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Introduction

A very interesting algorithm has been recently suggested by H.W. Lenstra,
Jr. [1] for solving integer programming problems. One part of that algerithm
was further improved in [2]. The algorithm was shown to be polynomial in the
length of the input, for-a fixed number of variables. On the other hand the algo-
rithm is impractical for a large number of variables and its implementation is
not clear even for a small number of variables. We suggest here a few
simplifications and improvements to that algorithm, making its implementation
easy (though still impractical for a great number of variables). As a byproduct
we show how to solve diophantine linear equations over the nonnegative integers.
For a small number of variables (3 or 4) a practical and fast algorithm for solv-

ing such equations results.

1. Definitions
As this work relies heavily on the work of H.W. Lenstra [1] the reader is
assumed to be familiar with that work and we shall use many of the notations
used there. A convex set will be given here in the form
K =iz R (Lz)B=0] (1)
where B is an (n+1) x m matrix of integers and (1,z) = {l.z,.Zp_y, . ... Z})-
The number of variables involved {n) is the dimension of the set. K can also be

given as the convex hull of its vertices and those vertices can be found by solving

at most ["77;"] < m™ systems of n equations derived from B. Let v, vy - v, be

the vertices of K, I > 1. Let d be the dimension of the linear subspace gen-
erated by the vectors v; —vg, 1=<j <!. Then d will be called the rank of X. If

d = n then X is of fuli rank.

An n-dimensional linear diophantine equation is an equation of the form

Y, oz = M (@)
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where the a;s and #f are assumed to be nonnegative integers and a solution is
sought over the nonnegative integers. An n-dimensional hyperplane is a set of

points given in the form

P=lz € R" zn=M] (3)

where 7 is a column vector of integers (not necessarily nonnegative) and # is an

integer.

A translate of a hyperplane is another hyperplane with the same vector n

but a different M.

2. The intersection of a convex set and a hyperplane.

We describe first a few procedures to be used in the main algorithm.

Two convex sets K; of dimension n; and K, of dimension ny will be called I-
equivalent if there is a 1-1 onto mapping 7 from X, to Kz such thatz € K; n 7™

ifrz € KN Z"2. The first procedure considered is the following.

Procedure ‘'Cut’
Given a convex set K of dimension n of the form

KO =tz e R™: (1,z)B© = 0j
and a hyperplane

P={z cR™ zn=M]
we want to find a new convex set K1) of dimension n—1 and I-equivalent to
P n K9, so that K" will have the form
KV =y e p* Y (Ly)B = 0
where B{Y) is n x m with all its entries integers. Let 7 = {a@n,@n-1.....a;)7 and
assumne that ged(a,,....a,) = 1 {otherwise the gcd of the entries of 7 must divide

M.or | P| = &, and the equation z7 = M can be divided by ged(a,, . . ., a;)).

The procecure consists of the following steps:
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Let fn =g, by definition and construct pairs of integers
(t;.s;); 1<1i<n-1satisfying

tifin —siq = ged(tinnai) = fi
The evaluation of the pairs (£;.s;) can be done via the extended Euclidean
algorithm and the time complexity (when counting the number of arithmet-

ical operations) is linear in the length of the input (see [3]).

When the evaluation is completed we know that o, =f,

>faa1> > fe =Tk = =f1=1 As ged(an.ap-y - - ay) = 1 we

have that f, = 1 necessarily.

Construct the following matrix.

- -
s $p-1 °nsn-2/fn-1 ansn_3/fn_2 'nsxlfl(ﬂ 0 0
&1 tn-1 ‘n-lsn-Z/fn-'l 2-1%n- 3/fn-2 a".1sx/fh] 0 0
8.2 O th2 8 503 Tae2 Fn2k/fn O 0
2.3 0 0 t.3 a"_:’s'(/fKH 0 0
A=
2.1 'KﬂsK/fKﬂ 0 0
3, t 0 0
. 1 0
La] 0 0 0 0 0 1 i

where the lower right corner of 4 is the unit matrix of dimension
(k-1) x {(k—1).

Comment: It follows from the definition of the f's that all the entries of A
are integers. Let A[7] be the j x j upper left corner of A and let Alij+1]
be the submatrix of A containig the first 7 rows, and column 2 to j+1
(inclusive). It is easily proven by induction that

det(A[j]) = fa-jsr 2<j =7
and

det(A[1,j+1]) =spj R<sj<n-1
and this implies that
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det(4) = det[A(n)] = fx =1

Thus 4 is a unimodular matrix.

