing through Cells and Concave /Convex [nteraction

I EHEEE Line Width

Fig. E.3AJog

not fixed at all relative to one another.

Jog Generation
A property of the CABBAGE program was the ability to determine
which lines on the critical path would benefit from insertion of jogs.

The idea was that splitting critical path lines weould allow a more
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compact final result. Determining which interconnection lines are
on the critical path is not very difficult. Determining where on the
line to place {he jog requires examination of the surrounding
geometry. CABBAGE placed the jog in the middle. In the worst
case, this could mean O{(n log n) jog insertions to find the proper

location. In Fig. E.4,

Layout Rules

These include the minimum allowable spacings between objects on
the same and different mask layers in the semiconductor IC pro-
cess. They take their values from considerations of the possible
misalignment between mask layers during processing of the IC.
They are designed to preserve the electrical properties of the IC
even under worst-case conditions. Not all mask layers have rules
for every other mask layer. Here is an example table of the

Mead/Conway NMOS spacing rules which are used by Python:

L ]

Cif

1B only After Jog C is
Inserted Can the Layout
Compact to a Smaller

" A Size

0

Fig. E.4 Binary Search Jog [nsertion

LY
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spacerule ND ND
spacerule ND NP
spacerule ND NC
spacerule ND NB
spacerule NP NP
spacerule NP NC
spacerule NP NB
spacerule NM NM
spacerule NC NC
spacerule NC NB
spacerule NB NB
spacerule NT NC

10— 00y 00—

ND is diffusion, NP is polysilicon, NC is contact cut, NM is metal for
interconnections, NB is the buried contact window cut, and NT is a
special mask for the active area of transistors (necessary for imple-
mentation of the full Mead/Conway layout rule set). Layout rules

also include additional rules, such as:

Minimmum Area Rules -
Minimum Width Rules
Minimum Enclosure Rules

These rules are not directly checked by as they are easier to check

in the input phase.

Leaf Cell A leaf cell is a cell that simply contains no instances. It can be
looked at as the leal of a tree; the smallest unit which cannot
‘branch’ into anything smaller. It is the atom of hierarchical
design.

Line In Python, a line is a path on one of the IC mask layers that is used
for interconnecting terminals on instances. [ines grow and shrink
along their length, and this allows the spacing program to change

the size of the layout to satisfy the design rules.

Local Interconnect

This is interconnect local to an instence. In the hierarchy, if the
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level of the instances within a cell is 0, the level of the local inter-
connect is also 0. Local interconnect, instance protection frames,
and local and instance terminals are the only geometries used to

do the spacing in Python.

local Terminals

Local terminals are at the same level in the hierarchy as the local
interconnect described above. They are used to communicate the
signals between the cell and the next level in the hierarchy where

the instance in which the local terminals are used is placed.

Longest Path

Merging

The longest path through the graph is defined as the longest path
from the source of the constraint graph to the sink of the con-
straint graph while satisfying the mlmmu.rn constraints on all of the
edges joining vertices on the path. Solution of this longest path
determines the locations of the primitives that requires the smal-
lest area while satisfying all spacing rules. The algorithm to solve
this problem is an iterative one, guaranteed to converge in v itera-
tions, if there are no overcoastraining conditions (v is the number
of vertices in the graph). See Appendix D for a discussion of the

algorithm.

When two similar objects are interconnected, often they may
‘merge’, or overlap, in a certain fashion. An example of this is two
NMOS transistors connected by their gates. The polysilicon exten-
sion past the end of the transistor is 2\, When the gates of the two
transistors are connected, if no merging is allowed, the spacing

between the source and drain regions of the two transistors is 4A.

>
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The required spacing is only 3A, and LA of space is being wastéd. It
the primitives are allowed to merge, the diffusion to diffusion spac-
ing of 3A can be met. CABBAGE allows merging, since the rules for
merging the specific NMOS primitives known to the program are
well understood. Python is a more general program, and does not
allow merging, since there is not yet a general convention for how

and when arbitrary objects can merge.
MF¥B See the definition of Graphcap.

Model Frame Buffer
See the definition of Graphcap.

MULGA MULGA is one of the most recent IC spacing programs. It uses the
concept of a wvirtual grid to obtain an efficient compaction result
without sacrifice of computation time. Integer grids are used to
represent the IC layout in a matrix form. The spacing analysis
maps the integer grid spacing into a real value which satisfies the
spacing rules while minimizing total area required for the layout.
Corner constraints are checked, and a form of recursion is used to
check constraints that extend over multiple grid rows or columns.
Jog generation is intentionally avoided. The author feels that such
drastic topological changes as can be introduced with jog genera-
tion are better introduced by the human designer. MULGA has
been used to design several NMOS and CMOS ICs, which have been

fabricated.

NeighborA neighbor is a left-hand-side interval, and all neighbors to the right
of a primary are compared against it for possible overlap, which

would require a constraint between the objects which the primary
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and neighbor belong to.

Overconstraint

Primary

An overconstraint in the constraint graph is generated when two
paths exist between a pair of vertices and the sum of the lower
bounds of the edges in the first path is greater than the sum of the
upper bounds of the edges in the second path. In this case, there
can be no location for the vertices on the two paths that will satisty
all of the constraints. The graph is said to be overconstrained. The
nature of the longest path algerithm that solves for the locations of
all of the vertices is such that v iterations are required to detect
the ea:isience of an overconstraint, where v is the number of ver-
tices in the graph. Detection of the location of an overconstraint is
an O(2"Y) time complexity problem. For even very small graphs,
this time complexity becomes prohibitively large. For this reason,
no detection of the location of overconstraining conditions is done

in Python.

A primary is a right-side-edge interval, and is compared in the left-

to-right scan of neighbors for possible overlap.

Protection Frame

Python

A prolection frame, in the implementation of Python, is used to sur-
round the geometry within a cell, to reduce the amount of data it is
necessary to examine in order to space the cell when it is used at a

greater level in the hierarchy.

The program developed for this report, Python is a layout rule spac-
ing program for symbolically designed IC layouts, and is based on
the ideas contained within the CABBAGE program. Python extends
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the critical path algorithm used to solve for the minimum area lay-
out to include upper as well 'as lower constraints on the edges in the
graph. With these upper bounds, each object can be represented
individually, rather than as groups of connected objects, as was
done in the CABBAGE program. Fixed bound edges preserve electri-
cal connectivity. £dges with different lower and upper bounds but
with a finite upper bound can be used for sliding contacts, or termi-

nal frames.

Rectangular Polygon
A polygon where the angle between the edge segments at each of its

vertices is some integral multiple of 90 degrees. These polygons
are used in Python as protection frames for cells. This allows
almost any arbitrary shaped object to appear within a leaf cell. As
long as the protection frame is a rectangular polygon, Python can

space instances of the cell.

Relative Constraint
A relative constraint relates two {(or more) objects to one another,
while making no restrictions on the movernent of the group as a

whole.

Relative Grid
Contrasted to the fized grid approach, the relative grid serves only
to indicate the initial relative placement and interconnection of the
objects in the layout. The spacing between objects is determined
through analysis of the spacing requirements between objects. This
approach is used by the FLOSS, CABBAGE, STICKS, and Python pro-

grams.
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The SLIC (Symbolic Layout of /ntegrated Circuits) system is a fized
grid symbolic layout aid from AMI which provides an interactive
environment for\rdetection and correction of errors in the symbolic
layout. No automatic spacing is done. The types of checking that

are available to the designer are:

« Design Rule Checking (Boolean Equation Input)

« Network Comparison (Between Logic Deck and Layout)
« Netlist Trace (Includes Device Sizes)

« Parasitic Extraction {Capacitances and Resistances)

Once the layout is error free, masks are generated and the circuit
can be fabricated. Examples are presented which show circuit sizes

within 10% of hand-drawn circuit size.

Sliding Contacts

See Terminal Frames.

SLIP/SLIM

The SLIM program [Dunlop80], and previously the SL/P program
[Dunlop?8]. are from Bell Laboratories. A novel use of multiple
spacing methods makes SLIM an interesting example. The IC sym-
bolic data is partitioned automnatically, into an optimal size calcu-
lated by the author{Dunlop79]. A loose initial placement which is
design rule correct (although not optimal) is generated. Critical
path detection, similar to the method used in CABBAGE, is coupled
with a local compaction method to reduce total run-time required,
while maintaining an efficient compaction result. The local compac-
tion procedure clusters together groups of objects on the critical
path. Jogs are inserted in the layout, but only at contact locations.
Global rift line compaction [Akers70] removes the excess space

between the locally compacted partitions. The order dependency
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for the composite algorithm is approximately 0{n¥?).

Spacing Rules

Squid

STICKS

See layout rules (which are a superset of spacing Tules).

This is the database used by Python to store and retrieve the sym-
bolic IC information. It stores logic information, such as electrical
connectivity, as well as geometric information, relating to the phy-

sical layout of the circuit.

This program is a high-level layout aid from Hewlett-Packard Co.
[Williams78]. As in CABBAGE and FLOSS, STICKS uses a relative grid
approach, with the designer's initial placement of the circuit ele-
ments determining to a great degree the possible efficiency of the
compaction. STICKS takes a stick diagram as input, with the ele-
ments represented by symbols, and the interconnection lines
represented by zero-width sticks. The spacing process is separated
into X and Y compactions. The spacing algorithm works by taking
groups of elements and placing theﬁ as far to one side as is possi-
ble, given the fixed topology of the previously placed elements and
the spacing requirements between the elements. Interactive
optimization is possible. The designer may perform a local compac-
tion by identifying an area to be compacted and a direction to com-
pact the elements. This helps alleviate the problems that can occur
when compaction in one direction prevents efficient compaction in
the perpendicular direction. A second capability with the interac-
tive program is the user introduction of jog points. Cells may be

encapsulated, so there is a form of hierarchy in STICKS.
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TerminalA terminal is used to connect between levels in the hierarchy.

When a cell is designed, all of the signals that are required at the
next level (VDD, GND, inputs, and outputs) are terminated on local
terminals in the cell. When this newly created master cell is
placed, each instance has only the protection frames and terminals
(which are also frarnes) visible for connection. All of the interior
components of the cell are no longer visible. This partitioning of
the design and implementation assists both the human designer
and the computer tools that work on the layout. The designer sees
less information at any one time and is less likely to be confused or
overwhelmed. He can match the logic partitioning to the logical
partitioning present in his mind at the time of the design. At the
same time, the computer tools that work on his layout must work
with less information at a time, and this greatly reduces the compu-
tation time required for the tasks of design rule checl;:ing or layout

rule spacing.

Terminal Frame

Vertex

The terminal frame is the normal geometric implementation of a
terminal. Instead of point connections, as are made in CABBAGE,
the terminal frames only require that the lines interconnecting
themn terminate somewhere within the ferminal frame. With this
‘slop’, the spacing program may yield a better compaction result,

since it may place each ¢erminal to the best advantage.

In the Python constraint graph, the vertices represent the locations
of the reference points of each instance and interconnection line in

the layout. Specifically, the bounding boz edges of the instances
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and interconnection lines are represented. The spacing analysis is
separated in the X and Y directions, so there are two graphs. The
vertices for the top and bottom bounding box edges are in the Y
graph, and the vertices for the right and left bounding box edges
are in the X graph. Each wvertexr is responsible for updating its
related coordinate. Storing what is actually the transformational
information for each instance in only one place insures the

integrity of the data.
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Python Listing

This appendix contains a listing of the Python program. The program is
approximately 4000 lines of the C programming language. Approximately
1000 of the 4000 lines are comments. The size of the compiled program is
74752 bytes of instructions, 13312 bytes of data, and 10820 bytes of common
storage on a VAX 11/780 32 bit minicomputer running the 4.1BSD version of

the UNIX{ operating system.

tUNIX is a Trademerk of Bell Laboratories.

F.1
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APPENDIX G

Cabtosquid Program Listing

This appendix contains the manual entry and program listing for the
cabtosguid program, a translator from the CAFBAGE intermediate format

into the Squid database. The input conventions of Python are observed.

G.1



CABTOSQUID{ CAD) CAD Toolbox User's Manual CABTOSQUID( CAD)

NAME
cabtosquid — A translator from CASBAGE ] format into the squid database

SYNOPSIS
cabtosquid [-e#] [-NO] cabbagelfile ...

DESCRIPTION
Cabtosguid provides a means to translate cells generated with the CABBAGE |
system into the squid database format. The conventions for interfacing to
python are observed, so translated cells may be spaced with python. The set of
spacing rules used is the Mead/Conway rules with lambda equal to two microns.

The program creates squid master cells for each different sized CABBAGE [
primitive. Then, a master cell for the top level CABBAGE [ cell is created, with
the lower level master cells instanciated. Sgquid requires a separate directory
for each master cell, so be in the directory where you want the output before
invoking cabtosquid.

The -e# option takes a number and expands the CABBAGE [ file before transla-
tion. This expansion multiplies the center locations of all point structures and
the endpoints of all wires by the expansion factor. The width of all wires and size
of all devices is preserved.

The -0 and -N options allow translation of intermediate files generated by older
and newer versions of the CABBAGE [ program respectively. The default version
is 1B. These options are additive - typing ‘-N -N -N -0 -N’ would set up for using
version 1E files.

e2s.out — Root squid cell of CABBAGE I instance
[0-9]*by[0-9]*.* — Squid master cells for CABBAGE I primitives

SEE ALSO
cabbage(cad), hawk(cad), python(cad), squid(3cad), cadre(3cad)

AUTHOR
Mark Bales

DIAGNOSTICS
Various self explanatory error diagnostics. Most report problems with queries to
the squid database. A few report errors in the CABBAGE [ input file, such as the
wrong version, or overlapping transistors, etc.

BUGS

The change from point terminals in CABBAGE [ to terminal areas in python
creates a problem. It is possible for a line segment to have both endpoints con-
tained within a single terminal frame. In CABBAGE I, this presented no
difficulty, since only the endpoint terminating at the center of the terminal was
considered connected to the terminal. With the terminal frames used in python,
it is no longer possible to determine which of the two possible endpoints should
be bound to the terminal. This is the reason for the - option. Expanding the
layout will eventually move one of the endpoints out of such a terminal, and the
connectivity can be uniquely determined.

The RUNX line type is currently ignored. It should be passed through to allow
circuits spaced with python to retain a rectilinear aspect ratio.

