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SUMMARY

In this work we have proposed two computationally
efficient methods of locating approximate unstable
equilibrium points (u.e.p.'s) of the structure preserv
ing model [1] for transient stability analysis. The
approximations employ the single machine infinite bus
(SMIB) analogy and linearization of the power flow
relation. In addition to these approximations, an
exact three term Taylor expansion is used to obtain a
quadratic bound on the error in topological Lyapunov
energy in terms of errors in the approximate u.e.p.'s.

State variables for the structure preserving model
are the vector w, of generator angular velocities and

the vector a of complex bus voltage angles. Equilibrium
points occur at w, = 0, a = ae, where ae satisfies the

load flow relation f_(oe) * P. Hence u.e.p.'s are found
by solving the load flow relation for a given vector
of real power injections P_.

For the SMIB case, the vector relation f(ae) = P
reduces to a scalar relation b sin ae = P, with a
stable equilibrium at as and an unstable equilibrium at

ctu = ir-a*. Hence the u.e.p. may be viewed as a shift
by (ti-2oi ) of the machine angle from its stable value.
To extend this analogy to a multimachine network
dynamically separating into subnetworks I and II, we
define a vector ji with components

Ut, °

1 if bus k e subnetwork I

0 if bus k e subnetwork II

?uAn approximate u.e.p. a is then found by shifting all
bus angles in subnetwork I by a uniform quantity, i.e.

au = as + (tt-S)u. The scalar quantity 8 is chosen to
minimize BP-f(au)B2.

The second approximation proposed involves
linearizing the load flow relation about an "initial
guess" u.e.p. and inverting the resulting Jacobian
matrix Ju. The computational burden of this inversion
is reduced by showing that 0U is equal to the Jacobian
evaluated at the stable equilibrium, Js, plus a
perturbation matrix. The Inverse Matrix Modification

Lemma [2] is then applied to express [Ju]
plus a perturbation matrix.

calculating many u.e.p.'s, as [J ]

These approximations are used to find u.e.p.'s
and evaluate the topological Lyapunov function for a
simple four machine network. For the various u.e.p.'s
examined, the approximations yield energy figures
within 2% of exact values, which are consistent with
the bounds obtained from our quadratic sensitivity
analysis.

The methods proposed provide efficient calculation
of approximate u.e.p.'s and their associated Lyapunov
energies. We have also derived quadratic error bounds
on the accuracy of these energy estimates in terms of

as [J*]
This is advantageous when

1
remains unchanged.

the error in u.e.p. approximations. Together, these
methods should allow use of the structure preserving
model for rapid evaluation of transient stability
regions for planning or security assessment.
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Abstract - This work analyzes several approximate
methods for efficiently locating unstable equilibrium
points (u.e.p.'s) of the structure preserving model for
transient stability analysis as developed by Bergen and
Hill [1]. The role of these u.e.p.'s in predicting
the region of attraction for the post fault stable
equilibrium points via Lyapunov techniques 1s discussed.
The sensitivity of Lyapunov energy to error in the
approximate u.e.p.'s is analyzed. The approximations
are applied to a simple six bus, four generator system,
with numerical results of the various approaches
contrasted.

I. INTRODUCTION

Among the problems to be faced in applying
Lyapunov methods to power system transient stability
analysis is that of estimating the domain of attraction
for the post fault stable equilibrium point. For most
direct analysis techniques proposed to date, this
problem translates into one of efficiently calculating
unstable equilibrium points (u.e.p.'s) of the post
fault system state equations. Early efforts in this
area sought to identify all system u.e.p.'s [2,3,4,5]
and evaluate a scalar Lyapunov function V at each of
these points to locate V.„, the minimum value of

mm

Lyapunov energy over this set. Under the assumptions
used in constructing the Lyapunov function, the region
of attraction for the stable post fault equilibrium
point is guaranteed to contain the subregion defined
by (x:V(x) < Vmir)} [3,4]. The criterion that the
initial state of the post fault system lies within
this region thus offers a sufficient condition for the
post fault system to return to a stable operating
point.

Depending on the fault examined, this sufficient
condition for stable operation may be very conservative
[6]. More recent efforts have sought to eliminate the
conservativeness of this criterion by using fault
dependent methods of determining the region of attrac
tion of the stable post fault equilibrium point [7,8].
However, most of these techniques (except the PEBS
approach 1n [7]) still rely on evaluating V at one or
more post fault u.e.p.'s.

