A NEW MONTE-CARLO METHOD FOR ESTIMATING THE

FAILURE PROBABILITY OF AN n-COMPONENT SYSTEM

Richard M. Karpt and Michael G Lubyy

Computer Science Division
University of California

Berkeley, CA 94720

ABSTRACT

A new formula for the probability of a union of events is used
to express the failure probability of an n-component system. A
very simple Monte-Carlo algorithm based on the new probability
formula is presented. The input to the algorithm gives the failure
probabilities of the n components of the system and a list of the
failure sets of the system. The output is an unbiased estimator of
the failure probability of the system. We show that the average
value of the estimator over many runs of the algorithm tends to
converge quickly to the failure probability of the system. The
overall time to estimate the failure probability with high accuracy
compares very favorably with the execution times of other

methods used for solving this problem.

A NEW MONTE-CARLO METHOD FOR ESTIMATING THE

FAILURE PROBABILITY OF AN n-COMPONENT SYSTEM

Richard M. Karpt and Michael G Lubyt

Computer Science Division
University of California

Berkeley, CA 94720

1. The Reliability Problem

We assume throughout this paper that an instance of the n-component reli-

ability problem is specified by the following data:

(a) for each component i, where 1 <1i <n, a failure probability p;. Component
i is failing with probability p; and working with probability 1 — p; indepen-
dently of all other components in the system. The assumption made here
that components are s-independent is convenient, but not essential, for the
development that follows.

(b) a specification of the combinations of component states which cause the
overall system to fail. As we describe below, this specification consists of a
list of m failure sets. |

Given these data, the problem is to estimate the failure probability of the sys-

tem.

In order to discuss how failure sets are specified, and how failure sets
together with the failure probabilities of components determine the failure pro-

bability of the system, we require further definitions. A system state is an n-

t Research supported by NSF grant MCS-8105217.

-2

tuple {b,, ..., b,) where b; = 0 if component i is failing, and &; =1 if com-

ponent i is working. There are 2™ different system states and the probability of

ny_
any particular system state {(b;, ..., by)is [] pl-l % (1 —p;)" . For example,

i=1
in an eight-component system, the system state {0,110 10,1, 1} has proba-

bility p, (1—pz) (1-pa) P4 (1-ps) pe(1-p7) (1-pa).

Let (c,, . .., c,) be an n-tuple, each component of which is either 0, 1, or
* Such an n-tuple represents a set F of system states, according to the follow-
ing rute: (b,,..., by} is an element of F provided that ¢; = 0 implies b; = G,
g; = 1 implies b; = 1, and ¢; = * implies b; may be either 0 or 1. Thus, the 8-
tuple {0, *, 1, 1, 1, * 0, 1) represents the following set of four system states: {(0,
0,1,1,1.0,0,1),(0,0 1,1, 1,1, 0,1, (0, 1,1, 1,1,0,0, 1) and (0, 1, 1, 1, 1, 1, O,
1)}. A set F represented in this way by an n-tuple {c,, ..., c,) is called a

failure set provided that each system state in F is a failure state of the system.

Let S be the set of all failure states of the system. We assume that § is
specified as the union of failure sets F;, F, .. ., Fr. each of which is deseribed

by an n-tuple of O’s, 1's and *s. Thus Pr[S], which is the failure probability of

m
the system, can be writtenas Pr[U Fi].
k=1

The probability of a failure set F is the sum of the probabilities of the sys-

tem states contained in F:

PriFi= % FPris]l (1.1)

seEF

Alternatively, if the n-tuple {¢;, . . . , ¢,) specifies F, then

Pr(F]= ﬁ p:‘. (l—pi)c‘" where
i=1

1 ifcizo
C‘l'.":

0ifec;=1lor*

and

|
[

1ifeg; =
i T |0 ife;=0or*

For example, Pr[(0,*, 1,1, 1, %0, 1)] is
p1{1 = pa)(1 —py) (1 —ps)p-(1 —pa).

Let Pr[s|F) denote the conditional probability of system state s given

that s is drawn from the set of states F'.

Then

Prls]

seF
pr[slp]=(fr[F]S£F (1.2)

For example, Pr[(0,0,1,1,1,1,0,1)| (0, * 1,1 1.*0 1)] is

p1p2(1 = p3) (1 = py) (1 —ps) (1-pe)pr (1 — Pe)
(1 —pg) (1 —p) (1 —ps)pr (1 —pa)

= p2(1 — pe)

In network reliability and many other types of problems the n-component
system has a monotonic property. Define a partial order ¢ on system states as
follows:

s C t iff the set of components failing in system

state s is a subset of the set of components failing in

state t.

An n-component system is monotone if for all failure states s and system states
t,s C t impliest is also a failure state. In any monotonic n-component system
the set of failure states can be represented by failure sets which correspond
naturally to minimal failure states (minimal with respect to the partial order
¢). If s is a minimal failure state, then the corresponding failure set F is the

set of all states ¢t such that s ¢ ¢. Thus, F can be written as {(¢q. Cn)

-4-

where ¢; = 0 if component 1 is failing in state s, and ¢; = * if component 1 is

working in state s .

2. A Network Example

Figure 1 shows an undirected network with eight edges and two designated
vertices, z and y. Each edge e; is failing with probability p; and working with
probability 1 - p;. The network is said to fail if there is no path of working

edges between z and i .

Cz
2, * 6;
e e‘{ Q
€s es
(P1.pz - ... pe)=(1.5 .4, .3 .2 4.1 .2

Figure 1 - Two - Terminal Reliability Problem
An z —y cut set is a minimal set of edges whose deletion leaves no path
between z and y . Then the network fails if an only if all the edges in some z —y
cut set fail, and thus the set of failure states of the system can be expressed as
the union of failure sets which correspond to the x —y cuts. These failure sets

are listed in Table 2, where the probability of each failure set is also given.

k B8-tuple representing failure set F, Pr(F)
1 2 3 4 5 <] 7 8

1 L J * ® x * * 0 0 .02

2 * x * * 0 0 0 * .008

3 0 =* * 0 * 0 * 0 .0024

4 * ok 0 * * 0 * 0 .032

5 * »* 0 x 0 * 3 * _08

6 o = * 0 O * * * .006

7 * 0 * 0 * 0 o * .006

8 * 0 0 0 * * * > .08

9 0 o * - * L] = * .05

Table 2 - List of Failure Sets for Network of Figure 1

3. Monte-Carlo Area Estimation

In this section we present a Monte-Carlo technique to estimate the area of a
region in the Buclidean plane. Most of the Monte-Carlo algerithms presented in
this paper for the estimation of the failure probability of a system are analogous
to this area estimation technique, and the explanation of the algorithms will rely

heavily upen this analogy.

Suppose a region E of known area A(E) encloses the region U of unknown

area in the plane. Furthermore, suppose region E is subdivided into b blocks

b
such that the area of each block i is known to be a;, thus A(E) =) a;. Sup-

i=1
pose the region U consists of some subset of these blocks. Let a; indicate

whether or not block i is in region U, i.e.,

1 if blocki € U
@i = lo if blocki £ U

Then the area of region U, A(U), can be written as i: a0y -

i=1
A straightforward method for determining A(U) is to compute the above
sumn, but if b is large, this is a costly calculation. In the applications we consider

b is very large.

-B-

Suppose instead we have a method to randomly select block i out of the set

of all blocks with probability A—‘(l‘ﬂ- An unbiased estimator, Y, of the quantity

A(U) can be generated by randomly selecting block i with probability —A‘&,)

and letting Y =a;-A(£). The expected value of Y,E[Y], |is

> Z((’jz,—)a.,;'A(E) = A(U) .
ERE 3’9 ¢4 7 g
? o A xS (b
s S ERTR e I
2536 Jpdi 2% S 3 3%
ESETIESE 137 3% 39 qo

Figure 3 - E'is entire region
Uis the shaded region, E is subdivided into 40 blocks

a5=0, x5 = 1.

The algorithm can be repeated many times yielding estimator ¥; in the g

(Y, +...+ Yy)

= is an unbiased estimator of A(U).

trial. ¥ =

We will show in the next section that the number of trials necessary to

guarantee a specified degree of accuracy and confidence in the estimator is

linearly proportional to It is therefore desirable that this ratio be small.