First Edition 3731/82 1
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cabtosquid.h Appendix G cabtosquid.h

#include <stdic.h>
#include "drules.h”

/’

* these are some global defines

4
fdefine TRUE 1
#define FAISE 0
#define OK 1
/* Here are some orientation defines for the CABBAGE I file */
#define HORIZONTAL 0 /* Orientations for the CABBAGE I file */
#define VERTICAL 2 /* Orieniations for the CABBAGE I fie */
#define NORTH 0O 7* Orientations for the CABBAGE [ file */
#define EAST 2 /* Orientations for the CABBAGE [ file */
#define SOUTH 4 /* Orientations for the CABBAGE [ file */
#define WEST 6 /* Orientations for the CABBAGE [ flle */
/* Here are some type ids used with the ‘point’ data structure */
¢define ULINE 1 /* Upper Line endpoint for point struct */
#define LLINE 10 /¢ Upper Line endpoint for point struct ¢/
#define DRAIN 2 /°® Tran or load drain terminal for point */
fidefine GATE 3 /* Tran or load gate terminal for point */
#define SOURCE 4 /* Tran or load source terminal for point */
#define POINT § /°* Point structure id for point struct </
/0

* These are the types of elements in the cadbage fils

/4
/°* Yariable length lines (may stretch or shrink during com action) °*/
fdefine DIFF 1| /* Diffusion in.terconnect%on line */
f#define POLY 2 /* Polysiicon interconnection line */
#define METAL 3 /* Metal tnterconnection line */
#define RUNX 4 /* Runz (bounding boz) interconnection line "*/
/* Pized length lines (will only change location during compaction) */
#define FDIFF 5 /* Diffusion interconnection line */
#define FPOLY 6 /* Polysilicon interconnection line */
f#define FMETAL 7 /* Metal interconnection line °*/
#define FRUNX 8 /* Runz (bounding boz) interconnection line */
/* Transistor devices */
#define TRAN 9 /°* Enhancement transistor ¢/
fidefine LOAD 10 /* Depletion transistor (load) </
#define D_M_CNT 11 7/ * Diffusion—Metal contact ¢/
f#define P_M_CNT 12 /* Polysilicon—Metal contact */
#define BUR_CNT 13 /* Buried (Polysilicon-Diffusion) contact */
gdefine BUT_CNT 14 7* Butting (Polysiuicon—Diffusion) contact */
#define TERM 15 /* Line terminator (local terminal to Squid) */
/% Hsre are a few ezira types needed for the CABBAGE/Python conventions */
#define D_D_CNT 16 /°* Diffuston—Diffusion contact */
#define P_P_CNT 17 /* Polysilicon—Polysilicon contact */
#define M_M_CNT 18 /* Metal—-HMetal contact °*/
/P

® These are the layer definitions in cabbage

v/
#define DIFFLEVEL 0 /¢ Diffusion layer */
#define POLYLEVEL 1 7/* Polysilicon layer */
#define METALLEVEL 2 /* Metal layer */
¢#define RESERVEDLEVEL 3 /* Runz (bounding boz) layer */
#define ACTIVELEVEL ¢ /°* Active area (Diffusion & Polysilicon) */
§defilne CONTACTLEVEL 5 /* Contact windew cut */
#define BURIEDLEVEL 8 /* Buried contact window cut */
#define [MPLANTLEVEL 7 /* Implant layer (Depletion loads only) */
#define EXTRALEVEL 8 /* Unused layer */
/’

* This is the siructure for the data from the cabbage intermediate file
\4
struct lsg |

Apr 12 23:20 1982 Page 1 of cabtosquid.h
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int type; /°* Integer type of element (Values 1-15) */

int orientation; /* Integer orientation ( O or 2 ) */

int x_center; /* Integer element z center;, =1 => Horiz line */
int x_left_offset; 7/°* Integer offset to left of center; +ive # */

int x_right_oflset; /* Mieger offset to right of center; +ive # */
int y_center; /* Mteger element y center; —1 => Vert line */
int y_bottom_offset; /* Integer offset balow center; +tve # */

int y_top_oflset; /* Integer offset above center; +itve # ¢/

char *name; /* Pointer to name dertved from [zy]_center */
struct Isg “mext; /* Pointer to nezt like—type element wn array */
int instanciated; /* Flag itndicating if element been instanced °*/
int instid; /* [d of instance in Squid databdbase */

i

VAl
* This is the structure for ‘points’. Fach line has two, each transistor
* has 3, and each coniact has ! only. These points are sorted and used
* to determine electrical conmectivity.

174

struct point |
int X; /* X coordinate of ‘point’ ¢/
int Y, /* Y coordinate of ‘point’ */
struct point *next; /* Next ‘point’ tn linked list */
struct point ‘nextinnet; /* Nezt “point’ in the same elecirical nst */
struct point *nextatpoint; /* Nezl ‘point’ at the same X & Y */
struct nethd *netid; /°* Potnter to nethd net id structure */
nt type; /* Type of ‘point’ (See above) */

] struct Isg *element; /* Pointer to the element ouning the ‘point” */

/’

* This structure is in a doubly linked list of nets and points o
¢ a list of “points’ in the same net linked by the ‘neztinnet’ fleld.

v/
struct nethd §
struct nethd *next; /* Pointer to nezt nethd */
struct pethd *prev; /¢ Pointer to previous nethd */
struct point *points; /* Pointer to list of ‘points’ itn net ¥/
‘ int net; /* Squid net id (Used upon readout) */
/O

* This structure is used by the routines which generate primitives for

* each dyferent type of device. The names for the devices are generaled
* from their size and type. FEach different primilive is crealed only once.
v/

struct sqcell |
struct sqcell Tmext; /* Pointer to nezt sqcell in list */
‘ char ™ame; /* Pointer to generated name */
/0
* this is an in—-line maz(a,b) rmacro
*/

#define max( a, b ) ((a)>(b)?2(a): (b))

/% Here are the eziernal variadles and global type declarations */
char *spriatf();

extern struct Isg “elements;

extern struct point *points;

extern struct nethd netheed;

extern unsigned int num_elements;

extern int versflg;

extern char version[3];

extern int expfactor;
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/!

* These are the glodbal variables

¢/
struct Isg *elements; /* Potniler to CABBAGE I elements */
struct point *"points; /¢ Potnter to ‘points’ list */
struct nethd nethead = § NULL, NULL, NULL }; /* Nethd head struct */
uonsigned int num_elements; 7/* Number of CABBAGE I elements */
int versfig = 1; 7°* Default version "15' ¢/
char version[3] = "1A";
int expfactor = §; /* Ezpansion factor */
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these are the design rules the translation program must know about.
the information consists of the size of overlaps from the ‘bounding
boz’ of each element to one of the edges of a component of the
element. For ezample, the variable D_L_P_TRAN represents the

¢ “Delta—Length~of Polysilicon—in a TRANsistor and represents the

® change in length required for a VERTICAL transistor to accurately
* depict the polysilicon gate as a boz. They are ezpressed in lambda
* * 2 since the defawlt units in Squid are 2 * user lambda.

*/

#define VERSION "(Mead/Co

#define D_W_D_DMCNT 0
f#define D_L D DMCNT 0

#define D_W_D_BUCNT 0
#define D_L_D_BUCNT 0
#define D_W_D_ TRAN 4
f#idefine D_L_D TRAN 0
#define D_W_P_ PMCNT 0
#define D_L_P_PHCNT 0
fidefine D_W_P_BUCNT 0
f#define D_L_P_BUCNT 0
#define D_W_P_ TRAN 0
#define D_L_P TRAN 4
#define D_W_M_DMCNT 0
f#idefine D_L M DMCNT 0
f#define D_W_M_PMCNT 0
#define D_L_M_PMCNT 0
#define D_W_C_DMCNT 2
fidefine D_L_C_DMCNT 2
fidefine D_W_C_PMCNT 2
#define D_L_C_PMCNT 2
f#define D_W_[ TRAN 1
fidefine D_L 1 TRAN 1
fidefine D_W_5 _BUCNT 2
fidefine D_L_B_BUCNT 2
#define D_W_M_BTCNT 0
#defize D_L M _BTCNT 0
#define D_W_C_BTCNT 2
g#define D_L_C_BTCNT 2
#define D_O_D_BTCNT 2

Mar 30 14:12 1982

nway Design Rules 3/21.,82);\n"

/* Delta—-Width in Diffusion # a Diff—Metal Contact ¢/
7 Delta—Length in Diffusion in a Diff-Metal Contact +/
/* Delta—Width in Diffusion in a Buried Contact */

/* Delta-Length in Diffusion in a Buried Contact */

/* Delta—Width in Diffusion in a Trensistor */

7/* Delta~Length in Diffusion in a Transistor */

7/ * Delta~ Width in Polysilicon

7* Delta—Length in Polysilicon

/* Delta—Widih in Polysilicon in a Buried Contact */

/¢ Delta~Length in Polysilicon in a Buried Contact */

/* Delta- Width in Polysilicon in a Transistor */

/* Delta—~Length in Polysilicon in a Transistor */

7/* Delta—Width in Hetal in a Diff-Metal Contact */

/* Delta—Length in Metal in a Diff—Hetal Contact */

/* Delia—Width in Metal in a Poly—HMetal Contact */

/* Delta~Length in Metal in a Poly-Metal Contact */

/* Delta—-Width in Contact Cut in a Diff-Hetal Contact v/
/* Delta—Length in Contact Ct in a Diff-Metal Contact */
/* Delta—Hidth in Contact Cut in a Poly—HMetal Contact */
7* Delta—Length in Contact Ct in a Poly—HMetal Contact */
/* Delta~Width in fmplant-in a Transistor °/

/* Della—Length in Implant in ¢ Transistor */

/* Delta—~Width in Buried Cut in ¢ Buried Contact */

/* Delta—Length in Buried Cut in a Buried Contact */
/* Delia—Width in Metadl in a Butting Contact */

7/* Delta—Length in Hetal in a Butting Contact ¢/

7* Delta— Width in Contact in a Butting Contact */

7* Delta—Length in Contact in a Butting Contact °*/

7/* Lelta—Offset in Diffusion in a Bulting Contact ¢/
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#include "cabtosquid.h"”

struct point * .
allocpoirts( ele ) allocpoints
struct Isg *ele;
L
* Macro for insert sorting point tnio element list.
¢/
#define INSERT(point,elem,xcoord,ycoord,ttype) \
point = P_getpoint(); \
point=>element = elem; \
point—=>type = ttype:\
point—>nextinnet = NULL; \
point~>netid = NULL; \
point=>x = xcoord; \
point=>y = ycoord; \
for(tmppnt = &pointhead; tmppnt—>next != NULL; tmppnt = tmppnt—>next) {\
if( point—=>x <= tmppnt—>next—>x ) \

N
for( ; tmppnt—>next != NULL && tmppnt—>next—>x == point—>x; tmppnt = \
tmppnt—>next ) { \
if( point—=>y <= tmppnt—>next->y ) \
break; \

J \ '
if( tmppnt—>next—>x == point->x && tmppnt->next->y == point—>y ) { \

point—>nextatpcint = tmppnt—->next—>nextatpoint; \
tmppnt—->next->nextatpoint = point; \

} N\
else { \ .
point—>next = tmppnt—>next; \
! tmppnt—->next = point; \
/O
* Macro for adding a new net to the netlist.
v/

#define ADDNET(pointl,point2) \
tmpnet = P_getnethd(); \
point1->nextinnet = point2; \
point2->nextinnet = (struct point fNULL; \
pointi—>netid = tmpnet; \
point2—->netid = tmpnet; \
tmpnet—>points = pointl; \
tmpnet—>prev = LL; N\
tmpnet—>next = nethead.next; \
nethead.next = tmpnet; \
if( tmpnet—>next !'= NULL ) \

tmpnet—>next—>prev = tmpnet; \

¢ This routine allocates “point’ data structures for each of the elements.
* One ‘point’ is allocated for each terminal of the element. Thus, lines
* have two points, transistors and loads have three points each, and
* the plethora of contacts each have a single point.
/
struct point pointhead, *P_getpcint();
struct point “tmppnt, *pnt, *pntl;
struct nethd “mpnet, *P_getnethd();
/* Ilnitialize the head of the point list */
pointhead.next = (struct point *NULL;
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...allocpoints

/* For dll of the elements in the element list ... */
for{( ; ele '= NULL; ele = ele~>next ) {

/* If the element is RUNKX, ignore 4. */

if( ele=>type == FRUNX || ele=>type == RUNX )

continue;
/* If the element is o horizontal line ... ¥/
if( ele=>x_center < 0 ) | /* =>HORIZONTAL line

May 318:31 1982

/* Insert lower point */

INSERT(pnt1,ele,ele=>x_left _offset,ele~>y_center LLINE);
/* Insert upper point */

INSERT(pr:t,ele,ele=>x_right _offset.ele—>y_center, ULINE);
/% Add a new net with the two points */

ADDNET( pmntl, pnt );

}

/* ELlse if the element is a vertical line ... */

else if( ele~>y_center < 0 ) | /* =>Vertical Line */
/* Insert lower point */
INSERT(pnt,ele,ele=>x_center,

ele—>y_bottom_ofiset, LLINE);

/* Insert upper point °/
INSERT(pnt1,ele,ele=>x_center,ele~>y_top_offset, ULINE);
/°® Add a new net with the two points */
ADDNET( pnt, pntl );

‘/' Else if the element is some sort of transistor ... */

else if( ele->type == TRAN || ele->type == LOAD ) |
/* Insert a point for the drain terminal */
INSERT(pnt,ele,ele~>x_center,ele—>y_center,DRAIN);
/* Insert a point for the gate terminal */
INSERT(pnt,ele,ele=>x_center,ele~>y_center,GATE);
/* Insert a point for the source terminal */

; INSERT(prt,ele,ele=>x_center,ele—>y_center,SOURCE);

else | /* Some sort of contact */
/* Insert a single point for the structure ¢/

| INSERT(pnt,ele,ele->x_center,ele—>y_center, POINT);

return{ pointhead.next ); /* Feturn a pointer to sorted list ¢/
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/* LINTLIBRARY (to shut lint up about unused functions) */
#include "cabtosquid.h”

/* global free list pointers and tnitializers */
struct Isg "P_lsgfree = (struct lsg “NULL;

struct Isg P_lsginit;

struct point "P_pointfree = (struct point ®NULL;
struct point P_pointiznit;

struct rethd *P_nethdfree = (struct rethd *NULL;
struct nethd P_nethdinit;

struct sqcell *P_sqcellfree = (struct sqcell 9NULL;
struct sqcell P_sqeellinit;

#ifdef MDEBUG

/* memory mnagement stat variables*/
int P_lsgget
int P_lsgret
int P_lsgsys
int P_pointget
int P_pointret
int P_pointsys
int P_nethdget
int P_nethdret
int P_nethdsys
int P_sqcellget
int P_sqcellret
int P_sqcellsys
#endif

#define MEMBLKSIZ 1024

uno
oLe
ee

~

uhggygtttn

eRLoeo®

/¢ lsg management */

struct Is
P_getlsg8 P_.getlsg
strur't Isg “tmplsg;
int i;
char “mallec();
#ifdef MDEBUG
P_lsgget++;
#endif

if( P_lsgfree == (struct Isg *NULL ) {
#ifdef MDEBUG
P_lsgsys++;
printf("P_getlsg: Calling malloc\n");
#endif
/* (=> Have to get a new block */
P_lsgfree = (struct Isg % malloc( MEMBLKSIZ * sizeof( struct Isg) );
/* link th.e block together ¢/
for{ i =0; i < MEMBLKD[Z. i++ )
(P_lsgfree + 1)->next = P lsgfree + i+ 1
(P_lsgfree + MEMBLKSIZ - 1)->next = (struct Isg ')VU

tmplsg = P_lsgfree;
P_lsgfree = P_lsgfree—>next;
®mplsg = P_lsginit;

return( tmpisg );

}

P_retlsg( Isg ) P_retlsg
struct Isg 1sg;
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...P_retlsg
{
if( Isg !'= (struct lsg 9NULL ) |
#ifdef MDEBUG
P_lsgret++;
#endif
Isg—>next = P_lsgfree;
; P_lsgfree = lsg;
!
/* point management */
struct point * .
f’__getpoint() P_getpoznt
struct point “mppoint;
int i;
char fmalloc();
#ifdef MDEBUG
P_pointget++;
#endif

if( P_pointfree == (struct point YNULL )
F#ifdef MDEBUG
P_pointsys++;
print{("P_getpoint: Calling malloc\n");
#endif
/* (=> Have to get a new block */
P_pointfree = (struct point ¥ malloc{ MEMBLKSIZ * sizeof( struct point) )
s* link the block together °*/
for( i = 0; i < MEMBLKSIZ; i++ )
(P_pointfree + i)->next = P_pcintfree + i + 1;
; " (P_pointfree + MEMBLKSIZ - 1)->next = (struct point ®NULL;
tmppoint = P_pointfree;
P_pointiree = P_pointfree—>next;
%mppoint = P_pointinit;
return( tmppoint );

J

P_retpoint( point ) P re tpom'nt
struct point ‘*point;

if( point != (struct point NULL ) {
#ifdef MDEBUG

#endif

P_pointret++;

point—>next = P_pointiree;
P_pointfree = point;

J

/* nethd management */

struct nethd *

P_getnethd() P_getnethd
struct nethd *"tmpnethd;

int i;

char *"malloc();

#ifdef MDEBUG
P_nethdget++;

if( P_nethdfree == (struct nethd 9NULL ) §
#ifdef MDEBUG
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...P_getnethd

P_rnethdsys++;
printf("P_getrethd: Calling malloc\n");

/* (=> Have to get a new bdlock */
P_nethdfree = (struct nethd #) malloc( MEMBLKSIZ ¢ sizeof( struct nethd);
/" link the block together */
for({ i = 0; i < MEMBLKSIZ; i++ )
(P_nethdfree + i)->next = P_nethdfree + i + 1;
(P_nethdiree + MEMBLKSIZ - 1)->next = (struct nethd #NULL;

tmpnethd = P_nethdfree;
P_nethdfree = P_nethdfree—>next;
tmpnethd = P_nethdinit;

return( tmpnethd );

!

