The Beta2-spline: A Special Case of the Beta-spline Curve
and Surface Representation

Brian A. Barsky
Tony D. DeRose

Berkeley Computer Graphics Laboratory
Computer Science Division
Department of Electrical Engineering and Computer Sciences
: University of California
Berkeley, California 94720

Tech. Report No. UCB/CSD 83/152
November 1983

ABSTRACT

This paper develops a special case of the Beta-spline curve and surface tech-
nique called the Beta2-spline. While a general Beta-spline has two parameters (%
and B;) controlling its shape, the special case presented here has only the single
parameter §,. Experience has shown this to be a simple, but very useful special
case that is computationally more efficient than the general case. Optimized algo-
rithms for the evaluation of the Beta2-spline basis functions and subdivision of
Beta2-spline curves and surfaces are presented.

This work was supported in part by the National Science Foundation under grant number ECS-8204381 and
the Defense Advanced Research Projects Agency under contract number N00039-82-C-0235.

1. Introduction

A spline curve or surface is a piecewise function with continuity constraints at the locations
where the pieces of the function meet (often called the joints, in the case of curves, and borders,
in the case of surfaces). Let Q,(u) denote the it segment of such a piecewise representation’.
Since Q,(u) is a vector-valued function, it can be expressed as a tuple of scalar-valued functions,
one for each spatial dimension. A two-dimensional curve segment can thus be expressed as

Q. (1) = (X,(4),Y,(x)) (L1)
We adhere to the usual convention of restricting the domain parameter u to the range [0,1].
Thus, Q,(0) is the starting point of the it segment and Q,(1) is the ending point (see figure 1).

Figure 1.
A section of a vector-valued spline curve. Triangles show the locations of the joints.

A special case of spline functions called a blended polynomial spline has become popular in
recent years because of its elegance and computational efficiency. B-splines and Bézier curves and
surfaces are examples of this type of spline. A ssgment of a blended spline curve takes the form

Ql(u) = Evm\-vBr(u) (12)

r=0
The functions Bo{u),By(u), - - - ,Bi(u) are called the blending or basis functions. The sequence of
vertices <V,,V, .y, - -+, ¥V, 4> forms the control polygon of the curve segment. An example of

a B-spline curve and its corresponding control polygon is shown in figure 2.

*Vectors and vector-valued functions are denoted by boldface type, as in V and Q(u)

Figure 2.
A control polygon and its B-spline curve. The control vertices are highlighted by plus
signs; the joints are denoted by triangles.

Surfaces can also be constructed using a blended technique to form what is known as a fen-
gor product surface. A single tensor product surface segment, more often called a surface patch, is
described by two variable parameters u an::l v, lIn particular, the i,7*® such patch is defined as

S,'](u,v) = Z va+7,1+sBr(u)Bs(U) (L3)
r=0 s=0 co.
The array of vertices V, 4, 4 is called the control hull or control graph of the surface patch.

These surface patches are pieced together to form a mosaic making up the spline surface. Once
again, it is usual to restrict the domain parameters to the range [0,1]. S, ,(u,0) denotes a curve,
the curve bounding the surface at the v=0 contour. The other three boundary curves are
S, ,(u,1), 8, ,(0,v), and S.,,(1,v) (see figure 3).

Figure 3.
A spline surface in the region of the patch S, ,(,v).

1.1. Continuity

To discuss the continuity of a spline curve at the joints we introduce the concepts of the
first and second derivative vectors. Differentiation of a vector-valued function is performed by
standard scalar differentiation on each component of the vector. Thus, for a two-dimensional vec-
tor function Q,(u), the first derivative vector written in component form is

dQ,(u) __(dX,(U) d}’.(u)) ' 14
du du ' du (14)
Similarly, the second derivative vector written in component form is
d°Q,(u) _ d°X.(u) d‘*’Y.(u)) : Is
de® ' du? | du? (1.3)
For convenience, we denote the first derivative vector as Q,(l)(u) and second derivative vector as
Bu).

For positional continuity of the spline curve, the ending point of the i*" segment must
match the starting point of the i+ 1® segment. This requirement is not sufficient to make the
joint appear to be smooth however. Until recently it has been assumed that for a spline to appear
smooth the first and second derivative vectors must be continuous at the joints. However, first
and second derivative continuity is too strict; it is sufficient to require that the unit tangent vector
and curvature vector remain comtinuous at a joint.1:3 It is not immediately obvious that con-
tinuity of the unit tangent vector and curvature vector is less restrictive than continuity of first
and second derivative vectors, but this can be shown by considering the definitions of these quan-
tities. 1

t

2. Motivation for a Beta2-gpline

In the general case of the Beta-spline, the unit tangent vector and curvature vectors are con-
tinuous across the joints in the spline. In the special case presented here, the requirement of con-
tinuity of the unit tangent is replaced with that of the first derivative vector; this results in a

-5-

spline possessing continuity of the first derivative vector and curvature vector. Requiring first
derivative vector continuity removes the freedom to vary the shape parameter called ;. How-
ever, since curvature vector continuity is used instead of second derivative vector, the second
shape parameter, called (7, may still be varied. The choice of this special case has been made
based on both practical and theoretical results.

From a practical standpoint, first derivative and curvature vector continuity produces a
spline technique that is simple to understand and useful from the point of view of the designer.
Experience with the general Beta-spline has shown that users of the technique find 3, a more
intuitive parameter than 8. As section 4 will show, 8, behaves in what can be called a sym-
metric, or uniform manner, while §; behaves in an asymmetric, or non-uniform way.? It is the
symmetry of 3, that makes it the more appealing shape parameter.

On the theoretical side, the derivation of the equations governing the evaluation and
behavior of a Beta2-spline is easier. Moreover, the form of the resulting equations is simpler,
leading of course to algorithms that are computationally more efficient. The simplicity of the
resulting equations stems from the fact that §, enters the solution of the general Beta-spline in a
much more complex way than 8, Thus, requiring 5, to take on its default value of 1 allows
extensive algebraic simplification.

The next section gives the derivation of a Beta2-spline. Section 4 then examines the quali-
tative behavior of f;. The remaining sections give optimized algorithms for the evaluation and
subdivision of Beta2-spline curves and surfaces.