A

N

v)

4. Convergence of Monte-Carlo Algorithms

Suppose the Monte-Carlo algorithm is repeated N times. Let Y; be the

(Y, + Yo +...+ Yy)
~ '

value of the estimator obtained from the t* trial. Let Y=

A meaningful measure of the gquality of the estimator Y is its relative error ,

given by

-7-

where u is the expected value of the estimator produced by the algorithm (u is
the gquantity we are trying to estimate). We next derive an upper bound on the
number of trials N required to guarantee that the relative error will exceed a
specified value ¢ with probability less than or equal to a specified value 6. For
example, if we specify &= .05 and & = .1, we are requiring N to be large
enough that the relative error will be greater than 5% no more than 10% of the
time. For the sake of brevity, a Monte-Carlo algorithm will be called an (g, 6)

algorithm if the algorithm achieves these guarantees.

Let o2 be the variance of ¥, where Y is the value obtained in a single Monte-

2
Carlo trial. Then the variance of ¥is %]-—. By Chebyshev's inequality

Nefu? '

>£] =Pl ¥-ul>eul=s

My_w !l |
Thus, in order that Pr l |i ?u L ‘) sl be less than or equal to ¢ , it suffices

that

N=

2 1
u? 6e?

n

Notice that there are two factors in the right-hand side of the inequality: —%—

[
I

which depends on the Monte-Carlo algorithm and problem instance; and 61)
‘€
which depends on the desired relative accuracy of ¥ and the desired confidence

level of obtaining this accuracy. The rest of this analysis will only be concerned

2

oy O
u?
For the area estimation algorithm presented in the previous section the

random variable Y, which is the estimator of the area of region U, A(U), is a

Bernoulli random variable multiplied by the area of region £, A(E). Thus

-8-
0? = A(E) - A(U) — A(U)? and thus

2
E__:: M_ 1
u? A(U)
The number of trials, N , necessary to achieve an (e, 6) algorithm is

AE) _ 4| L
[A(U) 1] FeR (4.1)

We note that since Chebychev's inequality is true for any probability distribution

this may be a very conservative upper bound on the number of trials.

If the area of region U is not much smaller than the area of region A, then

the number of trials necessary is small. Our goal is to design an algorithm such

that %%% is small. We first present a standard algorithm to estimate the

failure probability of an n-component system which can be viewed as an area

estimation algorithm where for n-component systems typically encountered in

>
=

practice, the ratio is very large.

2

v)

5. Straight Simulation Monte-Carlo Method

A simple Monte-Carlo algorithm to estimate Pr [S]. the probability that the

n-component system is in a failure state, follows.
Step1 randomly select system state s with probability Pr [s]

1ifs €S

Step2 the estimator Y of Pr [S]is) g otherwise

The analogy to the area estimation technique goes as follows. The set of all
system states corresponds to the enclosing region E. The system states
correspond to the blocks into which the enclosing region is subdivided, where
the area of each system state s is Pr[s] and hence A(E)=1. Region U

comprises the set of all failure states S and hence the area of region U is

-9-

Pr[S]. The expected value of Y is equal to Pr [S]. however if Pr[S]is small
compared to one (which is typical of n-component systems) the number of trials

must be very large to estimate Pr [S] accurately.

The motivation for this work is to design a Monte-Carlo algorithm which esti-
mates Pr[S] accurately with a small number of trials even when Pr [S]is very

small.

6. A Description of the Coverage Algorithm
Assume that S, the set of failure states of an m-component system, is
specified as the union of failure sets 'y, F, . . ., F,. . Then the failure probabil-

ity of the system is given by

Pris] =Pr[£)l 7.

We noted in Section 2 that it is easy to compute Pr [F] where F is any one of

the m failure sets. If the m failure sets were disjoint, then calculating Pr[S]

™m
would be simply a matter of computing Pr[F.]. Unfortunately, the failure
i=1

sets are not disjoint in general. Furthermore, the classical formulas for the pro-
bability of a union of sets do not lead to efficient algorithms for evaluating
Pr[S]. For example, the inclusion-exclusion formula

m m m ki~
pris1= L0 A= 8 ARl - 3 8 Prifnh]

m kl-l ke"l
+) Y Y Pr[Fklanzr\st]t..+(—1)”‘“Pr[F1ann...nFm]
k1=1 ka=1 k

3=1

entails 2™ —1 terms. The terms can fluctuate wildly in value, making it impossi-
ble in general to obtain a good approximation by truncating the expansion after

the first few terms.

-10-
Another well-known formula is

Pris]= PriQ Rl = PriFi]

+ PrFonF] + PriFsn(FiUF2)] +...+ PriFpn(FiU...UFn1)] .

This expansion has only m terms, but the individual terms seem hard to com-
pute, and the most obvious algorithms based on this formula require a number

of steps exponential in m. In fact, to compute Pr[S] exactly is NP-hard [1].

We will not attempt to compute Pr[S] exactly. Instead, the ability to easily

k m
calculate). Pr[F.] will be used to estimate Pr[\J F]. Let cov(s), the cover:
1 k=1

i=1

age of failure state s, be the number of failure sets containing s. For example,
in the network reliability problem described in Figure 1 and Table 2, the cover-
age of failure state s =(1,0,1,0,0,0,0, 0) is three because s is contained in
the failure sets F,, F, and F;. As a second example, suppose the set of failure

states is the union of three failure sets shown in Figure 4. Then

S =F, U Fa U Fs, cou(s;) = cou(sp) = 1, cov(sz) = 2, and cov(s,) = 3.

Figure 4 - Arepresentation of a set of failure states S as
FirU Fa U Fs

Notice that each failure state s contributes a total of cou(s)Pr[s] to

gj Pr[F.]. because s contributes Pr[s] to Pr[F,] for each F containing s.
k=1

If instead we could arrange that each failure state s contributes a total of

-11-

Pris],.

then the total contribution of all failure states would be Pr[S].

The new algorithm, called the coverage algorithm , is analogous to the area

estimation algorithm. The area of the enclosing region £ is i Pr[F.]. The
k=1

blocks that comprise region £ are all ordered pairs (s, k), where s is a failure
state contained in failure set F.. Thus, failure state s will appear as the first
component in exactly cov{(s) blocks. We let the area of each block (s,k),
denoted a(s, k)-. be equal to Pr[s]. Thus, the total area of all blocks in which

s is the first component is cov(s)-Pr[s], and the total area of all blocks is

m
indeed), Pr[F:].
k=1

Now we define region U, whose total area will be Pr[S]. For each failure
state s we let exactly one the cov(s) blocks in which s is the first component
be in the region /. Thus, a(s, k) =1 for exactly one of the cov{s) blocks in
which s is the first component and afs, k) =0 for the other cov{s) — 1 such
blocks. Notice that it does not matter which of the cov({s) blocks is in the
region U. This makes it possible to select any one of the cov(s) blocks in

which s is the first component to be in region U.

Figure 5 illustrates the sample space for the set S of failure states shown in
Figure 4. The region U is shaded in this figure. In this example block (s, k) is

in region U if F}, is the smallest indexed failure set containing s.

How do we randomly select block (s, k) with probability __Pr[gj_?
PriF]
k=1
This is a two-step process. First, we randomly select failure set F with probabil-
PriF,

ity —m——[——’f-]— This is easy to do once the probability of each failure set has
2 PriFA]
k=1

-12-

!

* |

—]

G, ,i}

[

(> A ! IKS;) 2
|
f

|]
‘ (SWU ' Szu;D | I;_L

Figure 5 - Sample space for S shown in Figure 4.

been computed. This selects the second component k& of the block. Then we

randomly select a failure state s from failure set 7, with probability -ﬁrp_rf[jf_']]_

This is also easy to do, as we discuss in the next section. This selection picks the

first component s of the block. Notice that this two-step process picks block

(s. k) with probability —£rLs1

§ prim]
k=1

The computation of afs, k) is discussed in detail in the following sections.

