Inverse Currying Transformation on Attribute
Grammars

Reinhard Wilhelm?*

Department of Electrical Engineering and Computer Science
University of California, Berkeley
Berkeley, CA 94720

ABSTRACT

Inverse currying transformation of an attribute grammar
moves a context condition to places in the grammar where the vio-
lation of the condition can be detected as soon as the semantic
information used in the condition is cornputed. It thereby takes
into account the evaluation order chosen for the attribute gram-
mar. Inverse currying transformations can be used to enhance
context sensitive parsing using predicates on attributes, to elim-
inate sources of backtrack when parsing according to ambiguous
grammars, and to facilitate semantics-supported error correction.

1. Motivation

Attribute grammars have found wide acceptance as a means to describe the
static semantics of programming languages. Semantic attributes are used to
carry scope, type and other declarative information; predicates on attribute
occurrences in productions rule out programs, which are syntactically correct,
but semantically meaningless, such as programs with missing or double declara-
tions, type inconsistencies, or violations of parameter passing conventions.
Seen formally, these "context conditions” restrict the language as defined by the
context-free grammar to a subset satisfying semantic constraints of the

language.
Example:
The production
ASSIGNMENT » VAR:=EXPR
might have the context condition
type (VAR)=type (EXPR)

or some less restrictive condition if the language allows automatic conversions.
Hereby, it is assumed that synthesized attributes type are associated with the
nonterminals in the VAR- and EXPR-subgrammars indicating the type of the

%on leave from: Universitat des Saarlandes, Fachbereich 10-Informatik, D-6800 Saarbrcken,
Fed. Rep. of Germany. Research reported herein was supported by a travel grant of the
Deutsche Forschungsgemeinschaft and by grant MCS80-05144 from the National Science
Foundation.

-2-

variable or the expression. There are other ways to describe the same context
condition; but this seems to be the "natural” one. In particular, it does not con-
tain any assumnption about the order in which attributes are evaluated, i.e. the
order in which the VAR- and EXPR-subtrees are traversed by the attribute
evaluator.

If the evaluation order is known, e.g. left-to-right depth-first, one could
transform the attribute grammar so that the VAR can tell the EXPR what types it
may legally have. This might enhance the localization of semantic errors, as it
allows for the detection of the smallest subexpression that causes the expres-
sion to have the wrong type.

Other interesting applications for this transformation lie in the area of context-
sensitive parsing [JMJ80] [WaJ80] in particular when working with ambiguous
grammars. The Graham-Glanville code generation scheme [GIG78] [Hen83]
works with an LR-parser generated from a syntactically ambiguous grammar.
Shift-reduce conflicts are resolved in favour of shifts to generate "larger”
instructions; reduce-reduce conflicts are resolved by semantic constraints
and/or cost criteria. A semantic constraint whose violation is discovered only
after some reductions have been made and the corresponding instructions
issued requires backup to find some other sequence of instructions previously
ruled out in favour of a presumably better sequence.

Example:

The following productions describe two addressing modes and three instructions
for some machine: »

INDEX -+ + REG * const REG
condition: value{const) € {1,2,4,8}
size(INDEX) := value(const)

ADDRESS ~ INDEX
size(ADDRESS) := size(INDEX)

ADDRESS - REG

RVAL - indir ADDRESS
condition: size(indir) = size(ADDRESS)

REG - *REG REG
REG - + REG REG

REG - const

When parsing the intermediate program representation
indir + REG * const REG

any reductions using the last two productions would be rejected in favour of the
"larger” production given first, if the size of the const is one out $1,2,4,8]. This
would reduce the string to

indir INDEX
But backup is necessary, if after reduction to
indir ADDRESS

-3-

the size condition of the production for RVAL is discovered to be violated.
Again, as in the previous example, the size information at the indir node could
be passed down the ADDRESS tree to discover the violation of the size condition
upon shift instead of upon reduction.

The transformation of attribute grammars described in this paper would move
semantic constraints to places in the grammar where their violation could be
observed earlier. This eliminates sources of backup.

The transformation can also be used to exploit semantic information for the
correction of syntax errors [Sch82]. The transformation was first used in
[Wil79] to show different attribute associations with with different properties for
the same language. We call the transformation inverse currying because of the
related transformation in combinatory logic, which transforms a function into a
functional by pulling out one of its argument domains. This was named after the
logician Haskell Curry.

