
 

 

 

 

 

 

 

 

 

Copyright © 1982, by the author(s). 
All rights reserved. 

 
Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 
lists, requires prior specific permission. 



A COMPUTER-ASSISTED STUDY OF

FORCED RELAXATION OSCILLATIONS

by

T.S. Parker and L.O. Chua

Memorandum No. UCB/ERL M82/81

5 November 1982

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



A Computer-Assisted Study
of

Forced Relaxation Oscillations^

Thomas S. Parker

Leon O. Chua*

ABSTRACT

A piecewise linear version of the forced relaxation oscillator is studied. Computer
results are discussed and informal explanations of some properties of the subharmonic
solutions are given. The experimental results display a unique interrelationship between
the subharmonics in that all subharmonics can be decomposed into a fundamental set
containing the odd order, single loop subharmonics.

tResearch supported in part by the Hertz Foundation, by the Office of Naval Research under Contract N00014-76-C-0572, by the
National Science Foundation under Grants ECS 80-20-640/ENG-7722745, and by the Joint Services Electronics Program Contract F49620-
79-C-0178.

*The authors are with the Department Of Electrical Engineering and Computer Sciences and the Electronics Research Laboratory,
University of California, Berkeley, CA 94720.



1. Introduction

1.1. Selected History

The classical forced relaxation oscillation equation is the van der Pol equation:

ex + (x2-!)* + ex = bcos(<ot). (1.1)

In 1949 Levinsonil] attacked this equation analytically by replacing the cubic nonlinearity with a piecewise

linear one. Considering the problem for e small, he proved that for some intervals of b the equation exhibits

random behavior. For these same intervals of b he also proved the existence of a closed interval of rotation

numbers two of which are stable. The interval of rotation numbers has the form [1/(2 /H-l), 1/(2/1-1)] where

n is a large integer. The endpoints of the interval are the two stable rotation numbers.

More recently Levi [2] expanded this result. He used a smooth nonlinearity required to be close to a

piecewise linear characteristic and he also replaced the sinusoidal forcing function with a smooth function close

to a square wave. For € small and fixed, Levi proved the b axis is divided into intervals of which there are

three types:

A-type where a single, stable subharmonic exists;
B-type where two stable subharmonics (plus random behavior) exist;
g-type where bifurcations occur.

Levi's B-type intervals correspond to the intervals of b found by Levinson. The A- and B-type intervals alter

nate and are separated by the g-type intervals which are small and do not concern us.

1.2. The Purpose of the Paper

The purpose of this paper is threefold. The initial motivation was to obtain accurate data on the different

behaviors displayed by a van der Pol type equation. High accuracy is essential since systems which exhibit sto

chastic behavior are, by their very nature, extremely sensitive to small perturbations. To this end a piecewise

linear approach was chosen. The advantage of using piecewise linear analysis over standard integration tech

niques is that error does not accumulate at each point where the trajectory is evaluated—error only accumulates

when the Region boundaries are crossed. Hence the results presented here are the most accurate ever obtained



for a forced relaxation oscillator. For a further discussion on accuracy consult Appendix I.

The second reason for this paper is Levi's paper. He proved what types of behavior are possible and how

this behavior is structured as b is varied. His results are a major breakthrough yet they are theoretical in

nature—they leave some quantitative questions unanswered. How small must e be? How do the lengths of the

A-type and B-type intervals depend on e and 6? This paper answers some questions of this type as well as

numerically verifying some of Levi's results.

Since Levinson's and Levi's papers contain mathematical proofs of difficult theorems, it is not easy to

obtain an intuitive understanding of forced relaxation oscillations from them. The main purpose of this paper

is to give that intuitive understanding. A state space approach is used to explain the existence of subharmon

ics, intervals of rotation numbers, and random behavior. Using evidence gathered from computer simulations

we show that the different subharmonic solutions of the piecewise linear relaxation oscillation equation are inti

mately related and can be decomposed into a fundamental set of subharmonics.

1.3. The Circuit and the Equation

Consider the circuit in Figure 1(a). The equation governing the current is

7+ jf'(i) t+j^i =̂ -cosivt) (1.2)
where' indicates —.

dt

It is standard to normalize differential equations to have dimensionless time. By defining o)0:=l/VZC,

f':=(u0f, ando/^Wwo, (1.2) becomes

^T^-TT + /'(') -TT + ^TC'* = ^»'cos(«'/9. (1.3)
at at

Next define

c := VZ/C (1.4.a)

and

b := Am' (1.4.b)

to get



d2i di6-777 + «/"(/)-77 + €/ = bcosUt').
dtl dt

(1.5)

Equations (1.4) will be useful later since they allow us to relate our results (with dimensioned time) to previous

work.

For /(/) = (1/3) i3—/ (Figure Kb)) (1.5) becomes the van der Pol equation. We consider the case

where the resistor characteristic is the three-segment, piecewise linear curve in Figure 1(c). The vertical lines

/=±/0 split the i-v plane into three Regions. The Regions are numbered from right to left. The subscript /

(ranging from one to three) will be used to denote a Region dependent value. Within each Region (1.2)

reduces to a linear equation.

To apply state space techniques, choose //, and vc as state variables and rewrite (1.2) as

k R, 1 k
+

vc L L vc

-1
0

C

Asin(<ot) — Voi
L

0

(1.6)

where R{ and Voi are the slope and y-intercept of the line lying on the /th segment of the resistor characteristic.

Equation (1.6) is the one we consider in this paper. To simulate the relaxation oscillation equation we require

Ri = R3>0, JR2<0and VQ2=>0.

We should mention here how Levinson's and Levi's choice of variables relates to ours. Levinson's *i

and Levi's x both correspond to our iL. Their second variable (*2 and y, respectively) is equal to the sum of

vc and the voltage source1. vc is a more natural choice of state variable than vc + Asmiatt) and, since our

goal is to gain physical intuition, we will use vc as a state variable even though it may appear inconvenient to

do so.

2. The Autonomous Case

The solution of (1.6) with A =0 is

= vue li ° + v2/e 2' ° +

where af := —RJIL^ ft :=v^-o^ , su := (*/+&, sn :-» a/-/3,and the eigenvectors are

(2.1)

'Remember that Levi does not use a sinusoid as a driving function. He states that this discrepancy should make little difference in
the behavior of the system.



vw =

and

v2/ =

vn =

i^O + s2iC(vc(t0)-Voi)

SU~ S2i

k(t0) + suC(vc(t0)-Voi)

Sit ~ s2i

We only consider the case where su and s2i are real since it is only for real eigenvalues that relaxation oscilla

tions occur.

