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LSI Circuit Simulation on Vector Computers

Andrei Vladimirescu

ABSTRACT

The simulation of Large-Scale-Integrated (LSI) circuits requires very

long run times on conventional circuit analysis programs such as SPICE2. A

new simulator for LSI circuits, CLASSIE, has been developed which is more

efficient and preserves the same accuracy.

Two basic factors of present technology are considered in the design of

the new LSI circuit simulator. First, LSI circuits are usually a collection of a

limited number of structurally identical functional blocks such as logic

gates, operational amplifiers, etc. The second is the availability of vector

computers which provide an ideal architecture for fast computations on

repetitive structures. SPICE2 operates on an entire circuit matrix which is

processed at the individual electrical element level. The analysis in the new

program takes into consideration the structure of the LSI circuit. The

identical functional blocks are grouped together and the simulation is per

formed at two levels.

The above design considerations speed up the simulation of an LSI cir

cuit performed by CLASSIE considerably compared to SPICE2. For the

analysis of a large circuit, CLASSIE on a vector computer rates in simulation

speed between SPICE2 and a timing simulator.

For various test circuits containing from a few hundred to a few

thousand semiconductor devices, CLASSIE simulation runs on a CRAY-1



indicate that the speedup compared to SPICE2 increases with circuit size.

The solution techniques implemented in the new simulator make the execu

tion time grow linearly with increasing circuit complexity in comparison to

an exponential growth in a conventional circuit simulator. Vectorized

device-model evaluation and a machine-code solver using both vector and

scalar operations bring about the increased performance.

A program such as CLASSIE creates a framework for hierarchical circuit

simulation. The decoupling of the analysis at the subcircuit (cell) level

allows the implementation of direct solution algorithms, as in CLASSIE, as

well as indirect (relaxation-type) solution algorithms in future programs.

Further modifications can be made for optimal performance on various com

puter architectures (single-instruction single-data stream, single-

instruction multiple-data stream, and multiple-instruction multiple data

stream).
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CHAPTER 1

INTRODUCTION

The SPICE program has had wide acceptance and use for integrated

circuit evaluation during the last ten years. Although initially designed to

simulate efficiently circuits containing up to one to two hundred elements,

SPICE 2G is presently used to analyze circuits which are one to two orders of

magnitude larger. State-of-the-art scientific computers such as the CRAY-1

perform a SPICE2 simulation of a large circuit much faster than a more

common super-mini computer such as the VAX 11/780. In spite of an

inherent increase in the execution speed of SPICE2 due to the hardware, an

additional order of magnitude increase in speed is needed for the efficient

simulation of LSI circuits.

This dissertation presents CLASSIE, a new simulator for LSI circuits,

developed as part of the requirement for the doctoral degree at the Univer

sity of California, Berkeley. Two basic factors of present technology are

considered in the design of the new LSI circuit simulator. The first one is

that LSI circuits are usually a collection of a limited number of structurally

identical functional blocks such as logic gates, operational amplifiers,

memory cells, etc. The second factor is the advent of vector computers

which provide an ideal architecture for fast computations on repetitive

structures. SPICE2 operates on an entire circuit matrix which is processed

at the individual electric element level. The analysis in the new program

takes into consideration the structure of the LSI circuit. The identical



functional blocks are grouped together and the simulation is performed at
two levels. Due to this approach to circuit simulation an LSI circuit can be

analyzed in atime interval which is half way between the Ume needed on the

same computer, by a conventional circuit simulator and a timing simulator

The second chapter contains an overview of the algorithms used in

•standard* or •second-generation' circuit simulation contrasted with the

techniques employed in •third-generation' simulators developed presently
for large circuits. The computer hardware available for the new simulators

is also described with emphasis on the architectural features, performance

evaluation and algorithm implementation. A summary of the modeling
issues, convergence and linear-equation solution as implemented in the
latest version of SPICE2 form therest ofthe second chapter.

Chapter 3 presents the design considerations and decisions for the new

LSI simulator. For a better understanding of the impact of different archi

tectures on the performance of SPICE2. run time statistics are compared.
The specifics of large circuits and their simulator implementation is

described followed by an outline of algorithm peculiarities for the CRAY-1
vector processor.

Chapter 4 contains a detailed presentation of the program. The data

structure is examined in close relation to the memory management package

which supports it. The implementation of the Newton-Raphson iterative

scheme in the two-level analysis and the fast semiconductor device model

evaluation using vector computation are described in detail. The impor

tance of numerical pivoting for the accurate solution of the subcircuit and

interconnection equations, the Unkage between the different matrices and

the generated vector and scalar machine code are presented in the last part



of this chapter.

Two different programs have been used in the study of the speedup

which can be obtained in circuit simulation using vector processors. The

first. SPICEV, is a vectorized SPICE2 version. The major difference between

the two programs is that the former groups semiconductor devices together

and uses vector computation in device evaluation and other device-related

computation, and scalar machine code for the linear-equation solution. The

second, CLASSIE, differs from SP1CE2 in the implementation of the hierarchi

cal analysis, data structure and some solution algorithms. The performance

of these three programs is compared on a number of large, medium and

small (standard SPICE2 benchmarks) circuits in Chapter 5.

The conclusions on hierarchical circuit simulation and vector process

ing are presented in Chapter 6. A series of comments is made on the best

implementation of a CLASSIE-type simulator on other vector and array pro

cessors.



CHAPTER 2

Issues in Circuit Simulation

2.1. Introduction

Several years ago it was believed that circuit simulation is economical

only for individual cells and circuit blocks with a maximum of a few hundred

devices. The prohibitively long run times for an LSI circuit simulation made

the newly emerging timing and mixed-mode simulators [Newt78], [DeMa79]

attractive for the characterization of LSI chips. The use of logic, timing and

mixed-mode simulators is a valid approach for certain classes of circuits

and systems, e.g., large custom logic chips or entire processors. Circuit

simulation has, however, remained a reliable tool for advanced designs and

therefore continuing research has taken place for faster simulation at the

transistor level [Raba79], [YangBO], [Vlad81a], while maintaining accuracy.

Technology trend-setting products, such as dynamic RAMs, are studied best

with the help of circuit simulation.

A number of algorithms have proven well suited for the solution of the

equations of electrical and integrated circuits and have been implemented

in most circuit simulators in existence to date. All programs which use

these same algorithms, viz., numerical integration, Newton-Raphson itera

tions, and Gaussian Elimination, are referred to as standard circuit simula

tors and are described briefly in the second section of this chapter. The dis

tinctive characteristic of a circuit simulator compared to other electrical



simulators, viz. timing and mixed-mode, is the use of direct methods only in

the solution process.

The characteristics of LSI circuits have initiated the search for better

suited algorithms which preserve the same accuracy as in standard circuit

simulation but achieve higher simulation speeds. The third section of this

chapter is dedicated to these 'third-generation' simulation techniques and

the importance of modern day computer hardware.

Semiconductor device modeling is a central issue in the simulation of

integrated circuits. The present solutions to modeling are described in

another section of this chapter.

Most important for converging to the correct solution for the simulated

circuit is an algorithm which controls the change in the nonlinear element

state variables from iteration to iteration. This algorithm is known as a lim

iting algorithm and determines the convergence features of the simulator.

Convergence is the subject of the sixth section in this chapter.

The linear-equation solution is the last in the sequence of algorithms

which together make a circuit simulator a useful tool. A few details of the

implementation of algorithms for sparse linear equations in SPICE2 are

presented in the last section of this chapter.

2.2. Algorithms in Standard Circuit Simulation

Practically all the circuit simulators available today, SPICE2, [Nage75],

[Cohe76], [VladBlb]. ASPEC. [Jenk82]. ADVICE. [NageBO]. SUC. [Kop75],

ASTAP. [Week73], SCAMPER. [AgneBO]. use the same general techniques for

solving the electric circuit problem. A numerical, implicit integration

method transforms the nonlinear differential equations into nonlinear
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algebraic equations which in turn are linearized using a modified Newton-

Raphson iterative algorithm; Gaussian elimination and sparse matrix tech

niques provide a solution to the simultaneous linear equations. This

sequence of algorithms was described in 1971 in an overview paper [McCa7l]

and is referred to in today's literature, [Hach8l], as part of the 'standard* or

'second-generation' circuit simulator.

Figure 2.1 shows a general scheme used in simulators and highlights

the important steps. The problem to be solved can be expressed generically

as

F(ix.t)=0 (2.1)

where x(t) represents node voltages and currents in the case of the Modified

Nodal Analysis (MNA) approach. The MNA is an extension of nodal analysis in

that the node voltage equations are augmented by current equations for the

voltage-defined elements [Ho75], [Nage7l]. In Equation 2.1 i can be elim

inated and approximated after applying an a-stable, or stiffly-stable numeri

cal multi-step integration formula [Chua75],

where

(2.2)
l«0 |B-1

is the variable time step at tni.l. This reduces Equation 2.1 at each time

point to a set of nonlinear algebraic equations expressed concisely as

f(x)=0 (2.3)

where x is the unknown vector.
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The simultaneous nonlinear equations 2.3 are solved using the modified

Newton-Raphson method which can be expressed for the r-th variable as

xr-=x--«(Xr-)^- (8.4)
where X™ is the approximation of the solution at the previous iteration and

g(x) contains all nonlinearities. Parameter a, 0 < a £ 1, indicates that only a

fraction of the change is accepted at each iteration. The choice of a is

implemented through the limiting algorithm which is tailored to the

different nonlinear characteristics of each semiconductor device. This

parameter assumes a different value at each iteration and for each device.

Equation 2.4 replaces the nonlinear formulation in Equation 2.3 by a

linear set of equations solved at each iteration. Equation 2.4 can be rewrit

ten as

JCx") x*+1 = Jd") x» - g(x°) (2.5)

where ^x*1) is the Jacobian computed with xm at the last iteration. The

simultaneous linear equations which are solved using Gaussian elimination,

have the matrix representation

Ax"*1 = b (2.6)

where

A = J(xm) + G

b = J(xm)xm-g(xa)+C

Equation 2.6 includes also the contributions from the linear elements in the

circuit.

It can be seen that Equation 2.5 and Equation 2.6 can be rewritten to

solve for ox"**1 = x™*1 - x™. For the first few iterations the two solution

approaches generate almost the same result if an initial solution x° = 0 is
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used. Once x is close to the solution, solving for 6x provides more significant

digits of accuracy per variable when the simulator runs on a computer with

a smaller word size. Switching from 'absolute x' to 'dx' iterations is one of

the approaches used in simulators on minicomputers using 32-bit floating

point arithmetic [Frer76], [Cohe7B], [CoheBl].

Multi-step numerical integration methods require an appropriate time

step hn+i at each point in time. Simulators have a dynamic time step control

mechanism which adjusts hn+i based on two different criteria. The solution

Xn+i obtained with numerical integration differs from the exact solution

x (Wi) by an amount called the local-truncation error (LTE). This can be

written for the r-th variable xrja<.1

LTE, = x,. (t^) - x^ =Ckxfr^Mhk*1 (2.7)

where t is in the time interval t^ < t < t^j. The truncation error of the

numerical integration method is a useful measure of the correctness of the

time step. A more empirical approach is to define hn+1 based on the itera

tion count of the Newton-Raphson loop at each time point [Nage75]. Both

methods are implemented in SP1CE2; the local truncation error is estimated

based on the charge (or charge components) associated with each element

or semiconductor device. The time step is increased when the local trunca

tion error is less than an error bound defined in the program and optionally

assignable by the user. The time step is cut whenever convergence fails in a

certain number of iterations at a new time point. The iteration time step

control proves more conservative but more fool-proof for cases when no

charge storage parameters are specified in the model definition of a non

linear device or when the default error bounds are not suited for the exam

ple. The approximation of the truncation error is based on an often untrue
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assumption that x,. is continuously differentiable to the order k in the time

interval of interest.

2.3. A State-of-the-Art in Simulation

The present trends of the work in the field of electric simulation can be

divided in several groups.

i) Faster simulation for large circuits is of major importance. Some of the

reported simulators [Raba79], [YangSO], continue to use direct solution

methods together with network tearing and latency to achieve better

performance. Another category of simulators developed in recent years

[Chaw75], [Fan77], [Newt78], combine equation decoupling, relaxation

techniques and selective trace for increased speed. On similar algo

rithmic basis relies also the Waveform Relaxation technique [Lela82a],

[Lela82b], with the major difference that the equation decoupling takes

place in time rather than space. The research reported in this disser

tation achieves its speed improvement by matching better the circuit

characteristics to a vector computer architecture [VladBl].

ii) Advances in computer graphics have an important influence on the

mode the user communicates with the simulation program. Efforts are

presently made to eliminate the encoding of circuit schematic accord

ing to a particular syntax which the target simulator accepts and

replace it by graphic schematic caption. Real-time graphic output of

specified waveforms enables the user to control the simulation, inter

rupt it and restart it with altered circuit parameters.

iii) Dedicated hardware simulators [CoheBl] which use a shorter word-

length on mini- or micro-computer hardware to obtain a performance
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and accuracy which is close to those obtained with a medium-size com

puter.

iv) Work in device modelling is continued to keep up with the changing

characteristics of shrinking devices. Most efforts are in MOSFET model

ing and solutions go as far as solving the Poisson, transport and con

tinuity equations on a linear and very coarse grid [Hail82].

The first three directions of new developments suggest a closer interac

tion between the simulation program and the computer hardware it is run

on. The new simulator CLASSIE derives an important part of its speedup

from the features of a vector computer architecture. For these reasons in

the following two sections both a brief overview of simulation techniques for

large circuits and the available computer hardware are presented.

2.3.1. Algorithms for Large Circuit Simulation

A fundamental idea included in all new simulators which have been

developed in the last few years for large circuits is Decomposition [HachBl].

Before giving a classification of the various decomposition techniques it

should be emphasized that one class of programs preserves the Newton-

Raphson iterative technique and Gaussian elimination, i.e., direct methods

only, and achieves the same accuracy as a 'Standard Circuit Simulator*

described above. A second group of programs renounces the above algo

rithms in favor of faster relaxation solution methods based on the Gauss-

Seidel (GS) algorithm. e.g.. SPLICE [Newt7B] and MOTIS-C [Fan77], and

Gauss-Jordan (GJ) algorithm, such as MOTIS [Chaw75]. Due to the use of

indirect methods these simulators are appropriate for studying certain

classes of circuits only. Both above categories are electrical simulators
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characterizing the circuits in terms of voltage or current waveforms. While

the first category is formed by circuit simulators the second category is

referred to as timing simulators.

The decomposition of a large circuit can take place at any level in the

solution process shown in Figure 2.1, Le., at the differential, nonlinear or

linear equation solution steps. Two main decomposition techniques are used

in the 'third-generation' simulators. The two approaches use different

numerical methods with different degrees of accuracy.

2.3.1.1. Tearing Decomposition

Tearing or diakoptics, first introduced by Kron [Kron63], reduces the

dimensions of matrices to be inverted by dividing the system into a number

of smaller subsystems. Each subsystem is solved as an independent entity

and the individual solutions are combined to form the required solution of

the total system. In order to interconnect the partial solutions it is neces

sary to invert an additional tie (intersection) matrix.

In electric circuit theory tearing decomposition is an approach which

divides a large network into a number of subnetworks which can be pro

cessed independently. A number of variables common to more than one

subnetwork, called the tearing variables, are solved for in a separate step.

The subnetworks (subsystems) can be torn apart across connecting

branches or at common nodes. The first approach is called branch tearing

while the second node tearing. In both cases the variables characterizing

the torn branches (currents) or torn nodes (voltages) are added to the

interconnection (tie) subsystem. A matrix representation of the tearing

process for a nodal circuit description is presented in Chapter 3. Section
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3.4.1.

For an MNA simulation program node tearing is the obvious choice.

Throughout this dissertation a large circuit is torn at certain nodes which

are called the 'external nodes' of the subcircuit. The voltages at these

nodes are the tearing variables and are solved for simultaneously for all

subcircuits. The 'internal voltages' of each subcircuit can be found

independently of those of other subcircuits. This solution scheme suggests

a two-level analysis.

The information on how the large circuit can be torn is obtained in two

ways. A first source is the structured input description which is the natural

way of representation for a large circuit. This approach is called hierarchi

cal tearing. The only time when this approach cannot be used is when the

input description is obtained from a layout extraction program which has

'flattened out' all information relative to hierarchy. Although layout extrac

tors are currently used it is believed that a unified representation of the LSI

system will contain the information on structure at any level of representa

tion [KellB2].

In algorithmic tearing the large network can be divided in subnetworks

automatically using a number of algorithms. One such algorithm for node

tearing is proposed in [Sang77]. The tearing can be performed on a 'depen

dency or image' matrix which is a graph (topology) representation of the

large circuit. No reported simulator uses algorithmic tearing so far. The

major drawback of this approach is that it can not recognize the existence

of repetitive patterns (or subcircuits) which can be exploited in the analysis.

This shortcoming can be viewed in a similar way as that of a layout extractor

which tries to reconstruct the information about transistors and gates from
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a huge number of geometrical shapes (rectangles). In both cases, for the

purpose LSI/VLSI circuits, the hierarchy information is available at the

design stage and should be retained in the circuit representation. For a lay

out extractor, only the parasitics are found and added to each component

of the hierarchy, cell, building block or system.

Decomposition can take place at different stages of the analysis (Fig

ure 2.1). Only tearing (direct methods) is considered in this section. A

dynamic system decomposition can be performed at the differential equa

tion level, before discretization. Each subcircuit is solved on a different

time scale. This approach takes advantage of the inactivity of a large part

of the system at any given time. In logic simulation a scheduling or selective

trace algorithm is used in this situation. This technique is however not use

ful in a circuit simulator (with direct solution methods only) because of

feedback paths which must be solved at the same time points as the rest of

the circuitry interacted with. Feedback also invalidates the unidirectional-

ity of the signal flow assumed in logic and timing simulators. MACRO, a pro

gram developed at IBM [Raba79] reports the use of hierarchical tearing at

the dynamic system level.

Decomposition at the nonlinear system level can be achieved in two

ways, as implemented in Programs SLATE from the University of Illinois, and

MACRO. The first is reported to use modified Newton-Raphson iterations to

linearize the equations representing the different subcircuits and their

interconnections. The linear equations are solved independently for each

subcircuit. MACRO implements a 'multilevel' (actually two-level) Newton

algorithm which iterates on the nonlinear equations representing the sub-

circuits independently from those representing the system. Each subcircuit
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is described by its own set of nonlinear algebraic equations of the form

H(u.x.y) =0 (2-B)
where u and y are two different variable representations, e.g.. voltage and

current, which characterize the torn nodes; x are the internal variables.

Equation 2.8 is an implicit map from y to u if u are the input variables,

known from the system level, and y the output variables. The equations at

the system level are then

FCaGy(u).w) =0 (2-9)
where Gy(u) represents the 'exact macromodel' of the subcircuit. and w are

the variables at the system level which do not interact with the subcircuits.

Since the NR algorithm has a quadratic rate of convergence, the above simu

lation approach has a quadratic rate of convergence only if

||Ax.Ay||*||Au,Aw|F (2-1°)

where Ax Ay. Au. Aw are the tolerances at the subcircuit and system level,

respectively, for which the iterative process is terminated [Raba79].

The circuit can be torn at the nonlinear equation level in yet another

way if each transistor is replaced by a submatrix representing the discre-

tized device equations, Le., Poisson's equation, continuity and transport

equation [Laur76].

A few comments are necessary on decomposition by tearing at the

differential and nonlinear equation level. A most important aspect is circuit

inactivity, commonly referred to as latency. The exploitation of latency is a

central issue in simulators for large circuits. As already mentioned it is not

possible to implement a scheduling algorithm as is done in logic simulators.

In standard circuit simulators, e.g.. SP1CE2, latency is implemented at the

semiconductor device level using a bypass scheme. This scheme is employed



16

in SP1CE2 only at the nonlinear equation level, i.e„ if the change in output

variables of a device is less than a certain limit at consecutive iterations, at

the same time point. The advantage of the bypass scheme is that the Jaco

bian entries are not computed at this iteration and the values from the pre

vious iteration are retained in the circuit matrix, see Equation 2.5 and Equa

tion 2.8. The problem with this approach concerns how much should a dev

ice be allowed to change before it is considered active, e.g., what should be

the value of AVD for a diode to be reevaluated. The same difficulty is found in

a program which defines latency at the subcircuit level as a measure of the

change in input/output variables at the torn nodes. This approach might

seem straightforward in a program which uses tearing at the nonlinear

equation level. e.g., SLATE. Clearly, errors can be avoided in regenerative

circuits with long time constants only if all state variables are monitored

within the torn block. This technique involves so much computation that

latency exploitation looses a lot of its efficiency.

Latency can be exploited efficiently in the tearing decomposition

approach only if the network is torn at the differential equation level or,

equivalently, in time. In this case, each subnetwork is solved with its own

time step which is adjusted based on an estimate of the local truncation

error which in turn reflects the circuit activity. MACRO is reported to imple

ment this approach and describes a synchronization mechanism, based on

interpolation, to connect the different contributions to the system equa

tions.

Another observation is the two-level analysis implemented by both the

MACRO and SLATE Programs using tearing decomposition. With present-day

computer architectures the choice of only two levels to perform the circuit
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processing, seems the ideal partitioning. Analysis performed at more than

two levels incurs an important overhead in connecting the different

matrices and increases the computational effort for quadratic convergence

in the MACRO approach, see Equation 2.10.

Tearing decomposition can take place at the linear equation level The

different matrix structures which can be obtained by tearing are presented

in Figure 2.2. These structures are used by the above programs and by

CLASSIE. In electric simulation it is not advantageous to use decomposition

after both time dependencies and nonlinearities have been removed. The

high sparsity of the matrix, over 95% for a medium circuit, and the use of

Gaussian elimination make the equivalent of a matrix inversion to be per

formed efficiently and preclude the usefulness of tearing. For large circuits

described by matrices with a few thousand rows and columns the solution of

linear equations can become quite important if a Fortran encoded routine is

used. The machine code solvers employed in the two programs SPICEV and

CLASSIE, evaluated later in this text, use only up to 10-20% of the total time

for the linear-equation solution.

