Database Support for Programming Environments

Michael L. Powell
Mark A. Linton

Computer Science Division
Department of Electrical Engineering and Computer Sciences
University of California, Berkeley
Berkeley, California 94720

ABSTRACT

A significant amount of programmer activity in
understanding, changing, and debugging software is
information management. To address this need, the
OMEGA programming environment uses a relational data-
base system to manage program information, and a
menu-driven, graphics-based user interface to view,
access and update software.

In this paper, we show how to represent programs in
the relational model and how traditional programming
tasks such as symbol table management are simplified
through use of a database. We suggest extensions to
relational systems to support more eflicient access of
recursive data structures, queries involving transitive
closure and allow application-specific detection of
triggers. These extensions can be used for applications
other than programming environments.

1. Introduction

Software constantly changes as new features are
added, bugs are fixed, and new hardware technology is
exploited. Programs are rarely self-contained entities:
they use and interact with algorithms, data structures
and subroutines from existing programs or libraries.
Consequently, programmers need to understand existing
software in order to use and modify it to meet new
requirements as well as to create additional, compatible,
software. :

Most programs are too large to understand in com-
plete detail; hence, programmers select different views
to understand different aspects. Understanding the
implementation of a procedure may involve looking at its
statements according to the program structure;

understanding how a variable is manipulated may involve
looking at the statements that access the variable;
understanding how a running program reaches a certain
state may involve looking at statements in the order in
which they are executed. To support these and many
other views of the same program, we are designing a sys-
tem, called OMEGA, that stores the procedures, state-

Research supported by the National Science Foundation
grant MCS-8010888, the State of California MICRO program,
and the Defense Advance Research Projects Agency (DeD)
Arpa Order No. 4031 monitored by Naval Electronic System
Command under Contract No. NOG039-82-C-0235.

CH1886-1/83/0000/0063$1.00 © 1983 IEEE

ments, variables, and other information that makes up a
program in a database.

Since we wish neither to constrain the range of pos-
sible queries nor to duplicate existing facilities, OMEGA
uses a general purpose database system. In addition to
allowing general queries and multiple views of data, data-
base systems manage permanent storage, support
efficient data access, provide concurrency control,
attempt to recover from crashes, and try to ensure the
integrity of the data. All of these problems erise in
software development systems; the fact that database
researchers are solving them allows us to address issues
specific to programming environments.

-We are investigating our ideas by using the rela-
tional system INGRES [Stonebraker, Wong and Kreps 78]
to manage program information. The relational model
was chosen because of the power it offers in expressing
queries and describing views. Flexibility in describing
views of programs is more important than having a ciose
resemblance to the traditional representation of pro-
grams such as that provided by the network data model.

We have implemented a parser that reads state-
ments in a typical programming language and stores
program structures in an INGRES database. We have
built a prototype interactive interface for viewing and
modifying programs in the database.

In the remainder of this paper we describe the
OMEGA approach for storing program information in
INGRES, present some examples of how the information
can be used, and suggest some extensions to relational
systems that would increase the power and improve the
efficiency with which program information could be
accessed. In addition, we show how the use of a database
supports debugging facilities by providing relational
views of program execution.

2. Storing Procedures, Statements, and Expressions

The traditional format of program source is text —
ordered. variable-length lines of characters. Because
text is organized linearly, it is expensive to extract pro-
gram semantics from and, therefore, inefficient to use in
processing most queries. Simply distinguishing com-
ments from program statements requires scanning each
character. Non-trivial queries, such as finding all the
uses of the "+ operator in which both operands are
integers, requires parsing and semantic analysis of the
entire program.

previmax := max;
if a > b then
max := a;
else
max := b;
end if;

prevmax a

Figure 1: Sample program fragment.

Text provides only weak support for program
modifications. Not only does it frequently require redun-
dant typing (e.g., longer, descriptive variable names
must be typed each time they are referenced), but it
also does not allow higher level operations (e.g., re-order
the parameters to a procedure). Operations on program
objects (statements, expressions, and variables) require
operations on text objects (lines, words, and characters)
that only indirectly and imperfectly correspond to them.

