On the Performance of Courier
Remote Procedure Calls Under 4.1c BSD

James R. Larus

Computer Science Division
Department of Electrical Engineering and Computer Sciences
University of California, Berkeley
Berkeley, California 94720

ABSTRACT

Courier is a remote procedure call standard developed by Xerox. This paper
reports measurements of Courier’s performance under 4.1c BSD Unix running on
VAX-11/780s and on Sun perscnel workstations.

The cost of a remote procedure call is many times that of a local call. How-
ever, Courier's performance could be greatly improved by using a simpler proto-
col and better Ethernet interfaces.

On the Performance of Courier
Remote Procedure Calls Under 4.1¢ BSD

James R. Larus

Computer Science Division
Department of Electrical Engineering and Computer Sciences
University of California, Berkeley
Berkeley, California 94720

1. Introduction
This paper reports on the performance of an implementation of Courier
remote procedure calls under 4.1¢ BSD Unix' [Cooper 83].

Courier is a Xerox network standard [Xerox 81|, developed to facilitate pro-
cedure calls between computers connected by a network and between programs
written in different languages. The Xerox standard prescribes the order in which
arguments are to be passed, the way that different datatypes should be packaged
and shipped, and the procedure for returning results or exceptions.

Eric Cooper implemented most of Courier for C programs running under
4.1c BSD Unix. He did not implement a few portions of Courier, such as excep-
tions and multiple results, that are closely tied to the Mesa language [Mitchell 79
and have no counterparts in C.

Writing a distributed program with Courier is relatively painless. From a
file of Mesa-like datatype and procedure heading declarations, Courier produces
C routines that look like the remote procedures, but package their arguments,
ship them over the network, and receive and return a result value. The only sub-
stantive change necessary to use Courier is that the client (the program issuing
the remote call) must open a connection with the server (the program receiving
the remote call) by specifying the remote machine's and program’s names.

Courier currently uses the reliable byte-stream protocol provided by TCP
[Leffler 82] to pass control information, arguments, and results. This protocol is
not optimal for Courier, which would be happier with a protocol that had packet
boundaries and was cheaper, such as a reliable packet protocol. However, Unix
does not yet provide a packet-stream protocol, so Courier had to make due with
the available protocols.

Given a new facility like Courier, many people will rush to use it without
understanding its limitations and costs.” This paper describes some measurements
of remote procedure calls’ cost, both with the conventional byte-stream Courier
and with a version of Courier that I modified to use datagrams. These measure-
ments are not definitive because of the many problems in measuring any

1 {Jpix is a trademark of Bell Laboratories.

-2

program, particularly a distributed one, on Unix. However, the numbers show
that a Courier remote procedure call is much more expensive than a local call
and that the time required to complete a remote call depends heavily on the load
of the computer and network.

2. The Experiment

This section describes the programs that I measured and the types of meas-
urements I collected.

2.1. Courier and PCourier

Throughout the rest of this paper, the term Courter will mean Eric Cooper’s
implementation of Courier that uses TCP and PCourier (for Packet Courier) will
mean my reimplementation that uses UDP (datagrams).

For a variety of reasons, PCourier is not a serious candidate to replace
Courier. The datagrams underlying PCourier are unreliable and unordered. To
cope with these shortcomings, PCourier cheats. Arguments and results must
each fit into a single packet (1,500 bytes, maximum) so that packet sequencing Is
not a problem. To cope with undelivered packets, PCourier times out after 10
seconds, declares the packet lost, and returns an empty result. Neither vestric-
tion seriously impaired the measurements in this paper, but either restriction
would make PCourier unusable in most real systems.

2.2. Measurements

The measurements in this paper are of two varieties. The first type recorded
the elapsed time to execute some remote procedure calls and the second type
measured the CPU cost of the calls.

The elapsed time measurements recorded the real time needed to complete
2,000 remote procedure calls. This measurement is extremely sensitive to varia-
tions in the local and remote computers’ and the network’s loads, so it was run
between 8 and 16 times at random intervals between 1 and 8 AM. The collected
numbers reflect this sensitivity in their high variance and only give a rough idea
of the minimum and average costs of a remote procedure call.

Although the computers’ loads in the early morning hours are atypical,
Courier’s performance can best be measured without interference from other
users. The numbers in this paper are, therefore, lower bounds on Courier’s per-
formance and cannot be used to predict its behavior when the computer and net-
work are loaded.