A reordering strategy can be found for the linear equations described

by Equation 2.8 which casts matrix A in a block structure. The four block

structures are labelled in Figure 2.2 as the Bordered-Block Diagonal (BBD),

the Bordered-Block Triangular (BBT). the Block Diagonal (BD). and the Block

Triangular (BT). Tearing applied at the nonlinear and differential equation

level generate a BBD matrix. The subcircuit internal variables form the

diagonal blocks, the external variables form the border and contribute to

the lower right corner; this latter submatrix contains mainly the variables at

the system ieveL



Bordered-Block-Diagonal Bordered-Block-Triangular

«

Block-Diagonal Block-Triangular

Figure 2.2 Triangular Matrix Structures
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2.3.1.2. Relaxation Decomposition

The relaxation or temporal decomposition technique stems from the

partitioning of the circuit matrix

A=L+D + U (2.U)

into the sum of a strictly lower L (diagonal is zero), strictly upper U. and

diagonal matrix D. For a network with k variables, the solution is found

independently of the other variables (GJ) or as a function of the variables

already solved for GS. A fundamental assumption necessary for this

approach to be sufficiently accurate in the case of electrical simulation is

the unidirectionality of the signal flow. In terms of Equation 2.6 the GR and

the GS algorithms can be expressed as

(GJ) Dxm+l = -(L+U)xm +b (2.12)

(GS) (L+D)xm« = -Uxm + b (2.13)

A simulator which uses the above equations and equivalently circuit

decoupling belongs in the category of Timing Simulators. In the standard-

timing-analysis approach the decoupling takes place at the level of each

variable. This is called a point-wise decomposition and is used in the timing

simulators MOTIS [Chaw75], and MOTIS-C [Fan77]. These simulators have in

common the time discretization which is the same for all variables in the

system. Another characteristic common to both simulators is the one-shot

relaxation performed at each time-point.

The Newton-Raphson has been shown to have a quadratic rate of con

vergence but is computationally very expensive. More accuracy can be pro

vided in timing simulation if a converged relaxation method is used. One or

more Newton-Raphson iterations can be performed point- or block-wise fol

lowed by a GS relaxation step. This is the nonlinear SOR (successive
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overrelaxation) Newton iteration technique. In a two-level simulator

Newton-Raphson iterations can be performed at the subsystem level and a

one-step or multi-step relaxation can be used at the system level.

Combining NR with SOR which displays linear convergence is an attempt

to get close to the solution first and then use a computationally faster

method to converge to the final solution.

If the hierarchical information contained in the input description is

used along with the above algorithms, a block-wise relaxation decomposition

is achieved. This decomposition technique is used in SPLICE [Newt78], and

RELAX which is based on the newer Waveform Relaxation (WR) Algorithm

[Lela82a]. [LelaB2b]. The advantage of relaxation decomposition is that the

system representation can be viewed as a BD matrix, see Figure 2.2, and no

time synchronization is necessary as in the case of the MACRO program.

Thus, in the RELAX simulator which uses the WR algorithm each subcircuit is

solved for the entire time interval independently. The use of the GS relaxa

tion at the system level in RELAX creates the possibility to order the solution

sequence according to the signal flow. For each subsystem this ordering

makes the fan-in external variables to be the updated solution and the fan-

outs to be approximated by the last iteration. Iterations are performed at

the system level until all waveforms, for internal and external variables con

verge within a certain error.

Another characteristic of timing simulators, both point-wise and block-

wise, which confers this simulation type an important speed advantage over

standard-circuit simulation, is the use of much simplified representations of

nonlinear semiconductor devices. In a circuit simulator equivalent conduc

tances are computed corresponding to each controlling variable, whereas in
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timing simulation most or all of the dc nonlinearities are transferred to the

right-hand side of Equation 2.5. The Jacobian in timing simulation is usually

formed by the charge storage elements (capacitors) associated with the dev

ices.

The algorithmic and modelling techniques presented above for timing

simulators confer this simulator type a speedup of approximately two orders

of magnitude over a standard circuit simulator. The accuracy of mixed-

mode (timing/circuit) and "WR techniques is considerably better than that of

a point-wise, one-shot timing simulation technique due to the iterative

nature of the former. The decoupling of the analysis in time allowing

optimal time discretization for each subsystem makes SPLICE and RELAX

over one order of magnitude faster than a standard circuit simulator, e.g.,

SPICE2.

2.3.2. Computers and Simulation for U51 Circuits

2.3.2.1. Computer Hardware

In the last decade much faster computers have been built due primarily

to architectural innovation. Advances in semiconductor technology have a

secondary role to the advances in computer organization for achieving very

high computation rates. Many of the high speed architectures depart from

the von Neumann concept of a sequential processing of single instructions

fetched from memory based on the program counter. The advent of

LSI/VLSI technology has had a decisive role in developing many new archi

tectures which involve more distributed computing. The high density pack

aging of thousands to hundreds of thousand of transistors in one chip have
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increased the reliability of the computer building blocks considerably. The

CRAY-1, a state-of-the-art scientific computer, uses only SSI and MSI bipolar

Emitter-Coupled-Logic (ECL) circuits for its Central Processor Unit (CPU).

Only the recently announced model, the CRAY X-MP [CRAYB2], contains VLSI

circuits for mass storage, the Solid-state-Storage Device (SSD) replacing the

rotating device.

From a design point of view speedup can be achieved two ways:

1. Replicating the instruction and/or data flow constitutes a horizontal

speedup;

2. Segmenting (pipelining) the instruction and/or data stream is termed a

vertical speedup.

The horizontal speedup architectures can be classified further:

a. Single Instruction, Single Data (SISD) stream; in this category belong

most conventional serial processors outlined by von Neumann in 1949.

b. Single Instruction. Multiple Data (SIMD) defines a processor performing

the same instruction on a set of data; more than one operation can be

performed at any one time, i.e., different functional units can work in

parallel but under the supervision of a unique control flow.

c. Multiple Instruction, Multiple Data (MIMD) stream; a number of proces

sors work independently and in parallel on different sets of data

towards the solution of the same problem.

Pipelining (vertical speedup) consists in segmenting an operation into a

number of segments. This allows more than one instruction to be executed

at the same time provided the necessary data paths and functional units are

available. The minimum resolvable time defines the clock cycle and a new
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instruction can be issued each cycle before the previous instruction(s) have

terminated, if the necessary functional units are ready.

A state-of-the-art scientific computer, referred to as a vector or super

computer, combines both approaches, horizontal and vertical, to achieve

the speeds of hundreds of million of floating-point operations per second.

The two commercially available computers which belong in this category are

the CRAY and the CYBER 200 computers; both can be classified as pipelined

SIMD architectures.

Encoding of scientific problems is often done using arrays. It seems

natural to perform an operation between all elements of two vectors

(arrays) as one instruction at the computer hardware level. A brief overview

of the two processors mentioned above is included here for the understand

ing of the design guidelines of a program to achieve optimal performance

using this computers.

Both processors have an instruction buffer and decode unit, a scalar

and a vector processing unit. The memory is organized in banks for fast

access of instructions and data each clock cycle. Both have a large number

of arithmetic functional units, 13 for the CRAY-1 and 11 or 17, depending on

configuration for the CYBER 205. In most of these functional units con

current processes can take place. In scalar or vector computation a

floating-point operation is partitioned into a number of segments and when

an intermediate result is ready, it can be chained directly to other func

tional units [CRAY76], [CDC80]. A resulting vector element is avaUable at

each clock cycle on the CRAY-1 and two each cycle on the CYBER 205. The

maximum number of segments for an operation is 14 on the CRAY-1 and 26

on the CYBER 205. Beyond these overall similarities there are specifics to



24

each processor which are outlined in the following.

The CRAY-1, announced in 1975, has been the first of the second-

generation vector processors. Its high speed is achieved through ECL bipo

lar circuitry and carefully dimensioned interconnections. It is character

ized by a 12.5 ns clock cycle. Its maximum memory is 4 Mwords of 64 bits

each. The processor includes a large number of data registers and address,

scalar, floating-point and vector functional units. There are 8 primary- and

64 secondary-address registers (24 bit) which together with the address

functional units perform the address calculation and integer arithmetic for

the 'short integers'. For scalar processing there are 8 64-bit scalar regis

ters and 64 more secondary registers associated with 7 functional units for

arithmetic, logic and shift operations. The vector hardware consists of 8

register files of 84 64-bit elements each and an add. logical, shift and popu

lation count functional unit. For vector multiply and divide (inverse approx

imation) the same functional units are used as for scalar processing. At the

Cray Assembly Language (CAL) level, high execution speeds can be obtained

by carefully interleaving the instructions for most concurrency in execution

and operation chaining.

A new instruction can be initiated at each clock cycle provided no

memory, register or functional unit conflict occurs. There is an overhead

associated with starting a vector operation but after the result for the first

vector element is available each subsequent result follows each clock cycle.

The CYBER 205 implements its instructions through micro-code,

separate processing units for scalars and vectors, and uses a smaller cache

(256 64-bit registers). This computer has a 20 ns clock and uses virtual

memory. The processor is separated into scalar and vector processors. The
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scalar processor decodes the instructions, controls the data flow and ini

tiates vector operations in the vector processor. It also contains its own

floating-point processor to perform add, multiply, divide, square root and

logical operations.

The vector processor contains its own control called a streaming unit

which receives decoded instructions from the scalar unit and manages the

data stream between memory and floating-point units. There are two

floating-point units, called pipes; each pipe has an add, multiply unit and

only one pipe has a divide/square-root unit. The floating-point pipes

operate on both 32- and 64-bit floating-point numbers. After the start-up

time has elapsed each pipe can produce a new result each clock cycle;

overall two 32-bit results are computed every clock cycle (20 ns), the pipes

working concurrently. For the CYBER 205 there is also a four-pipe option.

Both the scalar processor and the vector processor have to share the same

256 registers for intermediate results unless the latter can be redirected to

the input of a pipe for a subsequent operation.

The term array processor identifies a single peripheral processor with

high-speed floating-point computation capability which can be attached to a

general-purpose computer system. The tandem combination usually pro

vides a much higher computation power than the host alone. Although the

architectural synopsis and name can cause confusion with the vector com

puters array processor refers to a distinct category of pipelined SIMD pro

cessors. The Floating Point Systems AP-120B and FPS 164 are examples of

commercially available array processors. The former is limited by a 38-bit

word while the latter is better suited for scientific applications where a 64-

bit data word is necessary. The architectural features [CharBl] include
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multiple functional units, two data register units of 32 registers each, a 1.5

Mword main memory where data andinstructions are stored separately, and

a 167 ns cycle time. The functional units allow a maximum of two data com

putations, two memory accesses, an address computation, four data regis

ters accesses, and a conditional branch to be initiated in a given CPU cycle.

Another most important class of high speed processors are the MIMD

computers. This architecture is best utilized based on data flow concepts.

Data flow architectures allow an instruction to be executed as soon as the

operands are available. It minimizes the execution time by assigning its

concurrent instructions to separate resources. This systems are in a

research stage and do not constitute viable alternatives at the present for

the simulation of ICs.

2.3.2.2. Vector Processor Performance Evaluation

A figure of merit is usually needed for comparing the performance of

different computers. The standard architectures are characterized in terms

of Mips (million instructions per second). A load or an add is used as the

instruction time or the average execution time for a mix of instructions.

Since vector computers are aimed for scientific computations with a large

number of floating-point operations the measure of their speed perfor

mance is usually taken as the number of millions of floating-point opera

tions per second (Mflops). The advertised speed of the CRAY-1 is 160 Mflops

and that of the CYBER 205 is 800 Mflops. Comparatively the speed of the

FPS-164 array processor is characterized by 12 Mflops. These numbers

which computer manufacturers promote can be misleading if not put in con

text. At a first glance the CYBER 205 is five times faster than the CRAY-1.
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When large problems are considered with more than one numerical method

involved and complex data structures, e.g., circuit simulation, it is not obvi

ous which of the above processors is superior. A program will achieve a

larger or smaller percentage of the maximum execution speed depending on

the extent it is adapted to the specifics of the architecture and instruction

set.

For an understanding of program design considerations and results

presented in chapters to follow it is useful to analyze the performance of

the two vector processors. The following simple equation, [Cala79],

describes the time needed for the execution of a vector operation Tv:

TT =T. +TT0 (2.14)

where T, is the start-up time, r the average vector length, and T0 the time

each result is ready. The quoted Mflops rates are derived on several

assumptions. First, it is considered that the vector length is infinite and the

start-up time is negligible. The speed for one floating-point operation also

called a diadic operation is —-j[ =BOMflops for the CRAY-1 and
lc.D ns

2X20ns" =100MfloPs for one PlPe for toe CYBER 205.

Second, all possible concurrency is assumed. Thus, on the CRAY-1 a

vector add and multiply, a triadic operation, can run in parallel raising the

Mflops rate to 160. On the CYBER 205 a vector add and multiply can run

concurrently in each of the four pipes bringing this rate to 800 Mflops.

However, details are missing in these numbers, Le., the CRAY-1 operates

on 64-bit floating numbers only whereas the CYBER 205 operates both on 32

and 64-bit numbers. The above data refer to the maximum speed. Le.. 64-bit

arithmetic for the CRAY-1 and 32-bit for the CYBER 205. When both work
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with 64-bit numbers the CYBER 205 achieves a maximum speed of 400 Mflops

with 4 pipes and 200 Mflops with 2 pipes.

Part of the ideality of the study is removed when the actual vector

length is considered. The importance of the start-up time can be recog

nized when defining the vectorization efficiency n :

Vs
operation time

start-up time + operation time " « 1
1+"IT (2-15)

t^-
T.

A universal efficiency curve based on the above equation is shown in Fig

ure 2.3 [Cala79]. For solving a certain problem it is important to evaluate

how much of the raw processor speed can be obtained for typical vector

lengths. A first observation based on just the add or multiply operation is

that the CRAY-1 has a shorter start-up time than the CYBER 205 [Kasc79].

Thus the CRAY-1 achieves half of the maximum speed for an average vector

length

ri/8dUY-i w 15

as compared to

^l/2CYBER203 W »*0

This assumes that the data are stored contiguously in memory. For short

vector lengths (a few tens of elements) the CRAY-1 is more efficient whereas

for vectors with thousands of elements the CYBER 205 can be faster. The

CRAY-1 has actual 64-element long hardware vector registers and therefore

uses an additional overhead for storing and reloading these registers for a

computation which involves vectors longer than 84. On the CYBER 205 the

longer the vectors it operates on the more the operation time absorbs the

start-up time and produces a higher execution rate.
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Figure 2.3. Universal Efficieny Curve for Vector Computation
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For a scientific application program the most interesting performance

measure is an equivalent Mflops rate which incorporates the memory traffic

present in any algorithm implementation. In a circuit simulator the only

computation section which can be isolated easily is the linear equation solu

tion. The sparse solver is characterized in terms of equivalent Mfiops in

Chapter 5.

2.3.2.3. Algorithm Evaluation onVector Processors

With the architecture of the vector processor known, the remaining

question to be addressed is how to take advantage of the hardware using a

high-level language such as Fortran. An obvious correspondence to a vector

add is illustrated by the following DO loop:

DO 100I=1,N
A(I)=B(I)+C(I)

100 CONTINUE

Assume that the elements of the arrays are stored in contiguous memory

locations. On a scalar computer the above loop is executed as a sequence

Load. Load, Add, Store, Index and Branch

which is repeated until the loop variable has assumed all values. For a large

value of N thousands of instructions have to be executed for completion of

the loop. This explains why in the context of vector processors it is not real

istic to measure the effective speed in Mips.

The same loop will however not be translated as one vector instruction

if the elements of array B are pointed to by another array INDEX:
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DO 100 1=1,N
A(I)=B(INDEX(1))+C(I)

100 CONTINUE

This very simple example demonstrates the importance of data structures;

all data which are processed together should be stored in contiguous loca

tions if a program is to take full advantage of vector computation. Data

which are expected to be processed with vector instructions can be equally

retrieved from memory if stored a constant stride apart on the CRAY-1. In

the latter case caution must be exercised not to generate memory bank

conflicts.

The operation of loading elements from random locations in memory

into a contiguous array is referred to as gather operation. The storage of

contiguous elements of an array in random locations in memory is called a

scatter operation. If the data structure does not provide for contiguous ele

ments gather and scatter operations are necessary. These operations con

tribute a larger or smaller overhead depending on the computer system.

For the CYBER 205 gather/scatter operations are a trivial matter because of

the existence of a vector gather/scatter instruction. This instruction exe

cutes at the rate of one operand every 1.25 clock cycle. On the CRAY-1,

however, the gather/scatter operations must be performed by an assembly-

coded library routine which needs 20 clock cycles per operand. This time

can be reduced to 12 clock cycles if machine instructions are generated and

executed for every gather/scatter operation.

Another problem for vectorization of a DO loop is created by the pro

cessing of conditional statements or branches in that loop. Assume that

there are two analytic formulations for a function depending on the run

time values of certain variables. It is further assumed that both the values
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of the function and the test variable form vectors. If a test was to be per

formed for each element of the variable vector only scalar operations could

be used. The approach followed for vector operations is to evaluate both

analytic formulations for as many elements as the function and variable

vector contain and use two temporary vectors for storage. The values of the

elements of the function vector are the result of a merge operation between

the elements of the two temporary vectors. Each element of the result vec

tor is picked from the first or second temporary vector depending on the

corresponding value in the variable vector. This approach involves more

computation than the scalar processing of a conditional loop but overall it is

usually faster. A more detailed example based on semiconductor model

evaluation is commented in the following chapter.

Additional restrictions apply when a high-level language compiler such

as Fortran is desired to generate vector code. Thus, in a DO loop the argu

ments of the arrays can be only linear functions of the loop variables for

vectorization. This type of variable is called constant increment integers

(CII) in CRAY Fortran language. Other examples of non-vectorization are

dependencies between vector elements used in the arithmetic. Recursion is

a typical example:

DO 100 I=2,N
A(I)=A(I-1)+B(I)

100 CONTINUE

A final example follows which demonstrates the difference in speed one

can get from a vector processor by using the knowledge of the architecture.

The multiplication of two full matrices A and B is analyzed. Usually element

Cjk of the product matrix C is
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cjk = £ »]• bgk
•si

which is called the inner or dot product of the j-th row of A and the k-th

column of R The time required by this algorithm is N3 +0(N2> where Nis the

rank of the matrices.

The same result can be obtained by a reordering of operations:

clk
> <

an
> <

a18

•

= bIk
•

+ b8k
•

•

cNk
> 4 >aNl, *™

+ ••• +bjnc

»in

*NN

The product of two matrices performed using the above sequence of opera

tions is called the outer product. The equivalent Fortran is:

D0 200K=1,N
C(1JC;N)=B(1.K)*A(1,1;N)
DO 100 L=2.N

C(1.K;N)=C(1.K;N)+B(L.K)*A(1,L;N)
100 CONTINUE
200 CONTINUE

The notation C(1,K;N) represents all N elements (a vector) of the K-th

column of matrix C. The vector statement in the inner DO loop executes an

add and a multiply concurrently and is called a triad. Each result as it is

avaUable from the multiply unit is chained to the input of the add unit. The

execution time for this operation is thus reduced by a factor of two on any

of the vector processors or array processors introduced earlier because of

the parallel processing of the two floating-point operations in independent

functional units. An additional factor of two speed improvement can be

obtained on a CYBER 205 with four pipes.

A few concluding remarks on vector computation maybe helpful. The

speedup achieved from a vector or array processor depends on howwell the
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algorithm and the data structure make use of the architecture. The high-

level language compiler limits the possibility of taking full advantage of the

architecture and ratios of 5:1 in speed between hand-coded assembler and

Fortran produced code have been reported [Cala79]. The constraints of the

Fortran compiler on the programmer force the latter to understand the

data flow. Researchers at the University of Illinois, have written a Fortran

compiler, Parafrase, [Wolf7B], which performs a careful data dependency

and data flow analysis for parallel processing. This approach helps the pro

grammer by removing several constraints of commercially available com

pilers but does not free him from carefully designing the algorithm and data

structure.

No existing electrical simulation program has been designed or

redesigned to use vector processing. They can be used however on vector

processors and obtain good performance due to the raw speed increase of

these new computers. The speedup compared to a standard scalar com

puter, e.g., the VAX 11/780, varies depending on the program. Thus the

speedup on the CRAY-1 for SPICE2 is twice the speedup for MOTIS [Chaw75].

This can be explained by the fact that the CRAY-1 performs much more

efficiently than a scalar processor the floating-point operations, exponentia

tions, logarithms, and square roots, which are abundant in SPICE2 compared

to the memory operations and less computation which is typical for MOTIS.

2.4. Semiconductor Device Modelling

The computation of the partial derivatives which constitute the ele

ments of the Jacobian is done on the nonlinear functions describing the I-V,

Q-V, and/or C-V characteristics of the semiconductor device. Although



35

other nonlinear elements can be included in a circuit simulator, the usual

ones stem from the nonlinearities of the active devices. The process of

finding the elements of the Jacobian for semiconductor devices is both very

important for the accuracy of a simulation and the run time.

In existing simulators two basic approaches are used for describing the

nonlinear behaviour of active devices. Some programs, such as SPICE2, have

built-in models for the most common semiconductor devices, diodes, Bipolar

Junction Transistors (BJT), Junction Field-Effect Transistors (JFET), and

Metai-Oxide-Semiconductor Field-Effect Transistors (MOSFET). Other pro

grams, viz., ASTAP, allow the user to describe the nonlinear characteristics

as analytical functions as part of the circuit input specification. Although

the second approach seems to offer more flexibility it is made impractical

due to the constraints which the analytical description must fulfill in order

to preserve the convergence of the iterative solution. Often the user must

resign and use a simple modelwhich is found in the model library and works.