As an output medium, text is acceptable only with
elaborate conventions for two-dimensional arrangement.
Programmers do not read programs as people read nov-
els; both the micro and macro structure of the program
should be apparent from its visual presentation.
Although it is possible with discipline to arrange text in a
form that is understandable, failure to be consistent
(e.g.. by mis-indenting a list of statements) can misiead
the programmer without warning.

statements relation

id class value | prev | next
1 | asgstmt 2 | 0 3
3 ifstmt 4 1 0
5 asgstmt 8 0 0
7 asgstmt 8 0 0
asgstmts relation

id | var | expr

2 9 10

8 | 11 12

8 | 11 13

ifstmts relation

id | cond | then | else

4 14) 7

To process queries on program semantics, informa-
tion similar to that which a compiler builds during its
parsing and semantic analysis phases is necessary. This
consists of some form of program graph and symbol
table. Figure 1 shows an example fragment of a program
graph for an assignment statement followed by an if
statement.

This fragment is a list of statements that, ideally, we
would store in an ordered relation [Stonebraker et al.
82]. Until we are able to use them in INGRESt, we use
explicit links; each statement contains a reference to
the preceding and following statements. The tables in
figure 2 show how the information in the graph in Figure
1 could be stored in INGRES. To keep the example small,
we have limited ourselves to program statements,
expressions, and variables. In particular, the type infor-
mation that would be associated with variables and
expressions has been omitted.

expressions relation

id | operator | left ngb_t.
10 | variable 11 0
12 | variable 17 0
13 | variable 18 0
14 | > 15 168
15 | variable 17 0
18 | variable 18 0

variables relation

id name
9 | prevmax

11 max

17| =

18, b

Figure 2. Representation of Figure 1 program fragment in INGRES.

tAs of this writing, the INGRES implementation of ordered re-
lations is not yet available for general use.

Each tuple in the statements relation corresponds
to a program statement. We associate an identification
(ID) number with each tuple and use the number to refer
to that tuple from other tuples. Since some statements
can contain an arbitrary number of other statements,
this unique key is required to associate all of the con-
tained statements with the containing statement. State-
ments may be nested in other statements to arbitrary
depth. The ID numbers thus also provide a way to
represent a hierarchy in a relational database.

Many program objects are like statements in that
they may contain objects of their own kind. We call data
structures to represent such objects recursive data
structures. ID numbers represent instances of recursive
data structures from within other structures.

OMEGA. allocates ID numbers and can request a
tuple from INGRES using its relation and ID number.
Unfortunately, this interface does not allow INGRES to
retrieve the data efficiently nor does it allow OMEGA to
perform the queries it needs.

Consider, for example, the relations introduced ear-
lier. If we wanted to print an ifstmt tuple, we might use
the following aigorithm:

printstring(**if *');
printexpression(if-condition);
printstring(** then");
new_line; indent(+4):
printstatement(i/-then-part);
indent(-4): new_line;
printstring(‘‘eise");
new_line; indent(+4);
printstatement(if-sise-part);
indent(~4); new_line;
printstring(*‘end if;"');

A straightforward implementation of this code generates
separate queries for the if-condifion expression, and the
if-then-part and if-slse-part statement lists, Performing
several independent queries is more expensive than a
single, larger query because the database system can
optimize operations for the larger query. We therefore
use an alternate approach.)

An attribute has been added to each of the state-
ments and ezpressions relations to indicate in which pro-
cedure they are located. Before processing any part of a
procedure, one query is used to retrieve all the stafe-
menis and ezpressions tuples into memory. The

individual queries are then performed on this in-memory
data. Although this provides more eflicient access, the
mechanism is outside the normal database system, and
thus only a short-term solution.

There are some problems raised by this scheme
which must be understood before suggesting database
extensions to replace it. Retrieving all the information
at once for a large procedure is undesirable because the
user must wait for the entire procedure to be retrieved
before viewing any part of it. This wait would be particu-
- larly annoying if only a simple query needed to be done.
For example, to display the statements that reference a
particular variable it is not appropriate to retrieve all
the statements in all the procedures containing refer-
ences to the variable. A second problem is that, since

the database is not aware of the semantics of the IDs, it
will be difficult for it to know which tuples are best
cached in memory. The standard cache consistency
problems must also be addressed.

