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ABSTRACT

There are N independent machines. Machine i is described by
a sequence ( X^s), F*(s) ) where X'(s) is the immediate reward and
F*(s) is the information available when i is operated for the sth
time. At each time one must operate exactly one machine; idle
machines remain frozen. The problem is to schedule the opera
tion of the machines so as to maximize the expected total
discounted sequence of rewards. An elementary proof shows that
to each machine is associated an index, and the optimal policy
operates the machine with the largest current index. When the
machines are completely observed Markov chains this coincides
with the well-known Gittins' index rule, and new algorithms are
given for calculating the index. A variation of the reward struc
ture for the bandit problem defines the more general tax problem
and its index rule includes as a special case the well-known work
of Klimov on waiting time problems. Using the concept of super-
process, an index rule is derived for the case where new machines
arrive randomly. Finally, continuous time versions of these prob
lems are considered for both pre-emptive and nonpre-emptive dis
ciplines.
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Extensions of the Multi-armed Bandit Problem l

P. Varaiya, J. Walrand and C. Buyukkoc

Department of Electrical Engineering & Computer Sciences

and Electronics Research Laboratory

University of California, Berkeley CA 94720

1. Introduction

1.1. Background

In the basic version of the multi-armed bandit problem there are N

independent machines. Let Xj(t) be the state of machine i = 1, 2,.., N at time t =

1, 2,.. . At each t one must operate exactly one machine. If machine i is

selected, one gets an immediate reward R(t) = Ri(xi(t)) and its state changes to

Xi(t+l) according to a stationary Markov transition rule; the states of the idle

machines remain frozen, Xj(t+1) = Xj(t), j * i. The states of all machines are

observed and the problem is to schedule the order in which the machines are

operated so as to maximize the expected present value of the sequence of

immediate rewards

E2a*R(l), (1.1)
t=i

where 0 < a < 1 is a fixed discount factor. (It is generally assumed that a < 1.

Such a restriction is not imposed here, and the case a = 1 may be interesting in

some applications.)

1Research supported by Office of Naval Research Contract N00014-80-C-0507 and Depart
ment of Energy Contract DE-AC01-80RA50419.
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This problem has received considerable attention since it was first formu

lated in the 1940s, dynamic programming (DP) being the preferred framework

for its analysis. The essential breakthrough came only in 1972 when Gittins and

Jones [10] showed that to each machine i is attached an index i/i(xj(t)) which is

a function only of its state, and that the optimal policy operates the machine

with the largest current index. Call this the index rule.

This index result is extremely important since it converts the N dimen

sional bandit problem into N one dimensional problems.

The index was subsequently [7, 8] shown to be

EiTf a' R,(x,(t)) | X,(l) =x, 1
vM =max ^-r^i (1.2)

Ei2at|x1(l) = Xlj
t=l

where the maximization is over all stopping times r > 1. This was called the

dynamic allocation index (DAI) and interpreted as the maximum expected

reward per unit of discounted time. One other interpretation can also be given

[10, 19].

Gittins and his co-workers did not use DP in their study. "Unfortunately",

as Whittle [19] wrote, "[Gittins'] proofs of the optimality of the index rule have

been difficult to follow, and this has doubtless been the reason why the full mer

its and point of his work have not yet been generally appreciated." Whittle then

proceeded to supply an elegant proof using DP, and revealed the intimate con

nection between the (optimal) value function and the indices of the N machines.

1.2. Structure of the problem

Three features delimit the multi-armed bandit problem within the general

class of stochastic control problems:
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(i) idle machines are frozen;

(ii) frozen machines contribute no reward; and

(iii) machine dynamics are Markovian.

As will be seen in Section 2, properties (i) and (ii) almost trivially imply the

optimality of the index rule. The Markovian property (iii) is useful only in that

it permits a simple calculation of the DAI as shown in Section 4. In retrospect,

it seems that the Markovian property led researchers to adopt a DP framework

thereby obscuring the problem's simple structure.

1.3. The tax problem

Consider the problem in which the reward structure is the "reverse" of the

bandit problem. As before, exactly one of N machines can be operated at a time

and the idle machines remain frozen. If i is operated at t, then one is charged a

tax on the idle machines C(t) := ECj(xj(t)). Tne problem is to schedule the

machines so as to minimize

•fa* C(t). (1.3)
t=l

where 0 < a ^ 1 is a fixed discount factor.

At first sight property (ii) of the bandit problem appears to be violated

here in a decisive way. We will shownevertheless that when a < 1 the two prob

lems are equivalent. On the other hand, when a = 1 and X*(t) => 0 for all i and t,

the bandit problem is trivial since the present value (l.l) is essentially indepen

dent of the order in which machines are operated. This is not the case for the

tax problem. In Section 2 it is shown that the optimal policy for the tax prob

lem is also an index rule determined by the index

, . E f a Ci(x,) - aT Q(xj(t)) | x,(1) = xs } , v7i(xj) := max —= _1 ' * ^v —. (14)
™ E(2at|xi(l) =xi}

1
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This index can be interpreted as the maximum expected decrease in taxes per

unit of discounted time.

1.4. Extensions

Section 3 is devoted to several extensions of the bandit and tax problems.

In each case the optimal policy turns out to be an index rule although the form

of the index varies.

First, we consider the problem where time is continuous, but once a

machine is operated it cannot be idled until a certain "phase" is completed.

This corresponds to a nonpre-emptive discipline. Alternatively, one may view

this as an extension of the discrete time Markov dynamics to the semi-Markov

case.

Second, we treat the case where time is continuous and a machine may be

idled at any time. This is the pre-emptive discipline.

Third, we consider the extension to what is called a superprocess [0, 7, 19].

Here, in addition to selecting the machine to be operated, one also chooses a

control action. Under fairly restrictive conditions, similar to those give:i by

Whittle [19], an index rule is shown to be optimal.

Finally, we consider the situation where new machines are being made

available: if time is discrete, the new machines must form an Li.d. sequence; if

time is continuous, they must form a Poisson process. This situation is

analyzed using the results on superprocesses.

1.5. Computation of the index

As mentioned before, the results in Sections 2 and 3 on the optimality of

the index rule do not require Markovian dynamics. In this general setting it is

not easy to compute the index. However, when the machines evolve according

to a finite state Markov chain, one can give algorithms to compute the index.
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Such algorithms are described in Section 4 and are simpler than others pub

lished in the literature.

1.6. Applications

There is an extensive literature showing that the multi-armed bandit and

its variants can be used to model the decision problems in job scheduling,

resource allocation, sequential random sampling, clinical trials, investment in

new products, random search, etc. See [1-4, 7, 15-18, 21] and the references

listed therein. There is no need to review these applications here. It may be

worth noting that since we do not assume Markovian dynamics, some new appli

cations may be possible.

On the other hand, the tax problem formulated in Section 1.3 is novel. It

was suggested by the important work of Klimov [13, 14]. In Section 5 we show

how the index rule for the tax problem provides an optimal policy for Klimov*s

problem. We also present an algorithm for computing the index which is

simpler than the method proposed by Klimov.

2. Optimality of the index rule

2.1. Main idea illustrated

Since the simple essential idea of the proof might be obscured in the gen

eral case by the cumbersome notation, we illustrate it by the example of a

deterministic two-armed bandit problem.

