

Copyright © 1982, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

DATABASE PORTALS:

A NEW APPLICATION PROGRAM INTERFACE

by

M. Stonebraker and L. A. Rowe

Memorandum No. UCB/ERL M82/80

2 November 1982

DATABASE PORTALS: A NEW APPLICATION PROGRAM INTERFACE

"by

Michael Stonebraker and Lawrence A. Rowe

Memorandum No. UCB/ERL M82/80

2 November 1982

ELECTRONICS RESEARCH LABORATORY

This research was supported by the Navy Electronics Systems Command through
grant number N00039-81-C-0569 and the Defense Advanced REsearch Projects
Agency through grant number N00039-C-0235.

DATABASE PORTALS: A NEW APPLICATION PROGRAM INTERFACE

Michael Stonebraker
Lawrence A Rowe

Department of Electrical Engineering andComputer Science
University of California

Berkeley, CA 94720

ABSTRACT

This paperdescribes the design and one proposed implementation
of a new application program interface to a database management
system. Programs which browse through a database making ad-hoc
updates are not well served by conventional embeddings of DBMS
commands in programming languages. A new embedding is sug
gested which overcomes all deficiencies. This construct, called a
portal, allows a program to request a collection of tuples at once
and supports novel concurrency control schemes.

November 2, 1982

DATABASE PORTALS: A NEW APPLICATION PROGRAM INTERFACE

Michael Stonebraker
Lawrence A Rowe

Department of Electrical Engineering and Computer Science
University of California

Berkeley, CA 94720"

1. INTRODUCTION

There have been several recent proposals for user interfaces whereby a

person can "browse" through a database [CATE80, HER080, MARY80, R0WE82,

ST0N82, ZL0082]. Such interfaces allow one to select data of interest (e.g., "all

employees over 40") and then navigate through this data making ad-hoc

changes.

A simple illustration of a browsing program is described with the aid of

figure 1. This program allows a user to "edit" a relation. It is similar to a full

screen, visual text editor (e.g., vi [J0Y79] or EMACS [STAL81]) except that a rela

tion is edited rather than a text file. This example browser will be used to

motivate the need for a new programming language interface to a database

management system.

In figure 1 data from an employee relation is displayed. Since only a few

rows of the relation can fit on the screen at one time, cursor commands are pro

vided to scroll forward and backward. In other words, the screen provides a

"portal" onto the employee relation which the user can reposition. Commands

are also provided so a user can edit the data on the screen. For example, Dave

Smith's salary can be changed by repositioning the cursor to the field containing

employee relation

name age salary dept

Ken Johnson 43 25000 sales

Sue Keller 40 28000 accounting
Dave Smith 52 30000 purchasing
Kathy Able 28 22000 accounting
George Toms 26 18000 shipping
Mike Baker 34 27000 sales

find insert delete update quit

Figure 1. Relation editor interface.

30,000 and entering a new value.

Other operations are listed at the bottom of figure 1. The find operation

scans forward or backward through the data from the row the CRT cursor is on

until the first row is found that satisfies a user specified predicate. The insert

and delete operations allow the user to enter or remove rows from the table.

The update operation commits changes to the database so they become visible

to- other users. Lastly, the quit operation exits the editor.

The data manipulation facilities supported by conventional programming

language interfaces [ALLM76, ASTR76, SCHM77, R0WE79, WASS79] allow a pro

gram to bind a query to a database cursor,1 open it, and fetch the qualifying

tuples sequentially. Moreover, one can specify that a query or collection of

queries is to be a transaction [ESWA76, GRAY78]. The DBMS provides serializabil-

ity and an atomic commit for such transactions.

There are several drawbacks to such an interface when used to implement a

browser such as the one discussed above. First, the relation editor can scroll

1Adatabase cursoris an embeddedquerylanguage concept not the cursordisplayed on a CRT.

-3-

backwards, thereby requiring that the cursor be repositioned to a previously

fetched tuple. This feature is not supported by a conventional programming

language interface (PLI). Second, current PLFs return one record at a time.

"When the user scrolls forward or backward, a browsing program would prefer

that the DBMS return as many records as will fit on the screen. The program

issues one request and receives several records. This protocol simplifies the

browsing program code.