3. Derivation of the Beta2-spline Basis Functions
The i*® segment of a Beta2-spline curve takes the form

QuBzu) = 3 Vipob(Bs); 0Su<I (L.1)

r=2

We seek the four functions b_o(8z;u),b_1(Be;),bo{Bo;u),b1(B2;u). If we assume a cubic polynomial
form for each of the basis functions, then each can be expressed as

3

b (Bau) = Y cp(Bo)u’ (111.2)

g==0
Thus, discovery of the sixteen unknowns ¢r(B2), -2<r <1, 0< g <3 is sufficient to completely
describe the BetaZ-spline basis functions. These coeflicients must be constructed such that the
resulting curve has positional, first derivative vector, and curvature vector continuity. Positional
continuity between the segments Q,{8yu) and Q,4,(8zu) implies

Q. +1(620) = Q,(Bz1) (111.3)
For continuity of first derivative vector, we require that
QY.(820) = QM(B1) (ITL4)

It can also be shown 31 that if the first derivative vector is to be continuous then the curvature
vector is continuous at this joint if and only if

Q24(B0) = QP8 1)+ AR (8x1) (I1L.5)
If 8, = 0, the constraint equation (II1.5) above reduces to the requirement for continuity of the
second derivative vector.

Substitution of the blended form of Q,(u) into the position constraint equation (II1.3) leads
to
Vio1b.o(B2;0)+ V., b_1(B20)+ V4100 82:0)+ V,4201(820) = (IIL6)
Vo ob o fo;1)+ V151 Ba1)+ V. bo(B 1)+ Vg1 bi(82:1)
For this relation to hold for arbitrary vertices the following five constraints must be simultane-
ously satisfied.
0= by(Pz1) (111.7)
b_o{Be;0) = b,4(Bz1)
b-l(ﬂz;o) = bo(ﬁzil)
bolBe;0) = bo(B2;1)
by(82;0) = 0 :
In a similar manner, the continuity of first derivative vector can be rewritten as the five

constraint equations
0 = bP(Bx1)
bg)(ﬂzﬁo) = bg)(ﬂz;l)
b1(82;0) = b§V(B1) (IIL8)
b§(B2;0) = 8(Bzi1)
551)(52}0) =0
Finally, the continuity of the curvature vector results in the five equations
0 = b3(Bz1)
b@(ﬂz;o) = bff)(ﬂ2;1)+ ﬂzbg)(ﬂz;l)
bD(85:0) = 681+ B2b{V(B2i1) (IIL9)
bP(82:0) = b{P (B 1)+ Bob{V(Bi1)
51(2)(52;0) =0
Substituting the polynomial form chosen for the b,(Bxu) s leads to a set of 15 constraints in the
16 unknown coeflicients. This amounts to an under-determined system of equations which can be
made complete by introducing another, linearly independent, constraint. The constraint we
choose is a normalization to guarantee that the curve segment is within the convex hull of the
four vertices that define it. To endow the Beta2-spline technique with the convex hull property,
the basis functions must sum to unity over the interval [0,1]; i.e.,
bof By u)+ bl Bz)+ bol By)+ bilBzn) = 1
This is actually four constraints, one for each power of u. Three of the equations can be formed
via linear combinations of the previous 15 equations; the remaining constraint is
¢_po(Ba)t c-10(B2)+ coolf)t crolBe) = 1
While it is possible to solve the above system of equations numerically for each value chosen for
B,, it is also possible to solve the system algebraically using an algebraic manipulation system
such as Vaxima.!! The resulting solution can be written as a matrix C of the coeflicients of the
basis functions*’,

€20 €10 €00 €10 2 B+8 2 0
_ €21 €a,1 Coa €1 -6 0 6
Cl8e) = ¢z Ca2 2 Cu2| T 6 -3(B+4) 3(F+2) O (II1.10)
C.o3 C.1,3 Cos C12 -2 2(Ba+3) -2ABt3) 2
or as the basis functions themselves
boffzu) = 27(1-u)’
b_l(,BQ;U) = "[(;32+ 8+ Uz(—3(52+ 4)+ 2“(,32‘*‘ 3)))
bo(Bz;u) = {2+ u{6+ 3u (Bt 2}-2u(fo+ 3))) (IL.11)
bl(ﬁz;u) = 2’71‘3
where
1
= I1.12
7T Bz (I.12)

4. Behavior of 3,

Examination of the curvature vector constraint equation (IT1.5) shows that as f; becomes
large the second derivative (and hence the radius of curvature) of the succeeding segment also
becomes large. In the limit of infinite o, the radius of curvature of the adjoining segment
becomes infinite. In other words the adjoining segment approaches linearity. In this limit, Barsky
and Beatty* show that the Beta-spline curve becomes a piecewise linear function that interpolates
the vertices of the control polygon. This behavior of [suggests that it acts like a tension

** o matrix is denoted by a boldface character with a diacritical bar

-7-

parameter and thus B, is called tension. Increasing the tension of a Beta2-spline amounts to

increasing the value of 3, (see figure 4).

Figure 4. :
The curves above differ only in the value of Bo. The value of Bo 15 O for the top curve, 5
for the middle curve, and 20 for the bottom curve. Plus signs denote control vertices, tri-
angles denote joints. Note that as 52 increases toward infinity, the curve uniformly ap-

proaches the control polygon.
Increasing the tension applied to a Beta2-spline surface has the effect of making the surface

more polygonal. In the limit of infinite tension, the surface can be shown to be coincident with
the control graph that defines it. This behavior is shown in the figure 5.

P o
ERWN

by 4 ’»
AN ~
L IHE T

Figure 5.
This sequence of Beta2-spline surfaces and control graphs shows the effect of increasing
the value of By. The values of fo are 0 for the top left surface, 5 for the top right surface,
10 for the bottom left surface, and 50 for the surface in the bottom right position. As B
increases, the surface uniformly approaches the control graph. In the limit of infinite By,

the surface actually coincides with the control graph.

Barsky and Beatty 4 also show that a curve segment or surface patch is guaranteed to be
within the convex hull of the vertices that define it for non-negative values of S..

-9.

When B,=0, the spline has continuity of first and second derivative vectors; it is thus
equivalent to a cubic uniform B-spline when 8,=0. In other words, a Beta2-spline (or a Beta-
spline) is a generalized form of a cubic uniform B-spline.

Recent work? has investigated methods of changing the shape parameters in a localized por-
tion of the curve or surface. However, we will not deal with these issues in this paper.

5. Evaluation of the Basis Functions

If the curve is to be drawn by repeated evaluation of (IIL.1), say at the domain values
(ugty, * * - ,u,), the basis functions must be evaluated at these points. Fortunately, it is
sufficient to evaluate the coefficients of the basis functions once as an initializing step, then use
them in 2 Horner's rule computation at the p+ 1 values of the domain parameter. The following
algorithm can be used to tabulate the values of the basis functions given fy:

compute_c{ B, ¢);

for all u in {uguy, - - - u,} do
compute_b(¢, u, b);

where

procedure compute_c{ f,, ¢)
local variable 7;
begin

v = 1/(B+ 12);
C20 = 27,

c_10 = YBa+ 8)
ey = 378+ 4);
13 = c_golfat3);

o0 = C_20

o1 = 300}

Co,2 = 3’7()62""‘ 2),

Co,3 = —C_1,3

€13:= C_20
end;

procedure compute_b(¢, u, b)
local variable one_minus_u;

begin :
one_minus_u = (1-u);
b= c_pq one_minus_u®
by = caot u¥caot U cog);
bo 1= oot #(cont u(cogt v Cos));
byi=¢13 u®,
end;

The above algorithm requires 5+ 6(p+ 1) additions / subtractions, 8+ 11(p+ 1) multiplications,
and 1 division. When p is small, this cost is roughly 50% of the cost of the algorithms given by
Barsky? ! for general Beta-spline evaluation.