The other set of measurements recorded, with gprof {Graham 82], where the
client program spent its time. These measurements had little variation and
helped pinpoint the reasons why Courier calls cost so much.

2.3. The Test Programs

The test programs were simple routines that took either no arguments or a
single array argument and returned either nothing or a single integer. A single

-3-

argument is enough to determine Courier's costs of packaging and shipping
different amounts of data. Two or more arguments are equivalent, from
Courier’s point of view, to a larger single argument. The four test arguments
were: 0 words, 1 word (4 bytes), 100 words (400 bytes), and 1000 words (4,000
bytes). Since Courier’s behavior depends upon whether a function returns a
value, each variety of function had a value-returning and a non-value-returning

version.

2.4. The Hardware

The tests described above were run between the Berkeley computers ucbkim
and ucbarpa and between ucbkim and ucbrob or ucbchip. The first two machines
are VAX-11/780s connected by a large, heavily-loaded, 3 megabit per second eth-
ermet. The other two machines are Sun workstations (based on the Motorola
68000) that are connected to ucbkim by a small, lightly-loaded, 10 megabit per
second ethernet.

3. The Resalts
Table 1 contains elapsed time measurements for Courier.

Test Elapsed time in seconds, for 2000 calls + std. dev.
Arg. Size Result? kim to arpa kim to rob
{bytes) min. __ max. avg. min. ___max,. avg.

0 No 10.3 423 26.2+9.3 13.3 1158 33.4% 329

0 Yes €6.3 465.1 193.0+142.9] 1184 1604 129.2+ 12.4

4 No 16.4 57.7 41.2+ 12.4 25.1 104.6 47.7+ 26.1

4 Yes 70.4 364.1 139.54+93.8 | 104.6 1489 142.44 4.7

400 No 50.4 2180 102.84+ 53.4 656 1724 88.0% 29.2
400 Yes 84.1 4182 177.6+106.8 | 154.2 1825 166.1+ 8.0
4000 No 2136 6338 376.7+139.2 12006 6928 402.7+121.0
4000 Yes 3176 5944 42244944 | 396.2 776.5 479.4+1234

Table 1. Measurements of Courier on March 10, 1983

The table shows that the time required for a call increases greatly when Courier
returns a result and as the size of the argument increases. The first increase is
not surprising since Courier does not wait for a call to complete when a function
does not return a value, but rather sends off the next call packet and relies on
the network’s queuing to keep the calls ordered. The reasons behind the second
result are discussed in detail below. The time also varied widely, as might be
expected for any elapsed time measurements in which outside interference is not
controlled.

Table 2 shows the corresponding information for PCourier. The two tests
programs that passed 1,000 word arrays could not run on PCourier because their
argument was larger than a single packet. Also, the numbers in this table must
be taken with a grain of salt, since they do not discount the time spent waiting

Test Elapsed time in seconds, for 2000 calls + std. dev.,
Arg. Size Result? kim to arpa kim to rob
(bytes) min. __max. avg. * min, ___ max. avg. *
0 No 7.1 22.5 8.5+ 39 7.0 620 11.6+11.2
0 Yes 38.6 3755 117.3+£80.6 170 | 436 93.8 51.6+13.1 2
4 No 7.1 13.5 9.1+ 14 7.0 23.1 10.1+ 3.8
4 Yes 37.4 2813 1074+ 674 128 | 43.5 102.7 51.9+11.4 5
400 No 22.0 76.6 28.6+ 13.8 24.1 1054 29.8+16.1
400 Yes 885 7190 211.9+1638 322] 683 1497 8764152 6

* Lost Packets

Table 2. Measurements of PCourier on March 19, 1983

for packets that never arrived. The figures, in the table, for lost packets count
only the result packets not received by the client and do not directly record the
packets not received by the server. However, since a server cannot return a
result if a call packet never arrived, the figure for lost packets is approximatedly
equal to the number of packets lost in both directions, for the function calls that
return a value. I have no figures for the number of lost packets in the non-
value-returning calls, but these packets do not affect the recorded speed of these

calls.

