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1. Introduction

A major goal in the design of elastic structures is the reduction

of resonances. Since damping increases with frequency, resonances can

be kept within acceptable limits by ensuring that the lowest natural

frequency of the structure being designed lies above a certain threshold.

Optimization offers powerful tools for coping with this design con

straint on the natural frequencies as well as with the constraints

imposed by various other performance requirements.

The structural design problems discussed in this paper involve the

design of the cross section of vibrating strings, beams, membranes and

plates. Thus the design parameter is an element of iTand hence infinite

dimensional. The state equations describing the frequency response of

these structures are elliptic boundary value problems, so that the state

space is also infinite dimensional. These boundary value problems have

an infinite number of eigenvalues which formia countable subset of K .

The eigenvalues are the squares of the natural frequencies of the

structures. The literature which is relevant to the solution of

eigenvalue constrained optimal design problems is not very large. It was

shown in [0,T1, T2] that strings, beams and plates can have multiple

eigenvalues. Under mild assumptions, distinct eigenvalues are always

Frechet differentiate in the design parameter. However, multiple eigen

values may or may not be differentiate. The sensitivity properties of

multiple eigenvalues were studied in [HI, H2, H4, SI, CI, C2, C3]. A

calculus for nondifferentiable functions and general optimality conditions

for nondifferentiable optimization can be found in [C4, C5, C6]. Infinite

dimensional optimization problems present special difficulties since

either they may fail to have a solution, or the sequences constructed by
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an algorithm in the process of their solution may fail to have accumulation

points in the space in which the problem is defined. One way out of this

predicament is to recast the problems in terms of minimizing sequences.

A theory dealing with nondifferentiable algorithm construction is given

in [P2, P7].

Optimality conditions for optimization problems with eigenvalue

constraints can be obtained in various ways. In this paper and in [P3],

the optimality conditions are expressed in terms of the Clarke [C4]

generalized gradients. In [Ml] Mazur and Mroz show that repeated

eigenvalues lead to nondifferentiable problems and present an elegant

treatment of appropriate optimality criteria. In [C2, H2], we find the

same optimality conditions as in the present paper, expressed in a

different form because they were derived by specializing some general

results of Pshenichnyi [P9], In [Jl] we find the solution of a design

problem in which the multiple eigenvalues are differentiate.

Since multiple eigenvalues are nondifferentiable, optimal design

problems involving eigenvalue constraints require nondifferentiable

optimization algorithms for their solution. General purpose nondifferentable

optimization algorithms are extremely cumbersome because they require the

accumulation of bundles of generalized gradients [P2] in search direction

computation. This is a process which is too complex and too ill-

conditioned numerically to implement in the solution of structural

optimal design problems. Forturnately, in [P7] we find a theory which

enables one to exploit problem structure in designing special purpose

nondifferentiable optimization algorithms and in [C7, P3] we find

algorithms which are consistent with this theory. In conjunction with

the theory in [P7], these finite dimensional algorithms can be used as a

guide in the development of an algorithm for optimization problems with
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constraints on the eigenvalues of an elliptic boundary value problem.

This paper presents a generalization of the algorithm in [P3] and

deals with optimal design problems involving constraints on nondifferentiable

multiple eigenvalues. Although only vibrating strings, beams and plates

are considered explicitely, the results are easily extended to any optimal

design problem with constraints on the eigenvalues of an elliptic

boundary value problem.

2. Formulation of the Design Problem

It has been shown in [H4] that a vibrating string, a vibrating beam,

a vibrating membrane and a vibrating plate, all lead to an eigenvalue

problem of the form

au(y.v) = Abu(y,v) Vv e v (2.1)

where u is the design variable, V is an appropriate Sobolev space and a ,

bu are bilinear forms on V. A solution (X,y) e IR x V - {0} which

satisfies (2.1) is an eigenvalue-eigenvector pair for the system....

It was demonstrated in [H4] that the eigenvalue-eigenvector equations

for the four problems mentioned above, as well as for other structural

design problems have quite similar mathematical structures. Consequently,

without loss of generality, we confine our discussion to the physical

set up of a clamped-clamped vibrating beam of constant width. In the

context of clamped-clamped beam of uniform width, the most general design

variable is u = (p,E,h) where p is the density of the material, E is its

Young's modulus and h(x) is the height of the beam at a distance x from

one end of the beam. We simplify exposition without loss of generality

by assuming that p and E are fixed, so that u = h. Our

formulas simplify further if we scale relevant quantities so that the
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length of the beam is 1 unit and E/p = 12. Once this is done, we get

that

ah(y>v) AJQh3yxxvxxdy (2.2a)

bh(y»v) Afnyvdy , (2.2b)
jft

where ft = [0,1], the height h s L°°(ft), y is the Lesbesgue measure on ft,

and the Sobolev space V is taken to be Hg(ft). Hence (2.1) becomes

Jh3yxxvxxdy =Xf hyvdy' t2'3)
A typical design problem consists of minimizing the weight of the

beam subject to the constraints a) that the height of the beam exceeds

a given minimum height and b) that all the natural frequencies of the beam

exceed a given minimum value. Consequently, we define the cost function

f:L°°(ft) ^ ]R by

f(h) A[ hdy . (2.4)
ft

h > 0 given, we specify the constraint on the height of the

beam through the function <|> :L°°(ft) -»• IR defined by

(|>(h) A R - ess inf h(x) . (2.5)
xS^

Now it was shown in [H4] that when (J)(h) > 0, (i) the bilinear form

ah is elliptic; (ii) (2.3) has countably many eigenvalues; (111) all the

eigenvalues are real and positive, and each has finite multiplicity;

(iv) the set of eigenvalues has no accummulation points. We number the
12 3eigenvalues of (2.3) in increasing order: A, (h) < X (h) < X (h) _ ,,. .

The X^h) are the squares of the natural frequencies of the beam.

Consequently, the restriction on the natural frequencies can be expressed
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by means of the function 1J1 : L°°(ft) •*• IR defined by

ip(h) A X- X](h) , (2.6)

with X > 0 given. Collecting all the pieces, we find that our simplest

design problem has the form

min{f(h) |(|>(h) 1 0, tp(h) < 0} . (2.7)

Since neither <j>(*) nor $[•) are differentiate, we have to turn to

nondifferentiable optimization techniques in constructing an algorithm

for solving (2.7). As we shall see in Section 4, the main source of

difficulty is the constraint Tp(h) < 0. Since <J>(h) is a supremum of

affine functions, it can be dealt with by means of a simple projection

technique. However, first we must collect the various facts of

nondifferentiable optimization that we need for our algorithm construction

and analysis.