Other researchers have proposed methods for
efficient computation of V through approximate u.e.p.'s
[9-12]. The goal of this paper is to apply u.e.p.
approximation techniques specifically to the structure
preserving model for transient stability analysis. The
method proposed in [1] for finding Lyapunov energy is

examined i.n terms of approximate u.e.p.'s, and two
alternative methods are developed. All of these
methods are shown to have a common basis: the single
machine infinite bus (SMIB) analogy and linearization
of the power flow relation. While the SMIB analogy
has been widely used in previous research [9,10], the
features of the structure preserving model facilitate
its application in new ways.

The paper is organized in the following fashion.
The mathematical background necessary forthe structure
preserving model and topological Lyapunov function is
presented in Section II. Section III explains the
concepts behind the SMIB and linearization approaches
to finding approximate u.e.p.'s. Sections IV and V
provide the mathematical development for the new
approaches proposed 1n this paper. Sensitivity of the
topological Lyapunov function to errors in approximate
u.e.p.'s is analyzed in Section VI. Numerical results
of the proposed approximations applied to a simple four
machine example appear in Section VII, with conclusions
in Section VIII.

II. BACKGROUND: THE STRUCTURE PRESERVING MODEL AND
TOPOLOGICAL LYAPUNOV FUNCTION

The structure preserving model has as its basic
assumption a new representation for system loads. Real
power loads are treated as affine functions of
frequency, allowing load buses to be retained in the
network model. Bus voltage magnitudes are assumed
constant and transfer conductances of the transmission
lines are ignored. The transmission network model is
augmented to include generator transient reactances as
lines, with internal generator buses explicitly
displayed in the network. The reader is referred to
the example of Section VII for an illustration of this
augmented network model.

Consider an augmented network having m generators,
I lines, and n buses, with the slack bus numbered as n.
Define an n-dimensional vector 6_, where the components
6. represent complex voltage angles at buses

i = l,2,...,n. State variables for the structure
preserving model are the (n-l)-dimensional vector a of
bus voltage angles referenced to the slack bus, with
components

a = 5.- i = l,2,...,(n-l) (1)

and the m-dimensional vector w-j with components

j = 1,2,....m (2)
3 3

where j indexes generator buses. Following the develop
ment in [1], the equilibrium points of the structure
preserving model occur at uj =0, a=ae, ae satisfying

(3)e^ =f(ac) = P

where

f(ct) = Agja) = (n-1) dimensional vector load flow
function

A = reduced incidence matrix for augmented trans
mission network treated as a directed graph.
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0 = ATo = Jl-dimensional vector of transmission line
voltage angles

£(a) = [b,sin a-i,b2sin a2,".»b^sin a^] = £-dimensional
vector line flow function

EiEib. = -y » where line k connects bus i to bus jk *k

A Lyapunov function for the structure preserving model
is given by o^

m « a t _

Vta.w,) = 1/2 I Mkka>^ + I \ s (sin u-sin opdu
k=l k=l ^ak (4)

where oj* and ak are components of

os =ATas» £= AT2.
as = post fault stable equilibrium angle vector

At a u.e.p., the first summation term in (4) goes
to zero. It is therefore useful to define

*• r°k
W(o) = I b. I (sin u-s1n Odu (5)

" k=l k )q\ k
which is simply the second summation term of (4). Note
that W is a function of the state vector (a.w,) only

j •
through a = A a.

In general, exact solution for ae satisfying
£. s l(ae) *Wl require considerable computation;
suitable approximations will be addressed in the later
portions of this paper. However, for the special case
of P_ = 0 such solutions have a very simple form. By
analogy with this P • 0 case, the authors in [1] imply
a relationship between u.e.p.'s and critical cutsets
which will be further developed here.

Consider a cutset 1 separating the augmented
network into subnetwork I and subnetwork II as pictured
in Figure 1. For convenience, we will assume that all
lines in the cutset have reference orientation directed
from subnetwork I to subnetwork II. The set C^ will
consist of the indices of all lines In the cutset.
Define the (n-l)-dimenslonal vector ^ with components.