One trial of the coverage algorithm randomly selects block (s, k) by this two-

m
step process, and returns a{s ,k) - Y, Pr[F,] as the estimator of Pr[S].
k=1

The advantage of this algorithm over the straight simulation algorithm is
the number of trials, N, necessary to achieve an (g, §) algorithm. Recall from
Formula (4.1) that for the area estimation algorithm, if N is greater than or

equal to

(6.1)

then the algorithm is an (g, §) algorithm. For the straight simulation algorithm

this value of N is

(6.2)

-13 -

But Formula (6.2) involves Pr[S]. the quantity the algorithm is attempting to
estimate. There can be no upper bound on N derived from the formula since
Pr{S] can be arbitrarily small. Thus, without any prior information about
Pr[S] it is impossible, using only this formula, to put an upper bound on N a

priori which will guarantee an (e, 8) algorithm.

Let 7; be the probability that a state s selected from among all 2" states

with probability Pr[S] has cov(s) equal to 1, Le.

™= g&%:s{t_ Pr(s] (6.3)
Thus,
A(U) = PrS]= i: n- (6.4)
and
A(E) = ii:;l PriF] = 2 iy (6.5)

The new algorithm is an (g, §) algorithm if the number of trials is

[m 1

7:'1'1'
i=1
||
[A(U) - 1] 2 T
i=1
! = : 6.6
8-g° 5-&? (6.6)
But,
m
), i
=l =m (6.7)
T
i=1

Thus, if we let N = dm for the new algorithm we will have an (e, 8) algorithm.

P

Since m is known before we run the algorithm it is possible to put an a priori

-14 -

' upper bound on the number of trials necessary to guarantee an (e, 6) algo-

rithm. An even tighter upper bound is derived in Section 13.

Through the insight gained by this new algorithm, we are able to derive an
easily computable upper bound on the number of trials to perform to guarantee
on (g,) algorithm for the straight simulation algorithm. The reasoning goes
as follows: Equations (8.7), (6.5) and (6.4) imply that Formula (6.2) is less than or

equal to

m. .
e 2
¥ prim] °F
k=1

(6.8)

Thus, the straight simulation algorithm is an (e, §) algorithm if the number of

trials is given by to Formula (6.8).

We now compare the upper bounds on the number of trials derived for the
straight simulation algorithm and the coverage algorithm. Let N be the upper
bound on the number of trials for the straight simulation algorithm and N be
the upper bound on the number of trials for the coverage algorithm. We see

that

F=n-% prlr] (6.9)
k=1

If Pr[F,] is less than one, the upper bound of the number of trials to
k=1

achieve an (e, §) algorithm for the new algorithm is less than the upper bound

on the number of trials to achieve an (e, 6) algorithm for the straight simula-

m
tion algorithm. If) Pr[F.] is greater than one, the reverse inequality holds.
k=1

Thus, a decision about which algorithm to use can be made based on the value of

™

m
Pr[F.]. We expect), Pr[Fi] «1 when the component failure probabili-
K k=1 .

]

1

ties are small, and therefore the upper bound on the number of trials for the

-15-

new algorithm will be substantially less than the number of trials for the straight

simulation algorithm.

7. An Implementation of the Coverage Algorithm

We next present an implementation of the new Monte-Carlo algorithm. The
input to the algorithm is an n-component reliability problem in the format
described previcusly. The output from one trial of the algorithm is a number

which is an unbiased estimator of the system failure probability.

Preprocessing

For k =1,2, ..., m compute Pr[F.].

If F, is represented by the array (c;,....cp) then, as described
n ! "-

previously, Pr{f]=]]p: (1-p:)""
i=1

Allocate an array FS of size m.

S iR
For k =12 ..., m, FS[k] ¢« &
$ prim]
i=1
Array FS will be used to randomly select failure set F, with probability
Pr(F]
-
2, Prif]
j=1
Monte-Carlo Trial
: : s Prim] :
Step1 Randomly select a failure set F, with probability ———— This can
Pr(Fy]
i=1

be done by picking a random number 7 from the uniform distribution
over [0, 1] and determining

k =min{j | FS[j]=r} using binary search.

- 18-
Step2 Randomly select s € F, with probability Pris |] = %,-PI[;UT
k
If 7, is specified by the array ({c;, ¢zCn) then

s =(b,, ba, ..., by) is chosen as follows:

ifeg =0, thend; =0
ifc,; = 1, then bi =1

then choose b; = 0 with probability p;

if cs = ., _ H 1
and b; = 1 with probability 1 — p;

At this point block (s, k} has been selected.

Step3 Compute afs, k)

1 if F} is the smallest indexed
Define afs, k) = failure set such that s € F,
0 otherwise

Then afs, k) can be computed by finding the smallest index i such

that s € F,. Ifk =1 then a(s, k) = 1, otherwise afs, k) =0.

Step4 The estimator, ¥, of Pr[S] is a(s, k)" f‘, Pr(F].
k=1

The time to perform the preprocessing step given the list of failure sets
Fi, Fpis O(m -n). For the two-terminal problem the failure sets could be
given implicitly by a data structure representing the graph. The preprocessing
step consists of %isting all the z —y cuts in the graph and then proceeding as
before. All of the cuts in the graph can be listed in time O(m-n) [2] (in this
case m = # cuts in the graph, n = # edges in the graph), so the total prepro-
cessing time is O(m-n) in this case also.

Step 1 of the trial takes time O(log m) using binary search to find k.
Since there are 2" system states, there can be at most 2" failure sets, hence
the time for Step 1is O(n). Step 2 also takes time O(n). and Step 4 can be

performed in constant time.

17 -

In this implementation the computation of als, k) in Step 3 takes time at
most O(m.-n). This can be seen as follows: als, k) is computed by sequen-
tially searching through the failure sets until we find a failure set F; such that
s € F,, and then ofs, k) =1if1 =k, otherwise a(s, k) =0. Each test for
meembership of s in a failure set takes g(n) time. In the worst case all m

failure sets will be examined, thus the total running time is O(m-m).

trials are sufficient to achieve an (e, 8)

In Section 8 we found that 'm.z
£

algorithm. Thus, the running time for all the trials is
m?n |
0 : (7.1)

The running time per trial is dominated by the time to compute afs, k) in
Step 3 of the algorithm. In the following sections we will discuss methods to sub-
stantially reduce the running time of the algorithm based on alternative ways to
compute a. First, we will generalize the definition of « in a way that helps us

compute o quickly.

B. A Generalization of the Coverage Algorithm

The requirement that a(s, k) = 1 for exactly one of the cov{s) blocks in
which s is the first component and as, k) = 0 for the other cov (s} -1 such
blocks can be relaxed. A more general scheme is to allow afs, k) to be aran-

dom variable such that

Y Ela(s,k)]=1. (8.1)

fkls € Il

Any such scheme can be viewed as a probabilistic allocation of the probability of
system state s to the set of blocks in which s is the first component. Any alloca-

tion scheme fulfilling these more general requirements will produce an unbiased

estimator of Pr[S]. As an example, letting als, k) = ml(_-s)_ for all blocks in

-18-

which s is the first component, fulfills these requirements. This particularv allo-
cation scheme has the smallest variance among all allocation schemes, which
can be seen as follows. The variance o2 is equal to E[Y?] - E[Y]?, but, since
E[Y]? = Pr[S]? for any choice of a, the allocation which minimizes E[Y?] will

have the smallest variance. Now,

E[W]:[’i}lFr[F‘k]}{ Pr[s]-[» E‘[az(s.lc)]H. (8.2)

g EF fkis € Fi

The choice which minimizes Y. Elo¥s, k)] subject to
ik IS € FB]

Y. E[afs.k)] = 1 will minimize the variance. A little algebraic manipula-
fk]3 € Ft!

tion shows that this is minimized when a(s, k) = ;z_w_l(? for all blocks (s, k) in

which s is the first component.

9. AHybrid Allocation Scheme - The Cutoff Method

Let c, the cutoff , be a positive integer. We will allocate the probability of

failure state s among the blocks in which s is the first component as follows:
1.) If cou(s)=<c then allocate Pr[s] equally among all cou(s) blocks, ie.,

_ 1
ofs, k) = cou(s) for all cov(s) such blocks.

