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Abstract

This paper explores the use of semi-infinite programming (SIP)
algorithms for solving complex SISO control system design problems |
when the plant model contains both parametric and unstructured uncer-
tainty. It is shown that to make such a design computationally tractable,
it is necessary to replace the original performance-specifying semi-
infinite inequalities by majorizations. The compatibility of these
majorizations with certain SIP algorithms is established. Furthermore,
tests for determining whether a controller structure is adequate are

proposed.
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Introduction

Over the last decade, various optimization-based computer-aided
design techniques have been introduced, see e.g., [D1, G1, K1, K2, K3, M2, P1,
P4, P5, P7, 21, Z2], in attempts to harness the computing power made
available to the control engineer by modern digital computers. Natural
generalizations of classical design requirements involving rise time,
peak overshoot, bandwidth, gain margin, phase margin, etc., lead to semi-

infinite inequalities, i.e., infinite sets of inequalities which must be

satisfied by a finite set of design parameters. A specially designed
new generéfion of semi-infinite optimization algorithms [G1, G2, M1, M2,
P4, P5, P6, P7] is proving to be very effective in solving control
system design problems.

A major goal in control system design is to ensure satisfactory sys-
tem performance in the face of the inevitable uncertainty of the mathe-
matical model of the plant, see e.g., [C2, D3, D4, D5, H3, H4, H5]. This

leads to the concept of worst case design. The plant model uncertainty

is caused by errors in plant identification, drift in plant characteris-
tics, use of reduced order models in design, etc. The computational dif-
ficulty caused by model uncertainty in a worst case design situation
depends largely on the form of uncertainty and on the performance require-
ments. For example, suppose, as in [C2, D3, D4, S1], that model uncer-
tainty is of the form of a “"small" multiplicative or additive perturbation
of the plant transfer function. Stability robustness for the resulting
closed loop system can then be ensured by a frequency domain test, see
e.g. [C2, D3, 04, S1], which is expressible as a semi-infinite inequality

of the form g(x,w) < 0 for all w > 0, where x is a vector consisting of



the compensator parameters that must be designed and w denotes frequency.
Because the frequency parameter w is one-dimensiona], this inequality
causes little computational difficulty. Now suppose that, as in [H3,
H4], the uncertainty is assumed to bein terms of the parameters of the
plant transfer function. Worst case stability is now ensured by satis-
fying an inequality of the form h(x,a,w) < 0 for all o € A and for all

w > 0, where A is the set within which the plant coefficients are assumed
to lie. Since, usually, A is multidimensional and h is not convex, this
last inequality is extremely difficult to resolve computationally. In
retrospect, one must admire early attempts (see [H4]), predating semi-
infinite optimization, to resolve such inequalities by means of Nichols
chart techniques and Iots of intuition.

In this paper we restrict ourselves to the design of single-input
single output (SISO) control systems, with both fstructuredﬁ (parametric)
(as in [H3, H4]) and "unstructured" (as in'[C2, D3, D4, S1]) plant
uncertainty. In Section 2 we introduée the plant model and a number of
"naturalf formulations pf control system pérformance requirements in the
form of semi-infinite inequalities. In Section 3 we develop some decom-

position results and introduce the cohcept of majorization of inequali-

ties. We then present some theorems which establish conditions for the
replacement of intractable inequalities by simpler ones at the expense
of tightening the design requirements. These results are then used to
obtain majorizations for the frequency and time domain performance
inequalities presented in Section 2. In Section 4, we show that the
majorizing inequalities obtained in Section 3 involve only locally

Lipschitz continuous functions, and hence that these inequalities are

"



solvable by a number of semi-infinite optimization algorithms, such as
those characterized in [P3]. 1In Section 5 we show that our decomposition
results lead to tests for determining whether the proposed controller
structure can possibfy satisfy the design requirements. In sum, we
present a set of techniques for formulating complex SISO control system
design problems, involving plant uncertainty, in a computationally

tractable form.

Notation
The following notation is used inthis paper:
* denotes complex conjugate
E? denotes the open left half of the complex plane, C.
/4 denotes the set of integers.
-1 denotes the Euclidean norm on R".

The superscripts A, v denote maximizers and minimizers, respectively.

For instance,

% = argmax f(x)

a(x) = argmin ¢(x,a)
oA

R CR®

denotes a "rectangle" of the form,
R = {(X,.Y)Ix € [)_(9;(]9 y € [.Zsy]}
with x, X, y, ¥ €R.

2. Design Problem Formulation

We consider the task of formulating the SISO control system design



problem as consisting of three subtasks:
(i) The specification of the plant model and controller struc-

tures;

(i1) The division of the performance requirements into two classes,

"hard" and "soft;"

(iii) The specification of the "hard" performance requirements in
the form of, possibly semi-infinite, inequality constraints and of the
"soft" performance requuirements in the form of a cost function.

We shall devote a separate subsection to the tasks (i) and (iii).
Task (ii) is obviously subjective and is left to the discretion of the :

designer.

2.1. The Plant and Compensators

We shall be concerned with the design of SISO control systems o~

the form shown in Fig. 1, where C(x,s) and F(x,s) are the compensators
n

to be designed. The components of the design vector, x €R X, are the

free parameters of the compensator, which need to be determined computa-
tionally.
The compensators can be specified in one of two forms: the first
is
K'

0, .%, 2. i 2
) I (s +2a,5+(b )%)

K~(s+a
C N’y

C(x,s) = X — (2.1a)

c . .
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1=

~

]
F
0

Kpls+agy)

F(x,s) = m

2.1 i2
(s +2aFns+(bFn) )

1:
F . .
0 2.1 i 2
(s+aFd)i£] (s +2aFds+(de) )

1 | (2.1b)
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We assume that perturbation functions, £(s), are known to the

foTlowing extent:

(a) The functions 2: C > C are locally Lipschitz continuous

(b) The functions, %(jw), are bounded both in magnitude and phase
as follows:

tyl0) < [2w)] < Yy(w)| Vo€[0,) (2.6a)

2y(w) < arg 2(ju) < 24(0) ¥ w € [0,%) (2.6b)

where the bound functions satisfy the following assumptions:
(i) gM(-), iM(-), gA(-), EA(-) are locally Lipschitz continuous
(11) 0 < 2ylw) <1 < EM(w) ¥ w € [0,») |
(111) 2p(w) <0, 24(w) 20 ¥ w € [0,).
The set of admissible perturbations, %, satisfying (a) and (b) will be

denoted by L. The bounds described by (2.6a,b) are illustrated in
Fig. 3.
Referring to Fig. 4, we see that it is easy to extract from (2.6a)

and (2.6b) slightly conservative corresponding bounds on (2(jw)-1) (see

Appendix 1), viz,
Vo . A, :
gy(in) < 12(Jw)-1] < 2y(ju) (2.7a)
v A
RA(jw) < arg{2(juw)-1} ﬁ_RA(jw).. (2.7b)

Model (2.3) allows the designer to account for a number of phenomena
such as: (i) variations in the plant due to the manufacturing process,

(i) high frequency measurement errors, -(iii) errors in fitting a

mathematical model to experimental data, and (iv) obtaining a low order



linear model from possibly nonlineér differential equations. The "struc-
tured" part, Po(s,a), of model (2.3) is intended to represent the system
accurately at low'to medium frequencies. The "unstructured" perturba-
tions, 2(s), will typically become significant at medium to high fre-
quencies and may be used to account for errors in model order, high
frequency measurement errors, unmodeled nonlinearities [D4], etc.

For example P0(5¢1)maybe the result of fitting a model of given order
(kp=kpR+kpc) to experimental data by means of a process such as weighted
least squares [D2] or the instrumental variable method [P8], etc., with the
weights adjusted so as tb.get a better fit over low, rather than high
frequencies. Because of the computational properties of such curve fit-
ting schemes, the parameter§ of Po(s,a) can only be assumed to be deter-
mined in the form of confidence intervals (see Fig. 2 for an example).

The multiplicative perturbations, 2(s), may now be used to account for
the low frequency bias in obtaining the structured model, Po(s,a).

It is possible to give a probabilistic interpretation to our approach:
our design will satisfy all the design requirements with the same proba-
bility as that the plant zeros and po]és;belong to the assumed confidnece
intervals.

In the literature (see, for example, [C2,D3,D4,51]) we find robustness
tests which make use only of the magnitude of the perturbations, 2(s).

When phase information for 2(s) is also available, then these magnitude -
only robustness tests may be unduly conservative, see [B1,H5]. Even

if delays are present in a system so that as w - =, the system phase is
unknown, useful phase information may nevertheless be estimable up to a
given frequency of interest, see [H5]. We shall show that the Nyquist

criterion may be modified to ensure not only stability/robustness for

o



the closed-loop system with plant Po(s,a), a € A, but also with respect
to stable multiplicative perturbations for which magnitude and phase
bounds of the type (2.6a,b) are known. However, other frequency and time
domain requirements cannot be dealt with unless bounds on phase are also
postulated, at least, for s = juw.

We shall see later that requirements of worst case closed loop pole
placement inside a set in m? can only be dealt with if the bounds (2.7a),
(2.7b) can be generalized to contours in C?. This imposes further
restrictions on the type of perturbation that one can consider wfthin

our framework of optimization-based SISO control system design.

2.2. Performance Requirements and Design Constraints

We begin by discussing a feﬁ performance requirements which are
often treated as "hard" constraints and hence are expressed as inequali-
ties. These include stability robustness, pole placement, output noise
rejection and avoidance of saturation caused by output noise or the
command input signals.

BIBO stability of the closed loop system is the most important per-
formance requirement. Given the level of uncertainty in the plant model
(2.3), it is quite difficult to ensure that the closed loop system will
be BIBO stable. We propose two approaches to ensuring BIBO stability.
The first, and less conservative one; is based on the modified Nyquist
criterion [P2]. It applies when the bounds (2.6b) on the phase % € L
are reliable, while the second one, based on stability robustness results,
is to be used when only the amplitude constraint (2.6a) is available.

(i) BIBO Stability

* ke (i.e. the degree of the

Let d(s) be a polynomial of degree kp



loop gain denominator for 2(s) = 1) whose zeros are all in E?. Let np,

dp, Nes dC denote the numerator and denominator polynomial of the trans-

fer functions of the "nominal" plant Po(s,a) and compensator C(x,s),

i.e.,
n_(s,a)
P(s,a,2) = (Gragptls) (2.8a)
p 3
nc(x,s)
C(X,S) = aETR?ET . (2.8b)

Let d(s) be a polynomial of thesame degree as dpdc (i.e. kp+kc), and
suppose that 2(:) is a proper, BIB() stable rational function. Then,
according to the modified Nyquist stability criterion [P2], the closed
loop system in Fig. 1 is BIBO stab'e if and only if F(x,s) is BIBO

stable and the locus of

ne

nc(xsjw)np(:m:a)(ﬁ(jm))+dc(xsjw)dp(jws&)
d(Jjw)

T(x,Jw,a,2(jw)) (2.9)

traced out for - « < w < = does not encircle the origin for all o € A and

and for all 2 € L,

When F is specified as in (2.1b), the BIBO stability requirement on

F lTeads to the inequalities,

J A
apy 2 € > O foricd = 0503542, ; kF (2.10a)
i .
bry 2 e >0 fori=1, 2, s ke (2.10b)

Next, the encirclement requirement can be replaced by the requirement
that the locus of T(x,jw,x,2(jw)) stay out of a parabolic region enclos-

ing the origin, for all w € (-=,»), for all o € A and for all & € L (see

-10-



Fig. 5). This leads to the following quite formidable, semi-infinite

inequality:
(T (X, 050t £(Jw) )~k (Re(T(xodw,c ()2 + Ky < O
YoE€EA, ¥YLEL, ¥uw€ [0, (2.11)

where k], k2 > 0. The requirement w € [0,») in (2.11) can usually be
relaxed to w € (w',w"), with 0 < w' < w' < =, However, even with this
simplification, (2.11) remains totally intractable unless one resorts to
the type of "majorization," which replaces (2.11) with a more conserva-
tive, but simpler inequality, that we will present in the next section.
Finally, note that a judicious selection of the polynomial d(s) and the
constants k], k2 makes the test (2.11) "almost necessary;" i.e., it'
reduces the conservatism of this, basically sufficient condition.

(i1) Stability Robustness

Now suppose that nothing is known about the phase of the perturbation
functions 2(s). In that case the expression, (2.11) cannot be evaluated
and BIBO stability must be ensured by a two stage process. First we
set 2(s) =1 and require that the "structured" part of the system be BIBO
stable, i.e., from (2.11), that

In(T(xsd050,1) = kg (Re(T(x,dua,1))% + Ky < 0

.

Ya€A, ¥Yuwc€[0,»), (2.12a)

Then, we ensure that the high frequency effects represented by the allowed
2(s) € L do not destroy the BIBO stability of the "structured" part of
the closed loop system, by requiring, as in [C2, Dé, D4, S1], that

-11-



|Poldosa) Cx,du) (147 (Juse) Clxsdw)]| < o
ayliw)

Ya€A, Yu€[0,»). (2.12b)

Although (2.12a,b) are substantially simpler inequalities than (2.11),
they are still quite forbidding because of the dimensionality of A.
Fortunately, as we will see in the next section, this obstacle can be
overcome by decomposition techniques.

Finally, note that an equivalent expression to (2.12b) is

IO (x,jw,0)| < —— ¥ o €A, ¥ u € [0,=) (2.12¢)
yu -~
Iy Jw)
where Hsu is the "structured" closed loop transfer function from u to y.

(iii) Pole Placement

Referring to [C1], we find that closed loop pole placement, specified
only to the extent that the closed loop poles be confined to a region in
the s-plane, is closely related to the task of ensuring BIBO stability.

?, which is symmetrical about the real

Thus, let S be a subset of €
axis, with boundary defined by ¢ = f(w), where f :R +~R is continuous,

f(-w) = f(w) <0 and f(w) 7 © as w + = i.e.
S={s € C|s=o+jw,o-f(w)5p}, (2.13)

For example, as illustrated in Fig. 6,.S could be the hyperbolic region

defined by o = -¢k1+k2w?, with k k2 > 0.