(l if bus k€ subnetwork I
yk=< k= l,...,(n-l) (6)
K ^0 if bus k€ subnetwork II

In the network model, the bus voltage angle vectors

a? AH* and <*2 A~1*F tnen correspond to all buses in

Subnetwork I contains Subnetwork II contains

buses 1,2, ••,nj • buses rt|+l, m+2---,n

lines 1,2.••-.ki lines ki + p+ l, kj+p+2 •,/

Figure 1. Network Partitioned by Cutset.

subnetwork Ihaving angles of tt (-it for Og) and all
buses in subnetwork II having angles of 0. It follows
then that the corresponding line angle vectors

a? and o« have components

fir if k€C.
k = !,...,£

0 T U if k€ C.

K»^ k 10 if k*^
Such angles clearly satisfy the sufficient condition

for equilibrium; namely, that sin ok -j = sin ak ^ - 0
for k = 1,2,..'. ,£, and as shown in [1] are in fact
unstable. While this approach 1s not guaranteed to
locate all u.e.p.'s, physical reasoning suggests that
the u.e.p.'s associated with network cutsets correspond
to dynamic separation of the network, and therefore are
most relevant to transient stability analysis. In light
of their role in system separation, we shall refer to
these points as separating u.e.p.'s

This simple form of solution in the P. = 0 case
will lend insight into the approximations to be
examined in subsequent sections of this paper. In the
general case of P t 0, we still assume that two
separating u.e.p.'s are associated with each network
cutset. One such u.e.p. is assumed to be located at
ujr+ A/", the other at -irn + A", where A+ and A" are
correction terms determined~by the particular
approximation employed. Suitable assumptions' on the
power flow equation P_ = A£(ATa) guarantee the existence
of these solutions for a set of injections P of suf
ficiently small magnitude.

(7)

(8)

III. U.E.P. APPROXIMATION CONCEPTS: SINGLE MACHINE
INFINITE BUS ANALOGY AND LINEARIZATION

In this section, the basic concepts behind the
approximation techniques developed in this paper will be
analyzed. In addition, three basic forms of approxi
mation will be proposed. These will be termed the line
stretch, the single parameter stretch, and linearization
approaches. The first two relate to the single
machine infinite bus analogy. The third, as its name
implies, relates to linearization of the power flow
relation.

In the well known example of a single machine
linked through a lossless transmission line to an
Infinite bus, the task of locating u.e.p.'s for
arbitrary injections 1s straightforward. Suppose the
stable line angle for a given injection P is as. The
unstable line angles closest to as are then oj =it -a
and o« = - if - os. These both correspond to dynamic
separation of the machine from the infinite bus, which
1s the only possible mode of instability 1n this simple
system. The use of the equal area criterion to
investigate such separation Is standard.

In the general case ofa multimachine system, we
wish to extend the concept of a single machine
separating from the infinite bus to the case of a net
work dynamically separating into two approximately
coherent subnetworks. Here the cutset of lines which
divides the network will play the role of the one line
in the single machine infinite bus (SMIB) case.

As given by Inverse Function Theorem,
instance, pp. 125-126 [16].
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The Lyapunov energy approximation developed in
reference [1] applies this analogy directly to locate
a vector of unstable equilibrium line angles. Consider
a network separated by a directed cutset i as shown in
Figure 1. As in Section II, all lines in the cutset
are assumed to have reference directions oriented from
subnetwork I to subnetwork II. For lines in the cutset,
we follow the structure of the SMIB case line by line

to yield approximations o!^ and oij with components
°k,l =* " °k and °k 2 s" f " °l' For a cutset of
lines with arbitrary orientation, these approximations
may be expressed as

a" =ATjiTT +A
" T

•A uji + A
5*2

where

A, =

l-ok if k € ci

l+ok if kfiC.
k = !,...,£

(9)

(10)

We shall refer to (9) and (10) as the line stretch
approximations.

Substituting (9) and (10) into W(o) given in (5)
yields the approximations for Lyapunov~energy in [1],
where the relevant value of energy for a particular

cutset is taken to be the minimum of W(gV) and WtgiJ).

