The User Interface and Implementation of Caesar

John K. Custerhout
Electrical Engineering and Computer Sciences
University of California
Berkeley, CA 94720
415-642-0865

Abstract

This paper describes several novel aspects of Caesar, a layout editor for
Manhattan-style integrated circuits. The program'’s user interface is similar
to painting. By hiding many irrelevant details, the painting mechanism pro-
vides a powerful yet simple user interface. Its implementation using horizon-
tal strips is efficient in both time and space. To handle large circuits
efficiently, Caesar represents them hierarchically and capitalizes on their
hierarchical structure to avoid excess computation and 1/0. The rendering
of mask information on color displays is done with a novel combination of
transparent and opaque layers that clarifies layer interactions even in the
presence of a large number of mask layers.

Keywords: Computer-aided design, integrated circuits, graphics, user inter-
faces.

1. Introduction

Caesar is an interactive program that allows integrated circuit designers
to enter and modify mask layouts using a color display and a graphics tablet.
The program was designed and implemented at the University of California at
Berkeley. It has been distributed to over 200 university and industrial sites
around the U.S. and is the basis for two commercial layout editors. Caesar
has been used successfully to implement several large scale circuit designs

[2,5.10,11].

The program's success is due to three factors. First, it has a simple and
powerful user interface that is easy to learn and effective to use. Second, it
is efficient: in typical use, even for large designs, it requires only twice as
much processor time as text editors. Third, it is based on standard
hardware and software (DEC VAX-11's, Berkeley 4.1 Unix, and any of a variety
of inexpensive commercially-available color displays) so it is easy to port to

other sites.

This paper presents several of the novel aspects of Caesar’s user inter-
face and implementation. Most important of these is the way users edit
mask patterns in a style similar to painting. Sections 2 and 3 present the
painting interface and the algorithms used to implement it eﬂicienﬂy. The
system's efficiency for large designs is due to its use of hierarchy; the
hierarchical structure and techniques for achieving efficiency are described
in Sections 4 and 5. A third novel aspect of Caesar is the way it displays
mask information on the color display. Section 6 presents this mechanism,
which permits a large number of layers to be displayed clearly and efficiently
on inexpensive displays. Section 7 evaluates Caesar’s strengths and

weaknesses.

The User Interface and Implementation of Caesar July 8, 1983

2. The Painting Interface

In many ways, Caesar is similar to other existing VLSI layout editors
[1,3,7). Each design in Caesar consists of a hierarchical collection of cells,
with each cell containing subcells and patterns on the various mask layers.
Caesar's commands for manipulating subcells are similar to the subcell com-
mands of other systems, and include copying, moving, mirroring, rotating,
and arraying. However, Caesar’s commands for manipulating geometrical

information are quite different from those of other systems.

In most VLSI layout editors, users treat mask patterns as geometrical
objects: polygons, rectangles, or wires. This view is a direct reflection of the
internal data structures used in the systems. Operations are provided to
create, delete, and modify the objects. Unfortunately, the geometrical
structure is largely irrelevant. When a circuit is fabricated, its characteris-
tics depend only on the patterns and not on their composition in terms of
rectangles or polygons (see Figure 1). Polygons and rectangles do not
correspond directly to meaningful circuit elements like transistors or gates,

so they are of little logical use to the designer. If patterns are displayed as

3 0

Figure 1. Although each of the three patterns has a differert geometrical
structure, they will produce identical circuits. In Caesar the user sees cnly
the shape (as on the left), while Caesar manages the representation.

The User Interface and Implementation of Caesar July 8, 1983

solid filled areas, it is not even possible to distinguish the internal structure
of the patterns; nonetheless, users of most editors are forced to deal with

that structure when issuing commands.