8. Subdivision

8.1. General Subdivision Schema for Curves

The previous section described an algorithm for the evaluation of a Beta2-spline curve based
on the blended definition given in (II.1). This method of curve evaluation does have its problems

-10 -

when used to approximate the curve, however. If the evaluation algorithm is being used to obtain
a piecewise linear approximation to the true curve, the step size for the domain parameter is hard
to estimate to achieve a given spatial accuracy. Moreover, if the curve segment is highly curved
in one region and relatively flat in another, the approximation will not be uniformly good.

The subdivision, or splitting of a curve or surface has received considerable attention in
recent years.”-8:10.12,13,14 For instance, Catmull® introduced an algorithm that subdivides a sur-
face that is to be approximated. However, Catmull's technique subdivided the surface until the
pieces were of size on the order of a pixel. Lane and Carpenter!? have improved the technique
for splines that have the convex hull property. Very simply, their approach is as follows:

The sequence of vertices describing the segment in question is split into two sequences each
containing the same number of vertices as the original. These new sequences describe the ”left”
portion and “right” portion of the original curve, respectively. We call the sequence describing
the ”left” part the "left sub-polygon”, and the sequence describing the “right” part the “right
sub-polygon” (see figure 6). It is common to split the curve at the parametric midpoint (the point
where the domain parameter u=1/2), but it is also possible to perform non-midpoint subdivi-
sion.2 9 Midpoint subdivision is sufficient for our purposes. However, subdivision at the parametric
midpoint does not, in general, yield two pieces of equal arclength.

Figure 8.
The figure on the left shows a curve and ils control polygon. The figure on the right dep-
icts the curve, its control polygon, and the left and right sub-polygons corresponding o a
midpoint subdivision.

Since the original curve lies within the convex hull of its control polygon, the sub-polygons will be
flatter than the original. Recursive application of this subdivision procedure must result in suc-
cessively flatter sub-polygons. The convex hull property also guarantees that a relatively flat con-
trol polygon must define a relatively flat curve. Thus, the recursion stops when the sub-polygon
is deemed to be flat to within some tolerance. At this point, the curve generated by the polygon
can be approximated by a single linear segment. The union of these linear approximants yields a
uniformly accurate representation of the original curve segment. If V denotes the original control
polygon, V! represents the left sub-polygon, and V7 the right sub-polygon, then the schema can
be stated more precisely by the following recursive procedure:

-11-

procedure Approximate_Curve(v, €)
local variable V* , Ve,
begin
if V is flat to within ¢ then
Linearly_Approximate(V);
else
Subdivide(V, V£, V¥);
Approximate_Curve(Vi e);
Approximate_Curve(VE, ¢);
endif;
end;

The procedure Subdivide splits its first argument into left and right sub-polygons, which are
returned in the second and third arguments, respectively. The routine Linearly_Approzimate gen-
erates a single line segment to approximate the curve defined by the control polygon given as its
argument. The determination of the flatness of a control polygon can be done by testing the per-
pendicular distance of interior vertices from the line segment connecting the starting and ending
vertices (see figure 7). If the largest such distance is less than the flatness criteria ¢, then the con-
trol polygon passes the flatness test and is approximated by a linear segment.

Figure 7.
Determination of a flat control polygon. It is deemed flat of the marimum perpendicular
distance (dashed line) between each interior vertez and the line segment connecting the
endpoints of the control polygon (dotted line) is less than the tolerance €.

If the spline technique being used the endpoints of the control polygon, then the curve segment
generated by a control polygon within the fiatness criterion can be approximated by the line con-
necting the endpoints. Bézier curves are an example of such a technique.

68.2. General Schema for Surfaces

The recursive subdivision algorithm for surfaces proceeds in much the same way as for
curves. The primary difference is that each time the surface is to be split there are several ways
the subdivision can be done. Should the surface be split along the u parametric direction, or the
v parametric direction, or both? One way to answer this question is based on the shape of the
control graph describing the surface. The surface should be subdivided along the parametric
direction, or directions, in which the surface is highly curved. Although it is in general hard to
determine if a surface is flat, the convex hull property guarantees that a relatively flat graph must

-12-

produce a relatively flat surface. Although it is not generally done in practice, a surface can be
split in both directions by splitting along one direction, say the u direction, to obtain two sub-
graphs, followed by splitting the sub-graphs along v. When a graph is deemed flat to within the
given tolerance, the surface it defines can be approximated by ome or more polygonal approxi-
mants.

Let V represent the control graph for the surface to be approximated, VLU and VFY be the
left and right sub-graphs resulting from a split in the u direction, respectively, and VLY and VRV
be the left and right sub-graphs resulting from a split in the v direction, respectively. With these
definitions, the recursive subdivision process for approximating a surface by a set of polygons can
be stated as:

procedure Approximate_Surface(V, ¢
local variables V2Y, VAav, VLV, VAav.
begin
i V is flat within ¢ along u then
if V is flat within ¢ along v then
Polygon_Approximate(V)
else
Subdivide_Along_v(V, V£V, V#Y);
Approximate_Surface(VEV e);
Approximate_Surface(VBV o)
endif
else
Subdivide_Along_u{ V, VLU VRYy,
Approximate_Surface(ViU),
Approximate_Surface(VY, €);
endif,
end;

The flatness of a control graph can be tested by computing a plane containing three of the
four corner vertices of the graph. The perpendicular distances of the other vertices to this plane
are then computed. The graph passes the flatness test if the largest such distance is less than the
tolerance ¢ (see figure 8).

-13-

Figure 8.
Flatness testing for a control graph. Three arbitrarily chosen corner vertices are used to
define o plane (shown dotted). The perpendicular distances from the other vertices in the
graph to this plane are computed (shown dashed). If the largest such distance 13 less than
the tolerance €, the graph is deemed flat.