Several observations should be made about this
approach. In (9) and (10) we have assumed that a free

choice of oj and o!} was possible. In fact any exact
solution for an unstable equilibrium vector of line

angles ou is constrained to satisfy ou « A au. If one
considers the nonlinear resistive circuit analogy for
the structure preserving model described in [1], where

ok are analogous to branch voltages and ak are
analogous to node to datum voltages, this is equi
valent to observing that an exact p_" must satisfy
Kirchoff's Voltage Law (KVL). It is clear that o" and
o^ may not meet this constraint. -However, the fact
that P=Ag_(o^) =Agjop) implies that power flows
(which are analogous to circuit current flows) result
ing from these angles do satisfy Kirchoff's Current Law
(KCL).

As an alternative, we may also apply the insight
from the SMIB case in a slightly different fashion.
Consider an approximation to a separating u.e.p. in
which all bus angles in subnetwork I are shifted
uniformly from their stable equilibrium values by the
same quantity, and all bus angles in subnetwork II
remain fixed at their stable equilibrium values. As in
the previous approach, two u.e.p.'s are associated with
each cutset in the network. Using the conventions
outlined in Figure 1 and (6), these approximate
unstable bus angles may be expressed as

a. = a + ttjj - 28-|i±

us -«

(11)

(12)

Note that the precise form of the shift is chosen to
facilitate computation which will be addressed in
Section IV; since B-. and 62 are free parameters
arbitrary shifts may be obtained. With this structure
established, 6, and 6- will be chosen to approximately

minimize the error in the power flow; i.e., to minimize

HP -Aa(AT(aS-HTii-2B1u.))II2
and

IP -Aa(AT(gS-n}i.-2B2li))l>2

(13)

(14)

respectively. The details of this minimization are
found in Section IV.

Returning to the nonlinear circuit analogy, we
see that this approach yields solutions which satisfy
KVL, simply because they are expressible in terms of
bus angles (analogously node-to-datum voltages). The
single parameter 8. in each solution is then adjusted

by the minimization process to provide a best fit to
the KCL constraints imposed by the power flow relation

P = Ag_(A a). This will be referred to as the single
parameter stretch (SPS) approximation.

As an alternative to approaches drawn from the
SMIB analogy, standard linearization techniques may be
applied to the problem of locating approximate u.e.p.'s.
Linearization approaches rely on a Taylor series
expansion of the power flow relation P » AgjA'a) about
a suitable linearization point a. We first define the
Jacobian of g(q) as

J(o) =^ a(a) =diagtbjcos o^,....b^cos o&] (15)
The desired linearization is then given by

A£(ATau) -Aa(ATa) +AJ(ATa)AT[au-a] +o(aU-a) (16)
where the 0 function represents higher order terms in
the Taylor series. For 8au - ail small, we will assume

that Q_(au-a) is negligible, and define an approximation
au satisfying

P=A£(ATa) +AJ(ATa)ATLaU-aJ (17)
Examination of equation (17) reveals that the

expansion does not involve the linearization point a
directly, but only through the line angles o = A'a.
Therefore, the approximate unstable line angles located
by the line stretch approximation may serve as
linearization points. Denoting these angles o1, and
o!J, we recall that Aa(of) =Aatoi!) aP. Taking o" for
example, (17) reduces to solving^

AJ(^)[A'£u-o!f] •0 (18)

Efficient computational techniques which take
advantage of the network structure of this problem are
examined in Section V.

IV. COMPUTATIONAL CONSIDERATIONS:
STRETCH APPROACH

SINGLE PARAMETER

Consider a network with cutset i as pictured in
Figure 1,with the accompanying vector u as defined in
(6). As described in Section III, we seek parameters
B-. and B2 which define u.e.p. approximations through
(11) and (12). For initial development, we will focus
on (11) and B-,. It will be demonstrated later that for
a given cutset i B-j = B2» so only one parameter 8 is

2We will assume that AJ(o")AT (which equals AJfolJjA1)
is nonsingular and well conditioned. Tests for these
conditions are proposed in Section V.
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calculated.

Ideally, B must minimize the norm squared error in
the power flow relation

IP -Aa(AT(as+iJ7r-2Bii))B2 :i3)

where a is the stable post fault bus angle vector.
However, solving such a nonlinear minimization may be
computationally intractable. Instead, we linearize g

about o^ to obtain

IP -A£[AT(?/+]£*-2Bjj)]i2
.Ux/.T/^s Umi2s BP -Aa(oJ) -AJ(ay)(A'(a$<i!ir-2Bji) -aJjB* (19)

Recalling that A£(a") = P_, we may substitute into
(19) to obtain a "minimization function"

U\«T/ s,0(6) = BAJ(apg.lj,-AJ(apA,(a:,+u_7r-2Bu.)