In Caesar, users do not concern themselves with the structure of mask
patterns. They manipulate only the shapes. Instead of thinking in terms of
objects, Caesar users think in terms of painting. Two graphical tools, a box
and crosshair, are positioned over the circuit using an electronic tablet.
They are used to invoke five painting commands, as shown in Figure 2. In
general, the box selects an area to be operated upon, and the crosshair

selects particular mask layers to be affected within that area. Caesar han-

7 L
2% 7 7/

Before Paint After paint Before erase After erase
(a) (v)
= Eﬁ | TR] -
1 A,
Before yank After put Before fill After fill
(c) {®)

Figure 2 Caesar has five paintirg operations, controlled by a box and a
crosshair: (a) paint the box selects ar area to be pairted, and the crosshair
selects the layer(s) to be pairted; (b) erase the box selects an area to be
erased, and the crosshair selects the layer(s) to be erased; (c) yank saves a
copy of the information underneath the box, and put copies the saved infor-
mation back at the box’s current position; (d) fill right samples all the paint
underneath the left edge of the box, then uses that pattern as a paint brush
tc sweep from left to right (filling can also be dene left, vp, or down).

The User Interface and Implementation of Caesar July 8, 1983

dles all the details of how to represent the patterns; users can thus concen-

trate on what is being designed rather than how it is being represented.

The painting paradigm provides both a very simple and natural user
interface (students and visitors typically learn the system in a few minutes),
and unusual power in manipulating the circuit. As an example of the power
of the painting interface, Figure 3 shows how a sequence of three commands
can be used to stretch a cell. Painting is powerful because it allows users to
pick up and put down pieces of the circuit without regard for any underlying
representation. In ““object-based’’ systems users must worry about main-
taining the consistency of objects such as polygons. This often results in
different commands for each different type of geometrical object and makes

it difficult for users to express non-trivial changes to the circuit.

Caesar accepts only Manattan designs: all features must be horizontal or
vertical. Because the box used for painting is a rectangle with horizontal and
vertical sides, there is no way to specify non-Manhattan features. Manhattan
circuits tend to be slightly less dense than non-Manhattan ones (most
designers estimate that the penalty is around 10%), but our designers have
readily accepted the Manhattan style. One of the main reasons for this
acceptance is the efliciency of CAD tools. Tools specialized for Manhattan
shapes execute as much as ten times as fast as those designed for arbitrary
angles. Manhattan designs also tend to be simpler and less prone to errors
than non-Manhattan ones. Because of these advantages, the Manhattan
design style is used almost exclusively in University environments, and is
gaining acceptance in industrial settings also (for example, there are

between fifty and one hundred companies using Caesar).

The User Interface and Implementation of Caesar July 8, 1983

P S 2 v P
= L& X}~ =
1V v v
(a) (v) (e)
v
'R ety

Rttt

() (e) n

Figure 3. Erase followed by put followed by fill right is sufficient tc stretch
this cell: (a) before erase; (b) after erase (note: erase saves'a copy just like
yank); (c) befcre put; (d) after put; (e) before fill right; (f) after fill right.

The box is a convenient tool for specifying a variety of commands in
addition to painting. These range from zooming (where the box specifies an
area that is to be zoomed to full-screen) to making subcell arrays (where the
dimensions of the box specify the x- and y-spacings between adjacent ele-

ments).

3. Painting Implementation

Since the painting user interface hides the internal representation of
shapes, the implementation can use whichever representation turns out to

be simplest and most efficient. There are two potential difficulties in having

The User Interface and Implementation of Caesar July 8, 1983

the layout editor automatically manage the representation of mask patterns.
The first danger is that it may be difficult or impossible for the system to find
an exact representation for the shapes specified by the user. For example, if
circular arcs and lines at arbitrary angles were permitted, there would be no
exact representation; floating-point approximations would have to be used,
and roundoff errors and other numerical problems would have to be con-
sidered. Fortunately, the Manhattan property of Caesar designs, combined
with the requirement that all edges lie on a grid, makes it easy to find an
exact representation. In Caesar, the mask patterns are represented by a
separate linked list of rectangles for each mask layer in each cell. ‘'The rec-

tangles within each list are unordered and have integer coordinates.

The second danger is that a long series of edits to a cell might cause the
cell's representation to decay into a very large number of unnecessarily
small objects, resulting in wastage of memory space and processing time.
Caesar eliminates this potential problem by representing the mask patterns
with mazimal hoﬁzontal strips. The maximal horizontal strip property
requires that no cell ever contain two rectangles on the same layer that
share any portion of a vertical edge (see Figure 4). Furtherrnore, any two
rectangles that share an entire horizontal edge (as in Figure 4b) must be

merged into a single larger rectangle.

