
 

 

 

 

 

 

 

 

 

Copyright © 1983, by the author(s). 
All rights reserved. 

 
Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 
lists, requires prior specific permission. 



GRANULARITY HIERARCHIES IN CONCURRENCY CONTROL

by

Michael J. Carey

Memorandum No. UCB/ERL M83/1

14 January 1983

ELECTRONICS RESEARCH LABORATORY



Granularity Hierarchies in Concurrency Control

Michael J. Carey

Computer Science Division
Department of Electrical Engineering and Computer Sciences

University of California
Berkeley, CA 94720

ABSTRACT

This paper shows that granularity hierarchies may be used
with many types of concurrency control algorithms. Hierarchical
versions of a validation algorithm, a timestamp algorithm, and a
multiversion algorithm are given, and hierarchical algorithm issues
relating to request escalation and distributed databases are dis
cussed as well. It is argued that these hierarchical algorithms
should offer improved performance for certain transaction mixes.

1. Introduction

Considerable work in the area of concurrency control for both centralized

and distributed database systems has focused on locking algorithms [Gray75,

Ries77, Mena78, Rose78, Gray79, Ries79a, Ries79b, Ston79, Kort82]. In addition

to studying alternative locking protocols and their correctness, some research

ers have examined issues associated with selecting the appropriate level of

granularity for partitioning a database into lockable units [Gray75, Gray79,

Ries79a, Ries79b, Kort82]. It was found that a database can be organized as a
hierarchy of lockable units, called a lock hierarchy, and that locking protocols

for such a hierarchy can be developed [Gray75, Gray79, Kort82]. It was also

found that, under some typical transaction mixes, a lock hierarchy offers

increased system performance [Ries79a, Ries79b].

Since that time, a wide variety of new concurrency control algorithms have

been suggested in the literature (see [Bern8l] for a summary). Many of these
algorithms are based on mechanisms other than locking, such as timestamps

[Bern78, Reed78, Thom79, Bern8l] or validation[KungBl, Ceri82]. Virtually all of
these proposals ignore the granularity issue, modeling a database simply as a

homogeneous, unstructured collection of fixed-size objects. Timestamp-based

This work was supported "by the Air Force Office of Scientific Research Grant AFOSR-78-3596
and the Naval Electronic Systems Command Contract NESC-N00O39-81-C-0569.



-2-

algorithms have been criticized for this very reason [Gray81]. In this paper, it is
shown that the concept of granularity hierarchies can be generalized for use
outside the domain of locking.

The remainder of this paper is organized as follows: Section 2 reviews the

notion of hierarchical locking. In section 3, hierarchical versions of a validation

algorithm, a timestamp algorithm, and a multiversion algorithm are presented.

Issues involved in designing hierarchical versions of algorithms involving escala
tion and distributed databases are discussed in section 5. Section 6 presents

arguments suggesting that generalized granularity hierarchies should lead to

performance improvements, Le., that the results reported for locking [Ries79a,

Ries79b] should hold for other algorithms as well.

2. Hierarchical Locking

In locking algorithms, a transaction wishing to access some item in the

database must first lock the item. A key performance question is: How big

should the lockable items (or granules) be? To maximize potential concurrency

for small transactions, many small granules are best, and to minimize locking

overhead for large transactions, a few large granules are best. The notion of

hierarchical locking was introduced to circumvent this performance tradeoff.

In hierarchical locking [Gray75, Gray79, Kort82], the database is viewed as

a hierarchy of granules. When a transaction sets a lock on an item at a given

level of the hierarchy, it is implicitly locking all its descendents as well. Small

transactions obey a locking protocol whereby they set intention locks at higher

levels of the hierarchy before setting access locks at a lower level Large tran

sactions can then avoid setting many lower-level locks. The result is a small

increase in locking overhead for small transactions, a penalty which is hopefully

offset by a large decrease in locking overhead for large transactions.