P_retnethd( nethd ) P _retnethd
struct nethd ®nethd;

if( nethd !'= (struct nethd #NULL ) |
#ifdef MDEBUG

#endif

P_nethdret++;

nethd—>next = P_nethdfree;
P_nethdfree = nethd;

}
/* sqcell management */

stru 11 -
? _g:fscfg:ﬁ() P_getsqcell

struct sqcell “tmpsqcell;

int i;

char "malloc();

#ifdef MDEBUG
P_sqcellget++;

#endif
if( P_sqcellfree == (struct sqcell 9NULL ) |
#ifdef MDEBUG
P_sqcellsys++;
printf("P_getsqcell: Calling malloc\n");
#endif
/® (=> Have to get a new block ¢/
P_sqcellfree = (struct sqcell 9 malloc( MEMBLKSIZ * sizeof( struct sqcell);
/¢ link the block together ¢/
for( i = 0; i < MEMBLKSIZ; i++ )
(P_sqcelliree + i)~>next = P_sqcellfree + i + 1:
(P_sqcellfree + MEMBLKSIZ - 1)->next = (struct sqcell 9NULL;

{mpsqcell = P_sqeellfree;
P_sqcellfree = P_sqcellfree—~>next;
fmpsqcell = P_sqeellinit;

return{ tmpsqcell );

J

P_retsqcell( sqcell ) P _rets gce i
struct sqcell *sqcell;

if( sqcell != (struct sqcell 9NULL ) |
#ifdef MDEBUG

P_sqcellret++;
#endif
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}

#ildef MDEBUG
%’_memstat()
pr’mtfi
printf
printf(
printf
printf
printfl
printf
printf
printf
printf
printf
printf
printf
printfl
printf(
printf(

#endif

Appendix G

sqcell->next = P_sqcelliree;
P_sqcelliree = sqcell;

"getlsg called %d times\n", P_lsgget );

"malloc called %d times\n", P_lsgsys );

"retlsg called %d times\n", P_lsgret );

"%d remain alloc\n"”, P_lsgget — P_lsgret );
"getpeint called %d times\n", P_pointget );
"malloc called %d times\n", P_pointsys );
"retpoint called %d times\n", P_pecintret );

"%d remain alloc\n”", P_pointget — P_pointret );
"getnethd called %d times\n", P_nethdget );
"malloc called %d times\n", P_nethdsys );
"retnethd called %d times\n", P_nethdret );

"%d remain alloc\n", P_nethdget — P_pnethdret );
"getsqcell called %d times\n", P_sqcellget );
"malloc called %d times\n”, P_sqcellsys );
"retsqcell called %d times\n", P_sqcellret );

"%d remain alloc\n", P_sqcellget - P_sqcellret );
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...P_retsqcell

P_memstat
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checkversion.c Appendix G checkversion.c

#include "cabtosquid.h"

checkversion(fp) . checkversion
FILE *fp; .
/0

* This routine checks the version number of CABBAGE [ as
* stored in the intermediate file against the version

* number specififed on the run—line of cabtosquid.

* [If they are not equal, or the formats are incorrect, the
* rouline returns an error status.

v/

{

long int first_byte_court,second_byte_count;
int j;

struct Isg 1sg, *P_getlsg();

short int getshortint();

int status;
long int getlongint();
char *alloc();
if( versﬁg =0){ /°* If the original binary version ... %/
byte count preceeds and follows each record */
1f((ﬁrst byte_count = getlongint(fp)) != 4)
return(NULL);
version[C] = getcé fp g; /* Read Ist byte of wersion */
version[1} = getc( fp ); /* Read 2nd bdyte of version ¥/
versxo 2} = "\0%, /* Terminate version string with NULL */
if( stremp( version, "lA" Yi=0) /* Version must be 14 */
return
else { /* Read number of elements and second dyle count */
num_elements = (unsigned)getshortint(fp);
second_byte_count = getlongint(fp);
if(first_byte_count != second_byte_count)
l return(NbLL)
J
else if( versfig == 1) | /* If the ASCIT version */
/* Use scanf to read in versiwon number and number 05/ elements */
status = fscanf( fp, "%2s %d", version, &num_elements );
if( status != 2 /* [f there aren’t two things scanned */
return( NULL );
/* This version must be 18 */
else if( strcmp§ versicr, "1B" ) !'= 0 )
~ return( NULL );
]
else

return( NULL );
/* For each elemant tn the file ... */
for{ i = num_elements; i > 0; i—— ) |
Isg = P_getlsg(); /* Get element data structure °*/
lsg—->next = elements; /7* Link i in to list v/
elements = lIsg;

i‘etum(OK):
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#include "cabtcsquid.h”

connet( point ) connel
struct point *point;

/'

This routine connects nets at a point. When properly sorted,

the ‘neztinnet’ fleld will link points at the same X and Y
coordinates together. Simple rules are followed to egquivalence
nets of the poinds that cotncide. Transistors are respeciive

of the orientation of the lines intersecting them, and will only
squivalence nets in g proper fashion. The source of a transistor
is defined to be the top or right side of the transistor, depending
on its orientation. All contacts are considered to equivalence

all nets that coincide with their reference point If lines
tntersect without a contact, a same-layer—contact is added.

This is necessary for the python data model (ail tnterconnect
lines are two segments only).

L 2N B NE 2 BRI R B J

\'

¢
register int trans = 0, lines = 0, conts = 0, terms = 0;
register int W = 0, L = 0, type;
register struct point feft, *bottom, *ight, ®%op, “mppnt;
register struct lsg %ransistor, *tontact, *terminal;
register int errfig = FALSE;
struct point getpomt()
struct Isg *P_getlsz();
int delta;
/* For each point at this coordinate ... */
fcr( tmppnt = point; tmppnt != NULL; tmppnt = tmppnt—>nextatpoint ) {
/* If the element type is o transistor or load ... ¢/
if( tr[rlxopggt)-?element—xype == TRAN || mepnt—>element—>type ==
/* Record the presence of a transistor */
trans++;
/* Record a pointer to the transistor ¢/
transistor = tmppnt—>element;
/* Switch on point type */
switch( tmppnt—>type )
case DRAIN: /¢ If point for drain ... */
/* If HORIZONTAL orientation ... */
if( tmppnt—>element—~>orientation ==
HORIZONTAL ) |
/* Boltom represents drain */
l bottom = tmppnt;
/* Else ... */
else |
/* Left represents drain */
left = tmppnt;

break;
case GATE: /* If point for gate ... */
/* [f HORIZONTAL orieniation ... */
if( tmppnt—>element—>crientation ==
HORIZONTAL ) |
/* Left represents gate °*/
left = tmppnt;
/* Right represenits gate */
right = tmppnt;

!
/* Else ... ¥/
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#include "cabtasquid.h”

equivalence( pointl, poirt2 ) eq'u_iva,lence
struct point ‘*pointl, *peint2;

/
This routine equivalences the nets between two points. [f
neither of them is yet in a net, a new net is created and
the two points are placed tn it. [f one or the other point
is tn ¢ net, the one not in a net is added to the net of the
other one. [f both are in a neti, the two nets are merged.

4 ® T YA

*/

{
struct pethd %tmpnet, *P_getnethd();
struct point “mppnt;
/° [f they are already in the same net, ignore them */
if( pointl=>netid != NULL && pointl->netid == point2—->netid )
7* Aready in same net */

return;
/* [f the first point is not yet in a net ... */
if( pointl—>netid == NULL ) | /* Not in a net yet */

/* If the second pownt is not yet in a net ... */

if( point2->netid == NULL ) { /* Not in a net yet */
/¢ Create a new net */ .
tmpnet = P_getnethd();
/* And point to the new net */
tmpnet—>points = pointl;
pointl->nextinnet = point2;
point2—->nextinnet = (struct point *NULL;
/¢ Set the netid to point to the net head ¥/
pointl->netid = tmpnet;
point2—->netid = tmpnet;
/* And link the new net into the neilist */
tmpnet—>next = nethead.next;
tmpnet—=>prev = NULL;
nethead.next = tmpnet;
if( tmpret—>next != NULL )

tmpret—>next—>prev = tmpret;

else | /% Add point! into pointZ’s net ¢/
pointl—>netid = point2->rnetid;
pointl~>nextinnet = point2—>retid—->points;
point2->netid—->poirts = peintl;

]

]

else if{ point2—>netid == NULL ) |

/* Add point2 into poinl’s net */
/* Put point2 indo pointl’s net */
point2->netid = pointl->netid;
paint2—->nextinnet = pointl->netid—>points;
point1->netid—>pcints = point2;

;else { /* Merge two nets together */

/" Add point2 list to point! list ¢/

/* Save pointer to point2 met head */

tmpnet = point2->npetid;

/* For all points in point2 net list ... */

for( tmppnt = tmpnet—>points; tmppnt != NULL; tmppnt =

tmppnt~>nextinnet ) |

/* Reset ngt id to point to poini! net id */
tmppnt—->petid = pointi—>netid; /* Reset Netid ¢/
/* Break immediately before end of point2 list */
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C Appendix G equivalence.c

...equivalence
if( tmppnt—>nextinnet == NULL ) /* End of point2 list */
break;

J

/* End of powni2 list gets head of pointl! list */

tmpprt—>nextinnet = pcintl=->netid—->points;

/' Head of point! list gets head of pointl list ¢/

pairt1->netid—->points = tmpnet—>points;

/7 Unlink tmpnet from net list */

if( tmpnet—>prev != NULL ) {
tmpnet—>prev—->next = tmpnet—->next;

else { /* Unlink bmpnet from net list head */
nethead.next = tmpnet—>next;

!
/* Patch nezt net list head around tmpnet */
if( tmpnet—>next != NULL )
tmpnet—>next—>prev = tmpnet—>prev;
/* Return the removed net list head to memory management */
P_retnethd( tmpnet );
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...connet

/* Botiom represents gate */
bottom = tmppnt;
/°* Top represents gate */
; top = tmppnt;
break;
case SOURCE: /°* [f point for source ... */
/° [f HORIZONTAL orientation ... */
if( tmppnt—>element—>orientation ==
HORIZONTAL ) {
/* Jop represents source °*/
top = tmppnt;

}
/* Else ... ¥

/* Right represents source */
right = tmppnt;

!

/* Llse if the element is a line ... v/
else if( tmppnt—->element~>type < FRUNX ) |
‘ lines++; /* Record that a line is present */

/* Else if the element is a terminal ... ¥
else if( tmppnt—>element—>type == TERM ) |

terms++; /* Record that a terminal is present */
‘ terminal = tmpprt—>element; /°* Record the term °*/
/°* Else ... (=> a contact) */
else |
conts-+; /* Record that a contact is present %/
contact = tmppnt—>element; /* Record the contact */

]

/* There can only be one transistor or one contact at any coordinate */
if( (trans / 3 + conts + terms ) > 1) | /* Nllegal condition */
fprintf§ stderr, "Multiple point structures overlapping.\n” );
fprintf( stderr, "X = Zd, Y = %d.\n", point->x, point->y );

errflg++; /* Prepare to dbomb after this routine ¢/

J
else if( trans == 0 ) { /* No transistors => easy time */
/* Go through lines — compute contact width, height */
for( tmppnt = point; tmppnt != NULL; tmppnt =
tmppnt—>nextatpoint ) |
/* Cwose a line type from the line endpoints ¢/
if{ tmppnt->element—>type < FRUNX )
type = tmppnt->element->type 7% ¢;
7/* Chaose the width and height from the data */
if( tmppnt—>element—>orientation == VERTICAL ) §
delta = tmppnt—>element—>x_left_offset +
tmpprt—->element—>x_right_offset;
W = max( delta, W );

delta = tmppnt—->element—>y_top_oflset +
tmppnt->element—->y_bottom_ofiset;
L = max( delta, L );
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...connet

/* [f no contacts or terminals either ... */
if( conts == 0 && terms == 0 ) |

/°* Must pul a same—layer contact ¢/
/* Set up default width and height if necessary */
if(L==0)

L =W,
else if{ W == 0 )

¥ =1L
/* Get a point from memory management °/
tmppnt = P_getpoint();
/* Link into point list */
tmpprt->rextatpoinrt = peoint—>nextatpoint;
point—>nextatpoint = tmpprt;
/* Initiglize coordinate values */
tmppot->x point—=>x;
tmpput->y point=>y;
/* Inidialize net pointer */
tmppnt—~>nextinnet = NULL;
/* mitialize type */
tmppnt—>type = POINT;
/¢ Get an element from memory management */
contact = P_getlsg();
/* Create contact from line intersection */
contact—>x_center = tmppnt—>x;
contact—>x_left _offset = W / 2;
contact—>x_right_offset = W / 2;
contact—>y_center = tmppnt->y;
contact—>y_bottomn_ofifset = L 7 2;
contact->y_top_offsel = L / 2;
/* Un—-rotated orientation */
contact—~>orientation = HORIZONTAL;
/% Link into elements list */
contact—->next = elements;
elements = contact;
tmppnt—>element = contact;
/* Sunich on the type of contact */
switch( type ) {

case DIFF: /* Generate a D—-D contact */

contact—>type = D_D_CNT;
break;

case POLY: /* Generate a P-P contact °*/
contact—>type = P_P_CNT;
break;

case METAL: /* Generate a M-M contact ¢/
contact—->type = M_M_CNT;
break;

gencont( contact );

}
else if( terms != 0 ) | /* Line terminator present */

Apr 12 23:25 1962

switch( type ) |
case D[FF
terminal=->name = "ND";

case METAL:
terminal->name = "NM";

case POLY:
terminal—>name

/* FRgure out line type */

NNP".
'

default:
fprintf( stderr, "Bad type %d.\n",
type )
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...cannet

!

|
/* For dl points al this coordinate */
for( tmppnt = point; tmppnt '= NULL; tmppnt =
tmppnt—>nextatpoint ) |
/* Egquivalence the nets of the points */
equivalerce( point, tmppnt );

else | /* A transistor */
/* For all of the coordinate poinis ... */
for{ tmppnt = paint; tmppnt != NULL, tmppnt =
" tmppnt—>nextatpoint ) |
/* Skip over the ONE transistor al this coordinate */
if( tmppnt—>element == transistor ) {
continue;

J
/* If the ling found is a vertical line */
if( tmppnt—>element—>orientation == VERTICAL ) {
/* [f the point is the upper endpoind */
if( tmpprt—>type == ULINE ) |
/* Peel line back into terminal frame */
tmppnt—>element—>y_top_oflset =
bottom~—>element—>y_center —
bottom=—>element~>y_bottom _offset;
/°* Equivalence the nets of the potnts °/
equivalence( bottom, tmppnt );

|
Vi E7ise, if the point is the lower endpotnt ¥/
else
/* Peel line back into terminal frame °*/
tmppnt—>element—>y_bottom_ofiset =
top—~>element—>y_center +
top—>element—>y_top_oflset;
/¢ Egquivalence the nets of the points */
equivalence{ top, tmppnt );

!