]’

Definition 2.1. Let nc(x,s), nF(x,s), dC(x,s), dF(x,s) denote the numera-

tor and denominator polynomials, respectively, of the compensator blocks

C(x,s) and F(x,s). We say that a given realization of the closed loop

-12-



feedback system in Fig. 1 (characterized by a specific a €A, £ € L) is
S-stable if (i) dF(x,s) has no zeros in S¢, the complement of S in C,
(i) nc(x,s) has no zeros in S® which cancel poles of P(s,a,2(jw)) in S©
and (iii) the transfer function from r to y,

A \ P '9 92 C S
Hyp(X:550,2(5)) & Flx,s)qeptatatisl el ) (2.18)

has no poles in S°. ‘ 0
First we shall show that pole placement, to the extent of ensuring

S-stability, is possible for the "structured" part of the system. Refer-

ing to [P2] we see that the S-stability analog of the test (2.12a) which

ensures exponential stability is .
IM(T(x, F(w)+jwses1)) = kq(Re(T(x,F(w)+iu,a,1))?
+ k2 <0, Ya€A, ¥Yue€E[0,») (2.15)

To ensure S-stability for the precompensator F(x,jw) specified by (2.16),

we require that

- agd < £(0) (2.16a)

and, fori =1, 2, ..., kF’

Re(-ag4tv(bpy) - (af)?) < F(I (-al #v(bl )2-(al )7 . (2.16b)

Ensuring S-stability in the face of unstructured stability is much more
problematical not so much because of the added computational complexity,

but because of the difficulty in obtaining bounds on &(f(w)+jw), i.e.,

-13-



on 2(s) off the jw axis. In any event, it now becomes necessary to
restrict ourselves to perturbations & € Ls’ the subset of S-Stab]e
perturbations in L. Tentatively, suppose that it is valid to extend
the bounds in (2.6a,b), by means of global Lipschitz constanfs Lys Lo

as follows:
() = L[ flw)] < [2(fw)+jw)] 35,4(w) + Loiflw)] (2.17a)

2p(w) - Lol f(w)] < arg a(flw)+jw) < 24(w) + Ly Flw)] . (2.17b)

We denote the extended set of Lipschitz continuous functions, £, which
satisfy (2.17a) and (2.17b) (c.f. (2.6a) and (2.6b)) by Le' The subset

of S-stable functions in Le is denoted Le We now have two options in

»S°
dealing with the perturbations, 2(s). We can add an S-stability robust-
ness condition to (2.15), viz.,

1
ﬁm(jw)+L] If(w)l

oy (% Flw)+u,0) | < Vo €A, Vue[0e) (2.18)

which is useful when (2.17b) is unreliable. A]ternatively, we can
enlarge (2.15) by choosing d(s) to have no zeros in S and then requir-

ing that
Im(T (X, F(w) iy (F(w)43w)) = Ky (Re(T(X, Flw) 4w, 2 Flw)+iu))) 2+ ky <0

YVa€A, Youe€EI[0,), VSLELe (2.19)

5

Again, as we will show in the next section, (2.19) can be replaced by a

somewhat more conservative, but computationally tractable inequality.

-14-



(iv) Noise Rejection

The need to reduce the effect of the output disturbance on the out-

put can be expressed in the form

By(w)?, ¥ we [whuil, Yo €A, YR EL

IHyd(x,Jw,a (dw)|? < (v
(2.20a)

where Hyd is the transfer function from d to y and [wd,w ] is a critical

frequency interval, or, equivalently,

2

| (149 (Jw,a, 2 (Jw))C(x,30)) 7T |2

< E’d(w)
Vuw€E [wa,wa], Ya€EA, Y2 EL. (2.20b)

(v) Saturation Avoidance

It is desirable to prevent the disturbance, d(-), and command input,

r(-), from saturating the plant. For this purpose we require that
[H g(%sdwsasa(du)) 2 < Bg(w)?
Vo€ [w;,w;], YaE€EA, YLEL (2.21a)
where Hvd is the transfer function from d to v, i.e., equivalently,
|C0%, ) (149 (3,0, 2(300) ) (1, 300)) T 2 < B ()
Voelwlwl, Va€A, V2 EL (2.21b)
For command input signals, the requirement is
[Hy e (Xadws0s2(3w)) [ < T (w)®

Vwem;QLv €A, VR EL, (2.21c)

-15-



where

Hyp(Xsdw,a,2(3w)) = F(x530) CX,300) [14P( Jws s &) ) C X2 w) 77 .
(2.214d)

(vi) Time Domain Constraints

Let {ri(-)}t=] be a given set of inputs. First, we may impose input

following requirements in the form (see Fig. 7)

2:(t) < y(tax,0,2,m;) < 24(t), Y a€A, ¥ LEL, ¥ t20,i=1,2,....k
(2.22)

i

t

m,ri) denotes the closed loop system zero state output corresponding to

where the bound functions g;, 2] are piecewise continuous and y(t,x,o,
input ri(t) and d(t) = 0.
Next, we may impose power constraints on the plant input (or output)

in the form

YVao€A, V2EL i=1,2, ...,k

T 2. =
I u(t,x,0,2,r,)cdt < 2,
0 1 - P

(2.23a)
A major source of difficulty with the constraints (2.22), (2.23a)

is the fact that there is no obvious way of evaluating a response such

as y(t,x,a,z,ri) for a given x, a, rss with 2 specified only as a bounded

Laplace transform. We shall deal with this difficulty to some extent in

the next section. (One way out is to impose (2.22) and (2.23a) only for

2 =1).

(vii) Cost Functions

Within our philosophy of design, a "hard" performance requirement
is expressed as an inequality constraint, while a "soft" performance
requirement is added to the cost function. Since semi-infinite optimi-

zation algorithms such as [G1] require that the cost function is

-16-



differentiable, it is necessary to perform a simple transformation when
converting a constraint such as (2.20a) into a cost function. Thus, if
we wish to minimize the effect of disturbances on the output, subject to
some of the other constraints described in this section, we enlarge the

design vector by one component to (xo,x) and solve

minimize x0 (2.24a)
(XO,X)
subject to
. . 2 0
[Hyg(xsdwsa (Ju))[* - 7 < 0,
Voelogpugls YacA ¥eel (2.24b)

and other constraints. Of course the designer may select other cost
functions which do not affect system performance, such as cost functions

to minimize manufacturing cost.

3. Decomposition and Majorization of Performance Inequalities

3.1. General Results

Referring to (2.11), (2.12a), (2.12b), (2.15), (2.18), (2.19), (2.20a),

(2.21a), (2.21d), (2.22), assuming thatlz(s) = 1, we find that our perfor-

mance requirements lead to inequalities of the form

¢(x,v) <0 YvEN (3.1)

n n
where :R X xR Y >R is continuous in (x,v) and continuously differen-

tiable in x for each v; VX¢(x,v) is continuous in (x,v).+ In (3.1),

1‘Im" ¢(+,+) corresponds to a closed loop magnitude, it is shown in Appendix
3 that v,¢(x,v) fails to exist at points ?x,v) at which the loop gain is
-1.
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x is the design vector, of dimension nys and v = (a,w) is the variations

vector, of dimension n;, - An alternative way of writing (3.19) is

max ¢(x,v) <0 (3.1b)

VEN

In solving an optimization probiem with constraints such as (3.1b),
a semi-infinite optimization algorithm (see e.g. [G1, M1, P4, P5, P7])
must evaluate the function

. , .
¥(x) = max ¢(x,v) (3.2)
V=

at least once during each iteration. Since in our case N is multidimen-
sional, the evaluation of y(x) is, potentially, a source of extreme
difficulty. Fortunately, the structure of the design problem allows two

kinds of simplifications. The next two theorems are decomposition results.
Theorem 3.1. Suppose that in (3.2),
n -1

o(x,v) =
1

8 (x,0',0) - bw) © (3.3a)

N
—

s n
with ¢' :R *R xR >R,, and that

n -1
N=A xa%2x...x4a" x@ (3.3b)

where the A' and Q are compact intervals. Then

n -1
¥(x) = max { E wi(x,w)-b(w)} (3.4a)
(.Ua.l =

i=1

where
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(x0) = max o' (x,01 ). ' (3.4b)
Toxd
o €A

Proof: We can write (3.2) as

P(x) = max(max ¢(x,a,w)) (3.5)
oEA

Let a(w) be a maximizing function for max ¢(x,a,w) and let o' be a

i ocA i A
maximizer for max ¢ (x,o ,w). Clearly, we must have ¢ (x,0,w)
) ' a1a]
= ¢1(x,&1,w) and hence the desired result follows. u
Theorem 3.2. Suppose that in (3.2)
n -1
LR P
¢(X,V) = .Z] ) (x,a 9“)'b(w) (306)
i=
and that N is as in (3.3b). Then
nv-l ) )
P(x) = max{ § max ¢ (xsa' sw)-b(w)}. (3.7)
weR i=1  _i_,id
o €A -}

We now open up the possibility of replacing the very hard problem
(3.2) by a much easier one, provided we can find suitable majorizing

sets that are not too big.
Theorem 3.3. Suppose that in (3.2)
d(x,w,a) = &(F(x,w,a)) (3.11)

n n n
where f:R* xRxR®*+¢Cand ¢:C+R. For any x ER X, w > 0, let
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A™(x,w) 4 {z € €|z = f(x,w,a),0 € A} (3.12)

and Tet M(x,w) C € be such that A™(x,u) C M(x,w). Then

P(x) < max max &(z). | (3.13)
weR zeM(x,w)

Proof: Clearly,

¥(x) = max max &(z) (3.14)
we z€A7(X,w)
Since A™(x,w) CM(x,w), the desired result follows irmediately. =

To conclude, we introduce the following terminology.

Definition 3.1. Let v, @:R" xf-+Randb:C ~+~R be continuous. If

¥(x,s) > P(x,s) for all x €R" and for all s €B C (, then we say that

the inequality
¥(x,s) - b(s) <0O¥s €B
majorizes the inequality
P(xss) - b(x) <0V s €B.

3.2. Bounds on Open Loop Gain and Phase

We now make use of Theofems 3.1 and 3.2 to obtain bounds on the
open loop gain and phase, as a function of the complex variable s € C.
These bounds will be used in the following subsections to obtain majori-
zations for the intractable performance inequalities introduced in
Section 2.

Consider the loop transfer function, P(s,a,2(s))C(x,s).

We need the following notation. For any s € (¢,
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A A
2.(s) = max |2(s)-1]
M ReL

v A
QM(S) = min |2(s)-1]
2€Le

QA(s) 8 max arg(2(s)-1)
2,€Le

M A
£A(s) = min arg(2(s)-1)
Q,GLe

The above maxima and minima are computed in Appendix 1.

Next, for any s € €, let

i s _ '
ZGIZR}, 1= ], 2, ecey k

Aj A 2
zyn(s) = arg max{|(s+z)]| I oR

gi 4 ar max{l(s+z)(s+z*)L2|z€Ii'} i=1,2 k!
mc = 29 2C’* 2 Coeera Kpc

v- o

z&R(s) = arg min{l(s+z)|2’zGI;R}, i=1,2, ..., kﬁR
vi A . . i .

zMC(s) = arg m1n{|(s+z)(3w+z*)|2|z€I;C}, i=1, .y veus

Aj . i g
zAR(s) arg max{arg[s+z]|z€12R}, i=1,2, ..., kpR

QXC(S) = arg max{arg[(s+z)(s+z*)]|251;C}, i=1,2, ...

v .
zAR(s) = arg min{arg[s+z]|z€1;R},i =1, 2, vuus kéR

kpC

v .
2pc(s) = arg minf{arg[(s+z)(s+z*)]|z€L .}, i = 1, 2, ..., kg

(3.15a)

(3.15b)

(3.15¢)

(3.15d)

(3.16a)

(3.16b)

(3.16¢)

(3.16d)

(3.17a)

(3.17b)

(3.17¢)

(3.17d)

The maximizers and minimizers of the amplitudes and angles of the



denominator terms in (2.4) are defined analogously, and will be denoted
b AfOA Vi Y A A v vy . s
Y Pmr® Pmc? pMR’ Pmc® Par? Pac® Par® Pace Referring to Appendix 2, we
i Aj vi A Vi Aj .
see that the zMR(s) MR(s), zAR(s), zAR(s) and pMR(s), pMR(s), pAR(s),
pAR(s) are w-independent, while the other maximizers/minimizers are
simple, piecewise continuous functions of w and are given in Table A2.1
and A2.2. The extremizers for real poles and zeroslare'given by Theorem
A2.1 whilst for complex perturbations, the extremizers are given by

Theorem A2.2. Let

A A 5 Ad Aq
(s) = Ko p(Dieq, . ek e Dienr, s e
(poo(s)) (P (5)) )T (3.18)
MRS ieqn, oot Puct S e, e
v A vo .
C‘M(S) = (Ep’(z;ﬁR(s))ieﬂ ’k.R}’(z R(S)1E{], ,k }a
vi vi T
Dun(S)) ;s » (Pyr(s)) . ) (3.18b)
(Pyr €0,k el ien, ko)
Sr(s) = (21 (s)) (2! (s))
o = N R E) . ' ’
A AR e, kit ien, e
Aj vi T
. v 19 (Pap(s)) ) (3.18c)
Pactshien,.... ka1 Pacts e, )
\Y A vy vy
s) = s)); v 1a(Zpe(s)) s s
ap(s) = ((zp ( i€tk 1 e e, g
)T. (3.18d)

V.
s) K (paa(s)); '
pAR( )ie(1, ... pR} Pac'$Mien,... .k 5}

Applying Theorems 3.1 and 3.2 we obtain immediately the following result:

n
Theorem 3.4: For any x €R x’ s €C, let
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Then

A
M.(x,s) 2 max |P,(s,a)C(x,s)|
0 0
oA

ﬁo(x,s) 8 min lPo(s,a)C(x,s)I
o€A

30(x,s) é max arg[Po(s,a)C(x,s)]
oA

éo(x,s) e min arg[PO(s,a)C(x,s)]
oA

H(x,s) = max |P(s,a,2(5))C(x,8)]
veL

&(x,s) 4 min |P(s,a,2(s))C(x,s)|
oA

LEL

g(x,s) 2 max arg[P(s,a,2(s))C(x,s)]
oA

LEL

g(x,s) 2 min arg[P(s,a,2(s))C(x,s)].
oA

2€L
¥s€ ¢;

M(x.s) = IPO(s,QM(S))C(x,S)l

v v

M(X,S) = Ipo(s,am(s))c(xss)l
3(x,5) = arg[Py(s,a5(s))C(x,s)]

3(x,5) = arg[Py (s, (s))C(x,s)]

and for s = 0 + juw,

-23-

(3.19a)

(3.19b)

(3.19¢)

(3.19d)

(3.19)

(3.19f)

(3.19q)

(3.19h)

(3.20a)
(3.20b)
(3.20c)

(3.20d)



H(xs5) = 1Pg(s500y(8)) | (yl)4L; o]} [Cx05) | (3.208)
M(x,s) = |Po(ssay(s)) | (2ylw)-Ly]a]) [C(x,))] (3.20f)
3(x,5) = arglPo(s,6,(s))] + Eylw) + Lylo| + arglC(x,s)] (3.209)
3(x,5) = arg[P((s,5y(s))] + La{uw)-Lylo] + arglClxs)1. (3.200)

o

To illustrate the use of Theorem 3.4 in an optimization-based design
scheme, consider the inequality on the loop gain:

n

Find an x €R * such that

|P(Jwscs2(jw))C(x,sjw) | 3_&g(w) Ya€EA, LEL, w>0 (3.21a)
or equivalently,

max |P(jw,0,2(jw))C(x,ju)| > £ (w) ¥ w > 0. (3.21b)
oA -9
el

By (3.20), this reduces to

|Py(dusty(du) ) yfu)elx,d0) | > 2(w) ¥ w20 (3.21c)

A -
where for each w > 0, the vector aM(jw) and £M(w) are known.