8.3. Subdivision of Beta2-spline Curves

8.3.1. Approach 1

Section 6.1 presented the general scheme for the subdivision of spline curves that possess the
convex hull property. In this section, we develop the method by which a Beta2-spline curve can
be subdivided into left and right sub-polygons. We are, in essence, constructing the procedures
Subdivide and Linearly_Approzimate referred to in section 6.1. However, this section does not go
into detail concerning the derivation of the mathematics upon which these procedures are based.
The interested reader is referred to Barsky® for a more complete development.

We focus attention on the single segment Q(Bz;u) of the Beta2-spline curve, and for con-
venience we drop the subscript on Q.(8z;u) and just write Q(Az;u). A multi-segment curve can
be handled on a segment by segment basis using the algorithms given in this section.

Let V represent a column matrix composed of the vertices defining Q(Bq;u), ie.
0
1

V= . (VL1)

_ 3
Since each element of V is itself a vector, (VI.1) is a shorthand for several scalar-valued column

matrices. For instance, if the vertices are two-dimensional, then V can be expressed as

Vil |V§
— Vif (Vi
V= vil vy) (V1.2)
Vil Vi
Using this representation, Barsky et al® have shown that the left and right sub-polygons V& and
V7, respectively, are given by _ o
\4 \G
L Vi 7 Vil A "5
VY = vy =LsV and V" = i = R,V (V1.3)
\g \J

-14 -

where, for a Beta2-spline, the L; and R; matrices are given by

(B3+ 178+ 48) 3+(3:+8) 18l Bet 6) .
2(B+ 4) 4 4(B+ 4)
(B2t 6) 29(fa+ 3)
_ T 1) Wb+ 9) (Bt 9) 0
L, = B, 3(o+ 8) (82+ 268,+ 96)
ey 1 4(f+ 4)
VBBt 8) (BF+96-12) (B34 2193+ 14454 288) 1
BT T8 8(Bot 4) 8
and)
1 (B3+ 2183+ 1440+ 288) (B+ 98-12) vBo(Bt 8)
g ! 8(5z+ 4) T3 TT8(Bt 4)
0 - (B2+ 268,+ 96) 362+ 8) . B2
5 4Byt 4) 4 "2(Bat)
p= 24(Bo+ 3) (Bz+ 6)
0 T 1B+ 9) "t 9)
o) ~Bo(B2+ 6) 37(Ba+ 8) . (B2+ 1785+ 48)
4(B+ 4) 4 2(82+ 4)

If the vertices are two-dimensional, because of our shorthand form, equation (VI.S-

component form becomes

Vs Vi

) il
V¢ — (L7 L,7) = (G| e T

(f pandi}) (Lﬁvgrﬂ‘/‘g

Vi Vi

(V1.4)

written in

(V16)

The matrices I—Jﬂ and ﬁ,g are called the Beta2-spline midp-oir;t sul;dit;ision matrices. It is also possi-
ble to do non-midpoint subdivision,_5'2v9 but for our purposes midpoint subdivision suffices.
Notice that Eﬁ is a permutation of Ly, meaning that only the elements of f_g need to be com-
puted. This observation leads to the following procedures for the evaluation of Ly and Ry:

- 15 -

procedure compute_L(82, L)
local variable 83, t1, 7,727 Yo V5

begin
ﬂ'.? = fof;
ty = fo+8;

1 = 1/{B+ 12);
Yo i = /(Bo+ 4);

Vs = T2/ 2;
T4 7 73/2§
5 = ’74/2§

Ly, = 785+ 1752+ 48);
Loy = 7o{B+ 6);

= 730

Ly, = -52\7s

=~
£
|

Ly, = 075t

Log = m{fat 9);

L 32 ‘&= Lo

L 4,2 = ‘-0.125”[1([922+ 9,82—12),

L 1,3 = "025/92L 3'1;

Log = 275(Ba+ 3);

L ag == 74(B3+ 268+ 96);

L 4,3 = "{5(}92(/322+ 21/92’!‘ 144)+ 288),

L4, = 0.125;
end;

procedure compute_R(L, R)
begin :
for i = 1to 4do
for j = 1to 4do
R:,] = L5—l,6—};
end;

These procedures_require_a total of 15 additions / subtractions, 22 multiplications, and 5 divi-
sions. Once the Ly and R; matrices are computed in the initialization step, the procedure Subdi-
vide_3; given below can be used to split a Beta2-spline curve segment into left and right sub-
polygons.

procedure Subdivide_8 vV, Vi VE)

V&= L, Vot L12Vi+ L1 3Vy;
VlL = L2'1V0+ L2'2V1+ L 2'3V2;
Vii= L3 Vot L3Vt LasVay
Vi = L Vot Ly2Vit+ LgsVat L4V

V= R Vot Ry 2V i+ R 3Vt R4V
VI = RyoVi+ R 3Vt RoyVs;
V§F i= Ry2Vi+ R3sVot R34V
VE = RyoVi+ RysVot Ry Vs
end;

Since each expression in the procedure above is vector-valued, most programming languages

- 16 -

require the corresponding scalar expressions for each spatial dimension. Thus, if d denotes the
number of spatial dimensions, the above procedure requires 184 additions/subtractions, 264 mul-
tiplications, and no divisions.

We must now determine how to approximate the Beta2-spline curve generated by a flat con-
trol polygon. As was mentioned above, if the curve is known to interpolate the endpoints of the
control polygon, then a good linear characterization is the line connecting the endpoints. A
Beta2-spline curve does not interpolate the endpoints, however. Instead, we use a line connecting
the starting point of the curve Q(4:;0) and the ending point Q(S51). The starting point is

Q(B50) = Vobo(82;0)+ V1by(85,0)+ Vabo(B50)+ V361(62;0) {(VLT)
Using (I11.11) this expression reduces to
Q(62:0) = 7(2(Vo+ Vi)+ (B2 8)V,) (V18)
For computational efficiency, we introduce the quantities
n=2
1y = (B2t 8)

Equation (V1.8) can then be rewritten as
Q(82,0) = n(Vot Vo)+ nV,
The ending point Q(Js;1) can similarly be shown to be given by
Q(Ax1) = AV 1+ V)+ (B4 8) V) = ny(V+ Vi)+ 72V, (VL.10)
The coeflicients 7, and 7, only need to be computed once, during the initialization step;
pseudo-code for their evaluation is

procedure Compute_tau(8y, 71, 72)
local variable 7;

begin
v = 1/{B+ 12);
n =27
1o 1= 4(Bo+ 8);
end;

Once the taus have been computed, the following procedure can be used to approximate a rela-
tively flat control polygon by a single line segment:

procedure Linearly_Approximate B4 vV, n, To)
local variable P;, Py;
begin

Py = n(V_o+ Voj+ 2V _y;

Py = (Vo + Vi)+ 2V,

Output_Segment(P, Py);
end;

The procedure Output_Segment outputs a line from the first argument to the second argument.
Finally, the algorithm that approximates a Beta2-spline curve using Approach 1 can be stated as

-17 -

procedure Approximate_Curve_g, 1(V, e m, 72)
local variable V¢, VF;
begin
if V is flat to within ¢ then
Linearly_Approximate_f, 1(Vv, . Ta);
else
Subdivide_8o{ V, V£, VF);
Approximate_Curve_8, 1{ VI €, 1)
Approximate_Curve_g_1(VB € 1, m);
endif;
end; .