The following three sections explain the dynamics of each Region separately by extending, in turn, each

segment of the resistor characteristic into the whole i-v plane. To simplify the explanations we assume L is

small. This assumption corresponds to small e.

2.1. Region I

In Region I, R\ > 0, hence a\ < 0 and s2\< S\\ < 0. The approximations for L small are s\\ =» —\/R\C,

52i = -R\IL,

vc(t0)-Ki
Ri

vC(t0)-V0i
and V21

-1/C

-52/

1/C

k(0 -
vc(t0)-Ki

/?! (2.2)

Consult Appendix II for details on the approximations used.

The slow eigenvector vn lies along the resistor characteristic while the fast eigenvector v2i is horizontal2.

Note that the fast eigenvalue tends to —«> as L —"0. Thus, for any initial condition not on the resistor charac

teristic, the initial motion is a rapid horizontal jump to the resistor characteristic (Figure 2(a)). Once the com

ponent due to the fast eigenvector has died out, the trajectory exponentially decays along the resistor charac

teristic at the slow rate which is independent of L. Region I is stable and all trajectories tend toward the node

at (0, Vol) as r-*«j.

Note that once v2ieS21 ° becomes negligible (which occurs very quickly for small L) the dynamics in

Region I are essentially one-dimensional—the subsequent motion occurs only along vn. This reduction of the

system to one dimension is a major reason analytical results have been obtained for small e.

^e define the slow eigenvalue as the one with the lesser absolute value. The remaining eigenvalue is the fast one. We define the
slow (fast) eigenvector as the eigenvector associated with the slow (fast) eigenvalue.



2.2. Region II

Here R2<0 forcing a2>° and s\2> s22>0. Region II is unstable with a node at the origin. The

approximations for L small are s\2 = -R2/L, s22 = —l/R2C,

v12 =
k(t0) -

0

vC(0
R and v22 =

vc(t0)

Ri
vc(0

(2.3)

As in Region I the slow eigenvector v22 lies along the resistor characteristic and the fast eigenvector v12 is

nearly horizontal. Any trajectory with an initial condition not on the resistor characteristic will move horizon

tally and very rapidly away from the resistor characteristic (Figure 2(b)). Again we see a reduction of the sys

tem to one dimension.

2.3. Region III

Due to symmetry, Region III behaves identically to Region I except the stable node is (0, V0$.

2.4. Regions I, II and III Combined

Figure 2(c) shows a phase portrait for the entire system obtained by joining the phase portraits of the

three different Regions. Due to the expanding nature of Region II and the contracting nature of Regions I and

III, it can be shown that all trajectories tend toward a unique, stable limit cycle[3]. Examples are shown in Fig

ure 3.

Notice the limit cycle looks like a parallelogram for small e. The horizontal segments of the parallelogram

are traversed very quickly; in fact, as this plot was being made, the motion appeared to be instantaneous. As e

increases the slopes of the slow eigenvectors decrease and the sides of the limit cycle move away from the

resistor characteristic. Also as e increases, the fast eigenvalues decrease and the slopes of the fast eigenvectors

increase. This causes the limit cycle to become more rounded. As €—°° the system becomes lossless and the

limit cycle becomes an ellipse.

3. The Nonautonomous Case



3.1. The Exact Solution

With A 5*0 the solution of (1.6) is the sum of the autonomous solution (2.1) and the contribution from

the forcing function which consists of a transient and a steady state term3:

Asue^'-'J

0

1

*i/ - s2l

•Jsfj+Q)'

As2ieS2iU~to)
_. cos(<ufo+0w) ' cosUf0+<ft2/)

Ly/S2i+Q>2 L^JS2i+Q>2
AW"* , , Aale^'-'J ,

-cos{(ot0+<f}ii) H ,— cos{a>t0+<t>2i)
Jsl+a>:

W(rf/ + »2><*& + «2>

(osmia) t + O)
U/C)cosUf + 0,)

(3.1)

where (fy/^Tan'K—fy/aO for./=l,2; 0,:=arg( —lap +y(<uj—a?)) and a, and ft are defined after equation

(2.1). The arg(z) notation denotes the angle of the complex number z and is used since 0/ may occur in any

quadrant and Tan"1 only gives answers in quadrants I and IV.

To understand the behavior of (3.1) we will simplify it in two steps. The first step is to consider small L

(corresponding to small e). The second is to consider o> large. The reason for the second assumption will be

given when we do it.

3.2. The Solution for Small L

For L small, (3.1) can be approximated by

vc(0~ K,-
Acos(o> t0 + <j>\) \/R>

1
R,C

v*
+

Rik(t0) - vc(t0)- Voi- Asin(ait0)

Vi + (ft>*/C)2

VRi
0

<oCsin(<of+0/)
cosGuf+0/)

LIR, (3.2)

where <fo/:=Tan l(l/o>RfC) and 0;:«arg(<u/l/C + j). For details on the approximations involved, see Appen-

3Derivation of this solutionis straightforward, but very messy.



dix IL Notice that the slow eigenvector still lies along the resistor characteristic and the fast eigenvector is still

horizontal. The main qualitative difference between the nonautonomous and the autonomous solutions is the

sinusoidal terms. The system is still in some sense one dimensional.

3.3. The Solution for Small L and Large o>

Equation (1.5) is the dimensionless form of the relaxation oscillation equation and is the version that

Levinson and Levi studied. In their work dimensionless frequency is held constant. The relation between

dimensioned frequency o> and dimensionless frequency «' is a> = a>'a>0 = a//VZC. Thus constant <o' implies that

as L—K), oi—oo. For o> large (3.2) can be approximated by (see Appendix II)

vc(0-Yoi
Ri

vc^O-Ki

Ri
iin(<0t)

oi

R,C
+

k(0-
*c( O -Ki+A sin(o> t0)

Ri LIR,

(3.3)

Note that vc has simplified to the autonomous solution and iL is the autonomous solution with two extra

terms. One term is a steady state sine wave and the other is an additional term in the coefficient of the fast

exponent.

3.4. The Dynamics of Each Region for Small L and Large o»

In Region I the motion described by equation (3.3) is the same as the autonomous case except for the

sinusoidal variations in iL. The initial motion is a quick horizontal jump toward the resistor characteristic. Fol

lowing this initial jump, the trajectory straddles the resistor characteristic and slides down it toward (0, Vol)

always oscillating horizontally (see Figure 4(a)). Note how the trajectory bunches up as it travels down the

characteristic. This is due to the exponential decay of the autonomous components of vc and /^. The behavior

in Region II is quick and horizontal. The behavior in Region III is the same as in Region I except for the shift

in the resistor characteristic (see Figure 4(b)).