Using horizontal strips, there is exactly one representation for any given
mask pattern, regardless of the sequence of editing operations used to
create that pattern. Thus the database cannot decay into a large number of
small rectangles unless the mask pattern itself becomes very detailed. Ini-
tially, Caesar used a different representation, one that did not have these

properties. As a result, circuits that were modified frequently tended to

The User Interface and Implementation of Caesar July 8, 1983

fragment into smaller and smaller rectangles. This cannot happen with the
horizontal strips. Because of the automatic merging, maximal horizontal
strips result in databases of nearly minimal size; Caesar cells generally have
fewer geometries than the same cells layed out with systems where users

manage the object structure.

Special algorithms are used by the paint and erase operations to
preserve the horizontal strip property. When the paint command is invoked,
three steps are taken, as illustrated in Figure 5. First, Caesar scans the list
of rectangles on the painted layer to eliminate any new paint that is already
present in the cell (this is done by splitting the paint area into a number of
smaller horizontal strips). Second, Caesar merges the new paint with old
paint, splitting rectangles and merging them horizontally in order to gen-
erate maximal horizontal strips. This requires another scan through all the
rectangles on the painted layer. Finally, a third scan is made to merge rec-

tangles vertically.

| L

(a)

v

(b)

Figure 4 The maximal horizontal strip rule makes the structures or. the left
illegal; they are changed by Caesar into the structures or. the right.

The User Interface and Implementation of Caesar July 8, 1983

Old paint ——>

(o) (v}

(c) (4)

Figure 5. Three steps are used to regenerate maximal horizontal strips dur-
ing the paint command. (a) skows the original pattern and the area tc be
painted; in (b) the new paint has been clipped against existing paint; in (c)
the new and old paint have been merged horizontally; (d) shows the final
structure after new and old paint are merged vertically.

When the erase command is invoked for a particular mask layer, Caesar
must scan the rectangle list for that layer and clip existing rectangles
against the area being erased. See Figure 6. When a rectangle is split, the
remaining pieces must be merged into the database using the last step
described above for painting. This is necessary because the split may have

made a vertical merge possible.

Once the algorithms were chosen, the implementation of painting was
quite simple. Only about 1000 lines of C code are needed to implement all of

the painting operations.

The User Interface and Implementation of Caesar July 8, 1983

................

(a) (b) (c)

Figure 6. The erase cperatior has twc steps: clipping and merging. (a) shows
the original structure and the area to be erased; (b) shows the structure
after clipping existing rectangles; (c) shows the final structure after vertical

merging.
4. Using the Hierarchy

Caesar's space and time efliciency is accomplished almost entirely by
exploiting the hierarchical structure of VLSI layouts. Typical cells contain
either a few subcells or a few hundred rectangles; only rarely are cells sub-
staniially larger than this. See [9] for detailed measurements of the struc-
ture of one design; our experiences with several otﬁer des}gns are similar.
Caesar uses very simple data structures and algorithms almost everywhere,

with a few key techniques (discussed below) to take advantage of hierarchy.

Caesar keeps its space requirements low by storing the circuit only in
hierarchical form. Cells are described by two structures, celldefs and cel-
luses. A celldef describes the contents of a cell: it contains a separate list of
paint rectangles for each mask layer, a list of textual labels, and a list of cel-
luses, one for each of the subcells contained in the cell. A celluse describes
the way a particular celldef is used in a particular parent; it contains a
geometric transformation and a pointer to the child celldef. If a cell is used

in several places in a circuit, Caesar stores a single copy of its celldef, with

-9-

The User Interface and Implementation of Caesar July 8, 1983

one celluse for each instance.

Two-dimensional arrays are used extensively in VLSI circuits, so they are
handled as a special case to reduce the number of celluses. An array is
represented by a single celluse. Information about the array (starting and
stopping indices in x and y, and horizontal and vertical spacings between ele-
ments) is stored in the celluse. As a result of the hierarchical structure,
databases are small enough to be loaded entirely into main memory. Cir-
cuits with 40000-50000 transistors require between 1 and 1.5 megabytes of

virtual address space when completely loaded.