The constraints which need be respected when developing a newmodel

for circuit simulation include the following:

i) The analytical model functions should be continuous and strictly mono-

tonic with continuous derivatives over the whole range of device opera

tion.

ii) The model definition is desirable to be a simple and explicit function of

independent variables, e.g., terminal voltages.

iii) It is important to choose a best suited set of independent variables for

an uniform and computationally efficient representation; examples in

this sense are transport vs. injection models for the bipolar transistor

[Getr76] and source-referenced (Vcs.Vds.Vbs) vs. bulk-referenced
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(VCB. VDB, Vgg) models for the MOSFET.

The first requirement is important for convergence purposes while the

second relates to computational efficiency (avoids nested iterative loops).

The last requirement is to provide effective ways of extracting parameters

for the new implemented model

A common approach is to derive a set of I-V and Q-V equations which

satisfy the above conditions. In SPICE2 the computation of all conductances

(partial derivatives) is based on analytical formulations. This approach

makes the implementation of a new model a lengthy process and can intro

duce discontinuities in the partial derivative formulation. A faster approach

is to program just the I-V and Q-V equation and to compute the values of the

Jacobian entries using numerical differentiation. Due to the iterative nature

of the solution the above way of derivative evaluation has been considered

too approximate. The recent introduction of this method into a commer

cially available version of SPICE, [Hail82], proves that despite a certain

increase in analysis time the accuracy of the derivatives is sufficient to

preserve the convergence properties of the program. Another commercially

available circuit simulator, ASPEC [JenkB2], replaces the partial derivatives

by an equivalent resistance which varies with the trial operating point.

Another method for semiconductor device representation are 'Table

Models' [Chaw75]. This type of device description has been first used in MOS

timing simulation. More accurate approaches to MOSFET table model imple

mentation in circuit simulation have been proposed [NewtBO], [Tana80].

However the highest speedup ever quoted for a table model used in a circuit

simulator varies from 2, [Tana80], to 3-4, [Newt77]. The higher figure results

partly from a reduction in the number of partial derivatives, only GdS for DC,
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computed as Jacobian entries. There are practical advantages for using

table models, Le., accurate data can be available from measurements, no

analytical model derivation and implementation must precede the simula

tion of a device, no parameter extraction step is necessary. Table models

can be implemented by several one-dimensional tables [Newt80], [Tana80],

or by two- or three dimensional tables [Shim82]. The storage requirement

and search time can become a problem if many different model tables are

used. This might be necessary because of the poor scaling properties of I-V

characteristics for widely varying channel widths and lengths. In the con

clusion of the present project it is shown that for a super-computer with the

floating-point capabUity of the CRAY-1 the savings with table models would

be less than 10%.

Faster simulation is obtained using a 'Bypass* scheme. The conduc

tances of the last iteration for a particular device are reloaded if the termi

nal voltages have not changed. The time-consuming reevaluation of a set of

equations is thus avoided. The only danger of a bypass scheme is that for an

inappropriate set of tolerances the convergence can be affected. Thus, a

device which has changed slightly but not enough to be sensed by the

coarser tolerances can be bypassed and reevaluated only in a later itera

tion. This increases the number of iterations or can cause the solution to

diverge. The problems associated with device bypass are similar in nature to

those related to the latency of subcircuits described in Section 2.3.1.1.

Two MOSFET models for small-size devices have been implemented in

SPICE2. These models have had extensive use for over two years and are

described in [Vlad80]. The description of the charge model is included in

Appendix 1 for completeness of the SPICE2 MOSFET model documentation.
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2.5. Convergence

The NR algorithm has quadratic convergence properties assuming that

an initial guess is provided which is close to the solution. Therefore it is

important in a circuit simulator to provide an initial guess either as a set of

node voltages or terminal voltages for the nonlinear semiconductor devices.

Circuit simulators start out usually with all unknowns set to zero. SPICE2

initializes the semiconductor devices in a trial operating point such that

nonzero conductances can be loaded into the MNA circuit matrix at the first

iteration.

The nonlinear I-V characteristics of semiconductor devices are

exponential or quadratic functions. With a limited range of floating-point

numbers available on a computer and the unbound nature of solutions pro

vided by the NR algorithm according to Equation 2.4 the iterative scheme

can fail to converge. A limiting algorithm is needed, as has already been

shown in Section 2.2, which selectively accepts the solution unchanged or

limits it when large changes in the value of the nonlinear function would

occur.

Both the initial trial operating point and the limiting algorithm of the

current updating type, [Nage75], works quite well for BJTs. All transistors

are slightly turned on in the linear active region.

MOSFET circuits have displayed more convergence problems than the

bipolar circuits. The convergence problems can be categorized as failure to

find a dc operating point and aborted transient analysis due to the reduc

tion of the time step beyond a certain limit without finding a solution.

Different limiting techniques have been proposed in recent years,

[Ho77], [YangBO], but the convergence problems in circuit simulation have
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not been completely solved. Ho et. al. suggest a logarithmic limiting of the

controlling variable of each nonlinear branch. The logarithmic function is

proposed because of the property to leave small changes unaltered and

dampen large changes. This approach has been tested in SP1CE2 and did

not show any improvement. Yang proposes a piece-wise nonlinear approach

which separates a nonlinear function into several regions. He outlines a

methodology for limiting the change on variables predicted by the NR itera

tion when this change crosses boundaries between regions. A generic load

resistor 'R* is used for defining the boundary between different regions. The

idea of the nonlinear characteristic breakpoints is not new and has been

used in circuit simulators such as SPICE, BIAS3, etc., for the limiting rou

tines. The author also falls short of specifying a way of computing the gen

eric load resistor 'R* for a random transistor in the circuit.

There are a number of approaches which can improve the convergence

of the circuit solution. Most of the comments presented in the next para

graphs are based on the SPICE2 simulator. The initial operating point for

semiconductor devices has been found to be very important. For bipolar

circuits which are slightly turned on in the initialization phase a smaller

number of iterations have been noticed for analog (linear) circuits as com

pared to digital (logic) circuits. The explanation can be found in the mode

of operation of analog circuits which have the majority of the transistors

turned on in contrast with digital circuits which have an important percen

tage of the devices turned off. MOS circuits have the transistors turned off

in the first iteration. Initializing all MOSFETs in the conduction state has

been found to speed up the convergence of operational amplifiers and other

analog circuits. These observations suggest a user option for the state of

transistors in the first iteration. An additional note concerns the
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connection of the transistor terminals; the initial operating point should

take into account if two or more terminals are tied together, e.g., a deple

tion or saturated load, a diode connected BJT. etc., and set the terminal

variables accordingly.

A convergence improvement has been obtained in SPICE2 for MOSFETs

by changing the variables on which limiting is performed. These terminal

voltages used to be Vcs and Vqd. The controlling voltages for a MOSFET

transistor are actually Vqs and Vds which are at the same time the indepen

dent variables in the device equations. The limiting is different for these two

variables; in the Ids-Vjjs plane the breakpoints are V^ = 0 and VDS = VDSiat.

while in the IDS —Vqs plane regions of operation are separated at VGS = VT. A

number of analog MOSFET circuits characterized by high impedance nodes,

e.g., current sources, which failed to converge on previous versions can be

successfully simulated.

Two other approaches are used effectively for finding the dc solution.

Both ASPEC [Jenk82] and ASTAP [Week73] improve the dc convergence by

solving actually a one-step transient analysis of a network having a capaci

tor connected at each node to ground. This approach creates a diagonal

dominance and reduces the importance of the state in which the semicon

ductor devices are initialized. The other method for improving dc conver

gence is known as source stepping. All independent voltage and current

sources are initially zero values which are consistent with an all-zero initial

solution vector. The dc operating point is found by ramping all sources up

to the actual value, similar to computing a transfer characteristic. This

approach can be implemented as a back-up and used only if convergence

has failed in a given number of iterations.
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2.6. Linear Equation Reordering and Solution

Nodal analysis generates an admittance matrix which is very sparse and

usually has diagonal dominance. Introducing current equations in the MNA

formulation affects the diagonal dominance. There are three important

issues which are commented upon in this section related to the reordering

of equations for accuracy, the sparse matrix pointer system and the vectori

zation features of sparse equation solution.

Numerical accuracy problems can be classified as either topological or

numerical. The voltage-defined elements, e.g., voltage sources and induc

tors, generate zero diagonal elements linked to the current equation [Ho75].

This problem can be corrected in the setup phase based on a topological

reordering. The row in the MNA matrix corresponding to the current equa

tion is swapped with the '+• node equation [CoheSl].

A second problem, which is also topological in nature, is a cutset of

voltage-defined elements. This leads to a cancellation of a diagonal element

value during the factorization process. Earlier versions of SPICE2, up to

version F, which used only topological reordering could not correct this

problem. Areordering algorithm has been proposed [YangBO] which finds an

equation sequence free of any topology-related problems.

Not all problems associated with the solution of the MNA matrix are

topological however. The limited number of digits in the mantissa of a

floating-point number (12-13 decimal digits for a 84-bit real) can lead to the

loss of significance of a matrix term relative to another during the solution

of the linear equations. An LU factorization is used for the linear equation

solution. This approach which is similar to Gaussian elimination, decom

poses the MNA circuit matrix A in a lower left Land an upper right Umatrix:
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A =LU- (2.16)

The right-hand side of Equation 2.6 is then modified in the forward substitu

tion step

Ux =b' =L"1b. (2.17)

The solution vector is obtained as result of a back substitution

* =U~l*> (2.18)
The loss of accuracy can be observed in the case of a ring oscillator with

high gain stages; the off-diagonal elements are transconductances which

grow as a power law of the gain factors during factorization and eventually

swamp out the diagonal term.

Another example of a numerical problem is a dynamic MOS circuit

where some nodes can have a very small conductance for certain clock

periods. These examples demonstrate that a topological reordering is not

sufficient and that the MNA sparse matrix order has to be based on actual

values generated by the circuit. Sometimes it is even necessary to reorder

during the iterative process. Reordering based on pivoting is considered

vital for large matrices where the original values can be altered significantly

by the factorization process. A more detailed description of the above cir

cuit examples can be found in [CoheBl].

In SPICE2 the topological aspects are considered in the setup phase

when the sparse-matrix pointers are defined. The numerical reordering,

based on partial pivoting and the Markowitz algorithm for minimum fill-in, is

performed at the very first iteration after the actual MNA values have been

loaded. Fill-ins are the matrix terms which are zero at the beginning of the

factorization process and become nonzero during the execution of the LU

decomposition. Pivoting is performed on the diagonal elements; only if no
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pivot can be found on the diagonal the rest of the submatrix is searched.

Once an optimal order has been found it is used throughout the analysis

unless at any point a diagonal element does not satisfy an absolute

minimum criterion. In this case 'pivoting on the fly' is performed for the

remainder of the matrix. In the pivoting phase a relative error bound is

used for comparison with the maximum column entry.

The choice of a sparse matrix data structure must consider the need

for a change of order and the addition of new terms (fill-ins) at any point

during the analysis. For this purpose a set of four bidirectional linked lists

are used in SPICE2. The actual matrix values are stored in an one-

dimensional array of reals. The information on a certain element as to

storage location, actual position in a two-dimensional matrix and value can

be retrieved using the same offset in the tables pointed to by the sparse-

matrix descriptors. This methodology is due to [McCa76] and has been used

successfully in program MICE [Cohe78] before it was implemented into

SPICE2 [Vlad78].

An additional set of pointers stores the correspondence between the

internal circuit node numbers and the equation numbers. Independent row

and column swap can be performed. When retrieving the solution which is

stored in the same locations as the RHS, two mapping operations are

required to compare it with the previous solution which is stored by node

numbers. Because this can be a lengthy process for large systems an addi

tional table can be stored which provides the direct mapping between the

solution vector and the circuit nodes.

Vectorization of the sparse linear equation solution is an important

issue for large circuits. For special types of sparse matrices, such as
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banded matrices, efficient solution algorithms have been developed which

use vector arithmetic. The sparsity pattern of MNA matrices describing ICs.

however, is very random. Calahan. [Cala79], reports an attempt to vectorize

the solution by defining line vectors on the CRAY-1. The average vector

length found in the above work during the factorization of an 870x870

matrix is 1.99! In this case it is more efficient to use scalar operations.



CHAPTER 3

CLASSIE - Design Considerations

3.1. Introduction

SPICE2 has become a standard in circuit simulation throughout indus

try due to the robustness of its algorithms, reliable implementation, porta

bility and continued work to keep it up-to-date with IC technology. There

are however two major factors which point to the fact that a faster and more

efficient simulator can be built to perform an equally accurate circuit-level

analysis. The two factors are the characteristics of an LSI circuit and the

state-of-the-art commercial computer system, the vector computer.

In this chapter the performance of SPICE2 is examined on different

computers and conclusions for the design of the new program, CLASSIE, are

drawn. The design decisions presented in this chapter start with the

specifics of LSI circuits which suggest a hierarchical analysis, performed at

two levels, the cell (subcircuit) and system(interconnection) level

The requirements of the two-level analysis is reflected in the choices

made for the most important components of the analysis. The linear equa

tions of the LSI form a Bordered-Block-Diagonal Form (BBDF) matrix which

is solved by machine code generated by the program. The semiconductor

devices are sorted according to subcircuit or model parameters and are

linearized in vector mode. The data structure is built around individual

tables for each element. The two-level analysis requires unique integer

45
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tables for all instances of a certain cell type and real tables with multiple

copies of the values for each cell instance. The entries for different cells

are aligned for efficient vector operations.

3.2. Circuit Simulator Performance andComputer Hardware

Initially developed on the CDC 6400 campus computer of the University

of California at Berkeley, SPICE2 has been modified to run on other comput

ers by interested parties. In 1979 an easy transportable version (SPICE

2F.1) has been introduced to replace the older CDC oriented-version. From

a single source code with embedded conditional compile control statements

six different compile codes are generated for CDC, IBM. VAX/UNIX. VAXAMS,

CRAY, and HP3000 computers. There are a few differences between the two

SPICE2 source codes for the VAX 11/780 depending on the operating system

which is used, UNIX or VMS. Because of the availability of the above code it

became possible to compare the performance of the same computationally

involved simulator on different hardware, architectures, Fortran compilers,
and memory systems.

In the design of CLASSIE the primary goal has been to match the

specific features of LSI circuits and computer architectures as closely as

possible. The expected result is a faster simulator than SPICE2 when both

programs run on the same hardware. Besides the improved performance

due to the CRAY-1. CLASSIE exceeds the speed of SPICE2 on other non-

vector machines as well due to general features such as more locality in the

data structure, an advantage on virtualmemory machines, and organization

of data by categories, which reduces search time. The recognition of paral

lelism in circuit simulation creates also the basis for a future multi-
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processor environment.

The SPICE2 program uses a linked-list data structure to store the cir

cuit description in computer memory. The data storage and memory

management scheme of SPICE2 are appropriate if the circuits are reason

ably small, a few tens of elements, and memory access is unimportant com

pared to the execution time of a floating-point operation on the host com

puter. None of the above assumptions hold true any more today. It is com

mon that circuits analyzed in industry have one hundred and more com

ponents; computers have floating-point accelerator units at the lower end of

the scale and multiple arithmetic units at the high end. Most memory sys

tems use a virtual addressing scheme to page in and out the data which the

program needs at each step.

There are two other major aspects of the host computer which decide

the performance of an application program such as SPICE or CLASSIE. The

first is the architecture, the number of internal registers, existence of a

cache or not, etc. Second the high-level language compiler has a decisive

role on how well the architecture resources are used. Only about one fifth

of the performance of a very complex architecture can be achieved through

the Fortran compiler in the case of a matrix factorization [Cala79]. The

examples in this section illustrate for computers having a rather conven

tional architecture, the VAX 11/780, how the compiler has an important

impact on the circuit simulator performance.

The conclusions reached from the careful analysis of the run times on

different benchmarks and their breakdown among different sections of the

program led to the design decisions for the new program. The run statistics

of three circuits on four different computers are presented in this section.



Circuit Type Devices Eqs Time Pnts Iter

1 UA741 Bipolar 22 52 67 187

2 LOWPAS MOS 70 48 165 450

3 ADDER4 Bipolar 268 450 4653 25171

Table 3.1. Transient Analysis Statistics of Three Benchmarks
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The three selected circuits are of small to medium complexity, from a

few tens to a few hundred semiconductor devices. The UA741 operational

amplifier has been a long time SPICE benchmark [Nage75], [CoheBl], and

can be categorized as a small bipolar circuit. A low-pass section of a

switched capacitor filter is a second small example with its 70 MOS transis

tors. The medium-size example is a 4-bit adder built with bipolar NAND

gates. The SPICE2 input files for the above two bipolar circuits are listed in

Appendix 2.

Four computers which run the same version of SPICE2 are used in this

comparison. An older scientific computer, the CDC 6400 which is not

included in this comparison, provides run times comparable to the newer

VAX 11/780 computer. At the high end the CYBER 175 offers a measure for

one of the fastest scalar (Single-Instruction Single-Data) computers and the

CRAY-1 represents a state-of-the-art vector (Single-Instruction Multiple-

Data) computer. The two data entries for the VAX are measured on

machines running UNIX or VMS operating systems with different Fortran

compilers.

Table 3.1 gives a summary of the three benchmarks and the run statis

tics thereof. Table 3.2 contains the central processor times per iteration for

the transient analysis of the circuits enumerated above. A normalized speed

for a SPICE2 run is computed based on the CP times of the different comput

ers in comparison to the CP time for the same run on a VAX/VMS.

Conclusions to be drawn from the above tables include an inherent

speedup that comes with the computation capability of the hardware. Thus

there is a factor of 30 between the run time on the CRAY-1 and on a

VAX/VMS computer. The latter has been taken as a reference because of its



CPU

CP/ITER (ms) NORM. SPEED

UA741 LOWPAS ADDER4 UA741 LOWPAS ADDER4

CRAY-1 3.82 12.31 30.56 26.18 30.82 23.84

CYBER 175 14.41 47.65 118.86 6.94 7.96 6.13

IBM 4341 52.42 213.76 367.2 1.91 1.78 1.98

VAX/VMS 100 379.42 728.55 1 1 1

VAX/UNDC 184.38 871.93 1,278 0.54 0.44 0.57

Table 3.2. SPICE2 Simulation Speed as a Function of Host Computer
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wide-spread use in the semiconductor industry. On the same hardware,

such as the VAX 11/780, the Fortran compiler can have an impressive effect

on the performance of the program. The code produced by the VMS Fortran

IV compiler for SPICE2 runs approximately twice as fast as the code pro

duced by the UNIX Fortran77 compiler. The timing information for the

Cyber 175 is obtained on the medium speed memory version (Cyber

175/200). On the high-speed version. SP1CE2 is only 2.5 times slower than

on the CRAY-1 as compared to 4 in Table 3.2. The CDC 6400 imposes serious

limitations on the circuit size because of its reduced data space (40k words)

for SPICE2. Only the transient response for the UA741 could be run in this

amount of memory. Beyond the speed ratio there are other differences in

the data representation (floating-point numbers in particular), floating

exception interrupt handling, etc., which impact the results of the same run

on a different hardware and/or operating system. There are additional

features, e.g.. code generation for the solution of the linear system of equa

tions, which generate additional discrepancies among the different run

times.

Table 3.3 shows a breakdown of the analysis time between the two major

parts of a circuit simulator semiconductor-device model evaluation and

linear-equation solution. Both the data for the Fortran solver and gen

erated machine instructions (where available) are displayed. A first obser

vation is that for the same circuit the relative importance between the two

parts differs with the computer. Thus on the CRAY-1. which is a highly pipe

lined machine with multiple arithmetic units, the percentage of the model

evaluation is smaller when compared to the other general-purpose proces

sors. The CRAY-1 is very fast for floating-point computation but is slowed

down when significant memory traffic occurs. The linear-equation solution
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part (when in Fortran) requires more extensive search (memory references)

than fioating-point operations. This argument explains both the smaller

importance of this part on machines with slower arithmetic and the higher

gain for the CRAY-1 when code generation is used.

In the second part of Table 3.3 two numbers are listed for the percen

tage of the total analysis time used by the machine code solver. The first

number represents just the machine code run time while the second number

includes also the contribution of the one-time Fortran pivoting reordering,

solution and generation of the machine instructions. It can be noticed that

the overhead for reordering and machine instruction generation on the

CRAY-1 for a small circuit and a short transient analysis, 67 time points and

177 iterations, is approximately four times larger than the run time of the

code solver. For medium and large circuits the overhead for generating the

machine code becomes unimportant due to the large number of iterations

(in the thousands typically). On the other computers the gain of the

machine code is far less dramatic. The data on the ADDER4 circuit in the

MACHINE CODE SOLUTION column are obtained from transient analyses

which have run for over one thousand iterations on all computers but the

total number differs from one computer to another. The length of the tran

sient analysis made it necessary to stop it after a given amount of CPU

seconds. This may affect the ratio of the actual code execution time to the

time which adds to the former the time it takes to reorder the matrix and

generate the machine code.