Under the assumptions of small L and large o> the dynamics of each Region are simple enough. It is clear

that the key to the variety of behavior exhibited by the relaxation oscillation equation must lie in the boundary

crossings.
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3.5. The Boundary Crossing

Consider a trajectory crossing from Region I to Region II. Region II is entered when /^,(r) = /0. Let t'

denote the time when this occurs and let v'c:= vc(f'). Then 70, v'c and t' are the initial conditions for Region

II. One of two things can happen after entering Region II: the trajectory may cross Region II and enter Region

III or the trajectory may turn and reenter Region I.

We can get a good idea of which route the trajectory follows by examining the iL component of the fast

eigenvector in Region II (hereafter called the fast fc term). Imagine Region II extended to the whole i-v

plane. If the fast iL term is positive, then //,—+«> as r—♦«>. If it is negative, then /£—*—«> as /-♦<». Hence

the fast iL term predicts which Region the trajectory eventually lies in.

The fast iL term for Region II for small L and large o> is

v'c+Asiniut')
I0 5 . (3.4)

Define g(t') :=» I0Ri— Asmitat'). If v'c = g(t'), the fast iL term is zero; if v'c> g(t'), the fast iL term is

positive; if v'c< g(t'), the fast iL term is negative. Hence git') acts as a time-controlled gate. It allows cer

tain trajectories to pass through to Region III while the others are returned to Region I. Picture g(t') as the

lower end of a wall lying on the line ii = l0. The wall oscillates vertically with amplitude A and frequency o>

and the oscillation is centered at the break in the resistor characteristic. Any trajectory which leaves Region I

below this oscillating barrier will pass into Region III. Trajectories hitting the barrier will pass through it into

Region II, turn, and reenter Region I. From symmetry a similar gate exists at the other break in the resistor

characteristic. See Figure 5.

We should mention here that g(t') predicts whether the long term motion (when Region II is extended to

the whole plane) is to the left or the right. This is not exactly what we want. We are interested in the first

Region the trajectory enters after entering Region II. The two answers may not agree4. In Appendix III we

show that an exact gate function does exist (without assumptions on L and o>) and is close to g(t') for L small

and oi large. For the purposes of our explanation the discrepancy between g(t') and the actual gate function is

unimportant.

*This will happen at the Region I/II boundary when the fast iL term issmall and negative. The slow iL term (which isalways posi
tive) would then push the trajectory into Region I before the contribution from the fast iL term grows enough to force the trajectory into
Region III.



3.6. Overall Dynamics

We now turn our attention to the problem of subharmonics. To classify them we use rotation numbers.

We define the rotation number of a periodic solution as two positive integers separated by a slash, p:=p/q,

where p is the number of times the origin is encircled by the periodic solution5 and q, called the order of the

subharmonic, is the number of periods of the forcing term contained in one period of the periodic solution.

This concept of rotation number is less general than the usual one since it can only be applied to a periodic

solution. Yet, in an experimental situation, it is much more useful since it corresponds to the method actually

used to measure rotation numbers. It also conveys more information. A rotation number of 2/3 is distinct

from a rotation number of 4/6. For a discussion on the exact relationship between the two concepts of rotation

number, see Appendix IV.

Plots of rotation numbers for various regions of e and b are given in Figure 6. These plots are similar to

those in [4] except we have plotted data only at the exact points of the b-e plane for which we ran a simulation.

Most of the remaining Figures are various collections of periodic solutions. They will be discussed later, but it

may be helpful to glance at them now. For details on how these results were obtained see Appendix I. We

used e, b and T (dimensionless period := 2irl<a') as parameters so the results can be easily compared to previ

ous authors' work. Use equations (1.4) to change back to circuit parameters. All results in this paper were

computed with R\=—R2=Rs=l£l, I0=IA, ando/=l.

3.6.1. Numerical Verification of Some of Levi's Results

Levi studied the dimensionless relaxation oscillation equation for e small. We have seen the dynamics for

small e are simple so we will begin our discussion with this case. Unless explicitly stated otherwise, this section

deals exclusively with the case of small e. Remember that small 6 implies large a> since Levi holds <u' constant.

We will not attempt to prove the existence of subharmonics, but will be satisfied explaining some of their pro

perties.

Figure 7 is two plots of 1/p versus b. Figure 7(a) fixes e at 0.005. It may be hard to tell from the Fig

ure, but every oddorder subharmonic from p = 1/1 to p = 1/69 is present and none other. Figure 8 shows some

representative periodic solutions for 6 = 0.005.

5AI1 trajectories encircle the origin counterclockwise for the equation studied here.
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Figure 7(b) is a plot of 1/p versus b for 6= 0.0025. The triangles on the b axis indicate values of b for

which the program did not converge in the allowed time. The value of e for Figure 7(b) is half that of Figure

7(a). Thus to keep dimensionless frequency for each Figure constant at a>'=l, we need to double the dimen-
i

sioned frequency a>. Since the slow eigenvalue (which governs the decay along the resistor characteristic) is

independent of 6 for 6 small, the doubling of <o allows twice as many oscillations to fit in the same length of

resistor characteristic. This explains the doubling of the range of the 1/p axis in Figure 7(b).

The preponderance of odd order subharmonics for small 6 is easily explained by the gate mechanism.

Consider a trajectory oscillating down the resistor characteristic in Region I (Figure 9). The gate is oscillating at

the same frequency. When ii is at a minimum in its oscillations, the gate is at a maximum. From geometrical

considerations ii will tend to first hit the boundary near one of its minima. This is a time when the gate is at

its highest point. The same argument applies when the trajectory passes from Region III to Region II except

that there iL first hits the boundary near a maximum. Since one boundary is crossed near a minimum and the

other near a maximum, the number of half periods (of the forcing term) between the two times must be odd:

(2k + l)T/2 for some positive integer k. The total period of the subharmonic is simply twice that6 or

{2k + \)T which is an odd multiple of the forcing period.

The observation that iL first hits the boundary near a minimum seems obvious enough, but it fails for

small A. Consider the trajectory in Region I. Note that the horizontal motion of the trajectory has two com

ponents: the decay of the slow eigenvector toward the left and the oscillation of iL alternately to the left and to

the right. For large A the rightward oscillation of fc overwhelms the leftward motion of the slow eigenvector

and for nearly half a period the horizontal motion is to the right away from the boundary. However, if A is

small enough, the leftward motion of the slow eigenvector will be larger than the rightward motion of the iL

oscillation, there will be no net rightward motion and the boundary may be crossed at any point in the oscilla

tion. Thus even order subharmonics might be found for small A. In fact, we did find a 1/70 subharmonic for

6= 0.005 and b = 0.007. Levi's A and B intervals are guaranteed to exist inside an interval of b equal to

[c, 1- c/2] where c > 0 is some small constant. Hence for 6=0.005, c > 0.007.