Next, the browser must scan forward or backward to the first tuple that

satisfies a predicate. This function is needed to implement the find operation

described above. Of course, the predicate could be tested in the application

program but would duplicate function already present in the DBMS. A cleaner

and more efficient solution would be to use the DBMS search logic through a new

prograrnming language interface.

Lastly, to implement the update operation, the relation editor must be able

to commit updates incrementally during the execution of a single query. Con

ventional transaction management facilities do not support this kind of update.

This paper describes an application program interface that supports the

data manipulation and transaction management facilities required to implement

database browsers. The basic idea is to have the database management system

support an object, called a portal, that corresponds to the data returned by a

single query and allow a program to retrieve data from it. Figure 2 shows a gen

eral model for the proposed system. The DBMS manages portals and allows a

program to selectively retrieve or update data from the portal with a new collec

tion of DBMS commands.

A portal can be thought of as a relational view that is ordered. The query

that defines the portal retrieves the data in some particular sequence which

establishes the ordering of tuples in the portal. Each tuple will have an extra

-4-

« >

'

porta)Wf«r

• ., 1

PRO-AM DB*5

Figure 2. General Model for Portals.

field that contains a unique sequence number, called a line identifier (LID)

[ST0N82a] that represents the position of the tuple in the portal. Line

identifiers are automatically updated when tuples are inserted into or deleted

from the portal so the position of each tuple is always represented by the line

identifier.

Commands are provided which return collections of portal tuples to the

application program. For example, a program can request tuples which:

• match a predicate (e.g., "all employees over 40"),

• scroll from the current position of the cursor (e.g., the tuples whose LID

exceeds the LID of the tuple pointed at by the cursor by less than 24), or

• surround a particular tuple in the portal (e.g., the tuples with an LID within

12 of the LID of the tuple corresponding to Jones)

Changes made to the data in a portal are propagated to the relations that

define it when the update is committed. Six commit modes are supported so

-5-

that different forms of concurrency control can be implemented by an applica

tion program. In addition to modes that allow one or more queries to be treated

as an atomic transaction, a mode is provided that allows a transaction to be

committed incrementally.

This paper describes the design and one proposed implementation of this

new application program interface. Section 2 presents the design of the portal

abstraction. Section 3 describes a new collection of tactics that a database sys

tem can use to implement portals. Section 4 discusses some issues in designing

versions of the language constructs for different programming languages and

contains some other comments on their implementation and use.

2. APPLICATION PROGRAM INTERFACE

The application program interface includes language constructs to define a

portal, to open and close a portal, to fetch tuples from a portal, to update tuples

in a portal, and to further restrict a portal. A portal is defined by specifying a

query that selects the tuples that are in it. The general format of a portal

definition is similar to the definition of a cursor [ASTR76] and is2

let portal be (target-list) [where qualification]

where portal is the name of the portal, target-list is a comma separated list of

expressions that define the columns or attributes in the portal, and qualification

is a predicate that determines which tuples are in the portal. For example,

given an employee relation with the following attributes

EMP (name, address, age, salary, years-service, dept)

the command

let p be (EMP.name, EMP.salary, birthyear = 1982 - EMP.age)
inhere EMP.salary > 25000

2 [acj indicates that z Is optional.

-6-

defines a portal, named p, that contains the name, salary, and birthyear of

employees whose salary is greater than $25,000.

The query that defines a portal can be a multiple variable query. For exam

ple, given a department relation

DEPT (dname, mgr, floor, budget)

a portal that contains employee and department information can be denned by

let pi be (EMP.name, EMP.dept, DEPT.floor) where EMP.dept = DEPT.dname

This portal contains the name, department, and department floor for all employ

ees. The portal query can also include programming language variables so that

it can be defined at run-time. For example, the following declaration

let p2 be (EMP.name) where EMP.salary > x and q

includes two program variables, x and g, that allow the employee's salary and

some other predicate (e.g., "EMP.age < 20") to be substituted at run-time.

The definition of a portal causes the query to be parsed and stored by the

DBMS. Then, opening a portal causes the values of run-time variables in the por

tal query to be passed to the DBMS. Depending on the implementation tactic

chosen by the DBMS, the query might be executed and a temporary relation

created to store the portal data. Other implementation tactics are described in

the next section. For now, a portal can be thought of as a view. The open com

mand also specifies the program variable into which data will be fetched and an

optional lock mode that selects a concurrency control mechanism for the por

tal The general format of the open command is

open portal into variable [with lock-mode = n]

where portal is the name of the portal, variable is a program buffer, and n is an

integer that identifies a lock-mode. The program buffer is an "array of records"

declared in the application program which determines the maximum number of

-7-

tuples that can be retrieved from the portal by one command. Lock modes and

transaction management are discussed below.

