
 

 

 

 

 

 

 

 

 

Copyright © 1982, by the author(s). 
All rights reserved. 

 
Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 
lists, requires prior specific permission. 



PERFORMANCE ANALYSIS OF DISTRIBUTED

DATA BASE SYSTEMS

by

Michael Stonebraker, John Woodfill, Jeff Ranstrom, Marguerite Murphy

Joseph Kalash, Michael Carey and Kenneth Arnold

Memorandum No UCB/ERL M82/85

10 October 1982

ELECTRONICS RESEARCH LABORATORY



Research Sponsored by the Air Force Office of Scientific Research under
grant number 78-3596, by the Navy Electronics Systems Command under
contract numberN00039-81-C-0569, and by the Army Research Office under
grant number DAAG29-76-G-02A5.



PERFORMANCE ANALYSIS OF DISTRIBUTED
DATA BASE SYSTEMS

6y

Michael Stonebraker. John Woodfill, Jeff Ranstrom, Marguerite Murphy
Joseph Kalash, Michael Carey and Kenneth Arnold

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE
UNIVERSITY OF CALIFORNIA

BERKELEY, CA.

ABSTRACT

In this paper we discuss the design of Distributed INGRES and the perfor
mance testing that is planned for it. We also give initial benchmark data for the
system. In addition, we discuss analytic and simulation studies whichare in pro
gress and implementation difficulties we have faced.

1. INTRODUCTION

There have been a considerable number of algorithms developed to support
distributed relational data bases in the areas of concurrency control, crash
recovery, support of multiple copies of data, and command processing.

At present there is little concrete knowledge concerning the performance of
such algorithms. Previous work has been based exclusively on simulation, e.g.
[RIES79, GARC79, UN81] or formal modeling, e.g. [GELE78, BERN79]. It is the
basic objective of the Distributed INGRES project to provide empirical results
concerning the performance of alternate algorithms.

In Section 2 we discuss the current state of Distributed INGRES. Then, in
Section 3 we present initial benchmark data on the running system. Section 4
discusses the additional benchmarks that are planned while Section 5 and 6
describe some simulation and analytic studies that are underway. Lastly, Sec
tion 7 comments on the implementation difficulties that we have faced.

2. DISTRIBUTED INGRES

Distributed INGRES operates in a hardware environment consisting of a col
lection of DEC VAX ll/780s and n/750s all running the UNIX operating system. In



fact, all run 4.2BSD, a version of UNIX enhanced at Berkeley with paging and
numerous program development tools. As of September 1982 there are 5
ll/780s and 5 ll/750s connected by a 3Mbit ETHERNET purchased from Xerox.
The 4.2BSD software has been extended to supportremote interprocess commun
ication and remote execution of a process. Hence, one can spawn a process on a
remote machine and then do interprocess communication with that process as if
it were on the same machine.

Distributed INGRES has been described in [EPST78] and is operational with
many of its features at this time. It consists of a master INGRES process which
runs at the site where the command originated and slave INGRES processes at
each site which have data involved in the command. The master process does
parsing, view resolution and creates an action plan to solve the command using
the fragment and replicate technique. The slave process is essentially one-
machine INGRES [ST0N76] with minor extensions and the parser removed. The
coordinator and slaves communicate over the 4.2BSD interprocess message sys-

Distributed INGRES supports fragments of relations at different sites. For
example, one can distribute a relation EMP as follows:

create EMP (name = clO, salary = i4, manager = clO,
age = i4, dept = clO)

range of E is EMP
distribute E at Berkeley WHERE E.dept = "shoe"

at Paris WHERE E.dept = "toy"
at Boston WHERE Edept != "toy" and

E.dept != "shoe"

Berkeley, Paris and Boston are logical names ofmachines which are mapped to
site addresses by a table lookup. The distribution criteria is assumed to parti-
hnL™Vcf°n ^a iS n°^currentlv checked for this property by Distributed INGRES software. A one site relation is a special case of the above distri-
bute command, e.g.

distribute ONE-SITE at Berkeley

u * t^}*? C^Ieflfc time ^ QUEL cor*niands are processed correctly for distributed data with the exception of aggregates. For example, it is acceptable to
perform the following update:

range of E is EMP
replace E(dept ="toy") where e.salary > 10000

This command will be processed at all three sites where fragments of the EMP
relation exist. Moreover, all qualifying tuples must have an update performed
and. their site location may have to be changed.

A two phase commit protocol is implemented [GRAY78]. Hence, a "ready"
message is sent from the slaves to the master when they are prepared to com
mit the update. If there are tuples which change sites, they are included with
the ready message. The master can then process the tuples from all sites and
redistribute them. This redistribution is accomplished by piggybacking the
tuples onto the commit message when it is sent out. OptionaUy, a three phase
commit protocol can be used [SKEE82] for added reliability. In this case the
above redistribution is handled in phase two.