Suppose there are two deterministic machines, X and Y and a < 1. If these

were operated continually, they would respectively yield the sequences of

immediate rewards

X(l), X(2), X(3), ... and Y(l), Y(2), Y(3), .... (2.1)

Following (1.2) we define the index (at time 1) of these machines as
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l>*X(t) l?a*Y(t)
^:=r!£?^7=i • ^:=™xi=7=i • (2.2)

™ 2 at 2 at
t=i t=i

Suppose vxis realized at r and that vx^vy. It is easy to check that (2.2) implies

l[Ja*X(t)a:i*^?a\ l*a<T, (2.3)
a a

fXYOOfSi/yfx, ail. (2.4)
i i

Consider the sequence of immediate rewards obtained by using an arbi

trary policy it. This sequence will be an interweaving of the two sequences in

(2.1). Call it

Z(l), Z(2), Z(3). . . .

and let T be the time when it operates machine X for the (r—l)81 time, so that

Z(T) = X(r-l). The Z sequence takes the form

Y(l),.„ Y(k!), X(l), Y(k1+1),.., Y(k2). X(2),..., i(K-i). X(r-l).

Z(T+1), Z(T+2),... (2.5)

Next consider the policy n which first operates the X machine (i—1) times

and then follows policy rr to yield the sequence

X(l).... X(t-1). Y(l)..„ Y(kT_1), Z(T+1). Z(T+2), .... (2.6)

The present values of these policies are

V(tt) := 2 a* Y(t) +.. +a'"8 2 a' YW +if **" XW +S a' z(fc)'
i K-*+1 i T+1

V(?r) := 2* a1 X(t) +a*""1 2* at Y(t) +2 a1 Z(t).
1 1 T+l

Hence V(7r) —V(7r) = Ax —Ay. where (with k0 := 0)

a¥:-U(l-a'V*X<t)
1

=2l(ak^1-akt)21anX(n)
n=t
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T-l v t, T-l

*«*2 (akt-1-akt)2aa, by (2.3)
1 n=t

^ifd-a1") a',
1

JC* i£p t* t

Ay := (1 - a'"1) 2 at Y(t) + (a - eTl) 2 at Y(t) + • • + (aT~2 - aT_1) 2 at YW
1 kt+l kr-2+1

=T2(at"1-at) 2 anY(n)
1 n=l

T-l K
^ vx 2 (at_1 - a1) 2 a». by (2.4) and i/x > i/y

1 n=l

=^xT2(l-akt)a*.

Hence V(£) s V(tt).

Thus it is better to follow the index rule until time t—1. The argument can

now be repeated starting at time r. This proves the optimality of the index rule.

Observe that the freezing property is needed to guarantee that the sequence

(2.6) is feasible; property (ii) (idle machines yield no reward) is used to compare

the rewards obtained by any policy and the index rule.

2.2. Formulation of the bandit and tax problems

Machine i = 1, 2,.., N is characterized by the pair of sequences

{X*(s), P(s) }, s = 1, 2, .. . . (2.7)

X*(s) is the (random) rewardobtained when i is operated for the s^ time. F*(s) is

the a—field representing the information about machine i gathered after it has

been operated (s-1) times. It is assumed that

(i) F*(s) c F*(s+1); let P := VF^s); (X'(s) need not be adapted to F*(s))
a

(ii) P and P are independent for i * j;

(iii) E 2 a1 iX*(t) | < «, all i; here 0 < a <; 1 is a fixed discount factor,
l

At each time exactly one machine must be operated. Thus, t = t1 + . . + tN
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where t1 = t*(t) is the number of times i is operated during 1, 2, . . , t. t1 or t*(t) is

called the i**1 machine time at time t.

Consider the decision at time t+1. This must be based on the available

information

F(t) := V F^+l). t = 1, 2, . . .

A policy is any sequence of decisions that satisfies this information constraint.

The bandit problem is to find the policy n that maximizes

V(tt) := E { 2 at*w (ti(t)(t)) I F(l) i (2.8)
l

where i(t) is the machine operated at time t.

In the tax problem the data and assumptions are identical. The only

difference is that X1 is interpreted as the tax that must be paid if machine i is

idle. The tax problem is to find the policy it that minimizes

W(w) := E {2 at [ 2 *(t'OO+l) ] I F(l) ). (2.9)
t=l i7*i(.)

2.3. Equivalence of the problems when a < 1

Suppose a < 1, and consider any policy it. Let ij(s) be the (process) time

when it operates i for the s*11 time. Then, for the bandit problem,

V« =E\ 2 £ a** tf(s) | F(l) )
1 sal

and for the tax problem,

WW =E{2 £ [aW-1*1 +.. +a1*0"-1] X>(s) | F(l) i. 1,(0) := 0.
1 8=1

See Figures 1, 2.

Suppose we wish to maximize V(7r). Define machines j Y1(s), Fi(s) J by

Yi(s):= 2 arXi(s+r).
r=0
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Then,

X*(s) =Yi(s)-aYi(s+l).

Some algebraic manipulation leads to the form

2 aVs) X*(s) =aY*(l) - (1-a) 2 [al(a-l)+1 +. .+ a^-1] Y*(s).
8=1 1

Since Yi(l) is a constant, it follows that maximization of V(7r) is equivalent to the

tax problem:

min Ef2 2 [aVs-1)+1 +. . +a^"1] Y*(s) | F(l) ).
i s

On the other hand, suppose we wish to minimize W(?r). Define machine

( Z^s), F*(s) j by

Z?(s) := X1(s) - a X*(s+1).

Then one gets

g [aV8-1)+1 +. .+aW',,-1] X"(s) =(1-a)- [a *(l) - £ ^ 2?(,)]
1 1

and so the tax problem is equivalent to the bandit problem:

maxE{2 2all(8)Zi(s)l F(l) j.
1 a

2.4. The index rules

For the bandit problem, the index of machine i after it has been operated

(s-1) times is defined as

Ei2at*(t)|F»(a)i
i/j(s) := max —^ , (2.10)

T>8 E f 2 a* | *(.) j
8

where the maximization is over all stopping times « ^ r > s of j F1(.)).

For the tax problem, the index of i after it has been operated (s-1) times is

defined as
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7i(s):=^xEi^m^iMriim±. (2.u)
E j 2 a' I F»(s) j

8

One should observe that the indices in (2.10) and (2.11) are in conformity

with the equivalence transformations introduced in the preceding section.

Note also that if the machine dynamics are Markovian, then (2.10) reduces to

(1.2), while (2.11) reduces to (1.4).

The index rule for either problem is the policy that operates the machine

with the largest current index.

2.Ei. Optimality of the index rule for a < 1

Because the two problems are equivalent only the bandit problem is con

sidered. The optimality is based on the following simple proposition (cf (2.3)).

Lemma 2.1

Suppose r is optimum in (2.10). Let a > s be any \ F*(.) J stopping time. Then

EllMS^W |F>(s))
—Tj ^ i/i(s) a.s.