*To be completely honest we note that this step depends on kbeing the same for Regions I and III. This may be proven using sym
metry arguments. An intuitive explanation is that the trajectory must travel the same distance down the resistor characteristic in Region I
as it travels up the resistor characteristic in Region III. Therefore the times spent in each Region cannot differ by a whole period.
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For larger e the problem becomes more complex. An examination of the fast iL term of the exact solu

tion shows the gate is still sinusoidal, but it is no longer 180°out of phase with the iL oscillations. Figure 10

shows two portions of a periodic solution, each one entering Region II from Region I. One of them hits the

gate and reenters Region I while the other passes below the gate and enters Region III. None of the small 6

trajectories we saw ever hit the gate, they always passed below it.

Returning to the small e discussion and Figure 7(a), notice that as b decreases from 1.1 the interval of

existence of each subharmonic shrinks. The result is that a smooth curve joining the centers of each row of tri

angles is not a straight line, but is slightly bent. This bowing can be explained by the time-controlled gate. The

amplitude of oscillation of the gate is b (for o>'=l, A = b). Thus for large b, the gate opens wider than for

small b. In fact, for b^l the gate crosses the iL axis. This is where the 1/1 subharmonic exists. As b

decreases, the amplitude of the gate oscillation decreases and the trajectory must travel farther down the resis

tor characteristic to pass under the barrier (Figure 8). The decrease in the "width" of the gate is proportional

to b which is why Figure 7 is nearly linear. The bowing results from the previously remarked bunching of the

trajectories as they travel down the resistor characteristic.

3.6.1.1. The Window Map

We now turn our attention away from trajectories and toward the Poincare map. The Poincare map,

P:R2—R2, takes the point (/£0, vCo) to the point (/^(D, vc(D) where the trajectory has initial conditions

(/L(0), vc(0)) = (/Lo, vq,) and T is the period of the forcing term. Thus P maps a point to where it will be

one period later. The Poincare map is useful for it turns a three-dimensional problem into a two-dimensional

one.

The key construction in Levi's proof is the window map, N. N takes a point from a skinny rectangle r in

the ifVc plane to a point in the symmetrically located rectangle —r (Figure 11(a)). The rectangle r is chosen

such that it is one Poincare map long, that is, the segment AA' is mapped into the segment BB' under one

iteration of P.

The window map is constructed from the Poincare map as follows. Consider the image of r after one

Poincare iteration (Figure 1Kb)). Levi shows that the bottom part of r is swept over into Region III with no

change in orientation. The top portion of r is shifted downward, but remains in Region I. A very small length
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of r is stretched across Region II and joins the two major portions.

One more iteration of P causes the whole image P2{r) to lie in Region III and after some more Poincare

iterations the image of r has reached the vicinity of -r (Figure 11(c)) and we have the window map N7. JV(r)

consists of three parts: the stretched region and the two undistorted regions which the stretched region con

nects. The stretched portion corresponds to the very small slice of the original set r which is the unmarked

area in Figure 11(d).

There are two things to note here. The window map N contains a snake-like bend. This bend gives rise

to a Smale's Horseshoe and chaotic behavior. Also, Levi showed that the lengths of the two undistorted por

tions of r (the dotted and cross-hatched areas in Figure 11(d)) change with the amplitude of the forcing term.

This dependence explains the patterns in the behavior of the equation as the amplitude is varied.

Figure 12 is a computer simulation of this phenomenon. Levi proves r is so skinny that it can be accu

rately approximated by a line segment. In Figure 12(a) the line segment is chosen such that the top endpoint is

mapped into the bottom endpoint under one iteration of the Poincare map. Figure 12(b) shows the segment

after one application of Py Figure 12(c) after one more application. Figure 12(d) shows P2(t) for a slightly

different forcing amplitude. Notice the change in lengths of the two segments of P2(r). These Figures were

obtained by dividing the initial segment into one hundred evenly spaced points. At this resolution, the

stretched connecting piece does not show. We increased the resolution to the equivalent of one hundred

thousand evenly spaced points along the segment and the stretched piece still did not show which gives some

idea of how small a portion of r it actually is.

3.6.2. More on Single Loop Subharmonics

Now we expand our discussion and consider the behavior of the system for large e. Figure 13 is a collec

tion of single loop subharmonics of order one to six for larger values of 6. Note the periodic solutions tend to

be fatter. This is mainly due to the dependence of a> on 6. The most striking feature is the existence of even

order subharmonics. As expected, the 1/6 subharmonic exists for small 6, but the 1/4 subharmonic can occur

for b > 0.3 and the 1/2 subharmonic exists for b > 0.7. This does not contradict our earlier prediction that

even order subharmonics should only occur for small amplitudes since e is well out of the range in which the

7It is not thiseasy, but the basic idea is still valid. See [2] for the details.
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prediction is valid.

Next note the similarity in shape between the left half of the 1/2 subharmonic and the left half of the 1/3

subharmonic. Also note the similarity between the right halves of the 1/2 and 1/1 subharmonics. It appears

that for iL > 0 the trajectory behaves like a 1/1 subharmonic and when Region III is entered it behaves like a

1/3 subharmonic. Moreover, 0.5 (1/1) + 0.5 (1/3) = 1/28. So in some sense a 1/2 subharmonic is made up of

half a 1/1 subharmonic and half a 1/3 subharmonic. The fact that the p = 1/2 region of existence on the b-e

plane (see Figure 6) lies between the p = 1/1 and p= 1/3 regions lends weight to this interpretation.

The same observation can be made for p = 1/4 where the left half looks like p = 1/5 and the right half like

p= 1/3. Again 0.5 (1/3) + 0.5 (1/5) = 1/4 and the p = 1/4 region lies between the p = 1/3 and p = 1/5 regions.

A similar argument holds for p = 1/6.

It appears the even order, single loop subharmonics are built from the odd order, single loop subharmon

ics. Picture it as follows: For a 1/1 subharmonic the oscillations of the trajectory somehow becomes synchron

ized to the oscillation of the gates. The trajectory eventually settles down and follows a closed path. This

periodical solution is symmetrical about the origin; that is the trajectory behaves the same when it enters

Region I as when it enters Region HI. Similarly a 1/3 subharmonic becomes synchronized to the gates except it

spends an extra period in each of Regions I and III. For parameter values between the ones that yield 1/1 and

1/3 subharmonics, a mixture of the two types of behavior occurs. When the trajectory enters Region I its ini

tial conditions there make it behave like a 1/1 subharmonic. When it crosses to Region III its initial conditions

there force it to spend an extra period in Region III in order to get past the gate and in this Region it behaves

like a 1/3 subharmonic. Somehow the two different types of behavior are linked by Region II and a stable

subharmonic occurs. This description will become clearer as more examples are given.