Construct A-!. As the coefficients of A are integers and det(4) =1, A™
must have the same properties. Let A be the matrix resulting from A
when its first row is multiplied by M. For any (n—1)-dimensional vector y
we have that

(My)At=(Ly)A.

[ 1 |
Set B = l,‘,’, Alf;w) and
0

KV =y e "1 (1,y)BW =0}
We claim that X{ is l-equivalent to P n K'®. By definition BWisn xm.

Proof: For any z € P n K©® n Z". Define y to be the n—1last entries of the
vector zA = {(#.,y). Notice that, as z € L and the first column of 4 is y, by
construction, the first entry of z4 must be equal to M. The coeflicients of x

and A are integers implying that the coeflicients of y are integers too.

Giveny € KU n Z"~}. Define z by

z =(Ly)A = (My)A™"
so that

zn = (M.y)A™'n = (M,y)1.00...00T = & .
Again all the coefficients of z are integers, following from the fact that the

coefficients of 47! and of y are such. We also have the following:

[ ]

1
(1y)BD = (Ly) | O A}Em =
0

[ 1 0 .. 0]
=] %, |B9=(0yaBY =
0
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= (1.(M.y)A)B® = (1,z)B
Thus (1,y)BM =0 iff (1,z)B9 =0 and zn = 4. This completes the proof.

The following two remarks conclude this section.

Remark 1. Notice that the number of columns of B is the same as the number
of columns of B®, i.e. the number of inequalities defining the consecutive con-

vex sets is the same.

Remark 2. If, after the final reduction to dimension n-1, a new (n-1)-
dimensional ‘‘cutting” hyperplane is provided allowing for another reduction to
cimension n—2 and so on, it is very easy to find an integral vector in the original
convex set corresponding to the integer in the final set (which is of dimension 1).

This is done as follows.

Let the sequence of A matrices as constructed in stage 3 of the procedure be
denoted by AM,2®, . A"V where 20 s n xn A® is (n-1) x (n-1), etc.
Ar-D s 2 x 2. Let z©®,z0),.., z{("-1) be the corresponding solution vectors, i.e.
(0 is n-dimensional, (" is n -1, ete. z™ Y is one dimensional. Then

z(n_z) = (1,x(n_l))‘q(n'—1),x(n—3) - (l'z(n_z))z(n-z)'
to

z(o) = (1 Z(I)A(l)) .

Define the sequence of matrices (%) as follows

1 ] [1
c) = _0_ A ] c® = 10 21 o), .
0

n-1) = 11 20— | otn-1)
Thus (1 z®) = (1,z~V) c»-D,
One must find therefore, at the i-th iteration step, the corresponding ctd)
matrix which is computed out of ¢(i-1) and the corresponding new A% matrix.

After the last iteration the z(®) vector can be computed out of z{r-1) rightaway



as explained above.

Complexity analysis. If N is the length of the input and n is the dimension
then: Step 1 is O(N), Step 2 is 0(n?) Step 3 is 0(n?) and Step 4 is 0(n?®). The com-
plexity of the procedure is therefore 0(n® + N) when we count the number of

arithmetical operations.

3. Convex sets whose rank is not full.

The second procedure to be described reduces the dimension of a convex

set whose rank is not full, using the previous procedure.

Let K be given as in (1) and assume that rank(X) <n.

Procedure ''Reduce Dimension”

Let v,...v; be the vertices of K, assumed to be of rank 4 <n. The pro-

cedure consists of the following steps.

A

1. Find a subset of the v's wgw, ' wy such that the vectors w; —wg,
1 <i < d span the space spanned by the vectors v; —vg 1<i<!l. Sucha

subset can be found easily, using methods from linear algebra.