é;eELise, the line is HORIZONTAL ... */
/°* [f the point is the upper endpoint */
if( tmppnt—>type == ULINE ) |
/* Peel line back into terminal frame ¢/
tmppnt—>element—->x_right_ofIset =
left=>element—>x_center —
left—=>element->x_left _ofiset;
/* Egquivalence the nels of the points ¢/
equivalence( left, tmppnt );

|
/* E'lise, if the point is the lower endpoind */
else
/* Peel line back into terminal frama */
tmppnt—>element—>x_left_offset =
right—>element—->x_center +
right—>element—>x_right_ofIset;
/* Equwalenca the nats of the points */
equivelence( right, tmppnt );
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return( errfig );
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...connet
/* Die if overlapping point structures ezxist ¢/
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#include "cabtosquid.h"
fioclude "sq.h"

genprimitives() genprimailives
/'

* This routine supervises generation of Squid master cells

+ from the point siructure elements read from the CABBAGE [

* JUe. Separate routines are used for transistors end

* contacts. £FLach routine keeps track of the master cells

¢ which have already been generated, so that the same

* cels are not generated more than once.

¢/
{
register struct 1sg "tmpele;
/* Ffor all of the CABBAGE [ elements */
for( tmpele = elements; tmpele !'= NULL; tmpele = tmpele->next ) |{
/* Sunich on the type of element */
switch( tmpele~>type ) |
case TRAN: /* Enhancement transistor °*/
gentran( tmpele, FALSE );
break;
case LOAD: /°* Depletion load */
gentran( tmpele, TRUE );
hreak;
case D_M_CNT: /* Diffuston-idetal contact */
gencont( tmpele );
case P_M_CNT: /* Polysilicon-Metal contact */
gencont( tmpele );
case BUR_CNT: /* Buried (Poly-Diffusion) contact */
gencont( tmpele );
break;
case BUT_CNT: /* Buiting contact */
genbutent( tmpele );
break;
J
i return({0K);
gentran( element, loadfig ) gent'ra:n
struct lsg *element;
int loadfig;
/'

-

This routine generates master cells for transistor (enhancement
and depletion) CABBAGE [ elemants. Fach different size of
master cell is created only once. A4 transistor master cell
consists of a polystlicon protection frame coincident with
the transisior gate, a diffusion protection frame coincident
with the diffusion source—channel—drain, an active area
protection frame coincident with the active area of the
transistor (defined as overlap of polysilicon and diffusion),
two terminal frames at the ends of the gate protection
Jrame (defined as polysilicon and (NOT diffusion)), and one
terminal frame at each end of the diffusion protection
Jrame for the source and drain regions (defined as
diffuston and (NOT polysilicon)). A depletion transistor

also has an implant protection frame surrounding the active
area of the dsvice.

NOTE: The W and L generated for identification of the device
are bounding boz values, *NOT*® active area values.

4 T 9 3 9P P F S T WS EE YN

AN
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¢

char rame[BUFSIZ], strsav();

static struct sqcell transisters = { NULL §;

struct sqcell ®mptran, ©_getsqcell();

int W, L;

SQView view;

FILE <tream;

SQStatus status;

SQGeo geo;

SQTerm term;
/* [f the elemant is horizontal ... */
if( element—>orientation == HORIZONTAL ) }

/* Gt 7 and L drectly */

W = element—>x_right_offset + element—>x_left_offset;

gen.c

...gentran

L = elemert->y_top_offset = elemert—>y_bocttom_cEset;

J
else { /* Element is vertically oriented */
/¢ Get W end L from opposite coordinates */

W = element->y_top_offset + element->y_bottom_offset;

L = element—>x_right_cflset + element—>x_left_offset;

!
/% Generate the name of the device from W and L */

if( loadfig )
! sprintf( name, "Zdbyzdl", W, L );

else |
sprintf( rname, "%dbyzdt”, W, L )

/°* Check to see if this transistor has already been generated */

for( tmptran = &transistors; tmptran—>next != NULL; tmptran =

tmptran—->next ) |
/° [f it has been generated ... */
#f( stremp( name, tmptran->next—->name ) == 0 ) {
/* Set name pcinter to saved name */
element—>name = tmptran—>next—>name;
‘ return; /°® Return happy */

!

/* Get a Squid cell from memory management ¢/
tmptran—>next = P_getsqcell();

tmptran = tmptran—->next;

/* Save the name */

tmptran—>name = strsav( name );

element—>name = tmptran—>rame;

/* Set up to open a view with the masterCell’s name */
view.cell = tmptran~>name;

view.view = "layout";

view.mode = "'w';

Vad the view cannot be created, assume it already ezxists ...

if( (status = SQ(sqCreate, sqView, view, &stream)) <= 0 ) |
/° ... and open the dlready ezisting view ... */

v/

if( (status = SQ(sqOpen, sqView, view, &stream)) <= 0 ) |
fprintf( stderr, "Coudn’t cpen view %s/laycut.%d\n",

name, status);

exit(2);
/* ... and delete it. (Show no mercy!) */
SQ(sqRm,sqView);

/¢ Now Y the view cannot be created ... */

if( (status = SQ(sqCreate, sqView, view, &stream)) <= 0 ) |

/* Holler like mad! */

fprintf( stderr, "Couldn’t create view %s/layout.Zd\n".

name, status);
exit(3);
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...gentran
J

!

/* FPrepare to create terminals on the device */
term.instID = NULL;

term.retlD = NULL;

term.pame = 'd";

/* Create the drain terminal */

if( SQ(sqCreate,sqTerrm,term) <= 0 ) |{

‘ fprintf( stderr, "No mester term.\n" );

term.name = "g";

7° Create the gate terminal ¢/

if( SQ(sqCreate,sqTerm,term) <= 0 ) |{

: fprint{( stderr, "No master term.\n" );

term.name = 's";
/° Create the source terminal '/
if( SQ(sqCreate,sqTerm,term) <=
fprintf( stderr, "No master term.\n" );

/* Prepare to generate the diffusion protection frame ... */

geo.layer = "ND";

geo.manhattanP = sqTrue;

geo.gecType = sqRect;

/* Add tn the offsets to properly define the diffusion rectangle */

geo.def.rect.1 -W 7 2 + D_W_D_TRAN;
D_L_

geo.def.rect.b = =L /2 + D_ D —TRAN;
geo.def.rect.r = W / 2 — D_W_D_TRAN;
geo.def.rect.t = L / 2 — D_L_D_TRAN;

geo.function = sqFrame;

/° Create the frame */

if( (status = SQ(sqCreate, sqGeo, &geo)) <= 0 ) |
fpru(:tg( stderr, "Couldn’t create geometry! %d\n", status )
exit(4

/° Prepare to generate the diffusion source terminal frame ... ¥/
geo.function = sqTermaAres;
geo.implements.term = "s";
geo.def.rect.b = L / 2 - D_L_P_TRAN;
iH( (status = SQ(sqCreate, sqCec, &geo)) <= 0 ) |
fprintf( stderr, "Couldn’t create gecmetry! %d\n", status );

exit(5);

/* Prepare lo generate the diffusion drain terminal frame ... */
geo.implements.term = "d";
gea.def.rect.b = =L / 2 + D_L_D_TRAN;
geo.def.rect.t = =L / 2 + D_L_P_TRAN;
if( (status = SQ(sqCreate, sqGeo, &gec)) <= 0 ) |
fpm(ltg( stderr, "Couldn’t create geometry! %d\n", status );
exit(6

‘/ * Prepare to generale the polysilicon protection frame ... */
geo.layer = “NP";
/* Add in the offsels to properly define the polysilicon reciangle ¢/
geo.def.rectl = =W / 2 + D_W_P_TRAN;
geo.def.rect.b = —-L /2 + D_L_P_TRAN;
geo.def.rect.r = W / 2 — D_W_P_TRAN;
geo.def.rect.t = L / 2 D_L_P_TRAN;
geo.function = qFrame
if( (status = SQ(sqCreate, sqGeo, &geo)) <= 0 ) |
fprl?tg( stderr, "Couldn’t create geometry! %d\n", status );
exit(?
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/* Prepare to generate the polysilicon gate terminal frames ...

geo.function = sqTermArea;
geo.implements.term = "g";

geo.def.rect.r = =W ~/ 2 + D_W_D_TRAN;

if( (status = SQ(sqCreate, sqGes, &geo)) <= 0 ) |

gen.c

...gentran

¢/

fprintf( stderr, "Couldn’t create gecmetry! Zd\r", status );

; exit(8);
geo.def.rect.r = W / 2 -~ D_W_P_TRAN;
geo.def.rect.l = W / 2 ~ D_W_D_TRAN;

if( (status = SQ(sqCreate, sqGeo, &gea)) <= 0 ) |

fprintf( stderr, "Couldn’t create geometry' %d\r", status );

exit(9);

/* [f this is depletion device, generate implant protection frame */

i( loadfig )
geo.layer = "NI'";
geo.function = sqFrame;
geo.def.rect]l = =W / 2 + D_W_I_TRAN;
geo.def.rect.b = =L / 2 + D_L_I_TRAN;
geo.def.rect.r = W / 2 - D_W_I_TRAN;
geo.def.rect.t = L /2 - D_L_I_TRAN;

if( (status = SQ(sqCreate, sqGeo, &gec)) <= 0 ) |

fprintf( stderr, "Couldn’t create geometry! Zd\n",

status );
| exit(10);

/* Generate an active area protection frame */
geo.layer = "NT";
geo.function = sqFrame;

geo.def.rect.l = =W ~ 2 + D_W_D_TRAN;

geo.def.rect.b = -L / 2 + D_L_P_TRAN;

geo.del.rect.r = W / 2 — D_W_D_TRAN;

gea.defrect.t = L / 2 — D_L_P_TRAN;

if( (status = SQ(sqCreate, sqGec, &geo)) <= 0 ) |
fprir(xth stderr, "Couldn’t create geometry! Zd\n",
exit(11);

/* Save the view of the transistor ¥/
if( SQ(sqSave, sqView) <= 0 )

fprintfs stderr, "Couldn’t save view %s.\n", name );

exit{12);
}

gencont( element )
struct isg “element;
/’

* This routing generates difuston—metal, polystlicon—metal, and
¢ polysilicon—diffusion (buried) contacts, as well as all

* same—lgyer contacts for intersections of lines. Contacts

* are single terminal devices and have the same name ‘¥ for
* all terminals on all layers. FEach layer has a protection

* frame with a coincident terminal frame.

./

t

char name[BUFSIZ], strsav();

static struct sqcell contacts = | NULL |;

struct sqcell tmpent, P_getsqeell();

imt D_W_L1, D_L_L1, D_W_I2, D_L_L2, D_W_LC, D_L_LG;
char 1ayerl, ‘ayer2, “ayerc;

int W, L;

SQView view;
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status );

gencont
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FILE stream;
SQStatus status;
SQGeo geo;
SQTerm term;

Appendix G

/*® Coose ¥ and L from orientation (HORIZONTAL default) */
if( element—>orientation == HORIZONTAL ) |
element—->x_right_oflfset + element-~>x_left_oflset;
element—>y_top_offset + element—>y_bottom_offset;

W
L
}
else |
W
L

-

element—>y_top_offset + element—>y_bottom_offset;
element—>x_right_oflset + element->x_left _offset;

}
/* Switch on type of contact °*/

switch( element—>type
case D

_M_CNT:

) !

/°* Diyfusion—HMetal contact °*/

/* Genaraie contact name */
sprintf( name, "®dbyZ%ddme”, W, L );
/* Define the layers for the contact */

layerl = "ND";
layer2 = "NM";
layerc = "NC";
/% Set the proper offsets for the contact */
D_W_L1 = D_W_D_DMCNT;
. D_L_L1t = D_L_D_DMCNT;
D_W_I2 = D_W_M_DMCNT;
D_L_L2 = D_L_M_DMCNT
D_W_LC = D_W_C_DMCNT;
D_L_LC = D_L_C_DMCNT;
break; .
case P_M_CNT: . * Polysilicon—HMetal contact */

7° Generate contact name */

sprintf( name, "%ZdbyZdpmc”, W, L );

/* Define the layers for the contact */
nNPIl.

layer1
layer2
layerc

/* Set the prope

D_W

11
-

ooocoaQa
=
NN

[

case BUR_CNT:
/* Generate contact name */

sprintf( name, "%dby%dbure”, W, L );
/¢ Define the layers for the contact */

rsglr-
XN
Wypity

= llN‘M";
- HNC";
T offsets for the contact ¢/
D_W_P_PMCNT;
D_L_P_PMCNT;
D_W_M_PMCNT;
D_L_M_PMCNT,
D_W_C_PMCNT;
D_L_C_PMCNT;

—

/* Polysilicon—Diffusion (Buried) contact

layerl = “ND";

layer2 = "NP";

layerc = "NB";

/°® Set the proper offsets for the contact */
D_W_L1 = D_W_D_BUCNT;

D_L_L1 = D_L_D_BUCNT;

D_W_L2 = D_W_P_BUCNT;

D_L_L2 = D_L_P_BUCNT;

D_W_LC = D_W_B_BUCNT,
D_L_LC = D_L_B_BUCNT;

gen.c

...gencont

*/

cese D_D_CNT: /* Diffusion—diffusion (same—layer) contact
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...gencont

/* Generate contact name */
sprintf( name, "%dby%ddterm”, W, L );
layerl = "ND";
layer2 = NULL;
layerc = NULL;
/°* Al offsets are zero for this case */
D_W_L1 =0
D_L_L1 =0;
break;
case P_P_CNT: /* Poly—poly (same-layer) contact */
/* Generade contact name °*/
sprintf( name, "%dbyZdpterm”, W, L );
layeri = "NP";
layer2 = NULL;
layerc = NULL;
/* All offsets are zero for this case */
D_W_L1 = ¢
D_L_L1 =0
break;

case M_M_CNT: /* Metal-metal (same—layer) contact */
/* Gensrate contact name */
sprintf( name, "%dbyZdmterm”, W, L );
layeri = "NM";
layer2 = NULL;
layerc = NULL;
/° AU offsets are zero for this case */
D_W_L1 = 0;
D_L_L1 = ¢

o

|
/* Check to see if this contdct has been generated already */
for{ tmpent = &contacts; tmpent—>next != NULL; tmpent =
tmpent—>rext ) |
/¢ [f ¥ has already been generated ... */
if( stremp( name, tmpent->pext—>name ) == 0 ) |
element—>name = tmpcnt—>next—>name;
! return; /* Return happy */

]
/* Get a Squid cell from memory management */
tmpent=->next = P_getsqcell();
tmpent = tmpent—>next;
/* Saue the name of the master cell */
tmpent—->name = strsav( name );
element—>name = tmpecnt—>name;
/* Prepare to create a view of the new master cell */
view.cell = tmpent—>name;
view.view = "layout";
view.mode = "w';
/* If the view cannwot be created, assume it already ezists ... */
H( (status = SQ(sqCreate, sqView, view, &stream)) <= 0 ) |
/% ... and open the already ezisting view ... */
if( (status = SQ(sqOpen, sqView, view, &stream)) <= 0 ) {
fprintf( stderr, "Couldn’t open view %s/layout.%d\n",
name, status);
exit(13);