3. Nondifferentiable Optimization: A Summary

The first set of results are culled from [C4, C5] and [LI] and

deal with certain properties of locally Lipschitz functions. In what

follows, X will denote a real Banach space and X' its dual, i.e., the

space of real valued bounded linear functionals on X. We shall denote the

action of an x' e X' on an x e X either by (x',x) or by (x,x').

Furthermore, we shall assume that the domain D(f), of any function

f :X •*- IR that we discuss, is an open subset of X.

Definition 3.1: The function f :X •»• IR is said to be locally Lipschitz

continuous if for every x e D(f) there exist an open set N e D(f) and

an L € (0,») such that x € N and for all x,x' e N
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|f(x) - f(x')| < Llix-x'O . (3.1)
n

Definition 3.2: Let f :X •* IR be locally Lipschitz continuous. Then,

given any x e D(f), e e X the generalized directional derivative of f(«)

at x in the direction e is defined as

df(x,e) Alim f(x^se)-f(x+y) ^ (3#2)
y-o s
svo

The generalized directional derivative of a locally Lipschitz continuous

function always exists (see [C4]).

Definition 3.3: Let f :X € IR be locally Lipschitz continuous. Then

given any x 6 D(f), the generalized gradient of f(*) at x is defined as

3f(x) A {£ e X')|(£,e) < dQf(x,e) Ve e x} . (3.3)

n

Proposition 3.1: Let f :X + IR be locally Lipschitz continuous. Then

a) for every x £ D(f), 3f(x) is a nonempty, convex, weak* compact

subset of X';

b) for any x € D(f), e e X,

dQf(x,e) =max{(£,e)|S e 3f(x)} ; (3.4)

c) the point to set map x •*• 3f(x) is weak* upper semicontinuous

(u.s.c); i.e., if x. e D(f), i = 1,2,3, are such that x_. + x e D(f)

and £. e 3f(xi)9 i=1,2,3,..., are such that ^ -»• £, then %e 3f(x).
d) if f(-) is continuously Frechet differentiate on a neighborhood

N of x e D(f), then for all x' e N,

af(x') = {Dfx,} (3.15)
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where Df , denotes the Frechet derivative of f at x1. Conversely, if

3f(x') is a singleton for all x1 in a neighborhood N of x € D(f) and if

the map y •* 3f(y) is continuous, in the strong topology, on N, then

f(») is Frechet differentiate on N and (3.5) holds.

e) If X = IRn, a finite dimensional Euclidean space, then 3f(x)

= co{lim Vf(x+h..)} where {h.} is any sequence such that h.. -*- 0
1-x»

Vf(x+hn.) exists for all ie IN , lim Vf(x+h..) exists, and co denotes the
i-K»

convex hull. n

Theorem 3.1 (Mean Value): Let f :X -*• IR be locally Lipschitz continuous

Then for any x,y e D(f), there exist an s e [0,1] and a £ e 3f(x+s(y-x))

such that

f(y) - f(x) = (C.y-x) . (3.6)
n

Finally, consider the problem

min{f(x)|gJ'(x) <0, j =l,2,..m}, (3.7)

where f : X -»• IR, gJ : X ->- IR are all locally Lipschitz continuous.

Theorem 3.2: If x is a local minimizer for (3.7), then gJ(x) < 0

for j = l,2,...,m, and there exist tQ,ti,...,tm € [0,1], such that
m

I t- = 1, t.gJ(x) = 0 for j = l,2,...,m, and
j=0 J J

m

i
j=i

0€ t03f(x) + ^ ta.3gJ(x) . (3.8)
a

Next, we turn to algorithms for solving problems of the form (3.7)

Our source is [P8]. Obviously, there are all kinds of algorithms for

solving (3.7) when all the functions in (3.7) are continuously Frechet

differentiate. The simplest idea in extending such a differentiate
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optimization algorithm to the nondifferentiable case consists of somehow

replacing the Frechet derivatives, Df(x), DgJ(x), by generalized gradients

3f(x), DgJ(x) in these algorithms. Consider the simplest case of (3.7),

viz.

min f(x) (3.9)
x€X

In this case, the above suggestion leads to the replacement of the

steepest descent direction

h(x) A arg min df(x,h)
Ilhlkl

= arg min (h,Df(x))
llhikl

by the direction

h.p(x) A arg min dnf(x,h)
f = Hhikl °

arg min max (h,£)
Ilhlkl £€3f(x)

(3.10a)

(3.10b)

so that the Armijo gradient method [A3] becomes

xi+l =xi +sihf(xi)» 1=0,1,2,... (3.11a)

where, for given a,$ e (0,1),

s, =eiAarg max {3k|f(x.+3kh^(x,)) -f(x.) <-3kaHhf(x,)ll} (3.11b)
1 " k€IN+ i t i

and IN+ A {0,1,2,3, }.

The Armijo method, as well as others, demonstrably converge to stationary

points, when f(-) is C1. When f(«) is only locally Lipschitz continuous,

its generalized gradient, usually is not even locally uniformly u.s.c.
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and hence extensions such as the one defined by (3.10b) (3.11 a,b) cannot

be shown to be convergent in the above sense (for a counter example,

see [P6]). Referring to [P8], we see that a general approach to dealing

with this difficulty consists of replacing (in (3.10b) the generalized

gradient 3f(x) by a family of u.s.c. maps 6 f(x), e > 0, which are

locally "uniformly u.s.c. with respect to 3f(x)."

To be quite precise, the sets G f(x) are required to have the following

properties (see Definition 2.1 in [P8]):

(1) For all xe x, 3f(x) = GQf(x).

(ii) For all e ^ 0, x £ X, the sets G f(x) are weak* compact and

convex; for all e > 0, the sets G f(x) are bounded on bounded sets in

X; the maps (e,x) -*• Gf(x) are u.s.c. in (e,x) at (0,x) for all x € X.

(iii) For all x e X, e < e' => Gef(x) c Gc,f(x).

(iv) For any x £ X, e > 0, 6 > 0, there exists a p > 0 such that

for any x',x" e B(x,p) A {x'l&x-x'B < p} and any n1 s 3f(x'), there

exists an n" e G f(x") such that lln'-n'^ 1 6.

The introduction of the sets G£f(x) leads to the (nonunique) definition

of e-generalized directional derivatives of f(*)» defined for any (x,e)

e X as follows:

d f(x,e) A max (c,e) . (3.12)
E €PBef(x)

Since 3f(x) c G£f(x) for all e>0, we must have

dQf(x,e) < d£f(x,e) Vx,e e X , (3.13)

so that whenever d£f(x,e) <0, e is clearly a descent direction for f(«)

at x. Consequently an "e-steepest descent" direction is given by

g = arg min d f(x,e) = arg min max (r,e) (3.14)
llelkl e DeD<V:S33ef(x)
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We shall see in the next section how the use of e-generalized

directional derivatives leads to a convergent algorithm. However, before

we proceed to that section, it may be useful to show how appropriate

sets G£f(*) can be constructed for a special class of functions f(*)-

Thus suppose that f(») is a composition map of the form

f(x) = ♦(g(x))

with g :X + Y continuously Frechet differentiate , <J> :Y •* IR locally

Lipschitz continuous and Y a real Banach space. The maps Gf(x) can be

constructed to have the form

Gef(x) A 3cj>(g(x) + ve(x)) (3.12)

where, for some norm, IIv (x)ll < e and, in some sense, "maximizes" the

set 3<i>(g(x)+v), for IIvII < e.