3. Generalized Granularity Hierarchies

In this section we present several hierarchical concurrency control algo

rithms based on mechanisms other than locking. For a granule g, the notation

parent (g) will refer to the granule immediately above g in the hierarchy. The

notation children(g) will refer to the set of granules right below g in the hierar

chy. The notation descendents (g) will refer to the set of all descendents of g in

the hierarchy. Finally, the notation ancestors(g) will refer to the set of all

ancestors of g in the hierarchy. Granules at the bottom level of the hierarchy



-3-

will be referred to as leaf granules.

3.1. Hierarchical Validation

One popular alternative to locking is validation [Kung81, Ceri82], also

referred to as certification or optimistic concurrency control. In this section, a

hierarchical version of the serial validation algorithm of [Kung8l] will be

presented.

procedure validate^);

valid := true;
foreacht„ in 7^.(t) do

foreach. xr inreadset (f ) do
foreach xw in writeset (tn) do

if Xj. = xw then
valid := false;

fi;
od;

od;
od;
if valid then

commit writeset(t) to database;
else

restart(£);
fi;

end;

Figure 1: SV Algorithm.

The serial validation (SV) algorithm requires that the readsets and writesets

of all transactions be recorded, and that a deferred update strategy be used for

commit processing. When a transaction t wishes to commit, it is subjected to a

validation procedure in a critical section of code. Let Trc(t) be the set of

recently committed transactions, those which commit between the time when t

starts executing and the time at which t enters the critical section for valida

tion. Transaction t is validated if readset(t) n writeset (t„) = 0 for all transac
tions tn € Trc(t). If t is validated, its updates are applied to the database; oth

erwise, it is restarted. The serial validation algorithm is given in Figure 1.

It is fairly easy to extend this algorithm for use with a granularity hierar

chy. For hierarchical serial validation (H-SV), the read and write sets of a tran

saction will be sets of granules. Short transactions may specify these sets in



-4-

terms of small granules, and large transactions may specify them in terms of
granules higher up in the granularity hierarchy. As in SV, these sets are used

for commit-time conflict testing, with transaction t being validated if
readset(t) n writeset(*„.) = 0 for all transactions tn e T^it). In testing for
possible conflicts under H-SV, the algorithm must recognize that a granule g 1
has some data in commonwith another granulegz ifgx = gz, g1 e ancestors (g2).
or gz e ancestors (gx). The H-SV algorithm is given in Figure 2. It is fairly easy
to prove the correctness of this new algorithm.

procedure validate(r);
begin

valid := true;
foreach£„ in T^(t) do

foreach gT Inreadset (t) do
foreachgw in writeset (t^.) do

>f 9r =9w or^r € ancestors (gw) orgr^ e ancestors(gr) then
valid := false;

fi;
od;

od;
od;
if valid then

commit writeset(t) to database;
else

restart(r);
fi;

end;

Figure 2: H-SV Algorithm

H-SV Theorem: The hierarchical version of SV is correct in the sense that serial-

izability is guaranteed.

Proof Sketch: The SV algorithm is known to be correct [Kung81]. Thus, it

suffices to show that H-SV only commits transactions which would be committed

by SV. This may be shown as follows:

When a transaction t requests access to a granule g, it is requesting per

mission to access some or all of the granules in descendents (g). The H-SV algo

rithm will restart t if any granule gr in its readset either contains, equals, or is a

sub-granule of another granule gw in the writeset of any recently committed

transaction. In the first two cases, the newly-written leaf granules associated



-5-

with gw in the hierarchy will definitely overlap with the leaf granules associated

with gr under SV, so t will be restarted under SV as well. In the latter case,

where gT is a sub-granule of gw, the newly-written leaf granules potentially over

lap with those of gr, so t might be restarted under SV as well. If none of these

cases occur, no overlap of leaf granules exists, and both H-SV and SV will permit

t to commit. •

3.2. Hierarchical TLmestamps

Another popular alternative to locking in the literature is timestamp-based

concurrency control [Bern78, Reed78, Thom79, Bern8l]. In this section, a

hierarchical version of the basic timestamp ordering algorithm of [Bern8l] will

be presented. For simplicity, we present a version which applies to single site

database systems. Also, we assume that all write requests are processed

together at commit time, which simplifies the considerations involved in making

the algorithm work with two-phase commit, as otherwise some scheduling would

be required to prevent transactions from reading objects for which a write

request has been processed but the associated deferred update [Gray79] has

not yet taken place. Extending the algorithm to overcome these simplifications

is straightforward.