Compute_L(Bz, L);

Compute_ R(L, R);

Compute_tau(f2, 7, T2);
Approximate_Curve_f, 1(V, ¢, 7y, 72);

Operation Count

The calls to Compute_L, Compute_R, and Compute_tau combine to require 17 additions /
subtractions, 24 multiplications, and 6 divisions. For vertices of dimension d, k calls to Subd:-
vide_8, costs 18dk additions / subtractions, 264k multiplications, and no divisions. If there are &
calls to Subdivide_f,, there must be k+1 calls to the linear approximation routine
Linearly_Approzimate_§,. Thus, using Approach 1, k subdivisions of vertices of spatial dimension
d will require 17+ 4d+ 22kd additions | subtractions, 24+ 4d+ 30kd multiplications, and 6 divi-
sions. We are purposely ignoring the details of the polygon flatness testing as this is dealt with in
detail in Barsky.®

8.3.2. Approach 2

Section 6.3.1 presented what could be called the straightforward approach to the approxi-
mation of a Beta2-spline curve by a set of linear segments. However, there is a more convenient
and computationally more eflicient method of linear approximation. This method, which we call
Approach 2, converts the Beta2-spline segment to be subdivided into a cubic Beézier curve.
Although recent work allows Bézier subdivision at any arbitrary parametric value,? 9 we use the
efficient midpoint subdivision algorithm of Lane and Riesenfeld!3 Not only is the procedure
Linearly_Approximate trivial for Bézier curves, but the procedure Subdivide is also more efficient
computationally. Thus, Approach 2 can be stated as

procedure Approximate_Curve_g8, 2(v, B, €)
local variable W;
begin
Map_g, Curve_To_Bézier(Vs, Bo w);
Approximate_Bézier(W, ¢);
end;

The procedure Map_g, Curve_To_Bezier converts its first argument, assumed to represent a
Beta2-spline control polygon, into a Bézier control polygon, returned as the third argument. The
Bézier polygon is constructed so that it will generate the same curve when blended with a Bézier
basis set as the Beta2-spline control polygon generates when blended with the Beta2-spline basis
set. I_/Igtlﬁma_ticaily stated, if (Vo,V1, Vg, V3) are the vertices of the Beta2-spline control polygon,
and (W, W, W, W) are the vertices of the Bézier conatrol polygon, then we require that

1 — am—
E V,+zb,(52;u) = Eer,(U) (Vlll)
r==-2 r=0
where the functions Bo(u),B;(u),Bo(u),Bs(u) are the cubic Bézier basis functions:

- 18 -

3
B/(u) = L u'{l-u)*™ §=0123 (V1.12)
Equation (VL.10) can alternately be written in matrix form as
0
1
[b—z(ﬂz;u) b_y(Bau) bo(Bz 1) by(Bau)] . = (V1.13)
3

[Bolu) By(u) Bo(u) Bs(u)|

3
Since both sets of basis functions are cubic polynomials, we can write them as
[b.ofBzu) balBzu) bolBzu) bulfzu)l =1 u u® u’C (VI1.14)
and
_ [Bolu) Bi(t) Bo(u) Bsfu)] =[1 u u® oD (VL.15)
where C is defined in (II.10) and the matrix D is the Bezier coeflicient matrix; specifically
1 0 00
_ 33 00
D=3 5 3¢ (VL.16)
13 31
Substituting (V1.15) and (V1.16) into (V1.13) yields
0 0
1 u u? u’C = 1 u u? «%D M (VL.17)
2 W o
: 3 3
Since the powers of u are linearly independent, equation (VL.17) can hold if and only if
W=D'CV (VL18)
where :
0 0
— 1 1
W= hv. V= 2 (VI.19)
3 3

Thus, equation (V1.18) defines the mapping between a BetaZ-spline control polygon and a cubic
Bézier control polygon. The matrix that does this mapping D'C can be written in component

form (using Vaxima) as
7w T T, O

0 r, 2r, O

0 2, 7 O!

0 7 TIJ

We now present the procedure that accomplishes the mapping:

D'C = (V1.20)

- 19 -

procedure Map_g, Curve_To_Bézier(V, 8o, W)
local variable 7, twomy, 72, 7;

begin
~o= 1f(B+ 12);
T =27
twory == 21y;
1o = (ot 8)7;

W = 1y(Vot+ Va)+ 2V
W, = twor, Vot 72V y;
WQ = lwo T1v1+ Tng;
W3 = Tl(v1+ V3)+ Tsz;

This procedure requires 2+ 64 additions | subtractions, 3+ 84 multiplications, and 1 division for
d dimensional vertices.

The procedure to subdivide a cubic Bezier curve at the parametric midpoint is adapted from
Lane and Riesenfeld!® and can be written as

procedure Subdivide_Bézier(W, Wi WF)
begin
Wq = Wy
WL = 0.5(Wy+ W,);
L= 0.25(Wo+ W)+ 0.5Wy;
WE = 0.125(Wo+ W)+ 0.375(W+ W),

W= Wy
WE = 0.25(W,+ W)+ 0.5Wy
WE = 0.5(Wy+ Wy);
W =Wy
end;

This procedure requires 9d additions / subtractions, 8d multiplications, and no divisions for ver-
tices of spatial dimensional d.

Since a Bézier curve interpolates the end vertices of its control polygon, the procedure
Linearly Approzimate that generates a single line segment to approximate a Bézier curve is sim-
ply the routine Quput_Segment. Thus, Approach 2 may be stated as:

procedure Approximate_Bézier_Curve(W, €)
local variable W¥ , wh ;
begin
if W is flat to within ¢ then
Output_Segment(Wy, W,);
else
Subdivide_Bézier(W, WX, W¥);
Approximate_Bézier_Curve(Wi, o)
Approximate_Bézier_Curve(Wk, €);
endif
end;

Operation Count

Only one call to Map_f8, Curve_To_Bézier is needed; this costs 2+ 6d additions / subtrac-
tions, 3+ 84 multiplications, and 1 division. £ calls to Subdivide_Bézier will cost 9dk additions /
subtractions, 84k multiplications, and no divisions. Thus, the total cost for k& subdivisions of a
Beta2-spline curve, using Approach 2, requires a total of 2+ 64+ 9dk additions / subtractions,
3+ 8d + 8dk multiplications, and 1 division.