When a command spans data at multiple sites, a rudimentary version of the
fragment and replicate" query processing strategy is implemented. We illus

trate this module by example. Suppose a second relation



DEPT (dname, floor, budget)
exists at two sites as follows:

distribute D at Berkeley where D.budget > 5
at Paris where D.budget <= 5

and suppose a user submits the following query at Boston:
range of E is EMP
range of D is DEPT
retrieve (E.name) where E.dept = D.dname and D.floor = 1

First, the one variable clause "D.floor = 1" is detached from the query and run at
Berkeley and Paris, i.e.

range of D is DEPT
retrieve into TEMP (D.dname) where D.floor = 1

The original query now becomes
range of E is EMP
range of D is TEMP
retrieve (E.name) where E.dept = D.dname

Data movement must now take place to satisfy the query. One relation (say
TEMP) is chosen to be replicated at each processing site. Hence, both Berkeley
and Paris send their portion of the TEMP relation to each site which has a frag
ment of EMP. The needed transmissions are:

TEMP(Paris) -> Boston
TEMP(Paris) -> Berkeley
TEMP(Berkeley) -> Paris
TEMP(Berkeley) -> Boston

At this time all three sites have a complete copy of TEMP and a fragment of the
EMP relation. The above query is performed at each site, yielding a portion of
the answer. As a last step each site returns tuples to the master site which
displays them to the user.

Since our ETHERNET has the hardware capability to support broadcast, it is
possible to perform the above four transfers by broadcasting each fragment of
TEMP to the other two sites. However, the 4.2BSD operating system software
does not support multicast or broadcast transmissions. Consequently, the
above transmissions must take place individually and our strategy of replication
may perform poorly [EPST78]. The network on which we planned to run
[R0WE79] supported broadcast, and the code has not been changed.

At the moment, the relation to be replicated is chosen arbitrarily, so TEMP
and EMP are equally likely to be selected for movement. A more elegant stra
tegy is being planned.

a INITIAL EXPERIMENTAL OBSERVATIONS

In these experiments we use a data base of employees with fields as dis
cussed in Section 2. Our data base consists of 30,000 employee tuples, each 38
bytes in width. Our benchmark consisted of 1000 random updates of the form:

replace E (salary = K) WHERE E.name = L
For this benchmark we compare the performance of four different INGRES
configurations:
a) Normal INGRES on a single site data base with a VAX 11/780 CPU
b) Distributed INGRES run on a data base that happens to reside at the site from



which the benchmark originates. This site has a VAX 11/780 CPU.
c) Distributed INGRES run on a data base spread evenly over three machines,
one VAX 11/780 and two VAX ll/750s. In this way exactly 1/3 of the updates are
performed at each of three sites. Moreover, the benchmark was submitted in
three job streams one at each site so as to avoid forcing a single site to be "mas
ter" for every command. Consequently, the master running at each site will dis
cover an update which is equally likely to be processed at any of the three sites.
In this case we report statistics for each site individually as well as a summation.
d) Acomputation called 3*780. This row is obtained by multiplying the 11/780
numbers from c) by three. Since one-third of the total work is performed at
each site, this is an estimate of the resources which would be consumed if the
benchmark had been run on three VAX ll/780s.

Table 1 gives three measures for each system, elapsed time, CPU time
spent in applicationcode, and CPU time spent inside the operating system.

The conclusion to be drawn from Table 1 is that Distributed INGRES is about
20 percent slower than normal INGRES when run on a local data base. This time
is largely the extra overhead which Distributed INGRES must spend examining
the distribution criteria and ascertaining that each of the commands is a local
one. This checking is performed at run time in the current implementation:
however, a smarter implementation would perform most of it at compilation
time. The second source of overhead cannot be diverted to compile time. Each
tuple which is updated must be checked against the distribution criteria to
ensure that it is not being updated in a manner that would physically change its
location.

Second, note that 3*780 Distributed INGRES uses 20 percent more CPU time
than Distributed INGRES run on a local data base and 47 percent more CPU time
that Normal INGRES. This appears to be the overhead of communication with a
non-local data base. However, it could not possibly run slower than the 13:34
time reported for three site Distributed INGRES. Hence, it cuts elapsed time by
at least 50 percent compared to Distributed INGRES on a one-site data base and
40 percent compared to Normal INGRES.

user time system time elapsed time

Normal INGRES 7:34 3:04 22:34

Distributed
INGRES - local
data base 9:06 3:53 26:57

Distributed
INGRES - three
sites

11/780 3:43 1:30 12:43
11/750 5:28 2:16 13:34
11/750 5:48 2:13 13:22
total 14:59 5:59 -

3*780 11:09 4:30

Table 1



Benchmark 1 results in 522,880 bytes being transferred across the network
in case c) and uses less than two percent of the available bandwidth. It appears
that a large number of machines could be added to ETHERNET before there were
any bandwidth limitations. Also, as long as the workload partitioned evenly,
total CPU time should remain a constant and be divided among a larger and
larger collection of machines, resulting in a throughput essentially linear in the
number of machines.