E { l(<Kr) 2 at I **(*) )

Proof

Clearly,

0=E{21 a' [#(t) - Vi(s)] | F«(s) j
8

=E( 1(<t<t) 2l a' [5C(t) - t/,(s)] | F>(s) 1

+E{l(ofer) J* a' [)C(t) - 14(a)] | F>(s) j
8

+E( 1(o<t) °f a1 [*(t) - v,(s)] | F"(s) ).
8

Let 6 := min (a, r). Then the sum of the last two terms equals
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E \ 2 at IXW - 1/1(3)] I F*(s) ]* 0. by (2.10).
s

and the proof is concluded.

We now prove the optimality of the index rule. The main difficulty is one of

notation. Consider the effect of any policy it from time t on. By a change of

time origin we can set t = 1 so long as the information available from operating

the machines up to time t-l is incorporated in the initial a-fields F*(l). Let

Z(l), Z(2), . . .

be the sequence of immediate rewards resulting from it. This sequence is an

interweaving of the N sequences

X1(l). Xi(2), ... i = 1, .. , N.

Let lj(s) be the time when n operates machine i for the s*11 time. Then

t*(t) = max ( s S> 0 I li(s) <; t ). Zftfs)) =X*(s),
N ~

.V")V(tt) := Ki 2 a* Z(t) | F(l) j =E f 2 2 a* *1(s) I F(l) j.
1 i=l a=l

Suppose without loss of generality that machine 1 has the largest index,

i/x(l) 2* i/i(l), alii, (2.12)

and let it be achieved at the stopping time r of [ F1^)}. Let

T :=1i(t-1). lq := t^T), so that kt = r-1.

Let it be the policy defined as follows:

(a) operate machine 1 at time 1, 2,..., t—1,

(b) operate machines i * 1 at time t T in the same order as it, and

(c) operate according to it at time T+l, T+2

See Figure 1. It is readily seen that n is a (feasible) policy. Let the resulting

sequence of immediate rewards be
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***. . ***

Z(l), Z(2)

Then Z(t) =Z(t), t >T. Let lj(s) be the time when rr operates i for the.sth time.

So l! = s for s = 1,.., T-l. Then
A

A :=V(n) - V(tt)

=Ej 2 a1 [Z(t) - Z(t)] | F(l) 1=Ef£ 2 [all(s) - aVa)] X>(s) | F(l) J
t=l i=i s=l

=E}2 [a° - »',W1 #<•) - S S [aV3) - a^3'] X»(s) | F(l) }
B=l i**l S=l

=E{T2 b.1 [aa X*(s) +...+ a1""1 X1(t-1)] | F(l) j
a=l

- E ( 2 2 ba l> #tt> +•••+ aS#M] I F(D i (2.13)
it*l 8=1

where

b> =a- [a,'(8-,)+1 - a''(s)] &0,

since lj(s) S: li(s—1) + 1, and

b* =a—* l(aS(a)+l - a^1}) - (a>)+l - a^1})] * 0,

since%(s) ^ lj(s) and%(s+l) -~i(s) «s li(s+l) - lj(s).

Using Lemma 2.1 for the first term in (2.13) and (2.12) for the second term

gives (with i/j := i>i(l))

Afe vx E(T2 bj [a8 +.. +a-i] - 2 2 b8 [a +.. +aa] | F(l) j
8=1 1*1 8=1

=*, E{Tf [a- - a'l(,)] - 2 S [al(s) - a**] |F(l) !
8=1 1*1 8=1

=•'. Ef2 2 Ca1l(s) - a1-""] | F(l) J
id s=l

si^Ejfx-fjaM F(1)}=0.
i i

IN*

Hence it is better than rr.

Now tt coincides with the index rule over 1, 2,..., t—1. Since the initial time

was arbitrary, Theorem 2.1 is proved.
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Theorem2.1

If a < 1 the index rules defined by (2.10) and (2.11) are optimal.

Remark 2.1

From the proof of Theorem 2.1 one can see that the index rule proceeds in

"stages" as follows:

Stage 1. Calculate vx(l), . . .fft(l). Suppose i/j(l) is the largest and let it be

achieved at time T\ > 1. Operate machine i for time 1, 2,..., Ti—1. At the end of

stage 1, the process time is Tj := Tj—1.

Stage k+1. Suppose Tk is the process time at the end of stage k and let the

corresponding machine times be S£ := t^T^). Calculate the indices

^i(S^+l),..M i^n(SJ?+1)- Suppose the j111 index is the largest and let it be achieved

by the stopping time Tj > S^+l. Operate machine j for time

Tk+1 Tk+(Tj-l-Si) := Tk„i.

In words: at the end of each stage calculate all indices, and operate the

machine with the largest index for a time given by the corresponding optimal

stopping time. This alternative construction of the index rule will be used in

Section 3.3.

2.6. Optimality of the index rule for a = 1

When a = 1 the bandit and tax problems seem not to be equivalent, and

separate arguments appear necessary to prove optimality. However, since the

two arguments are similar, only the tax problem is treated in detail.

The bandit problem for a = 1 is trivial if Xi(s) 2: 0 for all i, s. Indeed any pol

icy which operates every machine infinitely often will then be optimal since it

yields the maximum present value E 2 2 ^(s)- However, even for this trivial
1 s

case, the index rule may be preferred since it will be close to optimal when a <
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1 and close to 1. See Kelly [12] and the references therein. On the other hand,

if X*(s) < 0 for some i, s, there is no longer any obvious optimal policy since it

may be advantageous to operate some machines only a finite number of times.

Thus the bandit problem for a = 1 is of interest although this case has

apparently been ignored in the literature.

We turn now to the tax problem. There are N machines i X*(s), Fi(s) J and

we seek a policy it to minimize (cf (2.9))

W(") =E[§ 2 XWtJ+l) IF(l) J
1 lri(t)

= e i 2 2 &<•> - ii(s-D -1] *(s) I F(l) i
1 8

where ij(s) is the time when it operates i for the s111 time. See Figure 2.

We now prove the optimality of the index rule defined by the index (2.11).

The next lemma is proved in a way similar to Lemma 8.1.

Lemma 2.2

Suppose t is optimum for (2.11). Let a > s be any j F*(.) J stopping time. Then

Ejl(a<T)fX'(a)-Xi(T)1|FXs)}^ (g) ag
Ei l(a<r) [t - a] \ P(s) j ™ '

Consider the effect of jt from time t on. By modifying F*(l) we may suppose

that t = 1. Let machine 1 have the largest index

7i(l)s=7i(l), alii, (2.14)

and suppose it is achieved at time t. Let

T := 1i(t-1). ki-1 := tJ(T), so kx-l = T-l.

Define policy it exactly as in the preceding section and let l|(s) be the time

when 7T operates i for the stn time. Then

W(ff) =EJ2 2 Ei(s) -Ti(s-i) -1] #00 I f(D I
1 8
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and so

A:=W(tt) -W(£)

=Ei 2 2 [OiWH,(H-l)-D - fitW-Ws-D-l)] tf (•) | F(l) |
i=l s=l

T i*a nj

= E ( E[(l,M-i,(i-l)-l) ~ (l.W-lifr-D-l)] X'(s) I F(l) 1
8=1

- Ei 2 S [8,00-3,(«-l)-l) - (1,(8K(8-1)-1)] *(•) | P(l) ). (2.15)
1*1 sal

Proposition

There exist bs(s) ^ 0 such that

A = E ( 2 b»« [X'(s) - X>(t)] - 2 2 b- WD - *<•)] I F(D I (2-16)
8=1 is*l 8=1

Proof

Let

hj := 0, bj := [lj(s) - lj(s-l)] - fi,(s) -1,(8-1)]. otherwise.