3.3. Majorization of Robustness, Noise Rejection and Saturation
Avoidance Constraints

We shall now make use of the results of the preceding section to
obtain majorizations of the inequalities (2.18), (2.20a) and (2.21a);
i.e., we shall replace them with slightly tighter constraints which are

computationally more tractable.
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To simplify notation, we assume that f(w) = 0 in (2.18).

obtain a more general result, the reader should replace jw by (f(w)+jw)

in the appropriate expressions below. It is shown in Appendix 2 that

our results for optimizing functions of jw may be used to optimize

functions of (f(w)+jw) so that there is no loss of generality in assum-

ing f(w) = 0. For any x eER", v € [0,) Tet

0,, .44 0
Y., (X;jw) = max |H
yu acA YU

(x,dwsa)|2.

Then (2.18) becomes

o > ]
Yo, (Xsjw) - % <0 Yuwe€l[0,)
yu Byl w)®

Next, writing PO’ C in polar co-ordinates, we obtain
A J¢P (Jm9a)
Po(jwaa) = mpo(jw3a)e

Cldu) & mg(g se e

which define the magnitude and phase functions mpo, Me» ¢pd: bc-

(3.22)

(3.23)

(3.24a)

(3.24b)

Let

Pb(jw,A) denote the set of all possible plant magnitude and phase varia-

tions, with respect to A, i.e.,

A
Poldusd) £ {(m0) €R|m = m (du,c)s 6 = 4
o 0

Next, by substituting from (3.24a,b) into the formula for Hy

0, . Po (3w, ) C(x,jw)
Hyu(x,aw,a) ~ TP (3w, a)CTX, )
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(jw,a), a € A}

(3.25)

u? we obtain



(0, (Ju,a)+.(x,30))
. . 0
my (30.0)me(x,ju)e

- _0
) T, Gaarmegtegany « (3:20)

]+mp0(jw,a)mc(x,jw)e

Hence, wgu(x,jw) can be seen to be given by

mzmc(x 9J"~°)2

wgu(x,jw) = max > — .
(m’¢)epo(jw9A) 1+2mmc(x,jw)cos(¢+¢c(x,jw))+m mc(x:Jw)

(3.27)

-Now, for any w.€ [0,»), let
. v A
R (X3J’w)é{(ms¢)emzl¥l (X,JO)) m<ﬁ (X,jw) »® (x,jw;g@i@ (X,ju))}.
(3.28)
The set Rp (x,jw) is a rectangular approximation to PO(jQ,A) iniRz, in the
0
sense that Po(jw,A) C Rp (x,jw) and Po(jw,k) has poeints on each of the
0
four sides of R_ (x,jw) (see Fig. 12).

Po
Now, Tet

- A mzmc(x,jw)2
v u(x,jw) = " max : . 5
y (m,¢)€Rp (Jw) 1+2mme (X, jw) cos(¢+dp(x,Jw) ) +m me (X, ju)

0

(3.29)

Since the maximization in (3.29) is over a larger set than in (3.27), we

must have

ll’o (x,dw) < J)O (xsjw) ¥ x GRnx ¥ w € [0,) (3.30)
yu H — yu 9 ) 9 - -

Consequently, any x which satisfies
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Bpu(xadu) - 75 <0 Y€ [0,) (3.31)

Sy(Jw)
must satisfy (3.23), i.e., (3.31) majorizes (3.23).

Clearly, the set of design vectors x which satisfies (3.16) is
smaller than the one that satisfies (3.8). This conservatism can be
reduced by rep]aéing Rpo(x,jm) by a smaller convex polyhedron containing
Fb(jw,A). The great advantage of (3.31) over (3.23) is that (3.31) is
quite easy to evaluate while (3.23) is extremely difficult. The reason

for this has to do with the fact that R_ (x,jw) is a rectangle in]Rz,

Po

while A is a "rectangle" in a higher dimensional space. Clearly, the

maximizers (ﬁ(x,jw),$(x,jm)) for (3.29) are either in the interior of:

Rp (x,jw) or on its boundary. If they are in the interior, then they
0

must be unconstrained maximizers and the gradient of the maximand in

(3.29) must vanish at these points. Now it is shown in Appendix 3

that the gradientf of the maximand cannot vanishTT in, the .interior of.

- (x,jw). Since
Po

Rpo(x,jw) and hence (ﬁ,%) must be-on ‘the boundary of R
Rpo(x,jw) is a rectangle*inIRz, its boundary consists of four line segments.
It is shown in Appendix 3 that the maximization over these four seg-

ments reduces to at most nine function evaluations. Since the dimension

-Pﬁrof A is gfeater than one, no comparable simplification

of the boundary
can be obtained for the evaluation of wgu(x,jw).

Next we turn to the noise reduction and saturation constraints
f2.20a) and (2.21a). Letting

-r

If m m. = 1, cos(¢ +¢C) = - 1, the gradient fails to exist and the
Po Po

maximand is infinite.

TfUn]ess the maximand is a constant in which case any point in Rp (xsjw)

is a maximizer. 0 '

tttpetails of computiﬁg 3P0(jw,A), the boundary of Po(jw,A), are given

in Appendix 4.
A -27-
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. 9, (Jw)
2(Jw) = m,(ju)e | (3.32)

with £ € L arbitrary, we obtain

(e, (juws,a)+o,(jw))
Py 2
P(jw,a,2(jw)) = m (jw,a)mz(jw)e
Po
Jo_(Jw,a,2(jw)) :
= mp(jw,a,l(jw))e P (3.33)
thm 2 2
with mp mpO My s ¢p ¢p0 + ¢£. Let
L (j0) £ {(m0) € B|m = [2(jw)|s 6 = arg(L(jw)),L€ L} (3.34)
. A . . 2
2 \ .
wyd(xs\]w) g‘ale‘yd(st“”“sﬂ(J‘”)al (3 343)
el

Then, expanding (3.34a), we get
'j(¢p (Jw,0) 9, ()

by (X,dw) = max{|T+m_ (dw,a)m, (ju)m.(>,ju)e
€L

+ ¢C(Xajw)
12y
(6" 8+ (x,d0)
= max {|1+m'm"mc(x,jw)eJ ¢ e |2}']
(ml9¢')epo(jw9A)
(m",0")EL™ (jw) (3.34b)
Let

M(x,du) 2 go(x,jm)'zm(w) | (3.35a)
3(x,50) = $o(x,jw) + By (w) (3.35b)

with similar notation for minimizers. Define

-28-



Ry(xsdo) = ((ms0) €RE[M(x,du) < m < flx,du) Blxde) <6 < 8(x,u).
(3.35¢)

Then it is easy to see that if m= m'm" and ¢ = ¢' + ¢", with

(m',9') € Po(du,A) (m",") € L™(Ju) then (m0) € R (x.ju), i.e., the

approximating rectangle Rp(x,jw) contains the set of actual plant

variations,
. A 2 '
P(jw,A,L) = {(m,¢) ER"|m = m'm", ¢ = ¢' + ¢",
(m',0') € Pylduw,A), (m",0") € L™(juw)l. (3.36)

Furthermore, there are points (m,¢) € P(jw,A,L) which 1ie on each of the
four sfdes of Rp(x,jw). Consequently, the noise suppression constraint

(2.20a), which can be written as

v

yd(%d0) - 240)? <0 ¥ wE[0) (3.37a)

can be majorized by the constraint

byglxedo)-2g(iu)® <0 Ywe[oe) (3.37b)
where

- J(oron(xsdw)} 5 _

wyd(x,jw) 2 max {]1+mme (x,Jw)e ¢ |2}']. (3.37¢)

(msq’)azp(xajw)

As we shall show in Appendix 3, the evaluation of &yd(x,jw) is

again quite simple. FEinally, let

byl odu) 2 max [Hy(x00du,2(50)) |2 (3.38)
o€A
LEL



Since Hvd = - CHyd’ and C does not depend on (a,2), we must have
byglxodu) = mo(x,gu) 2y 4(x,Ju) (3.39)
and hence, if we define
b4 (x,30) 2 m(x,30)%0, (x,30) (3.40)
vd'*e C N yd »Jw .
we see that the saturation constraint (2.21a) can be majorized by
byg(xede) - 2(10)° <0 ¥ € [0,) L (2.41)

with ivd computable with the same ease as @yd‘ Similarly we may majorize

(2.21¢).

3.4. Majorization of S-Stability Constraints

We now obtain a majorization for the most complex of the constrzints
described in Section 2.2, namely (2.11) and (2.19). Without loss of
generality, it suffices to consider (2.11) only: the corresponding -
results for (2.19) are obtained by replacing jw by (f(w)+jw), as appro-
priate. Referring to (2.9), let my 5 My, ¢], ¢, be defined by

] o de(xadwsas2(w))
my (X, Jw,a,2(jw))e
o a ha(xsjw)n_(Jw,o)2(jw)
A7C d(?w) (3.42a)
_ Joo(x,Jw,a)
mz(x,Jm,a)e
d H j d j s
A ¢ (x,jw) p(Jw o) . (3.42b)

d(Jjuw)
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Then (2.9) can be written (with the arguments suppressed) as

T = m.le + mze . (3.42C)

Making use of the decomposition results in Section 3.1 we can
A Vv v A
obtain continuous bound functions Mi(x,jw), Mi(x,jw), @i(x,jw), ¢i(x,jw),

i=1, 2 such that

v A
Mi(X,J.UJ) < mi(x,jm,a,z(jw)) Y Mi(x,jw)

VaoEA, VYV2EL,i=1, 2, ~(3.43a)
\'4 A
@i(x,jw) < ¢i(x,jw,oc,2(jw)) < (I’i(X,j(.U)

YaE€A, ¥Y2EL,{i=1, 2. (3.43b)

In terms of the polar notation (3.42a,b), (2.11) becomes (with the

arguments x, jw, o, £ suppressed),

max {(m] sin 91 +m, sin ¢2) - k](m] Cos ¢;+m, cos ¢2)2 + kz} <0
oA
2,€LS

Y€ [0,0), (3.44)

Clearly, (3.44) is majorized by

max{(m] sin 91+, sin ¢2)-k](m1 COS ¢q+m, COS ¢2)2

N A v A
+ kZIMi(xsjw) < m'i < M.i(xijw)aq).i(xs,jw) < ¢.i b ‘I).i(xsjw),
i=1,2<0 Yw€[0,), ~ (3.45)

We note that (3.45) differs from (3.44) in that the max in (3.45) is
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only over four variables while the one in (3.44) is much more complex.

Now, the constraint set in (3.45) is a hype rectangle, R4, irlnf4. Clearly,
the maximizing quadruplet (%],$],$2,$2) is either in the interior or on

one of its three dimensional faces. We shall show in Appendix 5 that
(&1,$],$2,$2) is, in fact, on some two dimensional face of one of these
three dimensional faces. To be precise, we shall prove the following

result.

Theorem 3.4: Let & :IR4 +]R] be defined by

g(m],¢],m2,¢2) = (m] sin ¢;+my sin ¢2)-.k](m] COS ¢,+m, Cos ¢2)2+k2
(3.46a)
and let gi’ Mi’ ?i’ 51 €1R be arbitrary. Then
max{E(m],¢],m2,¢2)|Mi <m 5-Mi’ 2, 5—¢i‘5-5i’ i=1,2}
1°72
'l’
(¢ma$2){€(ﬂ1s¢] :@2:4’2)'?1 f,¢.| < 61" i=1, 2}
‘l’
( max {g(ﬁ] :¢‘| ’M2’¢2)|91 i(b] L 51 ’. is= 132}]. (3.46b)
¢-|,¢2) : u

Thus we see from Theorem 3.4 that for every (x,u), the inequality (3.45)
can be checked by carrying out four 2-dimensional maximizations. We
shall show in.Appendix 5 that these two 2-dimensional maximizations can

be reduced to a small number of one dimensional maximizations, and
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evaluations of derivative zeros, as for the cases considered in the

preceding section.