A second issue is raised by the recursive nature of
program structures. Consider the query that asks for all
the statements that reference a particular variable. This
query needs to examine the expressions in a statement
and all subexpressions of those expressions, to whatever
depth expressions are nested in the statement, to dis-
cover whether or not the variable is in the statement.
There is presently no way to express queries that involve
a transitive closure, such queries can only be made by
performing many smaller queries.

3. Managing Recursive Data Structures

The issues of efficient access to, and transitive clo-
sure queries on, recursive data structures can be solved
only by having the database system understand the
recursive nature of the data. We propose to supplement
the standard database value domains of integers,
strings, etc., with a domain of tuple references. This
would provide information the database system could
use to pre-fetch or retain tuples likely to be accessed.
In addition, the transitive closure of a tuple reference
can be defined and used in queries.

Tuple references are similar to unique ids as pro-
posed in {Codd 78], and closely resemble the data type
tupleRef available in the Cedar database system [Brown,
Cattell, and Suzuki B1]. We have extended these ideas,
allowing tuple references to be manipulated through the
query language: such usage may implicitly cause the
retrieval of tuples. We now examine this proposal in
more detail.

3.1 Tuple References

A tuple reference denotes a tuple in some relation
in the database. We use the notation "A = ref" to define
the attribute A as a reference to a tuple. The only
difference between tuple references and other flelds of
relations is that their values are generated and inter-
preted by the database system. All normal database
operations apply to tuple references. Additional opera-
tions, described below, are also valid.

Although there are several possible implementa-
tions of tuple references, we assume that it is always
possible to determine in which relation a referenced
tuple is by saying relation(r), where r is the tuple refer-
ence. Thus, without loss of generality, we may think of a
tuple reference as a pair (relation, tuple identifier), even
if the implementation is otherwise. The value of a tuple
reference is generated automatically and is independent
of the physical location of the tuple. One distinguished
value that any tuple reference can have is a reference to
no tuple, similar to the value nil in many programming
languages.

Often an attribute always refers to a particular rela-
tion; in this case we use the notation "A = ref R, where
R is the name of the relation. This improves the reada-
bility of attribute definitions and aiso allows the database

system to perform optimizations such as minimizing the
space needed to store a'tuple reference.

Whereas the ifstmt relation in figure 2 would have
been defined as

ifstmts (
id = integer,
cond = integer,
then = integer,
else = integer

).
using tuple references it would be defined as

ifstmts (
cond = ref expressions,
then = ref statements,
else = pef statements

The value of a range variable in a query is the tuple
reference for a tuple in the associated relation. For
instance, the following example creates an ifstmt (which
requires a condition expression, then statement, and
else statemnent).

range of c is expressions

range of t is statements

range of e iz statements

append to ifstmts(cond=c, then=t, else=e) where
{predicates to select thec, t, and e we want|

In addition to normal database operations, it is pos-
sible to dersferencs a tuple reference by qualifying it
with an attribute name. For example, the following
query finds the if statements that have a condition that
is simply a boolean variable:

range ol i is ifstmts
retrieve (i.all) where
i.cond.operator = '‘variable’

If the specified attribute of a tuple reference is itself a
tuple reference, it too may be dereferenced. It is there-
fore possible to qualify *'i.cond’ as a normal range vari-
able (in this case, of the expression relation), and refer
to its operator attribute as “i.cond.operator®.

Performing a dereference requires the database
system to retrieve the referenced tuple. Indiscriminate
dereferencing can cause performance problems similar
to the use of IDs that the database system does not
understand. However, enough information is available
for the database system to apply optimization and cach-
ing techniques to improve performance.