-0AJ(ay)[a!(-AT(aS+H7r-2Bli)]B2

(20)

To confirm the earlier claim that B-i = 62* we observe
that J(g_^) =J(g_H). Thus the minimization function
(20) is identical for B, and B2i leading to the same
value of B.

To simplify (20), we begin by defining the vector

y_. = jth column of the reduced incidence matrix A (21)
J

Note also that from (9) it follows

u T . j^2o^ +26ATii for k€c,
[°rA («+^-2Bii)]k =< k _ i (22)1 K |0 for k& Ci
Finally, by the definition of the diagonal Jacobian
matrix J(o) in (15), we have

f-b. cos a* for k e c,
CJ(2?)]kk-< s * (23)1 KK Ubk cos ok for k* C1

With these observations, (20) becomes

0(6) =B2 I bjcos ^VjoJ-28 I bkcos a^vjjall
jec k€C

Choosing 6 to minimize 0(6) in (24) yields

6= I if]
4

where

.s.. vT/ .s.. . T[(bjcos a^Vj) ( I bkcos o^v^)]
a, S

(24)

(25)

(26)
.s.. . T ,T/ .S„ .TC(ji bj"8 ajW} (k^.bkcos W*^

By the definitions of ji and y_. in (6) and (21)
respectively, v. , j e C^ satisfies

T 1 1 if line j oriented with cutset
vlu=< (27)
j \-l if line joriented against cutset

Hence for the case of a cutset with all lines
oriented with the cutset reference direction,

&='
and (25) defines a convex combination of the

stable equilibrium line angles o,, j6 C^.

To illustrate this method consider the simple
network and cutset illustrated in Figure 2. The
v_-» j e c. vectors for this example are

J '

y^ =[o,o,i,o,o]T
Vg =[0,0,1,-1,Of
Vg =[0,1,0,-1,0]T

©(slock)\

Subnetwork I Subnetwork E

Cutset C= {4, 5,6}

Figure 2. Network Example for Calculation of 6.

Using (26) these yield

a4=(Vd)[(b4cos aj)2 +(b4cos o^KbgCOS a|)]
a5 =(l/d)[2(b5cos o|)2 +(bgcos oj)(b4cos a\)

+ (bgcos ag)(bgCos Og)]

ag =(l/d)[2(bgcos a|)2 +(bgcos Og)(bgcos o|)]
where

d=[(b4cos oj)2 +2(b4cos aJ)(bgCOS oj)
+2(bgCOS ag)2 +2(bgCOS 0g)(bgcos a|)
+2(b6cos a|)2]
The pattern exhibited in this example may be

generalized to provide a*, j € Ci for an arbitrary
network.

Define

tJ I t. if line j directed with cutset

V ""•tJ I t. if line j directed agai
(28)

nst cutset

.Sx2t, = s.(b.cos o5.r + b.cos o!( J b.cos or)
J j J 3 3 3 l&t K Kkei,

< 3
1 1f line j incident on slack bus

2 otherwi se

(29)

(30)

I. = set of all indices of lines in C. incident on a
J common bus with line j.

It is useful to note that these a. coefficients
are dependent only on the cutset examined and network
parameters and therefore will not change with varying
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P_. In some sense, the a. coefficient quantifies the

strength of the interconnection between the buses
linked by the jth line, taking into account the effect
of neighboring lines. As may be seen in (25), if a.
is large, implying a strong interconnection, then J
6 is strongly Influenced by a$. Conversely, a weak

connection across line j implies that a* has little
J

influence on 8. From the structure of (25), it also
follows that the absolute value of 6 is bounded above
by the absolute value of the largest line angle in the
cutset.