A portal remains open until it is explicitly closed by a close command. The

format of a close command is

close portal

Figure 2 shows a PASCAL program fragment that declares a buffer, defines a

portal, and opens it. The buffer, named buf, has a field with the same name as

each attribute in the portal. Notice that even though the line identifier was not

explicitly defined in the target-list of the portal definition, it is included in the

buffer record. Acolumn, named LID, is implicitly defined for each portal.

Data can be retrieved from the portal and stored in the program buffer by

the fetch command. For example, the command

fetch buf

fetches data from p and stores it into buf. When the program run-time environ-

j declare buffer J
var buf: array [1..10] of

record
LID: integer;
name: array [1..20] of char;
salary: real;
age: integer

end

begin.

let p be (EMP.name, EMP.salary, EMP.age) where EMP.salary > 25000
open p into buf

end

Figure 2. PASCAL program fragment that declares a portal.

-8-

ment passes this command to the DBMS, it also passes the number of records

that can be stored in the buffer The DBMS returns the number of tuples

requested to the program. The attribute values returned from the portal are

automatically converted to the appropriate data types and stored in the buffer.

A built-in function is provided that indicates how many records were actu

ally stored in the buffer by the last fetch command. The programmer can use

this function to determine if any data was returned or if the buffer is only par

tially filled. For example, if the portal in figure 2 contained only 5 records, the

fetch command above would not fill the buffer. On the other hand, if the portal

contained 50 tuples, the command would fetch only the first 10 tuples because

only that number can fit in the buffer. The program can retrieve the next 10

tuples by executing a fetch command with a where-ciause as follows:

fetch buf where p.LID > 10

This command fetches 10 tuples beginning with tuple number 11. Notice that

the portal name, in this case p, is used to reference tuples in the portal.

A fetch command can have an arbitrary qualification that will restrict the

tuples retrieved to those that satisfy a predicate. For example, the program

might want to retrieve employees under 20 who make more than $40,000. The

command to retrieve these records is

fetch buf where p.age < 20 and p.salary > 40000

The fetch command can also be used to retrieve data by position and to

search forwards or backwards. The general format of the fetch command is:3

fetch [previous] buffer
[(where | after | before | around} qualification]

Aposition fetch uses the keyword after, before, or around rather than where. A

fetch with an after-clause indicates that the first tuple that satisfies the

3 (zjyi indicates that z or y must appear.

-9-

qualification and the tuples immediately after it- in the portal ordering are to be

retrieved. For example, if the following command was executed on the portal in

figure 2 it would retrieve 10 tuples beginning with tuple number 40:

fetch buf after p.LID = 40

Tuples 40 to 49, if they exist, would be stored in buf. The tuple that satisfies the

qualification (i.e., tuple number 40) is stored in buf[l\. Subsequent returned

tuples follow the selected one in LID order and do not necessarily satisfy the

qualification. In contrast, all tuples returned by a restriction fetch (i.e„ one

that includes a where-clause) must satisfy the qualification.

The keyword before indicates that the first tuple that satisfies the

qualification should be stored at the end of the buffer. Consequently, the buffer

will contain the qualifying tuple and the tuples that immediately precede it. The

keyword around indicates that the qualifying tuple should be stored in the mid

dle of the buffer and the tuples immediately before and after it will be fetched.

The qualification in a position fetch can be an arbitrary predicate such as

... after p.LID > 10 andp.age < 25

which retrieves tuples beginning with the first one found after tuple number 10

that satisfies the qualification on age. This facility can be used to implement a

search operation which scans for the first record after the current one that

satisfies a user-specified predicate. The following command fetches the

appropriate data

fetch buf around p.LID > n and q

where n is the LID of the current record and q is a string variable that contains

the user-specified predicate. Most browsers also allow users to search back

wards. The letch previous command can be used to implement this function It

scans backward through the portal rather than forward. For example, the com-

-10-

mand

fetch previous buf before p.LID < n and q

searches for the first record before the current one that satisfies a search

predicate.