2.) If cou(s)>c then allocate Pr(s] equally among c of the blocks, ie.,

ofs, k) = %‘— for ¢ of the' blocks and afs,k)=0 for the other
cov(s) — ¢ such blocks.

The reason that ¢ is called the cutoff is because in the implementation of the
hybrid allocation scheme the algorithm finds the first min {c, cov(s)} failure
sets that contain s. The probability of state s is allocated equally among the

blocks in which the second component is the index of one of these

1
min {c, cov(s)}

min {c, cov(s)} failure sets. Thus, ofs, k) = if & is the index

-19-

of one of these failure sets, otherwise als, k) = 0. The value ¢ is an upper
bound, or cutoff, on the number of failure sets containing s that the algorithm

must find in order to compute afs, k).

When ¢ is infinite then a(s, k) = for all blocks (s, k) ; this is the

1
cou{s)
minimum-variance case. When ¢ is one then afs, k) =1 for exactly one of the
cov(s) blocks in which s is the first component and afs, k) =0 for the other

cov(s) —1 such bloeks; this is the maximum-variance case for the hybrid

method. Recall from formulas (8.3}, (6.4) and (8.5) the definition of r;. Then

is the probability a system state with coverage i is randomly selected in

S

: 2
one trial of the algorithm. Thus, for the cutoff method %—- can be expressed as
u

Y,
151<c lsice _2) 2 iri

i=c i1

-1 9.1
S 1 Ymn (0:1)
i=1 =1

It is trivial to modify the coverage algorithm presented in Section 7 to
incorporate the hybrid allocation scheme. The only change is in the computa-

tion of a(s, k), which can be described as follows:

Step 3 Sequentially search through the failure sets until either ¢ failure sets
F; are found such that s € F; or all the failure sets are searched. Let
! be the number of failure sets found such that s & F;, then

I = min {(c,cou(s)) . If & is the index of one of the I failure sets found,
then afs, k) = %— otherwise a(s, k) =0

—1-—)—) then the time per trial

If we let ¢ = (in which case afs, k) =
cou(s

is stil O(mn). The best upper bound we can prove on the number of trials

necessary to achieve an (g,6) algorithm is still -g—z—. so the total running time

-20-

2
is still 0{%"—?-} . However, using the algorithm with ¢ = = will result in a sto-
£ :

chastically better estimate of Pr[S] then using the algorithm with a smaller

value of ¢ for the same number of trials.

10. A Substantially Faster Variation of the Coverage Algorithm

In this section we present an alternative implementation of the coverage

algorithm presented in Section 7. We will prove that an upper bound on the

running time of this new algorithm to guarantee an (,6) algorithmis O[%;—% .
: £

Recall that for the previous implementation of the coverage algorithm we
. m?n : .
were able to prove an upper bound on the running time of O o2 | Since m is
€

typically very large in comparison to n, this improvement in the running time is
substantial. We call the new algorithm the linear time coverage algorithm to
emphasis the fact that the running time is linear in the input size {(which is
m-n) divided by & &2.

We assume the most general input format. The input consists of the failure
probabilities of the n components and a list of the m failure sets in the format

described in the first section of this paper.

We first present the algorithm. The preprocessing step is exactly the same

as it is for the coverage algorithm. The first two steps, randomly selecting block

(s, k) with probability —Tnﬂ-[s—]——, are also exactly the same as they are for
Y PriFe]
k=1

the coverage algorithm. Once block (s, k) has been selected, the linear time

coverage algorithm produces two unbiased estimators, a(s, k) and o'(s. k), of

.——co'ul(s) in Step 3 which are independent of one another. Note that both

Y. Ela(s.k)]=1 and Y Elafs.k)]=1. Thus, either
th s € Fyl fels € 7l ,

-21-

Y= ols, k) 3 Prif] or ¥ =als. k) 3

Pr[F.] will be an unbiased estima-
k=1 k=1 .

tor of Pr[S].

A Description of the Linear Time Coverage Algorithm

¥<0, Yo

numtrials « 0
time « 0O
Repeat steps 1-5 until time = ‘;’5";
B
: : . PriF]

Step1 randomly select a failure set F, with probability ——————— as before

Y PriFe]

k=1

Step2 randomly select s € F with probability %]T as before
k

Sep3 1«0

Do until a failure set F; is selected such that s € F;

[

rahdomly select failure set F; with probability 'r_ln—

lLel +1
Check to seeifs € F; *)

time « time + 1

als, k) = nL'L_

, [ui=k
afs. k) = 0 otherwise
Step 4 The estimators, Y & Y, of Pr[S] are

Y= a(s,k)'éiPr[Fk]

Y = als, k) glpr[m

-22 .

Step 5 numtrials « numtrials +1 , ¥ « Y+Y , V « V47
Gotostep 1
Step 6 Estimator 1 = ——}:;———
numtrials
V&

Estimator 2 = atrials

One trial of the algorithm is the execution of steps 1-5. The value of the
constant ¢ is discussed in the following theorem, which establishes that the
choice ¢ = 18 gives an (&, 6) algorithm. The running time for each trial is

dominated by the time to perform the test marked with a (*) in Step 3. This test

takes O(n) time to perform. The total running time is therefore EGL"'_Z_."‘. To

‘€
simplify notation, we call the number of times (*) is performed per trial the
length of the trial.

1

Now we will show that E[a(s, k)] = ey

Suppose (s, k) is picked in
Steps 1 and 2 of one trial. We are interested in computing

Eflength of trial]
— .

Ela(s, k)] =

Fach time line (*) is executed there is a chance of -CO—ZEEL that s € F; since

each failure set is picked with probability —;—L— and s is an element of cou(s)
¥

failure sets. Let X(s, k) be the length of the trial given that (s, k) is picked in

Steps 1 and 2 of the trial. Then X(s, k) is a random variable geometrically dis-

tributed with rate ﬂ‘;—é-s—)— and

Elals, k)] = E[XS'L' k)] - cm’j’zs) : ;i—: -0-5171(-5—)- (10.3)
1

Now we will show that E[a'(s, k)] = Suppose (s, k) is picked in

cov(s)

-23.

Steps 1 and 2 of one trial. Once the algorithm finds a failure set /; such that
1 .
cou(s) independently of the

s € F,, the probability that i =k is exactly

length of the trial. Thus,
N , _ I
EBla(s. k)} = Py (10.4)

1
cov(s)

and afs, k) and o'(s, k) are independent estimators of
v2]
d ELY—- which we call 2 and @' in the following

: E[Y3
We now comput an ,
pute E{v]? JARAN

discussion to simplify notation. These formulas are needed to analyze the run-

ning time of the algorithm. Using the notation introduced in formulas (8.3),(6.4)

and (6.5) we see that
E[Y?] = [g iri] [2 %‘—[- %ﬂ <2 Lgm] L=1 'r,-_] (10.5)
and
E{Y?] = [2 in-] Lszl n] (10.6)
Thus, if we let
p= Sl - j?‘ - (10.7)
P Pr[F:] iz=:1 i

we see that

= %- (10.8)

(10.9)

and
1
J7)

-24 -

The standard technique to guarantee an (g, §) algorithm is to compute an
a priori upper bound on the number of trials sufficient for an (g, §) algorithm.
Typically Chebyshev’s inequality is used to compute an upper bound on the
number of trials sufficient to guarantee an (¢, §) algorithm. Instead, we put an

upper bound on the number of times (*) in Step 3 must be executed to guaran-

c-m
5-g°

tee an (e, 8) algorithm. We will prove that if (*) is executed times during

the course of the algorithm, we have an {g, §) algorithm (where c is a suitably
chosen constant = 1). The intuitive reason why this type of time bound will

guarantee an (g, 6) algorithm follows:

E[length of a trial] = m u .

If (*) is executed ¢ = c;ﬂ;‘ times, then the expected number of trials com-
£
pleted by time ¢ is approximately t - _¢ 5~ lhe upper bound on both ¥
mu ube

and %' can be expressed as i— (where ¢ =2and 1, respectively). Thus, if the

estimator Y (or Y) for each trial were independent of the length of the trial and
if ¢ were chosen to be suitably larger than €, then an application of Chebyshev's
inequality would give us the desired result. Since the estimator ¥ (er Y") from
each trial depends on the length of the trial, we will use Kolmogorov's inequality

(which is a stronger version of Chebyshev's inequality) to prove the result.