Test Courier PCourier Corrected
Arg. Size Result? PCouricr
{bytes) msec./call _ call/sec. | msec. [call callfsec. | msec.[call _call/sec.
0 No 13.1 76 4.2 235 4.2 235
0 Yes 96.5 10 58.6 17 21.6 46
4 No 20.6 49 4.5 219 4.5 219
4 Yes 69.7 14 53.7 19 259 39
400 No 51.4 19 14.3 70 14.3 70
400 Yes 88.8 11 106.0 9.4 359 28
4000 No 188.3 5
4000 Yes 211.2 5

Table 3. Calls per Second, VAX to VAX

Table 3 lists the cost, in milliseconds per call, and the maximum number of
calls per second between the two VAXs (based on the average of the measure-
ments). The column labeled “Corrected PCourier” discounts the effects of the
time-outs due to lost packets. Table 4 shows the corresponding figures for VAX
to Sun calls.

Test Courier PCourier Corrected
Arg. Size _ Result? PCourier
{bytes) msec./call _ call/sec. | msec./call call/sec. { msec./call call/sec.
0 No 16.7 60 5.8 172 5.8 172
0 Yes 64.6 15 25.8 39 25.4 39
4 No 23.8 42 5.0 198 5.0 198
4 Yes 71.2 14 25.9 39 24.9 40
400 No 44.0 23 14.9 67 14.9 67
400 Yes 83.1 12 43.8 23 42.5 23
4000 No 201.3 5
4000 Yes 248.5 4

3.1. Where is the Time Spent?

Table 4. Calls per Second, VAX to Sun

To see where Courier spends its time, I profiled the client program that
invoked the remote procedures and includes Courier’s network interface code.
Table 5 shows the most costly procedures in the exchanges between ucbkim and
ucbarpa and Table 6 shows the same procedures in the exchange between ucbkim
and ucbrob. The corresponding information for PCourier is in Tables 7 and 8.

Arg. Size Result? Time in CPU Seconds
{bytes) Total write read swapping bvtes
0 No 13.7 | 12.7 (93.0%) 0.05 (0.2%)
0 Yes 25.5 | 13.8 (54.2%) 6.4 (25.1%)
4 No 21.5 | 18.9(88.1%) 0.02(0.1%)
4 Yes 30.4 | 19.6 (66.6%) 8.1(26.7%)
400 No 36.4 | 24.3 (66.8%) 0.03 (0.1%) 9.6 (24.4%)
400 Yes 43.2 | 22.3(51.6%) 6.4 (14.8%) 9.9 (24.9%)
4060 No 159.6 | 35.9 (22.5%) 0.03 (0.0%) 120.7 (75.6%)
4000 Yes 140.5 | 35.2 (25.1%) 8.16 (5.8%) 92.5 (65.9%)

Table 5. Execution Profile of Courier (ucbkim to ucbarpa), March 1, 1983

Arg. Size Result? Time in CPU Seconds

(bytes) Total write read swapping bytes

0 Neo 153 | 14.2(92.7%) 0.04 (0.3%)

0 Yes 26.9 } 14.9(55.6%) 7.9(29. 5%)

4 No 23.3 | 20.7 (88.9%) 0.04 (0.2%)

4 Yes 32.8 | 21.5(65.5%) 7.0 (21.2%)
400 No 41.1 | 27.2 (66. 2%) 0.04 (0.1%) 10.8 (26.4%)
400 Yes 47.7 | 26.6 (55.9%) 7.3 (15.2%) 9.0 (18.9%)
4000 No 160.4 | 48.0 (290.9%) 0.03 (0.0%) 109.1 (68.0%)
4000 Yes 155.1 | 48.2(31.1%) 7.3 (4.7%) 94.8 (61.19%)

Table 8. Execution Profile of Courier (ucbkim to ucbchip), March 1, 1983

Arg. Size Result? Time in CPU Seconds
{bytes) Total gendio recv + select swapping bytes

0 No 8.8 7.9 (89.5%) 0.03 (0.3%)
0 Yes 20.1 9.6 (47.0%) 7.3(36.3%)
4 No 9.2 7.5(81.0%) 0.03 (0.3%)
4 Yes 20.2 | 8.57 (42.0%) 6.9 (33.8%)

400 No 25.3 | 12.2(48.0%) 0.02(0.1%) 8.8 (35.0%)

400 Yes 378 | 12.3(33.0%) 9.0(24.0%) 9.8 (26.0%)

Table 7. Execution Profile of PCourier (ucbkim to ucbarpa), March 19, 1983

Arg. Size Result? Time in CPU Seconds
(bytes) Total gsendto recv + sgelect swapping bytes