2. Construct a determinant D(v;) as follows. The i-th row of D(v;) for
1 <1i < d+1 equals the vector w;,; extended to an n+1 dimensional vector
with last entry equal to 1. The i-th row of D(vj) for d+2 <1 < n equals the
(n +1)-dimensional vector with all its entries equal to O except for the i-th
entry which is equal to 1 (unit vectors). The (n+1)-st (and last) row of d(v;)
is the vector v; extended to an n +1-dimensional vector with its last entry
equal to 1. As all the v;'s are linear combinations of the w4’s, by definition,
we have that D(v;) =0, 0<j <!. Let z be the vector z = (zp, - -z It
follows that all the vectors w;, 0 <j < M, are included in the hyperplane
defined by the linear equation D{z) = 0 and therefore the whole convex set

is included in that hyperplane. We have thus found a hyperplane such that
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the given convex set can be defined in the form
K=PnKk®
where K° = conv(vg.....v;) and P = {(z, - - - z,): D(z) =0j. As all the con-
stant entries in D(z) are rational D(z) = 0 can be expressed as a hyper-

plane with all its coefficients integers.

3. Use procedure “‘cut’ in order to find an [-equivalent convex set of dimen-

sion n —1.

Complexity analysis. It is easy to see that steps 1 and 2 are 0{n3l). This fol-
lows from the fact that all the computations involved amount to the evalua-
tion of m X n matrices, with at most one such evaluation for every vector
Step 3 is 0(n®+N) where N is the length of the input, as mentioned

’UJ-.

before. The whole procedure is therefore 0{(n3l +N) < 0(n®m +N).

4. Basis reduction

o

The next procedure we want to use is given explicitly in [2].

Procedure "unimodular transformation’

Given a basis uy,...,u, for a lattice L such that all the coefficients of the
vectors u;, 1 <1 <n, are integers. Let U be a matrix whose rows are the vec-
tors u;. Find a unimodular transformation ¥ such that the rows of the matrix
WU are a reduced basis for L (‘reduced’ as in [2]). We want to get the unimodu-
lar matrix ¥ only and are not interested in the reduced basis (the rows of WU).

It was shown in [2 prop. 1.26] that the complexity of the procedure is
0(n* log N) where N is the square of the length of the maximal length vector
among the vectors b;, 1<1i<n, when the coeflicients of b; are assumed to be
integers.

One additional procedure is needed before constructing the main program

which is in the next section.



5. Finding the cutting hyperplane.

Consider a convex set of the form
K={zp..z;) € R™: (lzp - z,) B20j
as defined in (1). Assume that the vertices of K, denoted by vev, " - v are
given and assume that K is of full rank. We want to find, in polynomial time (in
the length of the input) a hyperplane of the form
Pu={(zn - 22) € R™: zn = 1}
as defined in (2) such that the number of translates of Py intersecting K is pro-

portional to the number of integral points in the set £ n Z™.

The procedure is basically similar to a part of Lenstra’s algorithm [1, sec. 1]
with several simple but important chages to be described in the sequel. The
procedure involves several steps. The reader is referred to Lenstra’s paper for

the implementation of the steps whose implementation is not described here.

Procedure '‘cutting planes"’

1. Choose n+1 vertices out of the given vertices such that the volume of the
n-simplex spanned by them is maximal. Let those vertices be
VoV, - o vn. Construct a (nonsingular) n X n matrix whose rows are the
vectors v; —vg 1<i<n. Denote this matrix by U. Notice that all the

entries of U are rational numbers.

2 Construct the matrix U~l. The entries of U~! are rational (as are the
entries of U). Let U™! be considered as an afine transformation ™ » R™.
It follows from the definitions that conv(vg. .. ..w,) is transformed by U™}
into a simplex which is a translate of the simplex whose vertices are the ori-
gin together with the m unit vectors, while K is transformed into a convex
set which is included in a translate of the simplex whose vertices are the

origin and the unit vectors doubled (i.e. (0,...,0), (2,0,...,0),....(0,...,0,2)).
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Moreover the natural lattice is transformed by U~! into a lattice such that

the rows of U"! can be taken as a basis for it, to be denoted by »; - - - u,.

3. Use the ‘“‘unimodular transformation’” procedure to get the unimodular

matrix ¥ for the matrix U~! above.

Remark: Let u';, 1<1 <n, be the rows of the matrix WU™!. It was proved
in [2, proposition (1.6)] that

nin-1

det(U")siIiI1 w2 %+ det(UY)

4. Let u'; be the rows of the matrix wU-i, let W= [wij] and let
lu';l = max{luyl: 1=si=<nj Let wU) be the matrix resulting from W
when its j-th row ig replaced by the row of variables (z,..z;). Return the
hyperplanes

Py = {(zn - zy): det(W9)) = M
where M ranges over all the integers such that Py n K # @.