3.2 Multi-relation Tuple References

It is often advantageous to have an attribute that
can refer to one of several relations. For example, a
tuple in the statements relation contains a reference to
a tuple in one of the individual statement relations, such
as ifstmts or asgstmts. Although storing references to
different relations presents no problem to the database
system, it is necessary to provide a means to determine
the relation that contains a tuple designated by a tuple

reference. This facility is provided by the rslation
operator. For example, to find all the if statements we
would say

range of s is statements
retrieve (s.all) where
relation(s.value) = “‘ifstmts’

3.3 Transitive Closure Queries

Some properties of programs are transitive. For
example, if a variable is used in an expression on the
right-hand side of an assignment statement, then it is
also used in the assignment statement. Suppose we
define the following relation:

uses(user=ref, thing=ref)

When we define the expression that contains v, a refer-
ence to a variable, we add the tuple (s, v) to the uses
relation where & refers to the expression. When an
assignment statement is created with ¢ as the right-hand
side, we add the tuple (s. ¢), where s refers to the state-
ment.

To determine if the variable z is referenced in some
statemnent y. it is necessary to ask if there exist tuples in
uses (y. a,). (a;. ag). ..., and (ay, z) for some sequence of
@; ... 8% Nz 0. This question is simply a matter of
determining if (y. z) is in the transitive closure of the
relation uses.

We define “closure(R)” to be the relation that
represents the transitive closure of a binary relation R
The statements that use the variable named *‘a’ can
then be found by saying

range of s is statements

range of ¢ is expressions

range of v is variables

range of u is uses

range of uclosed is closure(uses)

retrieve (s.all) where
u.user = 3 and u.thing = ¢ and
uclosed.user = e and uclosed.thing = v and
v.name = “‘a”

4. Execution Information

Most of a programmer’s activity in debugging a pro-
gram consists of trying to answer questions about the
program’'s execution. Traditional debugging tools allow
users to ask questions during execution such as “Where
am 17, “What is the value of variable a?, and “Where
does the value of a change?’. They cannot, however,
easily handle more complicated questions such as *From
the current point in execution where could procedure p
next be called?’ or “When is procedure p called from
procedure g?*°.

We view debugging as performing queries and
updates on a database that contains program execution
state information as well as source code information.

This model allows debugging facilities to be easily
integrated into the programming environment, since the
same user and database interfaces can be used during
debugging that are used for program construction.

The idea of having a unified model of program and
data is not new; programming systems such as Interlisp
[Teitelman and Masinter 81] offer such a view. However,
there are two important differences in our approach. We
are using a much more powerful data structure, rela-
tions, as opposed to lists. Furthermore, we do not use an
interpreter, which can be expensive, but rather, execute
programs compiled into machine instructions.

Although programs will run directly on the
hardware, the user is able to view runtime information as
though it were in the database. The program monitor
meakes this possible by providing the interface between
the database system and the executing program shown
in figure 3.

editor/

query
processor

program
monitor

Program
Database

executing.
program

Figure 3: Program Monitor Interface.

The user interacts with the programming interface
to construct and view programs stored in the database.
This interface translates directives expressed in pro-
gramming terminology into database commands and
displays the resuits in a traditional program form. In
response to a query, the database system may interro-
gate its own storage facilities or it may request data

from the program monitor. The user can also interact
with the executing program through the standard input
and output interfaces (e.g., a terminal).

The following examples demonstrate the power this
approach offers for processing debugging commands.
Suppose the programmer wishes to have the program
stop whenever the procedure named "buggy" is called.
To do this, we use a trigger [Eswaran 76} that might be
expressed as

range of p is procedures
when iscalled(p) where p.procedure.name = *‘buggy"
stop-program

Both the trigger condition function iscalled and the pro-
cedure stop-program are implemented by the program
monitor. The exact implementation will depend on the
hardware and operating system facilities, but all systems
provide some way for setting breakpoints in programs.
The speed of program execution when triggers are active
will depend on judicious selection of breakpoints and
efficient evaluation of trigger conditions.

Now suppose that the programmer wishes to have
the name and return value of each integer-valued func-
tion printed when it returns. This could be requested by
saying

range of p is procedures
when returns(p) where p.returntype = *‘integer"
print(p.name, p.returnvalue)

Most debugging facilities can handle the first type of
request, stopping when a particular procedure is called;
few can bhandle the second. The availability of source
code information in the database makes it possible to
easily determine which procedures are integer-valued
functions. Access to runtime information makes it possi-
ble to retrieve a runtime value in the same way as a nor-
mal database value.