3.6.3. Subharmonics With More Than One Loop

Figure 14(a) shows a 2/3 subharmonic. It is clearly a combination of a full 1/1 and a full 1/2 subhar

monic. Indeed, 1/1 +1/2 = 2/3. Again we see a mixture of single loop subharmonics. It is as if the solution

would like to be 1/1, but it cannot quite reach Region II to close the loop before the ii oscillation swings the

other way. It is forced to act like a 1/2 subharmonic to get past the gate and cross to Region I. Note that the

dotation number arithmetic follows these laws: r (p/q) «• rp/rq and p/q + r/s = (p+r)/(q+s).
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p= 2/3 region is located between the p= 1/1 and p= 1/2 regions.

Figure 14(b) is a 3/5 subharmonic. It consists of one 1/1 subharmonic and two 1/2 subharmonics. Note

that 1/1+2 (1/2) = 3/5 and that the p= 3/5 region is located between the p=l/l and the p=l/2 regions.

Figure 14(c) is interesting. It is a 13/15 subharmonic made of eleven 1/1's and two 1/2's. As the plot

was being produced, 1/1 loops followed one after the other, each one in a slightly different position. Then, as

the differences added up, the trajectory could not make it through the gate and did a 1/2 loop followed by more

1/1 loops, each one slightly out of phase with the previous one until it did another 1/2 loop and closed in on

itself.

All the periodic solutions we computed between the 1/1 and 1/2 regions could be similarly dissected.

Always n\(l/l) = n2(l/2) = p/q where n\ and n2 are the number of 1/1 and 1/2 subharmonics forming the

p/q subharmonic. Also if n\>n2i the region of existence of the subharmonic is nearer to the 1/1 region than

the 1/2 region and vice versa.

If «i and n2 are large, we expect the region of existence of the subharmonic to be smaller since a slight

perturbation would ruin the delicate balance Region II provides between the different types of behavior. An

examination of Figure 6 confirms this expectation.

Figure 15 shows some periodic solutions for parameters between the 1/2 and 1/3 regions. Again every

subharmonic we found in this region could be split into p= l/2 and p = l/3 components. Again

«2(l/2) + «3(l/3) =/>/?.

In fact, every periodic solution we found was a combination of the two nearest single loop subharmonics.

The single loop subharmonics are the building blocks of the multi-loop subharmonics and the even order, sin

gle loop subharmonics can be built from the odd order, single loop subharmonics. Thus the odd order, single

loop subharmonics are the fundamental subharmonics of the forced relaxation oscillator.

There is some predictive power here. Suppose we want to know something about a 13/23 subharmonic.

Since 1-5-2 < 13-5-23 < 1 we know the subharmonic is composed of 1/1 and 1/2 subharmonics. Solving

/ii(l/l) + n2(l/2) = 13/23 we get n\= 3 and n2= 10. Therefore, if it exists (and in this case it does), it is

composed of three 1/1's and ten 1/2's and its region of existence is closer to the 1/2 region than the 1/1

region. We do not know beforehand in what order the component subharmonics occur. It may be that there
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exists two subharmonics of equal rotation number, but differing sequences of component subharmonics.

This concept of the order in which component subharmonics occur helps explain random behavior in the

relaxation oscillator. For e small and b chosen in a B-type interval, Levinson showed that given any (perhaps

nonperiodic) sequence of component subharmonics, there exists a trajectory which follows that sequence.

Unfortunately, the set of initial points for all such random trajectories has measure zero and all observable tra

jectories tend to one of the two stable periodic solutions.

4. Summary and Conjecture

The main advantage of using piecewise linear analysis is the high accuracy in our numerical results.

Another advantage is the concentration of all interesting behavior at the boundaries between Regions. This

allowed us to introduce a gate function along each boundary which helped us explain some of the relaxation

oscillation phenomena.

Study of the numerical results led us to the conclusion that all subharmonics are built from the nearest

single loop subharmonics and that even order, single loop subharmonics are built from odd order, single loop

subharmonics. The idea of a periodic solution becoming synchronized to the gates helped explain this behavior.

An analytical explanation of the structure we have found is needed.

All our evidence supports the hypothesis that given p = p/tf, with p < q relatively prime and q odd, there

exists a region of e and b such that a p/q subharmonic exists. Since all observations occupy a finite time, arbi

trarily large q implies the existence of essentially random behavior. Of course for q large the region of

existence becomes quite small and may be hard to locate numerically. We did find a subharmonic with

p = 10/16, but it was the only one with a common factor in p and q. It may be that any subharmonic exists

with rotation number equal to m(l/k) + n(l/(fc+D) where m and n are arbitrary positive integers. Perhaps

the odd order, relatively prime subharmonics have larger regions of existence than the others and are all that

we could observe at our resolution. Again only an analytical explanation of the relaxation oscillation

phenomena can answer these questions.
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Appendix I. The Computer Program

AI.l. The Program

To calculate the rotation numbers the program samples the trajectory once every input period. That is, it

calculates iL(t0 + kT) and vc(t0 + kT) where k is a positive integer and T is the input period. These points

correspond to iterations of the Poincare map. If the solution is an nth order subharmonic, these points will be

periodic with period n.

The program computes which Region the initial condition is in and then searches for the first time ti that

the trajectory leaves that Region. The program then calculates any points of the Poincare map which lie

between t0 and t\. Each time a new point of the Poincare map is calculated, it is compared to all previously

computed points to test for convergence to a periodic solution. If convergence is found, the program stops; if

not, the point at t\ is taken as a new initial condition in a new Region and the process is repeated. In any case

the program never computes more than 500 Poincare iterations.
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AI.2. The Boundary Search

The simplest way to find the boundary crossing is to calculate points on the trajectory every Af seconds

where A/ is some small time step. Suppose the first such point which lies in a new Region occurs at time

t0 + kAt. Then the boundary crossing must occur within the interval (t0 + (A:-1)A/, t0 + k&t). Now the

computer can halve the time interval and zero in on the boundary crossing with the desired degree of accuracy.

We call this the small step method.

The program uses this method in Region II and a variation of it in Regions I and HI. A portion of a typi

cal trajectory is shown in Figure I.l. To find t\ it is unnecessary to start a small step search at t0. What the

program does is calculate the points on the trajectory occurring at the local minima of iL. When one of these

minima is in a new Region, the program backs up to the previous minimum and begins a small step search

there. Thus only the crosshatched part of the trajectory is searched. It should be pointed out that a closed

form analytical expression is available to calculate the locations of the iL minima.

