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ABSTRACT

This note shows that the Nyquist stability criterion is not a con
venient tool for use in computer-aided design of feedback systems. A
substitute graphical test is proposed which is more suitable for use in
CAD.
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J_. Introduction.

One of the interesting observations that has emerged in recent

years is that procedures that are efficient for "hand" computations are

frequently either inefficient or inappropriate for use on a digital com

puter. This observation obviously applies to such well known "manual"

techniques as the inversion of a matrix by Cramer's rule and the deter

mination of complete controllability of a single-input system by con

structing the controllability matrix and attempting to determine if it

is nonsingular.

The Nyquist stability criterion has served for years as a principal

"manual" tool for determining linear system stability. However, it turns

out to be quite incompatible with modern design techniques which make

use of semi-infinite optimization, because it cannot be transcribed into

a semi-infinite inequality. Nevertheless, it does lead directly to an

alternative graphical stability test which is totally compatible with

the requirements of semi-infinite optimization.

2. k New Graphical Stability Test.

Consider the design of the simple, single-input single-output

(SISO) closed loop system shown in Fig. 1, where P(s) =n(s)/d:?(s),

C(x,s) =nt(s)/dc(s) and F(x,s) =np(s)/dp(s) are real, proper rational

functions in s, with the vector x<£lRn denoting the compensator coeffi

cients to be determined by the designer. Let S be an open unbounded set

in the s-plane, symmetrical with respect to the real axis, e.g., as in

Fig. 2, to which the closed loop poles are required to be confined. We

shall assume that S has a right boundary BS which is given by an expres-
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sion of the form

©S = js£ C|s = 0-+jw, o- = f(w), -co < w <co ), (1)

where f :\R - VR is a negative, piecewise continuously differentiable func

tion which monotonically decreases as |w| increases, with f(w) -*-«© as

iwI *©• Consequently, the set S has the characterization

S = (s6 C|s = 0*+jw, <^-f(w) < 0, -<*>< w <<=£> |. (2)

For example, suppose that the set S is defined by

S = {sfeC|s = O'+jw, tf < -k, |w| - k^, -co < w <<»}, (3)

where k, ,ka > 0.

Definition J_: Let n(x,s) = n (s)n&(x,s)n (x,s) and d(x,s) s

d (s)dc(x,s)dff(x,s). We shall say that the closed loop system in Fig. 1

is S-stable if all the zeros of its characteristic polynomial

c(x,s) - n(x,s) + d(x,s) (4)

are in S. #

We begin by generalizing the Nyquist stability criterion so that it

can be used as a test of S-stability for the SISO system given in Fig.

1• We need to define an equation for an indented boundary of S.

Let x* be a given set of compensator coeficients. Suppose that the

polynomial d(x*,s) has k zeros, p,,...,pK, on the boundary of S. Let

£> 0. For i = 1,2,...,k, let I; be an open interval defined by

Ij = (im(p:)-t,im(p. )+£), i = 1,2,...,k, (5)
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and let f: lR-*ffi be a continuous function such that f(w) = f(w) for all

wjiui; and f(w) < f(w) for all we UI-V . Furthermore, suppose that

d(x*,f(w)+jw) f 0 for all w > 0. Then

AJ

3S - ts€.Cis = C+jw , tf = f(w), -o3< w <coj (6)

is an indented boundary of S (indented so as to include, in the result

ing enlarged complement of S, all the zeros o-'+jw' of d(x*,s) which

satisfy o*' = f(w*)).

The following result is obvious in view of the ordinary Nyquist

stability criterion [ij, see also [2j.

Theorem 1 (Extended Nyquist stability criterion): Let x* be a given set

of compensator coeeficients. Suppose that the polynomial d(x*,s) has m

zeros, p,,...,pw, in Sc, the complement of S. Let the indented boundary

of S be defined as in (6). Then all the zeros of c(x*,s) are in S if

and only if

(i) the zeros of F(x*,s) and C(x*,s) which are in S do not cancel any

poles of d(x*,s) which are in S , and

(ii) the locus of

n(x*,f(w)+jw) + d(x*,f(w)+jw)
t(x*,w) = , (7)

d(x*,f(w)+jw)

traced out for w taking the values from -<x> to +o> , encircles the origin

counterclockwise m times. #

Let us consider how we might attempt to verify by computer whether

the locus of t(x*,w) encircles the origin exactly m times.