-90 -

8.4. Subdivision of Beta2-spline Surfaces

Just as the algorithms for the subdivision of Beta?-spiine curves dealt with a single curve
segment, the algorithms to be presented in this section deal with a single surface patch. For sim-
plicity we consider the patch Sy 2Bz u,v), normally written without subscripts as S(8,;u,v). The

control graph for S8z u,v) will be denoted by V and written as the 4x4 matrix
Voo Vo1 Voz Vo

vl,O vl,l V1,2 v1,3
2,0 v2.l v2,2 v2,3
v3,0 v3,1 V3,2 VS,S

V= (V1.21)

8.4.1. Approach 1l

Approach 1 for surfaces follows the same general form as Approach 1 for curves; a Beta2-
spline surface patch is approximated by polygons by using the general schema for surfaces given
in section 6.2.

We begin by developing the procedure which will split the control graph_\—/ in the u direc-
tion to produce the sub-graphs VLU and VAY, Barsky et al® have shown that ViU and VAY can
be computed from

VY =L,V (V1.22)
VRV =R,V (VL23)

where L, and R, are the Beta2-spline midpoint subdivision matrices from (V1.4) and (VL5),
respectively.

A straightforward algorithm to implement the above mathematics could either call a routine
that multiplies 4x4 matrices, or the expression for each element could be written out. However,
simple inspection shows that we can reuse the curve subdivision routine Subdivide_g, to accom-
plish our goal. Equation (V1.22) shows that the columns of VLY can be found by applyving I—Jﬂ to
the columns of V — but this is exactly what Subdivide_g; does. The same is true for the right
sub-graph VY. Thus, a subdivision of a control graph in the u direction can be done by calling

Subdivide_8; on the columns of V. To help make this clearer in the algorithm, let Col,(M)
denote the i*® column of matrix M. The procedure can now be stated as

procedure Subdivide_f#; Along_u(vV, VIV VR U)
local variable i;
begin
fori=1to 4do
Subdivide_gy{ Col,(V), Col,(V:Y), Col,(VFV));
end;

Barsky et al® also show that a split in_the v direction is described by’

ViV=VL] (V1.24)
and

VEV=VR/] (V1.25)
Once again, we could use a routine to multiply 4x4 matrices or write out the expression for each
element of VXV and V?Y. However, examination of equations (V1.24) and (V1.25) reveals that
the rows of VXV are the result of applying fﬁ to the rows of V. The same is true of V&Y. Thus,
a subdivision of a control graph in the v direction can be accomplished by applying the matrices
Eﬂ and I_iﬂ to the rows of V. The one slight complication is that Subdivide_8, expects to receive
column matrices, not row matrices; the transpose operator can be used to relieve this type-clash.
To make the following algorithm clearer, let Row,(M) denote the i*t row of matrix M.

t Superscript T denotes the transpose operation.

procedure Subdivide_S> Along_v(Vv, Vi, \—/RV)
local variable i;
begin
fori=1to4do
Subdivide_f8a{ Row,(V)T, Row,(_/[‘v)r, Row,(VRV)T);
end;

Next we examine how the surface patch defined by a relatively flat control graph can be
approximated by polygons. The complication here is that a Beta2-spline surface patch does not
interpolate the cormer vertices of the control graph, so the corner points of the surface must be
computed explicitly from (I.3). Since S(f8yu,v) is defined as

o
S(Bu,v) = Z E v7+2,s+2br(ﬂ2;u)bs(ﬂ2;v) (V1.26)

re= Q=2
the corner points S(8:;0,0), 8(52;0,1), S(521,0), and S(B2;1,1), denoted as Pog, Po, P,o and Py,
respectively, reduce to

PO,O = T1[T1(VO'0+ V0‘2+ VQ,0+ V22)+ Tg(V0,1+ V2‘1)]+ (V127)
to[r(Vio+ Vig)+ 2V

PO,I - T1[T1(VO,1+ V2,1+ VO'3+ V2‘3)+ 72(V1_1+ vl',g)]‘i" (VIQS)
72[71(V2.2+ V2'2)+ 72V1,2]

Pl,O = TI[TI(VI,0+ V1'2+ V3'0+ V32)+ 72(V1'1+ V3'1)1+ (VIQg)
. TleI(vzo'f' VZ2)+ T2V2’1]

Py, = nyn(Viit+ Vist Vait+ Vag)+ 2(Vigt Vagl+ (V1.30)

Tz[Tl(vZ'I'f' V13)+ Tsz,zl
where 7, and 7, are as defined in equation (V1.9).

One way of approximating the surface would be to construct a quadrilateral connecting the
corner points Py g, Po,, Py o and Py ;. However, since the points may not be coplanar, the result-
ing polygon may be non-planar. The planarity can be remedied by using two triangles instead of
one quadrilateral. Unfortunately, this solution can introduce visual asymmetries since it treats the
diagonals of the quadrilateral with unequal preference.’

A better approach is to average the corner points of the surface to obtain a fifth point P,.
The four triangles (Pyo,P10.P,), (ProP11.Pa)s (P11, Po1,P.), and (Pg;,Poo,P,) are then used to
approximate the surface. This method does not introduce asymmetries since both diagonals of
the quadrilateral are treated equally. Pseudo-code for the approximation of a flat Beta2-spline by

four triangles is:

procedure Polygon_Approximate_Bq V, 8)
local variable Pyg, Poi, Pro, P11, Po;
begin
{ Compute the corner points }
Poo = nirV_a ot Voot Voot Voot na(Voat Voo i)+
ro|ri(Vo1-2+ Vo o)+ Vo b
Po: = nin(Vz+ Vo1t Voot Voa)+ o Vopat+ Vo)l +
7ol (V_2,0t Voo)+ 2V 10};
Pyo = n|nVoyot Voot Vi, ot Vi)t oVt Vi)l +
1o Voot Vo)t 72Vo,l;
Py, = n[n(Vaa+ Voau+ Via+ Vit Voot Vill+
ro{ Vo1t Vou)+ 72Vo,0l;

P, = 0.25(Poo+ Poy+ Py o+ Pry);
Output_Triangle(Poo, P1o, P.);
Output_Triangle(P o, Py, PJ);
Output_Triangle(Py, Poy, P.)
Output_Triangle(Py, Poo, P.);
end;

4

Polygon_Approximate_J, requires 354 additions / subtractions, 256d multiplications, and no divi-
sions for d dimensional vertices.

It V represents the control graph for the surface to be approximated, then the following
pseudo-code describes the process necessary to obtain a polygonal approximation to V using
Approach 1.