AI.3. Accuracy

There are two main places where errors occur. One is the boundary crossing and the other is the conver

gence test on the Poincare iterations.

In calculating the boundary crossing, we required iL —I0 < 10~10. For the Poincare convergence, we

required

iL(nT) - iL(kT) |+|vc(nT) - vc(kT) |<10"10. (I.l)
When (I.l) was satisfied, we concluded that the solution was an in—k)th order subharmonic. We used 64 bit

floating point representation for all noninteger variables.

AI.4. The Data

To get the plots of p -vs- e we divided the b -e plane into evenly spaced rows. Simulations were run at

evenly spaced points along each row. Two computer runs were performed for each row: one starting with the

minimum b value and incrementing it, the other starting with the maximum b value and decrementing it. The

initial condition for each simulation was the final point calculated in the previous simulation. Thus each (6, e)
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point was simulated from two "directions". This allowed us to locate (6, e) points with two rotation numbers

(hysteresis).

Appendix II. Derivation of Small L and Large ot Approximations

In this Appendix we derive equations (2.2), (3.2) and (3.3) for Region I. The derivation for Region III is

identical. The derivation for Region II is slightly different since R2< 0, but the results are the same.

AII.l. Approximations for Small L

AII.1.1. The Autonomous Contribution

In Region I, rewrite the eigenvalues as

2

21

1

LC 2L
1- 1-

\L
l

R}C
(AII.1)

For L small, approximate the square root using the first two terms of the Binomial Expansion to get

'» *"it)1 "
Similarly for S21:

2L
521 - —=t -

Hi.
2L

~ Ri

1 +
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2L

RfC

1

LC

RiC

Hi
21

1 + 1-

-4^2-
2L

2LR2C

4L

R}C

(AII.2)

4L
1

R}C

(AII.3)

where we have ignored the term proportional to L with respect to 2.

Now that we have the eigenvalues, we approximate the eigenvectors. For the autonomous case the first

eigenvector is



vn =
k(0 + s2lC(vc(t0)-Vol)

vn —

5ll - 52i

Since s2i»s\\, the denominator becomes —S21 and

(l(0
521

+ C(vc(O-K01)

sn

-VC

-5n

1/C

( LiLU0)
R
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Ri/L
1/C
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Lk(t0) , vAt0)~Vol
-r -

R2C
LiL(t0)

RxC
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where we have ignored the term proportional to L since it is small compared to the vc(t0) term.

The second eigenvector in Region I for the autonomous case is

V2/
k(0 + sudvAO-K,) -52/

1/C51/-52/

iL(t0) + s11C(vc(/o)-K0i)

L_
Ri

i^O -

521

521

•1/C

(vc(/0)- r0l) Ri/L
VC*1

vAt0)-Vol
•

Ri
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(AII.4)

(AII.5)

(AII.6)

where we have completely ignored the vc component since it is proportional to L. This approximation may

seem unwarranted, but if it is considered in terms of the magnitude and angle of the eigenvector, it is valid.

AII.1.2. The Nonautonomous Contribution

For convenience we consider the ii and vc terms separately.

AH.1.2.1. The iL Coefficients

The iL coefficient for the su exponential is
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As\ icos(a) t0 + <f> 11)

(5ii-52i)W5n+a>2 (All 7)
y4snCOs(a>r0 + <^n) i4cos(a»/o + 0n)

s2iW5i2i+a>2 £ rs/1 + ta^iC)2'
where

0„ =Tan"1-— =s Tan"1—5-=. (AII.8)

The /£, coefficient for the s\i exponential is

As2\Cos(<a t0 + <f>2\)

(Sn— S2\)Ly/sii +0>2

^ y4cOS(<U/o +02l) y4cOS(ft>fo +02l)
~~ Wsii +<w2 " Rrs/T+UnjRiT2

A_
Ri

where 02i has been approximated by

= —r-sin(o>r0)
^<i

(AH.9)

02i - Tan-1(s2i/w) = IktKRJuL) = Tan"1^) - tt/2. (AII.10)

The sinusoidal term for iL is

^4<usin(a>f + 0i)

LV(5i2/+o>2)(s22/ + a>2)
^ Ao)sin(<i>t + 0i)
"" lV((-l/^iC)2 +a>2)((-JR1/L)2 +(«>2)
__ i4a>sin((of+gi) ,4G>Csin(a>f+0i)
~ L^/m/RiCy +^i-R^L)2 ~ Vl +(o^iC)2

where

«i - arg(-2acia> + jUj-o2)) = arg(o>^1/L + jil/LC-a2))

=s arg(u.Ri/£ + jil/LO) = argfofljC + y).

AII.1.2.2. The vc Terms

To make things simple, note that the nonautonomous contribution to the vc sn exponential is just the iL

contribution multiplied by

--^-^fl,. (AII.13)
5ll

Similarly the nonautonomous contribution to the 521 exponential of vc is the contribution to the 521 exponential

(AII.11)

(AIL 12)
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of iL multiplied by

&oL L

—t-Tkc- (AU14)
Multiplying the appropriate iL terms and ignoring terms proportional to L yields the desired approximations.

Since the coefficient of the S21 exponential of vc is proportional to L we approximate it by zero.

To get the approximation for the steady state vc term, take the iL steady state term, switch the sine to

cosine and multiply by a factor of l/o» C.

AII.2. Approximations for Small L and Large o>

Remember that Levi holds dimensionless frequency «' constant during his analysis. The relationship

between dimensioned frequency o> and dimensionless frequency is

" =o>'o>2=;^=r. (AII.15)
We set o>' = 1 to get o> = VZC. Therefore o>2 is proportional to \/L. In making the small L approximations,

we never ignored a term proportional to \/L with respect to a term containing anything more than a propor

tionality to co except when approximating 9\. Hence, except for 9h we are justified in applying the large a>

approximations directly to the results of Section AII.l and we do not have to start from the exact equation

(3.1).

AII.2.1. The iL Coefficients

For at large, equation (AII.7) becomes

Acos(<ttt0 + 4tu)
p2r * °' (AH16)a)R\[C

For (a large equation (AII.9) is unchanged. Equation (AIL11) becomes

AoiCsm(<ot+ 9i) A= -^sin(o,r+0,)
mRxC Rl (AII.17)

«= -r-sin(a>r).
^1

where we have used the definition of 0^ and the fact that a> = co0 to get 0i = O.
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AII.2.2. The vc Terms

The nonautonomous contribution to the transient of vc is zero as it was in the previous section. The

magnitude of the steady state vc term is the magnitude of the steady state iL term multiplied by l/a>C. It is,

therefore, proportional to 1/eo and is zero.