Associated with each transaction t in the basic timestamp ordering (BTO)

algorithm is a timestamp, TS(t), issued at the time at which t begins executing.
Associated with each data item x in the database is a read timestamp,
R-TS(x), and a write timestamp, W-TS(x). These are the largest timestamps
of any read or write request, respectively, that has been processed for x. A read

request from t for x is rejected if TS(t) < W-TS(x)t and a write request from t
for x is rejected if TS(t) < W-TS(x) or TS(t) < R-TS(x). Transactions whose

requests are rejected are restarted, causing serialization to occur in timestamp
order. The BTO algorithm is given in Figure 3.

To extend this algorithm for hierarchical use, each granule g will have read

and write summary timestamps, Rs-TS(g) and Ws-TS(g), in addition to its

actual read and write timestamps. Its read and write summary timestamp
values will be:



-6-

procedure readReq(£ ,x)\
becon

XTS(t)< W-TS(x) then
restart^ );

else

grant readReq;
R-TS(x) :=max(TS(t),R-TS(x)y,

fi;
end;

procedure writeReq(£ ,x);
begin

if TS(t)<B-TS(x) or TS(t) < W-TS(x) then
restart^ );

else

grant writeReq;
W-TS(x) := TS(t);

fi;
end;

Figure 3: BTO Algorithm.

fis-TS(g) = maxjfi-TS(G) | Ceyu descendents(g)}
Ws-TS(g) = max[W-TS(G) | C eg u descendants (g)]

The actual read (write) timestamp for a granule g is the largest timestamp
of any transaction for which a read (write) request for g has been granted. The

summary read (write) timestamp for g is the largest timestamp of any transac

tion for which a read (write) request for g or any sub-granule of g has been

granted. With these timestamps at each level of the hierarchy, the BTO algo

rithm requires two extensions. First, when a transaction t wishes to access a

granule g, it must make sure that no granule in ancestors(g) has an actual

timestamp that, when compared with TS(t), violates the BTO ordering rules.

This would mean that some transaction younger than t has already made a

request that potentially conflicts with t's request. Second, the algorithm must

propagate timestamp changes upwards in the hierarchy to keep the summary

timestamp values accurate. The hierarchical version of BTO (H-BTO) is given in

Figure 4. It is not difficult to prove the correctness of this new algorithm.



-7-

H-BTO Theorem: The hierarchical version of BTO is correct in the sense that seri-

alizability is guaranteed.

Proof Sketch: The BTO algorithm is known to be correct [Bern82a]. Thus, it

suffices to show that H-BTO only permits accesses which would be permitted by

BTO. This may be shown as follows:

When a transaction t requests access to a granule g, it is requesting per

mission to access some or all of the granules in descendents (g). The H-BTO

algorithm refuses read requests in two cases:

(1) TS(t) < W-TS(G) for some G € ancestors(g)

(2) TS(t) < Ws-TS(g)

The first case guarantees that, if some transaction younger than t has been

allowed to write a granule which contains g (and thus to write g), t cannot read

g. This would not be allowed under BTO. The second case guarantees that, if

some transaction younger than t has been allowed to write some portion of g, t

cannot read g. This is also disallowed under BTO. If neither (1) or (2) hold, H-

BTO grants the request. Since this occurs only when no transaction younger

than t has written g or any portion thereof, implying that no write timestamps

of leaf granules associated with g in the hierarchy would exceed TS(t) in the

BTO algorithm, BTO would grant the request as well.