We proceed now to show that our procedure is correct. We prove first the

following.
Lemma 1. There are two hyperspheres S, and S, with corresponding
radiuses r and K such that

S, CKU'c S,

and
R/r =n(¥n+1)
where KU~ is the convex set resulting from K when U™! is applied to its vertices

and U~ !is as defined in step 2 of the above procedure.

Proof. As explained in steps 1 of the above procedure KU1 contains a
translate of the simplex with vertices (0,...,0), (1,0....,0}.....(1,...,0,1) and is con-
tained in a translate of the simplex with vertices (0,...,0), (2,0....,0).....(0.....0,2)

containing the first simplex in its interior. S; and S, can therefore be defined
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as the hyperspheres, one inscribed in the first simplex and the other cir-
cumscribed over the second simplex correspondingly. We find r first. S, is
tangent to the hyperlanes z; = 0 implying that the center of S, is located at the

point {r,r,...,r). S, is tangent to the hyperplane z; + z; - - - + z, = 1 touching

it at the point (7171— : %L—) Thus 7 must satisfy the equation 7% = n(;ll—-— T)

,,,,,

n

(one can consider r to be the diagonal of a hypercube whose side has length

(;11—— 7)). Solving for r we get that

1_\/—1
__r.n

r= n—-1

(The other solution is not physical.)

To compute R we notice that the circumscribed hypersphere passes
through the vertices of the simplex (0....,0),(2,0....,0),(0,2....,0),...,{(0.0,...,2). Its
diameter is therefore the diagonal of a hypercube whose side has length 2. The

length of the diameter is therefore 2v7. Thus R = Vn. We have therefore that

2Vn.
R_vn(n-1) _n(n-1) _ (Vn+ln(n-1) _
r ) T  ~vn -1 n-1 =n{Vn+1)
“Von
Q.E.D.
n{n-1

Let c;, =2 * ,let cp=n(VYn +1) and let u’; be the vector defined in
step 4 of the given procedure. The hyperplanes parallel to the set of vectors

fu';: i # 7] (the u';'s are defined in step 4 of the given procedure) will be called,

L
+

for the purpeose of the next theorem, lattice planes. Using the same arguments
as the ones used by Lenstra [1] one can now prove the following theorem (set in

a more general form).

Theorem 2. For a given convex set K defined as in (1). If r > ;—]u'j Ivn (r

as defined in the previous lemma) then there are at least t™ pointsin X n Z™. If
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r < —é—-;u'j [vn then at most t-c; cyVn lattice planes have nonempty intersec-

tion with KU
Corollary: If more than ¢{-c, ¢, lattice planes have nonempty intersection

with KU~! then there are at at least " points in X n Z™.

The proof is the same as the proof given by Lenstra but with the constant c,

as defined and justified here. The additional constant { used here stems from
the fact that if r > -é—{u'jfx/ﬁ then the simplex in which 7 is inscribed can be
split into £™ similar simplices every one of them containing an inscribed hyper-

sphere with radius = -%—-1 u';|Vn.

If we apply now the transformation U (inverse to U™!) to KU™! we get back
K. Applying U to the ‘'reduced’ basis of the transformed lattice: u';, . . ., u',,
we get a basis for the natural lattice consisting of the rows of the matrix # (W is
unimodular) w;,...,w, {whose entries are integers) and u’; is transformed into

w;. But U is a linear afine transformation preserving parallelism, so the resuit-

5
ing hyperplanes (step 4) are parallel to all the vectors w;, i # j. It follows that
the hyperplanes as defined in step 4 have the following property: If the number
of translates of Py whose intersection with X is nonempty is bigger than ¢{-¢;¢c;
then at least ¢t™ points are included in K n Z™. To find the specific translates Py
having nonempty intersection with K, substitute the vertices v; of K for the vari-
ables row in wUY) resulting in

[ d,
diy

M; =det | y;
241

Then Py will cut K for all M with
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Mo =Imin ] < M <max M| = M,

We have thus shown that the procedure is correct.