For the simulation of large circuits it is interesting to know how the cpu

run time is affected by the increase in circuit complexity. Five bipolar

adders from an 1-bit adder to a 16-bit adder is plotted for two different



CPU

MODEL EVALUATION (%) EQUATION SOLUTION (%)

UA741 LOWPAS ADDER4 UA741 LOWPAS ADDER4

CRAY-1

CYBER 175

IBM 4341

VAX/VMS

VAX/UNIX

42.2

44.4

58

53.6

62.4

73.4

76.7

83.7

82.35

85.1

40.7

44.5

57.4

54.5

64.4

42.2

40.7

27.6

30.3

20

11.9

11.9

6.4

6.37

4.3

57.2

53.6

41.4

42.58

33.6

CPU

MODEL EVALUATION (%) MACHINE CODE SOLUTION (%)

UA741 LOWPAS ADDER4 UA741 LOWPAS ADDER4

CRAY-1

CYBER 175

IBM 4341

53.3

57.5

67.6

79.5

83.5

87

69.6

81.4

79.5

5.6 (27)

5.4 (23.4)

8.3 (15.7)

1.7 (4.6)

1.7 (3.9)

2.1 (2.9)

11 (17)

11.5 (15.3)

17(18.1)
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Table 3.3. Relative Importance of Model Evaluation vs. Equation Solution
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analysis types, two computers and two SP1CE2 program versions in Fig

ure 3.1. The difference between Version F and G of SPICE2 is the matrix

reordering scheme. In SPICE 2F the row and column order is established in

the setup phase based on an image matrix of the nonzero locations. In

SPICE 2G the matrix reordering uses pivoting on the actual values loaded at

the first iteration. This process is part of the DC operating point analysis.

DCOP, and takes place simultaneously with a large number of memory

operations. The effect of the reordering is the exponential increase of the

cpu time with circuit complexity with a power of 1.3 for the VAX and 1.5 for

the CRAY-1. In the absence of pivoting reordering the cpu time increases

only with an exponent of 1.05 for larger circuits. This exponent is found

from the plots of Figure 3.1 for both the DCOP of SPICE 2F and the transient

analysis, TRANAN, of SPICE 2G. The transient analysis of the adders is faster

on SPICE 2G compared to SPICE 2F due to less fill-ins introduced by the

pivoting reordering. Both programs use the Markowitz criterion for

minimum fill-in generation [Chua75].

Several conclusions can be reached on the basis of the data presented

so far on SPICE2:

A circuit simulator picks up a factor of approximately 30-50 on the

CRAY-1 compared to common SPICE2 host computers of the super-mini

class, e.g., VAX 11/780 or PRIME 850, due to the inherent hardware

speed;

The code produced by the high-level language compiler provides only a

fraction of the computer's potential; the statistics show that crucial

parts, e.g., the equation solver, of the new simulator have to be coded in

assembler.



1
0

*

8

-S
P

IC
E

2
.G

D
C

O
P

o
n

C
R

A
Y

-1

•S
P

IC
E

2.
G

D
C

O
P

o
n

V
A

X
1

1
/7

8
0

-S
P

IC
E

2
.F

D
C

O
P

o
n

V
A

X
1

1
/7

8
0

—
S

P
IC

E
2

.G
T

R
A

N
A

N
o

n
V

A
X

1
1

/7
8

0
♦

M
e
a

s
u

r
e
d

D
a

ta

2
4

6
8

1
0

1
N

or
m

al
iz

ed
C

ir
cu

it
C

om
pl

ex
it

y
(D

ev
ic

es
)

Fi
gu

re
3.

1
E

ff
ec

t
of

P
iv

ot
in

g
R

eo
rd

er
in

g
In

D
CO

P
A

na
ly

si
s



56

At the state-of-the-art floating-point processor speed, the time spent in

memory traffic starts to take precedence over the arithmetic opera

tions. The data structure is designed based on these observations to

keep the load/store time at a minimum.

3.3. Integrated Circuit Specifics and Representation

One of two basic considerations in the design of the new simulator is

the object of the analysis. Only simple circuits had to be analyzed when

SPICE was designed ten years ago. These same circuits constitute today

mere cells of the LSI circuit. For the purpose of the simulation, an LSI cir

cuit can be described as a collection of a limited number of structurally

different functional blocks such as logic gates, operational amplifiers, etc.,

each block occurring more than once at the system level.

A factor which has to be taken advantage of is the hierarchy (struc

ture) of the circuit. The •SUBCIRCUIT* feature in SPICE2 is the mechanism

to provide the information about structure. However it is a user conveni

ence rather than a source for hierarchical analysis. The partitioning of an

LSI/VLSI circuit into a cell / building block / system structure is useful

information at-any level of simulation. The analysis in the new program is

done at the cell (SUBCIRCUIT) level. The structured input description pro

vides the information necessary for an important part of the computation to

be performed in paralleL Therefore, the new program groups the identical

cells together and performs a two-level analysis [CalaBO], [VladBla].

An important guideline in the design for speedup is that the number of

items which define a vector be maximum. Since CLASSIE gets its hierarchy

information from the user-specified input a feature is needed to describe all
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the cells with the same topology by the same 'SUBCIRCUIT' definition. Provi

sion has to be made in the input language to allow for some parameters of

the devices in the definition to assume values at instantiation only. The

instantiation of a subcircuit is the process which adds the collection of ele

ments contained in the definition to the circuit. Figure 3.2 shows an exam

ple of the desired parameter passing feature between 'X' call and subcircuit

definition. It can be assumed that the definition describes an output buffer;

all the instances of this buffer have the same topology but some transistors

have different dimensions. The use of the same definition in all cases will

force the program to treat all buffers as the elements of one vector and

solve them in one pass of the code. The number of instances cannot be

increased by reducing indefinitely the circuit size. For a subcircuit with

only one internal node the corresponding submatrices reduce to diagonal

elements in the overall circuit matrix. A practical minimum requirement for

a subcircuit is to contain at least two internal nodes.

Another necessary feature for the convergence of large circuits is the

ability to define initial conditions local to each cell instance. The approach

used in SPICE2 is to make the nodes to be initialized external. This is partic

ularly detrimental in the setup used in CLASSIE where the internal nodes

must exceed the external ones. The explanation for this constraint is given

in the following paragraphs.

As has been already shown in the previous chapter the partitioning of

the circuit in cells at the lower level and system (or interconnection circui

try) at the upper level, can not use algorithmic tearing because it does not

guarantee to identify all the blocks which have the same topology. This

would defeat the purpose of exploiting the vector architecture to perform as



INPUT FORMAT

.SUBCKT OUTBUF 1 2 3 4 L2 W2 VDD

M2 5 2 6 0 CMOS L=L2 W=W2

.IC V(4) = VDD

.ENDS OUTBUF

XOUTl 7 9 4 2 OUTBUF 5U 10U 3

Figure 3.2 Parameter Passing between Subcircuit Call and Definition
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much computation in parallel as possible.

3.4. Algorithms and Implementation

3.4.1. Modified Nodal Admittance Matrix

SPICE2 operates on an entire circuit matrix which is loaded element by

element. The analysis in the new program is done at the functional block

(subcircuit) level. However, only direct methods are used in the solution

procedure, i.e. no decoupling takes place at any level as in timing or mixed-

mode simulation.

Each functional block (subcircuit) generates a diagonal submatrix in

the overall circuit matrix. Thus the circuit can be represented as a Bor

dered Block Diagonal Form (BBDF) matrix as shown in Figure 3.3. At the

lower level there are the diagonal submatrices representing the internal

nodes of each subcircuit and at the upper level there is the interconnection

matrix (borders and lower-right corner). The linearization and solution of

subcircuits can be done independently of each other and the interconnec

tion, and can be done simultaneously in the vector-mode for those of the

same type. This is possible because all these subcircuits have the same

topology. The feature of parameter passing between subcircuit call and sub-

circuit definition increases the occurrence of topologically identical subcir

cuits.

The solution proceeds as follows. All subcircuits are represented by the

following set of equations:

y„ rm

Y„ Y„ X

f 4

-

c.
(3.1)

For the purpose of simplicity it is assumed that the Y matrices are pure



Yss Ysi

Yis Yii

Submatrix of Subcircuit A

Figure 3.3 Bordered-Block-Diagonal Form of Overall Circuit Matrix
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nodal. Then Y„ represents the nodal equations corresponding to the inter

nal nodes of the subcircuit and Yh the equations corresponding to the exter

nal nodes. The off-diagonal elements relating internal and external nodes

are found in Yte and Y*.

The equations corresponding to the internal nodes are unique to each

subcircuit instance and can be processed independently of each other. The

matrix entries corresponding to the external nodes have to be processed

together, generating entries in the interconnection matrix. The overall

matrix arrangement as shown in Figure 3.3, can be viewed as a reordering

process where all of the internal node parts have been chosen first and the

external equation parts have been accumulated with the interconnection

circuitry. The border is formed by merging the individual borders of the

various subcircuit entries.

The elements Y« and Cj* which are contributed by each subcircuit to the

interconnection matrix Yn and RHS CI( respectively, are found by performing

an LU decomposition and forward substitution on the internal part of each

subcircuit matrix:

Ti»T,-Tfc(rj-»y- (3.2)

c«* = c1-yj,Cy„)-'c;

Since

the nodal equations, Equation 3.1. for the subcircuits can be rewritten as

Ti-Ui1 YJ .
X = (3.3)

The next step is to solve for the node voltages Vi of the interconnection

matrix:
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Vi = Ub-Ib-'C, (3.4)

where

Yn = lcUn

Finally the solution for all the internal nodes of the subcircuits are obtained

after retrieving the appropriate solution vectors Vj from Vj and substituting

them into Equation 3.3 to obtain

•. =ml[l£l(Ci-YllVl>] (3.5)
The terms of the vector L^C. and matrix WYgi have already been computed

in the subcircuit factorization step, therefore, Vs results from a back-

substitution process performed independently for all the subcircuit

instances.

The linear system of equations is solved by executing generated vector

code for the subcircuit matrices and scalar code for the interconnection

matrix. This approach is used because otherwise an important part of the

total execution time would be spent in equation solution. The data in Sec

tion 3.2 also show that generated code has a tremendous impact on the

CRAY-1 speedup compared to other computers. One set of vector code is

generated symbolically for each type of subcircuit. The same code is then

used for the LU factorization and the forward and backward substitution of

all subcircuits of the same type. This approach also reduces the severity of

the gather/scatter problem due to provisions taken in the design of the

data structure, as described below.

3.4.2. Semiconductor Device Model Evaluation

The general impression has been that at the level of small to medium

circuits most of the CPU time is spent in evaluating the complicated
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analytical equations which describe the behaviour of semiconductor devices.

It has been equally accepted that for large circuits the linear equation solu

tion time prevails over the device model evaluation. There are several

aspects related to model evaluation which require a review of these gen

erally accepted ideas.

The semiconductor device model evaluation in the sense of [Newt77]

also includes the loading of all model parameters which is performed for

each single device in SPICE2 and the storing of the equivalent conductances

(23 for a bipolar junction transistor and 22 for a MOS field-effect transistor).

As pointed out in [CoheBl] and [Vlad81a] this memory traffic can account

for more than half of the time spent in 'Device Model Evaluation*.

As can be seen in Table 3.3 the percentage time spent in model evalua

tion vs. equation solution differs among the different processors; the CRAY-1

spends percentage-wise less time in model evaluation due to multiple

integer and floating-point functional units and its highly pipelined architec

ture. With some vectorization of the computation part (SPICEV) the model

parameter gather and conductance scatter can take up to 75% of the total

model evaluation time [CalaSl].

Even for large circuits (over 1000 device-equations) and Fortran solver

it is not necessarily true that the equation solution time dominates the

model evaluation. This aspect depends on the ratio of semiconductor dev

ices vs. circuit equations as shown in more detail in Chapter 5.

Last but not least, the use of generated machine code for the equation

solution can leave the model evaluation the dominant part up to a few

thousand devices (actually for all examples analyzed on the CRAY-1). The

effectiveness of machine code is a hardware-dependent feature and has
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been found to be the highest on the CRAY-1.

After these remarks it is necessary to investigate the possibilities to

speedup the model evaluation without any loss of accuracy. The major

choices are vectorization. table-look-up models and a different method to

include semiconductor device contributions. The first approach is a promis

ing method for a vector computer. It does not exclude the second or third

approaches. Table look-up models have been used for some time in timing,

[Chaw75], and mixed-mode simulation [Newt78]. Table models have also

been implemented in circuit simulators and the maximum reported speedup

has been 2. [Tana80], [Shim82]. The larger speedup of 3-4 reported by New

ton et al., [Newt77], is due partly to a reduction in the number of equivalent

dc conductances which are computed and loaded into the circuit matrix. All

the above results with table models in circuit simulators have been obtained

on conventional scalar computers.

For the design of CLASSIE, table look-up is not rejected but it is

believed that it has a secondary role in relation to vectorization. Table

look-up eliminates only the static computation of the current as a function

of terminal voltages. As shown in Chapter 5 the evaluation of the Jacobian

entries are not a major part of the model linearization. An estimate of the

run-time savings which can be obtained using table look-up will be

presented based on the simplest available analytical models, e.g.. a stripped

down Ebers-Moil *or BJT's or Shichman-Hodges (LEVEL=1) for MOSFET's

[VladSlb].

A new approach to include contributions from semiconductor devices is

possible if the number of equivalent conductances computed and stored for

each device is reduced [Newt77]. This includes a redefinition of the linear-
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ized device current equation and inclusion of all parasitic effects. An aspect

of this is the node suppression technique for parasitic terminal resistances

[Lach7B]. The trade-off is that more computation is performed in device

linearization for keeping the number of equations constant and reducing

the storage locations (and time spent in matrix load) by approximately 25%

for MOSFET's and 35% for BJT's. Since the equation solution is almost free

(see Chapter 5), the node suppression alone is not thought to be too impor

tant. The device linearization reformulation has not been undertaken in

this project and has been left for a further work.

Model vectorization is analyzed next. Vectorization can be achieved

whenever the same set of instructions can be performed on a set, array or

vector of data. A vector can be formed by ail devices which reference the

same model parameters or by all homologous devices in the different

instances of the same subcircuit definition. Throughout this text the two

ways of grouping devices is referred to as 'across or by models' or 'across or

by subcircuits', respectively. A sort has to be added in the preprocessing

phase to order the semiconductor devices for vectorization.

The model evaluation has been shown to split into a gather/scatter and

a computation phase. If the devices are ordered by subcircuits. both parts

can be vectorized. The gather/initialization phase needs data which are

independent of each other and describe the different instances of the sub-

circuit. The conductance scatter stores data in the subcircuit matrices

which are unique and separate for each instance as explained in more detail

in the following chapter.

When sorted by models solely, the analytical computation part is the

only one which can be performed in parallel. This is the only possibility to
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take advantage of vectorization of devices occurring at the system (inter

connection) level. The explanation lies in the fact that both in the

initialization/gather and conductance scatter phases the same set of node

voltages or the same (interconnection) matrix are referenced. Thus it is

possible that more than one device will try to reference the same memory

location at the same time.

The coding style for model evaluation routines is to use different

analytical expressions based on the region of operation of the semiconduc

tor device. The equivalent conductance and current sources for a set of

diodes are computed by the following Fortran code which uses one or

another formulation based on checking the junction voltage.

DO 100I=1.N
IF (VD(I).LE.O.O) GO TO 10

GD(I)=CSAT/VT*EXP(VD(I)/VT)
CD(I)=GD(I)*VT-CSAT

GO TO 100

10 GD(I)=-CSAT/VT
CD(I)=GD(I)*VD(I)

100 CONTINUE

As already described in Section 2.3.2.3 a DO loop containing conditional

statements is vectorized only if all alternatives are evaluated and the result

is obtained by a vector merge operation controlled by the logical condition.

In the above loop the logical condition is met for negative values of VD(I). At

the Fortran level the vector merging is achieved through a call to the func
tion

CVMGx (X1.X2.X3)

where x=T,Z,N,M.P specifies if the variable X3 is checked for TRUE, ZERO.
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NONZERO, MINUS, or PLUS. If the condition is met the corresponding ele

ment of XI is stored into the solution vector whereas when the condition is

not met the element of X2 is chosen [CRAYBO]. The above loop is vectorized

by the compiler if coded as follows.

DO 100I=1.N
GD(I)=CSAT/VT*CVMGT(EXP(VD(I)/VT). -1.0, VD(I).GT.O.O)
CD(I)=CVMGT(GD(I)*VT-CSAT. GD(I)*VD(I). VD(I).GT.O.O)

100 CONTINUE

There is no clear win with vectorization. On one hand there is a clear

speedup in a vectorized computation due to the reasoning given above but

on the other hand the computer has to perform the double or threefold

work to evaluate all the alternatives. If both the static characteristic and

the charge storage elements could be obtained from tables there would be

the advantage of not doing unnecessary work as in the analytical case.

3.4.3. Memory Access Considerations

As mentioned earlier the high speed of floating-point computation on

the CRAY-1 makes memory access an important issue. A data structure

which neglects this aspect can ruin the performance and make the program

spend most of its time in data transfers to and from memory.

Several peculiarities about the CRAY-1 computer which must be con

sidered are outlined next. The load or store of a floating-point number to

memory requires four clock cycles. This number can be in average slightly

higher in a program because the instruction requires an address register to

be set up as well for the memory transfer to take place. It can be assumed

that five clock cycles is a typical number. If data are transferred as a vec

tor load or store operation, it takes only one clock cycle for each data.
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provided that the same memory bank is not accessed (the CRAY-1 memory is

organized as 8 or 16 memory banks). The vector length must be at least two

to offset the start-up time of the instruction.

The problem in performing vector load and store is that the hardware

instruction can operate on data which are stored sequentially in memory or

are a constant stride apart. The sparse-matrix load operation (or conduc

tance scatter) needs the capability of indirectly defining vectors or

equivalently to gather or scatter data from or to random memory locations

to or from a vector register. The characteristic sparse-matrix load loop is

DO 10 I=1,N
MATRDC (INDEX(I)) = MATRIX (INDEX(I)) + TERMS(l)

10 CONTINUE

There are two ways of reducing the time in memory transfers for this opera

tion. First, at the interconnection matrix level one can either use the

gather/scatter routines of the CRAY-1 library (20 clock cycles per element)

or generate machine code (12 clock cycles per element). Second, for the

hierarchical analysis of CLASSIE it becomes a matter of data structure

definition to make vector gather and scatter possible at the subcircuit level

where each instance of a cell is represented by its own MNA matrix.

The dynamic memory management scheme of SP1CE2. [Cohe76], is

preserved in CLASSIE for handling the circuit data. However, the data struc

ture which is predominantly of the linked-list type in SPICE2 is changed. The

data structure and the main analysis loop are designed to accommodate the

new algorithms and to make the vectorization possible. Thus, each element

type has its own parameter table and data may be aligned in such a way that

vector mode operations can be programmed most effectively. The informa

tion on the circuit sparse matrix is organized as one set of sparse submatrix
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pointers for each type of subcircuit and another set of pointers for the

interconnection matrix. The nonzero subcircuit matrix entries and RHS for

each cell of the same type are aligned and appear as one data set.



CHAPTER 4

Program Description

4.1. Introduction

The algorithms and techniques used in CLASSIE for the efficient simula

tion of LSI circuits are described in this chapter as part of a detailed pro

gram presentation.

A most important component of a large program is the data structure

used to encode the description of the specific problem to be solved. The

data format should be well suited for both the algorithms and the computer

specifics. The detailed description of the data structure used in CLASSIE

which suits both the hierarchical aspect of the LSI circuit problem and is

efficient from the computer architecture perspective is given in the first

section. The memory management package which supports the selected

data structure is also presented.

The Newton-Raphson iterative scheme has been used successfully in

many simulators. The details of its implementation in the context of a two-

level analysis are described in a separate section. A further section

describes the vectorized model evaluation for semiconductor devices at the

subcircuit and system level.

The representation of an LSI circuit consists of a large set of equations.

In the case of a two-level analysis the equations are scattered over many

small matrices. The small matrices represent the cells of the LSI. One

70
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matrix gathers all the information about the system behaviour and each cell

(subcircuit) matrix adds its contribution. The management of these
matrices and solution of the corresponding equations is the subject of a
major section.

42. Data Structures

42.1. Description of the Data Structures

The linked lists of integers and reals used in SPICE2 to store the circuit

element information is quite inadequate for large circuits. The first reason

has already been mentioned in the previous chapter and pertains to vectori

zation features on the CRAY-1. Another argument is that on a conventional

medium-size computer with virtual memory, the number of page faults can

increase drastically for a circuit with a few hundred elements because of

the random locations of the elements linked to one another. In a virtual

memory computer there is a physical limitation on the main, fast access

memory. Certain parts of the program and data address space needed for

the current execution are kept in the main memory as sets of pages which

contain a predefined number of addresses. Each time a virtual address is

needed which can not be found in the pages currently in main memory a

page fault occurs and the computer has to copy the program-requested

address space from a mass storage device.

In CLASSIE an integer and a real table is included for each element

type. At the present time there are 36 'elements' which can be categorized
as:

i) circuit elements, resistors, capacitors, inductors, mutual inductors,

linear current and voltage controlled current and voltage sources.
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independent voltage and current sources, diodes, bipolar junction transis

tors, junction field-effect transistors and MOSFETs.

ii) model elements which contain the sets of parameters characterizing

the analytical semiconductor-device models implemented in the program.

iii) subcircuit definitions and subcircuit calls which provide new attri

butes compared to SPICE2 due to the hierarchical, subcircuit-oriented

analysis.

iv) output variables which store the information on voltage and current

variables and the mode of analysis to be saved.

v) print/plot elements (information).

The resistor integer and real table structure are shown in Figure 4.1. It

can be seen that the same information as in SPICE2 is stored in this table

and the description contained in the SPICE2 Reference Manual [Cohe76] is

generaUy valid. The main differences are that the pointers stored, e.g.. to

the location of the corresponding real data (LOC+1), are offsets rather than

absolute addresses in the respective table (IRVAL).

The two-level analysis requires a provision in the data structure for a

two-way link between subcircuit definition and subcircuit instantiation. It is

also necessary to have pointers to the different elements which are part of

the definition.

As shown in Figure 4.1 the (LOC-1) position of an element integer table

contains the offset in the subcircuit definition table (ISSNOD) of the

definition which it is part of. If the element has been introduced at the sys

tem level then this location is zero. Each cell instance is described by its

own MNA matrix which has the same sparsity pattern for all instances of the

same definition. Thus all the information contained in the integer table is
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valid for all the instances of a particular cell definition. Multiple copies of

the real tables are necessary because a certain element can assume a

different value in a different instance. Since there is a pointer to the loca

tion of the reals for the first instance it is necessary to store the number of

instances of the cell. This number is kept in location (LOC) and is equal to 1

if the element is described at the interconnection level. Other element

types, e.g., capacitors or semiconductor devices which have charge storage

associated, have a pointer to the corresponding charges in the LXi tables

[Cohe76]. In the case of subcircuit elements the pointer to the LXi table is

similarly to the one pointing to the value table, a pointer to the first

instance.

