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ABSTRACT

A high-performance personal computing environment must avoid perceptible pauses
resulting from many page faults within 2 short period of time. Our performance goals
for a paged virtual memory system for the Smalltalk-80 programming environment
are both to decrease the average page fault rate and to minimize the pauses caused by
clusters of page faults. We have applied program restructuring techniques to the
Smalltalk-80 object memory in order to improve the locality of reference. The analysis
in this paper considers the clustering of page faults over time and distinguishes between
steady-state behavior and phase transitions. We compare the effectiveness of different
restructuring strategies in reducing the amount of mzin memory needed to obtain
desired levels of performance.
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1. Introduction

This paper reports the results of performance studies for the design of a virtual
memory system for the Smalltalk-80 system, an integrated, object-oriented programming
environment designed for personal computers [Gold83). In the Smalltalk environment all
objects are in a single virtual address space, and no distinction is made between the sys-
tem and the user’s applications. Existing implementations keep all objects resident in
main memory. Address space and memory size limitations have restricted the growth of
applications. In addition, these limitations have forced users to segregate programs into
separate object memories and to reboot the system when switching to a new application.
To alleviate this problem, researchers at Xerox PARC are developing LOOM, an object-
oriented Smalltalk-80 virtual memory [Kaeh83]. Virtual memory is also available in
experimental implementations that run on top of existing paging systems. Among these
are systems from Digital Equipment Corporation [Ball83] and UC Berkeley [Unga83al.

Smalltalk objects are much smaller than pages. In the worst case for a paged vir-
tual memory, each page in main memory contains only one useful object and most of the
space is wasted. For this reason other designers of object-oriented virtual memories
([Kaeh83], [Stam82], [Snyd79]) have chosen to swap individual objects, rather than
pages, between primary and secondary memory. In contrast, we have designed a paging

virtual memory that relies on program restructuring to minimize unused space in main
memory by clustering related objects.

The Berkeley Smalltalk interpreter [Unga83a] is written in C and makes use of the
underlying virtual memory support of the Berkeley UNIX system [Baba81). Berkeley
Smalltalk, or BS, serves as a testbed for the development of SOAR (Smalltalk on a
RISC [Patt82]), a microprocessor-based personal computer for the Smalltalk-80 environ-
ment [Unga83b)] [Blau83]. The long-range goal is to run Smalltalk thirty times faster
than BS runs on a VAX 11-750 and at lower cost. SOAR will provide a larger virtual
address space than previous implementations of the Smalltalk-80 system, but it does not
support a very large virtual space. Instead, we have designed a virtual memory whese
size is a small integer multiple of the physical memory size.

The SOAR design is based on the following view of a personal computer. During
interactive use, a personal computer must respond quickly and without noticeable
pauses. In a Smalltalk implementation, pauses might occur for garbage collection or
page fault handling. Since multiprogramming is not common, the existing system is usu-
ally idle while waiting for a page or input. In contrast, there are large segments of time
when a personal computer is unused. Housekeeping activities performed at these times
do not interfere with the user's work. This philosophy leads to two performance goals
for the virtual memory. First, it is desirable to lower the average page fault rate,
because the effective speed of the system is decreased when it waits for pages to be read
from the disk. Second, the system should reduce the number of noticeable pauses due to
page fault activity. Pauses result if many page faults occur within a short interval, so it
is necessary to consider peaks of paging activity as well as averages.

This paper focuses on measuring the improvement of paging behavior achieved by
applying program restructuring techniques to the object memory. We analyze the
results of paging simulations to predict the amount of physical memory required to pro-
vide a given level of performance under various restructuring schemes. In order to esti-
mate how well the system meets the criterion of avoiding pauses, we examine the distri-
bution of page faults over time. Other researchers have studied the clustering of page
faults over time, for example [Hatf71], [Chu76], and [Hagm82]. In this paper, we propose
pew ways of analyzing and interpreting this data. We emphasize the responsiveness of a
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personal computer system, rather than the performance of an individual program in 2
multiprogramming environment.