Then (2.15) and (2.16) are equal if

2 [li(s) -lj(s-l)] = 2 ft(a) -'li(s-l)]. for alii * 1.
8=1 8=1

This reduces to ^(kj) = li(kj) which is certainly true since after time T the poli-

cies it and rr operate the same machines in the same order. (See Figure 2.)

Also, for (i, s) * (1. t). ba Ss 0 sincel^s) Ss l^s) and lj(s) - l,(s-l) Sslj(s) -T,(s-1).

Using Lemma 2.2 for the first term in (2.16) and (2.14) for the second term

gives, after some algebra,

A*7iU)Ei 2 bg1(r-s)-2 2 ba (s - 1) j = 0.
8=1 is*l s=l

Hence tr is better than n.

£*> . . r>*
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Now it coincides with the index rule over 1, 2,..., t-1. Since the initial time

is arbitrary it follows that the index rule is optimal. A similar argument works

for the bandit problem as well.

Theorem 2.2

If a = 1, the index rules defined by (2.10) and (2.11) are optimal.

3. Extensions

3.1. Continuous time, nonpre-emptive

The data are slightly different. Machine i = 1,..., N is described by the triple

}X*(s). cr^s), F*(s) ). s = 1. 2 (3.1)

X*(s) is the instantaneous reward (or tax) as before. If i iss operated for the s*

time it must be operated without interruption for the (random) time interval

(^(s). F1(s) is, as before, the information obtained after i lias been operated (s-

1) times. Assumptions (i), (ii), (iii) of Section 2.2 are maintained. It is not

assumed that (^(s) is adapted to F1(s) or Fi(s+1).

The discrete parameter t = 1, 2,... now denotes the (process) period

number and t* = t*(t) is the number of times i is operated during the first t

periods. Let i(t) be the machine operated during the t*11 period. Then the real

(process) time at the end of period t is

a(t) = ^(^(l)) + .. + oWftMft)).

With this additional notation the present value of rewards for the bandit

problem is (cf (2.8))

„ oit)

V(tt) := E ( 2 / XMftW) ardr | F(l) ) (3.3)
t=i <r(t-i)

The integral gives the present value of rewards when i(t) is operated during the

V* period, discounted back to time 0. The case a*(s) = 1 reduces to the
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standard bandit problem of Section 2.2.

The index of i after it has been operated (s-1) times is now defined as (cf

(2.10))

Ej £ a<*8) +"+<*t-Dxi(t) / ardr | F*(s) j
i/,(s) := max * , (3.4)

E ( / ar dr | P(s) ]
0

where t is any stopping time of ( P(.) J.

At the end of each period the index rule operates the machine with the

largest current index and for the associated period a. The proof of the next

result requires obvious changes in the proof of Theorem 2.1.

Theorem 3.1

The present value given by (3.3) is maximized by the index rule defined by the

index (3.4).

A similar result holds for the tax problem. The present value of the tax

stream resulting from policy it is (cf (2.9))

» »(t)

W(rr) := E ( 2 / 2 X^W+l) ardr | F(l) J.
t=l ff(t-l) i*i(t)

The index of i after it has been operated (s-l) times is now defined as (cf (2.11))

r,(s) := max EW J *"*\ "*«*-» *fr) I*') i. (3 5)
E j / ar dr I J*(.) )

0

One can then show that the index rule defined by this index is optimal for the

tax problem.

3.2. Continuous time, pre-emptive

Machine i is now characterized by the continuous parameter process
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[ X*(s), F*(s) j. s > 0.

Xi(s) is the reward (or tax) process. F*(r) c F'(s) for r <s. P := V Fi(s), P and FJ
a

are independent for i & j.

At any (process) time t any machine may be operated. Let t* = t*(t) denote

the Lebesgue measure of the process time during which i is operated. Then the

present value of a policy tt is

V(rr) := E f / a* XW(t*W(t)) dt | F(0) j.
o

The index for machine i after it has been operated for time s is defined by

E i f a' X'(t) dt | F*(s) j
i/i(s) := sup 2-^ . (3.6)

E { f a* dt | P(s) j
T>a

The index rule is to operate at each t the machine with the largest current

index.

To prove the optimality of the index rule various additional technical

assumptions must be made so that i(t), t*(t) and (3.6) are well defined. In most

cases one can construct a proof as follows. Fix e > 0, and restrict attention to

policies ne which switch machines only at times 0, e, 2e, . . . This is a standard

bandit problem of Section 2.2. Moreover

SUp V(tTc) ^ SUp V(7T)jc) <? SUp V(7r).

A technical argument is now required to show that sup V(7r) - sup V(7re) -»0as

e -» 0. In [ll] the bandit problem for diffusions is analyzed by extending

Whittle's dynamic programming argument.

An index rule for the continuous time tax problem can be derived in a simi

lar way. The index for machine i after it it has been operated for time s is given

by
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Ej a^s) -aTXV | F*(s) ]

Ei/a'dtl^s))
a

The index rule defined by this index minimizes the present value of taxes

W(tt) := E( / 2 a1 X*(t'(t)) dt | F(0)
0 ij*i(t)

3.3. Superprocess

We consider the discrete time problems of Sections 2.2 with an additional

degree of freedom: when a particular machine is operated one must also select

a control action that affects both the immediate reward and the machine's

"state transition". We call such a machine a "superprocess", following [6, 7, 19].

The control action is based on the available information, i.e., one selects a feed

back law. Once a feedback law is chosen, this machine can be described as

before by a pair of sequences of rewards and information a—fields.

Thus, from an abstract point of view, the i^ superprocess is simply a col

lection Xf of standard machines X* = J X'(s), F*(s) ], with different machines in X*

corresponding to different feedback laws.

Suppose we are given N superprocesses. For each selection X1 € X*i let

V*(X1, .. , XN) be the maximum expected reward of the standard bandit problem

associated with the machines X1, .. , XN. The bandit problem associated with the

N superprocesses is to find X? GX? to

max V*(Xl. .. , XN).
x}x..xxj*

It is easy to suspect that the selection of the optimal (X1,. . XN) will usually

have to be jointly determined. Our aim is to give a condition which implies that

the selection of the best machine in the i^ superprocess can be made indepen

dent of the selection of the machine in the j* superprocess j ^ i. The condition
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is a generalization of that given by Whittle [19] and involves the concept of

machine domination which is introduced next.

For any machine X = j X(s), Fx(s) j and v € R let

N(X. i/) := max Ef 2* a1 [X(t) - i/] J, (3.7)
T>1 j

where r ranges over all stopping times of j Fx(.) J. For later reference note that

if Tj, is the optimal stopping time for (3.7), and v' =£ u, then one can find an

optimal stopping time tv> such that t^ ^ tv a.s.

Observe also that if i/(l) is the index of machine Xat time 1 given by (2.10),

then

N(X.i/(l)) = 0.