Compute_L(fz, L);

Compute_R{ L, R);

Compute_tau(Bo, 7, T2);

Approximate_f, Surface_1(V, e, 1,)

where

procedure Approximate g, Surface_1(V, e 1, 1)
local variables VLU, vav, viv, VY,
begin
if V is flat to within ¢ along ¢ then
if V is flat within € along v then
Polygon_Approximate_g{ V., 1, 72);
else
Subdivide_g, Along_v(V, V¥V, V&),
Approximate_g, Surface_1(VEY 6y, 1)
Approximate_g, Surface_I(_/RV, € T1, To);
endif
else
Subdivide_g, Along_u(V, vy, VRU);

Approximate_g3, Surface_1(__/_LU, € Ty, To);
Approximate_3, Surface_I{ VERY €, i, 12);
endif;

end;

- 923 .

Operation Count

If there are k surface splits (k calls to Subdivide_f; Along_u and Subdivide_8, Along_v), -
then there must be k+ 1 calls to the polygon approximation routine Polygon_Approzimate_f,;
each of these requires 354 additions / subtractions, 254 multiplications, and no divisions. Each
call to the splitting routines requires 764 additions / subtractions, 104d multiplications, and no
divisions. Thus, the pseado-code above requires a total of 17+ 35d+ 1114k additions / subtrac-
tions, 24+ 25d + 129dk multiplications, and 6 divisions. '

8.4.2. Approach 2

The second approach for the approximation of BetaZ-spline curves, presented in section
6.3.2, proceeded by first transforming the Beta2-spline control polygon into an equivalent Bézier
control polygon, then approximating the Bézier control polygon. The second approach for Beta2-
spline surfaces proceeds similarly. The Beta2-spline control graph is converted into an equivalent
Bézier control graph; the Bézier control graph is then approximated to obtain a polygonal approx-
imation to the original Beta2-spline surface patch. To accomplish this, we develop the mathemat-
ics for the transformation to the Bézier surface representation.

Let V represent the 4x4 matrix of vertices defining the Beta2-spline patch to be approxi-
mated, and let W denotelthe vertices for an equivalent I%e‘zigr surface. We require. that
1
Z EV,+2’S+2b,(ﬁg;u)bs(ﬂ2;v) = Z EW,'SB,(U)BS(U) (VI.31)
r=25-2 7 =05=0
Due to the polynomial form for the basis functions, equation (V1.31) can be written in matrix

form as

1 1
T v SWwWn T v
[1 v u® «|CVCT| 5| = [t v u® «’]DWD"| . (V1.32)
0 v3
where C, D, and V are defined in equations (III.10), (V1.16), (VL21), respectively, and
00 Wo1 Woo Wos
— o Wi Wy Wi
W (V1.33)

= [Wao Wa Wo, Wy,

_ 30 Wa1 Wyo Wys

Solving (V1.32) for W, followed by simplification yields

W = (D'C)V(DC)’ (VL34)
This form is to be expected since the matrix D'C was shown, in section 6.3.2, to be the matrix
that transforms a Beta2-spline control polygon into an equivalent Bézier control polygon. Equa-
tion (VI.34) describes the transformation of control graphs as the result of ”sandwiching” the
Beta2-spline control graph between the matrix D IC and its transpose. Using Vaxima, the com-
ponents of W can be explicitly obtained, resulting the in the following procedure for transforming
a Beta2-spline control graph into an equivalent Bézier control graph.

- 04 -

procedure Map_f, Surface_To_Bezier(V, 5, W)
local variable 7, 7, T, 75, 13, 1162;

begin
v = 1/(8+ 12);
n =27
73 1= (B + 8);
8 = 1
71T 1= 1142,
= o

Woo = 18(Vazt Voot Voot Voo)+

nrd Voot Viot+ Vit Vo)+ Vi
Wl 0= 2712(V23+ V2'0)+

72Vt Vig+ Viol+ Vi
W, 9.= 273(V1’2+ V1,0)+

7o Voot Voot 2Vi)+ Vo
Wi = 1(Vazt Vaot Vigt+ Vig)l+

17 Vet Voot Voot Vi)+ Vo
W, 1= 2r{(Vao+ Vo)t

nr{ Vo+ 2Vio+ Voo)+ V1
W, o= 47{ Voot 2n7my(Vo i+ Vi)t BV
W, 1= 4712\’_1,2+ 2T1T2(V2'2+ V1v1)+ TZNZ,I;
Wy o= 2r{(Vaot+ Vi)t

Vit 2Vo ot Vaa)+ 13Vay;
Wi = 27{"(V24+ Vo)+

N7 Voot Voot 2Via)+ 72 V1
wl'g = 4712V2'1+

27 Vogt Vi) + 3V
W2,2 = 4T12V1'1+

279Vt Vi)t 13 Voo
W= 2r{(Vy 1+ Vi)+

nro(Vgt Vigt+ 2V)+ Va2
W0'3 = rf(V2'3+ V2'1+ V073+ VO'1)+

nrd Voot Vigt Voo)+ 3V o
w1'3 = 27’12(V2,3+ V2_1)+

nr Vst Vit 2Va o)+ Vi
W2,3 = 2T12(V1'3+ V1_1)+

rre(Vas+ Vait 2Vio)+ 3 Vay
Wjs = i (Vsst Var+ Vit Vi)+

TITQ(V&Q‘F V2,3+ v2'1+ Vm)-i- T§v2,2;

end;

The splitting of a Bézier surface is analogous to that of a Beta2-spline surface; a split in the
u direction is accomplished by splitting each column of V using the routine Subdivide_Bézier, a
split in the v direction is done by splitting each row.

Since the Bezier surface patch is guaranteed to interpolate its four corner vertices W,
Wos Wio, and Wiy 2 good polygonal approximation is obtained by using four triangles in a
scheme similar to the one used in Polygon_Approzimate_8,. Thus, the pseudo-code to subdivide a
Beta2-spline surface patch using Approach 2 is

- 95 -

procedure Subdivide_Bezier_Along_u(W, WiV Wkl
local variable ¢;
begin
fori = 1to 4do
Subdivide_Bézier(Col,(W), Col,(W-U), Col,(WFY));
end;

procedure Subdivide_Bézier_Along_v({ W, WiV WERY)
local variable i;
begin
for i = 1to 4do
Subdivide_Bézier(Row,(W)T, Row,(W")T, Row,(WF")T);
end;

procedure Polygon_Approximate_Bézier(w)
local variable W ;
begin

W, = 0.25(Wy ot Waot Woa+ W)

Output_Triangle{ Woo, W30, W,);

Output_Triangle(Wso, Wi, W.);

Output_Triangle(W33, Wos, W,);

Output_Triangle(Wo3, Woo, W)
end;