However, Caesar rarely loads the entire hierarchy for a large circuit. At
the beginning of an editing session, Caesar only reads in the top-most cell of
the hierarchy being edited. Lower-level cells are displayed as bounding
boxes and need not be read from disk. This results in very fast startup of
editing sessions (only a second or two of CPU time for even the largest cir-
cuits). Caesar reads in lower levels of the hierarchy as the user asks for
more detailed information; since this happens incrementally in small pieces,
there is almost never any noticeable overhead for this. Typically, the edits in
any one session deal with a small portion of the whole chip so Caesar never
reads in most of the design. In the RISC] project, on average, only one

fourth of the database was read in during any given work session.

Hierarchical structure is used in several other ways to gain speed. At
any given time, a single cell is being edited; it is called the edit cell. Only
the paint within the edit cell and the placement of its subcells may be
modified by the user. It is not permissible to modify paint or subcell place-
ments in cells other than the edit cell. Thus Caesar need consider only infor-

mation in the edit cell when making database changes. Individual cells are

-10 -

The User Interface and Implementation of Caesar July 8, 1883

almost always small, so the editing operations are fast.

There are a few occasions when Caesar must locate all paint in a particu-
lar area, regardless of the cell structure, for example when displaying infor-
mation on the screen. In this kind of database search Caesar still uses the
hierarchical structure to eliminate unnecessary searching. The database is
searched recursively starting at the root of the hierarchy. For each cell
searched, two things happen. First, each paint rectangle and label in the cell
is examined to see if it lies in the area of interest. If so, it is displayed.
Second, the bounding boxes of subcells are examined: if the bounding box of
a subcell intersects the area of interest, then it must be examined recur-
sively. If the bounding box of a subcell is outside the area of interest, there
is no need to search it or any of its children. This simple pruning technique
is quite effective at eliminating from consideration the material that is out-

side the area of interest.

In order for hierarchical pruning to work correctly, accurate bounding
boxes must be maintained for each cell. The bounding box for each cell must
reflect all the paint in the cell, and the paint in its children, its grandchil-
dren, and so on. If a cell grows or shrinks, it may be necessary to change the
bounding boxes of its ancestors in the hierarchy. See Figure 7. If the bound-
ing boxes of parents are not automatically updated, then the search pruning
mechanism described above may decide not to search a cell even though one
of its children contains information in the area of interest. In order to
update parent bounding boxes, it is necessary to keep upward pointers in the
database from each celldef to all the celluses that reference that celldef, and

from each celluse to its parent celldef.

-11 -

The User Interface and Implementation of Caesar July 8, 1983

(a) ()

Figure 7. Caesar must mairntair accurate bounding boxes for each cell. If
cell E grows as showr ir (a), the bounding bex fer its parent, cell D, must be
modified as shown in (b). If the boundirg bex of D isn’t updated, ther the
porticn of E lying outside of D may be overlocked in searches.

The techniques for capitalizing on hierarchical structure have worked so
well that there has been no need to use special geometrical data structures
such as bins or quad-trees [8]. For example, even though the paint operation
requires three complete searches of the rectangle list for one of the mask
layers, the list usually has only a few tens of elements so the operation is
instantaneous. The largest known Caesar cell has lists containing about 3000
rectangles each. But because of the simple data structures, the paint and
erase algorithms have low overhead and are efficient even in these extreme
cases. For example, less than a second of CPU time is required to paint a

new rectangle into a cell with 3000-element lists.

-12 -

The User Interface and Implementation of Caesar July 8, 1983

5. Edit in Place

When assembling the subcells of a large circuit, subcells often have to be
modified in order to mesh properly with their neighbors. In most layout edi-
tors, each subcell has to be modified in isolation. In Caesar, the subcell may
be edited in place: the designer modifies the cell while viewing it in its final

position in the overall design.

Without the ability to edit a cell in place, it is very hard to assemble
large circuits. As a result, designers tend to lump many unrelated pieces of
information into a single large cell. The first version of Caesar did not permit
editing in place, and as a result all of the global wiring was placed in a single
large cell with 3000 paint rectangles in each list. In subsequent designs, edit
in place has made it possible for designers to divide the routing up inte

several smaller cells.