The H-BTO algorithm refuses write requests in two cases:

(1) TS(t) < R-TS(G) or TS(t) < W-TS(G) for some Ge ancestors(g)

(2) TS(t) < Rs-TS(g) or 75(0 < Ws-TS(g)

The first case guarantees that, if some transaction younger than t has been

allowed to read or write a granule which contains g (and thus to read or write

g), t cannot write g. This would not be allowed under BTO. The second case

guarantees that, if some transaction younger than t has been allowed to read or

write some portion of g, t cannot write gr. This is also disallowed under BTO. If

neither (1) or (2) hold, H-BTO grants the request. Since this occurs onlywhen no
transaction younger than t has read or written g or any portion thereof, imply

ing that no read or write timestamps of leaf granules associated with g in the

hierarchy would exceed TS(t) in the BTO algorithm, BTO would grant the
request as well. •

To illustrate the roles played by the actual and summary timestamps in H-

BTO, consider the simple hierarchy of Figure 5, where there are two lower-level



-8-

procedure readReq(£ ,g );
begin

okay := true;
foreach G in ancestors (g) do

if 75(0 < W-TS(G) then
okay := false;

fi;
od;

if 75(0 < WS-TS(g) then
okay := false;

fi;
if not okay then

restart^);
else

grant readReq;
R-TS(g) :=max(75(0.^-75(0));
i?s-75fo):=max(75(0.^-75(0));
whileparent (g) exists do

gr := parent {g);
Xs-TS(g):=max(TS(t),Rs-TS(g));

od;
fi;

end;

procedure writeReq(£ ,g);
begin

okay := true;
foreach G in ancestors (gr) do

if 75(0 < R-TS(G) or 75(0 < W~TS(G) then
okay := false;

fi;
od;
if 75(0 < Rs-TS{g) or 75(0 < ^-75(flr) then

okay := false;
fi;
if not okay then

restart(r);
else

grant writeReq;
W-TS(a):= 75(f);
^-75(flr):=75(0;
while parent (a) exists do

g := parent {g);
Wa-TS(g):=max(TS(t),Ws-TS(g));

od;

fi;
end;

Figure 4: H-BTO Algorithm.



granules, X and Y, and one upper-level granule, XY. Suppose that

R-TS(X) = 8, W-TS(X) = 8, R-TS(Y) = 15, W-TS(Y) = 13, R-TS(XY) = 5,

and W—TS(XY) = 5. This implies that, while X and Y have been accessed since

time 5, their parent granule XY has not been accessed as a whole since that

time. The summary timestamp values will be Ra-TS(X) = 8, WS-TS(X) = 8,

R8-TS(Y) = 15, Wa-TS(Y) = 13, RS-TS(XY) = 15, and WS-TS(XY) = 13. (Note

that the actual and summary timestamp values are always the same for leaf

granules, so it is not actually necessary to maintain them separately at the bot

tom level of the hierarchy.)

Now, suppose that a transaction t with timestamp 75(0 = 10 wishes to

read X. H-BTO checks W-TS(XY), finds that the request is okay so far, then

checks WS-TS(X), finds that the request is indeed okay, and then grants the

request, setting R-TS{X), Ra-TS(X), and Ra-TS(XY) all equal to 20. Suppose

instead that t had wished to read XY. H-BTO would have checked W8-TS(XY),

found that the request violated the BTO ordering rules for reading because some

sub-granule of XY had been written since time 10, and the request would have

been rejected.

Figure 5: Simple Example Hierarchy.



- 10-

3.3. Multiple Versions

There have been a number of recent papers proposing the use of multiple

versions of data to increase potential concurrency [Reed78, Baye80, Stea81,

Chan82, Bern82b]. Hierarchical versions of these algorithms are possible as

well. In this section, a hierarchical variant of the multiple version algorithm of

[Reed78] will be presented. For simplicity, we present a variant which applies to

single site database systems. We assume that all write requests are processed

together at commit time (for the same reasons as in basic timestamp ordering).

We also assume that all versions are maintained for all time, ignoring garbage

collection issues. Extending the algorithm to overcome these simplifications is

not overly difficult, and doing so does not affect the ideas to be presented here.

Finally, we treat version management and concurrency control separately in our

description. This will prove helpful in developing a hierarchical variant of the

algorithm.