V. COMPUTATIONAL CONSIDERATIONS: LINEARIZATION
APPROACH

As described in Section III, the linearization
approximation reduces to solving (18) for au, which
may be expressed as

aU =[AJ(a!()AT]-1AJ(o^)a!j' (31)
The compuational burden lies in inverting the

matrix [AJ(g_u)AT]. To ease this task, we observe by
(9) and (15) that J(g_y)-J(os) is a diagonal matrix
with components

[J(g_!()-J(g_s)]kk =
-2bkcos ok 1f k e C.

if k£ C,

(M+rsT)_1 =r1
M'VsV1

1+sW
where

M € R
nxn

k = 1,2 A

(32)
Using (21) and (32) it follows that

AJ(o!jl)AT=AJ(os)AT-2 I bjCos a^vj (33)

In this form, the matrix AJ(g_i)A is expressed as
s Ta perturbation of the matrix AJ(o )A . It is also

useful to note that AJ(os)AT takes the form of a node
admittance matrix for a network of positive resistors.
Standard results of circuit theory guarantee that such
a matrix is nonsingular. With these observations, the
Inverse Matrix Modification Lemma may be applied to

express [AJfo^A1]"1 as a function of [AJfo^A1]"1. A
simple iterative application of this technique is
presented here. For more detailed analysis of
applications of this lemma, the reader is referred to
[13].

The form of the Inverse Matrix Modification Lemma
most appropriate to our problem is obtained from [14,
p. 655]

(34)

r,s e iRn

This formula will be applied iteratively to calculate

AJ(o")AT.
Assume C, consists of p line indices (k,,k2,...,

kj. 1

Define

M0 - AJ(os)AT (35)

T TMh =AJ(os)AT +̂ bkjCos a^^

Applying (31)

Mg1 =[AJ(as)AT]
-1

Mh =Mh-l

2bkhCOsaskh(M-!1vkh)(v^hM-l1)

l+2V0S°^ThMn-l\
Applying this iteration p times

-1(AJ(a!()AT) =M.

(36)

(37)

(38)

(39)

After the initial cost of calculating

[AJ(as)AT]"1, this approach requires only order p
vector multiplications for calculating [AJ(oj{)A ]" .
In addition, this formulation allows a test for
AJfo^A1 singular or ill-conditioned through the
magnitude of the scalar terms in the denominator of
(38). It should be emphasized that AJ(g_s)A 1s
calculated only once for a given post fault
configuration, simplifying calculation for a large
number of separating u.e.p.'s.

VI SENSITIVITY OF TOPOLOGICAL LYAPUNOV FUNCTION TO
ERRORS IN APPROXIMATE U.E.P.'S

Previous research in estimating critical values of
V for Lyapunov techniques has observed the relative
insensitivity of Lyapunov energy to small deviations
about the exact u.e.p.'s [9,10]. Specifically 1n [9],
using a linearized analysis of V about a u.e.p. «

x, AV critical s[f£] Ax, It was observed that ||||
will in general be "small."

For the topological Lyapunov function, this
sensitivity analysis can be carried further with an
exact three term Taylor expansion. Let au denote the

true u.e.p. angles in question, and Aau denote the
deviation of the approximation au from this value;
tou = au - au. The stable post fault equilibrium
angles will be denoted as. It is also convenient to
define the corresponding line angle quantities a °A a ,

Aa =ATAo, and as =ATas. An exact three term Taylor
expansion of W(ou+Ag_) about au as found in [15, p. 190]
yields

W(au +Ao) =W(au) +[a(au) -ate.S)]TATAa
T rl t (40)

+ ActA (1-s)J(aU+sAa)A'Aa ds

The linear term in (40) may be re-expressed as

[a(au) -a(2.S)]TATAa =[A£(au) -Aa(os)]TAa (41)
By definition, both stable and unstable equilibrium
angles must satisfy the power flow relation defined in
(3) so we have P=Aa(au) =Aa(as). Therefore the
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linear term in (40) must be zero.

With this observation we may express the error in
the Lyapunov energy by

|W(g_u+Ao) -W(ou)|=|AoTA f(l-s)J(3u+sAa)ATAads| (42)
•'0

To bound this integral in terms of known
quantities, we need only observe from the definition
(15) of J(o) that for any x, y_ € R*, |xTJ(y_)x|
<xTJ(0)x. Equation (42) then yields

|W(g_u+Aa).-W(au) j<\ AaTAJ(0)ATAa =\ l\{^k)Z (43)

In applying (43) we need bounds on BaoB or BAaB.
Promising results for obtaining these bounHs in the
case of approximate stable equilibrium angles are
available 1n [17], but their practical extension to the
case of u.e.p.'s remains an open area for research.