3.5. Majorization of Time Domain Constraints

We now turn to the most difficult constraints to majorize: those
in the time domain, viz those given by (2.22), i.e., constraints of the

form
2,(t) < y(t,x,0,8,r) < 2.(t) Ya €A, VREL V>0 (3.47)

where r(t) is an input to be followed. Referring to Theorem 3.3, and
the majorizations in Sections 3.2 - 3.4, we see that we relied heavily
on the fact that we dealt with constraint functions ¢(x,jw,a,2(jw)) which
were of the form ¢(x,jw,0,2(jw)) = o(Ff(x,jw,x,2(jw))) with

n n
f:RE*xRxR% L+¢ (or +1R2) so that the problem max ¢(x,jw,o,2(jw))
oA

was easily reducible to a maximization problem over a rectangle in]Rz.
Now there appears to be no obvious way of expressing the response

y(t,x,0,2,r) in the form o(f(t,x,a,(jw),r) with f GIR2

and hence there
seems to be no way of easily majorizing (3.47) in the time domain directly
(furthermore, we are not given any bounds on %(t)). Thus, one may well
have to resort to simulation utilizing randomly generated o € A to get
an estimate of max‘yﬂ(t,x,a,r) (min yo(t,x,a,r)) for the response of ‘the
structured partaiid ignore the cgﬁﬁribution of the unstructured pertur-
bation 2(t).

Alternatively, one may try to verify (3.47) by frequency response
methods. First, we observe that it does not seem possible to replace
(3.47) with an equivalent inequality in the frequency domain involving

bounds on magnitude and phase [H4, K4]. The reason for this is that



functions which are close in the L_ sense in the time domain may have
Laplace transforms which are not at all close in the L_ sense in the
frequency domain, and vice versa. Of course, Parseval's identity can
only be used for L, constraints and hence is of no use with the L
constraint (3.47).

Since a simple substitution of bounds in the frequency domain for
bounds in the time domain fails, one must turn to Fourier series as a
measure of last resort, since, as we shall see, it leads to rather con-
servative majorizations. For this purpose, we replace the original

input r(t) by a periodic input rp(t), with period T, such that

r(t) for 0<t<T/2
rp(t) = (3.48)

0 for T/2 <t<T
where T/2 is sufficiently large to allow the system transients to die
out. At the same time, we replace the requirement of t € [0,=) 12 (3.47)
o Jkwnt
by the requirement of t €.[0,T/2]. Assuming that rp(t) =3 ree 0 R
with wy = 2n/T, the corresponding periodic output is

@ . ) jkwot
y(t,x,a,l,r) = -Zw Hyr(stka’aaz(JkU’o))rke

and hence, truncating the sum at N, (3.47) becomes replaced by

jkwot

N -
24(t) 5_}& Hyr(x,jkmo,a,z(jkmo))rie g_zt(t)

Va€A, ¥YREL, ¥te[0,T/2]. (3.48)

Clearly, each term of the form
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[rke Hyr(xajkw03@92'(jkw0)) + r-ke Hyr(xs‘jk(‘-‘o,asz(‘jkwo))],
(3.49)

in the sum (3.48), can be majorized (minorized) independently by the

techniques used in the preceding sections, to yield an upper (lower)

bound Bk(t,x) (gk(t,x)). Hence (3.48) is obviously satisfied if

N _
] by (tk) < B (t) ¥t e([0,T/2] (3.50a)
k=0

N .
%.(t) < kzﬁ b (t,x) ¥ t€[0,1/2]. (3.50b)

The main drawback to this procedure is that the same o must be used
for all k in (3.49), while in (3.50a,b) a different o may well have been
used for each k. Consequently, the requirement (3.50a,b) may be much

too stringent for practical purposes.

4, Properties of the Majorizing Functions

In the preceding section we have shown that a good number of compu-
tationally intractable constraints can be replaced by somewhat tighter
ones which are quite easy to evaluate. Before leaving this subject, we
must show that the majorizing constraint functions which we created are
compatible with current semi-infinite optimization algorithms. Referring
to [P3], we see that we only need to prove that they are locally Lipschitz
continuous. Examining (3.16), (3.17), (3.22b), (3.26), (3.30) and (3.35)

we see that our majorizing functions are of the form

ne>

max €(X,w,m,¢) . (4‘])
(m,¢)ER(x,w)

P(x,w)
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n
Definition 4.1.  a) We say that z:R * xR xR xR + R is locally

n .
Lipschitz continuous if for every bounded set B CR * xR xR x R there

exists L € (0,») such that for all (x,',w',m',6'), (x",w",m",¢") in B,

I;(xi ,ml ’m.9¢') - C(x",w",m",q)")l _gL{“x'-x"ﬂ+|w'-w"|+|m'-m“|+|¢'-¢“|}

(4.2a)
ny 2
b) We say that the set valued function R:R * xR + 2R is locally
n
Lipschitz continuous if for every bounded set B CR * x R there exists

L € (0,») such that for all (x',w'), (x",w") in B, given that
(m',9') € R(x',w') there exist (m",$") € R(x",w") such that

lml_mulv + I¢|_¢ul i L{“x'-x"ﬂ-i-lw'-w"l} (4.2b)

=

Theorem 4.1: Suppose that ¢ and R in (4.1) are both locally Lipschitz

continuous. Then ¢ is locally Lipschitz continuous.

Proof: To simplify notation, let 2 = (x,w) and.-let v = (m,¢), with

Izl 8 s lwls Bl = [m| + [¢], Let B, be a bounded set in ]Rnx x R.
Then, by the continuity of R(-), there exists a bounded set B' such that
R(z) CB' for all z € Bz. Hence there exists a Lipschitz constant

L € (0,») such that for all z', z" € B, and v' € R(z') there exists a

v' € R(z") such that

llv'-\)"ﬂ.' iLlIz‘-z"lle (4.3a)
and, for the same v', V",

IC(Z|,VI) - Z;(Z",\)")' iL{“zn_Zu“e + “\)l_vu[l]} (4.3b)

A . A '
Now suppose that with z' € B,» p(z') = ¢(z',v'), with v' €R(z'). By
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Lipschitz continuity, for any z" € Bz’ there exists a v" € R(z") such

that

A ] n ] "
fv'-v H] < Lliz'-z “e (4.4a)

Hence

lf)(Z') = C(ZI,CI) i C(Z",\)") + LHzl_Zu"e + L"Ci_\)n“]

< g(z",v") + L(HL)Iz! -2
< w(z") + L)z =240 . (4.4b)

Hence, since z' and z" are interchangeable (using 3",v') in (4.4a,b), we
see that ¢(:) is locally Lipschitz continuous. o
The use of the above theorem in application to the majorizing func-

tions in the preceeding section is facilitated by the following.

Proposition 4.2. Suppose that R(z) = co{vi(z), i=1,2,...,k}, with
n

v; :R X xR +1R2 Tocally Lipschitz (and co denoting the convex hull).

Then R(z) is locally Lipschitz.
n
Proof: Let B be a bounded set inRR X x R. Then there exists L € (0,)
such that
llv,i(z')-vi(z")ﬂ iLlIz'-z"lle Vz',z" €B,i=1,2, ..., k. (4.5)

Let v' €R(z'). Then there exist u% >0,1=1,2, ..., k such that

k

) u; =1 and

i=1

k
V' o= .Z] u%vi(z'), (4.6a)

Let z" € B and
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A k
= 1wy () € Riz") (4.6b)
Then
k
fvt-vl = 1§ u%(\)i(z')-\).(z"))ll
i=1 !
< Z H} ﬂ\) (2 )-v (z")H
i=1
5_Lﬂz'-z""e. (4.7)
This completes our proof. "

We show in Appendix 6 that the extremizers ﬁ(-,o) and ﬁo( se)
(M (+,°) and M (-5+)) are locally Lipschitz continuous for all
(x,w) GIR x R, such that jw is not a pole of Po(s,aM(s))C(x,s) (Po(s,

A
aM(s))C(x,s)). Further, we show that the extremizers of phase, ¢(-,-),
n

A v v . . . X
¢b(°,'), o(-,+) and @0(-,-), are locally Lipschitz continuous onR ™ xR_.

In the next result we establish local Lipschitz continuity of functions

of the form of (4.1) wheén the maximization is over Rp(x,w) or Rp (x,w).
0

n
Theorem 4.3: Let z:R XxR xR xR +R be locally Lipschitz continuous

and let
p (X,w),é max z(x,w,m,d) (4.8)
P (ms0)ER (% ,w)
A
Y (x,w) = . max z(x,w,m,9) (4.9)
po (ms¢)‘eRp0(xaw

where R (+,+) is defined by (3.35c) and np (-,-) is defined by (3.28).
n

Then ¥ p(-, -) and “’p (+,+) are locally L1psch1tz continuous on R * xR,.
0
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Proof: There are three cases to consider:

(i) Let (x],w1) be such that ﬁ(x1,w1) < », Then there exists a neighbor-
hood, N1, of (x],w]) such that ﬁ(x],w]) <o for all (x,w) € N]. It
follows from Lemma A6.5 that the vertices of Rp(-,-) are locally Lip-
schitz continuous at (x1,w1). From Proposition 4.2, we conclude that
Rp(-,-) is locally Lipschitz continuous at (x],w]). Hence, by Theorem
4.1, wp(~,-) is locally Lipschitz.continuous at (x],w]).

(i) Let (xz,wz) be such that ﬁ(xz,wz) < ﬁ(xz,mz) = o, Then there

exists a neighborhood, Ny, of (xz,wz) and a b € (0,») such that

M(x,m) <b< ﬁ(x,m) for all (x,w) € N,. For (x,w) € NZ’ Tet

nue

n';(x,w) [M(x,w),b] x [3(xsw),8(xsw)]

(%) = [o,M(x0)] x [8(x,),8(x,)

ne

[—— » &1 = [8(x0),8(x0)].

R_(x, A
px) = Lo

Now Rg(-,-) is non-empty on Nz and its vertices are locally Lipschitz

continuous on N2 so it follows from Proposition 4.2 that Rg(-,-) is

locally Lipschitz continuous on NZ' Since Kf_l_3'< %—for all (x,w) € N2’
M(x,w
it follows from Lemma A6.5 that ﬁ ] is locally Lipschitz continuous on

Nz. Hence, R;(-,-) is non-empty ana locally Lipschitz continuous on N2.

Since Rp(x,m) = Rg(x,w) U Rp(x,w) for all (x,w) € No» it follows that
lbp(x,w) = max { max C(X’wams¢)’ max (xswsl—: ¢)}
(mo0)ER(x,0) (120) &R (x0)

for all (x,w) € Ny. By Theorem 4.1, it follows that wp(-,~) is the
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maximum of two locally Lipschitz continuous functions at (xz,wz). Hence,
wp(-,-) is Tocally Lipschitz continuous at (xy,w,).

o o @ v A
(iii) Let (x3,w3) be such that M(x3,w3) = M(x3,w3) = », Then there
exists a neighborhood, N3, of (x3,w3) and b-€ (0,») such that b < ﬁ(x,w)
for all (x,w) € Ns. For (x,w) € Ng, Tet

- '[ v A
R ’ A v x sW)» sw)].
p(x w) [M(x’w) M(x,w)] [o(x,w),2(x,w)]

R;(-,-) is locally Lipschitz continuous and non-empty on N3 and

1
P (X,w) = max T(X,0y—st)
P (44)R (x,0) H
so that w (+5°) is Ioca11y Lipschitz continuous at (x3,w3)
Now M (X,w) = —11939- M (x,0) = M, 8, (x,0) = 8(x,0) - 2,(w)
9 ( H] MO ,w &M ) 1] 0 ,U) ,w A w

M w
and @ (x,w) = @(x,w) + 2A(w) where £M( <), M( ), 2 A( .) and % (-) are locally
Lipschitz continuous and QM(w) >1> 2M(m) >0 and LA(w) >0 > zA(w) for
all w.> 0. Hence by taking xM(w) = fy(w) =1 and QA(w) = 2(w) = 0 for
all w > 0, the desired result follows for Yy (+s°). =

Finally we note thgt if ¢(-,+5-,+) corresponds to a closed loop
magnitude, then ¢(-,-,-,-) fails to be locally Lipschitz continuous at
those (x,w) E]Rnx x R, at which P(jw,a,2(jw))C(x,jw) = - 1 for some o € A.
This requires that we consider piecewise locally Lipschitz continuous

functions.

5. Tests for Infeasibility of the Compensator

In general, given a set of inequalities £1(x) <0,j=1,2, ..., m,

there is no simple way of telling whether this set admits a solution or
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not. In the case of the inequalities presented in Section 2, it is
possible to construct sufficient conditions for a single inequality not
to have a solution. When this is the case, the controller structure
must be augmented. Of course, even if the inequalities admit a solution
one at a time, there is no guarantee that there is a set of compensator
coefficients which satisfies them all. Nevertheless, the tests we are
about to present are helpful in eliminating gfoss]y under-structured
controllers.

We shall consider two typical constraints (3.21a) and (2.20a). Let
X C]Rnx denote the set of allowed designs. Inequality (3.21a) fails to
have a solution x € X if and only if for some w > 0,

max min |P(jw,a,2(jw))C(x,ju)| < £ (w) (5.1)

XEX ofA -9

2E€L

Similarly, inequality (2.20a) fails to have a solution x € X if for some

w >0,

min max |H d(x,jw,a,z(jw))l2 > id(w)2 (5.2)
XX oA Y
JISH

The ease with which one can determine whether (5.1) or (5.2) hold
depends very much on the specification of the set X. Suppose that C(x,s)
is as in (2.1a), viz

kl
0,.% 2.1 i 2
Kc(5+acn) (s +2acns+(bcn) )

C(x,s)= i=1

X
o
(stagg) 1 (s°

i iy2
i=1 +2acd5+(bcd) )
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with the components of x being the ac s a cd’ b1 s bcd and the set X

i - .

d?f1ned by the constraints a., € [acn’acn]’ i=0,1, ..., Kes
i

b

cn [ %cn? cn]’ i 1, 2, ..uy ké; aCd [aCd’aCd]’ i=0,1, 2,...,k.;
=3 .
[bcd’b d]’ i=1,2, ..., kc.

First, (5.1) can be rewritten as

max |C{x,jw)|[min P(jw,a,2(jw))|] < & (w). (5.3a)
XEX a€A g
g€l

Making use of (3.20b) we conclude that (3.21a) fails to have a solution

if and only if for some w > 0

max [COx,du)| < 2g(u)/ [Pgldusay(iu)) | gylw). (5.30)

Referring to Section 3.2, we see that a maximizing Q(m) for (5.3b) can
be computed quite easily by the techniques presented in Appendix 2 for
the structured plant, Po(jw,a), a € A so that (5.3b) is easily verified
(see Fig. 14). .