When editing in place, the edit cell may be a subcell in the middle of the
hierarchy being displayed rather than the root cell of the hierarchy. It may
be rotated or mirrored so that its internal coordinate system is not the same
as the wérld coordinate system in which the user is viewing the circuit. Cae-
sar has to take the user’'s commands, which are specified in the coordinate
system of the root cell of the hierarchy, and transform them into the native
coordinate system of the cell being modified. This in lurn requires that Cae-
sar be able to compute inverses of cell transformations. Fortunately, since
everything in Caesar is Manhattan, there are exact inverses for all transfor-
mations. If arbitrary feature angles were allowed, it would not be possible to
compute exact inverse transformations, and edit in place would be much

more difficult to implement.

-13-

The User Interface and Implementation of Caesar July 8, 1883

6. Color and Texture

One of the interesting problems in implementing a CAD system is decid-
ing how to render the design on a color display. The most important goal in
rendering is to display the design’s structure clearly. In VLS], this is difficult
because there are many mask layers that overlap; where there are complex
overlaps, it is often hard to distinguish the different layers. An additional
goal is to be able to redisplay the design quickly; ideally, it should be possi-
ble to redraw any one layer without having to redraw all the other layers.
Finally, it is ideal if the above two goals can be achieved with inexpensive
display hardware. Caesar uses a combination of three different techniques,
described in the paragraphs below, to meet the first goal and most of the

second with inexpensive graphics equipment.

8.1. Display Hardware

Caesar can be used with any'of a number of color displays that store
eight bits of color information for each pixel on the screen. When the screen
is refreshed, the eight bits from a pixel are used to select one of 256 24-bit
colors stored in a writable color map. The color map value determines the
actual red, green, and blue intensities displayed. This means that there may
be no more than 256 distinct colors on the screen, but there is considerable
latitude in choosing the exact intensities of each of these colors. The color
displays provide operations such as filling rectangﬁla.r areas of pixel memory
with particular values, drawing lines and text, and changing the color map

values.

-14 -

The User Interface and Implementation of Caesar July 8, 1983

8.2. Transparent Layers

One way to use the pixel memory is to dedicate one of the bits of each
pixel for each mask layer, with the bit indicating the presence or absence of
the mask layer at that point. An area where a layer is present appears as a
solid color. Every possible combination of layers is represented by a
different pixel value, and hence can be displayed as a different color. 1 call
this a transparent scheme, since the presence of one layer does not hide
other layers from view. For example, a red color can be displayed when a
pixel has only the bit for the R layer set, a blue color when the pixel has only
the bit for the B layer set, and a purple color (as if there were a transparent
blue foil on top of a red foil) if both bits are set. In dealing with complex lay-
outs, the transparency property provides a substantial advantage in visual

power.

Transparent layers have the advantage of automatic color-mizing. Most
color displays allow the bits of pixels to be modified individually. For exam-
ple, it is possible to specify a command of the form *‘set bit 4 of every pixel
in the area (x1, y1) to (x2, y2) to 1, but leave all other bits of the pixels
unchanged.”” Using this feature, rectangles on different layers may be drawn
independently, without any concern f‘or overlaps. Where overlaps occur, the
overlap color is automatically selected by the combination of bits in the
pixel. In the red-blue example, the blue layer can be drawn in an area
without affecting the red layer bits in each pixel. If any of the pixels initially
have the red bit set, they will end up with both the red and blue bits set,

which will cause the purple color to be displayed.

-15-

The User Interface and Implementation of Caesar July 8, 1883

8.3. Opaque Layers

Unfortunately, with only eight bits per pixel the transparent scheme can
only accomodate eight mask layers. An alternative is to use all the bits of
the pixel to represent a single mask layer. In this scheme, which 1 call
opague, eight bits can represent up to 255 different mask layers. However,
the whole pixel can only represent a single mask layer, so if more than one
layer is present at a point, a decision must be made about which one to draw.
There are no special colors for overlaps. Typically, the layers are prioritized,
with each layer given preference over lower priority layers. This is accom-
plished by drawing the layers in increasing order of priority: higher-priority
layers overwrite lower-priority ones. The visual effect is one of opaque pieces
of paper placed on top of each other. Although the opaque scheme can han-
dle complex processes, it makes it very difficult to view complex structures,

since important features may be hidden from view by higher-priority layers.