The integer tables describing circuit elements in SPICE2 contain

pointers to tables which store polynomial coefficients, as is the case with

nonlinear controlled sources, or waveform characteristics, e.g., the tran

sient description of independent sources. The number of these 'secondary'

tables can grow considerably and become a memory management problem if

the number of elements which generate them gets large. Therefore CLASSIE

recognizes only linear controlled sources. For the independent sources five

arrays have been defined, 1SRPUL, ISRS1N, ISREXP. ISRPWL and ISRSFF, which

store the waveform characteristics for the five types: pulse, sinusoidal,

exponential, piecewise linear and single-frequency. What formerly was yet

another table pointer in SPICE2 in the independent source table is replaced

by an offset in the appropriate waveform table.

All information relative to the cells is kept in the subcircuit definition

table which acquires a special importance. Figure 4.2 gives a graphic

description of the information available in this table. There are offsets to
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the first of the elements of each type which are part of this definition and

the count. Other offsets refer to all tables where integers (sparse matrix

pointers) and reals (charges, node voltages or matrix entries) for the cells

of this definition are stored. The multiple copies stored in the tables of

reals are aligned at constant strides which are also saved in the subcircuit

definition table. Other constants and offsets represent information such as

the number of instances, the number of internal and external nodes, and

the address of node-list table or initial condition offset. Acomplete descrip

tion of the subcircuit definition and subcircuit call table are given in Appen

dix 3.

A very important issue with the new data structure is the special care

which must be exercised with tables which contain pointers (absolute

addresses) to other tables. Such tables pointed to from other integer tables

are the node table in subcircuit definition and subcircuit call, or the matrix

location table in the subcircuit call table (see also Appendix 3). Several

modifications have been made in the memory management programand two

new routines have been added to accommodate these features, as is

described in the following section.

In the analysis part of the program several integer and real arrays are

used to maintain the information about the sparse-matrix structure and the

matrix entries. In CLASSIE there is a duplicate set of all these tables: one

storing the data for the subcircuits and the second for the interconnection

circuitry. Thus. IRSWPF. 1RSWPR, 1CSWPF and ICSWPR contain the forward

and reverse mapping of internal node numbers into equation numbers for

rows and columns, respectively; ISRSWF. ISRSWR, ISCSWF and ISCSWR have

the same data corresponding to the subcircuit nodes and equations. The
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same approach is used for the matrix entry tables LVN and LSVN, and the

charge-storage tables LXi and LSXi, etc. In the subcircuit description tables

enumerated above the entries for different subcircuit definitions are

stacked onto one another and the pertinent offset for the first instance (for

reals) is stored in the subcircuit definition table.

4.2.2. Memory Manager Functions

The SPICE2 program uses a set of routines which constitute the

•memory manager* to implement and maintain its data structure within a

block of memory which can be varied dynamically during program execution

or is fixed depending on the host computer. The same memory manager

routines are used in CLASSIE and the storage area is increased or shrunk

dynamically during execution.

Several modifications have been found necessary in the SPICE2 memory

manager in order to meet the needs of CLASSIE and large circuits. The

SPICE2 memory manager [Cohe76], [DoweBO], does not provide any capabil

ity for tables which contain table pointers. In SPICE2 this feature is avoided

by the fact that all the element data (which can contain pointers) are part

of a single table (IELMNT) which is allocated first and can not be moved. The

creation of individual tables for each element type requires the capability of

checking for table pointers within tables and of updating their information

when blocks are moved around. The modifications brought to the memory

manager of SPICE2 are described in the following paragraphs. The basic

functions and subroutine names are preserved as described by Cohen

[Cohe76].
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The table-entry table which contains in SPICE2 five entries, offset within

data memory area, block size, actual number of words used, address of table

pointer and number of words per entry, has been augmented by two more.

The first gives the number of words allotted to a table which are not used

presently but is expected to be needed later [CoheBl]. This is called slop

memory which prevents excessive moving of memory when more than one

table is grown at the same time. This feature, which has been added during

the development of the SPUDS program, is not as necessary in CLASSIE

because the table size is grown in exactly precomputed amounts rather than

by one element at a time. The second new entry is the number of table

pointers within a table.

Every time a new block is allocated or extended a compression of the

data memory is performed by subroutine COMPRS. This routine has been

modified to check each block that it moves for internal table pointers. If

such pointers are found their address is updated in the table-entry table of

the blocks they point to. Checks for internal pointers have been added also

in RELMEM, which releases part of a block to the memory manager, and in

CLRMEM. which releases a table. An error condition is flagged if the released
area contains any pointers.

In certain situations it is necessary to release a certain area of a table

which contains pointers or copy a certain part with pointers to a different

table. The new routines which perform this task are called DELETB and

COPYTB. These operations are necessary when certain subcircuit definitions

or subcircuit calls have been expanded and must be deleted or others must

be copied to a new table.
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Another characteristic for large circuits is the number of tables to be

managed which is in the range of a few hundred to a few thousand. Func

tion MEMPTR is called by all memory-manager routines to check if the table

under consideration exists and to find the location of its table entry table.

In the initial stages it has been observed on SPICEV that MEMPTR claimed

the largest part of the 8-14% of the total analysis time spent by memory

manager operations. The contribution of MEMPTR has been reduced

significantly after changing the linear search algorithm used before by a

binary search.

4.3. Newton-Raphson Iterative Scheme Implementation

The Modified Newton-Raphson scheme has proven to be the most reli

able solution method for a set of nonlinear algebraic equations which are

the mathematical representation of an electric circuit after time discretiza

tion. In the case of the hierarchical simulation implemented through tear

ing decomposition in CLASSIE the Newton-Raphson iterations are performed

at two levels: at the cell (subcircuit) level and the interconnection circuit

level. These two processes are independent of each other as is the process

ing of the different subcircuit definitions from one another. The two levels

of the analysis communicate only for loading the equivalent conductances

of the subcircuits into the interconnection matrix and in the solution phase

for retrieving the solution at the external nodes to solve all the other nodes

of the subcircuits. The general iterative scheme for the two-level analysis of

CLASSIE is shown in Figure 4.3.

A biown-up view of the linearization and matrix (subcircuit and inter

connection) load algorithm is shown in Figure 4.4 in a high-level language-
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like description. The linearization of semiconductor devices is first per

formed for all subcircuit instances in the system and all the conductances

are loaded in the subcircuit matrices. All the computation and gather-

scatter processes can be vectorized across subcircuit instances. For an

important speed improvement the more instances the better; this has been

given as one of the criteria in the selection of the subcircuit size in Section

3.3 of the last chapter. The descriptor 'Vfor' has been introduced to

represent a vectorized loop. This process is repeated for all the different

subcircuit definitions.

Both linear and nonlinear elements occur not only at the cell level but

also at the system level. All these elements are loaded next. The gather of

data from memory and the scatter of the equivalent conductances back to

memory is a purely sequential process which can not be vectorized because

of the possibility of two elements generating entries in the same location.

The computational part of the semiconductor device linearization is vector

ized across models.

The interaction between the cells and the system takes place through

the conductances at the external nodes. These can be actual conductances

or fill-ins generated after the setup of the sparse matrix structure. These

contributions are loaded in a purely sequential manner in the interconnec

tion matrix. As can be seen in the data structure description of Appendix 3

there is a table of 'matrix locations' pointed to by both the subcircuit

definition and the subcircuit call. The first contains the locations in the

subcircuit matrix while the second the locations in the interconnection

matrix where the data from the former matrix are stored for each subcir

cuit calL This process is time consuming and accounts from 5-10% of the
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total analysis time as explained in more details in the following chapter.

The linear equation solution takes also place at two levels. Conceptu

ally the algorithmoutlined in Section 3.4.1 can be translated in the program

description shown in Figure 4.5. This description can be followed on the

BBDF matrix shown in Figure 3.3. Avectorized LU (VLU) and forward substi

tution (VFS) is performed on all instances of a subcircuit definition. The

vectors are defined across the instances of the presently processed subcir

cuit definition, i.e., when element L^ is evaluated it is done so for all subma-

trices having the same topology. In each submatrix this process is per

formed for the first Ntat equations, where Nlnt is the number of internal

nodes. The interconnection matrix Yn is also updated, if there are elements

Yji being modified as a result of operations between terms of the border,

according to Equation 3.2. The right-hand side terms which correspond to

the external nodes in the subcircuit and are denoted by Q in the previous

chapter, Equation 3.1 and Equation 3.2, are accumulated in the correspond

ing RHS terms Ci in the system matrix.

A full solution is then performed on the system equations, and the part

of the solution vector is scattered to the solution vectors of the subcircuits.

The last operation is the vectorized back substitution in the subcircuit

equations which results in all the internal node voltages of the cells.

A last major step in the Newton-Raphson analysis is to check for con

vergence of the solution. The convergence test consists of two checks: one

is done on the terminal voltages and currents of the nonlinear devices and

the second on all variables of the solution vector (node voltages and

currents) of the circuit. The test checks if the variables at the last iteration

are within a desired error from their value at the previous iteration. If the
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nonlinear devices fail then the node voltages are not further checked.

Although this seems to be a simple operation it can become an important

part of the total analysis time for a large circuit where the number of the

variables which are checked is in the few thousand range.

In the solution vector test an additional mapping operation must be

performed between the values of the variables at the current iteration

which are in the matrix column order (different from the row order due to

the nonsymmetry of the MNA) and the previous values which are stored

according to the program internal node numbering. The two mapping

operations are reduced to one by storing an additional indexing array

INIRHS for the interconnection equations and 1NXRHS for the subcircuits.

The interconnection solution is always checked first. Only if it has con

verged, then, the internal variables of the subcircuits are tested. This check

is done in vector mode at a rate of one operand access per clock cycle (12.5

ns). The results of the convergence test are stored in a vector RNONCN as

ones in those elements which correspond to subcircuits for which the solu

tion at the node currently checked has diverged and zeroes in the rest of

the elements. A fast CRAY library routine,

SSUM (N, ARRAY(l). ISTRIDE)

which sums the first Nelements, ISTRIDE locations apart, of an array ARRAY,

is used for counting the subcircuits which failed the convergence test. Ail

the above provisions keep the time spent in convergence checking below

10%.
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4.4. Vectorized Semiconductor Device Model Evaluation

This section presents the approaches used in CLASSIE to get the max

imum speedup in the semiconductor device linearization on a vector com

puter. This part of the simulator has been identified in the previous chapter

as using more than half of the analysis time of a medium circuit. The impor

tance of the semiconductor model evaluation increases as the percentage

time spent in the linear equation solution is diminished using machine

instructions. There are a number of tasks performed as part of what is

generically known as model evaluation. The different tasks can be visualized

in Figure 4.6 which shows a description of a model evaluation routine(s) as

implemented in CLASSIE.

In CLASSIE as in SPICE2, semiconductor devices are described by

geometrical features which are individual for each device and general

parameters, e.g., saturation current, Is, gain factors, fo and 0R> for a bipolar

transistor, and threshold voltage VT, thin oxide thickness, tox. for a MOSFET.

The general parameters are the 'model* parameters and are stored in model

tables. There is a 'model element' type for each device type, i.e., diode, BJT,

JFET. and MOSFET. The first thing which the model routine has to do is to

obtain the model parameters from memory. BJTs are described by 55 and

MOSFET's by 46 parameters, to mention only the two most often referenced

device types. This step is called model-parameter gather. After each device

is linearized a scatter operation takes place, which stores the device

indefinite admittance matrix into the circuit matrix. As mentioned earlier,

these two operations account for more than half of the time spent in the

model routine.
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The importance of the model-parameter gather is made negligible in

CLASSIE based on the fact that more than one device uses the same model

parameters. In the setup phase a device reordering takes place.

1. All semiconductor devices which are introduced at the system level are

stored first in the device table; the devices which reference the same

model are grouped together. A pointer to the first element of a group

and their number are stored in the model table.

2. The devices introduced as part of cells (subcircuits) are stored next,

ordered by cell definition. Inside this group they are ordered also by

models. The number of devices of the same model is stored this time in

the table of the first device of each group.

This reordering operation takes place only once for the entire simula

tion. The model parameters need thus be gathered only as many times as

there are model definitions.

The actual computation of the equivalent conductances of the linear

ized model goes through several stages as can be seen in Figure 4.6. All dev

ices referencing the same model are stored contiguously and can be linear

ized in only one pass through the code using vector computation. For this

purpose a buffer table is created which stores all equivalent conductances,

currents and other intermediate results for the matrix scatter. In order to

keep this storage space to a minimum a vector length of 64 is provided for

each variable. This matches the maximum vector length of the CRAY-1. If

there are more devices than 64 the whole loop is repeated under program

control, see Figure 4.6, using the same buffer space.

The routine as depicted in Figure4.6 is called at least twice at each

iteration, once for loading the transistors of the interconnection circuit and



for all device models

gather model parameters

for every 64 devices (
initialize state-vector (XINIT)
limit new terminal voltages (XLIMIT)

Vfor all devices {
compute new conductances
if transient analysis

compute charges and conductances
check convergence on state vector

scatter indefinite admittance matrices (XMATLD)

Figure 4.6. Semiconductor Device Model Evaluation Routini
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once to perform the same task for each subcircuit definition. An argument

of the routine is used for passing the information of the hierarchy level at

which model linearization is performed. Different routines are called for ini

tialization and matrix load depending on the value of this argument. In Fig

ure 4.6 the names written in parentheses next to each task denote generic

names of routines.

The specifics of XINIT. XLIMIT and XMATLD are described next. XINIT ini

tializes the terminal voltages of each device based on analysis status and

device parameters. Most often the terminal voltages are computed from the

node voltages at the last iteration. The resulting terminal voltages are

stored in the buffer table at a constant stride apart so they can be used in

vector operations. The operations of XINIT can be vectorized only in the

case when the node voltages are stored correspondingly. This is true for

subcircuits where the individual copies of node voltages are contiguous.

There are two versions of XINIT, a scalar and a vector version, called alter

nately depending upon the hierarchy level to which the transistors belong.

XLIMIT assumes different names, e.g.. PNJLIM, FETLIM, but performs the

same function, that of limiting the change in device terminal voltages

between iterations. All data involved in this operation are stored in the vec

tor buffer so the routines are fully vectorized. For the best time perfor

mance the routines XLIMIT check first if all terminal voltage variations are

bound by a certain error and quit if this assumption is true. This test saves

a large amount of computation involving logarithmic and exponential func

tions.

XMATLD stores the linearized conductances and currents in the matrix

and RHS. The locations (23 for BJT's and 22 for MOSFET's) where the device
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indefinite matrix terms are stored, are obtained from the integer device

tables. This function has also a scalar and vector version which are used for

the interconnection or subcircuit matrices, respectively. All transistors

which have been linearized in vector mode generate random entries in the

interconnection matrix, sometimes different conductances of different

transistors or even of the same transistor are accumulated in the same

location. Although the matrix load operation is referred to as a scatter

operation it needs an intermediate vector which in turn can be scattered to

memory. This intermediate vector accumulates the elements of the

indefinite matrix of each device such that no conflict occurs.

An important issue is the definition of vectors throughout the model

evaluation. For the transistors at the system level it is quite straightforward

to define a vector across all devices which reference the same model. As has

already been mentioned only the computation part is vectorized for these

elements. The main tables where vectors are defined are the buffer and the

LXi tables which store the state vector.

The different possibilities to define vectors can be presented best by

the following example. Assume that a circuit contains 12 instances of a sub-

circuit OPAMP which in turn has 20 MOS transistors. The semiconductor

devices at the subcircuit level can define a vector across all instances of

that ceil. Thus, the transistors named M09 in all 12 instances of the subcir

cuit OPAMP are linearized in one pass through the code. This results in 20

passes through the model evaluation code with a vector length of 12 each

time. Although all tasks can be vectorized in this approach a longer vector

can be used in the computation phase where all transistors of the same

model and for all instances of the subcircuit can be grouped together. The
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operation flow remains the same as shown in Figure 4.6. In the initialization

and scatter tasks the longer vector used in computation is divided into a

number of short vectors which contain as many elements as cell instances.

The gain in this approach comes from a reduction in start-up times due to

longer vector operations. In the above example assume that 5 of the 20

transistors are depletion loads and are characterized by the same model

parameters and that the remaining 15 are enhancement devices and are

also described by a unique model. For the 12 instances the execution of the

computation loop is reduced from 20 times to 4 times (once for the deple

tion devices and three times for the 180 enhancement devices) for a max

imum vector length of 64.

Another trade-off in the design can be between a longer vector loop

which performs also more computation than necessary or a number of

shorter loops to which the execution is directed depending on analysis

status flags. Both approaches lead to almost similar speeds.

As a final comment, the convergence check of the semiconductor dev

ices is performed in the same manner as for the node voltages. The terminal

voltages and device currents are compared in a vector loop and a vector

with ones for the diverging elements and zeroes for the converging ones is

set up. The fast vector accumulation library routine. SSUM. is then used for

a fast result.

4.5. Linear Equation Solution

This section describes in more detail the two-level circuit matrix solu

tion process from equation setup to the generation and execution of vector

and scalar machine code. The machine code has proven the most efl5cient
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way of taking advantage of the CRAY speed and architecture.

4.5.1. Processing in the Setup Phase

The two-level analysis uses two sets of sparse-matrix pointers and

arrays, one for the subcircuits and one for the interconnection as already

mentioned in Section 4.2.1. The linked list description of the matrix has

four tables, as described in [McCa76]. There are four more mapping tables

used to record the correspondence between independently swapped rows

and columns and the internally renumbered nodes. All these pointers are

initialized in the setup phase and then defined for the rest of the analysis

during the first pass through LU decomposition.

A number of routines. MATPTR (MATPSS), RESERV (RESRSS). trace the

lists of the elements at the system or cell level, respectively, and reserve

matrix locations, store these locations in the element integer description

tables and set up the sparse matrix pointers. Memory management prob

lems have been noticed in SPUDS, [CoheBl], in this part of the program

since all four sparse-matrix pointers grow by one element every time. In

SPUDS this has been fixed introducing the slop memory with each block. In

CLASSIE the four blocks mentioned above are extended when necessary by

amounts equal to the number of equations. This approach is the most

efficient since it avoids the call of several memory manager functions tens of

thousand of times in the case of large circuits.

Two aspects of reordering are performed at this time. Both are topolog

ical in nature. First, the current equations are swapped with the

corresponding voltage equations since it is known that the former introduce

zeroes on the diagonal. Second, the equations corresponding to external
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nodes are reordered in the subcircuit matrix to be last. This reordering is

necessary for the partitioning of the processing which takes place at the

cell level from that at the system level. Thus. LU decomposition can be com

pleted for the subcircuit matrix (internal nodes) first. Then the terms gen

erated in the lower right corner (external nodes) can be scattered into the

interconnection matrix. The entries which link the cells to the system are

also reserved at this time.

Storage space in the LXi tables for charges associated with each ele

ment is reserved at this point as well. For the subcircuits two alternatives

have been implemented so far. The first reserves space for each subcircuit

instance and aligns data for different instances back-to-back. This

approach did not prove satisfactory however if long vectors are defined as

described above. For this latter case the locations for charge components

in the LXi tables must be allocated consecutively for all instances of each

semiconductor device. This arrangement is dictated by the vector memory

access (gather/scatter of charge values during the iterative analysis).

After ail matrix entries have been reserved and the topological reorder

ing performed a set of four routines. MATLOC (MATLSS), INDXX (INDSS).

establish the location in the linearly stored sparse matrix array for each

contribution of each element. These data are stored in the element integer

tables for use in the matrix load which takes place at each iteration. The

locations of matrix entries which link the two levels of analysis together are

also established. Their number is a variable and thus are stored in a

separate table which is pointed to by either the subcircuit definition table

for the cell matrix locations or the subcircuit call table for the interconnec

tion matrix locations. These tables grow after numerical pivoting because of
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fill-ins.

4.5.2. Reordering

The equation reordering for a well-conditioned matrix during the solu

tion is performed in two steps. The topological reordering is done in the

setup stage; a numerical reordering is performed using partial pivoting after

the first load of the matrix. At this step is also found the fill-in structure for

each matrix. A more detailed analysis of the reordering process and matrix

statistics for the system and cell equations is presented in the following two

sub-sections.

4.5.2.1. Interconnection Matrix

The reordering for the interconnection matrix is similar to the one per

formed on the entire matrix in SPICE2 since pivoting has been introduced

[Vlad78]. In the partial pivoting strategy the potential pivot is compared to

all the non-zero entries in that column. An entry is accepted as a pivot if

| pivot | St PIVREL x colmax (4.1)

where,

colmax = |maximum column entry!

| colmax | 2s PIVTOL

It is checked first that the maximum entry in that column 'colmax' is larger

than an absolute minimum, PIVTOL Candidates for pivots are first looked

for only on the diagonal. If none can be found, then the whole matrix is

searched. If at any point there is no element larger than PIVTOL the matrix
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is declared singular. Both PIVTOL and PIVREL are OPTION input parameters

for SPICE2 and CLASSIE. This reordering is performed only once during a

circuit analysis unless an ill-conditioned pivot is discovered at a later itera

tion during the simulation. In the remainder of the analysis the pivot is

checked only against PIVTOL. If the Fortran solver is used, an 'on the fly'

pivot change can be performed and the solution continued from that point

on. The approach is slightly different if machine code is used as outlined in

a later section of this chapter.