Previous work in program restructuring

Program restructuring is a means of improving the paging performance of a pro-
gram by improving its locality of reference [Ferr74], [F err76], [Hatf71]. One divides a
program into blocks of code or data and then assigns related blocks to the same virtual
page. When the principles of program restructuring are applied to Smalltalk, objects
serve naturally as blocks. Because they are small, many related objects can be grouped
onto one page. However, it is common for objects to be shared by several parts of the
system, and there are no distinct boundaries between separate programs. Thus, a res-
tructuring scheme must consider the entire environment, and not simply an isolated pro-
gram. For the purposes of restructuring, we view the entire object memory as a single
program, and apply the restructuring algorithm to a very large number of blocks.
Smalltalk allocates and frees objects dynamically, requiring a policy that is robust not
only for different inputs but also over time. Online, dynamic restructuring of the object
memory is a difficuit problem that we are not yet addressing, but we have proposed
algorithms that require little advance preparation and could be applied effectively to a
personal computer system on a regular basis.

In the model described by Ferrari [Ferr76], program restructuring considers dynam-
ically observed block reference strings. A restructuring algorithm computes the desirabil- .
ity of placing pairs of blocks in the same page based on the temporal proximity of refer-
ences. A large variety of strategies have been proposed for this phase of the restructur-
ing process. The results of the restructuring algorithm are used in clustering blocks onto
virtual pages. Our approach to restructuring Smalltalk object memories has not fol-
lowed this model for the reasons listed below. First, the object memory contains a large
number of objects, currently as many as thirty thousand. The normal clustering algo-
rithms are quadratic in the number of objects, so we have explored less expensive
methods. Second, we wish to restructure the entire, integrated object memory. A refer-
ence string that exercises a large and representative set of the system’s facilities would
need to be much longer than any that we could easily trace and analyze. Finally, our
goal has been to find algorithms which could be applied regularly to a production system
without requiring deliberate action by the user and without slowing down the system
with extensive measurement. If monitoring activities were to decrease the system'’s
responsiveness, they would interfere with the user’s normal interactive behavior and
affect any measurements that were taken.

One study has been concerned with restructuring the Smalltalk object memory
[Stam82]. The algorithms developed in that study by Stamos use static information
about the relationships among Smalltalk objects to group them onto virtual pages. His
paging simulations show that the grouping of objects can reduce the page fault rate and
suggest that a paged virtual memory will perform poorly without a satisfactory place-
ment of objects onto virtual pages. However, practical constraints limited the length of
the reference traces that Stamos was able to obtain and the results were scaled down to
artificially small memory sizes. Measurement facilities in Berkeley Smalltalk have
cnabled us to extend the previous work by tracing longer interactive sessions. In addi-
tion, we have been able to study the behavior of an application package with a larger
virtual address space. Our results consider larger memory sizes, in a range closer to the
sizes planned for the SOAR system.



2. Smalltalk Background
This section introduces the Smalltalk virtual machine and presents a conceptual
model of the memory system.

The virtual machine

The Smalltalk-80 system is specified by a virtual machine and a virtual image of
Smalltalk objects [Gold83]. A Smalltalk method (i.e., proczdure) is compiled into a
sequence of one-byte instructions called bytecodes, that is interpreted by the virtual
machine. The speed of a virtual machine implementation is commonly expressed in
bytecodes executed per second. As with the instruction sets of other architectures, the
bytecode instructions vary in their complexity. Nevertheless, virtual time can be
expressed as satisfactorily in bytecodes as in any other unit of measure that has been
proposed [Deut&2b]. Currently, the fastest Smalltalk system is a microcoded implemen-
tation on the Xerox Dorado computer that interprets about 300,000 bytecodes a second.
This paper assumes a system with equivalent speed.

The object memory
In discussing the memory needs of a Smalltalk system, it is convenient to divide the

memory into regions that serve different purposes (Figure 1).

old objects

new objects

bitmap for display

virtual machine | virtual machine
code data

Figure 1. Conceptual Model of Smalltalk Memory

Some of the memory must be devoted to the internal data and code of the virtual
machine interpreter. Another region contains the bitmap for the graphics display.
Smalltalk objects are located in the two remaining areas of memory.