Say that machine X = \ X(s). Fx(s) i dominates machine Y = i Y(s), FY(s) i

(for the bandit problem) if

N(X. i/) fe N(Y, i/) for all v. (3.8)

Theorem 3.4

Suppose X1 e Xf is such that X1 dominates every Y1 e #. Then

V(Xl.. . , XN) = max V\Y\. .. Y").

Thus if each superprocess contains a dominating machine, then making

the joint optimal selection over 2C1 x . . x XN reduces to N decoupled optimization

problems. The condition that there exists a dominating machine is quite res

trictive.

The proof of Theorem 3.4 depends upon the crucial Lemma 3.2 which in

turn requires the next instructive result.

For a machine Z = \ Z(s), Fz(s) J define a sequence of i Fz(.) J stopping

times ffj < <7g < . . and a sequence of index values vi% v%* . • as follows:
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Stage 1. Let i/j := 1^(1) and suppose the index is attained by the stopping time

ai+1 > 1. See (2.10); here i/z is the index of machine Z.

Stage i+1. Let i/I+1 := i/^Oi+l) and suppose it is attained at time

(cri+1+l) > (ffi+1).

Lemma 3.1

i/j is measurable with respect to Fz(ai_1 +1) (cr0 = 0)- Also

^i ^ ^i+i. a.s.

Proof

The first assertion is immediate from definition (2.10). Suppose P j i/i+1 > i/j ] >

0. Define

a = Oj on i i/1+1 ^ i/j)

= <Ti+1 on i i/1+1 > i/j J.

It is easily seen that ct+1 is a stopping time since ( i/I+1 > i/j J € Fz(ai+1). More

over

E ( 2 a*Z(t) I F(crI_l+l) }
"1-1+1

ai *i+i
= E ^ 2 a^(t) | FCaj-x+l) j + E f Ifi/i+1>i/,) E f 2 ^Z(t) | F(<r,+1) j | F(aI_1+l) }j

= i/, E ( 2 at I F(*i-i+l) ! + E { l!i/i+1>i/,} i/1+1 x
ffl-l+I

ffl+l

xE( 2 a*|F(cri+l) | F(ffl_1+1) ]]
e^+l

a

> i/jE ( 2 at I **(*,_!+1) ( with positive probability,

which contradicts (2.10), and the proof is complete.
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Lemma 3.2

Let X= jX(s), Fx(s) ), Y= (Y(s), FY(s) j, Z = {Z(s). Fz(s) ) be three machines. If X

dominates Y, then

V(X, Z) & V(Y, Z).

Proof

First suppose a < 1.

By Theorem 2.1 V*(Y, Z) is attained by the corresponding index rule. Sup

pose the index rule leads to the sequence of immediate rewards,

Y(l) Y(X2), Z(l) Zfo). Y(X,+1) Y(X2), Z(ax+1) Z(a2)

where Xj-n Ss \ and ai+i ^ Cj are stopping times of { FY(.) } and j Fz(.) J respec

tively. Then

V(Y. Z) = E \ 2 at YM + a*1 2 at Y(t) + .. )
1 Xj+l

+E( a*1 2 a1 Z(t) + a*2 £ a1 Z(t) +.. ). (3.9)
l ffj+i

According to Remark 2.1 we may assume that the interval Oj+1. .. ,(Ti+1 is a

stage in the implementation of the index rule. Let i/j := i^(«yi_1 +l). Then, (2.10)

and Lemma 3.1 respectively imply

E { 2 at ZW I Fz(ai+1) j = !/i+1 E I 2 at I F^ffj+l) j (3.10)

i/j+1 ^ i/j a.s.

We now specify in stages a policy for the bandit problem involving the two

machines X, Z.

Stage 1. Calculate i/j. Find the stopping time (tx+1) of { Fx(.) j such that

NCX,^) = Ef 2 at[X(t) -Vl]\.
l
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Operate machine X Tj times. Then operate machine Z Oi times.

Stage i+1. Calculate i/i+1. Find the stopping time (tj+i +1) of j Fx(.) ] such that

Ti+i

N(X. i/i+1) = E f 2 at [XW - ui+l] J. (3.11)
l

Because i/1+1 ^ vx a.s. we may assume that Tj+l ^ Tj a.s. Operate machine X

(Ti+1 —Tj) times. Then operate machine Z (ctj+1 —ffj) times.

This policy results in the sequence of immediate rewards

X(l). .., X(Tl), Z(l),.., Z((T1), X(T!+1), .. , X(t2), Z^i+l), .. , Z(a2)

and so

V(X, Z) s* E j 2 a1 X(t) +a"1 2 at X(t) +. . )
1 Tj+l

+E{aTl2atz(t) +aT8 2 atX(t) +..j (3.12)
1 aj+l

which will be compared with (3.9). We have V*(X, Z) - V*(Y. Z) 2s Lx - A2 where

Aj =E f [2 a^X(t) - 2 alY(t)] +aai [ 2 a*X(t) - 2 a*Y(t)]+..j
1 1 Tj+l Xj+1

=Ef(l-a'«) [£ a»X(t) -1 a'Y(t)]
1 1

+(aai-aa8) [2 a1 X(t) - 2 at *«] +. . ) (3.13)
i i

A2 =E*(aXl-aTl) 2 at Z(t) }+Ef (aX2-aT8) 2 at Z(t) +. . }. (3.14)
1 at+l

The typical term in (3.13) is

E [ (affi-i-a'i) E{ 2 at X(t) - 2 at Y(t) | Fz(ai) i J
l i

a= Ei(a'-'-a"') „, (£ at - | a«) )=-*-Ei(a'-'-a"') t/, (a^-a^) ),
1 1 1—a

using (3.11), and the hypotheses that a < 1 andX dominates Y; we also used the

identity a + .. +al = a(l-a)""I(l-at)- Hence
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•~2l Al ^ E(a*1 -aTl) (1-a*1) ^ +E(aX*-aT2) (a0*-*'*) „B +. . (3.15)

Similarly, using (3.10) in (3.14), one finds

±=± A2 ^ E(a*1 -aTl) (l-a**) i/2 +E(aX8-aT2) (a^-a^) i/2 +. .

which proves that Ai—A2 ^ 0 as required. An analogous argument works for a =

1.

•

Corollary 3.1

Suppose X dominates Y. Then for any machines Y2, . . , YN

V(X. Y2, . . , YN) &V(Y, Y2, .. , YN).

Proof

Consider any policy that attains V*(Y, Y2,. ., YN) and let the corresponding

sequence of immediate rewards be

Y(l). .. , Y(X2), Z(l). .. , Zfo). Y(Xi+l). .. . Y(X2). Z((j1 +1),.. , Z(ff2). . .

where the sequence j Z(s) J is an interweaving of the reward sequences

j Y2(s) j,..., j YN(s) ]. We can certainly construct a machine Z = { Z(s), Fz(s) j

where Z(s) is as above and Fz(s) is the corresponding information a-field. Then

V(Y, Y2, . ., Y*) = V(Y, Z).