/% .. and delete i¢. (Show no mercy!) */
SQ(sqRm,sqView);

/* Now if the view cannot be created ... */

if( (status = SQ(sqCreate, sqView, view, &stream)) <= 0 ) |

Apr 12 23:35 1982 FPage éofgen.c



gen.c

Appendix G gen.c

...gencont

/* Holler like mad! */
fprintf( stderr, "Couldn’t create view Z%s/layout.Zd\n”,
name, status);
| exit(14);

/* Generaie a single terminal ‘i’ for the contact */
term.instID = NULL;
term.netID = NULL;
term.name = "i"; .
if( SQ(sqCreate,sqTerm,term) <= 0 ) |
fprintf( stderr, "No master term.\n" );

/* Generate the first layer of the contact */
geoc.manhattanP = sqTrue;
geo.geoType = sqRect;
geo.layer = layerl);
geo.function = sqframe;
geo.def.rect.l = =W ~ 2 + D_W_L1;
geo.def.rect.b = - 1;
geo.def.rect.r = W 2 - D_W_L1;
geo.def.rect.t = L 2 - D_L_L1;
if( (status = SQ(sqCreate, sqGeo, &geo)) <= 0 ) §
fprix(itfs stderr, "Couldn’t create geometry! Zd\n", status );
exit{15);

!
/* Generate the terminal of the first layer of the contact */
geo.function = sqTermArea;
geo.implements.term = "i";
geo.def.rect.l = =W / 2 + D_W_LI1;
geo.def.rect.b = =L 2 + D_L_LI;
geo.def.rect.r = W » 2 - D_W_L1;
geo.def.rect.t = L /2 - D_L_L1;
if( (status = SQ(sqCreate, sqGeo, &geo)) <= 0 ) {
fprix(:tf() stderr, "Couldn’t create geometry! %Zd\n", status );
exit(16);

if( (gec.layer = layer2) != NULL ) {

/°® Genarate the second layer of the contact */

geo.function = sqFrame;

geoc.def.rect.l = -W / 2 + D_W_L2;

geo.def.rect.b = =L / 2 + D_L_LZ2;

geoa.def.rect.r = W /2 - D_W_L2;

geo.def.rect.t = L /2 - D_L_LZ;

if( (status = SQ(sqCreate, sqGeo, &gea)) <= 0 ) |
fprintf( stderr, "Couldn’t create geometry! %d\n",

status );

exit(18);

/* Generaie the terminal of the sacond layer of the contact */
geo.function = sqTermAres;
geo.implements.term = "i";
geo.def.rect.l = =W / 2 + D_W_L3;
geo.def.rectb = =L / 2 + D_L_L2;
geo.def.rect.r = W /2 = D_W_IL2;

geo.def.rect.t = L » 2 - D_L_L3;
if( (status = SQ(sqCreate, sqGeo, &geo)) <= 0 ) |
fprintf( stderr, "Couldn’t create geometry' %d\n",
status );
exit(19);

%f( (geo.layer = layerc) != NULL ) {
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...gencont

/* Generate the contact hole layer of the contact */
geo.function = sqFrame;
geo.def.rectl = =W ~/ 2 + D_W_LC;
geo.def.rect.b = =L / 2 + D_L_LC;
geo.def.rect.r = W » 2 - D_W_LC;
geo.def.rect.t = L /2 — D_L_LC; ‘
if( (status = SQ(sqCreate, sqGeo, &geo)) <= 0 )
fprintf( stderr, "Couldrn’t create geometry! %d\n",
status );
exit(20);

/* Generate the contact hole terminal of the contact */
geo.function = sqTermaAres;
geo.implements.term = "i";
geo.def.rect]l = =W / 2 + D_W_LG;
geodefrectb = =L ~ 2 + D_L_LGC;
geo.def.rectr = W / 2 - D_W_LC;
geo.def.rect.t = L » 2 - D_L_LC;
if( (status = SQ(sqCreate, sqGeo, &geo)) <= 0 ) }
fprintf( stderr, "Couldn’t create geometry! Zd\n",
status );

}

/* Save the master cell view */

if( SQ(sqSave, sqView) <= 0 ) {
fprintf( stderr, "Couldn’t save view %s.\n", name );
exit(21);

genbutent( element ) genbutcnt

struct lsg *element;
PAd
* This routine handles butting contacts. 4 special routine
* {is required since butting contacls are not symmetric.
* [t is not implemented at this time.
v/

{
char name[BUFSIZ], *trsav();
static struct sqcell contacts = § NULL |;
struct sqcell “tmpent, "P_getsqcell();
int W, L;
SQView view;
FILE sstream;
SQStatus status;
SQGea geo;
SQTerm term:;
if( element—>crientation == HORIZONTAL ) |}
W = element—~>x_right_offset + element—>x_left_offset;
L = element->y_top_offset + element—>y_bottom_oflset;

!

else |

W = element->y_top_offset + element—>y_bottom_oflset;
L = element—>x_right_offset + element—>x_left_offset;

!
sprint{( name, "%dbyZ%dbute”, W, L );
for{ tmpcnt = &contacts; tmpent—=>next != NULL; tmpent =
tmpent=>next ) §
if( strcmp( name, tmpent—>next—>name ) == 0 ) |
element—->name = tmpcnt->next—->name;
return;

i
_ tmpent—>next = P_getsqcell();
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...genbutcnt

tmpent = tmpent—>next;
tmpent—>name = strsav( name );
element—->name = tmpent—>name;
view.cell = tmpent->name;
view.view = "layout";
view.mode = "w"; i
if( (status = SQ(sqCreate, sqView, view, &stream)) <= 0 ) |
if{ (status = SQ(sqOpen, sqView, view, &stream)) <= 0 ) |
fprintf( stderr, "Couldn’t open view Z%s/layout.%d\n",
name, status);
exit(22);

SQ(sqRm,sqView);
if( (status = SQ(sqCreate, sqView, view, &stream)) <= 0 ) |
fprintf( stderr, "Couldn’t create view Z%s/layout.%d\n",
name, status);
| exit(23);

term.instID = NULL;
term.netlD = NULL;
term.name = "i";
if( SQ(sqCreate,sqTerm,term) <= 0 ) |

fprintf( stderr, "No master term.\n" );

printf( "Sdrry, genbutent not finished yet.\n" );
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finclude "cabtosquid.h”

FILE *
init(argc,argv)
mmt argc;
char ‘argv(];

Vad

LR B N BN NN BN BN NN B B NE NE N CNE N N N )

<

This routine parses the run kne arguments and set options
accordingly. [t allows the following options: ‘e’ followed
immediately by a number allows an ezpansion factor, which
changes tha locations of all slements without changing their
size (other than line langth). This is necessary in some
cases. Python allows terminal AREAS, whereas CABBAGE I
requires terminals to connect at specific points. Since

the translation of contacts tnto Squid format changes

these terminal poinds on contacts to terminal areas, problems
can occur. One such problem occurs when BOTH endpoints of
G line end up within a terminal frame. Since thers is no
ezplicit connectivily within the Squid datadase, there is

no way to determine which endpoint is connected to the
terminal fraome. Ezpanding the layout pushes contacts farther

apart, so ondy one endpoint is contained within each terminal
Jrama.

The second options allow newer or older versions of
tha CABBAGE I format to be translated.

char %,
FILE +*p, *open();

Apr 12 23:35 1982

fp = (FILE 9NULL;
while(——arge > 0 &&Ogﬂ-i-argv)[O] == ‘=’){

for(s = argv[0] + 1;% !s "\0%s++){
switch( %)}
case ‘e’ /* Ezpansion factor */
expfactor = atoi{ ++s );
xf(p expfactor < 1)
expfactor = 1;
s-— = \0;
grintf( "Exp factor is %d.\n", explacter );
case ‘N”: /°* Version newer than defaoult */
versfig++;
case ‘0" /* Version older than dafault °*/
versfig—-—;
default:
fprintf(stderr,
"cabtosquid: illegal option: Z%c\n", %);
arge = =-1;
break;

}
|
if(arge < 0)

fprintf(stderr,usage: cabtosquid [~-NOe#] inpfil\n");
dse if( arge == 0 )

fp = stdin;
else if((fp = fopen(argv,"r")) == NULL)

init.c

il
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fprintf(stderr,"cabtosquid: can’t open %s\n", %argv);
return(fp);
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Jinclude "cabtosquid.h”
#include "private.h”

main(argc,argv) . main .
/0
¢ Hain checks call syniaz issuing error messages if syniaz or usage
* 4s incorrect. «© seis the flags for the options, and ailemptis to read
* in the file(s) specified, issuing an error message if the flle does not
* gzist. It then reads in the cabbage flle (from stdin if no input is
* specifiad) and wriles it out again in Squid format, suitable for viewing
* with Hawk, or spacing with Python (CABBAGE II)
¢/
int argc;
char *argv(];
FILE <p, *nit();

#( ( fp = init( arge, argv ) ) == NULL ) ) )
i /® Do nothing — all error messages will have been written ¢/
else if( checkversion( fp ) == NULL )
fprintf( stderr, "Cabbage file not created by version %.2s\n",
version );
else if( readcabbage( fp ) == NULL )
fprintf( stderr, "Cabbage flle read failure\n" );
else if( SQBegin() <= 0 )
fprintf( stderr ,"Couldn’t SQBegin.\n" );
else if( genprimitives() == NULL )
fprintf( stderr, "Squid primitives generation failure.\n" );
else if( splitwires() == NULL )
fprintf( stderr, "Problem Splitting Wires.\n" );
else if( sortcabbage() == NULL )
fprintf( stderr, "Cabbage fille sort failure\n" );
else if( writesquid() == NULL
fprintf( stderr, "Squid output file write failure\n" );
else if{ SQEnd() <= 0 )
fprintf( stderr, "Couldn’t SQEnd.\n" );
exit(0); :
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f#finclude "cabtosquid.h”
readcabbage(fp) readcabbage
FILE *p; 7

/0
* This routline reads tn the elements from the CABBAGE [ intermediate
* fie, after “checkversion’ has verified the version number and
* determined the number of elemenis contained within the jlle.
*/

{
struct Isg *ele;
long int first_byte_count, second_byte_count;
int junk, status;
short int getshortint();
long int getlongint();
/* Scan through already allocated element list */
for{ ele = elements; ele '= NULL; ele = ele=>next ) |
if( versfig == 0) | /* This is older binary format */
if((first_byte_count = getlongint(fp)) != 18)
e return(NULL);
* cabbage has ! user unil = | inleger, whereas Squid has ! user unit
®* = 2 integers. all numbers read tn from the cabdage file are muliiplied
* by 2 to maintain compatibility with Squid and to prevent roundoff in integer
¢ dwision.
*/
/°* Read in the element’s members ¢/
ele=>type = getshortint(fp);
ele—>aorientation = getshortint(fp);
ele=>x_center = 2 * getshortint(fp);

* ele=>x_left_offset = 2 ¢ getshortint(fp);
ele=>x_right_offset = 2 * getshortint(ip);
ele=>y_center = 2 * getshortint(fp);
ele=>y_bottom_offset = 2 * getshortint(fp);
ele=>y_top_offset = 2 * getshortint(fp);
junk = getshortint(fp);
second_byte_count = getlongint(fp);
if(fArst_byte_count != second_byte_count)

return(NULL);

|
else if( versfig == 1 ) | /* The newer ASCII format */
/* Read in the element’s members */
status = fscanf( fp, " %d %d %d %d %#d %#d %d Zd %4,
&ele=>type, &ele—>orientation, &ele->x_center,
&ele—>x_left _offset, &ele=>x_right_offset,
&ele—>y_center, &ele—>y_battom_ofiset,
&ele—->y_top_offset, &junk );
if( status != 9 /* Complain if error occurs */
return{ NULL );
ele=>x_center *= 2 ¢ expfactor;
if( ele=>x_center < 0 )x? /° => a line %/
ele=>x_left_offset *= 2 * expfactor;
| ele~>x_right_offset "= 2 * expfactor;
else |
ele~>x_left_offset *= 2;
ele=>x_right _offset "= 2;
/° In case of an odd size object */
ele=>x_left_offset = ele=>x_right_offset
= ( ele=>x_left_offset +
ele=>x_right_offset ) / 2;

ele=>y_center *= 2 * expfactor;
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...readcabbage
if( ele=>y_center < 0 ) | /* => a line */
ele—>y_bottom_offset *= 2 °* expfactor;
| ele=>y_top_offset *= 2 * expfactor;
else |
ele=>y_bottom_oflset *= 2; °
ele=>y_top_offset *= 2;
/* In case of an odd size object */
ele=>y_bottom_offset = ele-=>y_top_offset
= ( ele=>y_bottom_offset +
ele=>y_top_offset ) / 2;

i'eturn( OK);
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#include "cabtosquid.h”
sortcabbage() soricabbage
/'

* This routine sorits the element data read in from the CABBAE [
* intermediate file into ‘points’, suitable for generating

* Squid instances, after the nets of connected objects are

* rmade equal.

/4

{
struct point “mppnt, ®allocpoints();
register int errfig = FALSE;
points = allocpoints{ elements ); /* Allocate ‘points’ ¢/
for( tmppnt = points; tmppnt != NULL tmppnt = tmppnt—>next ) §
if( connet( tmppnt ) == TRUE ) { /* Connect nets at poini */
; errfig+-+;

ietu.rn( errfig);
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#include "cabtosquid.h”
splitwires() splitunres
/ L 4

* This routine is used after read in to split long wires that
* cross ai contacts, other lines, etc. [t has a horrible
* n*"2 sort of dependency. (Fhat & hack!)
/4
t
struct Isg vine;
struct Isg “pstruct;
/°* For every element ... */
for( line = elements; line != NULL; line = line—>next ) |
if( line—->type > FRUNX ) /* ... that is @ line */
continue;
/* For every element ... */
for( pstruct = elements; pstruct != NULL; pstruct =
pstruct=>next ) |{
/* Check to see if line inlersects line */
if( pstruct—=>type <= FRUNX ) {
/° If the lines are not the same fype ... */
if( line—=>type != pstruct—>type )
continue; /° Ignore the line */
/° If the line is vertical */
if( pstruct—>orientation == VERTICAL ) f
7* Check the bottom endpoint */
split1wire(line, pstruct—=>x_center,
pstruct=>y_bottom_offset );
/* Chack the top endpoint */
splitiwire(line, pstruct—>x_center,
pstruct—=>y_top_ofIset );

|
else { /* => the line is horizontal
/* Check the left endpoint */
split1wire(line, pstruct->x_left_ofiset,
pstruct—=>y_center );
/* Check the right endpoint */
split1wire(line,pstruct—>x_right_oflset,
] pstruct—>y_center );

}
7°* Ignore metal lines crossing transistors ¢/
else if( line=>type == METAL && (pstruct->type ==
TRAN || pstruct—>type == LOAD || pstruct—>type
== BUR_CNT ) )
continue;
/°* Ignore poly lines crossing diff-metal contacts */
else if(line—=>type == POLY && pstruct—>type == D_M_CNT)
continue;
/° lgnore dyf Knes crossing poly—metal contacts */
else if(line->type == DIFF && pstruct—>type == P_M_CNT)
cantinue;
else /* See if the point structure splits the line */
splitiwire( line, pstruct—>x_center,
; pstruct—=>y_center );
]
‘ return{0K);

splitiwire( line, x_center, y_center ) split 1wire
struoct 1sg "line;
int x_center, y_center;
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splitwires.c

Appendix G
Vad

splitwires.c
...Split Jwrire
* This routine handles splitting one line at z_center, y_center.
* It makes sure the point actually splits the line.
e/
struct lsg_ Etmpline. P_getlsg();

if Hne-)o(rientation == HORIZONTAL ) {

if( y_center == line=>y_center && x_center > line—>x_left_offset
&& x_center < line—>x_right_offset ) |
tmpline = P_getlsg();

tmpline = 4ine;

line=>next = tmpline;
line=>x_right_offset = tmpline=>x_left_offset =
x_center;
; i
else | /* => Vertical Orientation */
i#( x_center == line->x_center &% y_center >
ine=>y_bottom_offset && y_center < line—=>y_top_oflset ) |
tmpline = P_getisg();
%mpline = 4ine;
line->next = tmpline;
line=>y_top_offset = tmpline=>y_bottom_offset =
; y_center; :
}
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#include "cabtosquid.h"
#include "sq.h"

long int getlongint(fp)
1;'II.E “p;

unsigned int bytel, byte2, byte3, byte4:
long int value;
/O
* this function reads a 32-bit integer from a file where it is stored
* in the formai:

. MSB: byte4;byteldyteldytel :LSB
A4
bytel = gete{fp):
byte2 = getc(fp);
byte3 = getc(ip);
byte4 = getc(fp
value = Fyte‘l << 24) | (byte3 << 16) | (byte2 << 8) | bytel;
; return(value);
shart int getshortint(fp)
FILE 4p;

f

unsigned int bytel, byte2;

shart int value;

/‘
* this funclion reads a 16-bit integer from flle fo. i is used
* to maintain portadility between machines of different word size
* and uses getc to do this.