0 No 9.2 8.3 (90.0%) 0 02 (0 2/0)
0 Yes 19.2 10 4 (54.0%) .0 (31.0%)
4 No 9.7 8 (80.0%) 002 (o %)
4 Yes 20.5 10 4(51.0%) 7 (32.0%)

400 No 25.2 | 12.7 (50.0%) 0 01 (0.0%) 8.1 (32.0%)

400 Yes 34.1 | 11.9(35.0%) 5 (22.0%) 7 (27.0%)

Table 8. Execution Profile PCourier (ucbkim to ucbchip), March 19, 1983

4. Analysis

Because of the large variance in the measurements, they cannot accurately
predict or compare Courier's or PCourier's performance. Nevertheless, some
rough comparisons are possible.

4.1. Streams and Packets

PCourier, based on datagrams, is much faster than Courier, which uses byte
streams. Table 9 compares the relative speeds of Courier and PCourier. The
column headed by ‘“Corrected PC” is based on the reported PCourier times
minus the timeout delays. These times are a rough approximation of the time
required by a version of Courier that had a reliable datagram facility.

Arg. Size Result? Kim to Arpa Kim to Rob
(bytes) Courier /[PC Courier/Corrected PC Courier/PC Courier/Corrected PC
0 No 3.1 3.1 2.9 29
0 Yes 16 4.5 2.5 2.5
4 No 4.5 4.5 4.7 4.7
4 Yes 13 2.7 2.7 29
400 No 36 3.6 2.9 29
400 Yes 0.84 5.9 1.9 2.0
Avg. 249+ 1.3 4.05+ 1.06 2.9+ 0.96 3.0+ 0.83

Table 9. Ratio of Courier and PCourier (PC) Performance

Based on the uncorrected figures, PCourier is 2.5 to 3 times faster than Courier.
Discounting PCourier’s excessive time-out delays, it is 3 to 4 times faster than
Courier.

4.2. Does the Ethernet’s Speed Matter?

The VAXs are connected by a 3 megabit per second ethernet and the Suns
are connected by a 10 megabit per second ethernet. Presumably, the latter net-
work would be faster. Table 10 shows the ratio of elapsed time the tests between
two VAXs and between a VAX and a Sun. Considering the difference in speed

Courier PCourier
Arg. Size Result? Uncorrected Corrected
{bytes) | 3MB/10MB | 3MB/10MB_ | 3MB/10MB
0 No 0.78 0.73 0.73
0 Yes 1.49 23 0.85
4 No 0.86 0.9 0.9
4 Yes 0.98 2.1 1.04
400 No 1.17 0.96 0.96
400 Yes 1.17 2.4 0.84
4000 No 0.94
4000 Yes 0.88
Avg. 1.02 1.6 0.89

Table 10. Ratio of Elapsed Time on Different Speed Networks

-8-

between a VAX and a 68000 and the heavier traffic on the departmental ether-
net, the underlying speed of the ethernet appears to make little difference to
Courier’s performance.

However, the previous statement must be qualified. The departmental eth-
ernet had many more lost packets than the Suns’ small network. The effect of
the waiting time caused by these lost packets is evident in the uncorrected figures
for PCourier in Table 10 (middle column). A reliable packet facility would not
have a time-out as long as the one nsed in this experiment, so that these figures
set an upper bound on the differences in speeds caused by lost packets.

4.3. Where Does the Time Go?

Tables 5 and 6 and 7 and 8 show that a client program running on ucbkim
spends about the same amount of time whether the server is on ucbarpa or a Sun.
So, in the following discussion, we only consider the figures for VAX to VAX
traffic.

One point that is immediately obvious is that Courier takes far less CPU
time to send and receive messages with packets rather than streams. Table 11
shows the ratio of the CPU time required for both protocols.

Arg. Size Result? Total Sending Receiving
(bytes) Courier/PCourier __Courier/PCourier __Courier/PCoutier

0 No 1.6 1.6 n/a
0 Yes 1.3) 1.4 0.87
4 No 2.3 2.5 n/a

4 Yes 1.5 2.3 1.2
400 No 14 2.0 n/a
400 Yes 1.1 1.8 0.71
Avg. 1.5 1.9 0.93

Table 11. Ratio of CPU Time in Courier and PCourier

When the amount of data shipped over the network grows, the time to put
the data in network order dominates. The VAX, unfortunately, lays out its bytes
in an order different from most other machines and different from the Courier
standard. Rearranging these bytes is very expensive, particularly for large quan-
tities of data.2 On the other hand, the 68000’s byte arrangement agrees with the
network standard, so the Suns do not have to rearrange their bytes. Hence, send-
ing large amounts of data from the Suns should be much cheaper than sending it
from the VAX. Unfortunately, the Suns were missing the profiling code necessary
to verify this conjecture.