Old and new objects

Smalltalk objects are dynamically allocated and automatically reclaimed when they
are no longer accessible. Table 1 summarizes data obtained by tracing a Smalltalk ses-
sion. Allocations occur frequently and most objects quickly become inaccessible.
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non-context obiects allocated dynamically 38,779
length of trace 3,807,289 bytecodes
mean time between allocations 100 bytecodes
median lifetime of objects allocated 202 bytecodes
mean lifetime of objects allocated 11,898 byteccdes
objects that live < 100,000 bytecodes 99.8%

Table 1

Characteristics of dynamically-allocated objects
(excluding activation records)

On the other hand, the initial image contains a core of about 15,000 objects that define
the environment and tend to remain unchanged for an indefinite amount of time. We
call such long-lived objects old, in contrast to recently-allocated new objects. User code
can add more old objects to the image. Both the LOOM virtual memory [Kaeh83} and
Berkeley Smalltalk distinguish between old and new objects. In the SOAR design, new
objects are allocated into a separate area of memory. Objects are matured into the old
name space after they have survived a specified amount of time or have met other cri-
teria. We anticipate that this scheme will provide efficient access to new objects, ease
storage reclamation, and preserve locality in the old object space [Unga83h].

Everything in the Smalltalk-80 system is viewed as an object, including integers,
blocks of compiled code, and activation records. The formal definition of the virtual
machine treats all objects uniformly. In practice, large performance gains may be
achieved by giving special treatment to activation records [Bade82], [Deut82a]. Conse-
quently, activation records are assumed to be part of the internal data of the virtual
machine rather than objects.

The work presented in this paper concentrates on the “old object” memory, that
separately-managed portion of the virtual space that contains mature, relatively
unchanging objects. References to new objects, procedure activation records, the display
bitmap, and the virtual machine's internal memory are ignored. We also ignore refer-
ences made only for garbage collection, since they depend on the storage reclamation
strategy. The scheme used at Berkeley confines most of the garbage collection activity
to the ‘‘new’ area.

In most Smalltalk implementations, an object-oriented pointer, or OOP, accesses an
object indirectly through an object table. Typically, Smalltalk interpreters record other
information about ar object, such as its size and class, in either the object table entry or
a header within the object itself. The BS interpreter has a paged object table with an
entry for each object. Our paging simulations did not consider references made to the
object table entries since the design for SOAR does not include an object table. Instead,
the SOAR virtual address of an object serves as its OOP. A header at the beginning of
each object indicates its size and class, among other information used by the sysiem.
Thus, a data object in SOAR will be sixteen bytes longer than its representation in the
interpreter instrumented for this project. Appendix A discusses the results of experi-
ments that model the current design for the SOAR object memory.

3. Methodology

The first goal of this study was to measure the improvement in paging performance
attainable by restructuring the object memory. Tke second was to estimate the amount
of physical memory needed in order to run a personal computer at a given performance
level. Data about page fault rates and the distribution of page faults over time were
gathered for these purposes. A mechanism for repeatable experiments allows us to com-
pare these statistics for different restructuring schemes.



The input script facility

Berkeley Smalltalk provides an input script mechanism for performing repeatable
experiments. During an interactive session, the BS interpreter creates a script by record-
ing each input event in a file before passing it to the Smalltalk input subsystem. The
record describes the input event and indicates the virtual time at which it was received.
Because Smalltalk has a graphical user interface, the input events include mouse coordi-
nates and button pushes as well as keystrokes. During an expenment, BS extracts input
events from the script file at the indicated virtual times and passes them to the
Smalitalk input routines. All of the BS virtual machine code is exercised exactly as it is
during normal operation except for the portions that specifically handle interactive
input. The Smalltalk applications and system code cannot distinguish between interac-
tive input and input from a script file. Scripts contain enough input and synchroniza-
tion information that playbacks can reproduce the original sequence of events exactly.