\/4
bytel = getc(fp);
byte2 = gete(fp
value = fytez << 8) | bytel;
| return(value);
char *
strsav( string ) sirsav
char sstring;
/'
* This routine calls the virtual memory allocator to save a string.
e/

{
char "newstring, “malloc{), *strepy();
/* Get a pointer to the new string */
newstring = malloce{ (unsigned)(strien( strmg Y+ 1))
/* Copy the string indo the new string *
strepy( newstring, string );
/® Return the pointer to the new string °.
return( newstring );
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#include "cabtosquid.h”
#include "sq.h"

writesquid() writesquid

¢ This routine wriles out the squid for the CABBAGE I cell.
* It instanciales primiltives which have had master cells

¢ created for them previously.

A4

SQView view;
FILE *stream;
struct nethd "mpnet;
SQNet sqgnet;
SQTerm term;
struct point “tmppat, tmppntl;
SQInst inst;
char cif{20];
char trmnam[20];
SQGeo geo;
SQIntegerPoint path[2];
SQProp ishorizontal, isvertical;
/¢ mitialize some local variables */
ishorizontal.name = "ishorizontal”;
ishorizontal.valueType = sqBeol;
ishorizontal.value.bool = sqTrue;
isvertical.name = "ishorizontal”;
isvertical.valueType = sqBool;
isvertical.value.bool = sqFalse;
/*® Prepare the master view of the top lewel instance */
view.cell = "c2s.out”; .
view.view = "layout”;
view.mode = "w';
/% If the view cannot be created, assume i already ezists ... */
if( SQ(sqCreate, sqView, view, &stream) <= 0 ) |
/% ... and open the already ezisting view ... */
if( SQ(sqOpen, sqView, view, &stream) <= 0 )
fprintf( stderr, "Can’t open cell %s.\n", view.cell );
exit(25);

/° ... end delete #. */

SQ(sqRm, sqView);

/°* [f the wview still cannot be created ... */

if( SQ(sqCreate, sqView, view, &stream) <= 0 ) |
/°* Holler like mad! */
fprintf( stderr, "Can’t create cell Zs.\n", view.cell );
exit(26);

!
sqnet.name = ""; /* Make sure no name is specified */
/* And create nets for all of the top level nets in the circuit ¢/
for( tmpnet = nethead.next; tmpnet != NULL; tmpnet = tmpnet—>next ) |
if(SQ(sqCreate, sqNet, &sqnet) <=0 ) |
fprintf( stderr, "Can’t generate net'\n” );
exit(27);

tmpoet—->net = sqnet.netlD;

!
/¢ For each ‘point’ dala structure ... ¥/
for( tmppnt = points; tmppnt != NULL; tmppnt = tmppnt—>next ) |
/* For each element at this coordinate ... */
for( tmppntl = tmppnt; tmppntl != NULL; tmppntl =
tmppnt 1->nextatpoint ) |
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.cwritesquid
/* If the element is a terminal ... */
if( tmppnti—>element—>type == TERM ) |
term.instID = NULL;
term.netlD = tmppntl—>netid—=>net;
/* Generate a local terminal name */
sprintf{ trmnam, "TZOCAY”,
*  tmpprtl->element—->x_center,
tmppnt1->element—>y_center );
term.name = trmnam;
if(SQ(sqCreate,sqTerm,term) <= 0) |
fprintf(stderr, "Bad term creation.\n");
, exit{( 100 );
geo.layer = tmppnti=->element—>name;
geo.manhattanP = sqTrue;
geo.geoType = sqRect;
geo.def.rect.] = tmppnti=->element—>x_center -~
tmppnti—->element->x_left_offset;
geo.def.rect.b = tmppnti->element—->y_center -
tmppntl—->element—>y_bottom_offset;
geo.def.rect.r = tmppntl—->element—>x_center +
tmppnti1->element—>x_right_offset;
geo.def.rect.t = tmppntl—->element->y_center +
tmppntl=->element->y_top_offset;’
geo.lunction = sqTermArea;
geo.implements.term = term.name;
if(SQ(sqCreate, sqGeo, &gea) <= 0 ) |
fprintf( stderr, "No geometry\n" );
exit(128);

/* Else if the element is not ¢ line ... %
else if( tmppntl->element->type > FRUNX ) §
/* Generate an insiance for it */
inst.name = tmppntl->element->name;
if( inst.name == NULL ) |
continue;

inst.masterCell = tmppntl->element->name;
inst.masterView = "layout";
/* Key transformation off of orientation */
if( tmppnti->element—>orientation ==
HORIZONTAL ) §

sprintf( cif, "T %4 %d", tmppntl->x,
! tmppnt1->y );
else §

sprintf( cif, "R 0 -1 T %4 %4",

tmppnt1=>x, tmppntl=>y );

inst.cif = cif;
if( !tmppntl->element—>instanciated ) {
tmppntil->element—>instanciated++;
if( SQ(sqCreate, sqlnst, &inst) <= 0 ) {
fprintf( stderr, "No inst.\n" );

tmppnt1—->element—->instid = inst.instID;
term.instID = tmppnti->element—->instid;
if( tmppntli—>netid !'= NULL ) {

term.netlD = tmppnti->netid—>net;

]
else |
NULL;

term.netlD
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...writesquid

]
/* Bind the formal and actual terminals */
switch( tmppnti=>type ) |

case POINT: )

term.name = "i';
if( Sg(§q§1pdate,sq'1'erm.term) <=

fprintf( stderr,
: "No term.\n" );
break;
case DRAIN:
term.name = "d";
if( Sg(iq?pdate.sq'ferm.term) <=

fprintf( stderr,
! "No term.\n" );
break;
case GATE:
term.name = "g";
if( SQ(§q§deate,quem.term) <=
0

fprintf( stderr,
; "No term.\n" );
break;
case SOURCE:
term.name = "s";
if( Sg(gq?pdate.sq'rerm.tenn) <=

fprintf( stderr,
; “No term.\n" );
{ bl eak'

/* Else, if the element is a line ... %/
else if( tmppntl->type == ULINE ) {

/°* Suntch on the mask layer */
switch( tmppnatl->element—->type % 4 ) |
case DIFF:
geo.layer = "ND";
break;

case POLY:
geo.layer = "NP";
case METAL: ’
geo.layer = "NM";
break;

!
/* Create a geometry for the line ¢/
geo.manhattanP = sqlrue;
geo.geoType = sqline;
if(tmppnt 1->element—>orientation == VERTICAL) §
7% Don’t output O length lines */
if( tmppntl—->element—=>y_bottom_offset ==
tmppntl1->element->y_top_offset )
continue;
path{0].x =
tmppnt1->element—>x_center;
path[0].y =
tmppnti->element~>y_bottom_offset;

path(1].x =
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...writesquid

tmppnti->element->x_center;
path[l].y =
tmppnt1->element~>y_top_ofset;
geo.def .line.width =
tmppnti->element->x_right _offset +
tmppntl->element—>x_left_offset;

E’T

/7* Don’t output O length lines */

if( tmppnti—>element—>x_left_offset ==
tmppnt1->element->x_right _oflset )

continue;

path[0].x =
tmppnt1->element—>x_left _oflset;

path[0l.y =
tmppntil->element->y_center;

path[i]l.x =
tmppntl->element—=>x_right_offset;

path[i]l.y =
tmppnt1->element=>y_center;

geo.def.line.width =
tmppnti->element—>y_top_offset +
tmppnti->element->y_bottom_offset;

geo.prop = ishorizontal;

geo.def.line.path = path;

geo.def.line.nPath = 2;

geo.function = sqlnterconnect;

geo.implements.net = tmppntl—>netid=>net;

i#(SQ(sqCreate, sqGeo, &geo) <= 0 ) |
fprintf( stderr, "No geometry'\n" );
exit(28);

if(tmppnti->element~>orientation == VERTICAL) §
! geo.prop = isvertical;

else |
geo.prop = ishorizontal;

i
if(SQ(sqPutProp, sqGeo, geo) <= 0 ) |
fprintf( stderr, "No prop.\n" };
! exit(29);
!
/* Save the created view %/
#( SQ(sqSave, sqView) <= 0

) !
fprintf( stderr, "Couldn’t save cellview %s/%s.\n",
view.cell, view.view );

i'eturn(OK);
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/0
Pubdblic types for Squid DBMS.

Qpyright Ken Keller 1981
¢/

fidefine SQMAXLAYERS 20
#define SQMAXDEPTH 100

typedef int SQStatus;
#define SQOUTOFVM -1
#define SQUNKNOWNLAYER -2
#define SQENDGEN -3
fidefine SQUNKNOWNCURRENTVIEW -4
#define SQTOOMANYLAYERS -5
#define SQUNKNOWNDEMON -6
#define SQUNKNOWNOPERATION -7
#define SQUNKNOWNOBJECT -8
#define SQHIERARCHYISTOODEEP -10
fdefine SQRECURSIVEHIERARCHY -11
#define SQCANNOTPARSETRANSFORMATION =20
#define SQNONMANHATTANTRANSFORMATION -21
#define SQUNTYPEDVALUE -30
#define SQUNKNOWNPARM -31
#define SQUNKNOWNTERM -40
#define SQUNKNOWNPROP —~41
#define SQUNTYPEDGEO =50
f#define SQCANNOTCREATEVIEW -62
fideflne SQCANNOTCREATECELL -63
#define SQCELLDOESNOTEXIST =64
f#define SQCANNOTOPENVIEW -65
#define SQVIEWEXISTS -67
f#define SQVIEWDOESNOTEXIST -68
#define SQNOTAVIEW -89
ﬁeﬂne SQCORRUPTVIEW -70

efine SQCANNOTSAVEVIEW -71
fidefine SQCANNOTRMVIEW =72
#define SQTRIVIALGEN -73
fidefine SQCANNOTCPVIEW =74
#define SQDEGENERATEPATH =75

typedef enum {sqGeo,sqTerm,sqNet,sqView,sqlnst,sqParm] SQObjectType;
typedef enum {sqCreate,sqUpdate,sqGet,sqDelete,sqBeginGen,sqGen,
sqBeginPropGen,sqGenProp,sqPutProp,sqGetProp,sqRmProp,
sqSave,sqOpen,sqClose,sqRm,sqCp] SQOperaticnType;
typedef enum |sqFalse,sqTrue] SQBcol;
typedef struct SQBB SQBB:
struct SQBB
int Lb,rt; {;
typedef struct SQRealPoint SQRealPoint;
struct SQRealPoint |
flcat x,v; |;
typedef struct SQIntegerPoint SQIntegerPoint;
struct SQIntegerPoint |
int x.y; {
typedef enum {sqinteger,sqReal,sqString,sqBool] SQValueType;

typedef struct SQParm SQParm;
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struct SQParm |
char *name;
int instiD;
SQValueType valueType;
union
int integer;
float real;
char *string;
SQBool bool; |
value; §;

typedef struct SQProp SQProp:
struct SQProp |
char "name;
SQValueType valueType;
union |
int integer;
float real;
char “string;
SQBool baool; )
value; {;

typedef struct SQView SQView;
struct SQView |
char *cell, ~view, *mode;
SQBB bb;
SQProp prop; {;

typedef enum {sqFrame,sqActiveArea,sqinterconnect,sqTermArea] SQFunction;
typedef enum {sciPlot.quect.sqline.quolygon.,quircle.aqLabel! SQGeoType;

typedef struct SQGeo SQGegs;
straoct SQGeo
char “ayer;
SQBB bb;
SQBool manhattanP, filledP;
int geolD;
SQS}eoT e gealype;
union
SQBB rect;
struct |
int nPath; -
SQRealPoint ‘*path; |}
plot;
struct

int nPath;
SQIntegerPoint “path; |
polygon;
struct |

int width;

int pPath;

SQIntegerPoint *path; }
line;

SQIntegerPoint *center;

SQIntegerPoint *eginAngle, *endAngle;

iIQ[ntegerPoint fnnerRadius, outerRadius; }
circle;

SQIntegerPoint position;
int height;

int angle;

char 9%ustification;
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char “abel;
char *font; |
label; |
def;
SQFunction function;
union {
char %erm;
int net; |
implements;
SQProp prop; {:

typedef struct SQTerm SQTerm;
struct SQTerm |

int instID;

char *name;

int netlD;

SQProp prop; |;

typedef struct SQNet SQNet;
struct SQNet |

int netlD;
SQProp prop: |

typedef struct SQInst SQInst;
struct SQInst |
char "name;
char °*masterCell, 'masterView;
char *if;
int matrix[3][3]:
int instID;
SQBB bb;
SQProp prop;
SQFunction function;
union f
char “term;
int net; )
implements; {;

extern SQStatus
SQQ).
SQAttackDemon(),
SQDetachDemon(),
SQSpecialGen(),
SQGenNetTerm(),
SQBegmLayerGen().

SQEnd(),
SQCurrentView(),
SQBegin(),
SQPopSpecxalGen()

extern int SQSpecialBeginGen(),
SQBeginNetTermGen(),
SQLayerNameToNumber();

extern char ‘SQLayerNumberToName();

Apr 22 16:00 1982
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APPENDIX H
Frame Program Listing
This appendix contains the manual entry and program listing for the
Jrame program, which generates protection frames for Squid cells from the

geometry contained within the cell. It uses the Fang Manhattan polygon
package [MooreB2] to generate the frames.

H1
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NAME

frame — Generates protection frames for squid cells.

SYNOPSIS

frame [-i <inview>] {-o <outview>] [-e <errfil>] [-a#] cell ...

DESCRIPTION

FILES

Frame generates protection frames for symbolic IC cells stored in the squid
database. The fang Manhattan polygon package is used to generate the frames
with a grow/merge/shrink algorithm. This algorithm take the boxes which
comprise the geometries contained within a cell ( polygons are factored into
boxes ), and expands each box about its center. The individual boxes are
merged together, and the resulting polygon(s) are shrunk by the expansion fac-
tor to obtain a set of protection frames for the cell. The operations are per-
formed on a per/layer basis, so there is a set of protection frames for each
mask layer.