Also V*(X, Z) ^ V*(X, Y2, .. , YN) since operating Z is more restrictive. By Lemma

3.2 V*(X, Z) Ss V(Y, Z) and the result is proved.

•

Proof of Theorem 3.4

Repeated applications of the corollary above give

V^Y1,.., YN) <s V(Xl. Y8,.., YN) «£ .. £ VCX1,... XN).
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For the tax problem there is an analogous result except that the definition

of domination is different.

We say that X = }X(s), Fx(s) j dominates Y = i Y(s), FY(s) J for the tax prob

lem if

r(X, y) ;> T(Y, y) for all 7,

where, for a machine Z = j Z(s), Fz(s) [,

T(Z, y) := inax E\aZ(l) - aT Z(t) - y 2* a1 j.

For the tax problem with machines X1, . . , XN let WfX1. . . , WN) be the

minimum expected cost.

Theorem 3.5

Suppose Xs e Xj is such that X1 dominates every Y1 e X?- Tnen

W(Xl,. .. XN) = min W^Y1, .. , YN).
X}x • •• xX?

3.4. Arm-acquiring bandits

We shall consider the discrete time bandit problem of Section 2.2 but, in

addition, we permit the arrival of new machines. Whittle [20] calls this an arm-

acquiring bandit. To describe the model the previous notation must be

extended as follows.

There is now a potentially infinite number of machines i = 1, 2, ... The Ith

machine X1 = \ X*(s), P(s) J is described exactly as before. At time t only a finite

number of machines i = 1, 2,.., n(t) is available. These are the machines which

either were available at time 1 or arrived during 1,.., t-l. Let t'(t), i = 1,.., n(t)

be the number of times that i was operated during time 1,.., t. Thus t*(t) is the

Ith machine time at process time t. The decision at t+1 is based on

n(t)
F(t) := V F1(ti(t)+1).

i=l
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At time t a set A(t) of new machines arrive. These are "new" in the sense

that at t their machine times are zero. Let |A(t)| denote the number of

machines in A(t). Then

n(t+l) = n(t) + |A(t)|,

and at t+1 one may operate any machine i = 1,.., n(t+l). In addition to the

assumptions (i)-(iii) imposed at the beginning of Section 2.2 we make the follow

ing assumption.

(iv) For each t the set of random arrivals A(t) is independent of the control

actions taken during 1,.., t.

The assumption means essentially that the number and type of machines

arriving in the future cannot be affected by the order in which machines were

operated in the past. The assumption permits future arrivals to be dependent

on past arrivals. This possiblity will be removed later.

We convert this problem into one involving N superprocesses.

To begin, suppose only one machine X = j X(s), F(s) J is available at time 1.

The arrival of new machines is described by the random sequence ( A(t) }, t = 1,

2, ... A policy it prescribes at each time t whether to operate machine X or to

operate one of the machines that arrived before t. Each such policy will deter

mine a sequence of immediate rewards and an associated sequence of informa

tion fields. We may regard this pair of sequences as a machine

X" = { XTr(s), F"(s) ]; different policies will be associated with different machines.

The set of all (Feasible) policies can, in this way, equivalently be regarded as a

set of possible machines, in other words as a superprocess, say X. Of course

XeX.

We want to show that X contains a dominating machine X*.

The following proposition will be useful.
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Lemma 3.3

Let Z = [ Z(s), F(s) j be a machine. Consider

T>1

max E 2 a1 Z(t),
l

and let t be optimal. Let a > 1 be any stopping time. Then

EI1(ct<t) T2 afc Z(t) )&0^ Ej 1(<7>t) 2* a' Z(t) j.
a t

Proof

Let N=ET2 a1 Z(t). Then
l

T-l T-l ff-1

N= E j l(a<T) 2 at Z(t) j + E j 1(ct^t) 2 a1 Z(t) ) + E { l(a<T) 2 at Z(t) )
9 1 1

=Ei 1(<t<t) T2 a1 Z(t) j +E2 at Z(t), 6:= min (a. t).
O 1

6-1

Since E 2 a1 Z(t) <> N, the first inequality is proved. Also
l

T-l a-l ff-l

N= E {1((*st) 2 at Z(t) j + E ( 1((j>t) 2 at Z(t) j - E f 1(<7>t) 2 a* Z(t) i
1 1 T

=E2* a* Z(t) - E( 1(<x>t) C2 at Z(t) ). X:= max (a, t).

A-l

Since E J a1 Z(t) ^ N, the second inequality is proved.

For any policy it and number v let

N(tt, v) := max E 2 at P^to - v]
T>1 j

where t is a stopping time of ( Fn(.) J. Let

T-l

N(i/) := max N(tt, v) = max max E ^ a1 [Xff(t) - v] (3.16)
It It T>1 |

and let ir(v), r(v) be optimal for (3.16).
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Then X" dominates every machine in Xif N(tt, v) = N(i/) for all v (see (3.8)).

Fix two numbers jj, < v.

Lemma 3.4

There exists a policy tt which agrees with ir(v) during 1,.., t(i/)-1 and such that

N(tt. fj) = N(tt(aO, /x) = N(/.i).

Proof

Denote the reward sequence during 1,.., t(i/)—1 corresponding to ir(v) by

Z(l)-i/, Z(2)-y, . . , Z(t(i/)-1)-i/ (3.17)

and the reward sequence during 1,.., t(ji)—1 corresponding to n(jz) by

Y(l)-/x, . ., Y((j1)-ju, Z(l)-/.t, Yfori+l)-^,. . , Y(a2)-M, Z(2)-/a, Y(a2+1)-M.

... Z(k-1)-M, YVk.i +l)-^,. . ,Y((Tk)-/i. (3.18)

In the sequence (3.18) the Z(i) denote the rewards which explicitly appear in

(3.17). Hence k-1 jS t(v)—1. By Lemma 3.3 and since /j, < v

tM-1 tM-1

O^E 2 at[Z(t)-i/]<E 2 a*[Z(t)-/*].
k k

Hence, if k •£ r(v), the policy which gives the reward sequence

Y(l)-/z. . .. YfaO-M. Z(l)-u, .... Y(ak)-ju, Z(k)-^ . ., Z(t(i/)-1)-/.i

will give a larger reward than 7t(jm) which is not possible since 7t(/a) is optimal.

Hence we may assume that k = t(i/) in (3.18).

Next consider the policy n and stopping time t := t(/j.) which gives the

reward sequence

Z(l)-ju Z(k-1)-M. Y(l)-/x, . ., Y(crk)-/i. (3.19)

Assumption (iv) guarantees the feasability of tt. Also tt agrees with tt(v) during

1, .. , t(i/)-1. Since N(/z) = }i(ir(jj), /i),

0>N(7r.M)-N(7r(^),/i,)



-29-

=E(kf a' [Z(i)-/x] +2 a""1*1 [Y(J)~M] !

- Ei 2 a' [Y(j)-M] +••+ 2 a*-141 [YO)~m] +S' a'1*' [Z(l)-j!*] 1

=E[kf a' [Z(i)-./] +2 a*-"! [Y(j)-v] j
1=1 ]=i

- Ei £ a< [Y(j)-«/] +.. + 2 ak"1+1 DfCl)-^] +"S1 a"l+' [Z(l)-v] i
]=l !=»k-i*» '=1

="if d-a'1) a' [Z(i)-u] - fi 2 (a'-'-a*"') ai [Y(j)-u]
i=l 1=1jaa^j+l

="£ b? If a8 [«.)-!/] - 2 b,Y E a° [Y(i)-i/]
1=1 a=i 1=1 3=1

=: Az - AY.