Method 1: Define the integer valued function N(x) by
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N(x) = lim [arg[t(x,w)J - arg[t(x,0)J/2tf (8)
W*oo

where arg[zj denotes the argument of the complex number z. Then the

number of encirclements of the origin by the locus of t(x*,w) is given

by N(x*) and hence all zeros of c(x*,s) are in S if N(x*) « m. #

The evaluation of N(x*) requires the evaluation of arg[t(x*,w)J for

a large number of values of w in [0,<»), which is needed so as not to

lose any 2H increment. There may be some numerical difficulty in the

vicinity of zeros of d(x*,s) which are on the boundary of S. However,

the major objection to the use of the function N(x) for counting encir

clement on a digital computer stems from the fact that N(x) is a discon

tinuous function of x and therefore incompatible with semi-infinite

optimization techniques which may be required for adjusting the compen

sator coefficient vector x.

Method 2^: Let q:ffi -MR be a continuously differentiable function such

that q(0) < 0 and q(u) •*>«© as |u| -%co , e.g., q(u) • k. u -k , with k, ,

k^ > 0, see Fig. 3- Consider the set Q in the complex plane C, defined

by

Q * (z6C|z = u+jv, v-q(u) > 0). (9)

Clearly, Q contains the origin in its interior and is unbounded in the

v-direction. Consequently, the locus of t(x*,w) cannot encircle the ori

gin if it does not penetrate Q. The locus of t(x*,w) does not penetrate

Q if and only if

im(t(x*,w)) - q(re(t(x*,w)) < 0 for all w& [0,a>). (10)
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The geometric interpretation of (10) is given in Fig. 3.

This leads us to a special case. Suppose that d(x*,s) has no zeros

in S and let £ = 0, i.e., f(w) = f(w) for all w. Then the closed loop

system is S-stable if (10) holds. #

Clearly, the narrower the region in the complex plane defined by

the inequality -q(u) ♦ v > 0, the less conservative the test (10)

becomes. The advantage of Method 2, assuming that d(x*,s) has no zeros

in S for all x values to be considered, is that the function £:IR xiR *1R

defined by

<J(x,w) = im(t(x,w)) - q(re(t(x,w)) (11)

is differentiable in x and hence compatible with the use of semi-

infinite optimization algorithms for compensator parameter adjustment.

The disadvantages of Method 2 are (i) that it can only be used when

d(x,s) has no zeros in SC for all x of interest and (ii) that it

results in a sufficient, rather than both necessary and sufficient con

dition of S stability. The first disadvantage can be totally removed and

the second one considerably mitigated by replacing Theorem 1 with the

following obvious equivalent:

Theorem 2: (Modified extended Nyquist criterion). Let D(s) be any monic

polynomial of the same degree as d(x*,s), such that all the zeros of

D(s) are in S. Let

n(x*,f(w)+jw) + d(x*,f(w)+jw)
T(x*,w) = . (12)

D(f(w)+jw)

Then all the zeros of c(x*,s) are in S if and only if the locus of
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T(x*,w) traced out for w taking values from -co to<© does not encircle

the origin. #

Corollary: Let q(u) be defined as in Method 2. Then all the zeros of

c(x*,s) are in S if

im(T(x*,w)) - q(re(T(x*,w)) < 0 for all weLOpo). (13)

The polynomial D(s) can be chosen in such a way as to make the test

(13) not only sufficient but also necessary. For example, when P(s) is

strictly proper, a reasonable choice for D(s) is a monic polynomial such

that D(0) is close to c(x*,0)/2 for the range of x* being considered, so

that the plot of T(x*,w) starts at a value of around 2 for w = 0 and

goes to 1 as w goes to od , minimizing the chances that a stable system

would violate the test (13).

3,« Conclusion.

We have shown that it is possible to extend the classical Nyquist

stability test to allow for the verification of S-stability in a numeri

cally well conditioned manner. In the process, we have made it impossi

ble to determine the usual gain and phase margins. However, this is not

a great loss, since, by means of semi-infinite optimization, stability

robustness can be ensured in a much more sophisticated manner, see [3]*
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