By adjusting the magnitude of the grow/shrink factor, tradeofls can be made in
the complexity of the protection frames. A zero grow/shrink factor would have
the effect of simply merging the geometries on each mask layer. While this
would allow all of the unused area within the cell to be used for routing at
greater levels in the design hierarchy, the number of boxes required to
represent these complex frames is almost as great as in the original cell itself.
An infinite grow/shrink factor, on the other hand, would remove all interior
‘holes’ from the cell, leaving a set of bounding polygons for the protection
frames. These polygons would require fewer boxes to represent, but would not
allow routing in areas that are actually unused within the cell.

The options available with frame are:
-{ <inview> Change the squid input view from the default 'layout’ to ‘<inview>'.

-0 <outview>
Change the squid output view from the default 'framed’ to '<out-
view>'.

-e <errfil> Change the error reporting file from the default 'framerr’ to
'‘<errfil>’.

-af# Change the amount of the grow/shrink from the default amount of
200 to number #.

<cell> /layout — Default input view
<cell>/framed — Default output view

SEE ALSO

bawk(cad), python(cad), fang(3cad), squid(3cad)

AUTHOR

Mark Bales (Supervisory code)
Ken Keiler  (Squid DBMS)
Peter Moore (Fang polygon package)

DIAGNOSTICS

BUGS

Error messages are self explanatory and detail errors encountered in the squid
database procedural interface.

First Edition 4/1/82 1
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The objects used to define the protection frames are the terminals local to the
cell, the interconnect local to the cell, and the protection frames of the
instances contained within the cell. Local geometries are NOT included, so there
may be some problems in generating protection frames for leaf cells (cells
which contain no instances). .

The grow/merge /shrink algorithm for generating the protection frames some-
times removes large unused area which should be left unprotected.

First Edition 4/1/82 2
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frame.h Appendix H frame.h

/° Cbpyngh.t —C— 1982 Mark W. Bales All Rights Reserved °*/
#include "sq.h”

;#include "t‘ .h"

:finclude <setjmp.h>

:#inclade <stdio.h>

/* Typedefs */ .

‘typedef enum | FOK, FBADSQOPEN, FBADSQGET, FBADSQGEN,
FBADSQPROP, FBADSQLINE, FBADSQTERM, FNOLINEORIENT,
FBADSQFRAME, FLEAFCELL, FBADSQSAVE, FBADSQCOPY, FBADSQDEL,
FBADSQUPDATE, F_FA_FRAME, F_FA_TO_BOX, F_FA_ADD_BOX,
FBADSQCREATE | fstaf;

Vadddidd #deﬁms seover,/

fdefine FATAL 0
#define NONFATAL 1

/* Some macro definitions ¢/
#define F_mex(a,b) ((a) > (b) ? (a) : (b))
#deﬁne F_min(a,b) ((a) < (b) ? (a) : (b))

' ALIGN - compute smallest number >= z which is ezactly
i dwmble by size.

#(k'.ﬁne ALIGN(x, size) ( (x) % (size) ? (x) + (size) = (x) % (size) : (x) )
#define malloc P_vmalloc

extern fa_geometry F_ingec[SQMAXLAYERS);
.extern fa_geametry F_outgeo[ SQMAXLAYERS);
.extern fa_box_list F outbox[SQM.AXLAYERS]
.extern char ¥ _inview;

-extern char F_. _outview;

extern char F_ _erfilnam;

extern char *F_version;

extern FILE *_errfil;

extern fa_coord F_amount;

extern jmp_buf F_errorenv;

Mar 31 18:42 1982 _ Page 1 of frame.h
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fa_geometry F_ingeo[SQMAXLAYERS];
fa_geometry F_outgeo[SQMAXLAYERS];
fa_box_list F_outbox[SQMAXLAYERS];
char *_inview = "layout”;

char *F_outview = "framed”;

char *¥_erfilnam = NULL;

char *F_version = "Frames version 0.0";
FILE ¥_errfil;

fa_ccord F_amount = 200;

jmp_buf F_errorenv;

Apr 3 15:37 1982
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/* Copyright —C— 1982 HMark W. Bales All Rights Reserved ¢/
#include "frame.h"

mein( arge, argv ) main
int argc;
char *argv(];

Va4

* This rouline is the ezecutweforus'mgfmmsasastmdalom

* program. [t allows @ user to generate protection frames for

* many cells, changing the input and/or culput views for each cell.
4

§
char %;
FILE *open();

if( SQBegin() <= 0 ) /° hitialize the squid database */

vhll'e(—e c)O)[(
0] == '~ &% ('arg")lol I= ’\0' )!
for( s = argv[0] + 1; % = \0’ s++ ) |
switch( %) |

case ‘i’ /°* Change “tnview '/
F_inview = *++argv;
arge—-;

printf( "Changing to input view ‘Zs’\n",
_inview );

#ifdef RDEBUG

#endif
break;
case ‘0" 7° Change ‘outview °*/
F_outview = %-+argv;
arge---;
#ifdef RDEBUG
printf( "Changing to out view ‘Zs’\n"
F_outview );

break;
case ‘e’ /* Change F_errfil v/

F_erfilnam = *++argv;
arge——;

#endif

#ifdef RDEBUG
printf( "Changing to error file “%s\n",
F_erfilnam );
Jendif
i#f((F_errfil = fopen(F_erfilnam,
Tw")) == NULL )7
fpx'intf( stderr,
"Couldn’t open Zs'\n"
F erﬁlnam%

»

lkeek;

F_amount = atoi( ++s );
F_amount < 0)
F_amount = 0;
= = \0";

printf( "Amount of grow/shrink %d.\n",
F_amount );

gifdef RDEBUG
Fendif
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...main
break;

default:
fprintf( stderr,
"%s: illegal option: Z%ec\n”,
F_version, % );
arge = -1;
break;

-t

if( F_errfil == 'NULL ) |
if( (F_errfil = fopen("framerr”, "w")) ==
NULL

tprintf( stderr,
"Couldn’t open error file framerri\n");
F_errfil = stderr;
; F_erfilnem = "> stderr”;
else |
F_erfilpam = “framerr"”;

~

if( F_frame( ®rgv, F_inview, F_outview, F_amount )
t= (int)FOK
fprintf( stderr,
"frame: Error occurred in file %s. See file %s for details.\n",
l ®argv, F_erfilnam );

]
if(arge < 0) { /* => an ilegal option was specifled */
fprintf(stderr, .
"usage: frame f-i inview] [~o outview] [~e errfll] file ...\n");
if( SQEnd() <= 0 ) /°* Frap up the squid datadase */
exit(200);
exit(0);
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#include "frame.h"
#include "private.h”

F_frame( cell, inview, outview, amount )
char “cell, ‘nview, %outview;
fa_cocord amount;

register int layer;
register int status;
/* Set up for ‘longimp’ from down tnside hierarchy */

frame.c

F_frame

if( (status = setjmp( F_errorenv )) != 0 ) | /* BError occurred! °*/

retarn( status );

!
/* Mitialize all of the input and oulput geometries ¢/
for( layer = 0; layer < SQMAXLAYERS; layer++ ) |
fa_i.nitg &(F_ingec[layer]) );
fa_init( &(F_outgeo{layer]) );

/* Read in squid view and generata fa_geometlries °*/
F_readin( cell, inview, outview );
/* Gererate boz lists for marged frames */
for( layer = 0; layer < SQMAXLAYERS; layer++ ) |}
/°® Temporary hack ¢/
if( F_ingec[lgy:r].count <=0)

continue;
if( fa_frame( F_ingeo[layer], amount, &(F_outgec(layer]) ) !=
FA_OK ) §

T F_error( FATAL, F_FA_FRAME, __ S
"FA_ERROR: %s\n", fa_err_string );

)
if( fa_to_box( F_outgeo[layer], &(F_outbox[?yer]) ) = FA_OK )

F_error{ FATAL, F_FA_TO_BOX, __FILE__, __
‘ "FA_ERROR: %Zs\n", fa_err_string );

F_update( cell, outview );
! return( (int)FOK );

/* VARARGSS */

F_error( fatalflag, errornum, filename, linenum, format, arguments )

int fatalflag;

fstat errornum;

char *filename;

int linenum;

char *format;

/'
¢ This routine takes an error number, a fllename, and g line number
* and prints out an appropriate error message. [f no maessage
* ezists for a particular number, the number alone is printed.
/

|

#ifndef HAWK
fprintf( F_errfll, "%s(line %d): ", filename, linenum );
doprnt{ format, &arguments, F_errfil );

#else

char errbuf{ BUFSIZ);
register int i;

struct _iobuf _strbuf;

sprintf( errbuf, "%s(line %d): ", filename, linenum );
i = strien( errbuf );

_strbuf._flag = _[OWRT+_[OSTRG;

_strbuf. _ptr = &lerrbui[i]);

FILE LINE_

-t

F_error

Mar 31 19:17 1962 FPage 1 of frame.c
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...F_error
_strbuf. _cnt = BUFSIZ;
_doprnt{ format, &arguments, &_ strbuf);
pute("\0*, &_strbuf);

if( fatalfiag ) §

; longjmp( F_errorer;v, (int)errornum );
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/* Qpyright —C~ 1982 HMark W. Bales All Rights Reserved */
/* LINTLIBRARY */

#include "frame.h"

#include <ctype.h>

F_readin( cell, inview, outview ) F_readin
char *ell, ‘nview, "utview; -

* This rouline is responsidle for reading the data from the
* Squid database and generating the fa_geometries for fang.
* The special generator in Squid is run twice, the first

* time to get the local interconnect and the second time to
* get insitancs protaction frames, local terminals, and

* terminals contained wilthin instances.

§
FILE %ellfil, 4nstfl;
SQStatus cstat, SQ();
SQView cellview, instview;
int cellgen, i;
int mask{4 SQMAXLAYERS+1][2];
int linepath{2], instids[2], level;
SQGeo geo;
SQInst inst;
SQStatus status;
#ifdef RDEBUG
printf( "Reading cell %s, with inview %s and outview %s\n",
cell, inview, outview );

/° initialize the number of instances to zero. */

/* Set up for readin the ‘cell’ with ‘tnvisew ¢/

cellview.mode = "r";

cellview.cell = cell;

cellview,view = inview;

/* KLUDGE (necessary since Squid maoy not have proper bounding boz) %/

cellview.bb.l = =1000000000;

cellview.bb.b = =100000000C0;

cellview.bb.r = 1000000000;

cellview.bb.t = 1000000000;

/% Open the cell with current view ‘inview %/

if((status = SQ(sqOpen, sqView, cellview, &cellfil)) <= 0) |

F_error( FATAL, FBADSQOPEN, __FILE__, __LINE__,

"Couldn’t open cell %s inview %s. Status = %d.\n",
cell, inview, status );

!

/% Qpy the “inview to ‘outview */

cellview.view = outview;

i#{ SQ(sqCp, g:cView. cellview) <= 0 ) /* If the copy fails */
/* n J

#endif

the ‘oulview */
if((status = SQ(sqOpen, sqView, cellview, &cellfil)) <= 0) }
F_error( FATAL, FBADSQOPEN, __FILE__, LINE__,
"Can’t open cell %s to rm outview %s. Status = %d\n",
cell, outview, status );

!
/°® Ad memove @& */
if((status = SQ(sqRm, sqView, cellview)) <= 0)
F_error( FATAL, FBADSQCOPY, __FILE__, __LINE__,
"Can’t remove cell %s view %s. Status = Zd.\n",
cell, ocutview, status );

|
/* Set up to open the “tnuview */
cellview.view = inview;
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..F_readin
7* Open the cell with current wisw ‘“tnview */
if((status = SQ(sqOpen. sqView, cellview, &cellfll)) <= 0) {
F_error( FATAL, FBADSQOPEN, __FILE__, LINE__.
"Can‘t open cell Zs view %s after rm. Status = %d.\n",
cell, inview, status );

}

/7* Set up to open the ‘culview’ */

cellview.view = outview;

/% And copy the ‘tnwtew’ to the ‘outview ¢/

if((status = SQ(sqCp, sqView, cellview)) <= 0) f
F_error( FATAL, FBADSQCOPY, __FILE__, __ —
"Can’t copy cell Z%s view Zs to view Zs. Status = zd.\n",

cell, inview, outview, status );

}
/* Open the cell with current view ‘outview’ */

cellview.mocde = "w'; 7/* Necessary for updating later on */
if((status SQ(sq0 FPen, sqView, cellview, &cellﬁ.l)) <= 0) |
_error( FATAL, FBADSQOPEN, __FILE _LINE__

"Can’t open cell %s outview %s. Status = %d. \n"
cell, ocutview, status );

! N
#ifdef RDEBUG
printf( "Opened Cell Froperly.\n" );

/* Open all of the masters of the instances in ‘cell’ */
if((status = SQ(sqBeginGen, s A%Inst. &cellgen)) <= 0) |
F_ ertor ( FATAL, FB _LINE __
"Can’t Begm Instance Generator ““Status = Zd.\n".
status );

|
/°* Read tn to VM all of the instances in the current view */
vh:le((cstat = SQ(sqGen, sqlnst, cellgen, &inst )) > 0) |

* iUl in the holas in the instance */

mst cif = NULL;
if((status = SQ(sqGet, sqlnst, &inst)) <= Q) |
F error( FATAL, FBADSQGET, __FILE_ _LINE

"Can’t get instance ID = Zd. Status = -d.\E'-':'
inst.instID, status );

i
/° Fill in the instance ‘view’ structure */
instview.mode = 'r";
instview.cell = inst.masterCell;
instview.view = inst.masterView;
#ifdef RDEBUG
printf( "Opening master cell %s with view %s in instance.\n",
instview.cell, instview.view );
#endif
/°* Open the masier cell of the instance in ‘cell’ */
xf((status = SQ(sqOpen, sqView, instview, &instfll)) <= 0) |
F_error( FATAL, FBADSQOPEN, __FILE _ —
"Can’t open instance master %s view Zs. Status = %d.\n",
inst.masterCell, inst.masterView, status );

!

}
/°* Check to make sure that ezit status was ‘SQENDGEN' ¥/
if(cstat '- SQENDGE

F_error{ FATAL, FBADSQGEN, __FILE__, __LINE_
"Squ.\d) returned bad status %d from “instance generator \n",
cstat

Apr 1 00:41 1962 Page Zofread'm.c



I

readin.c Appendix H readin.c

..F_readin
/* Open the cell again to insure the ‘culview’ is ‘current’ */
if((status = SQ(sqOpen, sqView, cellview, &cellfil)) <= 0)
F_error( FATAL, FBADSQOPEN, __FILE__, __LINE__
"Can’t reopen cell %s view Zs after mstgen.. Status = %d.\n",
cell, outview, status );

3
/* Set up mask for special generator ¢/

for{ i = O; 1<S<}MA>¢AYERS i+ ) |
mask[i][0] = i
mask i]{l = (int)sqinterconnect;
mask{ SQMAXLAYERS][0] =
#itdef RDEBUG

printf( "Looking for local interconnect.\n" );

/* Begin a generator to reirieve all tnterconnect local to the cell */
if((status = SQSpecialBeginGen(cellview.bb, mask, 1, &cellgen)) <= 0) |
F_error( FATAL, FBADSQGEN, __FILE__, __LINE_
"Can’t ;:egm interconnect generator Status = Zd. \n",
status );

}
#ifdef RDEBUG

print{( "Generator started properly.\n” );
#endif

level = 1;
/°* Read all of the interconnect local to the cell */
while{(cstat = SQSpeclalGen(cellgen. &geo, linepath, 2, NULL, O,
instids, &level )) > 0) |
/* LATER - Check to tnsure geo is Manhatitan */
/° ASSERT(geo.manhattanP, FNONHANHAT TAN): ¢/
/* Make sures the function is interconnect */
if(geo.function != sqlnterconnect) | ’
F error( NONFATAL, FBADSQGEN __FILE_ _LINE__
"fntcon. local to cell %s view %s Ras function %Zd.\n",
cell, outview, geo.function );
continue;

!