Next we turn to (5.2). Writing C(x,jw) = mc(x,jm)e .

Jo, (jw,o,2(jw))
P(jwsa,2(jw)) = m (Jm,a,z(aw))e P we obtain that

lHyd(x,jw,a,ﬁ(iw))|2

:
1+2mp(jw,a)mc(x,jw)COS[¢p(jm,a)+¢C(x,Jw)]+mp(jw,a)2mc(x,jw)2

(5.4)

Proceeding for the compensator C(x,jw) as we have done for the struc-

tured part of the plant Po(jw,a) (see Sec. 3.3), we can easily compute

2

a majorizing rectangle Rc(jw) CR" such that (mc(x,jm),¢c(x,jm)) € Rc(jw)

-42-



for all x € X. Hence, a sufficient condition for (5.3b) to hold is that

for some w > 0,

min max 1 5% < gg(w).

(mc,ch)GRC(jw) (mp,¢p)€Rp(x,jw) 1+2mpmC cos(¢p+¢c)+mpmc

(5.5)
We show in Appendix 7 that (5.5) is fairly easy to verify by making use

of the fact that the denominator in (5.5) is a quadratic form. 0

6. Conclusion

Early attempts, such as those described in [K1, P1, P4, Z1, Z2], to
solve complex SISO design problems with uncertain plant, have yielded
very limited results because the available computing tools were inade-
quate. The recent development of a new, very powerful tool in the form
of semi-infinite programming (SIP) algorithms, has .prompted us to
reexamine the problem of designing SISO control system with uncertain
plant.

In this paper, we have shown that a naive approach to SISO control
system design via semi-infinite optimization leads to overwhelming com-
putational difficulties when the plant model contains both structured and
unstructured uncertainty. Fortunately, the structure of the design pro-
blem thay we considered enabled us to replace the original “"naive" specifi-
cations with slightly tighter ones-which are locally Lipschitz continuous
and simple to evaluate. Although at present there is no specific SIP
algorithm which accepts our majorizing constraints, the theory in [P3]
shows that such an algorithm can be constructed by a straightforward
modification of the one in [G1]. The construction of this algorithm

will be undertaken in the near future..
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Appendix 1: Computation of Bounds on (2(s)-1), & € L.

Jo,(s)
Putting 2(s) = ml(s)e % , wWe have,
Iz(s)-1|2 = mi(s) - 2my(s)cos ¢,(s) + 1 (A1.1)
_1(m,(s)sin ¢,(s)

where k € Z is chosen to account for ang]es.outside the range [-n/2,

m/2]. Differentiating with respect to my s q>2 and suppressing the s-

dependence,
m,- Cos ¢
vije-1% =2 2 T H (A1.3)
m, sin ¢2
' - sin ¢
v{arg(2-1)} = — , X (A1.4)

2 -
|2-1{¢ \ mg-m cos ¢,

It follows that the only stationary points of Il-ll2 are (1,(2nm)) and
(0,(2n+1)n/2), n € Z, whilst arg(2-1) has stationary points, (0,nm),

n €7Z. By considering the respective Hessian matrices, we deduce that
(1,{(2nm)) is a local minimum and (0,(2n+1)w/2) is a local maximum of
|2,-1|2 ¥Y¥n€Z. Similarly, for arg(2-1), (0,nw), n € 7 is a local max.
We construct an approximating set, R(z_])(jw) which contains

{2(jw)-1| 2€L} by computing

QM(jw) £ max _ {mi-Zm2 cos ¢ +1}1/2 (A1.5)
€[ 20> 2] :
Mo =L2m2*M
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A
2, (jw) max _ arg{(m, 6 cos ¢,-1)+jm, sin ¢,} (A1.6)

0,2y ]

and similar definitions for the minimizers XM(jw), EA(jw). Since the
stationary points of |2(jw)-1|2 + arg(2(jw)-1) are known, the above
optimization merely requires that we check if a stationary point is the
extremizer and if not, search the boundary of [&M(w),iM(w)] x [gA(w),
EA(w)] which is a simple one dimensional problem solved by checking
stationary points of the reduced gradient and the endpoints of the

intervals. Then, defining

R(z_])(jw) 2 {(m9¢) lm € [EM(JN) ,QM(jw)]s‘p € [;A(Jw) sgA(Jw)]}

(A1.7)
we clearly have,
{2(jw)-1{2 € L} CZ{R(Q_])(jw)Iw > 0}. (A1.8)
Finally, note if the following condition holds,
cq 2 B 1, &
wE€Q = {w 2_0|£M(w) > 1, R,A(u)) > and gA(w) < - m} (A1.9)

then R(z_])(jm) must be a circle and so QA(jw) and.EA(jw) as defined by
(A1.6) are infinite. Hence, without loss of generality, we define

A

QA(jw) = TVYo€ 2, (A1.10a)

EA(jw) =-71 Yue€ q. (A1.11a)

x4
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Appendix 2:

Extremizers of Open Loop Gain and Phase

Now
Mo(x,s,a) = IPO(s,a)C(x,s)l (A2.1)
¢o(x,s,a) = arg{Po(s,a)C(x,s)} (A2.2)
From Theorem 3.1, it follows that,
kl t
- PR _— iy, i
K I  max |s+zp| T  max |(s+z.)(s+z. )]
D s s s RUD, o0 c c
i=1 igrd i=1 i
' R IzR ZCeIzC
max,MO(x,s,a) = C(x,s) X X
oA . . J*
I min |5+PE| I  min |(s+pé)(s+pé )|
i=1 igi =1 igd
and from Theorem 3.2 that,
kg 1'
max Qo(x,s,a)==arg C(x,s) + ¥ arg(s+zR)
oA i=1 zieli
R™"zR
kpc .« kpR .
+ Y max arg (s*zM)(s*z. ) - § min arg(s+p.)
Lo el c c L R
i=1 el i=1 gl
C zC PR pR
e iy pepnd
- ) min arg{(s+p.)(s+p, )} (A2.4)
i=1 i, i
pCEIpC

Observe that evaluation of

with similar expressions for the minimizers.
the right hand sides of (A2.3) and (A2.4) requires that for each s €C,
we solve a one-dimensional problem for real poles and zeros and a two-
dimensional problem for complex poles and zeros.

By considering real and complex perturbations separately, we develop
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two propositions which yield the solutions of the one and two dimen-
A A
sional optimization problems required for computing Mo(x,s), Mo(x,s),

v
go(x,s) and @0(x,s) defined in Theorem 3.4.

Real Perturbations -

Clearly,
Ep = argmax log Kp (A2.5a)
KoLK )oK ]
and
Ep = argmig log Kp (A2.5b)
K ELK oK ]

by monotonicity.

For real po1e‘or zero perturbations, it will suffice to consider

max or  min IJm+Zil (A2.6a)
z e[z .z ]

max or min arg(jw+zi). ' (A2.6b)
' z E[z ,Z ]

The geometric interpretations of (A2.6a) and (A2.6b) are shown in Fig. 9.

Now

|jm+z.i | = ‘/wz-!-(z1 )2

ARBI

C s . i
which is monotone in |z |. Hence,
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argmax ljwtz'] Yw>0
z E[z ,2']

AL,
Zy(jw)

= argmax Izil

b4 G{z 'z }

Yu>0 (A2.7)

V1

>

_argmin |jw+z1| Yuw>0.

wliw)

0 if o0elz,i'1 vw>o.

= i (A2.8)
‘argmin_ |z’ else
z'€{z',2'}
For phase, we have arg(jw+zi) = tan'](i%Q,'SO‘that
2
A] A . i
A(Jm) = arqmax {arg(jutz')} Yw >0
y4 E[z .z ]
{o if 0€[z,5'] VYuw>o0 (A2.9)
gi else
Vi, A
zA(Jw) = argm1n {arg(3w+z )} Yw>0
Z E[z .z ]
=3 Yu>0. (A2.10)

As the only difference between the case of poles and zeros is a negative
sign, we have that the same results with analogous notation hold for poles
but with max and min reversed. We summarize the results for real pertur-

bations in the following result:

Theorem A2.1. If [z1 '1] [p P ] CR! » then ¥ w > 0,




Q&(jm) = argmax_ |z1l

vi (o if  o0elz,:l]
1 (jw) = . . B
Zy'\d argmin IZ1|
Lz'etz'.2")
a (o it oefp ']
T/ -
py(dw) = ;
¢ argmin [p'|
1 1 =1
P E{r_) P}
Jw) argm1n |
P e{p 9p ]’
M 0 if 0el[Z,:1]
w) = .
A 51 else
vs B
z,(ju) = 2’
s iy
pp(w) = B’
. 0 if o0elp,p']
V-l . F 1)
pA(Jw) = i

else.

1T

Introduce the notation,

A
QM(jm) = argmax M, (Xsjwsa)
oA
- A A .
= (Kp,ZM(jw),pM(JQ))
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& argmin Mo(x,jw,a)
asA

Q>
=
—
[N
€
~
[l

(K22 30) By 300)) (A2.12b)

A .
= argmax @0(x,3w,a)
oA

Q
=,
[ SN

€
~

|

(QA(J‘w),SA(J‘w)) (A2.12c)

4 argmin Qo(x,jw,a)
oA

<
LS
~—
.
€
~
|

(§A(J’w) ,5A(jw)) , . (A2.12d)

From Theorem A2.1, it follows that for real pole-zero variations, the
extremizers of magnitude and phase are w-irvariant. For the special case

of real variations in the left half plane, te, we have

Qm(jw) (Rp,&A(jw)) V>0 (A2.13a)

&M(J’w) = (§p,aA(,jm)) Yw>0. (A2.13b)

Complex Perturbations

Consider a conjugate pair of complex zeros,

z =8+ jy,z* for B €[B,B], Y€ [\_m-r] (A2.14)
and let
Me(Jw,B,y) = 109|jw+2|2 + Iogljw+z*|2

10g{(82+y2-w?)2+826%) (A2.15)
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A
¢¢(JuwsB,y) = arg(jutz) + arg(jutz*)

= tan"\( Zg“ 5. (A2.16)
BHY -0
Further,
3M 2.2 2
cldusByy) = —ieB v ) (A2.17a)
, (B™+y"-w") “+4u"B
ETE(jm Byy) = 4y(8%’ ) (A2.17b)
5y (o) Eaale?
so that
aM |
534du8y) =0 iFf B =0 (A2.18a)
oM
Fdo.8y) =0 iff y =0 or wf =g+ 4P (A2.18b)
TR 22 (B2
== jw,B,Y) = '—‘”[.L(ﬁ_'Y_)_]_ (A2.19a)
38 (22l et
¢ 4
—(jw,B,Y) = Shwby (A2.19b)
Hence,
5 |
slduBy) =0 4Ff w=0 or w?=? - g (A2.20a)
36
ﬁﬁmﬁn)=o iff worBory=0 (A2.20b)

By using (A2.18a,b) and (A2.20a,b), we determine if an extremizer is on the
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boundary or interior to the confidence interval.

Consider the magnitude function, Mc(w,B,y) (see Fig. 9b). Now,

2,2

Me(dwaBay) = Toge*+282(wPh?) + vH-2y2ur®)

=2y w +w (A2.21)

and so for extremization with respect to B8 € [g,é] it suffices to con-

sider, {|B|4+2|B|2(w2+72)}, which is monotone in |B8]. Letting

A A '

By(jw) = argmax Mc(Jw,B,Y) (A2.22a)
BE[B,B]

A, A . '

Yyljw) = argmax M.(jw,B,Y) : (A2.22b)
Ye{'I’Y] .

v A

BM(jw) = argmin Mc(jw,B,Y) (A2.22¢)
BE[B,R]

¥M(jw) = argmin Mc(jw,B8,v) (A2.22d)
YE[y,v]

it is clear that,

A
By(jw) = argmax |8|
RE(B, B}
v 0 if 0 € [8,8]
By(Jw) =

min{|g|,|B|}, else.

4

To extremize with respect to y, consider y + ZYZ(Bz-wZ) which represents

2

.

a pair of parabolas in Y“, one corresponding to (Bz-wz) > 0, the.other to

(82-w?) < 0, as shown in Fig. 10.

2

(1) For (82-uf) >0, ty*+2v2(82-w?)} is monotone in y2 > 0 so
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¢M(jw) = argmax |y|
YE{I sY}

v
Yy(ju) = argmin |y|
YE{'I 9Y}

(ii) For (Bz-wz) < 0, we refer to the appropriate parabola in Fig. 10

and consider separately the cases

(a)0<z ;
(b) Yy <0<y
() y<y<o

(a) In this case, we have 0 5_y2 < ;2,and 0] %(y2+§2) is the mid-

point of [y2,§2].

The parabola, y4 + 2y2(82-w2), is symmetric about Yz (Bz-w2

at which pcint it achieves its minimum and so to determine the maximizers,

it suffices to consider if the midpoint of Ey2,§2] is to the left or

2 2
w J.

right of - (B"- So,

- A -
F020) < - (D) = Ty0) =y vl 824 PR

2

- A - -
%(Izwz) > - (82-w?) =yylw) =y ¥ < g% + %(w_rzﬂrz)

For minimizers, note that from (A2.17b) we have that w2 = 82 + yz,

Yy € [I,;], is a local minimum of Mc(jw,B,Y). Hence,

v - -
¥ <t - g2 = yyliw) = v v w? > y2 + g2
sz.wz-Bzf_;( =’¥M(J'w)=Y for w® = 82 + y2
IZ > Wl - g2 =>YM(jm) =y v ol < p?+ 12
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(b) Now consider the interval [O,max{yz,Qz}] which has midpoint
%-max{zz,§2}. To determine the maximizers and minimizers we proceed as

in case (a).