We will show now that the complexity of step 3 of our procedure is polyno-
mial in the length of the input. One can multiply first U™! by the gcd of the
denominators of its entries resulting in U. All the entries of U are now integers
without changing the complexity of step 3. As mentioned before (see descrip-
tion of procedure ‘unimodular transformation’), for this case (vectors with
integer coefficients) the complexity of that part of the algorithm is 0(n*log N)
where N is the sgquare of the length of the maximal length row vector in the
matrix U. Let @-be the maximal value among the coeflicients of the matrix B
defining the convex set K. Then the magnitude of the row vectors of U are at
most exponential in @ with the exponent a polynomial in n. Therefore log N is

linear in the length of the input.

The complexity analysis of the procedure now follows:
Step 1is O(na{m)

Step 2 is 0(n%)

Step 3 is O(n*N ) where N is the length of the input.
Step 4 is 0(n3)

The procedure is therefore polynomial (even linear) in the length of the

input for fixed n.

6. The main program
We can describe now our version of the integer programming algorithm as

follows.

IPA(n .K,C)

Input: an integer m; an n-dimensional convex set K ={zr € F™: (1,z)B = 0}

where B is an (n+1) X m matrix of integers, and K is assumed to be bounded so
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that m > n+1; C an {n+1) X m; matrix of integers wheren+lsm,;<m+1.

1.

If n = 1, then for every integer z € K (z is now a vector of dimension 1)

return the m,-dimensional vector (1,z)C and stop.
Find the vertices and the dimension d of X.

1If d < n then apply i}rocedure ‘reduce dimension' to K with output (of pro-

cedure) X" and reducing matrix A" (see definition of procedure ‘cut’).

1
Then set K « K1, C « | O A0 ¢, n « n-1and apply /PA(n.K.C).
0

Here d = n. Apply procedure ‘cutting planes’ to K.

For every cutting hyperplane Py, Mq< M < M,, returned in 4 and K apply
procedure ‘cut.’ Let Ki) and A§" be the resulting (n—1)-dimensional con-

vex sets and corresponding reducing matrices. Set Ky « K, n en-1,

1 |
Cu=1. O AP | C. For every Mg < M < M,, apply IPA(n—1,Ky.Cy).
0

For given n and K apply IPA(n.K.B).

Complexity analysis. All the steps of the above algorithm are polynomial
(even linear) in the length of the input. The number of times recursion is
applied is at most n and whenever recursion is applied the coeflicients grow
(in their length) by a factor which depends on n-only. It follows that the

algorithm is polynomial in the length of the input.

7. Comparison with Lenstra’s algorithm

The advantages of our algorithm when compared with Lenstra’s are listed

below.

1.

The procedure ‘reduce dimension’ is given explicitly and in an easy pro-

grammable form. It replaces the first part of section 2 in [1].
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The most significant difference is included in steps 4 and 5. Our transfor-
mation on U7}, replacing Lenstra’'s transformation 7, is given here expli-
citly, has rational coeflicients and is used only as an auxiliary step needed
for the finding of the cutting hyperplanes - which have integral coeflicients.
After the cutting plane is found, using rational arithmetic, the computation
returns to the natural lattice where integer arithmetic only is used. Our
algorithm can, therefore, be easily transcribed into a computer program.
It is also worth noticing that proposition 1.26 in [2] analysing the complex-
ity of the procedure invoived in the finding of a reduced basis for a given
lattice (procedure ‘unimodular transformation’ here) assumes that the
coeflicients of the given base are integers. This condition can be met here,
multiplying U~! (whose rows are the given basis) by the ged of its
coefficients. As mentioned above, the only part of our algorithm using
rational arithmetic is the auxiliary part where a set of cutting hyperplanes
with certain properties is sought. It can be show that the above part of our
algorithm is reducible to a diophantine approximation problem but we will
not pursue this subject here, as we do not know how to solve. the
corresponding diophantine approximation problem, in polynomial time, for
the general case. We shall consider however the case n = 2 in the appendix
where a simplification of the general algorithm (for n = 2) is shown based

on the above observation.
Some further simplifications might be possible based on:

a. The large amount of parallelism present in the various steps of the

algorithm.

b. The possibility of saving some of the computations in symbolic form
e.g. the matrix A™! in step 3 of the ‘procedure cut’ can be computed

right away from step 1 without going through step 2, as that matrix
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(A™!) can be shown to have a very simple form.

c. The possibility of preconditioning (see example at the end of this
paper).

d. The vertices of the convex sets obtained after every reduction can be
computed directly from the intersection of the cutting planes with the
previous convex set (before the reduction): The reduction transforms

those intersections points into the vertices of the new convex sets.