2. Terminology and Notation

An attribute grammar consists of a context-free grammar, called its underlying
context-free grammar, an association of attributes with terminal and nontermi-
nal symbols, and an extension of productions by semantic rules and context-
conditions. The set A(X) of attributes associated with a a symbol X is the union
of the disjoint sets I(X) and S(X) of inherited and synthesized attributes. Both
an attribute @ of symbol X and its occurrences will be denoted by a(X).
Occurrences of inherited attributes on the left side of a production n and of syn-
thesized attributes on the right side of a production are called importing attri-
bute occurrences, since at an instance of n in a syntax tree their instances
import values from the context of that instance of the production. All other
occurrences of attributes in productions are called exporting. For any exporting
occurrence of an attribute b in a production n: Xg » X, - - X;, there must be
exactly one semantic rule

b(X;) := g(ay(X), - a(Xy))

determining how values for this attribute occurrence are computed. It is gen-
erally assumed that the arguments of g are either importing occurrences of
attributes or constants. Also associated with a production may be contezt-
conditions p(a(X;), - - .2(X;,)). p being a k-ary boolean predicate, describ-
ing semnantic constraints on the language defined by the underlying context-free
grammar. We also assume that the arguments to p are all importing
occurrences. Fig. 1 gives a graphical representation of an attributed produc-
tion. Inherited attributes are represented by boxes to the left of symbol
occurrences, synthesized attributes to the right. Only one semantic rule is dep-
icted by function symbol g with arrows indicating flow from arguments and to
the target. A context-condition is written below the production. Heavy arrows
pointing to importing and heavy arrows pointing from exporting occurrences
indicate the interface to the upper and lower context.

The transformation described in this paper involves manipulation of boolean
predicates used as context-conditions and of functions used in semantic rules.

condition: p{a(Xo).b(X1).b (X))

Fig. 1 An attributed production

Given a predicate
P A X XA o) true |, falsg | .
If there exists 1<r <k and nontrivial functions

T A% XAy » 27,

ff:Alx---xA,._l-ozA"‘
such that
play - by o b)) = true iT b;€fP (@, - - - .0 y) for all j: T<j<k
then we call the fP's inverse curried functions for the predicate p.
We call these functions nontrivial if they are not the constant function ¢.

Suppose some arguments to a predicate p are given. The inverse curried fune-
tions for p compute for all the other argument positions the set of arguments
that together with the given arguments will satisfy the predicate.

Given a function
g:AX - X4 B
If there exist 1 < r <k and nontrivial functions

FE:2BxAX - %Ay > 20

FE:2BxA;x - A » o
such that for any b € B:
g(ay. - .8p_1Cr,t 0 ,Ck) €D
ift

-5-

c;eff(ba;, o) foraljr<j=<k.

then we call the functions f{ inverse curried functions for the function g.

In the following we will always use letters g,h for functions in general and letters
p.q,... for boolean predicates. Hence it will always be clear how the actual cur-
ried inverse functions are constructed.

In general, the inverse curried functions might not be computable, and in case
they are, it might be impractical to compute or represent them. But functions
used in attribute grammars are mostly total functions on small domains.

3. The Transformation

The transformation is based on a left-to-right depth-first evaluation order as
required for the evaluation of L-attributed grammars [LRS74], i.e. grammars
with no right-to-left attribute dependencies. It removes context-conditions
replacing them by functions computing the "legal domains"” of attribute values
guaranteeing the satisfaction of the removed conditions, functions propagating
these domains down the tree, and membership tests at those places where attri-
bute values are computed.

There will be three steps constituting this transformation:

Steps of type (1) remove a context condition from a production, associate new
inherited (domain) attributes with nonterminals and semantic rules initializing
these domain attributes with the production.

Steps of type (2) and (3) handle any such newly introduced domain attribute.
They thus have two formal parameters, a synthesized attribute b and the
corresponding inherited domain attribute i_b. (2) introduces functions pro-
pagating domains thereby inverting semantic functions wherever possible. If
there is a context condition involving the attribute b under consideration, the
combined requirements on the legal domains for b are propagated. If domains
cannot be propagated, new context conditions are introduced into productions.
They check whether an attribute computed in the production or associated with
a terminal by the scanner is an element of the corresponding domain attribute.
(3) takes care of occurrences of domain attributes without initialization.

The production n, which we will consider, syntactically always looks like
n: Xo"XIXg‘ ' Xm.
with the X; being terminal or nonterminal symbols.