4. FURTHER EXPERIMENTATION

We propose to run a variety ofbenchmarks in our environment We propose
to vary the number of sites from which transactions originate, how many sites
have the data required for individual commands and how much data is required
to be moved between sites. The basic objectives are the following:

a) Network limitations

We speculate that it will be impossible to saturate our 3Mbit network. The
reason is that CPU overhead to manage the network and do local data base pro
cessing is likely to saturate all computers on a reasonable size network before
this bandwidth is achieved. We propose to measure the maximum bandwidth
which our benchmark consumes. The result of this test will give insight into
whether network delay or bandwidth is ever a significant issue in our environ
ment. Moreover, we propose to explore under what circumstances a distributed
DBMS can use more than 50Kbits of bandwidth. This will test whether our
software could saturate a long haul network such as the ARPANET. This test will
shed light on whether semi-join tactics which minimize data transmissions are
desirable in distributed environments.

b) Message Limitations

We speculate that the operating system cost of sending and receiving mes
sages may be a significant factor in distributed data base performance, and pro
pose to test this hypothesis by direct measurement. If so, a distributed DBMS
should attempt to package large messages.

On the other hand, if the operating system cost for messages is not
significant, then we will have discovered that the entire network subsystem is
not a bottleneck in a distributed DBMS. This has great impact on the criteria to
be optimized by the query processing algorithm.

c) CPU Saturation
We expect that many benchmarks will saturate all CPUs which are involved

in command processing and this will be the fundamental limitation in a distri
buted DBMS. If so, a query processing algorithm should schedule the work over
as many machines as possible.

d) Uneven Work Distribution

Our simulation of a similar environment [MCCOBl] showed that an uneven
workload distribution among the machines caused substantial performance
degradation. We noted that statistical fluctuations in a uniformly distributed
workload could easily cause the command processing loads at the various sites
to become unbalanced. In this case response time for a distributed transaction
became the response time of the processing site with the heaviest load. This
site was slowest to respond and the transaction could not be completed until
this site finished.



Also, we found that an uneven work distribution, once created, tended to
persist for a long period of time. Hence, poor response time also tended to per-
tlSt* RVmA^ ?hen0rXlen0n haS been observed in the locking subsystem of Sys-

We plan to measure to what extent this uneven workload phenomenon sur
faces in a benchmark of uniformly distributed work If it is sizeable, then a
query processing algorithm should make rebalancing the workload its optimiza
tion criteria.

5. CONCURRENCY CONTROL

The experiments sketched above should shed light on query processing and
crash recovery algorithms. In addition, we expect to experiment with a variety
of concurrency control schemes. Unfortunately, there are twenty or more
schemes which have been proposed. Instead of attempting to implement all
twenty in Distributed INGRES (which was never designed with schemes other
tnan locking m mind), we are proceeding by a combination of theoretical
analysis and simulation.

•*u-We 5?*!? Pr°P°sed ^ abstract model of concurrency control algorithms
within which we can address the performance tradeoffs of various popular
schemes. The model facilitates comparisons of the CPU overhead, storage over
head, concurrency characteristics, and message overhead of alternative
scnemes. Areport on this analysis is nearing completion [CARE82].

Inorder to validate the conclusions of the model and to offer further insight
we have also written a simulator of distributed concurrency control schenfes
experimentation with this simulator will commence shortly. We intend to vali
date tne simulator by comparing its results for the Distributed INGRES locking
scheme with actual experimental data. °

6. DISTRIBUTED ARCHITECTURES

An important aspect of any distributed data base system is sizing con
siderations I/O subsystems, CPUs and networks must be balanced to^chieve
maximum throughput. Moreover, the topology of the network may be a con
sideration. We are constructing a second simulation model which can evaluate
alternate distributed architectures. Using this model we hope to experiment
with environments which are not easily tested in our VAX/ETHERNET environ-

7. IMPLEMENTATION PROBLEMS

im teme^t V*Cti°n We mention afew of the difficulties that we have faced in the

1) Distributed Debugging
Attempting to remove the bugs from distributed programs has proved to be

a frustrating and slow process. Programs which run on one machine pretending
to be several do not usually run on several machines. Debugging tools for distri
buted environments are very primitive.