%-max{zz,§2} < - (g%?) =’¢M(ﬁw) =0
v u? > 8% + dmaxty?,5%)
1,22 2 2 y
max{y",y"} > - (8%-u°) = yyljw) = argmax |y|
YE{'r’Y}
v w2~§_82 + %max{12,§2}
max(y?, 7%} < u? - g2 = ¥(dw) = argmax |y|
YEly, v}
N %max{xz,Qz}
min{Yz,§2} §_w2 - BZ 5_max{12,§2} =°'*\;M(jw) = y for wz = 62 + YZ,
Y € [y»]
min{zz,?z} > @l - 82 =’¥M(jw) = argmin |y|
YElY>v}
vl <gl+ %min{w_fzn-rz}

(c) Since Mc(Jw,B,Y) is an even function of y, we obtain the results
for y < Y < 0 by substituting y for y and y for y in the results obtained ,
in (a).

To determine the extremizers of phase, the discussion will be

simplified by making two observations. Firstly, we observe that tan'1(-)
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is a monotone function on any interval,

Ik 5 [(2k-1)m/2,(2k+1)n/2], k € Z (A2.23)

and assuming we may account for transitions between intervals, we need

only consider extremizers of (-§—-§——§ﬂ. Secondly, observe
B+ -w
¢C(jw9B+SY) > ¢C(jwa8_3Y) ¥ B+ > 0 > B_, ¥Yuw bd 0.

- A -
Hence, we may divide any interval B 4 [B,8] into B, = [max{0,8},8] and
A -
B = [B.min 0,8}] and so to maximize ¢C(jw,B,Y) over B, it suffices to

consider B, whilst for minimization we consider only B_.
Graphs of (-E—E%Q—EJ as functions of B and y are given in Fig. 11 and
B +Y -w '
it is seen that the extremizers are frequency dependent. Suppose, ini-

tially, that ;gg(jw,e,y) # 0 and the extremizing B € [g,é] is sought.
This can be obtained from the graphs in Fig. 11 by considering the
possible orderings, {0<g<g,B<0<f,B<B<0}, and the location of the interval
[8,B] on the graphs to decide whether g or 8 is the extremizer.

Referring to (A2.20a,b), we have those values of w > 0, B € [g,8]
and y € [y,y] at which stationary points of ¢.(juw,8,y) may occur and so we
need ammend the previous procedure to account for the possibility of

local maxima and minima. The results are summarized by the Tables A2.2.

Observe that as yz - w2 - BZ or 52 - w2 - yz, the tangent function,

—5—2%9—§-+ + « so that the inverse tangent function, ¢C(jw,6,y) moves
B +y -w -
from the interval I0 to I+]. Hence we may use the monotonicity of tan ](-).

. 28w

B4y -w
side of the range of IO. We summarize the results for complex perturba-

over the Ik and simply determine when the tangent, » goes out-

tions in the following theorem.
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Theorem A2.2. If z' =8' + iy, 8' €[8',8'], v € [w_ri,?i], then

By(dw)s By(dw)s Yh(jw) and yi(ju) are given by Table A2.1 whilst
@A(jw), é;(jm), QA(jw) and ;A(jw) are given by Table A2.2, ¥ w > 0.

For p1 = B1 + jy1, a complex pole occurring in conjugate pairs, the

extremizers of magnitude and phase are obtained from those for z! by

reversing the role of the maximizers and minizers.

For a pair of complex zeros, z = B + jy, z* with B>y >0, gm(jw),

v . A - v (3 - ° 3
BM(Jw), YM(Jm), YM(Jw) are illustrated in Fig. 8.

Remark

The results of Theorems A2.1 and A2.2 may be ﬁsed to determine the

solutions to

max (or min) [P0(0+jw,a)|
o€A

and

max (or min) arg Po(o+:jw,a)
oA

for o # 0. If z' is a real zero varying in [51,21] then,

max |otjutz'| = max  |jwtz! |
ezt ,31] ierd 51 °
z €z ,z z €z 2
max arg(otjutz') = o omax arg(jw+z;)
z2'ez',7'] 2'€z.,2;]

and similarly for the respective minimizers, where

(A2.24)

(A2.25)

(A2.26)

Since the extremization problems on the right hand sides of (A2.24) and
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(A2.25) are evaluated along the jw-axis, our previous theorems apply

with the new confidence interval, [;;,i;]. Analogously, for complex

perturbations, say
z' = 8!+ gy

with

g' € [8'.8'1, ¥ € [y'¥'1,

we put,

and consider the new constraints,

(80,v") € (81,811 x [y',¥'1.
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Table A2.1

Maximizers and Minimizers of Magnitude for Complex Perturbations

A
Byiw) = argmax |g'|

sletp!,Bl)
' y it o g8
i -
BM(jw) = i
argmin (8’|
sletp!,5")
owicam iy Frequncy, o o frequncy, o i)
(a) (812?20 | 8 >w>0 2romx '] 16! 2020 argnin |v|
Y G{\_ri ! v €ly,y'}
(0) (812 <0 [ w<(8h% 2N | argmax V] [|w < (68H2mint(yHEG)P | argnin v
Y G{x.vi} Y 6{1_.11}
o<y <7 o2 M80A HEORENE | arain 1] Jlo = A8DEGT v
\_(1 <y <o " ‘ w > *(87)%max {(!i),(;i)z} argnax |y'|
very' i)
() (B"2?<0 | w<t8h% Jmaxt(yH2,6Mh%| o w<”(8)2 gmint(y)2,(3)2) | argnin Iv|
v'ety,y')
Y <0<y o> (0% JoaxtHZGDA| argmax '] ||u = “6N2r1)2 %
. vey' v
w> Y(8")% maxt(y')Z,(v')%) | argmax vl
: YiE{'!,;]
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Appendix 3: Extremizers of Closed Loop Gain and Phase

Suppose we wish to extremize a C] function, g:]R2 + R over the rec-
tangle, R = {(m,¢) mE[@,ﬁ],¢€[Q,$]}, and the stationary points of
g(-,-) are known. Along each of the line segments constituting the
boundary of R, 3R, g is a function of a single variable. Optimization
over 3R then reduces to comparing the values of the corners of the rec-
tangles witﬁ those of any stationary points of the reduced gradient
evaluated along each line segment. Hence, optimization over R merely
requires comparing the extremum over 3R with the values of any stationary
points in RO.

For the special case when g is either the magnitude or phase of one

of the closed loop transfer functions, H,, (a=y or'v, b=r, uord)

we show that there are no non-tm’via]Jr stationary points. Observe,
firstly, that the compensators C(x,s) and F(x,s) play no role in optimiza-
tion over A x L and so it will suffice to consider.just the' transfer
functions, Hyu(x,jm,a,z(jw)) and Hyd(x,jw,a,z(jw)). Put

P(Jursr2(30)) 2 my(usara (e POt 09)) (A3.1)

and since

Ho (X000, 2(30) )

y P(Ju2002(3) x5 J00) (140 (Juwscx,2(300) )Cx, ) T

' (A3.2)
[14P (w02 ( )]  (A3.3)

Hyd(x,jw,a,l(jw))

it follows that (suppresing the arguments on the right hand sides for

brevity)

+ . . . :
We consider the stationary points of constant functions as trivial.
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i(opo,)

. (umC+e )mpmC
Hyu(x,jw,a,l(jw))'= 5 (A3.4)
: 1+2mgm. cos(¢p+¢c)+mpmc
-3 (dp*oe)
1+umCe PC
Hyd(xsjwsa’l(jw)) 2 2 (A3-5)
1+2mgme cos(<1>|,+c{>c)+mP c
and that'r (again suppressing the arguments),
Myu(mP’¢P) = [1+ ch cos(¢P+¢C) } -1/2 (A3.6)
P M
_ -1, sin(eptec)
¢yu(mP’¢P) tan [m DEEHERTN (A3.7)
Myd(mp,¢P) = [1+2mpmC cos(¢P+¢C)+mgmé}']/2 (A3.8)
- mpme sin(op+ec)
yd(mp,q»P) tan~ [Hm e COS(¢P+¢C)]' (A3.9)

~2 02 . . ’
Let R =R |(]/mc,(2n+])“_¢c), n €Z. The following proposition estab-

lishes that Myu("') and ¢yu(.,-) have no stationary points on RZ,

Proposition A3.1: (i) VMyys Yoy exist everywhere on R% and fail to

. _ b }
exist at (mP,¢P) = (mc ,(2n+1)7w) ¢c), n € 1.
(i) V“yu # 0 except at jw-axis zeros. of C(x,jw) for which VMy = 0.
(i) v¢yu #0

e assume, for simplicity, that mym. + cos (¢p+éc) > 0 for all
(mp,¢P) € Ry(x,jw) so that ¢yu’ ¢yd € [-m/2,m/2]. If this condition is

not satisfied, additional conditions will need to be imposed to deter-
mine the correct quadrant for the angles.
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mme

mcc05(¢p+¢c)+1 )1 /2

Proof.. (i) Now M_ (m_,¢ ) = is a quotient of
PP (mlz)méi-Zmp

¢! functions ¥ (mP,¢P) ER? 5o the partials,

2
2M {Mps0p) = — zmpmC Sl 372
M P (mpmc+2mpmc cos(¢P+¢C)+1) /
M mZm2 sin(¢y+dn)
PC P *C

—'Lu(msq’):
9p TP?TP (m§m€+2mpmC cos(¢P+¢C)+1)3/2

exist and are continuous on li . It follows that

oM u oM u T
VMyu(mP’d’P) = (8mp mP’d’P)’%'PL(mP"bP))

exists on ]ﬁz. However,

lim W, (m.(2ke1)m) =( 0)

yu''pP

mP-+1/mC

whilst,
lim WM. (1,6p) =(:)

opr{(2kH)m-g} Y4 TP
by application of L'Hopital's Rule, so that the gradient fails to exist
" at (1/mc,(2k+1)w-¢c), n €Z. Similar analysis establishes the result
for v¢yu’
(ii) From the expressions for the partials, it is clear that if me = 0

then Myu = 0 and so vmyus 0. Now suppose VMyu = 0 and me > 0. From

oM
—yu _ ; . o
a7y 0, we require that cos(¢P+¢C) o so the condition on the

other partial becomes,

oM
u _ 22 1\1/2 _
30p = mpmc(mpmC 1) =0
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Hence the only solution requires mpfe = 1, cos(¢P+¢c) = - 1. But then

(mP,q>P) ﬁElﬁz so we conclude V " # 0 except if me = 0.

My
(iii) Now

: -me sin(optec)
2 2

MM +2mome cos(¢P+¢C)+1

Vo

yu(mp,cbp) =

M cos(¢p+¢c)+1

and so for this gradient to vanish,

sin (¢ptds) = 0
and

cos(¢P+¢c) = - 1/mpm.

This again implies (mp,cbp) Efiz. ﬂ
Because of its similarity to Proposition A3.1, the proof of the next

result is omitted.

Proposition A3.2: (i) VMyd’ V¢yd exist everywhere on R® and fail to

. _ J_ )
exist at (mp,¢P) = (mc ,(2n+1)v-¢c), n €17,

(ii) vM g 7 0 except at ju-axis zeros of C(x,jw) for which vM_. = 0.

Y yd
(i) V¢yd # 0 except at jw-axis zeros of C(x,jw) for which V¢yd =0. =
Because of the possibility of jw-axis poles of Po(jw,a), we need to

consider the case of Mg infinite so that the rectangle, R, over which we

extremize may be unbounded. In particular, let

R, = {(m¢) [nelm,=],0609,5]}

where m > 0. The following results indicate that we may reduce certain

optimization problems over R  to ones over bounded rectangles.

-67-



Proposition A3.3: There exists a finite m > 0 such that

sup M (mP,¢P) = max{1, max

M (mysp)}
(mp’(pp)ekw yu (mP,¢P)€R yu P="P

where R = [m,@] x [¢,¢].

'Proof: By Proposition A3.1, we have that vMyu # 0 for all (mP,¢P) € gg.
It then follows that,

sup Mou(Mpsdp) = max{ max . M (msg), sup Myu(mpaQ),

(mps‘pp)ekm yu ¢P€[<l),¢] yu= mpe['lls”]

sup M (mo.6),  MaX M (w,0)}.
mpeln,=] Y4P T gelg,01 Y

Since M (»,+) =1, max - M_ (w=,9) = 1.
- 6p<Lo,0] Y

Now mpélfg,w]My”(mP’d‘)) = maX{Myu('l‘a?)sMyu(w’Q)sMyu(m?,Q)}

where mQ is given by

-1 . -1 -
A ) mecosTgrec) TS pcosTgreg) ©
mg = |
m else
i.e., mQ is a stationary point of Myu(-,g) if this is finite and

My = M else.

Hence,

mpéfg’m]Myu(mP,g) = max{Myu(@,g),l,Myu(m?,g)}.

Similarly, we may show
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mpél[‘l%,oo]Myu(mpa‘b) = maX{Myu(mad))a]’Myu(maaq))}

where
__ﬂ_:__ if @i-——-—]—_-——<°°
mecos (¢+oc) mecos (¢+oc)
m_:
¢ m else.
Now, define m = max{@,m¢,m$} and the result follows. H

The proof of the following result is analogous to that of Proposi-

tion A3.3 and is deleted.

Proposition A3.4: There exists a finite m > 0 such that

sup M (my,¢6,) = max M .(my,¢,)
(mpsd)P)ERw yd PP (mp,CbP)eR yd PP
where R = [m,@] x [9,4]. B

As a consequence of Propositions A3.1-4, it follows that maximizing

2 reduces to

Mab (for a =y or v; b =u, rord) over any rectangle in R
maXimizing over a bounded rectangle. Moreover, Propositions A3.1-2
imply that maximizing these functions over a bounded rectangle, R,
requires checking whether (1/mc,(2n+1)n-¢c) € R for any n € Z in which
case this point is the solution and if not, maximizing over 3R. Since
oR consists of line-segments, this maximization is a one-dimensional
problem for which any stationary points are known.