(1) Assume that connected with production n: Xp » X, -+ - X thereis a con-
text condition

p(al(Xil)),....ak(X}b)), i €§0,...m]for 1< j <k

To avoid some formal trouble we assume that i; <44, for 1<j<k-11.

Let domain{a;)=4; for 1<j<k. Thus p is a predicate

+ This assumption reflects the left-to-right evaluation order, as the inverse curried functions
are defined.

-8-

p:AX: - XA - {true,false]. If there exist inverse curried functions
fP.....fR for p, where we choose 7 minimal with i #1i_; % we
transform production n in the following way:

s delete p from production n;

« associate inherited (domain-) attributes i_a,, - - - ,i_a with the nonter-
minals among the X;, - - - Xy,

« associate semantic rules i_a,-(X,;,) = fPa(X,), o ara(X,) for
r<j<k with productionn, if X; is a nonterminal;

» associate conditions a,-(Xij)eff(al(X,-l), coagey(Xy) withn, if X isa
terminal.

When a syntax tree is decorated according to the new production n, any
instance of an attribute i_a; at an instance of n will contain all legal values for
the corresponding instance of a; , given values for the instances of attributes

@, -

* o Opey .

The above transformation covers the general case. In practice, there are only a
few realistic cases. The most common of those are depicted in figures 1.1 - 1.5.

S R EEE ™
o

w]

condition: p(a(Y))
Fig. 1.1 A condition only depending on the syntactic context

ing a minimal 7 corresponds to computing domains for attribute occurrences as far

left in a right side as possible; the condition iy #%,_) prevents the introduction of a depen-
dency of an inherited domain attribute on a synthesized attribute at the same symbol oc-
currence. .

condition: p(a(Y).b(Z))

Fig. 1.2 Another condition only depending on the syntactic context

condition: p(a(Y).b(Z))

Fig. 1.3 Introducing left-to-right information flow

The legal domains must be propagated down the trees. Step (2) makes the
necessary changes to the grammar.

(2) Assume that there is a synthesized attribute b and a newly introduced
inherited domain attribute i_b associated with Xp, and a semantic rule
b(Xo) := g(ay(X). - - - .a (X)) associated with production n. Assume as

in (1) that i;<i;,, for 1<j<k—1.

(2.1)1f inverse curried functions f#, - - - ,f# exist (r minimal with 4, #%,_,), then
we can propagate legal attribute domains by the following changes to pro-
duction n..

e associate inherited attributes i_a; with the nonterminals among the
XXy

» associate semantic rules 'i_a,(X‘-j) = fE_b (Xo)ai (X)), - - -1 ,))
for r<j<k with production n, if is a nonterminal and 1%; #0;

s associate a condition a,-(}c;))efj’('i_b (X0).a1(X%,), - - - a1 (X, _,)) with n, if

condition: p(c{X).a(Y).b(2Z))

Fig. 1.4 Left-to-right and top down information flow

o
A,___j/:,x

y O O z Y ¢
a c b a c

condition: p(a(Y),c(t).b(Z)) condition: ¢(t) € 13 (a(Y)

Fig. 1.5 Testing an attribute of a terminal symbol

X,,j is a terminal or i; =0.
The most frequent examples of such changes are depicted in figures 2.1 - 2.4.

a b a b

i-b i-b
0 x mnf

condition: a(X) € f{(i_b(X))

Fig. 2.1 Introducing a membership test (here equivalent to g(a(X)) € i_b(X})

condition: a () € £{(i_b(X))

Fig. 2.2 Introducing a membership test for a terminal attribute

i—b b i—b b
X
!

id

condition: p(a(Y).b(Z))
Fig. 2.4 Left-to-right and top down information flow
(2.2)If no inverse curried functions exist, production n is changed as follows:

« Associate condition g(a,(Xi,), - '3 (X,))€i_b(Xo) with production n
(ct. Fig. 2.5).

a a i~a

-10-

a
x [

g

TN AN

condition: g{ ...) € i_a(X)

Fig. 2.5 No inverse curried function

(2.3)Another special case is the following:

(3

b(Xy) does not depend on any attribute occurrences but only on con-

stants, i.e. b(Xp):=g(c, - .ck). In this case we associate condition
g(ey - -+ .ex)€i_b(Xe) with n (cf. Fig. 2.6).
i—a a i_a a

uf: x

g(e) g(c)

1 1
\ t
| [l
{ |
1 1
fl i
| |
i 1
1 §
) |

condition: g(c) € i_a(X)

Fig. 2.8 Rule depending only on a constant

Steps (1) and (2) applied to the same production in any order may intro-
duce several semantic rules 1_b(X;):=fP(--) , i_b(Xj):=f9(--)
and i_b(X;):=f"(--) for the same occurrence of attribute i_b of X;. If
this is the case, then replace them by the semantic rule

i_6(X):=P(IS¢)N) (of. Fig. 2.7).