To understand the interaction between the database
system and the program monitor, we can think of the
program monitor as deflning a relation

runtime(object = ref, value = Value)

where Value is an INGRES abstract data type (ADT)
[Stonebraker 82]. The program monitor implements the
operations allowed on values. The runtime relation
therefore can be used to make a view (such as pro-
cedures above) containing both static, compile-time data
and dynamic, run-time data.

Using triggers in conjunction with access to runtime
information provides an extremely powerful mechanism
for viewing the execution of a program. Conventional
debuggers provide a limited set of events and conditions
that may be brought to the attention of the user. Often
this means the programmer has the poor choice of too
little data or too much. The OMEGA debugger provides a
general way for the user to select those events and that
information that is most useful. Moreover, output pro-
vided by the debugger can be immediately entered into
the database. This provides a powerful mechanism for
obtaining and examining execution traces.

To provide this facility, we require database exten-
sions related to trigger processing. General triggers are
difficult to implement efliciently, but debugging events
can often be detected easily. For example, a call to a
particular procedure can be trapped without degrading
performance by temporarily putting an illegal instruc-
tion at the beginning of the procedure.

The ADT facility of INGRES allows the program moni-
tor to implement the operations defined on runtime
data. In addition, the database systermn must provide a
way for the program monitor to indicate that a particu-
lar trigger condition is true. This would allow the power
of the database and triggers to be extended to other
kinds of data.

§. Display Interface

Displaying program information on a terminal is a
matter of translating the internal program tree and sym-
bol information into a human-readable, perhaps graphi-
cal, form. Unlike a browser such as TIMBER [Stone-
braker and Kalash 82), the text representing a program
does not correspond in any simple way to the tuples and
relations that are used to generate it. In particular,
there is no way to calculate the number of tuples needed
to fill up the terminal screen.

For two reasons, the current implementation of
OMEGA manages a data structure outside of the database
that contains the displayed form of the program. The
first reason will continue to be true: aithough we can
always redisplay any part of the program, doing so is
expensive; so we keep previously formatted information
around. We hope the second reason is temporary: the
database system currently does not allow us to defilne a
set of information to be & '‘formatted view'" of other
information. What is required is a way to define a set of
tuples that are ‘“‘under surveillance'’ and locked, and a
way to cause recomputation of some data when specified
tuples are changed.

Our present implementation is inadequate for two
reasons. First, we must implement database browsing
operations such as forward and backward scrolling.
Second we must keep the database and displayed views
of the data consistent without the benefit of database
transactions.

Ordered relations and the portal mechanism pro-
posed in [Stonebraker and Rowe 82], should provide what
we need. We could store the displayed form of the pro-
gram in an ordered relation and use portals for brows-
ing. Portals support screlling ard provide locking of the
portion of the relation being displayed. Since both the
internal and external representations are in the data-
base, transactions must update both representations to
ensure that the data is kept consistent.

It would be expensive to have the correct display-
able form of the entire program always stored in the
database. Some changes to the database could alter a
significant amount of the displayable form, yet most por-
tions will not actually be displayed before they are
changed again. Therefore, as a user browses through a
program, OMEGA will compute the displayed form of any
parts not recently displayed.

6. Symbol Table Nanagement

In a compiler, a symbol table provides a means for
finding an object associated with a particular name in a
given context. Context-dependent name resolution is an
important aspect of a good program development sys-
temn. People tend to build a “mental working-set” of
objects and make frequent references to them, using
names that would be ambiguous if the context were
ignored. Using the approach of [Rowe B82)], this function
can be performed on the database by a query on a rela-
tion that has a name attribute and an attribute that
identifies the context.

As an example, consider name resolution in a
block-structured language. The basic unit of naming in
such languages is called a block, within which names
must be unique. The scope of a block is a collection of
blocks that are searched in some order when resolving a
name. Suppose we have the following declarations in a
Pascal program:

A;
var C : integer,
procedure B:
var C : integer:
end;
end;

There is a block associated with each of the procedures A
and B. The scope of A consists of only A; the scope of B is
the set {B, A{.