Because BS implements the Smalltalk-80 virtual machine in a higher-level language,
it is easy to trace arbitrary internal events and insert code to obtain measurements or
perform simulations. In combination, the script facility and event tracing are used to
repeat experiments with different parameters or implementation strategies. An alterna-
tive would have been to drive simulations from detailed execution traces, such as refer-
ence traces. We have found three major advantages to the script approach. First, there
is no noticeable decrease in responsiveness when a script is recorded, so the user interacts
with the system normally. A second quality is flexibility. The same script may be used
for any number of purposes, without having to predict in advance all of the information
that must be traced. Finally, input scripts are brief, and very short files can drive long
experiments. The potential disadvantage of the approach is the higher cost of re-
executing a computation rather than reading a detailed trace. However, the additional
execution time is often small compared with the cost of running the measurement or
simulation code, and we can always generate an execution trace when necessary.

Currently, our scripts rely on bytecodes as a measure of virtual time. They do not
record think time, which is difficult to measure convincingly in our environment. Berke-
ley Smalltalk is run on a time-shared computer, and the virtual to real time ratio varies
greatly. In contrast, our design is for a personal computer that processes Smalltalk at
thirty times the speed of BS. Think time is ignored also because the important issue is
how well a personal computer performs when the user is waiting for a response.

Paging simulations

A script-driven paging simulator embedded in the BS interpreter is the basis of our
measurements of paging behavior. An input script drives the interpreter reproducibly.
The interpreter traces references to objects and passes the references directly to the pag-
ing simulator. Two categories of references are missed because of an address-caching
scheme. First, the interpreter keeps in registers the addresses of a small fixed number of
heavily-used objects, such as the current method. Only the first reference to one of
these objects is traced within a single activation of a procedure or block. A different
block or procedure is entered every ten to fifteen bytecodes on the average, so we miss
only references to objects that have recently been used. Second, only one reference to a
given object is traced during the execution of a single bytecode. Although we miss refer-
ences in these two categories, we believe, for the reasons given above, that our
reference-tracing mechanism maintains satisfactory accuracy. The majority of the
bytecodes executed are instructions which may reference at most one old object, but
more complex bytecodes may reference several objects. In measurements of three
scripts, the average number of traced references to old objects ranged from .58 to .64 per
bytecode executed.

As discussed in Section 2, the paging simulations consider only the “old object”
area of memory. This restriction is implemented by tracing only references to objects in
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the initial image and ignoring references to objects allocated after beginning the script.
No objects are matured into the old area in order to avoid measuring the artifacts of a
maturing algorithm which is not yet tuned. In addition, the current scripts are so short
that only a few objects created during the script mature before the end of the script.

Throughout, we assume an LRU replacement strategy, demand paging, and a page
size of 1024 bytes. When an object is referenced, the entire object is brought into main
memory. A reference to an object that straddles a page boundary may cause more than
one page fault, but this is not likely to occur because of the small average size of
Smalltalk objects. The mean size of objects in the standard BS image is thirty-two
bytes. Fewer than three objects out of one thousand are larger than one page, and no

object occupies more than three pages.

The scripts
Three different input scripts were created for our experiments (Table 2).

Name length #references image #objects #old objects % objects
{bytecodes) to old objects in image used used
enchmark 8.47 million 8.10 million Smalltalk80 15,816 7,110 45
hoose 5.75 million 3.69 million Smalltalk80 15,816 3,647 23
ehearsal  5.61 million 3.31 million Rehearsal 29.469 4,955 17
Table 2

Characteristics of the Input Scripts

The first two use a virtual image distributed by Xerox, described in Table 3. The
memory for this image requires 506 pages when objects are aligned on full-word (4-byte)
boundaries. The third script uses a virtual image of 1,007 pages that contains a large
application. The average size of the objects used in all of the scripts is less than thirty-
five bytes. The small size of the objects in these images reflects Smalltalk’s representa-
tion of each entity as a distinct object. A compiled method object contains the code for
a single procedure. The mean size of compiled methods is less than fifty bytes for all the
code that we have measured. This observation holds for procedures that represent the
style of a variety of programmers, and we suspect that the small size of compiled
method objects is due to Smalltalk’s emphasis on modularity and separate compilation.