If there are some exporting occurrences of domain attribute i_b without a
semantic rule computing them, after all the above changes are made, then
associate i_b{() := domain(b) with the productions containing these
occurrences. This may happen if some exporting occurrences of an attri-
bute were involved in the transformation, but others were not.

-11 -

i...
[« 9
[V

N
~

~
— e = — — = oy
.
.

’
.
’
I
.

vy

=

 condition: p(c(W),b(Z))

Fig. 2.7 Combined effect of a "global” condition (its domain in i-d)

and a "local” condition (p)

4. Examples

Some productions from a grammar describing type calculation and type con-
straints for assignments, arithmetic and boolean expressions suflice to demon-
strate most of the interesting cases occurring in inverse currying transforma-
tions. Different occurrences of the same symbol in one production are num-
bered from left to right starting with 1.

-12-

ASSIGNMENT - TARGET := SOURCE
condition: type(TARGET) = type(SOURCE)

Step (1), special case from Fig. 1.3 introduces
i_type(SOURCE) := {type(TARGET)]

SOURCE - RELATION
type(SOURCE) := bool

Step (2.3) (Fig. 2.8) introduces
condition: bool € i_type(SOURCE)

SOURCE - EXPR
type(SOURCE) := type(EXPR)

Step (2), special case from Fig. 2.3, introduces
i__type(EXPR) := i__type(SOURCE)

EXPR - EXPR + TERM
condition: type(EXPRg) € {int,real} and
type(TERM) € {int,realj and
type(EXPRg) = type(TERM)

Step (2), special case from Fig. 2.7, introduces
i type(EXPRg) := i_type(EXPR,;)
i_type(TERM) := i_type(EXPR;) N {type(EXPRz)} N {int,real]

TERM -» TERM - FACTOR
condition: type(TERM;) = int and
type(FACTOR) = int
type(TERM,) := int

Steps (1) and (2), special cases from figures 1.2 and 2.6, introduce
i_type(TERM,) := {int}
i_type(FACTOR) := {int]
condition: int € i_ type(TERM,)

FACTOR - id
type(FACTOR) := type_ lookup(symbol(id))

Step (2),special case from Fig. 2.5, introduces
condition: type_lookup(symbol(id)) € i_type(FACTOR)

5. Invariance of the language under the grammar transformation

Let G, be an attribute grammar, G, the attribute grammar resulting form the
inverse currying transformation applied to G,. Since the transformation does
not change the syntactic part of productions, both G; and Gz have the same
underlying context-free grammar G. Let us define the language described by
context-free grammar G, L{G), as the set of its syntax trees. The language of
attribute grammar G , L(G), is then defined as the set of trees t € L(G), such
that all context-conditions of G; are satisfied when decorating t according to G.
The main result of this section states that G; and Gp describe the same

-13-

language, i.e. the inverse currying transformation leaves the defined language
invariant. This is the claim of Theorem 1. Theorem 2 states that the transfor-
mation is compatible with a left-to-right evaluation strategy.

Theorem 1: 1(G,) = L (Gg). i.e. the inverse currying transformation leaves the
defined language invariant.

Proof:

Let us consider a syntax tree ¢ of the context-free grammar underlying both G,
and Gp. let £, (tz) be the resulting attributed tree after decoration of £ accord-

ing to G, (Gz).
We prove the theorem by showing that both t € L (G;) and t € L{Gg) are
equivalent to the following claim:

(B) For all nonterminal symbols X and for all b € S(X) (in AG G,):
If the transformation introduced an inherited attribute i_b for X {(in AG Gp),
then the value of any instance of b in £, is an element of the value of the
corresponding instance of i_b in t; (cf. Fig. 3) and any attribute of a termi-
nal involved in an introduced membership test satisfies it.

Fig. 3

The proof of ‘(B) <=t € L(G;)’ uses top down tree induction on £; and £, the
proof of '(B) <=t € L{Gz)’ uses bottom up tree induction on ¢, and 3.

Proof of *(B) <=>t € L(Gy)":

I=>'

It has to be shown that all instances of context-conditions are satisfied in ¢;.