We now show that this optimization may be further simplified because
it suffices to check only two of the four Tine segments constituting

the boundary. Consider the examples of extremizing Myu(mp,¢P) or

¢yu(mP,¢P) over Rp(x,jw) (defined by (3.28)).
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Let
) argmax cos(d,*d.)}  (A3.10a)
] ¢Pe{¢P(“”°‘A(J‘”))+2'A(“’) ¢p(w’°‘A(J‘°))+9’ ( )} PC

bo = argmin {cos(¢pt+oe)}. (A3.10b)
2 ¢p€{¢P(w,aA(Jw))+2A(w) dpluw ,aA(Jw))+2A(w) Pre

It follows from (A3.6) that

Myu(mp,¢2) Z_Myu(mp,¢1) Yy My >0 (A3.11)
and if

2me(w)cos ¢ > - [m,,o(w,&M(jw))gM(w)J' - [mp (0:3y(40)) By()1™!
(A3.12)
then
M, (mp 0«», (302 (0))50) > M u(m,,o(m,&M(jmniM(w),w ¥ ¢ €R.
(A3.13)
Hence to extremize Myu over RP(x,jw) only two sides of the rectangle need

to be considered. For ¢yu it may be deduced from (A3.7) that

¢W(mpo(w,éM(jw))gM(w) 9) 2 0y, (mp (0.8 (0 ) 0) (A3.14)

and if
sinwpo(w,&Auw))+¢P0<w,aAmw))+gA(w)-iA(w>J

"= sinlp (wsdy(du))+Ep(w) o (o) T-sinlsy (w8 (Ju) ap(o)+0c(w)]

(A3.15)
then ‘

¢yu(m,¢p0(w,3A(iw))+EA(w)) 2_¢yu(m;¢p0(w,&A(jw))+&A(w) Ym>0
| (A3.16)

and so two sides of the rectangle may be deleted in extremizing ?yu

It may further be shown that
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Mg(Mpsda) > M y(mpsty) ¥ mp > 0 (A3.17)

and that if

mpo(w,&M(jw))gM(w) + mpo(m,&M(jw))EM(w) i@% cos ¢ (A3.18)

then,

Mgy (30 (0) ) 2 My (3 30)) )0 V¢ ER
(A3.19)

For phase,

¢yd(mpo(w,&M(jw))iM(w),¢) > ¢yd(m,,0(w,&m(jw))gm<w),¢) ¥ ¢ €R

(A3.20)
whilst
sianO(m,&A(jw))+¢P0(w,&A(jw))+EA(w)-gA<w)]
m> :
_.51n[¢P (ws&A(jw))+EA(W)+¢C(W)]'Sin[¢P (w’&A(jw))+&A(w)+¢C(w)]
0 0 (A3.21a)
implies

A, - Vo, .
¢yd(m,¢P0(w,aA(Jw)+zA(m)) 3_¢yd(m,¢p0(w,aA(Jw)+gA(w)) ¥m>0.
(A3.21b)
From the results for Hyu and Hyd’ results reducing the number of
computations for extremizing any of the closed loop transfer functions

follow easily. n
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Appendix 4: Computation of the Boundary of Po(jw,A)
L . .

et J¢P (Jw’a)

P (jw,a) = my (jw,a)e 0 (A4.1)

0 P0

0, (30) = Ao(dundy(dw) + (=N )oliwby(du), A €011 (M.2)

Then the boundary, ePO(jw,A) (see Fig. 12) may be computed by solving
for each A € [0,1],

P, : max (or min) My (jw,a) > 9p (jw,a) = ¢A(jw) (A4.3)
0EA oA 0 0

Assuming that first order optimality conditions hold at an extremum for

P,» and all poles and zeros of Po(jw,a) are real, then a solution to P,

must satisfy for some £ €R,

; Ew if &w€ [gi 217
= . . i€k .

z A op 5 Y i EpR (A4.8)

i [ it ewellil  viegy (A4.5)
p = . 3 -

ol or 5
where
k! k .
tan'](i%é - E tan']($%0 = ¢A(jw) (A4.6)

i=1 2 i p

From (A4.4-5), it may be seen that determination of boundary points for

A € (0,1) is computationally non-trivial.
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Appendix 5: Decomposition of Modified Nyquist Criterion

Proof of Theorem 3.4: Let

A . =L
(1) We begin by showing the maximization of £ over R] x Ry has no
solutions in (R]XRZ)O.

vSuppose
1
Bm,i
=0 1i=1,2
&
3¢i
Then,
3 _ . B |
5%;-- 2k cos ¢i[m1cos ¢+myCoS ¢2] - sin ¢, 1 =1,2 ~ (A5.2)
%ﬁ§-=-2kmisin ¢i[m]cos ¢+, COS ¢2] - m; cos ¢, i=1,2 (A5.3)
so that
My €OS ¢y + my COS ¢y = %%-tan 95 i=1,2

my cos ¢] + m, cos ¢y = ?E'C°t ¢i i=1,2

requiring that

tan2 ¢i = -] i=1,2

which contradicts (A5.1). It follows that
8 2 )
<8mi ’ a¢i F0 i 1,2. (A5.4)

Hence any solution of the max problem must be on a(R]xRZ).
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(i1) B(R]XRZ) is the boundary obtained by setting one of m; = m, or ﬁi
or ¢i = ?i or éi’ i=1, 2 in turn. A stationary point of the reduced

gradient on {a(R]xRZ)}O must have three of the four partials %%— s %%— s
i i
i =1, 2 (evaluated on the appropriate constant contour of the fourth

variable) simultaneously zero. From (A5.4), we see that there are no

stationary points of the reduced gradient so that no solution lies in
0

{B(R]XRZ)} .

(iii) It then suffices to consider stationary points on the two-dimen-

sional surfaces of 3{3(R]XR2)}. This boundary is obtained by setting in

turn two of the four variables mi’¢i’ is= ],Z‘equal to their values at

the endpoints of their confidence interval§. Hence we must consider

zeros of the partials with respect to the pairs,

(a) (m.0,) 1= 1,2 (b) (mmy) (c) (97.0,) (d) (m.6,) (e) (my.4;)

(a) From (A5.4) it follows that we may discount this case.

(b) From (A5.2), it follows that the Hessian with respect to Mys My is

2
2 cos”¢ C0S¢,C0Sd ‘]
5%_%_ = 2k 1 2] 2|5 0. (A5.5)
i i,5=1,2 cos¢]cos¢2 cos ¢2

Hence & is convex in (m],mz) and so a maximizer must be on the boundary
of [my,m] x [my,m,]. |
(c) From (A5.3) it follows that

13 _ oo ~
(%5;). L =0 implies tan ¢ = tan g5
i=1,

or, equivalently,

¢ = ¢ = nm, n € 7. : (A5.6)
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Along the contour defined by (A5.6),
E(m],¢1,m2,¢]+nn) = k(m]im2)2c052¢] - (mlimz)sin¢] -cC (A5.7)

which has stationary points (with respect to ¢]) satisfying

cos ¢; =0 or sin ¢, = -2
| 1 1 klm]1m2)
i.e.
.o -] -2
¢ = (2n+1)7/2 or ¢, = sin ) (A5.8)
1 1 klmlimci

.. : T
(d) From (A5.2,3) we have that a necessary condition for (%%;-, %%};)
2

=0 is
o1 = ¢ + (2n+1)m/2, n € 2, (A5.9)
Along the contour defined by (A5.9),
g(m],¢2+(2n+l)n/2,m2,¢2) = k(m1 m2)2c052¢2-(ml¥m2)sin ¢ = C

(A5.10)
and from (A5.10), it follows that for any n € 7

9 9 T _
('é_rﬁ' g(m] s¢2+(2n+] )“/2"“2’4’2) s @g(m] 9¢2+(2n+] )"/2’m2’¢2)) =0

-1
4k2cosz¢2

. 2
iff (m]imz) = ,
which is clearly impossible. Hence & has no stationary points with
respect to (m],¢2).
(e) By symmetry, we may draw the same conclusion as in (d).

Hence, we have shown that the only stationary points which may be

local maxima of £ on a{a(n]xnz)} are those given by (A5.8). This
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establishes the result. u
Computationally, it is necessary to check any feasible stationary
point given by (A5.8) and to compare the values of £ evaluated at these
stationary points with the maximizers on the boundary, 3{[9],52]><[?2,$2]}.
We characterize the maximizers of £(m1,-,m2,-) on this boundary by the

following result:

Proposition A5.1: max_ - E(my 3¢9 .Mm,ysd,)
(67565) € 308,871 x [opo0, 1 1 1 2

= max g(m],v],mz,vz)
vey

where

A - - - -
V= {(97592)5(97595) 5(0505)5(9750,)}
is the set of vertices of [¢ 51] X [¢2,52].
-'I’ -

Proof. From (A5.3), we have that

g%;-= 0 requires that
I .
my €OS ¢1 + my COS ¢, = - Fp cot ¢;5 1= 1,2 (A5.11)

Differentiating (A5.11) with respect to ¢;s We obtain that a further

necessary condition for %%T-= 0 is

3 —_1_ 2 i =
- m, sin ¢; = 5 cosec” ¢, 1 =1,2 (A5.12)

substituting from (A5.11,12), we obtain

E(m1,¢],m2,¢2) = é%(3 cosec2 ¢]-1) - m, sin ¢ - C
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However,

. 2 2
2 sin“¢,+3cos"¢
3_«%_=.2ik( 14 Lyso ¥ ¢ ER (A5.12)
39, sin 1 .

so that any stationary point is a local minimum. The result now

follows. =
The above proposition implies that the maximization over

(1595) € [91,51] x [?2,52] required by Theorem 3.4 requires merely that

we compare the values of £ at any feasible stationary point of those

defined by (A5.8) with the four vertices, V.
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Appendix 6: Local Lipschitz Continuity of Extremizers of Open Loop
~ Gain an d Phase

We establish some properties of ﬁo(-,-), MO("')’ 30(-,-) and
go(-,-) defined by (3.19) of Section 3.2. From Theorem 3.1 of Section
3.1 we have that ﬁo(x,jw) (ﬁo(x,jw)) is the product of |C(x,jw)| and
the individual maximum (minimum) magnitudes due to the individual pole
~and zero variations. Similarly, for phases, we have from Theorem 3.2
of Section 3.1 a decomposition intoa sum of [arg C(x,jw)] and the indi-
vidual extremizers of phase corresponding to the individual pole and
zero variations. We begin by developing some results for the individual .
pole and zero variations for the real and complex case. We abbreviate

local Lipschitz continuity to 2.L.C.

Proposition A6.1: Suppose z'

€ [Ei,fi], Pi € [pi,ﬁi], and that

A .y A 2 i
M 1.(Jw) = . max le+Z1|

Z Zi‘E[Ei ’21]
—1
M i(jw)~e _max | durp | s

v
with similar definitions for the minima, M i(jw) and M 1-(jw). Then,
A v 4 Pa v
M 1.(jm) and M 1.(,jm) are C] functions of w € (0,) and M 1.(jm) and M 1.(jm)
z y4 : P p
are continuously differentiable for (w,p‘) # 0.

Proof: Now ]jw+zi| = [wi+(z1)271/2

SO
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wlw?+(21)%171/2 (w,z') # 0
é&'ljw+zi| = 1 w# 0,2 =0

0 w=20

Hence, |jwtz'| is ¢! inw > 0 for any fixed z'. By Proposition A2.1,

A \"E 1
z&(jm) and z&(jw) are constant so

A o

M (Jw) = |Jurzy(ju) |
z

v i

M ;(Gw) = [jutrzy(ju) |
Z

are C] functions of w > 0.
For poles, pi, the above applies for all (w,pi) # 0 since then the

magnitude function is the non-zero reciprocal of that for zeros. n

Proposition A6.2: (a) Suppose 21 = Bi + jYi, = [@1,Bi], vl e [Zi’;i]'

Then,
. . ° A . . . 2 . - . Iy
Mc(dwsB' oY) = [ (Jur(8'+iv")) (Gur(B'-3v") |

A o .
M jGe) = omax o M(w.BlYY)
z (8',v")elg' .8 Ixy'1v']

v o A . p K I
Mo(w) = min o M (Gw,B YY)
z (B1sY1)€[§1,B1]x[X15Y1]

are 2.L.C. for w > 0.
(b) 1f p' = 8! + 4y, Bie[ﬁi,éi], Yie[\_(i '] the corresponding func-

A . v
tions, M 1.(jm) and M i(jw) are 2.L.C. ¥ w > 0 excepting any jw-axis poles.
p P
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Proof: (a) For (w,8',y') # 0, M_(jw,8'.v") is continuously differentiable

in w, since
TP ST B (0 L0 s R
M (w,B ')
- 2w Bi = 0.
Now,
URICRRE NG MEDBVER)

» Ac
and referring to Table A2.1, we see that g&(jw) is constant and Y&(jw)
is piecewise constant. Hence it suffices t> consider those w > 0 at

which Q&(jw) changes value:

(1) oy = "(BylaanH U 2D with v >00ry <0

From Table A2.1,

M (Jw,BM(Jw) argmax YD) w < W
M ((Gw) = y'ely' '}
z M (Jw,BM(Jw) argm1n. ly 1) w > Wy
Y E{Y sY } .

A .
since M 1.(jw) is 2.L.C. on (O,w]] and on [w1,w) and since
z

M (Jw1,BM(Jw ), argmax |y'|) = M (W],BM(Jw )s argmm Y1)
Y G{Y,Y } Y G{Y ')

it follows that ﬁ 1.(-) is locally Lipschitz continuous on (0,»).
z

(1) wp = Byl 2 5((yN3 (1)) with v <0 <Y

From Table A2.1,
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>.
Mc(Jw,By(Jw) ,0) w <

=>
-

>' : .
M.(Jw.By(dw), argmax [¥']) >
<,mﬁw~,<dw

and as

A A .
M. (duy,By(dwy),0) = M_(Ju,By(duw,) argmax Iv'1)s
Y mﬁw.<dw

the result follows.