The muitiversion timestamp ordering (MVTO) algorithm is similar to the BTO

algorithm in many ways. Associated with each transaction t is a timestamp,

75(0. issued at the time at which t begins executing. Associated with each

data item x in the database is a collection of versions, a set of (time,value)

pairs indicating values of x and the (timestamp) times at which the values were

assigned to x. If 7 is a timestamp, let x[7] be the value of the most recent ver

sion of x written at time less than or equal to 7. A read request from t for x will

be granted using the value x[TS(t)], and a write request from t for x, if

granted, will result in the creation of a new version of x.

For concurrency control purposes, a read/write history, //m(:r), is main

tained for each data item x. This history is a set of time intervals which

correspond to versions of x. The starting time of each interval is the creation

timestamp of the version, and the ending time of each interval is the largest

read timestamp of the version. For example, Hru,(x) = i(3,6), (10,13)j means

that x has two versions, one created at time 3 and last read at time 6, and the

other created at time 10 and last read at time 13. Histories in MVTO play the

role which timestamps played in BTO, allowing the concurrency control algo

rithm to know when potential conflicts arise.

The MVTO algorithm grants all read requests using the appropriate version,

extending the interval for the version read in Hrwix) as necessary. A write

request from t for x is rejected if any interval in H^ix) contains the time

75(0- (Otherwise, transactions which previously read x between 75(0 and the



-11-

end of the interval containing 75(0 would have their reads invalidated by r*s

write.) If the write request is granted, a new version of x is created, and a new

interval with starting and ending times of 75(0 is added to if™,00- Continuing

with our previous example, a read request for x from a transaction t with

75(0 = 7 would be granted using the version of x created at time 3, and the his

tory for x would be changed to Hmix) = K3»7)« (10,13)j. A write request from t

for x would now be rejected if 3 < 75(0 < 7 or 10 < 75(0 < 13- If 75(0 = 8.

however, the request would be granted, a new version of x would be created, and

the history for x would be changed to H^x) = \(3,7), (8,8), (10,13)$.

The MVTO algorithm is given in Figure 6. In the figure, the extVers opera

tion is assumed to extend the version interval corresponding to x[75(r)] in

Hrui{x) if 75(r) is larger than the ending time of the interval. The newVers

operation is assumed to create a new interval in Hru,(x), starting at 75(f) and

having length zero, recording the creation of a new version of x.

procedure readReq(£ ,x );
begin

grant readReq;
extVerst/f^x), 75(0);

end;

procedure writeReq(£ ,x);
begin

if 75(0 inikufc) then
restart(c);

else

grant writeReqj
newVers(#m(x), 75(0);

fi;
end;

FigureS: MVTO Algorithm

To extend this algorithm for hierarchical use, each granule g will have a

read/write summary history, Hs(g), in addition to its actual history, Hrwig).
This summary history will be:

Hs(g) = U \Hrw(G) | Gtg u descendents(g)]

Thus, Hs(g) is the union of Hrw(G) for all granules G having any data in
common with g. This union operation may be interpreted graphically. The



- 12-

read/write history for a granule can be thought of as a timeline, with the inter

vals in the history being line segments drawn on this timeline. The union of two

or more histories is what would be produced by laying these timelines on top of

each other, with the intervals in the resulting history being those intervals

included in one or more of the histories being unioned. For example, the union

of i(3,7), (10,13)} and {(1.2). (5.11) (l5,17)j would be {(1.2). (3,13), (15.17)].

These actual and summary histories are analogous to the actual and sum

mary timestamps used in creating the H-BTO algorithm from the BTO algorithm.

With these histories at each level of the hierarchy, the MVTO algorithm requires

two extensions, first, when a transaction t wishes to write a granule g, it must

make sure that no higher-level granules have actual histories with an interval

containing 75(0- Second, when a transaction t causes some history to be

updated, the algorithm must propagate the change upwards in the hierarchy to

keep the summary histories accurate. For the lowest level granules in the

hierarchy, the actual and summary histories will always be equal (just as for

timestamps in the H-BTO algorithm), so they need not be separately maintained

for leaf granules.