Several interesting comments can be made on the interconnection

matrix statistics. It has been anticipated that this matrix is mostly full

[CalaBO] and a vectorized solver can be used. Table 4.1 presents the matrix

statistics of a few medium and large circuits which have been used as

benchmarks for CLASSIE. The number of equations, number of non-zeroes,

number of operations and percent sparsity are presented for SPICE2 and

CLASSIE. There are no SPICE2 entries for the subcircuits NAND and OPAMP

because of a lack of meaning; subcircuits are expanded in SPICE2 and can

not be singled out from the individual elements of the overall uniform cir

cuit. It is noteworthy that the large matrix in SP1CE2 is replaced by a

smaller interconnection matrix and a small subcircuit matrix occurring as

many times as there are instances. Even if the interconnection matrix is

not as sparse as the overall circuit matrix in SPICE2 it is in all cases more

than 85% sparse. This means that the fastest way of solving this matrix is

still by scalar machine code rather than by a vector block solver [Cala80].

Such a block solver can be used for matrices with high local densities which

is not the case in the circuit area, not even when a two-level analysis is per

formed. For the adder circuits which are bipolar and built only of NAND

gates most terms in the interconnection matrix originate from fill-ins. In



SPICE2

Circuit Eqn. Terms Fills Ops. %Sparse

Adder4 451 2663 628 6062 98.69

Adder16 1747 10677 2594 24560 99.65

Filter 410 4069 710 8290 97.58

CLASSIE

Adder4 55 389 326 1579 87.14

Adder16 163 1419 1248 5907 94.66

Filter 157 1652 260 5298 93.3

NAND 16 95 36 345 62

OPAMP 16 140 34 708 45

Table 4.1. Interconnection and Subcircuit Matrix Statistics
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the case of the MOS switched capacitor filter (Filter) which is built from

opamps at the subcircuit level and MOS switches at the system level the per

centage of fills is the typical one.

4.5.2.2. Subcircuit Matrix

The reordering issue is more delicate in this case as compared to the

interconnection matrix. All instances have to preserve the same topology so

an optimal order must be found. In the case where the program default ini

tial conditions are used for all devices, the entries in all instances are the

same and the order which fits one is good for all. However, if user-specified

initial conditions are used, the matrix entries vary widely among the

different instances. The pivoting algorithm described by Equation 4.1 is still

valid with the difference that 'colmax' is taken also across instances. The

instance which has been initialized might have some transistors turned on

while the instances which use the default initialization have them all off in

the case of MOSFET's. The relative tolerance test described in Equation 4.1

might stop the analysis because the matrix entries for some instances are

much smaller than the same entries for user-initialized instances.

The Filter benchmark circuit is such an example. For convergence pur

poses it needs certain opamps to be initialized. The parameter passing

option is used to initialize certain internal nodes without increasing the

number of subcircuit external nodes as in SPICE2. The relative magnitude

test must be turned off to keep the analysis going. This is easily done by

specifying PIVREL=10"18 on a .OPTIONS statement.
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4.5.3. Machine Code Solution

The solution of a set of sparse linear simultaneous equations requires a

search of the sparse-matrix pointers for the necessary operands in addition

to the arithmetic operations. As shown in Chapter 3 this search can

account for a larger or smaller part of the linear equation solution depend

ing on computer architecture and circuit complexity. The original idea of a

search-free code goes back to Gustavson [Gust67] who proposed a two-step

process consisting of a symbolic solution generating a Fortran sequence

which needed recompiling and could then be used for solving the given sys

tem of equations without any search. The most useful approach to circuit

simulation has been introduced by Cohen in SPICE2 [Cohe76]. It consists in

a symbolic phase which generates machine instructions during the first

solution; the machine code can be executed directly at subsequent itera

tions.

The two-level analysis of CLASSIE requires a more complex approach to

equation solution by machine code. The procedure must follow the general

flow shown in Figure 4.5. The essence of the factorization on the subcircuit

matrices differs from that performed on the interconnection matrix in the

type of arithmetic used. As already mentioned, the system matrix is solved

most efficiently using the scalar processor whereas the multiple instances of

subcircuits suggest a vector solution as most advantageous. The sequence

of operations for the solution of a BBDF matrix point to the use of three

machine code tables. The first table from which to execute is MADCMP and

contains the code for performing LU decomposition and forward substitu

tion on the matrices for all subcircuits. This phase updates also the terms

in the interconnection matrix and RHS. Next the system-level equations are
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solved executing a scalar LU, forward and back substitution. The machine

code is stored in table MACINS. The solution for all variables in the subcir

cuits is found using the code in the third table, MASOL. The solution of the

global variables are broadcast into the solution vectors of the subcircuits

where they are external variables. A vectorized back substitution finds the

complete solution vector for each cell.

The machine code is generated by routines CODGEN which performs a

symbolic scalar Gaussian elimination and SCODGN which generates the

instructions for solving the diagonal submatrices of the BBDF. The entire

block needed to store each of the instruction tables is allocated only once

based on the instruction count computed already during the actual Fortran

factorization step. This approach of allocating space minimizes the over

head of generating the machine code because the references to the memory

manager and the associated table search and moving of memory blocks are

minimum. The scalar solution needs only four operation types.

1. IF (ABS(PIVOT).LT.PIVTOL) PIVOT=PIVTOL

2. A = A/B

3. A = A-XxC

4. A = A-BxC

Operation codes 3 and 4 are identical with the only difference that X

refers to an operand already available in one of the CPU registers. In the

CRAY-1 implementation, the eight primary scalar registers are used in such

a way as to achieve most parallelism in execution.

The operations involved in the solution of the diagonal submatrices of

the BBD are more numerous because of the diversity of operations between

scalars and vectors. The operations are listed according to the data flow
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shown in Figure 4.7. In this figure are presented all the operations per

formed by the code contained in table MADCMP. There are six different

operation codes necessary to perform the computations of Figure 4.7.

kdiag if v4lag> PIVTOL
1- vpivot =|piVT0L ifVdj^ ^ pivTOL

2. V =Y/Vpivot

3. V^^-VxYe

4. S=S-VxV2

5. VsV-YjXifc

6. S = S. + V

In the above list of operations V refers to vector registers and S to

scalar registers. It is to be emphasized that vectors are defined across all

instances of the same cell definition. The chaining of operations 1. to 4. is

achieved following the LU decomposition. Thus Op-code 1 achieves a vector

merge between the elements of the diagonal vector V^ and the scalar

PIVTOL. The latter is stored in the locations of the pivot vector Vpivot which

correspond to elements v6iAg which do not satisfy the absolute minimum cri

terion

vdiftg > PIVTOL.

This process is entirely data dependent and cannot be predicted at the code

generation time. The action taken in this situation differs between a For

tran solver and the machine code. In the former case a 'change of pivot on

the fly* is performed which consists in a reordering of the remainder matrix

at the step where the absolute minimum criterion is violated. In the latter

case of machine code execution however, the entire code must be executed



for (i=l; i<=Ntot - 1; i=i+l) J
for(j=i+l;j<=N;j=j+l) (

LOCATE Afi and Ajj
Vfor all instances 1 (1=1; 1=1+1)

, Aji(l)=Aji(l)/Afl(l)
for (k=i+l; k<=N; k=k+l) f

LOCATE A* and A^
Vfor all instances 1 (1=1; 1=1+1)

, Ajlc(l) = Aik(l)-AJi(l)xAik(i)
if Q>Ninl * k>Njnt) [

for all instances 1 (1=1; 1=1+1) j
xz = index (1)
YX2 = YX2-Aji(l)xAik(l)

I

i •
for (i=2; i<=N; i=i+l) j

for (j=l; j<=min(i-l,Nint). j=j+l) f
LOCATE BJt Bj, L,j
Vfor all instances 1(1=1,1=1+1)

Bi(l)=Bi(l)-Bj(l)xLij(l)

for all instances 1 (1=1,1=1+1) J
for(i=l, KsNext, i=i+l)

LOCATE RHS Bj in subcircuit and Cx in intercon matrix
C, = Cx + BKl)

1

»

Figure 4.7. BBD submatrix LU decomposition. FS and RHS update
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until a return jump to the controlling Fortran code is encountered. The

merge of the minimum value PIVTOL is necessary for the completion of

operations without the occurrence of any floating exceptions. At the time of

the return to the driving Fortran routine an error flag is checked which is

set by the code in tables MADCMP or MAC1NS every time a diagonal element

is smaller than PIVTOL. If the error flag has been set a reordering of the
corresponding submatrices is performed and new machine code is gen
erated.

Once the pivot vector has been found it is scattered back to memory.
The next operation at each step is the division of the column elements by
the pivot which is preserved in memory in one of the vector registers. Only
one vector gather is performed at each operation Type 2. The resulting L

vector is preserved for the subsequent operation Type 3. This is a triad

operation which needs two vector gather. VjandVg. For each code type the

underlined operands need be gathered (loaded) from memory. The last op

code used in the LU factorization is Type 4. It updates the scalar entries

corresponding to each cell instance in the interconnection matrix. The pro

duct VxV8 has been already computed and is stored in avector register. A
scalar load and subtract is performed for each cell instance.

Op-code 5 represents a triad operation which seems identical to that of

Op-code 3. The former is used in the forward substitution step which per
forms an accumulation for each RHS element traversing the L triangular

submatrix row by row. and multiplying each row by the RHS. A start-up

code gathers Vwhich is then kept in that vector register until all vector pro
ducts are subtracted after which it is scattered back to memory. Thus Op
code 5 is also a triad with vector operands ViandV2 being gathered for each
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nonzero in a row of submatrix L.

To each RHS element for an external node equation of each ceil

instance corresponds a RHS element of the interconnection matrix. This

latter element must be updated after the FS performed on the subcircuit

matrices. This operation is achieved by Op-code 6. A start-up code gathers

the vector for ail cell instances and is followed by a scalar load, add and

store of each interconnection RHS element with the appropriate vector ele

ment pointed to by a counter.

The LU factorization. FS and BS for the interconnection matrix is per

formed next by the scalar code of table MACINS. This is followed by the back

substitution for the subcircuit matrices. The flow of operations is shown in

Figure 4.8. The machine code stored in MASOL needs two new operations

beyond the six vector codes deflned above. Two new operation codes, 7 and

B. are introduced and code Type 5. can be used again for the triad operation

of Figure 4.8. The following three codes are used in this BS phase.

7» Vm\ =S^

5. V=V-X,xJfc

Op-code 7 assigns element by element to each vector representing all

instances of an external node solution the appropriate scalar solution from

the system equations. An additional code is used at completion of the loop

to scatter the vector elements to the appropriate locations in memory. Op

code 5 and 8 are used for the solution of the internal variables of each sub-

circuit. The former updates the value of the RHS based on the upper tri

angular elements of the respective row gathered in Yl and the variables

already solved for and gathered in V2. The result of this triad is left in



for(i=l, i<=Next, i=i+l)(
for all instances 1(1=1,1=1+1) \

LOCATE solution Xj in subcircuit and Zj
in interconnection matrix

j=index(l)
j X, =Zj

for (i=Ntat. i>=2, i=i-l) (
Vfor all instances 1(1=1,1=1+1) {

for(j=i,j<=N.j=j+l){
LOCATE Bj.Bj.Uij
B, = B, - U^

X, = B, / Uu

Figure 4.8. Back Substitution for the Subcircuit Matrices
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vector register V and is used by Op-code 8 to perform the division by the

diagonal V^. It can be noticed that Op-code 8 differs from Op-code 2 in the

attribute of the vector already available in a register which is the dividend

in the former and the divisor in the latter case.

The new vector code written for CLASSIE takes full advantage of the

eight vector registers of the CRAY-1 architecture to minimize memory

access, overlap and chain execution in the various functional units. A spe

cial case occurs when there are more than 64 instances of the same subcir

cuit. All the vector operations listed above have to be performed as many

times as there are groups of 64. This is taken care by the code generation

routine SCODGN which generated also the right table offsets for each vector

computation.



CHAPTER 5

Performance Evaluation of CLASSIE

5.1. Introduction

This chapter presents an approach to evaluate the performance of a

circuit simulation program. An estimate of the CPU time can be made once

two key parameters are known about the two major parts of the simulation.

Based on this criterion both SPICEV and CLASSIE are compared with

SP1CE2. Several benchmarks of medium to large complexity are used in this

comparison. A careful analysis of the limitations in the performance gain

and a breakdown of the different tasks in the simulation is presented.

Although SPICEV has not been a final goal in this project it is a useful pro

gram and is also used here for demonstrating the impact of different

speedup techniques.

Since CLASSIE has been designed as a general-purpose simulator, it is

also checked out by running the standard SPICE2 benchmark set. These are

small circuits with less than 50 transistors with run times which are usually

less than one second for a transient analysis. The results lead to some

interesting conclusions.

5.2. Speed-Performance Evaluation

It is generally accepted that the circuit complexity can be character

ized by a generic number 'N' of devices or nodes on the assumption that the
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number of semiconductor devices and nodes (equations) of a circuit are

approximately equal or at least have a constant ratio. It is also generally

accepted that analysis time increases with the power 1.2 - 1.4 of the circuit

complexity 'N* [DeMa79]. Circuits analyzed with CLASSIE on a CRAY-1 con

tradict both of the above generalizations.

A more accurate time model is necessary in order to predict the perfor

mance of a circuit simulator. Semiconductor devices are represented in

most circuit simulators, such as SPICE2 [Nage75], [Cohe76], [Viad81b],

ADVICE [NageBO], ASPEC [JenkB2], SLIC [Kop75], and CLASSIE. by a variable

number of equations depending on whether parasitic terminal resistances

are specified or not. For this reason there is an arbitrary relation between

the number of devices and that of nodes as brought out in the large circuit

examples listed below.

Two parameters have been found to provide a rather accurate charac

terization of the simulation time. The parameters refer to the two major

parts of the analysis: semiconductor-device-model evaluation (Jacobian

terms) and linear-equation solution. Parameter td is the time for one model

evaluation in one iteration. The second parameter is t^ the time for solving

one equation in one iteration. The analysis time can then be estimated as:

T s ntt0P(nd*td +ne»te) +overhead (5.1)

where n represents the number of entities designated by the subscript, i.e.,

nun is the iteration number, nd the number of devices and nc the number of

equations. From above it is obvious that the speedup one can get in circuit

simulation depends on how much the two characteristic times can be

reduced. The particular circuit determines the relative weight of the two

terms in parentheses. The analysis time for a subcircuit-oriented program
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like CLASSIE can be expressed as:

T =nitejndi*^ +nei*tei +ng8*(nd8*tda +n„*tea)] +overhead (5.2)

where nM is the number of subcircuits and the second subscript T stands

for interconnection while 's' stands for subcircuit. As shown previously te

can be reduced greatly by code generation [VladBla], [Cohe8l], [VladB2]. In

order to reduce td, t^ and t^ in the vector processor environment it is obvi

ous that the devices have to be grouped either by subcircuit and/or by

model and evaluated in parallel. The vectors are defined in different ways

for devices at the subcircuit level and at the interconnection level; the vec

tor length can differ among different subcircuit definitions. Based on this

observation the device evaluation times td, for a SPICEV simulation, and t^,

and t^ in the case of CLASSIE, are different for the same LSI circuit.

5.3. Benchmark Presentation

A number of large circuits containing from a few hundred to over one

thousand devices or equations have been analyzed. Two typical circuits

have been chosen as examples. Each is built up using cells, either a bipolar

NAND gate and or a MOS operational amplifier, together with interconnection

circuitry. The size of the circuit is easily varied changing the number of

instances of the different ceils. In the case of the MOS filters the circuitry

at the system level (MOS switches and capacitors) also increases with com

plexity. A statistical description of the benchamrks is given in Table 5.1.

from both the point of view of an element-by-element representation as in

SPICE2 and a two-level hierarchical representation as used by CLASSIE.

The three adders are all-NAND circuits containing approximately 60%

bipolar transistors and 40% diodes. Figure 5.1 shows the system-cell con-



SPICE2

Circuit Dev Eqs %Sprs %Mod.Ev %Eq.Sol

Adderl

Adder4

Adderl6

Lowpass

Filter

72

288

1152

70

756

116

450

1747

42

410

95.14

99.3

99.65

B3.89

97.6

44.3 (64.1)

40.7 (69.6)

37.3 (83)

73.4 (79.5)

66.7 (75.6)

52.2 (8)

57.2(11)

61.0 (9.7)

11.9(1.7)

23.6 (2.5)

CLASSIE

Adderl

Adder4

AdderlB

Lowpass

Filter

0

0

0

20

181

16

55

163

26

157

64.06

87.14

94.45

74.7

93.3

69.7

74.5

75.7

81.6

86.9

14.2

16.7

18.6

6.3

7.1

Subckt. Dev Eqs %Sprs Instances

NAND

OPAMP

8

25

16

16

62

45

9.36,

2,2

144

\3

Table 5.1. Benchmark Statistics
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cept for the Adder4 and Figure 5.2 the waveforms which exercise the circuit

in a extensive transient analysis. Filter is an NMOS switched-capacitor,

lowpass niter containing 10 lowpass sections with two operational amplifiers

per section and two antialiaing and reconstruction circuits.

Four equations out of sixteen representing the NAND subcircuit

correspond to external nodes. The OPAMP circuit has five external nodes.

The external node contributions are gathered in the interconnection matrix.

It is interesting to note that two cells of totally different function and com

plexity, 8 devices for the NAND gate versus 25 for the OPAMP, have the same

size matrix representation.

In Table 5.1 can be found also the percentage contributions of model

evaluation and linear equation solution to the simulation of the respective

circuits. The data written in parentheses for SPICE2 are obtained from runs

using scalar-code generation. The increase in relative importance for the

Fortran equation solution can be explained by both the increase of search

with increasing complexity as well as by the reduction of the model evalua

tion as more devices are bypassed.

5.4. SPICEV Performance

The performance of SPICEV is a good place to start the comparison with

a standard version of SPICE2 because there is a one-to-one correspondence

between the features of the two. Everything is similar in the two programs

with the exception of the machine code solver (scalar), the ordering of dev

ices by models and their linearization in vector mode and the vectorization

of the truncation-error computation in transient analysis.
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Table 5.2 summarizes the two characteristic times introduced in the

first section of this chapter, td and te. as well as the time per iteration and

the speedup factor between the two programs. A first observation from the

above data is the very large effect of the scalar machine-code generation

which cuts the equation solution time by a factor of 8 to 12. Another obser

vation can be made regarding te which increases with the number of equa

tions for the Fortran solver while it differs very little for the different cir

cuits when the solution is performed by machine-code. The difference in te

for the first four circuits on one hand and the fifth on the other, is due to

the number of floating-point operations which become the dominant factor

for a machine-code solution. The ratio between floating-point operations

and equations, listed in Table 5.2. proves the above point. There are one

third more floating-point operations per equation in average for the Filter

which makes te for this circuit to be higher in comparison with the other cir

cuits. There is little difference in the flops/equation ratio for the other four

circuits. The effect of this number seems to be lost in other search and

memory operations when the Fortran solver is used.

td is also a very important number. The model vectorization is seen to

bring about a speedup of about 1.5 for the bipolar mix (diode and BJT) and

around a factor of 2 for the MOS circuit. The speedup for this part of the

simulation is not larger because more computation is performed to evaluate

all possible formulations of equivalent conductance- which depend on

region of operation. Another factor is that the parameter gather and con

ductance scatter is not vectorized. Data taken on a CRAY-1 simulator

[Cala8l] show that for a BJT 75% of the total time of conductance evaluation

(excluding limiting and truncation error) is spent in gather/scatter when

full 64 elements long vectors are used. The larger value of td for smaller



Param Addl Add4 Addl6 Lowoas FUter

SPICE2

td(fis) 51
38

45

41

46

47

121
30

99
47

SPICEV

teVMS)
28
4

27

4

27

4

56

4

52
6

speedup
flops/eq.

2.3
12.4

3.2
13.4

3.5

14.1

2.6

14.7

2.4

20

Table 5.2. SPICEV vs. SPICE2 Performance Comparison
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circuits run on SPICE2 (see Table 5.2) is the result of less bypass than for a

large circuit.

The contributions of the solution techniques used in SPICEV to the

overall simulation speed is depicted in the graphical representation of Fig

ure 5.3. The performance points are measured for five adders increasing in

ratios of two from Adderl to Adderl6, simulated by SPICE2 with and without

machine code solver and by SPICEV. The complexity of the circuit is given in

number of semiconductor devices for this graph. The simulation time in all

three cases increases with an exponent of 1.05 with circuit complexity. The

three curves are separated by the difference in speed caused by the code

solver alone and together with vectorized device evaluation. The linear

increase in simulation time expected from the machine code solution is

altered by the reordering performed at the beginning of transient analysis.

The impact of the reordering is however diminished for this transient simu

lation compared to the DC operating point analysis presented in Chapter 3,

due to a two-order of magnitude larger number of iterations.

The speedup factor is influenced by several elements such as the ratio

of td vs. ^ and of nd vs. n.. The speedup is larger for the bipolar circuits

because the contribution of equation solution in all-Fortran SPICE2 (see

Table 5.1) is much larger than for the MOS circuits. The large gain in speed

due to the machine-code solver contributes already a factor of two for the

bipolar circuits. This part is reduced more effectively by the code solver

than the model evaluation is by vector operations.

This difference can be looked at also from the perspective of the

device-equation ratio which is roughly a factor of two for the MOS circuits

and 0.6 for the bipolar circuits. For the MOS circuits td is the double of te to
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start with and can not be reduced by more than a factor of two. In SPICEV

t, is approximately the same for all circuits but td is twice as large for MOS-

FETs compared to the diode-BJT combination. All these considerations

explain the difference in speedup between the two types of circuits.