\A
For the minimizing function, M *Agsvv we need only consider

. z
w € mewue»u_ (for Amw__a.evvw..eonv z:msm

wy="(Bh(50) Bamint(v) 2,712

wy = V(B () Pmaxi ()2, (v))7)

Vi Vi
since mpAuev is a constant for all w € [0,») and <pnusv is constant for

w m _“Ew oem_v“_. Now

vi .
[ Mc(Ju,Byldw), argmin |y'|) w < wg
<._mmRu.<._w
N A P i i 1,2
ZNAAQEV = M (G, By(du)sy') w = \Nmpﬁevvm+a<dv » W€ [wg,uwy]
.o Y¥ig. i
g Znﬁuﬁomzﬁuavu .m«.@_:mv.n _./\ _v E.N 5&..
v'Ely.y'}
v ) = 2 Vi, . c d
As zwﬁﬁuev = Emzﬂuev for w HEw“spu an
V&1 i Vi
zoﬁusx,mpAMva. _argmin IY']) = NampAqexv k = 3,4

i
v €v,y'}



it follows that ﬁ 1.(jw) is 2.L.C. on (w3,w4) and at W s k = 3,4.
z
N AR C M.y A
(b) Since Mzi(*]“’) = Mo (Jw,By(Ju) s y(dw))

70 it Bp(dw) # 0,

A v
M -i(jw) = 1/M ‘i(‘jw)’
p z

s A . . . .A'i. A,
it follows that M 1.(Jm) is 2.L.C., provided BM(Jw) #0. If BM(Jw) =0,
P

A
M i(Jw) = L

p (Yi(jw))z-w2
M

] \
which is 2.L.C. for w # yy(ju). Similarly, we may show that M s(w) is

Vi, . vi, . P
2.L.C. except when w = YM(Jw) and BM(Jw) = 0. n

Proposition A6.3: Suppose zi € [gi,ii], p1 € [pi,Bi]. Then the

functions
ALy D .
¢ j(jw) = max arg(jutz’)
A .
¢ ;(Jw) = max  {-arg(juwtp’)}
P p'elp',p']

v .
and ¢ i(jw)’ $ 1.(jm) are continuously differentiable for w € (0,») where
z p : :
é i(jw) and ¥ 1.(jm) are the similarly defined minima.
z P

Proof: Since arg(jw+zi) = tan”! ﬁ%
z

k]

. i
9 T z
3w aroliwtz’) = 5= 37 -

w+(z")
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v Vs
Since ¢ ;(ju) = arg(jurzy(ju))

Z

A S P
¢ ;(Jw) = arg(Jutzy(juw))
4

Vi 3 '
with zA(jw) and Ql(jw) constant (Proposition A2.1), it follows that they

1 .. A . v .
are C'. Similarly the result holds for ¢ 1.(‘]m) and ¢ 1.(.]m). =
P p

is a complex zero as in Proposition

.

Proposition A6.4: (a) Suppose z!

A6.2, and that

. . A 'y . .
0o(3w,8'¥") = argtl(8h)2(v)2-uPTri(28"0)}
A .y A NS B |
b 0 = max o (ju,8T,y)

z (8',y")els',8 Ix[y' ']

A - Y
;(Jw) = min ¢C(jw,61,Y1).

2 (8",vhere',8" [y ']

v
¢

Then 3 i(°)’ ¥ 1.(-) are 2.L.C. on (0,»).
z. z
(b) If p' is a complex pole as in Proposition A6.2, then the functions

A . .
o ;1 (Jw) = max {-9c(3w,8'57")}

P (8" yhee' ' v v
v . .
6 i) & min {egc(iu.t )
P (8',v")elg’,B' Ixy',y']
are 2.L.C. on (0,=).

R Y I N 2814
Proof: (a) Since — ¢.(jw,B ,y ) = = tan - ——7 »
—_— 2w 'C 3w (81)2+(Y1)2-w2

¢c(-,Bi,Yi) is 2.L.C. for any w > 0, V 61, Y1 €RR such that
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wz # (Bi)2 + (Yi)z. From Theorem 3.4,

6 ;(30) = o (dw,B) (30),71(30)
Z

b 4(d0) = dw) B (w) v (Ju))
Z

and from Table A2.2, if g,y' > 0 then

C - . .
3 0 <u? < (v"2 - (8)2
N . . . C s
Bl = ¢ (22 Wl e (h2 - 8)2, 6t ersl BT
§'l w2 > (,Y'l)z _ (81)2
L Y
s :
vy (dw) = Y' w>0
while
v o 0 < < (312 - gl
Bpldw) = ¢ 7 o e o
B1 (Y1) - 9181 in
vi -3
Y;(jw) = y! w>0

Since the functions ¢ (Jw) and ¢ (Jw) are uniquely defined at

= {y)% - (8 NG (y")? ( D42 and 1(71)2-681117/2, they are
2.L.C. at these w provided that w® # (BA(Jw))2 + (YA(Jm))2 or
o ¢ (Bylao)? + (G2 For w € (1(y)2-(ENA2, ((31)2-(81)R1/2),

¢ :(jw) = tan™!
2 (ETT?

which is 2.L.C. for w? # (Yi)z. Now consider
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o? = (Bh(5)? + (FhGen?, Bliw) # 0.

We have that

- Aj
28) (jw) -w . .
-1 A 2 M. w2, M. W2
tan - : w- < (By(Jw)) ™+ (v,(jw))
(B3 (3u)) 2+(¥5(Ju) ) 2-® A A
A . " .
b 5(dw) = forw? = (Ba(5u)) 2+ (¥} (30)?
Z
< + w/2 and the sign is that of
/B\Z;(jw)
et -1 ng(jw)’
+ m+ tan : X!
(Ba(dw)) 2(¥y(d0)) 2o
\ . N
w?> (B1(50))2+ (Y (u))?
A A
and the sign is that taken for
w? = (Bplau)) 2+ (Y3(w))2.
Also
tim © ;(j0)} = /2

w2 (B3u)) 24T () ? 2

= 1im .
AT : {6 :(jw)}
ox (BlGanZGTEnZ

A : : .
and s0 ¢ ;(Ju) s £.L.C. at w = (B} (3u))5+(Ta(dw))?.  1f By(du) = O,

A 2
then ¢ 1.(jm) is a constant and hence is 2.L.C. The arguments for

v . ¢ . i i A M

¢ i(Jw) are similar. Hence for 8 >0,y >0, ¢ 1‘(-), ) i(') are 2.L.C.

rd - - z z
for w > 0. For 8’ <0, Y <0, 2.L.C. is established by analogous argu-

ments. Since from Appendix 2 we know that the above two cases establish

the result for all possible orderings of §i, éi’ y1, ?i with respect to
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the origin, (a) is proven.

(b) Since
g i(Jw) = - ¥ ’i(jm)
p -~z
and

b 5(dw) = - § .(du)
P A

the result for p' follows from (a). n

Lemma A6.5: (a) The functions ﬁ(-,~) and ﬁo(-,-) (M(-,-) and &0("'))
n
are %.L.C. continuous for all (x,w) €R X xR, such that ju is not a
v
pole of Py(s,ay(s))C(x,5) (Pyls.oy(s))C(x,s)).
(b) The functions &(-,-), $0(°,'), $(-,+) and ;0(',-) are locally
n

Lipschitz continuous on R ¥ x R,-
Proof: (a) From Theorem 3.4, we have that
M(x,3w) = |Po{dus0y(du)) 2y lw)Clx,d0) |
= |Py(dusay(dw) |+ |C(x,du) | Ry(w).

Now |C(x,jw)| is the quotient of the magnitudes of two polynomials,

each evaluated along the jw-axis. As each of these magnitudes is 2.L.C.,
the quotient is 2.L.C. except when the demominator vanishes, viz, at
jw-axis poles of C(x,*). From (A2.3), we have that |P0(jw,3M(jw))| is
the product of the maximum magnitudes of the zeros and the recrprocals

of the minimum magnitudes of the poles. It follows from Propositions
A6.1 and A6.2 that IPO(jw,QM(jm))[ is locally Lipschitz continuous except
at jw-axis poles of Po(-,QM(~)). Hence, the product,
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Mo (xsd) = [Pyl dusany(w)) | 1€(x,d0)]

is 2.L.C. except at jw-axis poles of PO("&M('))C(X’°)’ As iM(-) is by
definition locally Lipschitz, we have that ﬁ(x,jw) is 2.L.C., except for
pairs (x,w) corresponding to jw-axis poles of PO(S,QM(S))C(x,s).

Similar arguments hold for M(-,-) and MO(-,-).

(b) From Theorem 3.4,

3(x,30) = arg Po(ju,ay(3u))C(x,du) + 2 p(u)

arg Podusdy(du)) + arg Clx,ju) + Zy(w)

From A2.4, it follows that arg Po(jm,aA(jw)) is the sum of the maximizing
phases of the zeros and minimizing phases of the poles. By Propositions
A6.3 and A6.4, these phases are locally Lipschitz. By definition,

iA(-) is locally Lipschitz and since arg C(x,jw) is the phase of a
rational function, it follows that 3(-,-) and 30(',') are 2.L.C..
Similarly we establish the desired result for é(-,-) and éo(-,-). 0

For determining stability in Section 3.4 we must construct the

sets,
na{x,jw)
R](x,jw) = (-3(357-0 X Rnp(Jw) X Rz(jw)
. dc(xajw) .
RZ(X:Jw) = —31357——'X RdP(Jw)
where |
Ry (:30) £ {(m0) Im € [lng(x.2y(30)) | Imp(x,3y(3) 11,

¢ € [arg ny(x,2(ju)),arg ng(x,2,(5u)) 1}
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de(x,jw) é {(m,d)) |m € [ldp(xs\p/M(J’w)) | sldP(XsSM(jw)) l]s
¢ € [arg dp(x,Pp(dw))s arg dy(x,py(w)) 1}

Ry(dw) 2 {lmys0,) Imy(30) € [oy(w)Eylw) 1,0, (d0) € [23(w),2p(w)],

'"2(')’ ¢2(‘) Tocally Lipschitz continuous}

In view of Lemma A6.5, the next result is immediate:

n
Proposition A6.6: Let Ri ‘R X xR+ ;_JR be defined as above for i = 1,2.

Then the Ri’ i =1,2 are locally Lipschitz continquus.



Appendix 7: Solution of min max ]Hyd(x,jw,a,z(jw))l

(mc ad’c)ekc(Jm) (mp ’¢P)GRP (X ,jw)

Suppose
IHyd(x,jw,a,l(jw)[ #0 YVw>0,a€A, 2EL, xEX
and
—— Voo, . AoV - A,
Ro(Jw) = {(my,6p) [Mc(Ju) < mylin) < Hjw),0() <opin) < ¢(ju)}
(A7.1)
then
min max [H, (x5 dw,0,8(jw)) |
(mc9¢c)ekc(\]w) (mp’q)P)eRp(Jw) 'Yd
= min {[ min (mgmg+2mpmC cos(¢P+¢c)]+1}']
(mC’¢C)eRC(jL°) (mpa¢p)eRP(jw) (A7.2)
Let
A
op(Masdc) = argmin _cos(ép+o.) (A7.3)
PICYCT T g elopdp] PG
mP(mC,¢C) 4 argmin {mgmg+2mcmP cos(¢P+¢c)} (A7.4)
mﬁE[@P’mP]
A .
g(mesde) = cos(optop(me,dp)) | (A7.5)
A 22
Y(mesoe) = memp(mesdp) + 2memy(meso0)E(mes00) + 1. (A7.6)

Now-g(mc,¢c) € [-1,1], mp > 0 so that w(mc,¢c) represents a family of

curves as shown in Fig 13. It follows from Fig. 13, that
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mp(mc3¢c) =

(1f (mcaog) < O,

E'(mC’q)C) . - E(mc,(bc) -
g T A S nene] S - > p
- - E(mcsd’c) -
{ (b) My if My < - me ] mcE[@c,mC]
g(m s 0p) -
() mp 1T mp>- rﬁc =¥ mg€ g

If E(mc:¢c) 2 0,

s(d) Tp

f‘
If (¢p(dg)+ec) € (4m/2,437/2)

E(mesde) - -
(a) - —m - f - &(mesoc) € [mpme,mpm.]
(b) i, if g, < - E(m,oc)
(C) TP if TPTC > - E(mc3¢c)

If (¢P(¢C)+¢C)'e [‘ﬁ/zsﬂlzls [i;"/z:i?“]

(d) m (A7.7)

C

For ¢p € [-m,7], ¢¢ € [-m,m],

o(00) = ar
e 9pSLopsdp]

i

= ar
$pS

Hence,

min- min{ | TT'¢C-¢PI H) I ’Tr'¢c‘¢P| }

min_ [min{ln-¢c-¢P|,|w+¢c+¢P|}] (A7.8)

9pstp]
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.
If (0p(0c)+6c) € (+1/2,431/2)

2 : - -
(a) - & (mcs‘bc) + 1 if - g(mC’¢C)€[TPTC’umC]
(b) mgﬁlg‘*‘ 2mCE\PE(mC,¢C) +] if E'PE‘C < - g(mC’(bC)
Vimg.o) = ¢ 2 2
(c) memp + 2mempE(me,00) + 1 if mome > - E(mp,dp)
If (¢p(oc)+oe) € [-n/2,m/2] or [+3n/2,+2n]
(d) mans + 2mompE(me,og) + 1 (A7.9)
so that -
min ' max IHyd(X ajwsa$2(jw)) l

(mC s¢c)ekc(jw) (mP,‘bP)aZP(X’jw)

= min p(m.,dp) (A7.10)

where the minimization on the right hand side is easily computed from

(A7.9).
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Control system to be designed.

Regions of allowed pole-zero variation for the plant,

10 s*zp
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Po(s,a) =

pe € [- 7 11 % [F ,1]

Plant magnitude uncertainty with respect to multiplicative
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Region of allowed perturbations, {2(jw)|% € L} and approximating
bounds, RQ_](jm), for (2(jw)-1), 2 € L.
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Typical region for S-stability, o = - “I;:;;;?

Envelope of acceptable time response.

gM(jw), ?M(jw) for ¢9 perturbations.

éM(jw), ;M(jw)-for ¢? perturbations.

Real perturbations.

Complex perturbations occurring in conjugate pairs.

2( 2 wZ .

Parabolas corresponding to y4 + 2Y g™-

Graphs of (—5—5—= 2 )
B8 +Y -w
Construction of rectangular approximation to Po(jw,A).

Parabolas representing w(mc,¢c).

Feasibility test for inequality (3.21a).
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