Exactly as in the proof of Theorem 2.1 one can show that b? St 0, bY ^ 0.

On the other hand,

N(tt(i/), u) =N(tt. v) = 21 a1 [Z(i)-i/] +2 ak~1+J M>)-vl
i=i ]=i

Hence, by Lemma 3.3

2* a° [Z(s)-i/] ^0>2 ak'1+s [Y(s)-i/]
S=l 8=1

from which it follows that Az ^ 0 ^ Ay, and so N(7r, jj) = N(tt(/x), /z). The proof is

complete.

Theorem 3.6

There exists a policy tt such that X" dominates every machine in X.

Proof

Let i/j > i/2 > . . . -* —<». By Lemma 3.4 there exist policies 7r(i/j) and stopping

times t(z/j) -* » a.s. such that Triv^i) agrees with tt(i/|) during 1, . . , t(i/j)—1. Then

tt := lim tt(i/j) is the required policy.
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We now return to the bandit problem with arrivals introduced at the begin

ning of this section. In addition to assumptions (i)-(iv) we impose the following.

(v) A(t), t = 1, 2, ... is a sequence of i.i.d. random variables.

At time t consider the Ith machine X1, after it has been operated

s-1 = t^tjtimes. This machine, together with the arrival process j A(.) ), defines

a superprocess X?(s). We define the index, i/j(s) of X* to be the index of the dom

inant machine in Xj. More directly

E(T2 atX"(t) |F*(s)l
i/i(s) := max max ^^-j . (3.20)

Ef2at|F*(s)l
It T>8

8

Assumption (v) guarantees that the index depends only on the machine type i

and time s and not on the process time t.

Theorem 3.7

For the bandit problem with arrivals, it is optimal to operate at each time the

available machine mth the largest current index. (When a = 1, the index policy

maximizes the average reward per unit time.)

Proof

At any process time one is faced with the superprocesses X*. i = 1,.., n(t). By

Theorem 3.8 the dominant machine in X} has index (3.20). By Theorem 3.3 it is

sufficient to restrict attention to these dominant machines, but then Theorem

2.1 guarantees optimality of the index rule.

•

3.5. Tax problem with arrivals

The setup is exactly as in the arm-acquiring bandit problem except that

X*(s) is the tax when machine i is idle. We study this by transforming it into an

equivalent bandit problem as in Section 2.2. The details are sufficiently
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different to require a separate treatment.

Suppose initially that a < 1. The cost of any policy tt is

WOO =E{g a' [ "f *(t'(t)+l)] J
t=l i*i(t)

=Ei 2 2 [all(8"l)+1 +. . +a*00"1] Xi(s) j
1=1 3=1

where

lj(0) := 0 if machine i is available at time 1

s the process time when machine i arrived, otherwise.

Define new machines Z* by Z1(s) = Xi(s) —aX*(s+l), in terms of which

W{»r) =(1-a)"' EJ£ aW+1 X"(l) - £ S »W zi(s) J
1=1 i=l s=l

so that the tax problem is equivalent to the arm-acquiring bandit problem with

the machines Z*.

Thus the index for machine X* in the tax problem after it has been

operated s—1 = t*(t) times is

Ei^a^t) |F(s)j
7i(s) := max max *_- ( (3.21)

" T>0 E f 2 a' | FH") !
8

where

Zw(t) :=X1(ti(t)+l) -aX1(ti(t)+2).

Note that, since tt may operate different machines, the sum in the numerator in

(3.21) does not collapse as in (2.11).

Theorem 3.B

For the tax problem with arrivals an optimal policy is given by the index rule

defined by (3.21). (When a = 1 the index policy minimizes the average tax per

unit time.)
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Remark 3.1

The indices given by (3.20) and (3.21) are much more difficult to compute

than those given by (2.10) and (2.11) where no arrivals are considered.

It is important to remark that for both bandit and tax problems with

arrivals and with a = 1, the index rules given by (3.20) and (3.21) give the same

sequence of machine operations as the index rule which is calculated neglect

ing future arrivals. Thus the optimal policy can be very easily calculated when

a = 1. To see this consider the bandit problem. The index rule tt which neglects

arrivals leads to an accumulation of expected rewards at the fastest possible

rate. Hence tt is a dominating policy.

Theorem 3.9

If a = 1, then the optimal index rule for the tax and bandit problem with

arrivals is the same if the calculation of the index ignores future arrivals.

Remark 3.2

It should be clear that Theorems 3.6, 3.7 and 3.8 generalize in the obvious way

to the situation where time is continuous and the discipline is pre-emptive or

nonpre-emptive as in Sections 3.1, 3.2. Assumption (v) must now be read to

mean that new machines arrive in a Poisson stream.

4. Calculating the index

In this section we develop algorithms for calculating the various indices in

the case where the machine is described by a finite state Markov chain.

4.1. Discrete time bandit problem

Let x(s), s = 1, 2... be a Markov chain with state space j 1, 2,.., K }. Let r(i)

be the reward when x(t) = L Suppose the state is observed. Then one has the

"abstract" machine i X(s), F(s) J where
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X(s) = r(x(s)), F(s) = u\ x(l), x(2), .. , x(s) j.

From (2.10) we see that if x(s) = i, then the corresponding index i/(s) = i/j

where

E, \ jja* r(x(t)) ]
i/j = max *-—r (4.1)

T>1

E, j 2 a' !
8

where Et f := E j f | x(l) = i J,and r ranges over all stopping times of ix(.)J. We

wish to calculate i/j, i = 1, 2,.., K.

Lemma 4.1

Suppose v1 & i/2 ^ .... ^ i/K . Then an optimal stopping time for (4.1) is

T, = min$ t> l|x(t)£ jl, ... ij J.

For a direct proof see Gittins [7 ,p.l54]; alternatively one can give a slight

modification of the proof of Lemma 3.1. The same arguments also give

Lemma 4.2

Suppose vx ^ i/2 ^ .. ^ i/R • Then an optimal stopping time for (4.1) is

t, = min \ t > 11 x(t) £ \l, .., i-1) j.

We use these results to find in sequence the state with the largest, second larg

est, third largest index, etc. Let P = ( P^ J denote the KxK transition matrix of

the chain j x(t) ).

Theorem 4.1

Suppose i/j > i/2 ^ .. > i/m_! for some m. Then

of1 a,*
i/.» = max i/i = max =
1 fern ft™ £.«?

where <xra = (af\ .. , aKa)T, §m = (/?[*, .. , flF)T are given by

*-* *•* —I
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am := a [I-aP"1]"1 r, 0m:= a [I-aP"1]"1 1_

Py j < m
r« " I 0 j ;> m
r:=(r(l),..,r(K))T, !:=(!,.., l)T

Proof

Suppose i/m = max vx. By Lemma 4.2
tern

with

Em {J* a' r(x(t)) i
*.- — l

Em f£ a* 1
1

T = min ( t > 11x(t) i jl, .., m-1 )]

Hence

«im - E, T2 afc r(x(t)) =ar(i) +a 2 Py of
1 j<m

ftm:=EiT2at =a+a2 Pij ftm
1 j<m

which concludes the proof.