Object Class description number % aggregate %
of objects  of objects  size (bytes) of space
CompiledMethod  code and literals 4120 26.1 182126 34.8
Symbol identifier strings 3473 22.0 46288 8.8
Array byte and word arrays 2450 15.5 112292 21.4
String character strings 1540 0.7 39903 7.6
Point x-y coordinates 496 31 3968 0.8
Float floating point 221 1.4 884 0.2
Other 3516 22.2 138706 26.5
Table 3

Classes of Objects in the Smalltalk-80 Image

Smalltalk objects are represented as a sequence of integers and pointers to other
objects. The images used in the paging simulations represent both integers and pointers
as 32-bit words, as does the SOAR architecture. Compiled methods also contain a
sequence of bytecodes. Most bytecodes consist of one eight-bit byte, but some are two
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or three bytes in length. It is expected that the SOAR Smalltalk compiler will generate
native SOAR code. SOAR instructions are all thirty-two bits and do not correspond
exactly to Smalltalk bytecodes. The compiled SOAR code for a procedure will probably
be several times larger than the same procedure compiled into bytecodes. Appendix A
reports some results of experiments that consider the antic:pated code expansion.

Smalltalk still has a small user community, and the principal interest of most
Smalltalk-80 programmers is in developing the Smalltalk-80 environment. We cannot
yet measure how eventual real users will interact with real applications packages and
with the programming environment. Activities were selected for the three scripts by
making guesses based on informal experience with the system and our desire to vary the
tasks. The first script, Benchmark, executes a procedure that evaluates the speed of the
bytecode interpreter [McCa83]. A sequence of editing, compiling, decompiling, searching,
and formatting tasks is performed. A large variety of the system’s facilities are exer-
cised, but there is relatively little interactive input. The second script, Choose, records
an interactive session during which a method is read from a file, edited, tested, compiled,
and saved. The third script, Rehearsal, uses an application called Programming by
Rehearsal, which allows curriculum designers to create graphical, computer-aided
instruction packages {Goul82].

Restructuring schemes

This paper emphasizes the measurement of paging improvement and proposes one
pew restructuring algorithm, the DB grouping described below. In addition, we have
studied two of Stamos’ object grouping schemes, described as F IRSTUSE and DFS
[Stam82]. FIRSTUSE assigns contiguous addresses to objects in the order of first refer-
ence. A FIRSTUSE reorganization must therefore be performed individually for each
script. FIRSTUSE causes a minimum of page faults under demand-paging when there is
sufficient memory to hold all objects used. It is the algorithm that gives the best results
among the schemes we analyzed, but it is unrealizable because it depends on forek-
nowledge about the order in which objects will be referenced. The grouping called RAN-
DOM was produced by assigning objects to virtual addresses in random order. We use it
as a worst-case bound on paging performance. The other scheme proposed by Stamos,
DFS, uses static information contained within the objects as a basis for restructuriag.
Smalltalk objects contain pointers to other objects, and we apply a depth-first search
algorithm to visit all objects accessible within the image, since Stamos argues that a
depth-first reorganization of the image improves paging behavior.

The DFS reorganization uses only information which is available statically. How-
ever, procedure call destinations are determined at runtime in Smalltalk, and a static
apalysis fails to show the dynamic relationship between procedure objects. The DB
(dynamic binding) scheme augments the DFS strategy by considering information about
the run-time binding of procedures to calls. In the SOAR design, the system maintains
information about the procedure most recently associated with each call. To determine
a DB grouping, we ran a script so that dypamic relationships could be observed. For
every procedure we generated a list of procedures invoked from each calling location.
Given this information, we perform a depth-first search of the object memory. When
the search reaches a procedure object, the algorithm searches its list of called procedures
as well as the object pointers contained within it.