5.5. CLASSIE Performance

The presentation of the results obtained from runs of CLASSIE is

displayed in Table 5.3. Two sample CLASSIE outputs for the Adder4 and

Adderl6 are listed in Appendix 4. Again extensive use is made of the charac

teristic times introduced in Equation 5.2. The last column of the table lists

the speedup compared to SP1CE2. As already mentioned the characteristic

times differ between the interconnection circuitry and the subcircuits

because of the gather/scatter which is part of t^ where x stands for either i

for the interconnection and s for the subcircuits,respectively. tj8 differs

also for various subcircuit definitions depending on how many cells refer

ence each definition; the number of instances defines the vector length used

in the model evaluation and thus influences t^. The equation-solver charac

teristics are also different based on the use of vector code for the subcir

cuits and scalar for the interconnection. Both tel and t08 vary among cir

cuits and subcircuits, respectively, depending on sparsity patterns and

number of operations as has been shown also for SPICEV.

The data in Table 5.3 should be viewed in conjunction with the circuit

statistics presented in Table 4.1 and 5.1. An important specification is that

the circuits for the runs for this table have just one parasitic resistance in

the BJT model and none in the MOSFET model. The cells, NAND and OPAMP,

are only components of the large circuits and therefore have no entries in



CLASSIE tdx(Ms) tox(Ms) MFLOPS Speedup

Adderl - 4.4 5.1 4 / 4.3 / 4.2
NAND 19 1.5 13.8 -

Adder4 - 5.4 5.3 5.2 / 10 / 5.5
NAND 18 1.2 17.6 -

AdderlS - 6.7 5.4 5.7 / - / 6.9
NAND 16 1.2 IB -

Lowpass 56 5 5.3 2.6 / 2.9
OPAMP 56 13.6 3.3 -

FUter 52 6.6 5.2 3.7/5
OPAMP 29 3 14.5 -

Table 5.3. CLASSIE Performance
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the 'Speedup' column since no comparison can be made independently from

the overall circuit. All semiconductor devices of the adder circuits are

introduced as part of the NAND cells; this fact explains the absence of any

entry in the t^ column. Any other blank entry is caused by the absence of

the corresponding data point.

The reduction in characteristic times for the subcircuit can be seen to

be larger with increasing number of instances. From the analysis of the

results obtained with SPICEV it is expected that the speedup is larger for

the adder circuits compared to the filters. A first observation relates to tds

for MOSFETs which is reduced by another factor of almost two compared to

the time in SPICEV. The devices at the interconnection circuitry, 181 out of

756 MOSFETs, are still characterized by a t^ of 52 fis. The corresponding

reduction in the same parameter for the bipolar mix is more like 25 to 30%.

tes for the Lowpas section is much larger than the corresponding time for

the Filter because of a vector length of only two in the linear equation, t^ is

not as much affected because of the long vectors used in model evaluation.

Two numbers characterize the sparse solver; one is the parameter tex

while the second is the Megaflops rate. The Mflops rate is a better charac

teristic of the solver than the te parameter. The reason for it is that the

operation count provides the best measure of the computational effort. This

number proves to be stable for different sparsity patterns and is therefore a

good characteristic of the sparse solver on the CRAY-1. The Mflops rate is

computed from the run statistics time for the subcircuit solver, the total

number of iterations, the number of operations for each subcircuit matrix

and the number of instances:
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Mflops ratewode ='W'Wf (5 3)
1vcode

The same equation is used for the Mflops rate in the interconnection matrix

with the product nM-nops replaced by the total number of operations for this

matrix, number which is printed in the accounting information. The compu

tational effort of a Gaussian elimination has been measured in number of

multiplications and divisions; this number is printed by SPICE2. The time for

add and subtract has been neglected because historically scalar computers

have always had a much larger execution time for multiply and divide. On

the CRAY-1 all four basic arithmetic operations are characterized by execu

tion times of the same order. 6 cp cycles for addition and division, 7 for mul

tiplication and 14 for reciprocal approximation. In SPICE2, SPICEV and

CLASSIE all the floating-point operations are counted when they execute on

the CRAY-1. Both for SPICEV and CLASSIE (interconnection equations) the

scalar solver performs at 5.3 Mflops.

The vector solver is more dependent on the matrix structure and vector

length (instances). The speed is between 13.8 - IB Mflops which is impressive

but is below that predicted by Caiahan [Cala80]. As in the case of SPICEV

the speedup for the MOSFET circuit is lower, 3.7, compared to 5.2 in the case

of the Adder4 and 5.7 for the Adderl6. Changing the mix between equations

and devices by introducing parasitic series resistances in the models brings

about higher speedups as predicted by Equation 5.2. The speedup of 10 for

the Adder4 with two parasitic resistances is due to an additional reordering

of the circuit equations performed by SPICE2 which increases considerably

the number of fill-ins compared to CLASSIE.

From the data in Table 5.3 it can be concluded that independently of

the device to equation ratio, the speedup of CLASSIE increases with the size
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of the circuit. The speed increase with complexity is larger for circuits with

a higher percentage of equations as can be noticed from the data in the

'Speedup' column of Table 5.3. A possible explanation for the above

difference between CLASSIE and SPICE2 is that the simulation time varies

differently with circuit complexity for the two programs. A rigorous way of

comparing the simulation time of circuits with increasing complexity is to

find a trend curve for circuits built from an increasing number of the same

cell. Based on the bipolar NAND ceil five circuits of increasing complexity,

an one-bit. a two-bit, a four-bit, an eight-bit and a sixteen-bit adder can be

constructed. A second example is an MOS shift register built from the one-

bit latch shown in Figure 5.4. Seven circuits ranging from a four-bit to a

256-bit shift register, in ratios of 2, cover a circuit complexity from 24 to

1536 transistors. More statistical data on the seven shift registers can be

found in Table 5.4. The transistor models do not contain any parasitic series

drain and source resistances and therefore the number of equations is

approximately half the number of devices. The simulation time for 1000

transient-time points (assuming 5 iterations/time point) for the five adders

and seven shift registers is plotted in Figure 5.5 as a function of the circuit

complexity measured in semiconductor devices. The slopes of the curves for

SPICE2 and CLASSIE are almost parallel and very close to a slope of 1. The

overall simulation time thus increases with an exponent a little less than 1

for CLASSIE and with an exponent of 1.05 to 1.1 for SPICE2. The equation

solution time using Fortran is however expected to increase faster with cir

cuit complexity in order to explain a number of results of this chapter and

Chapter3. The graphical representation of Figure 5.6 plots the equation

solution time as a function of the number of equations. The above assump

tion is checked by the plot which shows an exponent of 1.3 for the Fortran



SPICE2 CLASSIE CLASSIE / SPICE2

Circuit Dev Eqs Dev Eqs Speedup

Shiftr4 24 21 0 13/- 2/-
Shiftr8 48 33 0 17/11 2.6/2.1

Shiftrl6 96 57 0 25/13 3.4/3
Shiftr32 192 105 0 41/17 3.9/3.9
Shiftr64 384 201 0 73/25 4/4.2

Shiftrl28 768 393 0 137/41 4.1/4.5
Shiftr256 1536 777 0 265/73 4.4/5

CLASSIE Subcircuits

Subckt Dev Eqs Instances

LATCHl

LATCH4

6

24

8

17

4. 8. 16, 32, 64. 128, 256

1. 2, 4. 8. 16, 32, 64

Table 5.4. Shift Register Statistics
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solver. The time for the Fortran solution is independent of circuit structure

as the curves for shift registers and adders overlap. The vector and scalar

code solvers depend on vector length, number of internal equations and

number of floating-point operations. This dependency explains the

difference in the two code solver curves for the two circuit types.

A last important observation concerning the performance of CLASSIE is

the choice of the cells (subcircuits). Figure 5.4 shows two possible cells for

defining the shift registers described by Table 5.4. The speedup compared

to SPICE2 is higher for an equal number of instances when four cells define

the subcircuit. The explanation resides in the number of internal equations

or equivalently the size of the diagonal submatrices of the BBDF matrix.

When the LATCHl cell is used as building block the size of each submatrix is

only two rows and columns, and the advantage of the vectorized equation

solution is limited. The LATCH4 cell leads to a submatrix with dimensions of

11 by 11. The dimensions of the interconnection matrix are also different

for the two cases and both numbers are specified in Table 5.4. The first

number always refers to the circuit built of LATCHl cells. Figure 5.7 shows

the variation of the speedup for the seven shift registers depending on the

choice of the subcircuit. Due to the reduced number of instances of the

LATCH4 cell in the 8-bit, 16-bit and 32-bit shift registers, the simulation is

faster using the LATCHl cell as building block. For the larger shift registers

the larger submatrix size becomes more important. Another important

observation is the lower slope of the execution time increase for a small

number of devices. This peculiarity of the CLASSIE simulation time charac

teristic can be explained by the vector efficiency curve of Chapter 2.
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5.6. Simulation Time Breakdown

A most useful tool in improving the performance of a program is the

•Flowtrace' option of the CRAY Fortran compiler, CFT. This option gives a

complete image of the average time spent in a certain routine, the number

of times it is called, and the percentage contribution to the total CPU run

time. In Table 5.5 the results of the choice of the data structures, the two-

level analysis and other features of CLASSIE are compared with SPICEV,

task by task. From the above data it can be seen that the routines which

perform gathering of parameters, initialization, and scattering of matrix

terms from and to memory take more than one third of the total time in SPI

CEV because of the sequential mode in which they are executed. In the per

centage for the above tasks is included also the contribution of the

decision-making protocol based on analysis status. In CLASSIE the analyti

cal model evaluation has become dominant as desired. Unless a simpler

approach to nonlinear semiconductor modeling is used no further speed

improvement seems possible. For SPICEV the percentage of the model

evaluation is approximately 20% for bipolar and 23% for MOS circuits. This

represents in itself an impressive performance of the computational speed

of the mathematical functions (exponentiation, logarithm, square root) and

floating point units of the CRAY-1. It also explains the smaller percentage of

the run time spent by SPICE2 for this part of the analysis on the CRAY-1

compared with other computers.

A major problem for CLASSIE can be a reduced number of occurrences

of identically structured subcircuits which increases the time for computa

tion. The approach used to overcome this situation is to incorporate more

intelligence into the program; this allows for definition of long vectors in the



Task

BJT Adder* MOSFET FUter

CLASSIE
(%)

SPICEV

(%)
CLASSIE

(%)
SPICEV

(%)

Gather/Scatter 16 37.5 29 32.5

Device Eqs. 46 13 17.3 9

D-S Junction Eq. - - 11.3 6.5

MOS Capacitance - - 5 2.5

Bipolar Limiting 3 7 1 2

FET Limiting - - 4 2.5

Eq. Solution 16.7 16 6 5

Convergence Test 2 7 1 1

Subckt. Linkage 7.5 - 2.5 -

Table 5.5. CPU Time Breakdown Comparison
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computation part and regrouping according to subcircuits in the

gather/scatter part. This approach saves a few percent for large circuits

and prevents the deterioration of the computation performance caused by

shorter vectors for circuits with fewer instances of a subcircuit. This

improvement has brought an additional speedup of up to 10% for the Filter

circuit. The Lowpass section is simulated at half the speed of SPICEV

without the above approach because a vector length of only two is achieved

in vector operations due to only two instances of the subcircuit OPAMP. The

use of long vectors in model evaluation however reduces the run time on

CLASSIE to that on SPICEV. This result in itself is very important because in

the worst case of only 2 instances of a cell the two-level analysis of CLASSIE

is equally fast to a vectorized SPICE. The performance of CLASSIE is

expected to be superior for more than two instances of each cell type.

Another important observation is the overhead time. From simulation

runs it can be noticed that as the main parts of the analysis (device evalua

tion and equation solution) are made faster the importance of the overhead

grows. The major part of the overhead is contributed in SPICEV by

memory-manager operations (moving blocks around), truncation-error com

putation and convergence checking.

In CLASSIE an important percentage of the time is spent to link the

subcircuits with the interconnection matrix and is of the order of 5-10% per

cent Another source of concern are the time-step control computations.

The adders use iteration-count while the filters use truncation-error time-

step-control. During the development of SPICEV the contribution of

truncation-error computation has been as high as 15% after the vectoriza

tion of the model equations. After the LTE computation has been vectorized
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this percentage has gone down considerably. Only 2% of the simulation time

is spent in CLASSIE for the truncation-error evaluation. The convergence

checking which is performed both on the currents of semiconductor devices

and node voltages of the circuit has also been reduced in CLASSIE compared

to SPICEV using vector comparison and fast vector accumulation routines as

presented in the previous chapter.

The use of table models for devices can reduce by up to 5-10% the

overall 30-40% which the evaluation time of analytic equations contributes

to the analysis time of CLASSIE. The major advantage of table models in this

context is that the same sequence of operations is performed for all devices

regardless of the operating region. Table models in circuit simulation have

been used for the static characteristic only, viz.. [Newt77], [Tana80],

[Shim82]. The charges associated with each device are still computed

analytically. For a Mflops machine the use of table models limited to the dc

characteristic is of secondary importance for speed.

The effect on simulation speed of table models can be approximated by

a run of the Filter benchmark using the simple Shichman-Hodges model for

MOSFETs. Because this model is so simple, its use provides a good estimate

of table-lookup for dc characteristics. The percentage time spent in the

•Device Equation' part, see Table 5.4. which accounts for the computation of

the conductances associated only with the modeling of the transport in the

inversion channel, is reduced to 3% from 17.3%. This simple routine per

forms all computation as part of a single vectorized Fortran DO loop and

achieves approximately 80 Mflops. The total execution time of CLASSIE can

be reduced by a maximum of 30% if it is assumed that all the analytical com

putation is eliminated through some technique of table look-up.



SP1CE2/SPICEV CLASSIE

Circuit Tables Code Tables V. Code Sc. Code

Adder4

Adder16

FUter

52020

202607

161019

15686

63288

21038

36855

126598

127980

3961

40389

7501

2260

8284

8019

Table 5.6. Memory Requirement Comparison
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For large circuits another significant characteristic is the memory

requirement of the simulation. The memory space available for data storage

on a CRAY-1 with 1 Mword of installed memory is almost 0.9 Mword. Table 5.6

shows a comparison between the memory requirements of the three largest

circuits, Adder4, Adderl6 and FUter. The'usage of storage space is shared

by element tables, matrix information, state vectors and machine instruc

tions for the solution of the linear equations. The storage requirement is

reduced by 25-35% in CLASSIE because of the savings in integer tables, both

for elements and matrix statistics. It is assumed that the tables containing

the output variables are stored on disk. The data in the 'Code' column for

SPICE represent the number of words needed for the scalar machine

instructions for solving a large matrix. For CLASSIE this memory require

ment is divided between the vector code for the subcircuits and the scalar

code for the interconnection matrix.

5.7. Small-Circuit Performance

CLASSIE, designed as a general-purpose circuit simulator for a vector

computer (SIMD architecture), is able to run any of the SPICE2 benchmarks.

These circuits have a small number of semiconductor devices, from a few up

to 50, and can represent simple cells for a large circuit. The analysis time

for most circuits in this class is dominated by the device model evaluation.

The linear equation solution part can use up to one half of the analysis time

for small bipolar circuits with parasitic terminal resistances, as can be seen

in Table 3.3 for the UA741 operational amplifier. The performance data

presented in this section, highlight the vector-model evaluation used in

CLASSIE in comparison to the sequential evaluation with bypass capabUity of

SPICE2. The impact of the scalar-code solver is not as important for these
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circuits because a typical transient analysis needs only one to two hundred

time points (a few hundred iterations) which is not long enough time to

absorb the overhead time for code generation.

Table 5.7 Usts a number of bipolar benchmarks which can be divided

into analog circuits, the operational amplifiers UA709, UA727, and UA741.

and logic circuits, TTL NAND gates and ECL gates. These circuits have been

used since the development of SPICE2 [Nage75], as a standard set of bench

marks for this program. The statistics of transient analyses are presented

in this characterization. The output of the CLASSIE runs for the above bipo

lar circuits and the MOS small circuits, described in Table 5.8, can be found

in Appendix 5. Sinusoidal low-amplitude signals are specified as input

sources for the analog circuits and input signals switching between logic '0*

and T are used for the digital gates. The circuits are described in terms of

number of devices, number of models, number of devices for each model

which defines the vector length and number of equations. The number of

iterations and run times are presented for the two programs. It is to be

noted that the only algorithmic difference between the two programs

impacting small circuits is the Jacobian computation of individual devices

which can be bypassed in SPICE2 if the terminal variables have not changed

from iteration to iteration at one time point. The speedup for the analog

circuits is between 2.5 and 3 whereas for the digital circuits the speedup is

only 1.1 to 2. This difference is principally caused by the amount of bypass

ing which is obviously more important for the digital circuits due to the

shape of waveforms. Another reason for this difference is the larger number

of transistors in the operational ampUfiers and hence the larger vector

length. The TTL9200 circuit can be considered as a worst-case test for

CLASSIE because of the total of only 8 devices and 4 different models leading



Run Statistics

SPICE2 CLASSIE

Circuit #Iter Time(ms) #Iter Time(ms) Speedup

UA741 178 680 166 260 2.6
UA727 178 770 176 290 2.7
UA709 168 680 166 230 3
TTLINV 527 670 458 330 2
TTL74S 455 740 451 540 1.4

TTL9200 440 610 466 540 1.1
ECLGATE 375 660 382 340 1.9

Circuit Statistics

Circuit #Eqs. #Xtor #Diode #Device/Model

UA741
UA727
UA709
TTUNV
TTL74S

TTL9200
ECLGATE

52

62

44

29

34

31

39

22
22

15

5

7

6

8

0

0

0

3

2

2

2

16 NPN, 6 PNP
20 NPN. 2 PNP
13 NPN. 2 PNP
5 BJT. 3 DIOD

3/2/2 BJT, 2 DIOD
2/2/2 BJT. 2 DIOD

8 NPN. 2 DIOD

Table 5.7. Small Bipolar Benchmarks on CLASSIE
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to a vector length of 2 in each model evaluation pass. It is remarkable that

even with a slightly larger number of iterations the penalty is not heavier.

The iteration count is within 10% for the two programs with the exception of

the TTLINV circuit which benefits in CLASSIE from the updated Jacobian

computation at each iteration. This last example points out one of the

dangers of defining latency (bypassing) at the level of the output variables:

it can lead to accumulation oferrors if the error criterion is not appropriate
for the example.

A final observation on the data of Table 5.7 is the larger number of

iterations per transient time-point for the digital circuits compared to the

analog circuits. Both cases use truncation-error time-step control which

assumes the continuity of the state variable and its derivatives. This

hypothesis is true for a sinusoidal function but not so for trapezoidally

shaped pulses. The same logic circuits use roughly 10% percent less itera

tions when iteration-count time-step control is used. This observation

together with assertions of Section 2.5 on dc convergence suggest a new

user option, DIGITAL and ANALOG. A different set of initial operating points

and time-step control are used depending on the type of circuit.

Table 5.B Usts the MOS SPICE2 benchmarks along with run statistics for

the two programs. These circuits cover a number of classes of MOS circuits:

NMOS aU enhancement, NMOS enhancement-depletion, and CMOS circuits,

static and dynamic, digital and analog.

A first general observation is that uniformly CLASSIE runs twice as fast

than SPICE2 for circuits which have more than eight devices of the same

type. Since the contribution of equation solution to the total analysis time

is small for MOS circuits most speedup can be attributed to vectorization in



Run Statistics

SPICE2 CLASSIE

Circuit #Iter Time(ms) #Iter Time(ms) Speedup

SATINV 145 90 145 90 1
CMOSNOR 279 260 277 290 0.9
CMOSINV 434 370 400 390 0.9
INVCHN 227 430 215 200 2.2
RATLOG 359 480 358 300 1.6

BOOT1NV 143 170 143 120 1.4
MOSMEM 293 560 237 240 2.3
M0SAMP2 270 1410 269 480 2.9
CMOSCKT 171 940 171 470 2
DECODER 833 6080 833 2400 2.5

Circuit Statistics

Circuit #Eqs. #Xtor #Device/Model

SATINV 8 2 2 NMOS
CMOSNOR 9 4 2 NMOS. 2 PMOS
CMOSINV 7 4 2 NMOS. 2 PMOS
INVCHN 12 10 10 NMOS
RATLOG 15 6 6 NMOS

BOOTINV 10 5 5 NMOS
MOSMEM 14 12 12 NMOS
MOSAMP2 25 27 27 NMOS
CMOSCKT 68 22 10/1 NMOS. 10/1 PMOS
DECODER 36 48 31EM0S, 17DM0S

Table 5.8. Small MOS Benchmarks on CLASSIE
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the model evaluation and truncation errorcomputation. The only exception

is the CMOSCKT which gets a good part of its speedup from the equation

solution. AU models for this example include parasitic series drain and

source resistances. For a few examples CLASSIE uses less iterations than

SPICE2 because the former program does not bypass any Jacobian entry

computation.

Two very smaU CMOS examples have been added with 2 PMOS and 2

NMOS transistors each to demonstrate the effect of the overhead of vector

operations. The result is that CLASSIE is very Uttle slower than SPICE2. This

means that for a minimum number of three devices the vectorized computa

tion of the analytical expressions equals or becomes superior to the scalar

computation.

The results in this section do not advocate the use of a CRAY-1 for the

characterization of a two-transistor circuit but have been judged very

important for new conclusions on the effect of parallel computation in cir

cuit simulation. The qualitative aspect of these comments are useful for a

circuit simulator running on a computer with an attached array processor,

be it a VAX 11/780 with an attached FPS-164 or a 32-bitmicroprocessor with

an attached Floating-Point Processing Unit (FPU) chip.



CHAPTER 6

CONCLUSION

The simulator CLASSIE presented in this dissertation is a prototype pro

gram capable of performing very fast, accurate analysis of LSI circuits at

the transistor level of modeling. The characteristics of LSI circuits have

been combined with the features of vector computers in the design for

speed and accuracy of the new prototype. The speed of CLASSIE on a CRAY-

1 computer makes possible the economical simulation of entire building

blocks of a VLSI chip.