The qualification in a fetch command can be any boolean combination of

terms involving portal variables (e.g., "p.age = 40") and application program

variables (e.g., "q from the example above"). It is also possible to support

qualifications involving join terms to other data base relations.

A command is provided which allows a programmer to restrict the portal to

a smaller subset of the data that it currently contains. The format of the res

trict command is:

restrict portal where qualification

This command removes from the portal all tuples which do not satisfy the

qualification. For example,

restrict p where p.age > 25

removes all employees 25 and under from the portal. A restrict command is

equivalent to defining a new portal with a qualification obtained by AND'ing the

new qualification to the one that defined the portal.

The portal abstraction also includes update commands to insert, delete,

and replace tuples in the buffer. Appropriate commands are also passed to the

DBMS which change the portal so that subsequent fetches will see the updated

data. When a transaction is committed, portal changes become visible to other

DBMS users.

Because portals are defined by queries, some updates cannot be unambigu

ously mapped onto the underlying relations. This problem is identical to the

problem of updating relational views [DAYA78, ST0N75]. However, since portal

-11-

updates affect single tuples only, several special purpose view update algorithms

appear possible for this restricted case.

The general format of the replace command is

replace buffer-reference (target-list)

where buffer-reference is a program reference to a record in the buffer (e.g.,

buf[i]). For example, the following command changes the age of the tuple

stored at buf[4]:

replace buf[4] (age = 25)

This command does not change tuple number 4; it changes which ever tuple was

last fetched into buf[4].

The insert command appends a tuple to the portal. The general format of

this command is:

insert (target-list) before buffer-reference

This command inserts the tuple before the buffer array element referenced.

The elements in the buffer are moved down to make room for the new data.

Since the buffer is fixed size, the last record must be is removed from the

buffer. The new record is assigned the UD of the element it is being inserted

before. The LIIJs of all records following the new element are incremented. The

new tuple and its LID are passed to the DBMS which updates the portal.

The last update command allows tuples to be deleted. The format of this

command is:

delete buffer-reference

The UD of the buffer element referenced is set to zero to indicate that it has

been deleted. The 1/27s of all records that follow it in the buffer are decre

mented. Then, the LID and the deleted record value are passed to the DBMS

which updates the portal.

-12-

Update commands are passed to the DBMS which records the changes so

that subsequent fetches will return the new data. The lock mode selected when

the portal is opened will determine when the update is committed to the data

base. The following lock modes are provided.

1. The tuples returned by a fetch command are locked, and tuples locked by

the previous fetch command are unlocked. Updates are committed when

the next fetch command does not span the updated tuples.

2. This option is the same as number 1 except that each update is committed

immediately upon a replace, delete, or append command.

3. This option is a variant on optimistic concurrency control [BARG80,

KUNG81]. The browsing program does not lock a tuple until it is deleted or

replaced. When a tuple in a portal is modified, the tuple(s) from the

relation(s) that define the portal are locked and the portal tuple is

recreated. If the portal tuple to be modified is the same as the recreated

tuple, the update is committed. Otherwise, an error is returned to the pro

gram. Append commands are committed immediately. This locking mode

allows a browsing application to set no long-term read locks during a ses

sion.

4. This option is the same as number 3 except that all tuples returned by the

last fetch command are locked, refetched, and compared with the

recreated values. The update is committed only if they all are the same.

This mode is appropriate if an update is determined by data elsewhere in

the scope of the current fetch command.

5. Transactions are denned explicitly by the program. A begin and end tran

saction command are executed to delimit the beginning and end of the

transaction. A transaction can be an arbitrary collection of fetch, insert,

delete, and replace commands.

-13-

6. All commands between opening and closing a portal are considered one

transaction.

The conventional definition of a transaction is that it is a collection of reads

and writes which are atomically committed and serializable [GRAY78, ESWA76].

Lock modes 3-8 obey this model. For example, lock mode 4 can be implemented

as follows:

begin transaction
recreate the most recently fetched tuples
if tuples changed

then abort the replace or delete
else update relation(s)

end transaction

Lock modes 1 and 2, on the other hand, do not correspond to any atomically

committed and serializable collection of reads and writes. They both require

that locks be held after the end of an atomically committed action.