Select an arbitrary instance of production n: X, + X, - - X, with context-
condition p(a,(X;,), - - .@(X,)) in G, Transformation step (1) introduces
inherited attributes i_a,, : - * ,i—a; for the nonterminals among the X"1' SR, O
resp., and semantic rules i_a;(X,) := fP(a(X,). - - - .ara(Xy). T<i<k.

(B) states that the values of the a;’s in ¢, (at this instance of the production) are
members of the values of the i_aj's in ¢, (at the corresponding instance of the
production) and that the terminal attributes satisfy the required membership
tests in £,. From the construction of the fF and these membership tests it fol-
lows that the context-condition p is satisfied at this instance of the production.

-14 -

‘<=' top down tree induction

Select an instance of production n: Xp - X, - - - X in £. Assume there is a con-
dition p(a,(X;,). - - - .2 (X,)) associated with n, which is satisfled according to
the assumption t € L(G;). Transformation step (1) introduced inherited attri-
butes i_ga,, - - - ,i__a; for the nonterminals among the Xi'_, ces .X;, and semantic
rules i_.aj(xi,) = f(a (%), - - e (X) with n.

Since p(a,{(X;,), - - 4 (X;,))=true it follows from the construction of the IPs
that @;€i_a; (r<jsk). where &; is the value of the regarded instance of g; in
t,, and i_a; is the value of the regarded instance of i_ajin ta.

The claim is trivially true if an instance of the new inherited attribute i_b was
initialized with the full domain of the corresponding synthesized attribute b.

This finishes the proof of the induction base.

For the induction step we regard an instance of nonterminal Xpin t.

Let Xp have (in G,) a synthesized attribute b, and (in Gg) an inherited attribute
i_b introduced by the inverse currying transformation. The induction
hypothesis says that the value b of b at this instance of Xg in t; is a member of
the value 1_b of i_b at the corresponding instance of Xp in £z. It has to be
shown that the same holds for all pairs (c,i_c) of attributes at all children of this
instance of Xg related to each other by the transformation of section 2, where b
depends on ¢ {and thus i_c depends on i_b). Since b depends on ¢, there must
be a semantic function b{Xp) := g(a.(X:), - - - .0, (X,)) belonging to the produc-
tion applied at this node in the tree. If g has inverse curried functions, then
transformation step (2.1) has introduced inherited attributesi_a,, - - - ,i_a; for
the nonterminals among the X, ' ' .X, and semantic rules

i_a.j(ng) = fPA_b(Xo)a (X)), - - - e Xy,) (r<j=<k). By definition of the f7
using the induction hypothesis it follows that the values @; of the instances of
aj(X‘,) are members of the values i_a; of the instances of the i_a;(X;)) for all j
rr<j)sk.

The claim still holds if another context-condition interferes with the downwards
propagation of a domain, since this condition must also be satisfied, and since
the conjunction of the two conditions translates into the intersection of the
domains of legal values.

The proof of ‘(B) <=> t € L{Gz)’ is omitted since it is largely analogous to the
first part.

Theorem 2: If G, is L-attributed, then G; is l-attributed.

Proof:

Transformation step (1) replaced a context-condition p(a,(X;,). - - - .ax (X)) by
a set of semantic rules i_a.,—(Xij) = fPadX,), - (X)) T<isk.

The assumptions 4;<i;,, for 1sl<k -1 and %4 #%._, imply ;>4 for all 1<i<r-1 and
r<j<k.

This means that all the newly introduced domain attributes
i_a (X)), - .i_a(X,) only depend on inherited attributes of Xp and on syn-
thesized attributes of X‘l (i;#0) to the left of any of the X, -~ X, Hence if

there were no right-to-left dependences in the production before it was
transformed, there will be none afterwards.

-15-

Transformation step (2) is handled with exactly the same argument.

Step (3) introduces only attribute initializations by constants which introduce
no dependencies at all.

Altogether this proves the claim.

The following more general statement could be proved similarly:

Given a simple multi-pass attribute grammar, i.e. attribute evaluation can be
done in a fixed number of left-to-right or alternating passes, and the instances of
all occurrences of an attribute of a symbol are evaluated in the same pass. If
the inverse currying transformation is applied to the attributes of left-to-right
passes, it will not change the evaluation scheme for the grammar. One could
also define an analogous transformation for right-to-left evaluation and apply it
to right-to-left passes obtaining an analogous invariance result.