Those possible simplifications and others will be investigated in a subse-

guent work.

8. Linear diophantine equalions

Given a linear diophantine equation

i: a;x; =M

i=n
where the g;'s and // are nonnegative. A solution is sought over the nonnegative
integers.

This problem is easily reduced to an integer programming problem of

dimension nn —1 as follows:

Let Py be the hyperplane

Py ={x € F™: zl: oz = M)
i=n
Let K be the positive orthant:
KO = {z: (1,z)] = 0}
where / is the unit matrix of dimension n+1. Use the procedure ‘cut’ on Py and

K© resulting in the equivalent convex set: K\ = {y € R*™V (1,y)B(") = 0} where

[1 1
B(”:l_‘?,z
0

and A is defined as in step 3 of procedure ‘cut.’
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Apply now JPA(n—1,Kk1), B1)). This algorithm for solving linear diophantine
equations reduces to a very simple algorithm for small n (e.g. n=3 or n=4) due
to the simple form of the first iterations of the /PA for this case, and due to an
additional possible simplification explained in the appendix. The following exam-
ple, with n.=4, provides -some insight and shows the additional simplifications

possible for small n.

9. An example
The following equation is mentioned in [4] as an example for another prob-

lem.

271z, +281lz3+ 283z, +277 2, =M
It was shown in [4] that the biggest M for which the above equation has no solu-

tion over the nonnegative integersis #/ = 13022.
1. Set K = {{z,z57,7,); (lz,z575z,) [ = 0} and apply procedure ‘cut’:
1.1. Find (t;,s;): 28271 -27281=1=fg=fo=f,= 1.

1.2. Construct the 4 matrix

[2’?127001
2812800
283 010
277 001

A(]) -

and then 47! (as A4 is almost triangular this is an easy task) and then 4

we find that
28-M -27-M0O0
-281 27100
A =
—28:283 2728310
—-28:277 272770 1
SO

KO = ((ysyeyy): (Lysyey)BY 20
where
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1 ]
M =0 2
B = OA
0

Apply now the main algorithm to K.

2.1

2.2.

2.3.

Find the vertices of KV, As the i-th row of A is perpendicular to the
j-th column of A7}, for j # i, the vertex corresponding to those j

columns can easily be found out of the i-th row of A. The vertices are:

27-M 28 M M )
( 271 0.0). (g1 281 281 00 (0357 283 28370 (0.0 277

d = 3. (This will always hold for this particular case.)

Apply procedure ‘cutting planes.’ As K is already a simplex we can
construct right away the matrix ¢ which is {notice that

M _27H _ _ M
281 271 281271

by 1.1).

r

M
281-271
| -erM M
U= 271 283 0
27 M M
271 R77 |

Out of this we get U™! easily:

0

281-271 ‘

M
-1 _ |27-283:-281 283

= 0
u M M
27277281 0 277

M M

The rows of U~! are the basis which must be reduced. Applying the

0 0

procedure ‘unimodular transformation’ (which turns out to be quite
simple here as U™! is triangular) and then get the cutting planes

Syg + 141y, + 138y, = N *)
We have left the value of M undefined to stress the fact that some of
the calculations are independent on M. The values of N above depend

on the value of M. Let e.g. M = 13022 then the only vaue of N for which
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the above plane cuts KV is found to be N = 6487.
We can proceed now to reduce our problem to a 2-dimensional problem

using again the procedure 1. We find first that

5113 - 1414 =

which implies the transformation

[ 5 40!
A® = 11411130
138 01

{113-648? ~4.8487 0 |
AR = -141 50
L113-138 41381

PR [1-5143 31139 —25948 0 |
c@ = 02® |.20 = o 1 -8 50
0 [o 110 -663 5521

The resulting 2-dimensional equivalent convex set is now

K@ = H(z2z1): (1222)) c® = 04
Its vertices are found to be

25948 31139
) 8

Applying procedure 'cutting planes’ to this new convex set we get the cut-

:0). { 0)

7
(4932, 3—) (

ting lines

Zo + 110 Z2, = N
The only translate of the above family of lines cutting K® is the one with
N = 5189. We apply now again procedure ‘cut’. As