/* Add the line */
F_addline( &geo );
level = ;

}
/°* Check to make sure that ezit status was ‘SQENDGEN' °*/
if(cstat != SQENDGEN) {

F_error( FATAL, FBADSQGEN, __FILE__, __LINE__,
"Stqmd) returned bad status %d from instance generator.\n",
cstat

}
/°* Set up mask for special generator ¥/
for{ i = O; 1<SQM.AXLAYERS i+ ) {

mas ][0 = i
mask 1'2 = (mt)sqFrame,
mask[i 2+1 [ ]

mask{i 2+1 (mt)quermArea.

]
mask[2 SQMAXIAYERS][0] = -1;
#ifdef RDEBUG
printf( "Looking for terminals and frames.\n" );

/°* Begin o generaior to retrieve gll terminals and frames */
if((status = SQSpecialBeginGen(cellview.bb, mask, 2, &ecellgen)) <= 0) |}
F error( FATAL, FBADSQGEN, FILE s __L[NE
*Can‘t ?egm frame and terminal g generator. Sl.at.us = Zd.\n",
status );
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.F_readin

#ifdef RDEBUG
. printf( “Generator started properly.\n" );
#endif

level = 2;
/* Read all of the local terminals, and all of the terminals and
® protection frames of the instances. ¢/
while{(cstat = SQSpecialGen(cellgen, &geo, linepath, 2, NULL, O,
instids, &level )) > 0 ) |
/* Add a frame if th«e Junction is ‘frame’ */
if( geo.function == sqFframe ) |
; F_addframe({ &geo, instids, level );

else §
F_addterm( &geo, instids, level );

level = 2;

}
/* Check to make sure that ezit status was “SQENDGEN' */
if(cstat '= SQENDGEN) |
F_error{ FATAL, FBADSQGEN, __FILE__, _
"Squid returned bad status %d from mstance generatcr \n"
; cstat );
!

F_addline{ gec ) F_addline
SQGeo ‘geo;

' This routine adds a line to the Fang data structures which was
: odtained from the Squid databdase.
Y/

¢
int layer;
SQ B bb;
SQIntegerPo'mt *pointl, “*point2;
SQStatus status;
/* Al lines must be geometries with type ‘sqline” */
if(gec=>gecType != sqline)
F error( NONFATAL, FBADSQLINE, __FILE__, __LINE_
“Line on layer %s has type %d not ‘sqline’. [gnored \n",
geo—>layer, geo—>geaType );
return;
layer = SQLayerNameToNumber( geo—>layer );
#ifdef RDEBUG
printf( "Starting a new line layer = %s.\n", geo->layer );
#endif

/°* This is how the oriendation of lines is communicated */
geo—>prop.name = "ishorizontal”;
/* Al lines must have this property lo work with Ffang °*/
if((status = SQ(sqGetProp, squo. geo)) <= 0) |
F_error( FATAL, FNOLINEORIENT,
“Line: mask %s (%d,%d) to (%d,%Zd) No property ‘ishorizontal’. 'Status = %d.\n",
geo—>layer, geo—>def.line.path[0].x, geo—=>def.line.pat. 0] ¥,
geo—>def.line.path[1].x, geo—>def.line.path{1].y, status

]
/* The property must bde of type boolean ¥/
ﬂ(geo-)prop valueType != sqBool) |
F_error( FATAL, FBADSQPROP, _FILE_ LINE__.
“Line: mask %s (%d.%d) to (%d,%Zd) Bad property “iShorizontai” \n'
geo—>layer, geo—>def.line.path{0].x, geo->def hne pat.h[o] ¥,
gec~>del.line.path[1].x, geo—>def.line.path{1].y )
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...F_addline

/* Get the two endpoints of the line from the path */

pointl = geo—>def.line.path;

point2 = &pointi1[1];

bb.l = F_min( pointl1=>x, point2->x )

bb.r = F_max( pointl1=>x, point2->x );

bb.b = F_min( pointl=>y, point2->y ;;

bb.t = F_max( pointl=>y, point2->y

/° Augment the coordinates of the lme by the line width °*/

if( geo—>prop.value.bool ) | => HORIZONTAL line %/
bb.b == geo—>def. line.width /2

l bb.t += geo—>def.line.width / 2;

else | /* => VERTICAL line */
bb.l == geo—>def.line.width / 2;
bb.r += geo=>def.line.width / 2;

J
7°* Add this boz to the geometry */
i fa_add_box{ &(F_ingec[layer]), bb.l, bb.b, bb.r, bb.t );

F_addframe( geo, instids, level ) F_a.ddframe
SQGeo "geo;
int instids[];
int level;
/’
¢ This routine adds tn protection frames (bozes) for the instances
* ¢n the cell. Lesvel O (local) frames cre ignored. I[nstance ids
¢ are waiched and the routine allocates a new instance structure
* when the instunce ID changes from s previous vaiue.
¢/

¢
regxster int layer;
‘SQLayerNumberToName()
SQBB bb;
SQStatus status;
/* Frames must be geometries of type ‘sgRect */
if(gec—>geoType != sqRect) |
F error( NONFATAL, FBADSQFRAME, __FILE _ _LINE__,
"Frame on layer %s has t e %d not sqF rame’.\n",
geo—>layer, geo=>geoType

l return;
gifdef RDEBUG
yendit printf( "Found a frame for instance %d.\n"”, instids[0] );
H( level 1= 1) | /* Delete local protection frames */
if((status = SQ(sqDelete, sqGeo, geo)) <= 0) |
F_error( FATAL, FBADSQDEL, __FILE__, —_—
“"Can‘t delete local protection frame. Status = %d.\n",
status );
’ return;
layer = SQLayerNameToNumber{ geo—>layer );
#ifdet RDEBUG
. printf( "Instanciating a frame for instance %d.\n", instids[0] );

/* This min-maz stuff is necessary stnce Squid confusas
® corners of bounding bozes upon rotational transforms */
bbl =F mm( geo—>def.rect.], geo—>def.rect.r );

= F_mi geo->def rect.b, geo—>def.rect.t’ );
bb r = F geo—>def.rect.l, geo—>del.rect.r );
bbt = F_m geo~>def.rect.b, geo—>def.rect.t );
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...F_addframe
/* Add the boz to the iate fa_gemoetry °*/
; fa_add_box( &(F_ingeo[layer]), bb.l, bb.b, bb.r, bb.t );
F_addterm( geo, instids, level ) F_addterm
SQGeo %eo; .
int instids[];
int level;
/.

* This routine adds e terminal into the Fang data structures
* read in from the Squid database.
4

|
register int layer;

SQBB bb; :
/* all terminals must be ezpressed with rectangular geometries */
if(geo—=>geoType != sqRect) |

F_error( NONFATAL, FBADSQTERM, __FILE__, __LINE__,
"Term on layer 7%s has type %d not ‘sqRect’.\n",
geo—>layer, geo—>gecType );

return;

]
layer = SQLayerNameToNumber( geo—>layer );
#ifdef RDEBUG
printf( "Starting a new terminal %s, layer = %s.\n",
geo—>implements.term, geo—>layer );

/* [f a terminal within an instance ... ¥/
if( level == 1) §
return; /% lgnore i&. */

] .
/°* This min—maz stuyff is necessary since Sguid comnfuses
* corners of terminal bozes upon rotational transforms */

#endif

bb.l = F_min{ geo—>def.rect.l, geo—>def.rect.r );
bb.b = F_min( geo—>def.rect.b, geo—>def.rect.t );
bb.r = F_max({ geo~>def.rect.l, geo—->def.rect.r );
bb.t = F_max( geo—>def.rect.b, geo—>def.rect.t );

/* Add the boz to the appropriatz fa_gemoetry */
fa_add_box( &(F_ingeo[layer]), bb.l, bb.b, bb.r, bb.t );
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update.c Appendix H update.c

#include "frame.h”

F_update( cell, outview ) F. _updat e
char *ell, “wutview;

{
SQStatus status;
SQGec geo;
SQView view;
char *SQLayerNumberToName();
fa_box %boxptr;
register int layer, i, count;
#ifdef UDEBUG
printf( "Updating cell %s view %s.\n", cell, outview );
fendif

/* Haks sure the current view is ‘outview */

view.mode = "w";

view.cell = cell;

view.view = outview;

if((status = SQ(sqOpen, sqView, view)) <= 0) |
F_error( FATAL, FBADSQOPEN, __FILE __, __ -
"Can’t reopen ‘%s’ as current view. Squid returned Z%d.\n",
cutview, status );

]
for( layer = 0; layer < SQMAXLAYERS; layer++ ) |

if( (count = F_outbox[layer].count) <= 0 )
continue;

boxptr = F_outbox{layer].list;

l'c;?i = 0; i < count; i++
geo.layer = SQLayerNumberToName( layer );
geo.manhattanP = sqTrue;
geo.geoType = sqRect;
geo.def.rect.l = boxptr->left;
geo.def.rect.b = boxptr=>bottom;
geo.del.rect.r = boxptr—=>right;
geo.def.rect.t = boxptr—>top;
geo.function = sqFrame;
if((status = SQ(sqCreate, sqGeo, &geo)) <= 0) |

F_error(FATAL, FBADSQCREATE, __FILE____, __LINE__,
"Can’t create box mask Z%s (%d %d) (%d %d).\n",
SQLayerNumberToName( layer ), geo.def.rect.],
geo.def.rect.b, geo.def.rect.r,
geo.def.rect.t );

J

printf( "Frame box: layer %s: (%d,%d) (%d.%d).\n",
geo.layer, geo.def.rect.l, geo.def.rect.b,
geo.def.rect.r, geo.def.rect.t );

#ifdef UDEBUG

Fendif
’ boxptr = boxptr—=>next;

]

/* Save thae contents of the view */

i((status = SQ(sqSave, sqView, view)) <= 0) |
F_error( FATAL, FBADSQSAVE, __FILE__, __LINE__,
"Can’t save ‘%s’ as output view. Squid returned %d.\n",
outview, status };

Apr 22 16:00 1982 . Page 1 of update.c
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sq.h Appendix H

struct SQParm |
name;
int instID;
SQValueType valueType;
union §
int integer;
float real;
char fstring;
SQBcol bool;
value; {;

typedef struct SQProp SQProp;
struct SQProp |
char *name;
SQValueType valueType;
union |
int integer;
float real;
char string;
SQBool bool; }
value; §;

struct SQView SQView;
struct SQView |
char *cell, view, "mode;
SQBB bb;
SQProp prop; §;

typedef enum {sqFrame,sqActiveArea,sqlnterconnect,sqTermArea) SQFunction;
typedef enum {sqPlot,sqRect,sqline,sqPolygon,sqCircle,sqlabel] SQGeoType;

typedef struct SQGeo SQGeo;
struct SQGeo |
char "ayer;
SQBB bb;
SQBool manhattanP,filledP;
int geolD;
SQGeoType gecType;
anion
SQBB rect;
struct |
int nPath;
SQRealPoint “path; ]
plot;
struct |
int nPath;
SQIntegerPoint “path: }
polygon;
struct |
int width;
int nPath;
SQIntegerPoint “path; |
line;
struct |
SQIntegerPoint *center;
SQintegerPoint *beginAngle, *endAngle;
SQIntegerPoint “nnerRadius, ®outerRadius; ]
circle;
struct |
SQIntegerPoint position;
int height;
int angle;
char %Yustification;

Apr 22 16:00 1982
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sq.h Appendix H

char "abe];
char *font; |
label; |
def;
SQFunction function;
union |
char “erm;
int net; |
implements;
SQProp prop; {;

typedef struct SQTermm SQTerm;
struct SQTerm |

int instID;

char *name;

int netiD;

SQProp prop; |;

typedef struct SQNet SQNet;
struct SQNet |

char ‘hame;

int netiD;

SQProp prop; |

typedef struct SQInst SQInst;
struct SQInst |
char "mame;
cd!:ar *mesterCell, *masterView;
%if;
int matnx[3][3]
int instiID;
SQBB bb;
SQProp prop;
SQFu.nctxon function;
union §
char %erm;
int ret; |
implements; |;

extern SQStatus
SQ0).
SQAttach.Demcn(Z
SQDetachDemon(),
SQSpecialGen(),
SQGenNetTerm(),
SQBeginLayerGen(),
SQGenLayer(),
SQEnd(),
SQCurrentView(),
SQBegin(),
SQPopSpecialGen();
extern int SQSpecialBeginGen(),
SQBeginNetTermGen(),
SQLayerNameToNumber();
extern char *SQLayerNumberToName();

Mar 31 18:54 1982
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fa.ng.h Appendix H

typedef int fa_cocord;
typedef enum {FA_OK, FA_ERROR| fa_status;
typedef struct fa_box fa_box;

struct fa_box | -
fa_coord left, right, bottom, top:;
| fa_box ®mext;

typedef struct fa_box_list fa_box_list;

struct fa_box_list §
int count;
] fa_box 4ist;

7° The eight different types of simple vertices. The shape
* is described by the position of o equivelently shaped
® corner in @ square, while the sense is POS if vertez is
* concave (as in a sguare) or NEG if convez.
*/

typedef enum {

NO_VERTEX = 0,
UPPER_RIGHT_NEG,
UPPER_LEFT_PGS,
LOWER_RIGHT_POS,
LOWER_LEFT_NEG,
UPPER_RIGHT_POS,
LOWER_LEFT_POS,
UPPER_LEFT_NEG,

LOWER_RIGHT_NEG,
LEFT_DIAGONAL, /* UPPER_LEFT_POS and LOWER_RIGHT_POS */
RIGHT_DIAGONAL /* UPPER_RIGHT_POS and LOWER_LEFT_POS */

} fa_vertex_type;
typedef struct fa_vertex fa_vertex;

struct fa_vertex |
fa_coord x,y;
fa_vertex_type type;
fa_vertex *mext;

typedef struct fa_geometry fa_geometry;

struct fa_geometry |
int count; /* number of vertices */
int status; /°* indicates whether the geometry is sorted, merged,

ete. ¥/
fa_box bb; /* the bounding boz */
fa_vertex ‘*head, “ail; /°* pointers to the veriex list %/

typedef struct fa_edge fa_edge;
/° {f the edge is horizontal, then low is the low z end,
{f the edge is vertical, then low is the low y end. */

struct fa_edge |
fa_coord low, high;
fa_coord center;

fang.h

Mar 31 18:54 1962 Page 1 of fang.h



fang.h Appendix H fang.h

struct |
unsigned int edge : 2; /°* direction the edge points,
either FA_LEFT, FA_RIGHT,
FA_UP, or FA_DOWN */
unsigned int low_corner : 1; /* FA_CONCAVE or FA_CONVEX ¢/
ansigned int high_corner : 1; /* FA_CONCAVE or FA_CONVEX */
unsigned int
| type;
fa_edge "next;

»

¢#define FA_LEFT 0
#define FA_RIGHT 1
#define FA_UP 2
#define FA_DOWN 3
#define FA_CONCAVE 0
#define FA_CONVEX 1

fa_status fa_merge();
fa_status fa_frame();
fa_status fa_to_edge();
fa_status fa_to_box();
fa_status fa_add_box();

extern char fa_err_string[]; /°* String containing error messages
* after a fang routine returns FA_ERROR
*/

Mar 31 18:54 1982 Page 2of fang.h
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