Appendix III. The Gate Function

AIII.l. Definitions

Consider a point in Region I. As time increases the point travels according to equation (1.6) and traces

out a specific trajectory. The point will eventually hit the Region I/II boundary and enter Region II. The point

must eventually leave Region II. It can do this in only two ways: it can either return to Region I in which case

we call it a returning trajectory or it can pass into Region III in which case we call it a passing trajectory. These

definitions are local in the sense that a trajectory can be a returning type at one boundary encounter and a pass

ing type at the next. Let t0 be the time when the trajectory hits the Region I/II boundary. Then ii(t0) = I0.

Define vCo:= vc(t0) to be the corresponding value of vc at the boundary. The question is: Is there a function

y(t0) such that if vCo < y(t0) then the trajectory passes to Region III while for vCo>y(t0) the trajectory

returns to Region I? We call y{t0) a gate function.

AIII.2. Existence of the Gate Function

Let's examine the iL solution for t > t0 with initial conditions iL(t0) = I0and vc(t0) =: vCo. Clearly for vc

large enough the trajectory enters Region I directly. It is also clear that for vq, negative enough, the trajectory

will immediately cross Region II and enter Region III. Due to the continuous dependence of trajectories on ini

tial conditions, as vCo is varied between these two extremes there must exist some value(s) of vCo at which the

behavior of the trajectory changes from a returning type to a passing type.

To see how the trajectory changes with vCo, let's examine

d/L 511S22C

&VCo 5i2-522
g*12<<-'o> _ g*22<<-'o> (AIII.l)

is positive if the bracketed factor is positive. If su > s22 > 0, the bracketed factor is positive. Since
dvo,
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5i2~ 522 = Va^—<£> > 0 and the eigenvalues in Region II are positive, the bracketed factor is, in fact, positive

and iLU) is a strictly monotone increasing function of vCo. This fact plus the observations in the previous para

graphguarantee a unique point y(t0) on the iL = I0 line such that trajectories with vCo >y(tQ) return to Region

I while those with vc0 <y(t0) pass into Region III. This is the desired result. Due to continuity of trajectories

with respect to initial conditions, y(t0) is continuous in t0.

AIII.3. Approximations to the Gate Function

In this section we examine the fast and slow iL terms and present an approximation for y(t0) valid for

small L and large o>.

AIII.3.1. The Slow Eigenvector

We are not interested in those trajectories which pass from Region II into Region I. That is we are only

interested in vCo such that iL(t0) < 0. From equation (1.6) this is the range

*Co < Ri- Asin(a)t0). (AIII.2)

The right hand side is simply a sinusoidal oscillation of amplitude A centered at the break in the resistor

characteristic.

We now show that the slow iL term is positive if A < s\2L. The slow iL term is

1

5l2~ 522^

s22Acos((tt t+fa2)
-s22LI0 - vCo +

s/s22 + (it'
(AIII.3)

To show the slow iL term is positive requires showing the bracketed factor is positive. Since we are only

interested in vCo values satisfying (AIII.2), we evaluate the bracketed factor in (AIII.3) with

vc —R2I0 —Asin(<at0). If this expression is positive, then it will be positive for any vCo satisfying (AIII.2).

The substitution yields

522^4 COS (<ii tn+ rfhi)-S22LI0 - R2I0 + AsmiaitJ - , ° , . (AIII.4)
V522 + <*>

Combining the sinusoids (AIII.4) becomes

- (R2 + s22L)I0 + , "A cosfofr +fl) (AIII.5)
V522 + W

where the exact value of 0 is unimportant. (AIII.5) is a minimum when the cosine is equal to negative one:
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- (R2 + s22L)I0 - -=|===-. (AIII.6)
V522 + *>

The term containing A is a minimum when a> = °°. This substitution yields —(R2+ s22L)I0 —A which is posi

tive when

A < - (R2+ s22L)I0 = sl2LI0. (AHI.7)

Thus our claim is proved. To give the reader a feeling for (AIII.7), we note that —R^/2 < si2L < —R2 for real

5i2- For the rest of this Appendix we restrict our discussion to A satisfying (AIII.7).

AIII.3.2. The Fast Eigenvector

The fast iL term is

512

512— 522

1 AC0s(ait0 + (pi2>
h + —-rvco +512^ ° Ly/s{2 +ft>:

It is negative when

(AHI.8)

Si2AC0s((ii t0 + (fn2)
vco < ~ snLI0 r- . (AIII.9)

V^T + at

If vco satisfies (AIII.9) and if Region II is extended to the whole plane, then (t™* —°° as t—»«». However we

cannot conclude that the trajectory starting at such a vCo does not reenter Region I before it enters Region III.

What we can expect is that for small L and large <o, the difference between the right hand side of (AIII.9) and

y(t0) is small since by choosing L small enough the contribution from the fast iL term may be made as large as

we desire.

For small L and large o> (AIII.9) becomes

vCo < I0 - Asin((iit0) =: g(t0). (AIII.10)

To see g(t0) is very close to y(t0)> consider iL(t) for small L and large o» (equation (3.3)). It consists of a

slow exponential, a fast exponential and a sinusoid. We consider three cases.

If the fast iL term is zero, vco^giO, and the trajectory will return to Region I. This is true since the

slow iL term is positive.

If vco < y(*o)» the fast iL term is negative enough to produce a large, rapid horizontal motion to the left

which counteracts any rightward motion due to the slow exponential and/or the sinusoidal terms. In this case

the trajectory passes to Region III.
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The third case is a fast ii term in between the two previous cases: y(t0) < vCo < g(t0). This range of vCo

creates the difference between y(t0) and g(t0) and correspond to a very small, negative fast iL term. In this

case the slow exponential term (and perhaps the sinusoidal term) pushes the trajectory back into Region I

before enough time has elapsed for the fast exponential term to have any sizable effect. The fast eigenvalue is

inversely proportional to L and is, therefore, very large. Thus the fast fc term must be very small to account

for the fact that the fast exponential has little initial effect on the trajectory. The result is that g(t0)— y(t0) is

very small.

To see that g(t0) approaches y(t0) as L—>0, we note that both the slow exponential term and the

sinusoidal term for iL(t) are independent of L for L small and <o large. The only dependence of i^U) on L is

through the fast eigenvalue, 512= —R-jL.