The next section describes several tactics for implementing portals.

a IMPLEMENTATION STRATEGIES

This section describes four strategies for implementing the portal abstrac

tion. It is expected that a data manager would implement most (or all) of them.

For each portal the DBMS would select one based on the estimated size of the

portal and hints from the user program. Selecting an implementation for a por

tal is analogous to optimizing a query in a conventional relational system. This

section also describes the transaction management facilities needed to imple

ment the six lock modes for portals.

3.1. Portal Implementation

The first strategy for implementing portals is to create an ordered tem

porary relation that contains the portal data. Portal commands would then be

translated into conventional queries on this temporary relation A tuple in the

-14-

temporary relation must contain a column for each attribute in the portal and a

disk pointer4 to each tuple used to construct it. For example, given the portal

let p be (EMP.name, EMP.age, EMP.dept, DEPT.mgr)
where EMP.dept = DEPT.dname

denned on the EMP and DEPT relations described in section 2. a temporary rela

tion is created for this portal by executing the following query

retrieve into TEMP(EMP.name, EMP.age, EMP.dept, DEPT.mgr,
EMP_TID=EMP.TID, DEPT_TID=DEPT.TID)

where EMP.dept = DEPT.dname

If TEMP is organized as an ordered relation [ST0N82a], the DBMS will automati

cally create and maintain the UD attribute using an auxiliary storage structure

called an ordered B-tree (OB—tree). An OB—tree is similar to a B+—tree (i.e.,

data is stored in the leaves of the tree and a multi-level index is provided to

access the data as indicated in figure 3). The leaf pages in the tree contain

pointers to the tuples in the relation (Le., TIDs). The LID ordering of the tuples

is represented by the order of the TIDs in the leaf pages. Hence, traversing the

leaf pages from left to right scans the tuples in UD order (i.e., the first TID in

the leftmost page is the tuple with UD 1). Non-leaf pages contain a pointer to

the next level of the index or a leaf page and a count of the number of tuples in

that subtree.

The tree structure and the tuple counts can be effectively used by the DBMS

to retrieve or update tuples based on their UD. For example, to find the l-th

tuple, the DBMS begins at the root page and selects the subtree that contains

the tuple by performing a simple calculation. Assuming that st is the number of

tuples in the first i subtrees, i.e„

^ = 2 countj

4In a relationalDBMS, a pointerto a tuplein a relation is called a tuple identifier (TID).

L
f^

e
N

D

pa
ae

t\0
.

Lo
w

&
CO

Mi
rf"

p*
*f\

T*
r

P*
l*

r
p

w
r
W

p
*

«
e

*|
4

w
*,

4
*

a
i
i
j

!e
*f

F
ig

ur
e

3.
A

n
O

B
-t

re
e.

e
n i

-16-

the subtree that contains the i-th tuple is pointed to by the entry at

min \ st_i < I <i Si \

This process is performed iterative!)' until the algorithm reaches a leaf page

which is guaranteed to contain the tuple. The calculation at intermediate levels

of the tree to select a subtree must take into account the number of tuples that

precede the first tuple in the subtree. Assuming that this number is x, the cal

culation to select the correct subtree for intermediate levels is

min j x+Si-i < I ^ ar+s* j
i

The value for x is sti at the next outer level. The TID for the £-th tuple is stored

in the leaf page at entry I - x.

For example, in figure 3 to find the tuple with LID 17, the algorithm will

examine page 1 and select the second subtree because 17 is between 11 (Sj) and

18 (s^). Examining page 3 with x equal to 11, the algorithm selects page 10

because 17 is between 16 (x + s2) and 18 (x + s^). Page 10 is a leaf and the TID

for tuple 17 is stored in the first entry (l - x).

Insertions into an OB—tree are implemented by inserting a TID for a new

tuple into the appropriate leaf page and updating the counts. A standard B—tree

split algorithm is used if the leaf page is full [KNUT73]. Deletions and replaces

are implemented in a similar way. A complete description of these operations

and a prototype implementation of OB—trees are described in [LYNN82].

In the first implementation strategy, the DBMS executes portal commands

by transforrning them into queries on the temporary relation. For example, the

fetch command

fetch buf where p.age < 25

is implemented by executing the query

-17-

retrieve (TEMP.UD, TEMP.all) where TEMP.age < 25

Recall that the number of records that can fit in the program buffer is passed to

the DBMS along with the command so that only the requested number of tuples

are returned.