Suppose we have the following relations:

symbols (
name = string,
block = integer,
value = ref

)

context (
block = integer,
scope = integer,
level = integer

For the example, contezt contains the tuples (A, A, 1),
(B. B.2), and (B, A, 1). The level attribute determines
the precedence of blocks in a scope. In block B, the
name “C' refers to the C defined in B since the level of
(B. B, 2) is higher than that of (B, A, 1).

If the context relation is ordered by level, the sym-
bol with name z in block y can be found by taking the
first tuple from the result of the following query:

range of s is symbols
. range of b is context
retrieve (s.all) where
b.block = y and
b.scope = s.block and
s.name="z""

7. Version and Configuration Management

Although software changes over time, it is not
always the most up-to-date copy that is of interest.
Organizations often must support older releases while

developing new ones. A version is a snapshot of a pro-
gram or part of a program at a particular moment of
time. Because of, and despite, greater portability of
software, it is often necessary to support different but
largely identical pieces of software for different
hardware or application environments. A configuration
is a specialization of a program or part of a program to
meet a particular set of constraints. The difference
between versions and configurations is that versions are
ordered in time, with newer ones presumed to supercede
older ones, whereas all configurations are equally impor-
tant, and may coexist forever.

At the core of both version and configuration
management are two requirements that differ from most
database applications. The first is that there must be
several valid and consistent instances of data in the
database. The second is that it must be possible for mul-
tiple users to access and update these instances of data
concurrently. This is not always concurrent access in
the usual database sense; it is sometimes convenient to
allow new instances of data to be created that will subse-
quently be coalesced into a single instance.

When a new version of a program is created, it would
be inefficient to duplicate the database. Doing so would
also make it more difficult to establish the relationship
between the old and new versions. Version control sys-
tems such as SCCS [Rochkind 75] use a differential file to
compactly store program versions. The original version
of the file is kept as are all updates necessary to
transform the flle to the latest (and all intermediate)
versions. Hypothetical relations [Stonebraker and Keller
80] can be implemented using the same technique and
cen be used to provide version control for programs
stored in a database.

One of the problems with systems like SCCS is that
they require the user to explicitly state when new ver-
sions are created. Hypothetical relations do not solve
this problem since there is no way to have old versions
automatically removed. To save space and speed up
queries involving past versions, the user must explicitly
dispose of old versions. Coalescing of versions is also a
manual process; the exact semantics of a change to an
old version is a complex issue currently being studied.

Configuration management involves automatically
building a program out of its various pieces according to
the given parameters. To minimize the time it takes to
build an executable program, only the pieces that have
changed or depend on pieces that have changed should
be recompiled.

Tools such as make [Feldman 78] provide this ser-
vice, but require the user to specify the program inter-
dependencies. Make uses an auxiliary file that contains
dependency information; this file must be continually
updated by the user as the program changes. Since
make uses a text flle as its basic unit of software and
files usually contain several procedures, it also often
recompiles more code than is necessary. Using a data-
base, dependency information is not duplicated and the
build process can be done without any user assistance.
Moreover, the information is directly retrievable at what-
ever granularity is desired. For example, to find all the
procedures that depend on a procesdure named
“changed" we could say)

range of p is procedures

range of s is statements

range of uclosed is closure(uses)

retrieve (p.all) where
uclosed.user = p and uclosed.thing = s and
relation(s.value) = “‘calistmt’ and
s.value.proc.name = ‘“‘changed"

Configuration management also requires the ability
to determine which program information belongs to
which configurations. A common way to implement this
feature in conventional programming systemns is with
conditional compilation facilities. Simple control state-
ments are introduced to indicate which statements
ought to be compiled for different conflgurations. The
database provides more complete control over which
program elements relate to which configurations, since
potentiaily each object could be tagged with a set of
configurations. Generating a conflguration would involve
restricting a query to a particular tag value.

The most important idea that databases bring to
version and conflguration control is that a version or
configuration is a view of the program. To get the most
out of this notion, it is necessary that the difficult prob-
lems of view updates and consistency be solved. We are
providing some important applications to motivate the
search for solutions, and look forward with great expec-
tations for future database systems that can support
these kinds of operations.