8. Practicality considerations

There are two questions concerning the practicality of the transformation. The
first question is, who actually performs the transformation? Since the functions
used in semantic rules are user supplied (function) procedures in some pro-
gramming language, it is him who has to supply the inverse curried versions,
too. But in order to estimate the amount of additional work thereby required,
one must take into consideration, that only the functions have to be supplied,
not the semantic rules in which they occur. Hence, the identity function on
some attribute domain has to be inverted and not its many occurrences in the
grammar.

The second question concerns the size growth of the attribute grammar. Experi-
ence with attribute grammars shows that very often a context condition "con-
sumes’' an attribute, i.e. an attribute value is computed somewhere in the tree
and transferred to the instance of the production only for the purpose of con-
text checking. This attribute may become "dead”, when the context condition is
removed from the grammar. In this case the attribute and the semantic rules
computing and transferring it can be deleted from the grammar after the
transformation has been applied.

7. Conclusion

An equivalence transformation on attribute grammars was defined. It allows the
describer to separate between the language he wants to define and the
behaviour of the acceptor generated from the description. Thus he may place
context conditions at productions where they “naturally”” belong, while the
acceptor may expose a desired behaviour, e.g. sophisticated error diagnosis,
less backtracking or better use of available semantic information for syntax
error recovery.

Inverse currying transformations, like many other algorithms on attribute
grammars, suffer from the lack of knowledge about the meaning of semantic
functions and conditions. Their semantics can not be automatically determined,
if they are written in a general purpose programming language like PASCAL or C.
This problem will be eased, once special purpose languages will be designed for
the description of compiler tasks such as identification of identifiers, code gen-
eration and code improvement. This will make other equivalence transforma-
tions on attribute grammars possible massaging them into different forms for
different purposes.

-16 -

Concluding, I would like to mention two extensions to the transformation as
described in this paper. The following generalization of the definition of inverse
curried function was proposed by Eduardo Pellegri.

Given a predicate
P AX - X4 - { true | false |.

The definition from section 2 determines an index 7, such that given values of
the first ! arguments, one can compute domains for the last k-r arguments.
The generalization would require that there exist a strictly monotone increasing
sequence of such r's: 7y, - - - ,7; and functions

4
f?l:Alx"'xArl—l"z !

A
TP i X - X4 22 e

SB AKX XA 2

A
TP i AX - XA 2200 .

A,
f,?‘:A‘x"'XA-‘_I"zl

JE:AX - Ay -2
such that
p(ay, - - ,a) = true
if?
ar,h‘ﬁf%ﬂ(“h Co -a-rj—l)
for all 1<j<! and O<i<r;,;—r;—1.

This generalization might catch some additional cases, although experience
shows that right sides of productions tend to be rather short.

Another extension was proposed by Ulrich Méncke. Inverse curried functions do
not exist, if it is impossible to tell different attributes independantly, which
values they’d better have. In some cases, it may be possible to compute a carte-
sian product as the legal domain for several attributes of one occurrence of a
nonterminal.

Acknowledgements

1 would like Phil Garrison, Robert Henry, Ulrich Mdncke, Eduardo Pellegri, and
Beatrix Weisgerber for careful reading of previous versions of this paper and
many helpful suggestions.

-17-

References

[GIG78] R. S. Glanville and S. L. Graham, A New Method for Compiler Code
Generation, Proc. S&h ACM Symp. Principles of PFProgramming
Languages, Tuscon, Ariz., January, 1978.

[Hen83]R. R Henry, Experience with Practical Graham-Glanville
Codegenerators, Ph.D. Thesis, Computer Sciences Division, UC Berkeley,
1983.

[IMJBO] N. D. Jones and M. Madsen, Attribute-Influenced LR Parsing, in
Semantics Directed Compiler Generation, N. D. Jones, (ed.), Springer
LNCS, 1980, 393-407.

[LRS74] P. M. Lewis, D. J. Rosenkrantz and R. E. Stearns, Attributed Translations,
Journal of Computer and System Sciences 9, (1974), 279-307.

[Sch82] C. Schmauch, Attribute Evaluation after Recovery from Syntax FError,
Fachbereich Informatik, Universitdt Kaiserslautern, 1982.

[WaJB0] D. Watt, Rule Splitting and Attribute-Directed Parsing, in Semantics
Directed Compiler Generation, N. D. Jones, (ed.), Springer Verlag, 1980.

[Wil79] R. Wilhelm, Attributierte Grammatiken, nformatik Spektrum, 1979.