2 The time to rearrange the bytes for small amounts of data {e.g. 1 word) was not measured since the rearrange-
ment was done by a macro that gprof could not time.

4.4. Relative Performance

To compare the cost of remote and local procedure calls, I also measured the
time to execute 2,000 local procedure calls that copied their argument (a normal
C call would pass an array by reference and would have negligible cost). Passing
a 4,000 byte array 2,000 times takes 13.7 CPU seconds locally and about 160
CPU seconds with Courier. A 400 byte array takes 1.4 CPU seconds locally,
about 45 CPU seconds with Courier, and about 25 CPU seconds with PCourier.

Bruce Nelson, in his thesis on remote procedure calls [Nelson 81], measured
the speed of a variety of implementations of remote procedure calls on Xerox
computers. Using a software implementation on a Dolphin similar to Courier, he
obtained a round-trip call time of about 25 milliseconds for a call without argu-
ments and about 29 milliseconds for a single word (2 bytes) call. These numbers
are a bit higher that the corrected PCourier cost (Table 3) and much lower than
the Courier cost.

Nelson was able to reduce the cost of a remote procedure call down to the
range of a normal procedure call by microcoding the call handler and dispensing
with operating system support. Such an approach is unlikely to be popular or
possible under Unix.

5. Other Results

Robert Hagmann measured the number of messages per second that could be
sent over a stream between two single-user VAXs [Hagmann 33]. The largest
number of round-trip exchanges that he obtained was about 60 per second, which
means that 34 seconds is the minimum time to make 2,000 procedure calls that
return results. The measurements in Table 1 are much larger than this bound,
which implies that Courier is not limited by the operating system’s or network’s
performance.

8. Conclusion

Although a Courier call is many times more expensive than a local call,
Courier spends most of its time packing, sending, or receiving data. Any pro-
gram that sent the same data between two remote computers would have to do
an equivalent amount of work. With the exception of byte swapping, which is
pointless when the communicating computers are VAXs, Courier does not have
any blatant inefficiencies. Byte swapping on a VAX is probably best done in
hardware by the Ethernet interface since this operation is extremely costly to
perform in software.

This is not to say that Courier’s performance cannot be improved. Although
the cost of a reliable packet protocol is higher than that of a datagram protocol,
like the one measured in this paper, the packet protocol is certainly cheaper than
the stream protocol that Courier currently uses. Speeding up the underlying pro-
tocol would have a noticeable effect on Courier’s performance.

The real advantage of Courier is that it is quick and simple to use. After
mucking with the network primitives to modify Courier [Leffler 83], I have a deep

-10 -

appreciation for the enormous amount of effort and difficulty that Courier sub-

sumes.

-11-

Bibliography

[Cooper 83]
Cooper, E., “Writing Distributed Programs with Courier,”” UCB, undated.

[Graham 82]
Graham, S. L., Kessler, P. D., and McKusick, M. K., “gprof: A Call Graph

Execution Profiler,’ in Proceedings of the Sigplan '82 Symposium on Com-
piler Construction, June 1982.

[Hagmann 83]
Hagmann, R., Personal Communications, February 24, 1983.

[Leffler 82]
Leffler, S. 1., Joy, W., and Fabry, R., 4.2BSD Networking Implementation

Notes - Draft of September 6, 1982, CSRG, UCB, Sept. 1982.

[Leffler 83
Leffler, S. J., A 4.2BSD Interprocess Communication Primer, Draft of Febru-

ary 10, 1983, CSRG, UCB Feb. 1983.

[Mitchell 79]
Mitchell, J. G., Maybury, W., and Sweet, R., Mesa Language Manuel, Xerox
PARC report CSL-79-3, April 1979.

[Nelson 81]
Nelson, B. J:;, Remote Procedure Ceall, Xerox PARC report CSL-81-9, May
1981.

[Xerox 81]
Xerox Corp., “Courier: The Remote Procedure Call Protocol,” XSIS 038112,
Dec. 1981.