A final grouping is the one currently used by BS. The image used for the scripts

Benchmark and Choose was created by a depth-first search of the object space, so for
these scripts BS and DFS groupings are the same. The Rehearsal virtual image has been
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heavily changed over time, so the BS and DFS groupings differ. In a sense, the Rekear-
sal image demonstrates the degradation of of an iuitial restructuring due to the dynamic
allocation and deallocation of objects. The results for the Rehearsal script with the BS
and DFS groupings show the difference in performance before and after restructuring the
current object memory.

4. Results of paging simulations

The number of page faults versus memory size is shown in Figure 2 for all scripts
and object memory organizations. Main memory is assumed to be empty at the start of
the simulations. Page faults taken during the first 200,000 bytecodes, while the system
is initialized, are not counted in the results plotted in Figure 2. The page fault rate is
greater for the Benchmark script than for Choose across all memory sizes because the
benchmarks deliberately exercise a larger portion of the system. In general, the DFS and
BS reorganizations give lower page fault rates than a random organization. The DB
organization, which uses a limited amount of dynamically-acquired information, shows a
small but consistent improvement over the static DFS grouping, as illustrated in Figure
2b. Figure 2c shows the improvement gained by applying DFS to the initial BS
configuration of the Rehearsal image. Over the range of memory sizes from 275 to 600
pages, DFS requires fewer than half as many page faults as BS.
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Figure 2a.
Benchmark script, number of page faults vs. memory size.
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Intuitively, the operating system cf a personal computer must avoid pausing for
intervals of time that are noticeable to the user. The only statistic presented in Figure 2
is the total number of page faults over the duration of an entire script. This informa-
tion is inadequate for estimatirg the potential for noticeable pauses because it averages
the page faults over the length of a script. Further information is obtained by examin-
ing the distribution of page faults over time. It is necessary to translate the intuitive
potion of “minimizing pauses” into performance indices that consider the clustering of
page faults in time and distinguish between steady-state and worst-case behavior. Tran-
sitions between program phases and high-level tasks [Denn75) [Madi76] are responsible
for a large proportion of the page faults, represented by the spikes in Figure 3. This
graph shows the number of page faults in each interval of 100,000 bytecodes for the
Choose script with the DFS organization. On a Dorado, this is the equivalent of one-
third to one-fifth of a second.
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Figure 3.

Page faults in each interval.
Choose script, DFS organization, memory size = 350 pages.
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The user will notice fewer pauses if the virtual memory system reduces the number
of transitions that initiate page faults by keeping more localities in main memory. A
user who begins a large task for the first time in a long while should expect a pause
before it starts up. On the other hand, a user who is frequently switching between edit-
ing, Smalltalk’s rapid incremental compilation, and program testing deserves responses
for each activity without interruptions.

To quantify this, we distinguish between the snstsal fault for a page and repeated
faults after the page has been removed from main memory. Figure 4 is based on the
same data as the previous graph. The upper line indicates the total of repeated and sni-
tial page faults in each interval. The lower line plots tnitsal page faults only. The black
area between the two lines represents repeated page faults.

Object grouping strategies affect the amount of both total and repeated page faults.
Figures 5a and 5b compare the DFS and BS reorganizations for the Rehearsal trace with
500 pages of old object memory. The upper line shows the number of page faults per
interval for BS, and the black area below the lower line represents DFS. Figure 5a
shows all page faults, whereas Figure 5b considers only repeated page faults. At this
memory size, DFS represents an improvement over BS because it reduces especially the
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Figure 4.

Initial and repeated page faults.
Choose script, DFS organizztion, memory size == 350 pages.
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number of repeated page faults. Holding constant the object grouping and replacement
strategies, we can reduce the occurrence of repeated page faults by increasing the main

memory size so that fewer objects are purged from main memory.

An extension of this idea considers simultaneously the effects of different restructur-
ing strategies and memory sizes. In our approach, a threshold value specifies the number
of page faults per interval that can be processed without introducing pauses. Among the
factors affecting this threshold are the processor speed, the disk speed, and the time
required to process a page fault. A paging simulation determines the number of accept-
able intervals for which the number of page faults is no greater than a specified thres-
hold. Figure 6 shows the percentage of acceptable intervals observed for different thres-
hold values while running the Rehearsal script with the DFS reorganization. The value
of the threshold is shown as a subscript and ranges from zero to five page faults. As the
memory size increases, the percentage of acceptable intervals also increases.