It is possible to display a few key overlaps in the opaque scheme by
using some of the available layers. For example, three of the 255 layers
could be used for polysilicon and diffusion: one for polysilicon, one for
diffusion, and one for polysilicon-diffusion overlap. Unfortunately, no-
automatic color-mixing occurs as with the transparent scheme: the display
routines must compute all the overlaps and display them with a different
layer number. This inter-layer registration requires more complex data

structures and algorithms than are present in Caesar.

6.4. Stippling

A third technique is to stipple the areas corresponding to each mask
layer. Where mask layers overlap, their stipple patterns blend together. The

‘patterns are chosen to blend in harmonious ways that make the overlaps

-16 -

The User Interface and Implementation of Caesar July 8, 1983

clear. Although stippling was originally developed for black-and-white sys-
tems, it is now coming into use in color systems as well. In an opaque display
scheme, if a high-priority layer is stippled then it is possible to see lower-
priority layers through the holes in the stipple. Stipples provide an impor-
tant visual cue not present in solid filled areas, namely terture. However,
they have three disadvantages. First, since stipples only color a few of the
pixels in an area, it is more difficult to distinguish color in a stippled area
than in a solid filled area. Second, if many stippled layers overlai:. then the
picture becomes so busy that it is difficult to distinguish features. Third,
stippling is only effective if the features are large enough to contain a full
repetition of the stipple pattern. Small features drawn with similar stipples
may be indistinguishable.

Layer
Layer

| o
@ DITITT]

Used for
boxes and text

+

®)]

O - N G e

0: Layer 5
1: Layer 6
—_ 2: Layer 7

31: Layer 38

Figure 8 Caesar uses six bits per pixel tc represent mask layers: (a) if bit 5
is 0, then the low-order five bits each represent one transparent layer; (b) if
bit 5is 1, then the low-order five bits together represent cne opaque layer.
The high-order two bits are used to display text, beunding boxes, and the
grid.

-17-

The User Interface and Implementation of Caesar July 8, 1883

B8.5. Caesar's Solution

Caesar uses a combination of all three of the above schemes in order to
maximize the visual power of the system. Only six of the eight bits per pixel
are used to display mask information, and they are used as shown in Figure
8. If the high-order of these six bits is zero, then each of the low-order five
bits indicates the presence or absence of a transparent mask layer. Each
possible combination of these layers has a different color, with the colors
chosen to present the appearance of transparent colored foils. Solid fill is
usually used for the transparent layers. If, however, the high-order bit of a
pixel is one, then the low-order five bits do not represent transparent layers.
Instead, they select one of 32 opaque layers. When an opaque layer is
present at a pixel, it is not possible to see transparent layers at that pixel.
Opaque layers are usually drawn in stippled fashion so that they don’t com-

pletely block out the transparent layers underneath.

The decision about which layers are transparent, which are opague, and
when to use stippling is made by the system maintainer. The most common
layers are made transparent. Less-common layers, or those where tran-
sparency is less important (e.g. overglass), are made opague. The informa-
tion is stored in a file for each such configuration, and users can choose any

of the available configurations.

The combined scheme has worked out well. It allows a total of up to 37
mask layers, of which 5 may be transparent. When stippling first became
available on our displays, we experimented with using stipples for all mask
layers, but found this to be unsatisfactory for the reasons mentioned in Sec-
tion B.4. On the other hand, solid filled transparent layers also become hard

to distinguish when more than three or four layers overlap, so there seems

- 18 -

The User Interface and Implementation of Caesar July 8, 1983

little value in having additional transparent layers. The combination of color
(from the solid filled transparent layers) and texture (from the stippled
opaque layers) makes it possible to distinguish more layers than either tech-

nique used alone.