111-1 —-1-110=1

we get

]
A(S) = ! L j

110 111

OS—

- [111-5189 5189 |
A ‘[ ~110 1J



c® =} ,qm] c@ =

_ [1 46 15572 —10381 -5189 |
"0 o -3 2 1

So K® =[w: (1w)C® = 0] The one-dimensional inequalities involved in

K® are:

46> 0 46 = 0

3w < 15572 w < 5190.66
2w = 10381 °F |w =5190.5
w = 5189 lwzswg

(The first and last are superfluous.) There is no integral sclution to the
above system and therefore no solution to the original problem. We modify
now the problem a little bit by increasing the right hand side of the original
equation by 1, to 13023. Most of the computation dene previously can be
used for this new M. Thus we can evaluéte 21 immediately substituting
13023 for # so that A1) is now defined. The same is true for the following
computations, resulting in the same family of translates cutting KY: The
planes
Sys + 141y, + 138y = N,

but now the only translate cutting K is the one with N = 6488. The result-

ing A® matrix is the same as before but A® is now

[113-6488 —4.6488 0 |
2% = -141 50
-113-138 41381

resulting in

C(z)zi(lm(z)} o =

@]

1 ~5172 31171 —25952 0
=10 1 -8 50
0 110 -883 5521
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and K@ = {(12,2,): (122,)C® =0}. The vertices of K® are now found:

31171 ., (25952 226 139,
(S50 =50 (=5 (112,48).

As in the previous case the family of translates cutting K@ is found to be

2 25 + 221 ;= N
and all translates with N = 10381 + ¢ where 0<t{¢ <9 have a nonempty
intersection with X®). From

2111 -2211=1
we get that

2 1]

@ =
A9 = lopt 111 |

and A® can assume any of the foliowing forms, with 0<¢ < 9.
240 - [(10381+¢)111 —(10381+¢) |
= =221 2 J

We compute now C&

Cco® = {é 23 } c@ =

[1 5209+t 28-—-3t 5191+3t —10381—¢ ]
-0 -1 0 -1 2

and

K® = fw: (Lw) c® =0}

The resulting inequalities for w are

w < 5209 + ¢
28 -3t =0
! w < 5191 + 3¢

ow = 10381 + £ or w = 5190.5 + é—

(the first two are superfluous) where 0 <t < 1.

Every integral solution of the above inequalities for any 0 <t < 9 gen-

erates a solution to the original equation via the transformation

(L.z4.23.22.2,) = (1Lw) C



-22-

Taking e.g. £ = 3 reuslts in 5192 <w < 5200 and with w = 5197 we getl

(£4Z3.z2z,) = (15,19,3,10). Notice that the number of different solutions

found for this case (M = 13023) is 125 while in the previous case

(M = 13022) no solution existed.

(1)

()

(3)

(4)

(5)

(6)

Let us sum up this example in *'quasi’’ parametric form.

Starting from the equation

271z, + 281z + 283z, + 277z, = M, z; = 0.

The first reduction resulted in:

28lyg + 7925y, + 7756y, < M-28
271yg + 7841y, + 7479y, = M 27 ; y; = 0.

The cutting planes are

Bys + 141y, + 138y, = N

35 l141
571 M]st 585 MJ.

The second reduction resulted in

with

2o + 110z, = 57N — 284,
Bz, + 6632, < 59N — 27H
52, + 5522, = 4N ; 2;=0.

The cutting lines are

2z + 2212z, = N,

1

where N, ranges between the ceiling of the minimal and the floor of the
maximal value among the values
59 8 53
{SN 9M.5N, 144 2N§

The final reduction resulted in

w=<28M - 57N + N,

‘UJ?NI.
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(7) For every w in th above range we get a solution as below:

=, 28 —57 1 -1] [m]

z3 -27 59 -3 © N
Z o - 0 -4 3 -1 Nl
x, 0 0 -1 2 w

After the above ‘‘preconditioning” one can solve now the equation (1)

for any given M as follows:

Find the range of N as in (3).
For every such N (if any) find the range of N; as in (5).
For every N and N, found, find the range of w as in (8).

Plug in every found triple N, N;, w and the given value of # into (7) to

get a solution of (1).
We would like to make now the following remarks:

If a linear diophantine equation is to be solved for several right hand
side values M, then part of the computations done for the first #/ can

be used for the consequent M's.