%acceptable intervals
m T T T
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Figure 8.
Effect of threshold value, Rehearsal script.

The percentage of acceptable intervals may be compared for different combinations
of memory size and object memory organization. Figures 7a and 7b show results for the
Choose and Rehearsal scripts, respectively. Each line is labeled by the object organiza-
tion scheme and subscripted by the threshold. Random placement is not adequate
unless all, or nearly all, of the object memory fits in main memory simultaneously. A
random organization requires that many pages be brought into main memory at the
beginning of the script. If the memory is so large that pages are seldom replaced, few
page faults occur during the remainder of the script. In Figure 7b, we again see the
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Comparison of restructuring schemes at different threshold values.
Choose script, total page faults.
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improvement of DFS over BS for the Rehearsal script, since the knee of the DFS curves
come at memory sizes of about 600 pages, in contrast to 700 for BS.

In Figures 7a and 7b, no curve reaches one hundred percent. Memory is initially
empty in the paging simulations; thus, some initial page faults are inevitable. Figures 8a
and 8b present the same graphs for repeated page faults only. With a main memory
large enough to contain about 70% of the old object space, the Choose script (Figure 8a)
causes no more than three repeated page faults in any interval. For the Rehearsal script
and the DFS grouping, similar performance is achieved when main memory holds about
80% of the image. Seventy percent of the object memory size is needed by the Rehear-
sal script to perform at the same level with the BS organization.

The threshold criterion presents the results of the simulations in a way that allows
the system designer to understand the effects of memory size and object grouping. It
helps the designer figure out how far past the knee of the curves in Figure 2 the memory
size must be in order to obtain a desired level of performance.

Complete listings of the simulation results appear in an appendix to the MS project
report [Blau83].

5. Conclusions and directions for future research

We expect consistently good response from a high-performance personal computer.
Each page fault delays execution; when page faults occur in clusters, the pauses become
noticeable. We have analyzed the clustering of page faults over time to reveal these
peaks of paging activity. Our simulations indicate that program restructuring can
decrease both the average page fault rate and the number of noticeable pauses. We
believe that a paging virtual memory system that exploits program restructuring can
achieve high performance for an object-oriented personal computer.

The object memories and software that we studied were developed at Xerox ou
Smalltalk-80 systems that do not provide enough virtual address space. It will be impor-
tant to measure how these results scale when larger object spaces are available to users.
The Rehearsal script uses an image that is approximately twice as large as the image
used by the Choose script. Comparing results for the two scripts suggests that the necd
for physical memory may grow more slowly than the increase in virtual memory size.
According to the analysis in the previous section, we would like at least 350 pages of
main memory for the Choose script, enough to hold 69% of the virtual pages. Compar-
able performance is found for the Rehearsal script with 600 pages of memory, or 59% of
the image. The largest existing object memories are not much larger than one mega-
byte, and measurements of larger object memories are needed before stronger conclusions
can be drawn. Because larger virtual memories have never been available to Smalltalk-
80 programmers, there is no experience to suggest what the contents of those memories
will be nor bow they will be used.

The simulation results indicate that the grouping of objects on a page must reflect
referencing patterns in order for paging to work successfully. Depth-first search of the
object space is one grouping strategy that improves the locality of reference, but other
algorithms should be explored. Since a purely static analysis of the object memory
inadequately characterizes the dynamic relationships among procedures, it seems particu-
larly important to explore schemes that consider information obtained by monitoring
dynamic behavior. Our dynamic procedure binding algorithm that considers a limited
amount of dynamic information improved on depth-first search by about ten to fifteen
percent in our experiments. Further improvements might be obtained by refining this
algorithm or considering other dynamically observed information.
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The simulations measured improvements due to an initial static restructuring of the
object memory perfcrmed before the beginning of the script. In a system supperting real
applications, restructuring must be robust under dynamic changes to the “old object”
area of memory. Further data are needed abou. the degradation of statically-
restructured object memories. The BS organization for the Rehearsal image is an exam-
ple of an object memory whose organization deteriorated as changes were made to the
image. The improvement achieved by performing a DFS reorganization demonstrates
the need to periodically regroup objects. Monitoring systems over the course of hours or
days is one approach to estimating how frequently restructuring must be applied to the
object memory. The Smalltalk group at Berkeley plans to develop a reorganization and
garbage collection procedure that can be performed when a personal computer is not
being used interactively, for example at night.