The simplest example in IRn which is analogous to the problem we

wish to solve in this paper is

max X](x) (3.13)
xeiRn

where X (x) A f(x) is the minimum eigenvalue of a componentwise analytic

mxm real symmetric, positive definite matrix Q(x). In this case,

g(x) = Q(x) E IRnxn and <j>(Q) = min eigenvalue of Q. Now, for any

x e IRn, A(x) =U(x)T Q(x) U(x), where U(x)T U(x) = I and A(x)
19 m

= diag(X (x),X (x)... (x)), with the eigenvalues arranged according to

increasing magnitude. Let the multiplicity of X (x) be m (x), then

(see [P3])

3f(x) =co{v e ]Rn|v1 =<U(x)z, 59ixi u(x)z>
3X1

i = l,2,...,n, llzll = 1} (3.14)
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where U(x) is an mxm (x) matrix consisting of the first u (x) columns

of U(x) and co denotes the convex hull. For this case we define

V (x) to be the mxm matrix U(x)T6A (x) U(x), with SA (x) =diag(6X (x),

6X2(x),..., &m(x)}such that [6X1(x)| <e, which maximizes the
multiplicity of the smallest eigenvalue of Q(x) + V (x). We note that if

define k£(x) by

k£(x) Amax{k e m|Xk(x) - X1(x) <e} (3.15)

Then 6XJ(x) AX^x) -XJ*(x) for j=l,2,...,k£(x) and 6XJ'(x) A0
otherwise defines such a matrix 6A (x). This yields a formula for

G£f(x) which is identical to (3.14) except that U(x) now contains the

first k£(x) columns of U(x). In practice, when e is small, it may be

difficult to tell whether two eigenvalues which are numerically e apart

are not, in fact, the same eigenvalue. Because of this, in [P3], a

somewhat larger set G£f(x) is used. It is defined as follows. Let

k£(x) Amin{k €m|Xk+1(x) -Xk(x) >e} (3.16)
_• i _

with X (x) A~. Then k£(x) > k£(x) and we define the mxm diagonal

matrix 6A (x) by 6XJ'(x) = X](x) - XJ(x) for j=1,2,...,k (x) and

6XJ(x) =0for j=k£(x) +l,...,m. Again the formula for G£f(x) is
obtained by replacing in (3.14) the mxm'u) matrix U(x) with the

mxk (x) matrix 0 (x) consisting of the first k (x) columns of U(x).

We shall see that the construction in the next section is entirely

analogous to the one in [P3], i.e., to the one we have just described.

4. The Algorithm

Before we can state the algorithm for solving the problem (2.7),

with the functions defined by (2.4)-(2.6), we need to develop some of
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the properties of the function i[>(») in (2.6) on the set

L*(fl) A {h e L°°(fl)|<j>(h) < 0} . (4.1)

Let 8 denote the real Banach space of symmetric, bicontinuous,

bilinear forms on H^(Q), with the norm of a € B defined by

lal Asup{|a(y,v)| llyll = IvD = 1} (4.2)

oo 1 1Next, for any h € L+(fi), let m (h) denote the multiplicity of X (h),

the smallest eigenvalue of (2.3). The following result can be found in

[H4].

Proposition 4.1: a) The maps h+ a. , h •* b^, mapping L~(ft) into B, with
ah, b. defined by (2.2a), (2.2b) respectively, are continuously Fre*chet

differentiate.

b) Let the Frechet derivatives of ah, bh be denoted by a^, b^ respectively,

Then for any g € L^ffi), a/g, b/g are the bilinear forms on B defined by

a^g(y.v) =[ 3h2gyxxvxxdy (4.3)

b^g(y,v) = gyvdu. (4.4)
ft

The next result is a modification of Theorems 1 and 2 in [H4]; for a

proof see the Appendix.

Proposition 4.2: a) For every k e L*(ft) and every g e L°°(ft) satisfying

ilgll < h/4, there exists an s > 0 such that
«* CO —

(i) The function Xg(t) AX^h+tg) is real analytic on [0,s);
(ii) the orthogonal projection Pt, onto the direct sum of the

eigenspaces of

X^h+tg), X2(h+tg), ..., Xm (h)(h+tg)

is a well defined analytic function on [0,s).
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1 COb) The function h+ X'(h), from L+(fl) into IR, is uniformly locally

Lipschitz continuous on bounded sets, i.e., for every M > 0 there exist

a p > 0 and an L < » such that for all h e L*(ft) n B(0,M) and every

h' 6B(h,p),

IX1(h) -X«(h')| <LHh-h'll^ (4.5)

(with B(z,v) A {z' € L°°(fi)|llz-z,lloo< v}). *
*•

Next we proceed with the construction of the sets GJ>(h), whose

role in search direction computation was somewhat discussed in the

preceding section.

a) For every v€Hg(ft) and every h€L+(fl) we define ^ €l(fl) by

cUb^^xx^1^2)' <4'6>
b) For any k e jn+ and h € L*(fl) such that Xk+1(h) f Xk(h), we define

the set GkiMh) c L1 (n) by

G\j;(h) A -co{£jv is an eigenvector of Ui^bJ corresponding

to X^h), 1 = l,2,...k} , (4.7)

where co denotes the closure of the convex hull in the L topology.

1 ^l l
Remark: When m (h) = 1, G <j>(h) is the Frechet derivative of X (h), as

was shown in [H4]. n

The following result will be proved in the Appendix.

Proposition 4.3: Let h€ L~(fi) and ke IN+ be such that Xk(h) t Xk+1(h)

Then there exists a p > 0 such that (i) G ^(h1) is well defined for all

h' e B(h,p) n L™(n),and (ii) the point to set map h' + G^fh'), from
CO 1

B(h,p) n L+(fi) into the class of subsets of L (&), is continuous in the
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sense of Berge [ Bl]. If Sc B(h,p) n L~(Q) is compact, then

U Gk(h') is compact in L](Q). n
h»€S

Now, for any h e L*(ft) and e > 0, we define

k(h,e) Amin{k 6 IN+ u {co}|xk+1(h) - Xk(h) >e} (4.8)

and

G£(h) AGk(h'e)(h) , (4.9)

The following assumption is dictated both by theoretical and

computational considerations.