8. Conclusions

Storing program information in a general purpose
database system provides a powerful mechanism for
manipulating existing software. We are constructing a
programming environment that uses a relational data-
base system to manage all program information. This
will enable programmers to more rapidly develop,
modify, and debug programs.

Ordered relations and variable length strings have
been added to the relational model for text processing;
these are also useful for representing program informa-
tion. Hypothetical relations could be useful in support-
ing version control. In addition, we have suggested three
extensions to improve support for programming environ-
ments: tuple references, a transitive closure operator,
and user-implemented triggers. Tuple references are
similar to other proposals for managing unique ids, but
can be dereferenced in a way that implicitly requires the
database system to retrieve tuples.

These extensions do not represent a radical change
in the relational model and are sufficiently general to be
of use to a wide variety of applications. For example,
computer-aided design (CAD) systems for integrated cir-
cuits must manage both hierarchical and relational data
and could use a construct like tuple references.

Data management is a fundamental problem of com-
puting. For general purpose database systems to be use-
tul through a wide variety of applications, they must pro-
vide primitives for data modeling and access. In analyz-
ing the database needs of a software management sys-
tem, we have tried to identify those features that will
provide the most leverage for manipulating complex
data structures.

9. References

[Brown, Cattell, Suzuki 81]
Brown, M., Cattell, R., and Suzuki, N., ''The Cedar
Database System'’, Procsedings of the 1981 ACM
Conference on the Management of Data, Ann
Arbor, Michigan, May 1981,

[Codd 79] .
Codd, E. F., “Extending the Database Relational
Model to Capture More Meaning™, ACH Transac-
tions on Duntadase Systems, Vol. 4, No. 4,
December 1979.

[Eswaran 76]
Eswaran, K., ‘‘Specifications, Implementations,
and Interactions of a Trigger Subsystem in a
Integrated Database System', /BN Research, RJ
1820, San Jose, Ca., August 19786.

[Feldman 78]
Feldman, S. 1., *Make ~ A Program for Maintain-
ing Computer Programs”, Bell Laboratories, Mur-
ray Hill, New Jersey, 1978.)

[Rochkind 75)
Rochkind, M. J.. 'The Source Code Control Sys-
tem", JEEE Transactions on Soffware Engineer-
ing, Vol. SE-1, December 1975.

[Rowe 82]
Rowe, L., private communication.

[Stonebraker 82]
Stonebraker, M., 'Application of Artificial Intelli-
gence Techniques to Database Systemns', Elec-
tronics Research Laboratory, University of Cali-
fornia. Berkeley, Ca., Memo 82/31, May 1982.

(Stonebraker et al. 82)
Stonebraker, M., Stettner, H., Kalash, J.. Gutt-
man, A, and Lynn. N., “Document Processing in a
Relational Data Base System', Electronics
Research Laboratory, University of California,
Berkeley, Ca., Memo 82/32, May 1982.

(Stonebraker and Kalash 82]
Stonebraker, M.. and Kalash, J., "“TIMBER: A
Sophisticated Relation Browser”, Electronics
Research Laboratory, University of California,
Berkeley, Ca., Memo 82/17, January 1882.

[Stonebraker and Kelter 80]
Stonebraker, M., and Keller, K., "“Embedding
Hypothetical Data Bases and Expert Knowledge in
a Data Manager”, Proc. 1980 ACM-SIGMOD Confer-
ence on Management of Data, Santa Monica, Ca.,
May 1980.

[Stonebraker and Rowe 82]
Stonebraker, M., and Rowe, L., *'Database Portals:
A New Application Program Interface”, Electron-
ics Research Laboratory, University of California,
Berkeley, Ca., Memo 82/80, November 1982.

[Stonebraker, Wong, and Kreps 76]
Stonebraker, M.. Wong, E., and Kreps. P., “The
Design and Implementation of INGRES", ACM
Transactions on Database Systems, Vol. 1, No. 3,
September 1876.

[Teitelman and Masinter 81]
Teitelman., W., and Masinter, L., "The Interlisp
Programming Environment”, Computer, Vol. 14,
No. 4, April 1981.