The hierarchical version of MVTO (H-MVTO) is given in Figure 7. Is is

assumed in the figure that the new Vers operation creates a new interval in a

history by taking the union of the history and the new interval, and that the

extVers operation merges intervals when extending one causes it to overlap with

another. It is not difficult to prove the correctness of this new algorithm.

H-MVTO Theorem: The hierarchical version of MVTO is correct in the sense that

serializability is guaranteed.

Proof Sketch: The MVTO algorithm is known to be correct [Bern82a]. Thus, it

suffices to show that H-MVTO only permits accesses which would be permitted by

BTO. This may be shown as follows:

When a transaction t requests access to a granule g, it is requesting per

mission to access some or all of the granules in descendents (g). The H-MVTO

algorithm always grants read requests, just as the MVTO algorithm does. The H-

MVTO algorithm refuses write requests in two cases:



-13-

(1) 75(0 is in an interval in H^G) for some G € ancestors(g)

(2) TS(t) is in an interval in Hs (g)

The first case guarantees that, if a granule containing g has an interval

which contains 75(0. indicating that the version of g to be written may have
already been read by a younger transaction, t cannot write it. This would not be

allowed under MVTO. The second case guarantees that, if some granule con

tained within g has an interval which contains 75(t), indicating that some por

tion of the version of g to be written has already been read by a younger tran

saction, t cannot write it. This is also disallowed under MVTO. If neither (l) or

(2) hold, H-MVTO grants the request. Since this occurs only when noportion ofg
has a version which was written before 75(0 and read after 75(0. implying

that none of the read/write histories of the leaf granules associated with g in
the hierarchy would have intervals containing TS(t) under MVTO, MVTO would

grant the request as well. •

4. Extensions

In this section, the issues involved in extending generalized granularity

hierarchies for use with escalation and distributed databases are discussed.

4.1. Escalation

In hierarchical locking algorithms, a decision must be made about whether

a transaction is to access leaf granules or higher-level granules. This decision

can either be made statically, with transactions being given the responsibility

for selecting the appropriate level of granularity at which to make their

requests, or it can be made dynamically, by escalation [Gray75, Gray79]. In

escalation, when a transaction crosses a pre-determined threshold in the

number of locks requested for granules at one level of the hierarchy, it moves
up a level, escalating its requests.

Escalation may be employed in systems based on any of the hierarchical

algorithms presented in this paper in the same manner that it is employed in

systems based on locking. The concurrency control subsystem monitors

requests made for granules at the current level of the hierarchy, and if this

number becomes larger than some threshold number, translates them into

requests for granules at the next level up in the hierarchy. This can be repeated

in systems with more than two levels of granules. All three algorithms presented



procedure readReq(£ ,g );
begin

grant readReq;
extVers(#™(a), 75(0);
extVere(#s(oO, 75(0);
whileparent (o ) exists do

g := parent{g);
extVers{Hs(g), 75(0);

od;
end;

procedure writeReq(£ ,g);
begin

okay := true;
foreach G in ancestors (g) do

if 75(0 in Htw(G) then
ofcay := false;

fi;
od;

if 75(0 in #s(s0 then
okay := false;

fi;
if not okay then

restart^);
else

grant writeReq;
newVers(i?™(gr), 75(0):
newVers(/f5V), 75(0);
whileparent (a) exists do

g -.-parentlg);
newVera(/y,(flr). 75(0);

od;
fi;

end;

-14-

Figure 7: H-MVTO Algorithm.

in this paper will accommodate such a protocol with no modifications being

required.

4.2. Distributed Systems

One of the conclusions resulting from the work of Ries [Ries79a] is that dis

tributed systems may benefit even more from hierarchical concurrency control

algorithms. Hierarchical versions of distributed concurrency control algorithms

are easily developed, the only new issue being how to deal with granules in the

hierarchy whose descendents are located at several sites.