Assumption 4.1: There exists an eQ >0and ajQ e ]N+, jQ >0, such
that for all h. € L*(ft) constructed by the algorithm k(h.,e0) <jQ. «

The following result will be proved in the Appendix.

Proposition 4.4: Suppose that Assumption 4.1 holds. Then for every

h6 L*(a), GgiKh) = 3if;(h). *

The algorithm which we will shortly present is a semi phase-I-

Phase-II algorithm with projection. It constructs sequences {h.} which

may violate the constraint i|>(h) < 0, but they will always satisfy the

constraint <|>(h) < 0. Since <!>(•) is the supremum of affine functions,

it is easily handled by a projection mechanism in the search direction

computation, as we shall shortly see. First, for every he L~(fi) we

defi ne

F*(h) A{g e im{a)|OgD^ <1, (h+g) 6 l"(b)} . (4.10)
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Note that if h e L~(ft) and (h+g) e L*(^), then we must have

(h+sg) e L*(fl) for all s e [0,1].

Next, for every h € L~(ft) and e ^ 0, we define the sets

U. (h) A arg min ( max (g,£)) (4.11a)
* geF*(h) ^M

and

Ufj£(h) Aarg min ( max (g.O) , (4.11b)
g^*(h) ^:o{f'(h),G^(h)}

where

. . G ip(h) if *(h) > -e
G>(h) A < e ~ (4.12)

empty set otherwise

and f'(h) is the Frechet derivative of f(-) at h. We note that a

% G% e^ 1S a Pr°Jected Phase-I descent direction for !//(•) when
iHh) >0 and the min max <0, in (4.11a) and that a gf 6 Uf (h) is a

projected phase-II feasible descent direction for f(») when ij>(h) < 0

and the min max < 0 in (4.11b). In both cases the projections are

into the set F^h). We shall also need the values of the programs in

(4.11a) (4.11b), which we define as follows:

9,, c(h) A min max (g,£) (4.13a)
* geF*(h) *V<h>

eFj£(h)A min max (g,£). (4J3b)
g€F*(h) ^Gco{f,(h),G^(h)}

Next, with y > 1 given, we define the crossover function r : L"(ft) •* [0,1]

by

r(h) A exp(-Y*(h)+) (4.14)
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where i|»(h)+A max{i|>(h), 0}. The crossover function is used to construct

a search direction which switches from a descent direction for $(•)

when i|;(h) > 0 to a feasible descent direction for F(«) when ty(\\) < 0,

as follows:

u£(h) ar(h)uff£(h) + (l-r(h))u^9£(h) (4.15a)

and the corresponding optimality function

ee(h) Amin{r(h)efj£(h), (i-r(h))e^e(h)} . (4.15b)

As we have mentioned earlier, the function of e > 0 is to produce

a kind of local uniform upper semi-continuity in the sets GJ;(h).

However, e must eventually be driven to zero. We do this by making use

of a standard device in feasible directions methods (see [P7]).

Let £q >0 and v € (0,1) be given. We define the set

2 3EA{0, £q, v£q, v £q, v £q,...} (4.16a)

and the optimal ity function E:L™(ft) •»• E by

£(h) Amax{£ € E|0£(h) < -£} • (4.16b)

As we shall shortly see, £(h) =0 iff eQ(h) =0and e(-) and eQ(-) are
optimality functions in the sense that if h is optimal for our problem,

then £(h) =0and 60(h) =0, so that £(h) >0 (8Q(h) <0)implies

that h cannot be optimal. However, £(•) is a much nicer optimality

function than 0Q(O because given a sequence {h..} such that h.. -»• h as

iH-co with eQ(h) = 0, it is possible to have 8Q(h1.) < -1 for all i, but

we always have £(h.) •»• 0 as 1 •»• «. We use e(«) in the following two

definitions. For all h € L*(ft),
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U(h) AU£(h)(h) , (4.17a)

6(h) Ae£(h)(h) . (4.17b)

In order to ensure that we can, at least, compute feasible points h, we

need the following commonly made hypothesis.

Assumption 4.2: 6. Q(h) <0for all h. € l"(Q) such that ty(h.) >0,

constructed by the algorithm. «

Before starting the algorithm, we summarize the properties of the

functions 8£(h), 8(h) and £(h). The proofs will be given in the Appendix.

Proposition 4.5:

a) For every e >0 and he L~(fi) the sets U. (h) and Uf (h) are

well defined.

b) For any h € L*(fl), 0 <£<£'=> 8 (h) < 8 ,(h).

c) For all £>0, the map 8£ :L~(fl) •* IR is u.s.c.
d) For all h € L~(fl), 0(h) = 0 <>£(h) = 0.

e) If h€ L*(a) is a local minimizer for P then 8(fi) = £(h) = 0.

f) If h e L*(fi) is such that 0(h) < 0, then there exists a p >0 such

that £(h) > v£(h) > o for all h e B(h,p) n L*(n). n

We are finally ready to state our algorith.

Algorithm 4.1

Parameters: ae (0,1), 36 (0,1), eQ > 0, ve (0,1), y > 1.

Data: hQ € L*(ft).

Step 0

Step 1

Step 2

Set i = 0.

Compute 0(h-) and a g. € U(h,). Stop if 0(h.) = 0.
1 1 1 . 1

i +Compute the largest stepsize s^ = 3 \ with k^ e IN , such that

if iHh-j) > 0 then
-18-



^(h^s.g.) - iKh.) < s.a8(h.) (4.18)

if ^(h^ < 0, then

fftf+s^) - f(h.) < s.a8(h.) (4.19a)

and

^(h.+s.g.) < 0 . (4.19b)

Step 3: Set h.+1 = h.. + s.g., set i= i+ 1 and go to Step 1. *

Remark: The algorithm above is conceptual, since it assumes that we

can compute quantities such as 8(h.) and g. in Step 2. When the design

problem is reduced to a finite dimensional problem, e.g., via a finite

element method), a fully implementable version of Algorithm 4.1 does

exist, see [P3]. «

The following results will be proved in the Appendix.