We first introduce some notation which will simplify the proof that execut-

m

ing (*) in Step 3 0[6 | times will guarantee an (e,6) algorithm. Let X; be a
£

random variable denoting the length of the j%* trial. Thus, {X;} is a sequence of

ii.d. random variables where

E[X]= f} —lr—‘—[’%] =m ——P—"[i]——-=mp. (10.10)

-25-

The estimator ¥; (or ¥;') of Pr[S] generated at the end of the j* trial is also a
random variable such that E[Y;1 (or E[Y¥;']) = Pr[S]. ¥; is not independent
of Xj. but the sequence of ordered pairs {(X;. ¥;)} are independently and ident-
ically distributed (readers familiar with renewal-reward theory will recognize

that this is a renewal-reward process).

We let S5, = i X, be the time at which the nt* trial is completed,

t=1

n n
Hy = 2 Y, (R = Z Y;'} be the sum of the estimates from the first n trials
i=1 i=1

and N(t) be the number of trials completed by time ¢.

The running time of the algorithm will depend upon the upper bound on

B (&) if the algorithm uses Y (Y") as the estimator of Pr[s]. If we let

C

P In the following discussionr we express

z=2(=1), then ¥ = & {ﬁ's

the running time in terms of ¢ and use the variables Y and K in place of ¥ and
R or Y and R' to avoid proving two theorems depending upon whether Y or Y

is used as the estimator of Pr[S].

Theorem: The Linear Time Coverage Algorithm is an (e, d) algorithm when
the estimator used is Estimator 1 and ¢ = 16, or when the estimator

used is Estimator 2and ¢ = 8.

Proof : We will prove that

N(t)

or E[Y]

[Rwe _ BlY]]
=€

when

" E[YF T

< 2. Thus when

Estimator 1 is used as the estimator (¢ = 2), the algorithm is an
(£.,6) algorithm whern ¢ = 16, and when Estimator 2 is used as
the estimator (£ = 1), the algorithm is an (¢, 6) algorithm when

c = 8.

R
Comment 2 : WI%%%— is not an unbiased estimator of Pr[S] because N(t) is not a

valid stopping time [3]. Nevertheless, the proof of the theorem is
still valid. We could complete the trial in process at time ¢ and

Rty

USE N+t

as the unbiased estimator of Pr[S], but this would

make the running time of the algorithm a random variable. We
choose not to complete the trial in progress at time £ and accept
the small bias in the estimator. In the following discussion we use
the term "stopping time” to mean the time the algorithm is
stopped, we do not mean stopping time as it is defined technically

in renewal theory.

Back to Proof : Fix t' = d m k= d 5 where d is a constant to be deter-

52 " ude

mined later. Let g be a constant (whose optimal value we will deter-
mine later) and let ¢" = ¢'(1 + B) . First, we investigate what can be

said using stopping time £".

N(t")
E[Y]

=l =

e ate
Pr

-27-

Bwwd _ py)
Pr N(t‘zﬂ[y] >cand N(t") <k | + (10.11)
Byay _ pro]
Pr.‘ N("gm >rand N(t") = k (10.12)

We will compute upper bounds on formula {10.11) and (10.12) separately.

Upper bound on formula (10.11)

R

E[Y] >zand N¢#") <k |< Pr[N(t") <k] =

Pr

1S ri1eg)]
Pris, >t"]=Prlik > LU <

Sk t'! r
r k

>8|=pr

t
k

2
Llet =86 = %— Since k = L—?;z_: [%] 5;2 , we use Chebyshev’s

inequality to conclude that an upper bound on formula (10.11) is

26 g°
"= 10.13
Upper bound on formula (10.12)
[l Ryee]
P g1
Pr E[7] >gand N{t") =k | <
[R]
- E[Y]
Pr _Z_ET)T]_ >z forsomer =k and N(t") = kj=<

-28 -

| R,
’;_——E'[Y]

Pl TR

> ¢ forsomer =k

(10.14)

We will use Kolmogorov's inequality to derive an upper bound on formula

(10.14). We first state Kolmogorov's inequality [4] and then manipulate the ine-

quality until it is in a form which is useful to derive an upper bound on formula

(10.14).

Kolmogorov's Inequality

Let Y, Ya....¥, be independent random variables with the same distribu-

tion as Y such that E[Y] and o%Y]= E[Y?] - E[Y]? are finite, and let

!
R =5 Y . Forevery z >0,
i=1
priat|1<i<n & |R -LE[Y]l >z VA olY]l< o

Substituting —\/—7_7‘5%{-)-;]— E[Y] for z yields °

ad
Pri3tiist=n &|R -LELY] >enEY]I < o 5o
&) Ll . g
. 48 -
< Py ince ELTT <8 (or ¥) =< m

Once again, this can be rewritten as

Pridl|1sl<n &

Thus,

[R,
_l__E[Y] N en 2t -
ElY] l

—t
p.-ez"n. .2t

=Pr|3lllsl<n2 &

R
"l—— E[Y] S 8_n‘2i -
E[Y] l -

Pri3tl|n2t<li<n2 &

(10.15)

-29 -

!
-f—?——E[Y}

Lin 2t 1<t P —_
Pri3tlin <sl<n2& E7]

> 2¢

An upper bound on formula (10.14) can be derived as follows.

[R | |
T” - E[Y] |
Pr l——E'_[—I?]_—_ > ¢ forsomer =k
[]
3} Bomrr|
<SS Pzl |k il <k & | —g7— =2
igl | ElY] [%
- c i 1 _ 4t _4acé
- £ S wetk d
izl ke

51, ., 28
?[4'0 + —Ee_] (10.16)
: 2
Using stopping time t" = d WZL (1 + B), we achieve an |¢ ., S lpg+ 22 algo-
o€ d g°
rithm. If we substitute &' =6: d 7| for 6 we achieve an (g,) algo-
4T + 223-
: 2
rithm where now the stopping time is gl"é—(l +8)= 6m2 4-¢ + 2 -;2—] (1+p8).
> ‘£

The value of 8 which minimizes this stopping time when g is small is

g = sﬁ—. Substituting this value for § yields
g

This completes the proof.

-30-

The total running time of the linear time coverage algorithm is then

O(m - n) for preprocessing plus O[m- n 1 time to execute (*) in Step 3

6 e?

O{ST—:—;] times, which guarantees an (g, §)} algorithm for the linear time cover-

age algorithm.

11. Two-Terminal Network Reliability Coverage Algorithm

In this section we show how the two-terminal network reliability problem
can be attacked using a variant of the algorithm of Section 7. We give a fast way
to compute a when the input to the algorithm is a list of the edge failure proba-
bilities together with an adjacency list for the graph. The preprocessing step in

this case consists of listing all the z —y cuts in the graph [2]

The first two steps of one trial of this algorithm, picking block (s, k), are
exactly the same as they are for all the previously described coverage algo-
rithms. We will use the cutoff method described in Section 9 to compute
a(s, k). Let ¢ be the value of the cutoff. The adjacency list representation is
used to list cut sets occurring among failing edges in state s. The algorithm
lists cut sets occurring among failing edges in state s until either ¢ cuts are

found (cou(s)=c) or until all cou(s) cut sets occurring among failing edges

1

- if & is the index of one of the
min {c, cov(s)}

in state s are found. a{s, k) =

failure sets, otherwise a(s, k) =0.
The time for listing each cut set is O(n) [2], thus the time to compute

a(s, k) is

min {c, cov(s)} n . (11.1)
The average time to compute a for one trial of the algorithm is

PPri+c Y ing
Y iBritc Y

1Li<c ixc

2 T:Ti
]

‘n. (11.2)

-31-

When ¢ = 1, the time per trial is O(n). An upper bound on the number of trials

sufficient to guarantee an (g, 6) algorithm is

m

L Prifi]

k=1 ~11!- 1 . m
PriS} 62 4¢P

as we saw in formula (6.1). Thus, an upper bound on the running time of

and ¢ = 1.

o} [m'”] is obtained if the number of trials is

m
6 &° 6 e?