Let vCo satisfy y(t0) < vCo<g(t0) and let L = L0. Let t\> t0 be a time such that /i„(r) < /„ for

t0 < t < t\. Such a ti exists since the trajectory is initially pointing into Region II. If we decrease L the only

change in /£0(r) is in the fast exponential. Let ii^ represent the absolute value of the fast ii term. Then

_i?2(/l-ro)\o (AIII.11)
- kfaste

is the fast exponential term for ii0(ti). Choose L\ such that

lLfaste " lLfaste
K = 2/0.

Solve (Am. 12) for Lx to get

-;*20i-'o)
L\ —

-*2('r"'"'I
In

2*2/0 . L„

,

VCo

(AIII.13)

A simple check shows Li is well-defined and positive. With this new Ib iuiti) <—I0 and the trajectory

passes to Region III. Hence by choosing L small enough, we can make g(t0) —y(t0) arbitrarily small.

Finally we note that vCo < g(t0) is simply (AIII.l). (AIII.l) gives those values of vCo for which the tra

jectory is passing from Region I into Region II. For L small, horizontal motion is very quick and the fact that

the trajectory is moving to the left across the boundary predicts that the trajectory passes into Region III is no

surprise.
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Appendix IV. Rotation Numbers

We define the rotation number p of a periodic solution as two integers separated by a slash p/q. q is the

number of periods of the forcing term in one period of the periodic solution and p is the number of times the

projection of the periodic solution on the f=0 plane encircles the origin. This definition is directly applicable to

experimental situations.

The usual definition of rotation number applies to a map of the plane into itself. Let P be such a map.

Then the rotation number with respect to the origin for a point z ?*• 0 is

p' := lim ar6(P"z) (AIV.1)
2ir/i

where the arg(') function is a cumulative angle, not modulo 27r. We now show that a p= p/q solution of a

differential equation has p'= -^ where p is the rotation number of the Poincare map of the differential equa-

tion.

To do this we need an assumption: The projection of the trajectory does not encircle the origin as t ranges

from (k—\) T to kT for any integer k satisfying 1< k^ q where T is the period of the driving function and q is

the order of the subharmonic. This means that given x((fc-l) T) and x(kT) (where x is the state vector) we

can determine the angle the projection of the trajectory subtends by calculating arg(x(fc70)-arg(x(()t-l) 70).

Without the assumption this expression would only be the angle modulo 2ir (see Figure IV. 1).

Suppose we have a periodic solution satisfying the assumption and with p = p/q. Let x be a point on the

solution at time t=0. Then

r 2nq
=Hm fr(arg(Pgx)-arg(x))+arg(x) ( }

/—oo 2nlq

= arglPqx) —arg(x)
2irq

since the solution is periodic. Telescope the numerator to get

, | (arg(/>*x) - arg(P^-1x)) + (arg(/>^1x) - arg(j>*-2x)) + • • • + (arg(Px) - arg(x))

By the assumption, each parenthesized pair in the numerator is just the angle subtended by the projection of

the trajectory during some period of the input. Therefore the numerator is equal to 2irp and our claim is



Figure Captions

Figure 1 a) the circuit governed by the relaxation oscillation equation;
b) the van der Pol nonlinearity;
c) the piecewise linear nonlinearity.

a) phase portrait for Region I extended to whole plane;
b) phase portrait for Region II extended to whole plane;
c) combined phase portrait for all three Regions.

a) limit cycle for the autonomous equation with €—0.005;
b) limit cycle for the autonomous equation with e»0.3.

portions of typical nonautonomous trajectories when (a) Region I and (b) Region III are
extended to whole plane. Note the bunching of the trajectory as it travels along the resistor
characteristic.

different positions of the gates for different values of ait'.

plots of rotation number p versus b and € (labeled as eps). Each symbol represents a specific
6, e pair where actual results were obtained. A single number q indicates the order of a single
loop subharmonic p —Vq, two numbers separated by a hyphen p-q indicate the rotation
number of a multi-loop subharmonic p=p/q, @ indicates the program did not converge in the
allotted time, in (a) two rotation numbers separated by a comma also indicate coexistence of
rotation numbers, in (b) and (c) a capital letter indicates the existence of two different rotation
numbers which are given at the bottom of the Figure, (b) is a more detailed view of the
boxed region in (a) and (c) is a more detailed view of the boxed region in (b).

(a) plot of 1/p versus b for € —0.005;
(b) plot of 1/p versus b for € —0.0025. Triangles lying on the b axis denote values of b for
which the program did not converge in the allotted time.

(a) 1/7 subharmonic for € - 0.005, b - 0.90.
(b) 1/49 subharmonic for e - 0.005, b - 0.29.

relative positions of gate and trajectory: (a) gate at minimum and //, at maximum;
(b) both gate and i'i at midpoint in oscillation;
(c) gate at maximum and iL at minimum.

a portion of a periodic solution for €-0.025 and 6—0.540 which hits the gate and returns to
Region I (solid) and a portion of the.same periodic solution which passes under the gate and
enters Region III (dashed).

(a) positions of r and —r (not drawn to scale);
(b) the image of r after one Poincare iteration (not drawn to scale);
(c) the image of r after two Poincare iterations and after enough Poincare iterations (n) to get
it in the vicinity of —r (not drawn to scale);
(d) the three portions of r and their images under P".
(a) line segment chosen for e —0.005 and 6—0.75 such that point A maps to point C after
one period of the forcing function;
(b) the line segment after one period of the forcing function (note that points B and B' are
actually connected);
(c) the line segment after one more period.
(d) same as (c) but for 6-0.78.

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

Figure 11

Figure 12

Figure 13 (a) 1/1 subharmonic for €<
(b) 1/2 subharmonic for c
(c) 1/3 subharmonic for c
(d) 1/4 subharmonic for €
(e) 1/5 subharmonic for € <

•0.12,6-0.82
•0.15,6-0.60
0.10,6-0.50

•0.09,6-0.10
•0.07,6-0.05

(f) 1/6 subharmonic for c-0.06, 6-0.10.
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Figure 14 (a) 2/3 subharmonic for e —0.165, 6 —0.65;
(b) 3/5 subharmonic for e= 0.155, 6 = 0.65;
(c) 13/15 subharmonic for €-0.19, 6-0.64;

Figure 15 (a) 2/5 subharmonic for e=0.17, 6-0.20;
(b) 4/9 subharmonic for €-0.1825, 6 = 0.28;

Figure 1.1 to locate tu the /' points are calculated. When r6' is found to lie in a new Region a small step
search is initiated at ts'. The trajectory shown is for Region I extended to the whole plane.

Figure IV.l (a) a sample trajectory linking x((fc-l) 70 with x(kT) which satisfies the assumption;
(b) a sample trajectory which does not satisfy the assumption.
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