Proposition 4.6: If h. e L™(ft) is such that 6(h«) < 0, then (a) s.,

as defined in Step 2 of Algorithm 4.1, satisfies s. > 0, i.e., the

algorithm is well defined, and (b) h. + s.g. € L~(ft). n

Theorem 4.1: If {h.}^_0 is asequence generated by Algorithm 4.1,

then any accummulation point hof {h.}^=Q satisfies 8(h) =0. n

Since the design parameter space is infinite dimensional, it is not

clear, apriori, that asequence {h.}?=0, constructed by Algorithm 4.1,

will have accummulation points, even if this sequence is bounded. In

the case of optimal control, a similar phenomenon has led to the

extension of the design space to that of relaxed controls, in which

accummulation points always exist. In the present case it seems simpler

to use an extension based on the topology of minimizing sequences, as

defined in [P4]. The extended norm for that topology is defined by
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B{h.}? nII =lim llh.ll. We reproduce two definitions from [P4].
1 1_u i-x» 1

Definition 4.1: Abounded sequence {h..}~=Q in L*(ft) is said to be
eventually feasible if

Tim iHh.) < 0 . (4.20)
a

.00

Definition 4.2: An eventually feasible, bounded sequence {h.}. Q in

L~(ft) is said to be a local minimizing sequence for P if there exists

a p > 0 such that for any eventually feasible bounded sequence {h.}. q

satisfying

lim flhi-h1J < p (4.21)

we have

lim f(h.) <Tim f(h.) (4.22)
iGK 1 i€K 1
i-X» "j-xxs

for any infinite subset Kc 3N+. n

Definition 4.2 is so constructed that if {n\}T=0 is alocal
minimizing sequence, then any subsequence {h.}.eK, KC IN is also a

local minimizing sequence. Referring to [P4] we find the following

optimality condition for minimizing sequences.

Proposition 4.7 [P4]: Suppose that {n\}"=0 is aminimizing sequence
for P. Then

lim £(n\) = lim e(h.) = 0.

As far as Algorithm 4.1 is concerned, the following result holds in

the topology of minimizing sequences,
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Theorem 4.2: Let {h..}. Q be a bounded sequence generated by

Algorithm 4.1. Let KA{i e fl| +|i/,(h.) >0}. Suppose that Tim 8, n(h.) <0.

Then lim i|>(hj) <0 and either ljm f(h^) = -~ or lim £(h.) = 0. «

The proof of Theorem 4.2 is obtained by modifying the proof of

Theorem 4.1, in the manner discussed in [P4], It will not be presented

in this paper.

5. Conclusion:

The algorithm presented in this paper is conceptual in the sense

that it contains no instructions for approximating the various vectors

and function values that are used in the search direction and step

size computations. Fortunately, this is not a seriour drawback since in

[P3,P2,P7] we find appropriate theoretical results which allow one to

convert a conceptual algorithm into an implementable one (i,e, into an

algorithm that can be programmed on a digital computer) that retains

the convergence properties of the conceptual algorithm from which it is

derived. The main reason for presenting the algorithm in conceptual form

is that it allowed us to simplify the exposition to a considerable degree

without impairing the reader's ability to convert our results into a

practical algorithm.
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Appendix A: Proofs

We shall now provide the proofs that were omitted in Section 4.

We devote a separate subsection to each proof.

Al. Proof of Proposition 4.2:

We begin with a). We recall from [H4] that X is an eigenvalue of

(a^,bh) if and only if 6 =t- is a nonzero eigenvalue of Aj" B. ,where

Ah, Bh were defined in (4) of [H4]. We reproduce the definitions and

discuss the properties of Ah and Bh, since we shall need them in our

analysis. For details see [H3,H4].

Consider the diagram in Fig. 1, which we use to define the map Au.

In this diagram,

(a) iis the inclusion of Hg(ft) into L2(&).
(b) i' is the inclusion of L2(ft)' into H^(ft)'.

2 2
(c) L and (L )' are brought into correspondence by means of the

Riesz representation theorem.

(d) The map Ah is defined by

(Ah,y,v) Aah(y,v) Vy,v eH2(fl) . (Al.l)
2

Since a. is elliptic, Ah is an isomorphism onto Hq(^)'.

(e) The map L: H?(ft) •»• L2 is an unbounded operator-whose domain, D(Ah)

is given by

D(Ah) A{y €H2(ft) |Ahy €L2(«)'} . (Al .2)

The map A. is defined by

<Ahy,v> 2A (Ah y,v) =ah(y,v) . (Al .3)
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1 1 p
Note that i'Ah =A^, and hence that Ah =Ah i* maps L (ft) into

Hq(Q), because A. is an isomorphism and Ili'H £ 1. Clearly, it is a

bounded operator,

(f). Ghv^n3/2vxx (A1.4a)

(S^f.v) A<Ghv,f> 2 (A1.4b)

Since G^ is an isomorphism onto its range, and G/

2isomorphism onto Hq(G)', where R(Gh) denotes the range of G.. We
2 1consider Gh as an operator from Hg(fi) onto its range. Thus GjJ' and

(G^)" are well defined. Furthermore, we note that G/G. = A. .

Next, suppose that llhll < M, and let g be an element in the ball
L

B(h,h/4). As was done in equation (45) of [H.3], we define three

operators, C-j, C2, C3, from R(Gh) into R(Gh) (which is a closed subspace
2

of L (Q) because G^ is an isomorphism onto its range), as follows:

<C^.V^AJ3h2g yxx vxx dy , (Al .5a)
<C2Ghy,Ghv^ AJ3hg2 yxx vxx dU , (Al.5b)
^aV'V^AJs^v^du. (A1.5C)

It can be easily verified from equations (Al.5a)-(Al.5c) that

flCJ < 3lgl JM m < 3/4 , (A1.6a)
i L L

IIUI < 3(llg(l /DHB J2 <3/16 , (A1.6b)
L L L

•C3I <(Igl./Dhl J3< gL. (A1.6c)

Now, for t e [-1,1] we have that
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(/W>v> "Wy,v) =J^xxV^ +tj^^xxV^
'Vxx* =(GnV»v> +tte^e^.v)

(A1.7)

+ t' 3^\x\xdv +t3

+t2(G'C2Ghy,v) +t^G^G^.v)

From (A1.7) we conclude that

Vtg -S(I+tCl+t2c2+t3c3)Gh •

Now, there exists a t > 1 such that for all t e [-t,t] ,

I t+Jl t2 + J. t3 < 63
4 z 16 z 64 z 64 •

and hence, from (A1.6)-(A1.8),

en

2* ..3. X-l .3. vn(i+t^+rcg+t^)"1 = I (-i)n(tc1+rc2+rc3)n,

so that

A^itn= I (-D^U^+Ag+AgJ^GJ)-1 .h+tg
n=0

(A1.8)

(A1.9)

(ALIO)

.1/2
-1 1 cAs QG.'Q = lUG/) Ml < T^To- , where C is the constant in the Pincare*

:3/2
-1inequality (see [F.l]. Equation (ALIO) implies that the map t -*• A.+. ,

2
from IR into the Banach space of bounded operators from Hq(q)' into
2

H0(fi), is analytic (i.e., it has an absolutely and uniformly convergent

power series representation), and the radius of convergence at t € IR

such that <t>(h+tg) <_ 0, is t > 1.

It now follows that A7+. is also analytic in t, with the same

radius of convergence, because Aj\. = Aj\. i'.