’

procedure Approximate_Bézier_Surface(W, €)
local variable WY, whY, WY wHaY.
begin
if W is flat to within ¢ along u then
if W is flat to within ¢ along v then
Polygon_Approximate_Bézier(W);
else
Subdivide_Bézier_Along_v{ W, WiV, WRV);
Approximate_Bézier_Surface(WLV e,
Approximate_Bézier_Surface(WY e
endif
else
Subdivide_Bézier_Along_u(W, WiV wWEeY),
Approximate_Bézier_Surface(WLV e);
Approximate_Bézier_Surface(WERY ¢y,
endif
end;

procedure Approximate_g, Surface_2(V, 8, €)
local variable W;
begin
Map_3, Surface_To_Bézier(V, B2, W);
Approximate_Bézier_Surface W, €);
end;

- 26 -

Operation Count

The mapping of a Beta2-spline surface patch to an equivalent Bézier surface patch using the
routine Map_8, Surface_To_Bézier requires 2+ 82d additions | subtractions, 8+ 564 multiplica-
tions, and 1 division; k calls to the Bézier subdivision routines requires 36dk additions / subtrac-
tions, 32dk multiplications, and no divisions; k+ 1 calls to Polygon_Approzimate_Bézier requires
(k+ 1)3d additions / subtractions, k+ 1 multiplications, and no divisions. Thus, Approach 2
requires a total of 2+ 85d+ 39dk additions / subtractions, 8+ 574+ 33dk multiplications, and 1
division to subdivide a Beta2-spline surface patch & times.

7. Conclusion

This paper has presented a special case of the Beta-spline curve and surface technique
known as the Beta2-spline technique. A Beta2-spline curve or surface is parametrized in terms of
the single tension parameter J, instead of the two shape parameters 3, and 3, possessed by a
standard Beta-spline. Experience has shown that this is a simple, computationally efficient, but
very useful special case of the Beta-spline technique.

When $,==0, the Beta2-spline representation reduces to that of a uniform cubic B-spline. As
B- is increased from zero the curve (or surface) uniformly approaches the control polygon (or con-
trol graph) that defines it. In the limit of infinite tension, a Beta2-spline curve becomes a piece-
wise linear spline that interpolates the vertices of the control polygon; a Beta2-spline surface
becomes a piecewise planar spline, where the borders between the adjacent surface patches inter-
polate the edges of the control graph. The Beta2-spline design process generally proceeds by first
laying down vertices to "rough-out” the curve or surface. The designer then has the freedom to
add new vertices, remove or move existing vertices, or change the value of 3, until a curve or sur-
face of the desired properties is obtained.

To aid the implementor of the Beta2-spline technique, detailed algorithms for the evaluation
and subdivision of Beta2-spline curves and surfaces were presented. Two different subdivision
algorithms, both for curves and surfaces, were developed. The first, called Approach 1, approxi-
mates 2 Beta2-spline curve or surface by direct subdivision of the Beta2-spline representation.
The second, called Approach 2, approximates a Beta2-spline by transforming it into an equivalent
Bézier curve or surface, then approximates the Bézier spline using recursive subdivision. The
operation counts tallied for the various algorithms show that Approach 1 is roughly four times
more expensive than Approach 2; this holds for both the curve and surface algorithms. A Beta2-
spline object converted into triangles via approach 2 and rendered on a high resolution color mon-
itor is shown in figure 9.

Figure 9.
The pewter goblets above are all defined by the same control graph. Their shape has been
modified by changing only the value of the tension parameter f.. The values of f, from
left to right are: 0, 5, 10, 20, and 50.

8. Acknowledgements

The authors would like to thank Mark Dippé of the Berkeley Computer Graphics Labora-
tory whose rendering algorithms generated the shaded image. Thanks are also in order to
Richard Fateman and his symbolic computation group at U.C. Berkeley for providing and sup-
porting Vaxima, without which much of this work would have been impossible.

- 908 -

References

1.

10.

11.

13.

14.

Brian A. Barsky, ‘““The Beta-spline: A Curve and Surface Representation for Computer
Graphics and Computer Aided Geometric Design.” Submitted for publication.

Brian A. Barsky, ‘“‘Arbitrary Subdivision of Bezier Curves.” In preparation.

Brian A. Barsky, The Beta-spline: A Local Representation Based on Shape Parameters and
Fundamental Geometric Measures, Ph.D. Thesis, University of Utah, Salt Lake City, Utah
(December, 1981).

Brian A. Barsky and John C. Beatty, “Local Control of Bias and Tension in Beta-splines,’’
pp. 193-218 in Proceedings of SIGGRAPH '83 (Vol. 17, No. 3), ACM,(25-29 July, 1983).
Selected for publication in ACM Transactions on Graphics, Vol. 2, No. 2, April 1983, pp.
109-134.

Brian A. Barsky, Tony D. DeRose, and Mark D. Dippe, “An Adaptive Subdivision Method
With Crack Prevention for Rendering Beta-Spline Objects.” In preparation.

Edwin E. Catmull, A Subdivision Algorithm for Computer Display of Curved Surfaces, Ph.D.
Thesis, University of Utah, Salt Lake City, Utah (December, 1974). Also Tech. Report No.
UTEC-CSc-74-133, Department of Computer Science, University of Utah.

Edwin E. Catmull and James H. Clark, “Recursively Generated B-spline Surfaces on Arbi-
trary Topological Meshes,” Computer-Aided Design 10(6) pp. 350-355 (November, 1978).
George M. Chaikin, “‘An Algorithm for High-Speed Curve Generation,”’ Computer Graphics
and Image Processing 3 pp. 346-349 {1974).

Tony D. DeRose, “Arbitrary Subdivision of Blended Splines.” In preparation.

D. W. H. Doo and M. A. Sabin, ‘“Behaviour of Recursive Division Surfaces Near Extraordi-
nary Points,” Computer-Aided Design 10(6) pp. 356-360 (November, 1978).

Richard J. Fateman, Addendum to the MACSYMA Reference Manual for the VAX, Techni-
cal Report, University of California, Berkeley (1982).

Jefirey M. Lane and Loren C. Carpenter, ‘A Generalized Scan Line Algorithm for the Com-
puter Display of Parametrically Defined Surfaces,” Computer Graphics and Image Processing
11(3) pp. 290-297 (November, 1979).

Jeffirey M. Lane and Richard F. Riesenfeld, ““A Theoretical Development for the Computer
Generation of Piecewise Polynomial Surfaces,”” IEEE Transactions on Pattern Analysis end
Machine Intelligence PAMI-2(1) pp. 35-46 (January, 1980).

Robert W. Nydegger, A Data Minimization Algorithm of Analytical Models for Computer
Graphics, Master’s Thesis, University of Utah, Salt Lake City, Utah (1972).