In the next section we show that

L Prifd
AT

is less than or equal to ﬁ (1 + p;}. Thus, if we execute

i=1

i=1

[ﬁ (1 +p1.)-1}

5 &2

trials, we have an (g, §) algorithm. If we let ¢ = 1, the total running time is

[ﬁ(upi)—l]-n

0 ‘n o+
mn 582

12. An Upper Bound on the Number of Trails Necessary to Achieve an (g, 6)

Algorithm when the System is Monotonic

In this section we show for monotonic n-component systems

S el
k=1 — = J[T+p). (12.1)
Priy F,,J =l

k=1

Thus, the number of trials sufficient to guarantee an (g, 8§) algorithm for

-32-

{ﬁ (£+pi) - 1]

i=1

the coverage algorithms is for monoteonic n-component sys-

52
tems. Note that

n
LR
ﬁ {1+p)=<et=
i=1

h1Y
Thus, as 2 p; goes to zero, the number cf trials necessary also goes to zero.
i=1

n
In marked contrast, since Pr[S] goes to zero as), p; goes to zero, the
i=1

number of trials necessary for the straight simulation method becomes

unbeounded as f: p; goes to zero.

i=1

Note that IEI {1+ p;) can be computed before any trials are performed.

i=1
This calculation gives an a prieri upper bound on the number of trials necessary.
Thus upper bound suggests that the coverage algorithms work especially well
when the failure probabilities are small. Reliability problems tend to have small
failure probabilities associated with their components. These observations indi-
cate that the coverage algorithms are well suited for solving problems that

occur in practice.
The proof of eguation {12.1) will be by induction. Let mn-tuple
{b,.....,b;,*%,...,*) be a specification of system states where each b; is either zero
or one. Let D{(b,.. .by.*...,*) =Pr[S](b,....by.*....,*)], where S is the set of

failure states.

Since {*,...,*) is the set of all system states, D{*....,*) = Pr[S] which is

equal to the denominator of the left-hand side of equation (12.1). Note that

1if (b),...8,) €S
D(by....by) = 0 otherwise

-33-

D can be defined inductively as
Diby.. by, *) =0 D{by. b 0%, %) + (1 —p} D(b by 1%,0%)
If the n-component system has the monotonic property, |
D(bl,...:bi_l.o."‘,,...*) =D{by...by 1% %)
Let

1if (b....bp) € S

N(byssbn) = 0 otherwise

Define N inductively as

N{bl""’bi"l"""'*) :P‘ilN(bi""‘bi‘—l’o"""‘*) + N(b:,....bi_l,l,*,...,*) B

m

We ciaim N(*.....*} is greater than), Pr[F,]. This car be seen by observing
k=1

the the contribution of failure state {b1...bs) to N(*,...*) isequalto

5 1ifb, =0
H °twherec', =
LT T F oifb =1

Thus, the contribution of all failure states to N(*,...,*} is greater than the con-
tribution of all minirnal failure states to N(*,...,*) which is equal to the sum of

the probabllities of all the failure sets.

We will show by an induction argument that

N(*) _ B |
D(*,..,,*) = £(1+pl)

which will validate equation {12.1). The induction hypothesis is

N(by...b.*.. .. %)= f[(L +p;) D{by.....b. %)

F=i+l
for all combinations of 0's and 1's substituted for {b;,...,b;}. The basis of the

induction argument is that for all system states (by...bp}, N{(bp...bn) =

P{b,.....b,) by definition of N and D. We will assume the induction hypothesis

-34 -

for i and show this implies it is true for i — 1.

N(by.....bs_1.*....*) =P ‘N(by.nbioy, 0.%,...%) + N(byp..obiop L2.0%)

H (1 +p5)[pi D(B1.. bso1, Oy Y+ Dby by, L n®)] =

J'l+l

.nI (1+p;) ptD(b,, Bi_y. 0,*%,...,*)+D(by,....bi- 1, 1,%,....%)
7 lp D(by,....bi- 1,0, Lot (- pI)D(bl, b LAY

j=i+l

|
(12.2)

Dby b *n)
Formula (12.2) is maximized when D(by...bi—1, L%, *) is maximum, but
since D(by...bi-p, L*,....*) < D(by...bi-1, 0,*,...,*), this implies (12.2) is max-
imized when D(b....Bi_y L*.....*) = D(by. by, 0%, ..,*) . Substituting this

value into (12.2) yields the conclusion
N(Bprobsop o) S TT (LD DO bip %)
Thus equation (12.1) is verified.

13. Deterministic Upper and Lower Bounds on Pr[S], An Extension of Boole's
Inequality

Boole's inequality states that

Pr{(") Fk] f Pr[F) {13.1)

k=1
[m :
We provide a lower bound on Prl \J Fi |, and show that this lower bound can be

computed quickly. First, we present Boole's inequality in another form. We

defined 7; in section 6 as

T = 3 Pr[s] = Prlcou(s)=1]
T

Now we define a positive integer valued random variable Z such that

-35-

Pr[Z=i]=7;. Let I betheevent Z > 1. Then

m m m
E[z]l=YiP[Z=1i]= Yirn = 2 Pr[F]
i=0 i= k=
and
m m [m 1]
Pr{[]=2Pr[Z=i]=En=Pr[UFkl
i=1 i=1 i=1
Thus Boole’s inequality can be rewritten as
Pr[1] = E[Z] (13.2)

which is a special case of Markov’s inequality. Now we develop a lower bound on

Pr{l]

E[Zg]=§i2-P;'[Z=i]=§i2-ri= ﬁpr{p,,n}?j}
i=1 i=1 k=1 j=1
We claim
THEOREM :
E[Z])P
] - Pr(I] {13.3)

or alternatively,

m 2

Y PrFe]

k=1 [m]
— sPrlquj (13.4)
> ZPr{FknFj} k=1
k=1 j=1

Proof :

This is equivalent to proving

m 2

[2 iy

i1=%
ey < ﬁ Ti
z: ?'2 T; i=1

which is true if and only if

-238 -

Compare terms i =10, j=k andi=k, j=10 from the left-hand side and

right-hand side of the equation.
Left-hand side: 17 k-1 + kme-bmy = 2(k-E)mpm .
Right-hand side : 7;-k? 7 + T 127 = (k2 + ¥)mm .

It is sufficient to show 2(kl) < k®+1®. But this follows since

(k& —t) = 0. This completes the proof.

Notice that from the list of failure sets we can compute

in time 0 (m?n). We now consider how good these bounds are by taking the

ratio of the upper bound and the lower bound. This ratio is equal to

]
.
[4]
:l

E[Z®] _ i
E{ Z]

i
—

3

?;'Ti
1

L]

The best a priori upper bound on this ratio is m, but in practice we expect this

ratio to be much smaller than m.

m
Ef 73] E[Z])] z'Zﬁpr[Fi]
Inequality (13.3) can be rewritten as EZ] > AT = A5

2
Thus for the algorithms presented in Sections 7 and 11, —E-LZ—-]T is an easily
E[Z)6

computable upper bound on the number of trials sufficient to guarantee an

(&, 6) algorithm.

-37 -

14, A Computational Example

The new coverage algorithms was applied to the network reliability problem

used as an example in Section 2. The failure probability of the system is .21254,

there are nine failure sets,

Y priR] = 2644
k=1
and
9 2
[2 PriFe 1]
k=t 26442
.3953

N
il Mo

Pr{FkﬂFJ]
15=1

= .1768

Four different versions of the coverage algorithm are used to estimate Pr{S].

Since randomly selecting block s, k) in the first two steps of a trial is the

same for all versions of the algorithm, all four versions use the same randomly

selected block (s, k) on the same trial.

The four different versions of the coverage algorithm differ only in the com-

putation of a(s, k). The method used to compute a{s, k) for each of the four

versions is described in the following table.