The combined scheme is less efficient for redispiay than the one with
only transparent layers. In a pure transparent scheme, a single layer may
be redisplayed independently of any other layer. In Caesar’s scheme, a sin-
gle transparent layer may be redisplay.ed independent of any other tran-
sparent layer, but all opaque layers must be redisplayed whenever any tran-
sparent layer is modified. If an opaque layer is painted, all higher-priority
opague layers must be redisplayed, but not lower-priority opaque layers or
transparent layers. If an opague layer is erased, all layers must be
redisplayed since the erasure may have exposed information that was previ-
ously obscured. Caesar’s scheme is always more efficient than one with only

opagque layers.

7. Evaluation

Caesar’s simple data structures and algorithms, combined with a few
techniques for taking advantage of hierarchy, have resulted in a very
efficient program. Averaged over typical work sessions, Caesar rarely uses
more than S% of the total CPU time of a VAX-11,/780 [9], or about twice as
much CPU time as typical screen-oriented text editors [4]. On moderately
loaded machines (Unix load factor of four or five), response is instantaneous
to all commands, even when editing circuits with 50000 or more transistors.
The elapsed time to load up a circuit and begin editing ranges from a second

or two for small cells up to about a minute for the largest circuits. On very

-19-

The User Interface and Implementation of Caesar July 8, 1983

heavily loaded machines, Caesar's performance degrades in about the same
fashion as text editors; the program gives tolerable response up to a load

factor of about twenty.

Caesar is also efficient in space. Typical editing sessions for small cells
require about 150 kbytes of virtual address space, which is comparable to
the space requirements of text editors. For large designs, Caesar normally
requires 200-400 kbytes of virtual address space; because of the incremental
database loading, this figure does not vary much with the size of the circuit
being designed. The only time when the whole circuit must be memory-
resident is when CIF files are created for mask generation and circuit extrac-
tion: when this happens, the virtual address space requirements will get as
high as one or two megabytes. Caesar works well in paged systems: even
when its address space becomes large, it rarely needs more than a few hun-

dred kbytes to reside in main memory.

The painting paradigm has worked out quite well. It provides a simple
and natural model for users to deal with, and makes the system predictable
and easy to learn. The painting command set contains only five commands
yet provides substantial power. By hiding the internal representation from
the user, it was possible to use a simple internal data structure (lists of rec-
tangles); this resulted in simple and fast algorithms. If more complex
objects had to be represented, such as wires or polygons, the clipping and

redisplay algorithms would have been slower and more complex.

The combination of transparent and opaque layers has also worked out
well. Although there are a few situations where Caesar's scheme requires
more layers to be redisplayed than a transparent-layers-only scheme, the

difference has not been noticeable to users. The only time when redisplay

-20-

The User Interface and Implementation of Caesar July 8, 1983

time is significant is when redrawing the whole screen to view a different
piece of the circuit; in this case, any displaying scheme will require all
layers to be redrawn, so they all take the same amount of time. Caesar'’s
scheme permits more complex IC processes than a transparent-layers-only
scheme, and provides greater visual power and clarity than an opague-

layers-only scheme.

Caesar does, of course, have shortcomings. The most serious of these is
its lack of subport for routing. Designers at Berkeley consistently have found
routing to be the most laborious and least enjoyable part of circuit layout.
Caesar provides no particular assistance aside from its standard painting
operations. The available commands work well for creating leaf cells and
joining them together into cell blocks. Eowever, the global wiring process is
difficult because each wire must be painted individually. Even a simple river
router or maze router would make a substantial difference if embedded in a

comfortable interactive environment.

Caesar would also benefit from a few enhancements to its user interface.
Currently, it only displays a single view of the circuit at one time. Multiple
windows are provided by several other systems such as Icarus [1] and KIC (7]
and seem to be very useful, especially for global operations such as routing.

Even a simple windowing scheme such as a split screen would be very helpful.

Although a hierarchical collection of cells is displayed on the screen, at
any given time the user is editing just one of those cells. In Caesar, the paint
in the edit cell is drawn in the same way as paint in other cells, so it is hard
to tell where the edit cell ends and other cells begin. This results in
accidents where users paint or erase in one cell when they really should have

painted or erased in a different cell. The edit cell should be displayed

-21-

The User Interface and Implementation of Caesar July 8, 1983

differently than other cells (perhaps with greater intensity) in order to make
clear what is editable and what isn't. The need for this feature did not
become obvious until after editing in place was implemented, and appears to

be hard to retrofit into the system.