-15-

In the hierarchical algorithms presented here, as in hierarchical locking, a

request for access to a granule g requires two things to be done: The con

currency control state of granules in ancestors(g) must usually be checked

before the request can be granted, and, if the request is granted, some informa

tion must be propagated to these granules as well. In a distributed system, if

some portion of the concurrency control information for ancestors(g) resides

on a site other than the site where g is stored due to data partitioning or repli

cation, this may involve messages which would not be required in a non-

hierarchical version of the algorithm. Such additional messages could result in

a severe performance problem, so they should be avoided.

There are at least two ways to avoid the problem of additional messages.

One approach is to use a central site algorithm for handling distributed con

currency control [Mena78, Bern8l], where a single site is responsible for han

dling all concurrency control requests. Another approach is to use a primary

copy algorithm [Ston79, Bern8l], and to assign data to sites in such a way that

ancestors(g) and g always have the same primary site. For example, one may
choose to have a two-level hierarchy, with relations being the higher level of

granularity and pages within a relation being the lower level, assigning primary

sites on a per-relation basis. Other distributed algorithms may also be applica

ble (see [Bern82a] for a survey of scheduler location strategies for distributed
concurrency control algorithms).

5. Granularity and Performance

The effects of locking granularity and the use of lock hierarchies on data

base management system performance was the subject of a fairly extensive

simulation study [Ries77, Ries79a, Ries79b]. Briefly, [Ries79b] showed that if

transaction access patterns are random in nature, the expected tradeoff

between parallelism and locking overhead indeed arises between small and large

transactions, and that performance is indeed improved by using a lock hierar

chy.

The role of any concurrency control algorithm is to prevent transaction

conflicts by ensuring that each transaction sees a consistent view of the data

base. Each concurrency control algorithm for which we have developed a
hierarchical version shares the following properties:



-16-

(1) The algorithm can be viewed as a scheduler which monitors requests from

transactions and responds with okay, block, or restart [Papa79, Bern82a].

(2) In the absence of restarts, the amount of CPU time used by the algorithm

to process the set of read and write requests for a transaction t is propor

tional to the number of requests that t makes.

(3) The level of transaction parallelism achievable is proportional to the

number of granules into which the database is partitioned.

(4) For a hierarchical version of the algorithm, the CPU cost of processing a

request for a granule is proportional to its depth in the hierarchy times the

CPU cost of processing the request in its non-hierarchical counterpart.

These concurrency control algorithm properties hold for locking as well as

for the other algorithms discussed in the paper. In fact, it seems clear that

these are the properties which lead to the result, reported in [Ries79a, Ries79b],

that hierarchical locking outperforms non-hierarchical locking under transac

tion mixes consisting of small and large transactions with random access pat

terns. Since the algorithms described here share these properties with locking,

it seems quite plausible that their hierarchical counterparts will offer superior

performance under such mixes of small and large transactions.

6. Conclusions

This paper has shown that the notion of a lock hierarchy is generalizable,

indicating that a granularity hierarchy may be used with many types of con

currency control algorithms. Hierarchical variants of a validation algorithm, a

timestamp algorithm, and a multiversion algorithm have been developed, and

hierarchical algorithm issues relating to request escalation and distributed

databases have been discussed as well. Finally, it has been argued that these

hierarchical algorithms will offer improved performance for some mixes of small

and large transactions.

Several related avenues of research remain. First, it would be interesting

to study the performance of hierarchical versions of concurrency control algo

rithms, comparing their performance to that of their non-hierarchical counter

parts, under some set of realistic assumptions about transaction access pat

terns. Second, decentralized or voting algorithms have been suggested as supe

rior alternatives to primary site and primary copy algorithms for robust distri

buted database systems. It would be interesting to see if decentralized or voting



-17-

versions of hierarchical algorithms can be developed without introducing unrea

sonable message overheads.

Acknowledgements

The author wishes to thank Mike Stonebraker for his helpful comments,

suggestions, and support.

References

[BayeSO] Bayer, R, Heller, H., and Reiser, A., "Parallelism and Recovery in
Database Systems", ACM Transactions on Database Systems 5(2),
June 1980.