When solving a 3-dimensional diophantine equation the equivalent con-
vex set K{!) is of dimension 2 and for this case (dimension 2) a further
simplification is possible in the procedure ‘cutting planes’ which is
explained in the appendix. Actually that simplification can always be
used for the general /PA at the stage when the dimension has been

reduced to 2.

It might be possible to calculate all the solutions to a given linear
diophantine equation concurrently and in a parametric form as was

done in the above example.

It follows from the appendix that we need to apply the procedure ‘cut-

ting planes’ only once for linear equations of dimension 4. When reduc-
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ing the dimension of the /-equivalent convex set from 3 to 2. An men-
tioned in section 4 the complexity of that step is O(n*log N) where
n = 3 and N is the square of the length of the maximal length row vec-
tor in MU™! (step 3 in our example). Let @ = max (g;) where the g;'s
are the coeflicients of the given equation. Then, as shown in the exam-

ple {and true in general for 4-dimensional equations) N < +/3- @
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Appendix
Consider the following problem:

Given K  points in m-space (M, 28, K>n. Let
@z, + ATz + - - +apz, = M;, i = 1,2 be two parallel hyperplanes with
integral coefficients and ¥; such that

oz +azf) + - + ezl = M,

and

a,zP) +azd) + -+ a,zd) < M,
for all j, 1< j < K, and such that M, is the smallest integer and M, is the

biggest integer satisfying the above inequalities. For any two such planes
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define
A(al can) = M- M,

The problem is to find @, - - - @, which minimize Aa, - - a,). A fast
algorithm for this problem could simplify the procedure ‘cutting planes’ in
the JPA. Unfortunately we do no have such an algorithm for the general
case but we conjecture that it exists.

We do have an algorithm for the above problem for n = 2 whose com-
plexity is linear in the length of the input. That algorithm is described
below.

Let the points be (z{),zf) 1<i< K and K >2. Choose any two
points say (z{",z{") and {z{®,z4%), and construct a line a,z, + azz; = as,
passing through them. It follows that

a(z8 — 209y 4 gy (29 — 289y =0 (1)

for any (ig.jg). Let b,z; + byz; = by be the two lines we want to find. Then

bgp = max(b,z{ + byzf): 1<i<K)

(2)
and
bg, < min(b,z{!) + byzi?): 1<i<K)
To minimize bg; — bg; we must minimize
max{|b,(z{) —zP) + by(zf) —zP))|: K=i>j=1) (3)
Now by (1) (:1:2(%) -—xz(j")) = - Z—l- 2:1(%) - xl(j")) so that the entry in (3) with
2
(i,7) = (ig.jo) for some (ig,5¢) equals to
51(21? = 29) = b (20 — 27| =
a2
(4)

a . .
= [(by = bz =5 (= - 2?))
2

a
The value | b, — b, ;LJ, can be decreased by increasing b, using diophan-
2
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. . . a, a, r
tine approximation. Let (b, — b, a_> = g{by) then b, = b, ——+ e(bs). We
2 2

can therefore represent the other entries in (3) in the form

bg ooz ) —2)) + e(b)(zf) —2f)) + balzf) —zf))| =
2

= (o Mz f) —2f) + (28) - 28)) + 2ozl -2t (5)
It is clear that the values (5) increase when b; increases, from some value
of b, and on.
The procedure for minimizing (3) can therefore be defined as follows.
1. Initialize. Choose %4,j, which maximize (3) with &, = 1 and b, = 0. For
this ig.j0. b; and bg (4) is bigger than (5) for all (i.7) # (ig.70)-
2. Using the diophantine approximation method find successive best

a
approximations (b,,b,) to E_l-' increasing b, until (4) is smaller than (5)
2

for some (i,5) # (ig.jo)- Let b,,b, be the values of b,,b, when this hap-

pens and let gl,gz be the values of &,,bz in the previous step. Choose

among the pairs (6,b;) and {6,.b2) the pair which minimizes (3) or

choose {b,,b3) if both pairs induce the same value for (3).

The reader will easily convince himself that the resulting line is the line
which solves our problem. It follows from the theory of continued fractions
that the number of arithmetical operations involved is O(log az) which is

linear in the length of the input.