An important goal achieved by this project is the creation of the frame

work for hierarchical circuit simulation. At the present time a set of algo

rithms similar to the ones used in SPICE2 are implemented in this two-level

simulator. The addition of hierarchy has modified the flow of operations in

the solution algorithm but has left intact the accuracy of results and con

vergence properties of SPICE2. The introduction of decoupling at the cell

level creates multiple possibilities for implementing different algorithms,

e.g., the Gauss-Jordan (or Gauss-Seidel) Waveform Relaxation algorithms in

future work.

The features of the SIMD architecture have greatly influenced the deci

sions on data structures, circuit and subcircuit element ordering and flow of

operations. The present design of the simulator has been aimed for optimal

performance on a CRAY-1 computer, but the simulator can be adapted to
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other existing vector and array processors, and even to scalar computers.

For the analysis of a large circuit. CLASSIE on a vector computer rates

in simulation speed between SPICE2 and a timing simulator. Some of the

design considerations of this project may prove useful also for future

developments of the SPICE2 program.

6.1. Hierarchical Simulation

Based on hierarchical tearing CLASSIE breaks the analysis of a large

circuit into separate entities. Provisions have been made in the data struc

tures to allow for the independent processing of each cell or each category

of cells (by cell type). The tearing is achieved at the nonlinear equation
leveL

The ordering by cell type is taken advantage of in the context of the

CRAY-1 by defining vector operations across identically structured cells.

This approach has been found to be optimal for this particular processor.

The relatively short start-up time for vector operations and the lack of a

fast gather/scatter capability have had a decisive influence on the decisions

made during the design process of the simulator for a CRAY-1.

Latency is believed to have the biggest potential for savings in simula

tion time for LSI circuits. However identification of latency requires a large

amount of computations. The charges of all semiconductor devices in each

cell must be known before the latter can be declared latent. The gather

operation at each time point of only the active cells combined with shorter

vector lengths due to fewer instances of active cells, increase the overhead

considerably. For a different SIMD machine a different approach could be

more beneficial.
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Latency could be efficiently used on a data flow MIMD architecture. For

this architecture only the active subcircuits at each time-point are

evaluated on different processor nodes.

An important aspect in CLASSIE is the separation of the analysis at two

levels. The data structures and sparse-matrix pointers can support

different algorithms than the ones implemented presently both at the

differential and the nonlinear equation level. A separate or common time

scale for each subcircuit can be used for the discretization of the

differential equations together with Newton-Raphson iterations. The Gauss-

Seidel or Gauss-Jacobi algorithms can then be employed at the system level

in a similar way as used in wave-form relaxation or mixed-mode simulators.

6.2. SIMD Processor Role

CLASSIE can run on different computers, however the speed-up

described in Chapter 5 is unique for the CRAY-1. On a scalar computer the

ordering of semiconductor devices and the definition of vector operations

do not produce any speed-up because they are executed in the same

sequential manner as before. The only advantage for a typical scalar com

puter resides in the somewhat reduced data traffic, more locality in the data

structure and a reduced search in the linear equation solution.

The first advantage mentioned above is the result of the semiconductor

devices ordering by models which saves time in gathering the model parame

ters.

The second advantage of data storage in separate tables, by element

type, prevents the danger of excessive page faulting in the case of a large

circuit. This danger exists when the data on the different circuit elements
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are stored as linked lists in a single table as is the case in SPICE2. A situa

tion can be imagined where an element is linked to another one of the same

type residing in a different memory page and this latter one in turn is linked

to a third in yet another memory page.

The third advantage of CLASSIE over SPICE2 on a scalar computer ori

ginates in the reduction of the search through the sparse-matrix pointers

which is believed to be the cause of the exponential increase of linear equa

tion solution time with the number of equations. From the statistics of

Chapter 5 it can be seen that a large matrix, i.e., one with over 100 equa

tions, is replaced in CLASSIE by a few matrices with typically around 20

equations.

The summation of all these effects contribute to a speed-up of roughly

a factor of two for the simulation of the Adder4 circuit on a VAX 11/780

computer.

CLASSIE can also be expected to outperform SPICE2 on other vector

computers, e.g.. the CYBER 205, or array processors such as the FPS 164.

Optimal results can be obtained however only if the specifics of each archi

tecture are considered.

A key factor in obtaining top performance out of the CYBER 205 are its

specifics as brought out in Chapter 2. These are fast gather/scatter

instructions and large vector start-up overhead. The second factor is detri

mental for a low number of instances of a certain cell type. The fast

gather/scatter suggests that exploitation of latency in this case can be the

important source of speed-up. On a CYBER-205 the semiconductor device

model evaluation is expected to perform at high Mflops rates due to the

large vector lengths achieved. For the linear equation solution it is not obvi-
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ous if the use of vector operations can be advantageous considering the

reduced size of submatrices and interconnection matrix with less than 100

rows and columns typically.

The FPS-164 with its 12 Mflops is also a good candidate to run CLASSIE

efficiently. Running as an attached processor to a general-purpose com

puter, e.g., the VAX 11/780, the array processor should host only the compu

tational kernel of the simulator. The input, error checking, data structure

setup, and output parts can run optimally on the front-end computer. This

approach of structuring a circuit simulator in loosely connected parts are

pursued independently by various projects involved with the modification of

SPICE2. e.g., at Cray Research. [MayB2]. or the development of SPICE3.

[QuarB2]. The computational kernel of the circuit simulator which runs on

the array processor can benefit from the different techniques used in this

project. For the FPS-164 the best suited approaches could be a combination

of alternatives listed for the CRAY-1 and CYBER 205. The scalar perfor

mance of this array processor, judged by SPICE2 statistics, is roughly 4-5

times faster than that of the VAX 11/780 with a floating-point accelerator.

As shown in Chapter 3 SPICE2 runs almost 30 times faster on a CRAY-1, in

scalar mode, compared to the VAX 11/780.

6.3. Salient Results and Future Perspective

A most important result of the reported work is the speed-up of up to

an order of magnitude which can be obtained performing a hierarchical

simulation at the transistor level on a vector computer. This speed-up is

unique for a circuit simulator and is not available to a timing or logic simu

lator. The reason for this potential difference in speed is the large number
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of floating-point operations in circuit simulation compared to little and

almost none in the timing and logic simulation, respectively.

The performance gain has been shown to be a function of the circuit

size with increasing speed-ups for larger circuits. Aconsequence thereof is

an approximately linear increase of execution time with circuit complexity.

This has been verified on examples as large as one thousand

node/equations.

An important goal in this vector-computer-oriented simulator has been

to increase the efficiency of data transfers. Statistical measurements taken

on CLASSIE prove an important percent increase in the share of the simula

tion time used by actual floating-point operations. Due to the extremely

efficient functional units the SP1CE2 simulation time is dominated by

memory transfers.

The solution of the linear system of equations is kept below 20% of the

total run time for up to 2000 equations (and less devices). This part of the

analysis has been believed to use a growing part of the simulation time once

the circuit gets larger and is described by more than a few hundred equa

tions. This is achieved by a most efficient sparse equation, machine-code

solver using both scalar and vector computation.

All the added performance leads to the prediction that a 5000 time-

point transient analysisr, with 3 iterations per time point, of a 2000 sem

iconductor device-node circuit will require 20 minutes of CRAY-1 cpu time

based on the run time prediction formula of Chapter 5:

T = 5000 x 3 x 2000 x 40/xs = 20 min.

To further reduce the run time algorithmic improvements are required.
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A wide variety of computer hardware is available on which to run circuit

simulation. With present and envisaged 32-bit microprocessors with the per

formance of a VAX 11/750, circuits of up to 100 device (nodes) will be able to

be simulated most efficiently on such personal work stations. For larger size

circuits a CLASSIE kernel, resident on a super-computer, can perform a fast

and efficient circuit simulation of the description it has received through a

high-speed link from the work station.



APPENDIX 1

SPICE 2G Small-Size MOSFET Charge Model

1. Small-Size MOSFET Model Considerations in SPICE2

Two models are presently implemented in SPICE2 [Vlad80] which

account for small-size effects; the LEVEL=2 model is based on the Frohman-

Grove equation with a large number of second-order effects added while the

LEVEL=3 is a semi-empirical curve-fitting model [LiuBl].

A good example of the difficulties of implementing an analytical model

in a circuit simulator is constituted by the charge-oriented model due to

Ward and Dutton (WD) [Ward78]. The following derivations are also useful as

an example of the practical implementation of a set of device equations into

the algorithmic framework described in Section 2.2.

The WD model is based on the actual distribution of charge in the MOS

structure and its conservation:

Qc = Qd+Qs = -<Qg+Qb) (Al. 1)

where QG is the gate charge. QB the bulk charge, and Qc the inversion charge

in the conductive channel; th'« latter charge is split into a drain charge QD

and a source charge Qg. The current flowing at any terminal of a region can

be related to the charge associated with that region, i.e.,

. _dQc
1°" dt
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. dQB , x
1b="5t Cai.2)

, x. _ d(Qs+Qp)
ls+lD dt

The terms of the indefinite admittance matrix of each transistor are found

after applying a numerical implicit integration algorithm to the following

equation:

fidt =QOaJ-Qtto) (AL3)

The charges at any time point are assumed a nonlinear function of only the

terminal voltages at that same time point. Due to the complexity involved in

finding the partial derivatives, a simple formulation is used for the charges

which is adjusted for continuity at the transitions between regions of opera

tion. If the trapezoidal integration formula is used to discretize the

differential equations according to Equation 2.2. Equation A1.3 can be

rewritten as follows

jOESi+JyJ =(Q&M-QyJ+S J£l (VS8i-Va„) (A1.4)
where x stands for GB. DB and SB. and y for G. B. D and S. The second sub

scripts indicate the time point and superscripts the iteration. Thus quanti

ties at time point 'n* are known (previous time point), quantities at time

point 'n+l* iteration 'm* are also known from the solution of the last itera

tion at the present time point. Time 'n+l', iteration 'm+l* is the current

iteration which, by substituting the above equation into the modified nodal

system, has V**^ as a solution.

Capacitances for the small-signal analysis are defined as
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C - 8Q*** " 8V7* (A1.5)

It can be noticed that between each pair of nodes there are two capaci

tances, which in general are different.

Figure Al.l. plots the voltage dependence of the various terminal capa

citances associated with the charges Qc and QB according to the formula

tions of the following section. Only six capacitances out of a total of twelve

defined by Equation A1.4 are independent due to the charge-conservation

principle expressed by Equation Al.l. Qs and Qd share equal parts of the

channel charge Qc in the linear region. In saturation QD gets only XQC * Qc

where XQC is a model input parameter intended to assign unequal portions

of the inversion charge to the drain and source terminals in saturation. The

plot shown in Figure Al.l uses a factor XQC=0.5. A characteristic of the

charge-controlled model is the nonreciprocity of the two capacitances asso

ciated with the same pair of terminals.

2. Charge Formulations

The charge formulations as first implemented in MSINC [Youn76] and

later in HP-SPICE [Dowe79], display two singularities at V^ = 0 and VCB = VT.

Alternate formulations are used for 0 £ VDS < e and VT -£ VCB < VT + e which

avoid an illegal instruction, divide by zero or zero over zero, but still leave

discontinuities at the points of joining with the formulation valid beyond

these intervals.

In order to keep the charge equation simple the following changes of

variables are used throughout this section:

VD = VDB + 2<pF
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VS = VSB + 2pF

where Vps is the flat-band voltage and 2<pF the surface potential at the onset

of strong inversion. In the charge formulations it is advantageous to choose

the bulk voltage as reference voltage.

For the cut-off region, V^ ^ VT, and VCB ^ Vp^ below flat-band condition

the charges are:

Qg = C0XVG (A1.6)

Qb = -Qc (A1.7)

CGG = C0X (Al.B)

CBg = -Cgg (A1.9)
C„ is the total thin-oxide capacitance,

Ca, =WL
vox

ox = "^7

where eox is the oxide permitivity and tox the thin-oxide thickness.

Above flat-band, Vqb > Vra the charge and capacitance equations are:

Qc =7Cox V^ +Vc - I" (Al. 10)

Qb = -Qg (ami)

CGc=frC0x -
V£ +Ve (Ai.12)

Cbg = -Cgg (A1.13)
The channel charge and the rest of the partial derivatives of the gate and

bulk charges are zero

CCD = CBD = Ccs = CBS = 0 (Al. 14)
as long as the transistor is turned off.
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For the turned-on operation of the MOSFET both the original and the

corrected equations implemented in SPICE2 are given. In the 'on' region,

VCB > VT, the following are the original charge equations:

Qg =C0X|vG - i
cuf

jVG(v| - vf) - l^vg/s - vf'*) - i(v| - Vf) (Al.l 5)

Qb =~^o[n/Z -Vf'*) - ^(VJ -V|) - |^(V|^ -v|/2) (A1.16)
For the two singularity points mentioned above both the numerator and

the denominator of the second term of Qc and of the QB expression decrease

to zero. The replacement of the equation for the normalized current / with

/=VC(VE - Vs] - 1(V| - Vf) - ly[vS'2 -Vf'*) (A1.17)

where

VE =
_ i

VD for VD < VD8at

lvDMt for Vn^VDsat

allows the factorization of (V#-V$) The following notations are used for a

more concise formulation of the SPICE2 equations:

T0 = VE + Vs

T^Vg +V?

T2 =V£V#

T3=Vi +Vf (Ai.18)

T4=VE-VS

TB = T0-T,

Te = (T3 + T4) + T2-T0

T7 = (Ta + T4)-T,

Given these definitions, we have the equations:



Qc = c(
±V,T.-f.yTa-±TT

Vn-

VG^-lrfTo +T^-l-Ts

f VC(T0 +T2) - i rT5 - f-Ta
Qb = -Cox7—

VG-Ti-frCTo +̂ -lTrTg
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(A1.19)

(A1.20)

The channel cahrge Qc is always computed according to the charge conser

vation principle expressed by Equation Al.l and the equivalent conduc

tances result from taking the partial derivatives of Equation A1.19 and

A1.20.



APPENDIX 2

Benchmark Circuits

The input specification of two benchmarks used in Chapter 3 and

Chapter 5 is listed below.

UA741 CKT - UA 741 OPERATIONAL AMPLIFIER
.OPTACCT LVLC0D=1 LVLTIM=2
.DC VIN -0.25 0.25 0.005
.TRAN 2.5US 250US
•.OP

VCC 27 0 15
VEE26 0-15
VIN 300 SIN(0 0.1 10KHZ)
RSI 2 30 IK

RS2 1 0 IK

RF 24 2 100K
Rl 10 26 IK
R2 9 26 50K

R3 11 26 IK

R4 12 26 3K
R5 15 17 39K
R6 21 20 40K
R7 14 26 50K
RB 18 26 50
R9 24 25 25
RIO 23 24 50

Rll 13 26 50K
COMP 22 8 30PF
Ql 3 1 4 QNL
Q2 3 2 5 QNL
Q3 7 6 4 QPL
Q4 8 6 5 QPL
Q5 7 9 10 QNL
Q6 8 9 11 QNL
Q7 27 7 9 QNL
Q8 6 15 12 QNL
Q9 15 15 26 QNL
Q10 3 3 27 QPL
Q116 3 27QPL
Q12 17 17 27 QPL
Q14 22 17 27 QPL
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Q15 22 22 21 QNL
Q16 22 21 20 QNL
Q17 13 13 26 QNL
Q18 27 8 14 QNL
Q19 20 14 18 QNL
Q20 22 23 24 QNL
Q21 13 25 24 QPL
Q22 27 22 23 QNL
Q23 26 20 25 QPL
.MODEL QNL NPN(BF=80 RB=100 CCS=2PF TF=0.3NS TR=6NS CJE=3PF

CJC=2PF
+ VA=50)
.MODEL QPL PNP(BF=10 RB=20 TF=1NS TR=20NS CJE=6PF CJC=4PF VA=50)
.PLOT DC V(24) ;
.PLOT TRAN V(24) V(8)
.END

ADDER - 4 BIT ALL-NAND-GATE BINARY ADDER
.OPT ACCT LVLC0D=1 ITL5=100000 UMPTS=641 CPTIME=3600
.0PTLVLTIM=1
*.0P

.TRAN 5N 3200N

.SUBCKT NAND 12 3 4
* NODES: INPUT(2). OUTPUT. VCC
Ql 9 5 1 QMOD
Dl CLAMP 0 1 DMOD
Q2 9 5 2 QMOD
D2CLAMP 0 2 DMOD
RB4 5 4K
Rl 4 6 1.6K
Q3 6 9 8 QMOD
R2 8 0 IK
RC 4 7 130
Q4 7 6 10 QMOD
DVBEDROP 10 3 DMOD
Q5 3 8 0 QMOD
.ENDS NAND
.SUBCKT ONEBIT 12 3 4 5 6
* NODES: INPUT(2). CARRY-IN, OUTPUT. CARRY-OUT. VCC
XI 1 2 7 6 NAND
X2 1 7 8 6 NAND
X3 2 7 9 6 NAND . <
X4 8 9 10 6 NAND
X5 3 10 11 6 NAND
X6 3 11 12 6 NAND , *
X7 10 11 13 6 NAND
X8 12 13 4 6 NAND
X9 11 7 5 6 NAND
.ENDS ONEBIT
.SUBCKT TWOBIT 123456789
* NODES: INPUT - BIT0(2) / BITl(2). OUTPUT - BITO / BIT1.



* CARRY-IN. CARRY-OUT. VCC
XI 1 2 7 5 10 9 ONEBIT
X2 3 4 10 6 8 9 ONEBIT
.ENDS TWOBIT

.SUBCKT FOURBIT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
* NODES: INPUT - B1T0(2) / BITl(2) / BIT2(2) / B1T3(2).
* OUTPUT - BITO / BITl / BIT2 / BIT3. CARRY-IN. CARRY-OUT. VCC
XI 1 2 3 4 9 10 13 16 15 TWOBIT
X2 5 6 7 8 11 12 16 14 15 TWOBIT
.ENDS FOURBIT
•**

**• DEFINE NOMINAL CIRCUIT
*•*

.MODEL DMOD D

.MODEL QMOD NPN(BF=75 RB=100 CJE=1PF CJC=3PF)
VCC 99 0 DC 5V

VI1A 1 0 PULSE(0 3 0 IONS IONS IONS 50NS)
VI1B 2 0 PULSEfO 3 0 IONS IONS 20NS 100NS)
VI2A 3 0 PULSE(0 3 0 IONS IONS 40NS 200NS)
VI2B 4 0 PULSE(0 3 0 IONS IONS 80NS 400NS)
VI3A 5 0 PULSE(0 3 0 IONS IONS 160NS 800NS)
VI3B 6 0 PULSE(0 3 0 IONS IONS 320NS 1600NS)
VI4A 7 0 PULSE(0 3 0 IONS IONS 640NS 3200NS)
VI4B 8 0 PULSE(0 3 0 IONS IONS 1280NS 6400NS)
XI 1 2 3 4 5 6 7 8 9 10 11 12 0 13 99 FOURBIT
RBTO 9 0 IK
RBT1 10 0 IK
RBT2 110 IK
RBT3 12 0 IK
RCOUT 13 0 IK

.PLOT TRAN V(l) V(2) V(9) V(3) V(4) V(10) V(ll) (0.5)

.PLOT TRAN V(5) V(6) V(ll) V(7) V(8) V(12) V(13) (0.5)

.END

155



APPENDIX 3

Subcircuit Definition Table Specification

The subcircuit definition table has a special role in the two-level

analysis of CLASSIE. This table contains pointers into a number of tables

where related information can be found. In the following list it is

differentiated between actual table pointers and offsets within other tables.

Certain locations in the table contain two elements; the first description

represents the current function in the program and the second, in

parentheses, is the future meaning.

LOC +0 number of subcircuit definition references

+ 1 offset in subcircuit definition table of reals

+2 pointer to node table

+3 offset to element linked list in IELMNT table

+4 subcircuit expansion flag (pointer to argument real table)

+5 unused (pointer to argument integer table)

+6 offset into resistor integer table

+7 number of resistors within definition

+8 to

+75 offset and number for all other 35 element types

+76 offset in user-defined subcircuit-node table

+77 total number of subcircuit nodes

+78 number of user-specified subcircuit nodes

+79 offset into subcircuit initial conditions node table LSICND
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+80 number of subcircuit initial conditions

+81 total number of subcircuit equations

+82 number of internal subcircuit equations/variables

+83 number of subcircuit voltage-defined elements

+84 number of subcircuit current equations

+85 total number of state-vector LSXi entries

+86 offset into row-column swap tables

+87 offset into subcircuit row-column linked lists

+88 number of nonzero submatrix entries after reordering

+89 number of nonzero submatrix entries before reordering

+90 number of internal nonzero submatrix entries

+91 pointer to table of submatrix external term locations

+92 offset into factorization machine-code table MADCMP

+93 number of machine instructions for submatrix factorization

+94 offset into back-substitution machine-code table MASOL

+95 number of machine instructions for submatrix back-substitution

+96 percentage sparsity of submatrix

+97 number of floating-point operation for subcircuit solution

+98 offset into subcircuit matrix entry table LSVN

+99 offset into subcircuit node-voltage table LSVNIM

+ 100 offset into subcircuit state-vector table LSXi

+ 101 number of submatrix fill-ins

+102 stride in LSVN table



APPENDEC 4

Adder4 and Adder16 Sample CLASSIE Simulations

Two of the medium and large circuits used as benchmarks for the per

formance evaluation of CLASSIE in Chapter 5 are the 4-bit and 16-bit bipolar

adders. The output of the transient analyses of the two circuits are con

tained in the attached microfiche. The transient simulation of the Adder4 is

complete while that of the Adderl6 has been stopped after a specified cp

time.
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APPENDIX 5

< Small-Circuit CLASSIE Simulations

The standard benchmark set of SPICE 2G has been run on CLASSIE and

the results have been commented in Section 5.7. The output for the small

bipolar and MOS benchmark simulations is contained in the attached

microfiche.
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APPENDIX 6

CLASSIE Program listing

The source code for a CRAY-1 of program CLASSIE is listed in the

attached microfiche.
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