4.2. Continuous time, nonpre-emptive bandit problem

Let ^(t), 13s0 be a continuous parameter, right-continuous pure jump pro

cess with jump times 0 = T0 < Tx < .. such that ( x(s) := ^(TB_i) j, s = 1, 2... is a

Markov chain with values in j 1,.., K j and KxKprobability transition matrix P.

Let ff(s) := Ta - Ta_!. Let r(i) be the reward when ^(t) = i. The nonpre-

emptive discipline means that a machine must be operated until its next jump

time. In terms of the notation of Section 3.1, this gives an abstract machine

{X(s), <j(s), F(s) ] where X(s) := r(x(s)), F(s) := a f x(i), a(i-l); i < s ) is the infor-
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mation available after the machine has been operated for (s-l) periods.

Finally, it is assumed that the conditional distribution of a(s) given F(s)

depends only on x(s). In other words, ^(t) is a semi-Markov process. Let

bt := E j aff<8> | x(s) = i j.

From (3.4) we see after evaluating the integrals that if x(s) = i, the

corresponding index i/(s) = i/j where

Ej {T2 a^1) +"+ «*-» [1 - a*8>] r(x(s)) )
8=1

i/j := max —

T>1 E, f 2 a<Kl) +"+a(3-1) [1 - a*8)] !
8=1

where E, f := E f f | x(l) = ± j.

As in the preceding section one obtains the following result.

Theorem 4.2

Suppose i/| ^ . . ^ vm-i. Let

t := min js > 1 | x(s) ^ \ 1,.., m-1 JJ.

Then

of
m

max U\ = max
lam torn $

where

*im := Ei If a**1)---^8-1) [1 - a*8)] r(x(s)) =(l-Di) r(i) +b, 2 Pij a?
1 j<m

ftm := Ei T2 &«»+•+<>(*-» [1 - a°<8>] =(l-bs) +bj 2 Py ftm-
1 j<m

4.3. Discrete time tax problem

Since the equivalence of this problem to the discrete time bandit problem

is established in Section 2.3 for a < l.the index can be written easily as

E, jTf a' ( o(x(t)) - ac(x(t+l))}
7i ~ niax ! —t

E, ( 2 *lS
1
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under the same conditions as Sec.4.1 except that c(i) now denotes the cost per

unit time when x(t)=i. The algorithms developed in the preceding section apply

to this case with obvious modifications.

For the case a = 1, a certain simplification is possible as seen in the next

section.

5. An application

Consider a network of queues indexed i = 1,.., K. A single server is to be

assigned to service jobs in any queue. If this server is allocated to a job in

queue i, that job must be completed before the server may be reassigned. In

other words, the service discipline is nonpre-emptive. A job in queue i requires

a random amount of service time a(i) whose mean is /i,(i)_I. All service times are

independent, and service times for jobs in the same queue are identicaHy distri

buted.

Once a job in a queue i is completed, then with a fixed "routing" probability

Py the job joins queue j and with probability Pi0 it leaves the network. Jobs

arrive at the various queues from outside the network in independent Poisson

streams.

Let nj(t) be the number of customers waiting in queue i at time t. (The job

being serviced is not counted in the nj.) Let c(i) > 0 be constants. Klimov [13,

14] considered the problem of assigning the single server to the jobs in such a

way as to minimize the long run average waiting cost per unit time

1 Tgm^E/ E c(0 nj(t) dt. (5.1)

This semi-Markov decision problem can readily be recast as a tax problem.

One associates to each job a machine X = { X(s), a(s), F(s) ] in the following

manner. Suppose that after (s-l) service completions the job is in queue x(s) €
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! 1,.., N J. If the job leaves the network after (s-1) service completions, let x(s) =

0. Let F(s) := crj x(l),.., x(s) J; let a(s) have the same distribution as <j(x(s)) if

x(s) > 0, a(0) = 0 if x(s) = 0. The reformulation as a tax problem is complete if

one interprets assignment of the single server to a job as the operation of the

corresponding machine.

Observe that { x(s) J is a Markov chain with absorbing state 0 and

(K+l)x(K+l) transition matrix P. One defines an index as in (3.5). If x(s) = i,

the index is

E,f c(x(1))-c(x(t)! v , s
7i = max tp < / t\yi , / Ax , . i = 1. .., K (5.2)t>i Ej i a(x(l)) +..+ <j(x(t-1)) ) v y

= 0, i = 0.

where Ej f := E { f | x(l) = i J and c(0) := 0. Note that yx > 0 for i > 0. Theorem

3.9 now gives the following result first proved by Klimov.

Theorem 5.1

The index rule defined by the index (5.2) minimizes the long run average wait

ing cost (5.1).

Theorem 2.2 gives the following result not previously known.

Theorem 5.2

Suppose there are no arrivals. The index rule defined by (5.2) minimizes the

total waiting cost

00

E / 2 c(0 *i(t) dt
o i

for every initial condition j nj(t) J.

Klimov gives an algorithm for computing the index. That algorithm

requires repeated solution of systems of linear equations of the same order as

the number of queues, K. The algorithm given below is simpler. It finds in
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sequence the queue or state with the highest index, removes it from the net

work and after updating certain parameters continues the process. Let "n"

denote the step in the algorithm. Let 2 := {0, 1, ... K).

Step 1 (Initializing)

Set n = 1, P1 = P, a^ = /i(i)"1 for i in 21 = 2.

Step 2 (Calculation of n**1 largest index)

Find

yn := max

c(i) - 2 Pi? c(j)

ice* af

and suppose the maximum is achieved at in. If n = K, stop.

Step 3 (Updating)

Let2n+1:=2n-jiBj,

P^i^pn + p^pn., i,je2n+l-

of+1 := of + P^ a£. i £ 2n+1-

Set n = n+1 and go to Step 2.

Thus j Pjjf J is the transition matrix of the original chain J x(s) j watched

when it is in 211. And ap is the expected (service) time needed by a customer

who is in i to leave i and then to reenter a queue in 2n. With this interpretation

one may prove the next result in the same way as Theorem 4.1.

Theorem 5.3

The indices calculated above satisfy (5.2).

6. Conclusions

The multi-armed bandit problem is perhaps the simplest non-trivial prob

lem in stochastic control for which a reasonably complete analysis is available.

Most previous investigations of this problem were conducted within the
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framework of Dynamic Programming. That framework has tended to hide the

essential structure of the problem. In this paper the problem was studied using

what, following Gittins [7], might be called a "forwards induction" argument.

That argument has allowed us to dispense with the restrictions to Markovian

dynamics and to complete state observations. Removal of these restrictions

may increase the range of applications.

The paper also proposes a more general formulation of superprocesses.

These are bandit problems in which a control variable is present. Further study

of superprocesses may reveal an interesting class of applications.

Finally, the paper formulates a new class of problems which we have called

the tax problem. In the discounted case the tax and bandit problems are

equivalent, they are not equivalent when there is no discount. In situations

involving allocation of a single resource where waiting costs are significant, the

tax problem appears to provide a more convenient model.
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