VII. APPLICATIONS TO A SAMPLE NETWORK

For purposes of illustration, a four generator,
six bus system similar to that presented in [4] will be
analyzed. To accommodate the structure preserving
model, internal generator buses are introduced
explicitly into the network. Furthermore, we shall
assume that all bus voltage magnitudes are 1.0 p.u.,
so bk = l/xk. The resulting system is shown in
Figure 3.

load

b8= 25.00

I ©(slock)
L b, =6.67

\~®
load

b,*2.50

load

♦ b3 =3.33

-L® -M® b4=l-25 V-®

Figure 3.

*0,0=2.00 b9=2:50

Structure Preserving Model for Four Machine
Network.

To illustrate the various approximation methods,
six test cases were considered. For two different
power injection vectors, P, and P_2, three different
cutsets were examined. For each case, the separating
u.e.p. angles 1n the vicinity of yp were located by
the three approximation methods outlined in this paper.
Note that the procedures would be similar for locating
the second set of separating u.e.p. angles in the
vicinity of -jjtt for any of the cutsets. As a bench
mark against which these approximations would be
judged, the sets of u.e.p. angles were also found by a

standard Newton-Raphson (N-R) iterative technique. For
each approximation method, three quantities were
calculated: the Lyapunov energy associated with the
approximate angles au (or line angles o" for line

stretch approximation); the Euclidean norm of the
difference between approximate angles au and "exact"

(N-R) angles ou, BAaB = Bau - au0; and the error bound
on V_as predicted by the Section VI analysis, denoted
as |AV|. Note that all angle quantities are expressed
in radians.

The results of the calculations are summarized in
Tables 1 through 3. The first section of each table
shows results for u.e.p. angles found in the case of
"small" injections

P, =[0.332,0.200,0.3-0,0.100,0.,0.,-0.210,-0.312,
-0.410]1".

The remaining section of each table shows results for
"moderate" injections

P_2 =[0.600,0.250,0.300,0.120,0. ,0. ,-0.520,-0.350,-0.400]T.

TABLE 1

Test Conditions: Cutset Lines {4,5}

Injections Pjj

SPS Linearized

Line ?
Stretch"3 Exact (N-R)

V 5.589 5.588 5.587 5.588

flAafl 0.078 0.012 0.118 -

\m 0.004 0.001 0.011 -

Injections Pg

SPS Linearized
Line -

Stretch"3 Exact (N-R)

V 5.590 5.587 5.585 5.607

BAaB 0.147 0.074 0.201 -

\m 0.030 0.020 0.046 -

TABLE 2

Test Conditions: Cutset Lines {3,5}

Injections P^

SPS Linearized
Line ,

Stretch"5 Exact (N-R)

V 9.139 9.142 9.140 9.142

BAaB 0.121 0.0196 0.099 -

|A7| 0.020 0.001 0.015 -

Injections f_2

SPS Linearized

Line ,
Stretch"3 Exact (N-R

V 8.996 8.998 8.989 9.023

QAaB 0.165 0.148 0.159 -

m 0.060 0.065 0.060 -

^Bus angle quantities a necessary for the Aa and |AV|
calculations were obtained by performing a psuedo-
inverse on the line stretch approximation

a!f. au =[AATrX.
•7-



TABLE 3

Test Conditions: Cutset Lines {3,4}

Injections P_^

SPS Linearized
Line ^

Stretch"3 Exact (N-R)

V 8.515 8.399 8.565 8.399

BAaB 0.876 0.043 1.038 -

\m 0.707 0.003 .997 -

Injections P_2

SPS Linearized
Line ^

Stretch0 Exact (N-R)

V 8.366 8.249 8.412 8.249

OAaB 0.877 0.036 1.039 -

|AV| 0.705 0.003

VIII. CC

0.995

INCLUSIONS

In this paper we have proposed several approxi
mate methods for locating unstable equilibrium points
for the structure preserving model. While further
experience with these approaches is necessary before a
final evaluation can be made, the results of Section
VII appear very promising. The single parameter
stretch method in particular appears to offer accurate
prediction of Lyapunov energy with minimal computation.

The linearization method appears to offer some
what more accurate location of the vectors of u.e.p.
angles, but the improvement in the accuracy of the
scalar Lyapunov function is negligible. Depending on
the application, this advantage may or may not justify
the additional computational requirements.

Overall, these techniques should allow use of the
structure preserving model and topological Lyapunov
function for rapid evaluation of transient stability
regions.
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