A position fetch is implemented by executing two retrievals. Suppose the

position fetch was

fetch buf after p.LID > 10 and p. age < 25

and that the program buffer can hold n records. First, the following query is

executed to find the LID of the first qualifying tuple

retrieve (1 = min(TEMP.LID)) where TEMP.LID > 10 andTEMP.age < 25

Then the DBMS can execute a query to return n tuples beginning with the Z-th

tuple. The query to retrieve these tuples is

retrieve (TEMP.UD, TEMP.all) where I ^ TEMP.LID and TEMP.UD < 1+n-l

After and around position fetches can be implemented using a similar tech

nique.

Fetch previous commands can be implemented by scanning the OB—tree

backwards. Fetch commands that include joins with other relations are easy to

implement because the portal is stored as a relation. Update commands on the

portal are implemented by executing queries to update the temporary relation

and writing an intentions list that will be used by the transaction manager to

update the primary relation(s). Finally, restriction commands are implemented

by creating a new temporary.

The advantages of this implementation are that large portals can be

browsed and that forward and backward searching can be implemented

efficiently. The disadvantages are the time and space it takes to create the tem

porary relation.

-18-

A possible improvement to this strategy is to create the temporary relation

incrementally. At any time the temporary relation contains all tuples with LIUs

less than the maximum UD that has been fetched thus far. If the data required

by a fetch command is in the temporary relation, a retrieval is executed to fetch

it. Otherwise, the portal query is resumed to retrieve more data into the tem

porary and the retrieval is executed. An update command can only modify data

that has already been fetched so the data to be changed must be in the tem

porary.

Incrementally constructing the temporary reduces the time needed to open

the portal because the retrieval to create the temporary is deferred. However,

this implementation introduces more variability in the time to execute a fetch

command because the portal query may have to be resumed. The space

required for the temporary will be reduced if the user specifies a query that

generates a large portal, but does not examine all of the data in it.

Another improvement is possible when the relation on which the portal is

defined is already maintained by the DBMS as an ordered relation. If the portal

definition selects all fields from this relation with no restriction, then the DBMS

can directly utilize the underlying primary relation structure and no copy is

required.

The second strategy for implementing portals is to store the temporary

relation in primary memory. The representation in memory can use an OB—tree

or a conventional data structure, such as an AVL-tree, hash table, or array. The

implementation of portal commands is identical to that described above. The

advantage of this implementation is that portal commands willbe faster because

primary memory is faster than secondary storage. Update commands will also

be faster because only the intentions list has to be written to disk. The disad

vantage of this implementation is that only small portals can be stored in pri-

-19-

mary memory. Of course, a main memory implementation can also be incre

mentally materialized to reduce space requirements.

The third strategy for implementing portals is to store pointers to the

tuples in the primary relations in the temporary relation (i.e., the temporary is

a kind of secondary index). For example, given the portal definition

let p be (EMP.all) where EMP.salary > 20000

the DBMS does not have to make a copy of the data in the EMP relation The

ordered temporary relation could be defined by

retrieve into TEMP(EMP.TID) where EMP.salary > 20000

Fetch commands that involve only the LID attribute can be implemented by res

tricting TEMP to the qualifying entries and using the 77Z7s to access the EMP

tuples. The advantage of this implementation is that it reduces the space

required to store the temporary relation. The disadvantage is that it requires

an extra disk read to fetch the data so portal commands will be slower.

The fourth strategy for implementing portals is to materialize the portal

dynamically and to buffer only the amount of data needed by the current fetch

command. For example, suppose the browsing program issued a sequence of

fetch commands that scrolled forwards through the portal. The DBMS would

execute the portal query to generate tuples to be returned by the current com

mand and would keep them in main memory buffers. The next fetch command

would be implemented by continuing the portal query and discarding the tuples

buffered for the previous fetch. If the browsing program issues a fetch com

mand that requires data that has already been discarded, the portal query must

be restarted at the beginning.

The advantage of this implementation is that very large portals can be

browsed without having to make a copy of the data. The disadvantages are that

some commands will be slow and that fetch previous commands cannot be

-20-

implemented efficiently. An obvious improvement to this strategy is to buffer

more data than was returned by the last command which would allow some fetch

previous commands to be implemented.