Now B^ is defined similarly to A. in (A.3), i.e.,

<ghy'v> 2^ bh(y,v) (ALU)
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It is easily seen that B. is a bounded operator whose domain is the

2 2whole of HQ(fi) and whose range is in L (ft). Consequently, from (A.ll)

V = h(iy) . (A1.12)

It follows that the map t + B. +. is analytic, with radius of convergence

«>.

We thus have the following: for all he L+(ft) and g € B(h,h/4), the

map t+ Sjj+t Bh+t is analytic on -(t,t), and the radius of convergence

at t s.t. <j>(h+tg) < 0 is t > 1. Therefore (a) is a consequence of the

preceding statement and theorems VII 1.7-1.8 of [Kl].

To establish (b), we observe that, with t = 1,

"hitg Vtg -A;\» <- WhitgIIIBh+tg-BhD +"V^V^11
^ Igl _+Ii 4

(R/2)3'2 L" R3

l (3lgl „/lhl . +3DgH2m/(nhD J2 +Bgfl^/DhB3_)"

(A1.13)

_ 00 00 3 00* V 00' 3 .00 .00
n=l L L L L L L

The last term in (Al .13) satisfies

I Oil * (I +3ll£tl2 + ll£ll3 )nn=i n i oo n . oo n . co'

We see from (AL14) and (Al .13) that there exists a K > 0, such that

for all he L+(ft) and ge B(h,h/4) such that 4>(h+g) < 0,

nAh!tg Vtg "Ah\° i KI,9BL« ' (AK15)
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Finally, let <S (h) be the largest eigenvalue of A7 B. . Then

6](h) =l/X^h), and hence

IxVg) - X^h)! -
6](h+g) 6}(h)

< Kllgll co j2 r-= KllgO^X^h+g) X](h).
L 6,(h+g) 6'(h)

(A1.16)

We now make use of the fact that llhil < M (and hence that flh+gll <_ M+fi)

as follows:

^(h)- inf ^
y€H2(Q) f hy2du

y°o ^
Let y + 0 be arbitrary. Then

x'th) <
h|y2dy

Similarly,

xi(h+g)<M)i^
h

ft

y2 dy
-'xx K

y2dy

(A1.17)

(A1.18)

(Al.19)

Substituting for X^h), X (h+g) into (Al .16), we conclude that X (•)

is locally Lipschitz. This completes the proof of (b) and hence of

Proposition 4.2. »

A2. Proof of Proposition 4.3

Let h € L"(n) and k e N+ be such that xk(h) f xk+1(h).

(i) It follows from the continuity of the functions h + X1(h) that there

exists a p >0 such that for all h' e B(h,p) n L~(fl) Guji(n) is well

defined.
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(ii) For all h' e B(h,p) n L~(ft) let

k 2Z (h1) A {z eHQ(ft)|z is a unit eigenvector of Un«»bni) corresP°ndl'n9

to j(h'), j=1,2,...k} (A2.1)

k 2
and let P. , denote the orthogonal projection operator from Ht(fi) onto the

2 ksubspace of HQ(ft) spanned by Z (h1).

Let 6 (h1) >. 62(h') >63(h') > ... be the eigenvalues of the operator

A7, B. ,, defined in Section Al. Consider a closed curve r in the

12 k
complex plane, which encircles 6 (h), 6(h), ...5 (h) and no other

eigenvalue of AJJ1 Bh. If pis small enough, then for all h' eB(h,p)
n L+(ft), r encircles 6J(h'), j= 1,2,...k, and no other eigenvalue of

AjJ, B^,. In this case we have from [K.l] that

Consequently, for every h', h" e B(h,p) n L~(ft) we have that

aPh'-phJ^^F j"(^A-Ib^,)-1!!;^], gh„ -A"] BhJ lU-^lB^r1!*

<j- A(r) MaxdS-S^h")!"1 € er, j ek} x

Max{|^6J(j')r1|5erf j6k} IA~] Bh, -A'?, §h,D, (A2.3)

where i(T) is the length of the curve r. Now, it can be seen from (Al.13)-

(Al.19) that the Lipschitz constant K and the convergence radius p in

Proposition 4.2 depend only on llhll , but not on h or h\ Thus, if
L (n)

p is small enough, then there exists a R > 0 such that

1A~] Bh, -A~l BL„II <Rllh'-h"!!,

with R depending on llhll but not on h. Therefore it follows from
,n x k L (fi)(A2.3) that Ph, is locally Lipschitz continuous in h'.
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Next, consider asequence {h'.}?_Q such that for all i,

hi gL*(fl) nB(h,p) and hi + h. Let zi eZk,, 1eM+. Since Pk, •* Pk
k n + nand II Ph, Z..II = II z^ = 1, there exists an ig€N such that for all
1 Jc„ . . 1 zii> i*q, II Ph Z..H > -g ,and hence

Phzi
< 2. Thus we have that

z_.

lim IIPk —J z.h lim 0PuZ4 - z.ll =lim II p£z. - pjSz-D =0 (A2.4)
i-K» n Opfz^D n i-~> " n n 1-ko h n hi 1

n i

k zi k kSince Ph —j-5— eZ (h), it follows that Z (h) is upper semi-continuous
n IIP^z.lI

n 1 k k k
in h. On the other hand, if z e Z*(h) then z = Prz = lim Pr.z

pkz pk h 1-k- ni
hi hi

=lim . 1 . Since - . 1 e Zk(h.), it follows that Zk(h)
i-*» IPjJ.zO 0 [IP£,zll 9 1

hi H2(fl) hi H2(fl)

is lower semi-continuous. Thus it is continuous in the sense of Berge

([Bl) The continuity of Gk\Kh) follows directly.

Next, for all h' e L~(fl) n B(h,p), Zk(h') is a compact set. The

set {£ui|z e Z (h')} is a continuous image of a compact set, and hence

it is also compact. Finally, GkiHh') is the closure of the convex hull

of a compact set, hence it is also compact. The proof of the fact that

u Gk(h') is compact, with S a compact set, is straightforward and is
h'es
therefore omitted. This completes the proof of Proposition 4.3.

A3. Proof of Proposition 4.4

We will have to make use of the following set of facts.