For some industrial applications such as ROMs and RAMs, where density
is critical, the Manhattan nature of Caesar may be intolerable. Caesar can
be generalized to handle 45-degree angles by using maximal trapezoids
instead of rectangular strips, and by permitting the box to turn into a dia-
mond shape. Work is already underway to implement such a scheme in one
of the commercial products based on Caesar. However, for most applications
I believe that it is preferable to stay within a Manhattan framework, since
this tends to result in fewer errors, faster CAD programs, and ultimately

shorter design times.

8. Conclusions

Two overall lessons emerge from the Caesar experience. The first lesson
is that simplicity and efliciency go hand-in-hand. Simple algorithms and data
structures have low overhead. As a result they are often faster in practice
than algorithms that have good theoretical behavior but require complex
data structures and algorithms. Typical cells in VLS! circuits are small
enough that the constant factors in algorithms tend to dominate the algo-

rithmic factors.

The second lesson is that user interfaces need not necessarily match
internal representations. The structure that is best for representing infor-
mation inside a computer may not provide the best way for humans to think

about the information. In Caesar, users think about mask patterns in terms

-22-

The User Interface and Implementation of Caesar July 8, 1983

of paint, which is natural for them, while the information is represented
internally in terms of rectangles, which is simple and eflicient for Caesar.
The rectangles have no logical significance for the design, so their presence
is hidden from the user. On the other hand, the cell hierarchy is an example
of a structure that is useful both to user and system. For the user, the
hierarchy provides a mechanism for partitioning large designs into manage-
able units. It serves a similar function for the system, providing a space

efficient representation and a mechanism for pruning searches.

9. Acknowledgements

Gordon Hamachi, Bob Mayo, and Dave Patterson all provided helpful
comments on drafts of this paper. The work was supported in part by the
Defense Advanced Research Projects Agency, DARPA Order No. 3803, moni-
tored by the Naval Electronic System Command under Contract No. NOOO39-

81-K-0251.

10. References

[1] Fairbairn, D.G. and Rowson, J.E. “ICARUS: An Interactive Integrated
Circuit Layout Program.’ Proc. 15th Design Automation (Conference,
1978, pp. 188-182.

[2] Foderaro, J.K. Van Dyke, K.S., and Patterson, D.A. “Running RISCs.”

VLSI Design, Vol. 111, No. 5, September /October 1982, pp. 27-32.

[3] Infante, B., et al. "An Interactive Graphics System for the Design of
Integrated Circuits.” Proc. 15th Design Automation Conference, 1278,

pp. 182-187.

-23-

The User Interface and Implementation of Caesar July 8, 1983

(4]
5]

(6]

(7]

(8]

(]

Joy, W.N.. Private communication.

Katevenis, M., Sherburne, R. Patterson, D., and Sequin, C.S. “The RISCII
Micro-Architecture.” to be presented at VLS/ 83, Trondheim, Norway,

Aug. 83.

Kedem, G. “‘The Quad-CIF Tree: A Data Structure for Hierarchical On-
Line Algorithms.” Proc. 19th Design Automation Conference, 1982, pp.
352-357.

Keller, K.H. and Newton, A.R. “KIC2: A Low-Cost, Interactive Editoer for

Integrated Circuit Design.” Proc. Spring COMPCON, 1982, pp. 305-306.

Ousterhout, J.K. ‘‘Caesar: An Interactive Editor for VLS! Layouts.”” VLS/

Design, Vol. II, No. 4, Fourth Quarter 1981, pp. 34-38.

Ousterhout, J.K. and Ungar, D.M. ‘‘Measurements of a VLSI Design.”’

Proc. 19th Design Automation Conference, 1982, pp. 803-908.

[10] Patterson, D.A. and Sequin, C.H. “RISC I: A Reduced Instruction Set VLSI

Computer.” Proc. Eighth International Symposium on Computer Archi-

tecture, May 1981, pp. 443-457.

[11] Patterson, D.A., et al. “Architecture of a VLSI Instruction Cache.” Inter-

nal Memo, Univ. of California, Berkeley, August 1982.

-24 -