3.2. Concurrency Control

The implementation of the six lock modes for portals can use a conventional

transaction manager that locks physical entities and supports operations to

begin, commit, and abort transactions. The general strategy is to update the

temporary relation when the update command is executed. In addition, updates

for the primary relation(s) are generated and written to a log. These updates

are either committed immediately (lock mode 2) or at a later time (lock modes

1 or 3-6).

Lock modes 1 and 2 can be used only if the portal is implemented by

dynamic materialization (Le., strategy four discussed above). An update is com

mitted when the tuple is not included in the next fetch command (i.e., it is

removed from the buffers). The DBMS locks tuples which are buffered in main

memory. Locks can be released immediately if the portal is defined on a single

primary relation If a portal is defined by a join, the lock is released only if the

tuple is not used to construct another portal tuple which is currently locked.

For example, suppose the portal definition was

let p be (EMP.name, EMP.dept. DEPT.floor, DEPT.mgr)
where EMP.dept = DEPT.dname

and two employees, say Smith and Jones from the toy department, are in the

DBMS buffer. Consequently, the two EMP relation tuples and the DEPT relation

tuple would be locked. If Smith's tuple was removed from the portal, the lock on

his tuple in the EMP relation can be released. However, the lock on the toy

department tuple could not be released because it is used to construct Jones'

tuple in the portal. In other words, the buffer must be searched to see if the

-21-

department tuple is used elsewhere before that lock can be released.

Locks do not have to be released on every fetch. For example, it may be

advantageous to perform lock releases periodically. Releasing locks is analogous

to garbage collection of free space by a programming language run-time system.

However, in contrast to garbage collection which is performed when free space

is exhausted, a DBMS wants to release locks as soon as possible to increase

parallelism.

Lock mode 2 differs from lock mode 1 only in the time at which updates are

committed back to the underlying primary relation(s). Locking is implemented

the same way it is for lock mode 1.

Lock mode 3 which requires refetching the tuple being changed can be

implemented as follows. The primary relation(s) are not locked. When a replace

or delete command is executed, the 77Z7s in the temporary relation are used to

lock and refetch the values from the primary relation(s). The update is aborted

if the value in the primary relation is different than the value in the temporary

relation. Otherwise, the primary relations are updated and the locks are

released. Lock mode 4 can be implemented in the same way.

Lock mode 5 and lock mode 6 can be implemented in an obvious way. In

lock mode 5, the program indicates when the begin and commit operations

should be executed. In lock mode 6, the DBMS begins the transaction when the

portal is opened and commits updates when the portal is closed.

4. DISCUSSION

This section discusses several issues concerning the design and implemen

tation of the portal abstraction. First, the language constructs presented in

section 2 map a portal into a buffer which is a static 1-dimensional array. The

constructs can be generalized to dynamic and n-dimensional arrays. If the pro-

-22-

gramming language into which the constructs are embedded has dynamic

arrays, the size of the program buffer can be redefined at run-time. The DBMS

can pass a count of the number of records that will be returned by a fetch com

mand before the records are returned. The run-time support routines in the

user program can dynamically allocate an array to hold the returned records.

This would relieve the program of executing multiple fetch commands when the

number of returned tuples exceeded the static buffer size.

Ordered relations can also be generalized to n dimensions [ST0N82a]. In

this case a relation can have several UDs, one for each dimension. The language

constructs discussed in section 2 can be easily generalized to support a portal

with multiple UDs which is mapped to an n-dimensional buffer. This feature

would be especially valuable to browsers such as SDMS [HER080] which imple

ment 2 dimensional scrolling.

The second design issue concerns how the portal commands are integrated

into existing query language embeddings that do not have an explicit open com

mand (e.g., EQUEL [ALLM76]). The basic idea is to generalize the notion of a

range variable to include portal constructs. For example, the command

range of buf is p(EMP.all)
where EMP.age < 40
with lock-mode=3

would be equivalent to

let p be (EMP.all) where EMP.age < 40
open p into buf with lock-mode=3

Lastly, a database system that implements portals must be able to save and

restore the currently executing query because programs can open multiple por

tals and because several implementation strategies discussed in Section 3 are

based on restarting the portal query.

-23-

5. CONCLUSIONS

A new application program interface to a relational database system has

been described which makes it easier to implement database browsers. The

interface is based on the concept of a portal that supports querying and updat

ing an ordered view. Several lock modes were suggested that can be used to

implement browsing transactions with varying consistency and parallelism

requirements.