Fact A3.1: Suppose that the design parameter space is one dimensional,

with t being the design parameter, and that the bilinear forms at and bt

are analytic in t. Let a* and b^. denote the derivatives of at and bt

(respectively) with respect to t. Let the eigenvalues of Ut,bt) be
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12 3
numbered in increasing order, X (t) < X (t) < X°(t) < .... For the

function t-X](t), ^(tQ) =co(b ^^ (a£ (h,u) -X1^) b' (h,u))|
tQ ' 0 0

u is an eigenvector of (af ,b. ) corresponding to X (tn), and llhll « = 1}
z0 z0 u H^(a)

Proof: It is known from perturbation theory ([A2]) that the functions

XJ(t), jem (tQ) (where m(tQ) is the multiplicity of X(tQ)) are
branches of an analytic equation. It is readily seen that if m (t) = 1,

then

^ =b^(at(u'u>-xl(t>bi(u»u>>
with u an eigenvector of (at,bt) corresponding to X (t), and

II h II 0 =1. The proof now follows from analytic function theory and

Proposition 3.1(e). n

Fact A3.2: Under the conditions of Fact A3.1, difi(t0,l) =dQij;(t0,l), where

dip denotes directional derivative and &~fi denotes generalized directional

derivative of ij>.

Proof: This fact follows directly from the fact that the functions

X (t), jem (tQ) are branches of an analytic equation on some neighborhood

of t„. n
0

Fact A3.3: Let h€ L~(Q) and g€ L°°(fi) be such that llgll m <£. Then

d^(h,g) = Max{(c,g)U e G^(h)}.
L~(n) " 4

froof: Let ij)(t) Ai/>(h+tg), then dip(h,g) =d^(0,l). From Fact A3.2

we conclude that diji(0,l) =d0$(0,l). From Fact A3.1 we have that
d0$(0,l) =Max(b i^^ (3h2gu2x-X1(h)gu2)| uis an eigenvector of (%\)
corresponding to XJ(h), jeJfh)}. Therefore dip(h,g)
= Max{(£,g)|5 eG0iJ;(h)}, and the proof is complete. n
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We are now ready to prove Proposition 4.4. It follows from Fact A3.3

and the fact that GQ^(h) is weak* compact that £e (L^ft))' satisfies

5e GQip(h) if and only if (£,g) < dif>(h,g) for all ge L°°(a). Now, if

£e G0iMh) then (£,g) <dQ^(h,g) for all ge L°°(fi), and hence £e 3ip(h).

Thus we have shownthat GQi|;(h) c 3iHh). To show the opposite inclusion,

we need the fact that the point to set map h-*- GQip(h) has the mean value

property with respect to ip, i.e., that for all g,h e L~(ft) there exists

ate [0,1] and an ne GQ^(h+tg) such that iKg+h) - ip(h) = (n,g). We shall

now prove this.

Let ij)(t) be defined as in the proof of Fact A3.3. We have from the

mean value theorem of Lebourg ([L.l]) that tf/(g+h) - ip(h) = if(l) - $(0) = ii,

for some n e 3$(t), and some t e [0,1]. It follows from Fact A3.1 that

1 2 2 12
-T1 e c°{"h nrrr\ 3(h+tg) gu^v - X (h+tg)gu )du with u an eigenvector

Vtglu,UJ h xx. .
of ^ah+tg'bh+tg^ corresPondin9 to XJ(h+tg), j em (h+tg), and ||u|| 2 =1}
This means that n = (g>n) for some n e GQip(h+tg), which completes

the proof that the point to set map h -*• Gq^(Ii) has the mean value property

with respect to ip.

Next, we proceed to show that 3i|>(h) c Gqi|;(h). Suppose, for the sake

of contradiction, that some f e 3^(h) satisfies 1 £ GQ\|;(h). Since GQi|;(h)

is weak* compact, there exists age L°°(fi) and an a > 0 such that for all

n e G0ip(h)

"(g.S) > a > (g.n) . (A3.1)

It now follows from Fact A3.3 that

d0^(n>9) ><* ><ty(h,g) . (A3.2)
^(h+h.+s.g)- (h+h.)

But dnip(h,g) = lim ]—^ — •
u h.-K) si

sAO
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Now, for all i e N there exists a t. e[0,l] and an m ^ GftiMh+h.+t.s.g)
^(h+h.+s.g)- (h+h.) 1 1 ° "< 1 !

such that = (n.. ,g). As i -»-«>, a subsequence of
i

*V7=1 conver9es t0 some neGQ(h), and we get that (n,g) >a>dip(h9g).
This contradicts the fact that dip(h,g) =Max{(n,g)|ri ^GQ^(h)}. This

contradicts our assumption that 3ip(h) £G0i/>(h), and the proof of

Proposition 4.4 is complete. a

A.4. Proof of Proposition 4.5

a) We will show that U (h) is well defined. The proof that

Uf>£(h) is well defined is similar and hence will be omitted.

G£iMh) is acompact convex subset of 0(Q), and F*(h) is aweakly
closed subset of L°°(a). For all ie lN+,let £. e Gip(h) and g. e F^(h)
be such that

(9i9q) = Max (£,g.), (A4.1)
£eGj,(h) 1

and fc

(gi^i} ± JS* Ma* x (9»S) +T • (A4-2)geF^h) SeG^h) 1
Let CeGJ;(h), ge F*(h) and let Kbe an infinite subset of IN+ such that

K . K .
£• •* I and g. + g. For any £ e Gij;(h) we have

weakly ' e

(5.S) =lim (g.,£) <lim (g.,£.) =(g,f), hence I e arg max{(g,C)|c eG ip(h)>
ieK 1 ieK n 1 e

Next, for every g 6F*(h), max (g,£) > lim (g,£.) >Tim ((g.,£.) -I)
SEGJi(h) ieK 1 " ieK ^ 1 n

= (<?si). Thus, g e argmin Max (g,£)» and hence U. is well
geF*(h) ^W *,E

defi ned.

b) This part follows directly from the facts that 9. (h) <_ 6- ,(h)
T ,£ T,£

ande^£(h) <e^£l(h).
c) This part follows directly from the fact that both 6f (•) and

T ,£

% e^ are uPPer semi-continuous.
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d) Since 9e(n)(h) <-£(h) <0 by definition, ©e(h)(h) =0implies
that £(h) = 0.

To establish the converse, suppose that £(h) = 0. We will show that

9fj£(n)(h) =0; the proof that (l-r(h)) ^ e(h)(h) is identical, and hence
omitted. Suppose for the sake of contradiction that £(h) = 0 and that

0fj0(h) < 0. Let i>0 be such that for all e<i, k(h,£) = k(h,0),

and hence co{f' (h),G£^(h)} = co{f'(h),GQi/;(h)>. Then, for all £ satisfying

0<£< £, 6f £(h) = 9f Q(h) < 0. We see that £(h) =0>-v6f Q(h) >0,

contradicting the definition of £(h). This completes the proof of (d).

(e) This part follows from the optimality condition (Theorem 3.2)

and the fact that r(h) = 1.