Another topic for research involves the separation of old and new objects. Only a
small percentage of dynamically-allocated objects ever enter the tiold” address space.
Algorithms that exercise some care in assigning virtual addresses to mature objects may
belp maintain locality in the object memory, and such schemes should be explored.
Think time or the time spent waiting for objects to be paged in from disk might be used
to detect dypamic change in the object memory or to apply a restructuring strategy.
Large-scale changes to the system will probably require explicit reorganization.
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Appendix A
Increases in Object Sizes on SOAR

Two factors will increase the size of objects in the SOAR Smalitalk system. First, every object
will have a four-word (sixteen-byte) header that our paging simulations ignored. Second, Smalltalk
methods will be compiled into SOAR instructions rather than bytecodes, and compiled method
objects are expected to be several times larger. A pessimistic upper bound on the size of SOAR code
is twelve times the length of the corresponding bytecodes. This bound was derived by estimating the
pumber of SOAR instructions required to translate each category of bytecodes into SOAR code. The
worst case is for a send, where the code expansion factor will be twelve. Many bytecodes, however,
correspond to 3 single SOAR instruction. For other bytecodes, such as those which push constants
onto the evaluation stack, it may not be necessary to generate any SOAR code. Work on a SOAR
Smalltalk compiler is in progress. Although it is clear that the real code expansion factor will be
much smaller than twelve, we do not yet have a good estimate.

Compiled method objects contain both code and data. The size of the data portion is expected
to be approximately the same in SOAR as it is in BS. In estimating the effects of code expansion, our
algorithm multiplies the entire size of the compiled method by the expansion factor. This gives an
inflated size estimate, because we expand data as well as code.

Some size characteristics of the objects used in the Choose script are given in the table below.

Number of old objects referenced 3647
Number of compiled methods referenced 1536

% compiled methods in objects referenced 42%
Aggregate size of old objects referenced 184,344 bytes
Aggregate size of compiled methods referenced 62,020 bytes
% of space taken by compiled methods 34%

The space consumed by the object table is not included in the sizes given above. Each object requires
a sixteen-byte entry in a paged object table. The object table is implemented as an array; it has slots
for the maximum number of objects that can exist. In the best case, the object table entries for all of
the objects used in the script are compacted into as few pages as possible. These entries then would
consume fifty-seven pages, or nearly one-third as much space as the objects themselves. If the entries
are scattered more randomly in a larger object table, the amount of main memory devoted to object
table pages could be quite large and depends on the locality of reference within the object table.

Estimates for SOAR

If we multiply the size of all compiled methods by four and then add sixteen bytes of header to
the size of all objects, the objects used in the Choose script will require 414,168 bytes instead of
184,344. Thus, with a code expansion factor of four, we can anticipate a peed for 200 to 250%
increase in the amount of memory needed to hold all of the objects used by this script. Similarly, a
code expansion factor of eight gives a projection of 662,308 bytes of objects, or about 350 to 400% of
the current size.

A paging simulation was performed assuming a 400% code expansion and sixteen-byte object
beaders. The Choose script was run using the DB (dynamic procedure binding) reorganization both
with the current object sizes and the estimated SOAR sizes. With the current sizes, there were no
repeated page faults for physical memoties with at least 400 pages. A similar level of performance
was obtained for the SOAR sizes when 900 pages were available. The results of the s:mulation agree
with the static estimates given above, which predicted a need for a 250% increase in memory size.

In conclusion, it is reasonable to expect that the working set size for SOAR will increase by a
factor less than the average code expansion. It remains for a working compiler to show what the real
code expansion factor will be.