[Bern78] Bernstein, P., Rothnie, J., Goodman, N., and Papadimitriou, C, "The
Concurrency Control.Mechanism of SDD-1: A System for Distributed
Databases (The Fuliy Redundant Case)", IEEE Transactions on
Software Engineering 4(3), May 1978.

[Bern81] Bernstein, P., and Goodman, N., "Concurrency Control in Distributed
Database Systems", ACM Computing Surveys 13(2), June 1981.

[Bern82a] Bernstein, P., and Goodman, N., "ASophisticate*s Introduction to Dis
tributed Database Concurrency Control", Proceedings of the Eighth
International Conference on Very Large Data Bases, September 1982.

[Bern82b] Bernstein, P., and Goodman, N., "Multiversion Concurrency Control
Theory and Algorithms", Technical Report No. TR-20-82, Aiken Com
putation Laboratory, Harvard University, June 1982.

[Ceri82] Ceri, S., and Owicki, S., "On the Use of Optimistic Methods for Con
currency Control in Distributed Databases", Proceedings of the Sixth
Berkeley Workshop on Distributed Data Management and Computer
Networks, February, 1982.

[Chan82] Chan, A., Fox, S., Lin, W., Nori, A.* and Ries, D., "The Implementation
of An Integrated Concurrency Control and Recovery Scheme",
Proceedings of the ACM-SIGMOD International Conference on Manage
ment of Data, March 1982.

[Gray75] Gray, J., Lorie, R., Putzulo, G., and Traiger, I., "Granularity of Locks
and Degrees of Consistency in a Shared Database", IBM Research
Report No. RJ1654, September 1975.

[Gray79] Gray, J., "Notes On Database Operating Systems", in Operating Sys
tems: An Advanced Course, Springer-Verlag, 1979.

[Gray81] Gray, J., "The Transaction Concept: Virtues and Limitations",
Proceedings of the Seventh International Conference on Very Large
Databases, September 1981.

[Kort82] Korth. H., "Deadlock Freedom Using Edge Locks", ACM Transactions
on Database Systems 7(4), December 1982.

[Kung8l] Kung, H., and Robinson, J., "On Optimistic Methods for Concurrency
Control", ACM Transactions on Database Systems 6(2), June 1981.



-18-

[Mena78] Menasce, D., and Muntz, R., "Locking and Deadlock Detection in Dis
tributed Databases", Proceedings of the Third Berkeley Workshop on
Distributed Data Management and Computer Networks, August 1978.

[Papa79] Papadimitriou, C, "SeriaUzability of Concurrent Updates", Journal of
the ACM 26(4), October 1979.

[Reed78] Reed, D., "Naming and Synchronization in a Decentralized Computer
System", PhD Thesis, Department of Electrical Engineering and Com
puter Science, Massachusetts Institute of Technology, 1978.

[Ries77] Ries, D., andStonebraker, M., "Effects of Locking Granularity onData
base Management System Performance", ACM Transactions on Data
base Systems 2(3), September 1977.

[Ries79a] Ries, D., "The Effects of Concurrency Control on Database Manage
ment System Performance", PhD Thesis, Department of Electrical
Engineering and Computer Science, University of California at Berke
ley. 1979.

[Ries79b] Ries, D., and Stonebraker, M., "Locking Granularity Revisited", ACM
Transactions on Database Systems 4(2), June 1979.

[Rose78] Rosenkrantz, D., Stearns, R., and Lewis, P., "System Level Con
currency Control for Distributed Database Systems", ACM Transac
tions on Database Systems 3(2), June 1978.

[Stea8l] Stearns, R., and Rosenkrantz, D., "Distributed Database Concurrency
Controls Using Before-Values", Proceedings of the ACM-SIGMOD Inter
national Conference on Management of Data, March 1981.

[Ston79] Stonebraker, M., "Concurrency Control and Consistency of Multiple
Copies of Data in Distributed INGRES", IEEE Transactions on Software
Engineering 5(3), May 1979.

[Thom79] Thomas, R., "A Majority Consensus Approach to Concurrency Control
for Multiple Copy Databases", ACM Transactions on Database Systems
4(2). June 1979.