.38 -

Version Computation of afs, k)
1

1 k) = ———

ols. k) cov(s)
2 i= min §j|s € F;}

J=L.m
_ 1ifi =k

als k) =\gifi # k

3 randomly select F; with

probability ;— untit

s € F;. lLet I = number
of failure sets picked until

s € F
_ 1
afs, k)= —
4 let F; be failure set s.t.
s € F;, found using ver-
sionr 3

1ifi = &
als. k) =1girs 2 &

Forty trials were conducted, with the following results. When Version 1 was
used, the estimate of Pr[S] determined by these forty trials is .2181. The esti-
mates derived by treating each of the first, second, third and fourth sets of ten
trials as though it were the entire sample are .2005, .2291, .2181 and .2247,

respectively.

When Version 2 was used, the estimate of Pr[S] determined by these forty
trials is .2247. The estimates derived by treating each of the first, second, third
and fourth sets of ten trials as though it were the entire sample are 2115, .2115,

.2300 and .2380, respectively.

When Version 3 was used, the estimate of Pr[S] determined by these forty
trials is .2078. The estimates derived by treating each of the first, second, third
and fourth sets of ten trials as though it were the entire sample are .1410, .2262,

.1410 and .3232, respectively.

When Version 4 was used, the estimate of Pr[S] determined by these forty
trials is .2115. The estimates derived by treating each of the first, second, third

and fourth sets of ten trials as though it were the entire sample are .2380, .2380,

11851 and .1851, respectively.

-39 -

A detailed table of these results follaws.

system state failure sets afs, k) version selected index of
k s € F containing s 1 2 3 4 F;st.s € F
| 6 00100010 3,8,9 1/3 0 2/9 1 6
5 10000111 5,8 1/2 1 7/9 1 5
5 00000011 5.6,8,9 1/4 1 1/9 1 5
4 11011010 4 1 1 11/9 1 4
9 00001011 8,9 1/2 0 2/9 0 8
5 11010111 5 1 3 1/9 1 5
o 00111010 9 1 1 2/9 1 9
9 00011011 9 1 1 5/9 1 9
9 00111011 9 1 1 4/9 1 S
g 00111111 9 1 1 13/9 1 9
3 01101010 3 1 1 14/9 1 3
9 00100000 1,2,3,6,7,9 1/6 0 1/9 0 3
9 00110011 9 1 1 1/9 1 g
5 11010111 5 1 1 2/9 1 5
1 10011100 1 1 1 15/9 1 1
9 00110111 9 1 1 4/9 1 9
5 10010001 2.5 1/2 0 2/9 1 5
9 00111011 9 1 1 3/9 1 9
5 11000011 5 1 1 8/9 1 5
5 10010011 5 1 1 18/9 1 5
2 10000001 2,5,7.8 1/4 1 7/9 0 7
8 10000011 5,8 1/2 O 5/9 0 5
5 11000011 5 1 1 2/9 1)
9 00011111 9 1 1 10/9 1 9
5 11010101 5 1 1 1/9 1 5
8 10001111 8 1 1 14/9 1 8
4 11000010 4.5 1/2 1 1/9 0 S
8 10001011 8 1 1 1/9 1 8
5 10010011 5 1 1 2/9 1)
9 ooitiill 9 1 1 5/9 1 9
8 10001011 8 1 1 4/9 1 8
9 po1o01011 8 1 1 14/9 1 9
5 11000011 5 1 1 5/9 1 5
4 10011010 4 1 1 24/9 1 4
8 10000110 5,8 1/2 0O 3/9 0 5
5 10000111 5,8 1/2 1 8/9 0 8
5 11010111 5 1 1 12/9 1 5
7 10001001 7.8 1/2 1 8/9 0 8
8 10001111 8 1 1 4/9 1 8
9 00011111 9 1 1 30/9 1 9

- 40 -

15. Conclusion

We have presented several highly effective Monte-Carlo methods for
estimating the failure probability of an n-component system, given a list of
failure sets. In many practical situations an n-component system is presented
as a network or fault tree, and the failure sets are too numerous to be explicitly
listed. In future work we will show that our coverage formula and the associated
Monte Carlo method can sometimes be applied in such situations using implicit

methods of sampling from among the failure sets of the system.

16. Acknowledgements

The authors would like to thank J. Pitman for pointing out the approach to
proving that the Linear Time Coverage Algorithm is an (&, 6) algorithm using

Kolmogorov's Inequality.

17. Nomenclature

The nomenclature introduced in each section is listed here for easy refer-

ence.

Section 1 n‘- number of components in the system
m - number of failure sets
p; - probability component i is failing
(by,....,by) - a specification of a system state
b; = 0 if component 1 is failing
b; = 1 if component 1 is working
(cp....Cn) - a failure set specification

c; = 0 if component 1 is failing

¢; = 1 if component i is working
¢; = * if component i may be either failing or working

F - a failure set

-41-

F, - the k" failure set
s - a system state
S - the set of all failure states

PrfS] - the probability the network is in a failing state
Section 2 =z, - the two designated nodes in the two terminal problem

Section 3 F - enclosing region
A(E) - area of region £
U - unknown region
A(U) - area of region U
b - number of blocks into which £ is subdivided
a; - area of block i in £
o; - 1if blocki € U, Oif block i £ U.

Y - random variable s.t. E[Y] = A(U)

Section 4 N - number of trials performed during the course of a Monte-Carlo
algorithm
Y; - estimator produced by the i** trial
p- ELY]
g? - variance of ¥;
¢ - allowable relative error
& - confidence level that the relative erroris < ¢
(e, 6) - algorithm with confidence level § the relative error

of the estimator produced by the algorithm is less than or equal to €.

Section 8 cov(s) - the number of failure sets Fi s.t.s € Fi
(s, k) - a block in the region £ for the coverage algorithms S € Fi
(s, k) - indicates whether or not (s, k) e U
a{s k) =1if(s, k) € U

als k) =0if(s, k) £ U

- 42 -

Section 7 FS - an array of size m used to pick failure sets

r; - summation of the probability of all states with coverage i

Section 8 «afs, k) - generalized version of definition given in Section 6

Y, Elals. k)}=1

ik is EF’:!

Section 9 ¢ -the cutoff

Section 10 Y - unbiased estimator of Pr{S]
Y - a second unbiased est'u"nator of Pr[S]
as, k) - used to prodace estimator ¥
o'(s, k) - used to produce estimator ¥’

X(s, k) - length of trial given that block (s, k) is selected

s- ELEL

ELY]?

i
E[YT]?

__Pris]
“
21 PriF.]

t - number of times (*) in Step 3 of algorithm is executed during the course
of the algorithm.

X; - length of the j% trial
i}
Sn - S‘n = Z Xl.
i=1
Y; - value of Y on the j* trial
Y;' - value of ¥" on the j¥ trial

Ry -

1T

¥

=t
Rn' - i Yi'
i=1

N{t) - number of trials completed after (*} in Step 3 is executed ¢ times

- 43 -

¢ - bothd and ¥ are <

§|0|

1B. linear Time Coverage Algorithm Pascal Program

In the following pages there is a listing of a Pascal program for the Linear
Time Coverage Algorithm described in Section 10. After the problem data is
input and the preprocessing is performed, the upper bound and the lower bound
o Pr[S] described in Section 13 is computed and output. Following this are
steps 1 thru 6 of the Linear Time Coverage Algorithm. Following this listing isa
run of the program using as input data the example problem described in Sec-

tion 2.