2) Machine Time

Attempting to obtain stand-alone time on a substantial collection of
machines in order to perform experiments has been difficult. The social



problem of obtaining cooperation from multiple independent system administra
tors has proved taxing.

3) Limitations on Operating System Parameters
Distributed INGRES requires a large number, of open files and connections

to numerous cooperating processes. Most machines on which we try to run are
not configured with sufficient maximum numbers of these objects. Moreover,
most system administrators refuse to reconfigure their systems to rectify the
situation. As a result we must treat file descriptors and connections as a scarce
resource and allocate them to tasks carefulLy.

4) Code Complexity

Distributed INGRES is about 1.7 times a large as normal INGRES. It has
been substantially harder to design and code than any of us realized at the
outset.

5) Connection Topology
A distributed data base system has a "master" and "slaves" as noted above.

However, when data movement is required, a "receptor" must be activated at
the receiving site. Additionally, when tuples change sites, they must be sent
from a slave to the master who sorts them and redistributes them. The slave
must be prepared to accept both commands and data from a master. Lastly, a
user can interrupt the master which must reset all slaves and kill all receptors.
Ensuring that each process is "listening" to the correct connection under all cir
cumstances has been difficult. We have had considerable difficulty managing a
complex connection topology.

6) Boredom

Distributed INGRES has been in development since 1979. Much of that time
has been spent in "wait state" awaiting operating system support for networking.
We have always been in the position of either "waiting a few months for the
promised arrival of general facilities" or "spending a few months on an ad-hoc
implementation of special facilities which would hopefully be thrown away". We
have always chosen the former: and consequently, wait state has been frustrat
ing. Moreover, a project which shows little noticeable progress results in bore
dom for the implementation team.

REFERENCES

[BERN79] Bernstein, P. and Chiu, D., "Using Semi-joins to Solve Rela
tional Queries", Computer Corp. of America, Cambridge,
Mass., Jan. 1979.

[BLAS79] Blasgen, M. et. aL, "The Convoy Phenomena", Operating Sys
tems Review, April, 1979.

[CARE82] Carey. M., "An Abstract Model of Data Base Concurrency Con
trol Algorithms" (in preparation).

[EPST78] Epstein, R., et. al., "Distributed Query Processing in a Rela
tional Data Base System," Proc. 1978 ACM-SIGMOD Conference
on Management of Data, Austin, Texas, May, 1978.

[CARE82] Carey, M., "A Formal Model of Concurrency Control Systems"
(in preparation).



[GARC79]

[GELE78]

[GRAY78]

[UNB1]

[MCC081]

[RIES79]

[R0WE79]

[SELI80]

[SKEE82]

[ST0N76]

Garcia-Molina, H., "Performance of Update Algorithms for
Replicated Data in a Distributed Data Base," PhD Thesis, Stan
ford University, Computer Science Dept, June 1979.
Gelenbe, E. and Sevcik, K., "Analysis of Update Synchroniza
tion for Multiple Copy Data Bases," Proc. 3rd Berkeley
Workshop on Distributed Data Bases and Computer Networks,
San Francisco, Ca., February 1978.
Gray, J., "Notes on Data Base Operating Systems." in Operat
ing Systems: An Advanced Course, Springer-Verlag, 1978,
pp393-481.

Lin, W., "Performance Evaluation of Two Concurrency Control
Mechanisms in a Distributed Data Base System," Proc. 1981
ACM-SIGMOD Conference on Management of Data, Ann Arbor,
Mich., May 1981.

McCord, R, "Sizing and Data Distribution for a Distributed
Data Base Machine," Proc. 1981 ACM-SIGMOD Conference on
Management of Data, Ann Arbor. Mich., April 1981.
Ries, D., "The Effects of Concurrency Control on Data Base
Management System Performance," Electronics Research
Laboratory, Univ. of California, Memo ERL M79/20, April 1979.
Rowe, L. and Birman, K, "Network Support for a Distributed
Data Base System". Proceedings of the Fourth Berkeley
Workshop on Distributed Data Management and Computer
Networks, August, 1979, San Francisco, California.

Selinger, P. and Adiba, M., "Access Path Selection for a Distri
buted Relational DBMS," Proc. International Conference on
Data Base management, Aberdeen, Scotland, July 1980.
Skeen, D., "A Quorum-Based Commit Protocol," Proc. 6th
Berkeley Workshop on Distributed Data Bases and Computer
Networks, Pacific Grove, Ca, Feb 1982.

Stonebraker, M. et. al., "The Design and Implementation of
INGRES," TODS 2, 3, September 1976.


	Copyright notice 1982
	ERL-82-85