(f) Suppose that the statement in (f) is not true. Then there

exists asequence {h.}? ,, h. eL^(ft), such that h. -*• h, and
i-HX>

e(h.) < v£(fi) and e(h) > 0. For all i e IN , we have

6 (n)(ni) > -v£(fi), and as i-»- « we get from (c) that

eve/h)(h)2-ve(h). (A4.3)

-ve(fi) >-e(R) >. 6 (£)$) 1 6 (h)^^' wnicn contradicts (A4.3). This
completes the proof of (f) and hence of Proposition 4.5. n

A5. Proof of Proposition 4.6 and Theorem 4.1

Proof of Proposition 4.6: Let h.. e L"(fi) be such that 9(h..) < 0. We

prove the result for the case where i|;(h.) = 0; the case where ^(h^) f 0 is

simpler and the proof is omitted.

Suppose, for the sake of contradiction, that s^ = 0 for some

gi 6U(h.) =Uf(hi), i.e., that for all s=6k >0with ke]N+, either

f(hi+sg.) - f(h.) >a s0(h.) (A5.1a)
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or

iKh^.+sg^ -^(h.) >a s0(h.) (AS.lb)

Suppose that (A5.1b) holds for all i e K, with K an infinite subset of

IN (the case where (A5.1a) holds infinitely often is similar, and hence

will be omitted). By the mean value theorem of Lebourg ([LI]), for all

i e K there exist ate [0,1] and a £. e 3\|;(h.+stg.) such that

(5^) >ot0(h.) (A5.2)

It follows from (A5.2), Proposition 4.5(c) and the fact that G ,h yp(h.)

is compact, that there exists aI e 3^(hi) such that (f,g.j) >a0(h.)-

0>6(hi) >^e(n.)(ni) 1 (C»g^)» and hence we get acontradiction.But

This completes the proof of Proposition 4.6.

Proof of Theorem 4.1:

Let {h.}?_, be a sequence constructed by Algorithm 3.1, letiii j.

heL~(a) and let KeiN+ be an infinite set such that h1 -»• h. Suppose,
for the sake of contradiction, that 0(h) < 0. We shall consider only the

case where \p(h) = 0, since the case where ij/(h) t 0 is simpler.

First, it follows from Proposition 4.5(f) that there exists a p > 0

such that for all he B(fi,p) e(h) > v£(h) > 0. Hence there exists an

iQe IN+ such that for all ieK, i>iQ,£(h.) >v£(h).
Second, from the definition of e{*)9 for all ie K, i > i , one of

the following two relations must hold, with g. determined in Step 1:

f^.+e^s.g.) -f(h.) >aB^s^n.), (A5.3a)

^(h^e^s.g.) -^(h.) >3'1si0(h.). (A5.3b)
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Now, (A5.3a) can not hold for any i because f is linear. To complete the

proof we will show that (A5.3b) leads to a contradiction. By the mean

value theorem of Lebourg, for all i e K there exist a t. e [0,1] and

an ni eatf^+t.s.g.) such that

(n^g.,-) >a©^.). (A5.4)

Now, because of Assumption 4.1, we can assume, without loss of generality,

the existence of akeIN+, such that for all ieK, i>iQ,

311/(^5 =Gk^(h.) (A5.5)
c

Now, we know that G^(h.+t^s^g.) is well defined for i e K, i large

enough, for otherwise it follows from the continuity of the eigenvalues

that Xk(h) =Xk+1(h), contradicting the fact that

0 <v'Vh) <Xk(h) - Xk+1(h) < Ijm (Xk(h.)-Xk+1(h.)) .
" ieK n 1

We can thus assume, without loss of generality, that for all i e K, i > tQ,
a|/.

3^(h1-+tisigi) G G^(h^+t.s.g.), the latter being well defined.

Next, by (A5.4) and the continuity of the point to set map h •*- G ip(h),

we get that Jim Max{(£,g.)|€ € 6 i(i(h- )> >^ TTm a0(h.), and hence that
ieK q n ieK 1

lim 0(h.) > a lim 6(h.) . (A5.6)
ieK n ieK n

But (A5.6) is possible only if lim 0(h.) = 0, which contradict the fact
ieK n

that for all ie K, i> iQ, 0(hi) < -e(h^) < -v£(h) < 0.

This completes the proof of Theorem 4.1. a
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H0(fl) c L2(fl) = L2(n)' <- »H0e(fl)
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ABSTRACT.

A major goal in the design of elastic structures is the

reduction of resonances. Since damping increases with fre

quency! resonances can be kept withing acceptable limits by

ensuring that the lowest natural frequency of the structure

being designed lies above a certain threshold. Optimization

offers powerful tools for coping with this design constraint

on the natural frequencies as well as with the constraints

imposed by various other performance requirements.

This paper presents a demonstrably convergent! nondif

ferentiable optimization algorithm for the design of struc

tures subject to inequality constraints on the lowest

natural frequency! on the profile of the structure as well

as on other factors. Although only the design of cross sec

tions of vibrating strings! beams, membranes and plates is

considered explicitely! the results are easily extended to

any optimal design problem with inequality constraints

involving L^ variables and the eigenvalues of an elliptic



boundary value problem.

The elliptic boundary value problems considered in this

paper have an infinite number of eigenvalues which form a

countable subset of R. Since it is known that strings! beams

and plates can have multiple eigenvalues! we assume that

multiple eigenvalues may exist. Although distinct eigen

values are usually Frechet differentiable in the design

parameter! multiple eigenvalues may or may not be differen-

tiable. Thus the design problem considered in this paper

must be treated as an infinite dimensional nondifferentiable

optimization problem.

Infinite dimensional optimization problems present spe

cial difficulties partly because their analysis is mathemat

ically very difficult and partly because boundedness does

not imply compactness. Consequently* either an infinite

dimensional optimization problem may fail to have a solu

tion* or the sequences constructed by an algorithm in the

process of its solution may fail to have accumulation points

in the spa-ce in which the algorithm is defined. Conse

quently* to ensure that our convergence results are not

vacuous* we present the convergence theorems for our algo

rithm in terms of a topology of sequences and we make use of

recent results on the characterization of minimizing

sequences.



General purpose nondifferentiable optimization algo

rithms are extremely cumbersome since they require the accu

mulation of bundles of generalized gradients in the search

direction computation. This is a process which is too com

plex and too ill-conditioned numerically to implement in the

solution of structural optimal design problems. Because of

this* it was necessary to attempt the construction of an

algorithm which exploits the structure of the eigenvalue

constraint. Fortunately* a theory has recently been

developed which enables one to approach such a task in a

systematic way. Our earlier experience with optimization

algorithms for solving optimization problems with con

straints on the eigenvalues of a matrix provided guidance in

the utilization of this theory. The result is a sophisti

cated nondifferentiable optimization algorithm for the solu

tion of optimization problems with inequality constraints

including some on the eigenvalues of an elliptic boundary

value problem.

•* This research was supported by the National Science Foun

dation under grants ECS-79-13148 and CEE-B1-05790.
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