Acknowledgements

Several people have contributed ideas that have been incorporated into this

proposal. We want to thank Paul Butterworth, Joe Kalash, Richard Probst, Beth

Rabb, and Kurt Shoens for their contributions.

[ALLM76]

[ASTR76]

[BARG80]

[CATE80]

[DAYA78]

[ESWA76]

[GRAY78]

[HER080]

[J0Y79]
[KNUT73]

[KUNG81]

[LYNN82]

[MARY80]
[R0WE79]

[R0WE82]

[SCHM77]

[STAL81]

[ST0N75]

-24-

References

Allman, E. at. al., "Embedding a Relational Data Sublanguage
in a General Purpose Programming Language," Proc. ACM-
SIGPLAN-SIGMOD Conference on Data Abstraction, Definition
and Structure, Salt Lake City, Utah, March 1976.

Astrahan, M. M., et. al., "System R: A Relational Approach to
Data," ACM TODS, June 1976.

Bhargava, B., "An Optimistic Concurrency Control Algorithm
and Its Performance Evaluation Against Locking," Proc. Inter
national Computer Symposium, Taipai, Taiwan, Dec. 1980.
Catell, R., "An Entity-based Database User Interface," Proc.
1980 ACM-SIGMOD Conference on Management of Data, Santa
Monica, CA, May 1980.

Dayal, U., and Bernstein, P., "On the Updatability of Relational
Views," Proc. 4th Very Large Data Base Conference Montreal,
Canada, October 1978.

Eswaren, K, et. al., "On the Notion of Consistency and Predi
cate Locks in a Relational Database System," CACM, November
1976.

Gray, J., "Notes on Data Base Operating Systems," IBM
Research, San Jose, CA, Report RJ 2188, February 1978.

Herot, C, "SDMS: A Spatial Data Base System," TODS,
December 1980.

Joy, W„ "The vi Text Editor," unpublished working paper.

Knuth, D., "The Art of Computer Programming, Vol 3: Sorting
and Searching," Addison Wesley, Reading, Mass., 1973.
Kung, H. and Robinson, J., "On Optimistic Methods for Con
currency Control," ACM TODS, June 1981.
Lynn, N., "Implementation of Ordered Relations in a Data Base
System," University of California, Berkeley, CA, Masters
Report, Sept. 1982.
Maryanski, F., "Query By Forms," (unpublished presentation).
Rowe, L. and Shoens, K, "Data Abstraction, Views and Updates
in RIGEL," Proc. 1979 ACM-SIGMOD Conference on Manage
ment of Data, Boston, Mass. May 1979.

Rowe, L. and Shoens, K., "FADS - A Forms Application Develop
ment System," Proc. 1982 ACM-SIGMOD Conference on
Management of Data, Orlando, FL, June 1982.
Schmidt, J., "Some High level Language Constructs for Data of
Type Relation," ACM TODS, Sept. 1977.
Stallman, R.M.. "EMACS The Extensible, Customizable Self-
Documenting Display Editor." Proc. 1981 ACM-SIGPLAN/SIGOA
Symp. on Text Manipulation, SIGPLAN Notices, 16, 6, June
1981.

Stonebraker, M., "Integrity Constraints and Views by Query
Modification," Proc. 1975 ACM-SIGMOD Workshop on Manage
ment of Data, San Jose, CA, May 1975.

[ST0N82]

[ST0N82a]

[WASS79]

[ZL0082]

-25-

Stonebraker, M. and Kalash, J., "TIMBER: A Sophisticated Rela
tion Browser," Proc. 8th International Conference on Very
Large Data Bases, Mexico City, Mexico, September 1982.

Stonebraker, M., et. al., "Support for Document Processing in
a Relational Database System," Electronics Research Labora
tory, Memo M82/15., March 1982.

Wasserman, A., "The Data Management Facilities of PLAIN,"
Proc. 1979 ACM-SIGMOD Conference on Management of Data,
Boston, Mass., May 1979.

Zloof, M., "Office-by-Example: A Business Language That
Unifies Data and Word Processing and Electronic Mail," IBM
Systems Journal, Fall 1982.

	Copyright notice 1982
	ERL-82-80