-44-

progran montel (input,output)

{ this program computes the failure probability of an a-component system

where the input is a list of failure sets -

the running time of this algorithm is ¢ * aumcomponents ® numfail

divided by delta ® epsilon ®* epsilon, where

¢ is a small constant =— (see the proof that this algorithm is an
epsilon,delta algorithm)

numcomponents is the number of system components

numfail is the number of specified [ailure sets

delta is the confidence level

epsilon is the allowable relative error >

label 1 3
var i,j.k,1 : integer 3

numcomponents : integer j
numfail : integer 3
Seed : integer
prob : array [1..40] of real ;
failset : array {1..100,1..40) of integer ;
failprob : array (0..100) of real ;3
sumprob : real 3
sstate : array (1..40) of integer
numsteps : integer |
sumest! ¢ real ;
sumest2 : real
outestl : real ;
outest2 : real
numtrials : integer |
¢ : real
x : real ;
z : real ;
epsilon : real ;
detta : real

time : integer 3
alphal : real ;

lpha2 : real

ouad : boolean 3

{select failure set ?

function selectfail : integer 3
var low,high,pntl,pnth : integer ;
x : real 3 *
found : boolean ;
begin
x := random (Seed) ;
found := false ;
low :2 @ ;
high := numfail ;
while (not found) do
begin
patl := (low + high) div 2 3
path := patl + 1 3
if (failproblpntl] >= x) then high := pntl 3
if (failproblpath]l < x) then fow := pnth
dif ((failproblpntl] <=x) and (failproblpath] >= x)) then found := true
end ;
selectfail := pnth

-45-

end
{ selgct system state »

procedare selectstate
var i : integer ;
x : real 3
begin
for i =1 to numcomponents do
begin
sstatel{i] := failsetlk,il 3
if (sstatelil = —1) then
begin
x := random (Seed) ;
if (x <= problil) then sstateli] := @
else sstateli]l := 1
end
end
end ;

{ function to see if system state is in failure set ?
function inset : boolean ;

var indic : boolean ;
j @ integer

begin
indic := true ;3
for j = 1 to numcomponents do
begin
if ((failsetli,jl = 1) and (sstatelj]l = 0)) then
indic := false 3
if ((failsetli,j] = @ and (sstatelj] = 1)) then

indic := false
end
inset := indic
end ;

{ input problem data)

begin
writeln ('Seed:’) 3
read (Seed)
i := seed (Seed) ;3
writeln (‘enter epsilon A B
read (epsilon) ;
writeln (‘enter deita ')
read (delta) ;
writeln (‘enter constant)
read (¢) 3
writeln ('number of components :') 3
read (pumcomponents) ;
writein ('input probability of components : ') ;
for 1 := 1 to nvmcomponents do
begin
writeln (*input prob. of component *,i:3) 3
read (problil)
end ;
writela (Cinput number of failure sets :’) ;
read (numfail) ;

-46-

writeln ;
writeln (*The failure set specification {ormat is) 3
writeln ('1 = component must work for system state to b in failure set’)
writeln ('@ - component must fail for system state to be in failore set')
writeln ('-1 = component may either work or fail (unspecified)’) 3
writeln 3
for i := 1 to numfail do
begin

writeln ('input specifications for failure set ',i:3) ;

for j =1 to numcomponents do

read (failsetli,jl)

PYREY)

end
{ preprocessing b4

Pailprob(0]l := 0.0 ;
sumprodb := ;
for i := 1 to numfail do
begin
failproblil := 1.0
for j := 1 to numcomponents do

begin
if (failsetli,j] = © then
failproblil] := failproblil * probljl 3
if (failsetli,j} = 1) then

4 failprob(i] failproblil * (1.0 - probljl)
end ;

sumprob := sumprob * failproblil

end 3

writeln ;

{ Print upper bound on the failure probability ?

writeln ('Upper bound on the failure probability is ' sumprob:12:8) ;
{ Compute and print lower bound on the failure probability ?

z := 0.9 ;

for i := 1 to numfail do
for § 1= 1 to numfail do

begin
x := 1.0 3
for k := | to numcomponents do
begin
if ((failsetli,kl=1l) or (failset(j,k1=1)) then
x := x * (1.0 = prob(kl) 1
if ((failsetli,kl=0) or (faitsetlj,k1=0)) then
x := x * problk] ;
if ((faitsetli, k] <> failsetlj,kl) and (failsetli,k] <> =1
and (failset(j.k] <> =1)) then x := 0
end ;
Z 122 + X
end ;

writela ; writeln C E(Z*Z) = ',2:12:8) ; writeln

z := (sumprobd * sumprob) / 7 ;

writeln

writeln ('Lower bound on the failure probability is ',2:12:8) 3
writeln ;

-47-

x := 0 ;
for i := 1| to numfail do
begin

writeln ("The prob. of failure set ',1:3," is ' failprobl(il:12:8) ;
x := failprobli] + x
failproblil := x / sumprob
end ;
pnumsteps := trunc ((c ® numfail) / (delta ® epsilon ® epsilon)) + 1 3
writeln ; writeln ('the number of steps will be ',numsteps:6) ;
time := 0 ;
aumtrials := O ;
sumestl Q
sumest2 :

.
*

0:0 H

beginning of Monte-Carlo trial }

while (time <= numsteps) do
begin

step | - select failure set ?
k := selectfail ;
step 2 - select system state >
selectstate ;
step 3 - compute estimators alphal and alphaZ)}

1 :1= 6 ;

found := false

while (not found) do

begin
i := trunc (random(Seed) * numfail) + 1 :
if (i >= numfail) then i := numfail ;
1 =1 + 13
time := time + 1
if (time > aumsteps) then goto 1 ;
found := inset

end ;

step 4 - compute alphal and alpha2 }

alphal := (1 / numfail) ¢ sumprob ;
if (k = i) then alpha2 := suamprob
else alpha2 := 0 ;

step 5 - increment number of trials and total estimators ?}

numtrials := numtrials +« 1 ;

sumest! sumestl + alphal

sumest2 := sumest2 + alpha2
end { while (time <= numsteps) } ;

step 6 - the simulation is completed, output the results ?}
s outestl := sumestl / numtrials ;

outest2 := sumest2 / numtrials ;|
writeln ('number of trials completed = ' ,nomtrials:S) ;

-48-

', outestl1:12:8)
', outest2:12:8)

writeln ('estimator 1
writeln ('estimator 2
end { of program }

-49-

Seed:
39845
enter epsilon
2.1
enter delta :
0.05
enter constant
8.9
gumber of components
input probability of components
énput prob. of component 1
.1
input prob. of component

(W)

input prob. of component

[»9]
n

in

ut prob. of component

[

prob. of component

("3

n

prob. of component
.4 7
n

n

L O K A WN

P
3
P
2
np
P

Lo B o S

u
u
u

prob. of compenent

[~}
-~

1
i g prob. of component 8
'n;ut namber of failure sets

O @O OO

The failure set specification format is :

1 - componeant must work for system state to be in failure set
@ - component must fail for system state to be in failure set
-1 - component may either work or fail (unspecified)

input specifications for failure set 1

-1 =-1-1-1-1-1 0 0

input specifications for failure set

-1 -1 -1~1 0 6 9 -1

input specifications for failure set
0 -1-1 0-1 0-1 0

input specifications for failure set
-1 -1 0 -1-1 06-1 O

input specifications for failure set

-1 -1 & -1 0 -1 -1-1

input specifications for failore set
e-1-1 0 0-1-1-1

input specifications for failure set

-1 #8-1 06-1 0 0 ~-1

input specifications for failure set
-1 @ 6 90 ~-1-1-1-1

input specifications for failure set
9 0-1-1-1-1-1-1

Upper bound on the failure probability is 8.26440000
E(Z*Z) = ©.39534400

© 0 3 O K b W RN

Lower bound on the failuore probability is

The prob. of
The prob. of
The prob. of
The prob. of
The prob. of
The prob. of
The prob. of
The prob. of
The prob. of

failure
failure
failure
failure
failure
failure
failure
failure
failure

set
set
set
set
set
set
set
set
set

WCONNANHLWN—

1S
is
is
is
is
is
is
is
is

the number of steps will be 14400]

number of trials completed
9.21307693
9.21215656

estimator |
estimator 2

19854

OO

. 02600009
. 80800009
. 002400600
. 93200000
.H8600000
. 00600006
. 00600009
. 66000000
. 95000000

-50-

9.17682666

-51-~

19. References

[1] J. Scott Provan and Michael O. Ball, The Complexzity of Counting Cuts and of
Computing the Probability that a Graph is Connected, working paper
MS/S 81-002, Management Science and Statistics, January 1981
(revised April 1981)

[2] S. Tsukiyama, 1. Shirakawa, H. Ozaki, H. Ariyoshi, An Algorithm to Enumerate
All Cutsets of a Graph in Linear Time, JACM, vol. 27, no. 4, October
1980, pp. 618-632

[3] S. Ross, Applied Probability Models with Optimization Applications, 1970,
chapter 3, section 3.4, p. 37

[4] W. Feller, An Introduction to Probability Theory and Jts Applications, third
edition, vol. 1, 1968, chapter 9, section 7, pp. 234-235

