

Copyright © 1983, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

AN IMPLEMENTATION OF HYPOTHETICAL RELATIONS

by

John Woodfill and Michael Stonebraker

Memorandum No. UCB/ERL M83/2

14 January 1983

ELECTRONICS RESEARCH LABORATORY

An Implementation of Hypothetical Relations

by

John Woodfill and Michael Stonebraker

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

UNIVERSITY OF CALIFORNIA

BERKELEY, CA.

ABSTRACT

In this paper we develop a different approach to implementing,

hypothetical relations than those previously proposed. Our design,

which borrows ideas from tactics based on views and differential files,

offers several advantages over other schemes. An actual implementation

is described and performance statistics are presented.

U INTRODUCTION

The motivation for, and applications of hypothetical relations

(HR's) were introduced in [ST0N80J. They can be used to support "what

if" changes to a data base and offer a mechanism for debugging applica

tions programs on live data without fear of corrupting the data base.

The suggested implementation in [ST0N80J involved a differential file

[SEVR76]. In [ST0N8l], supporting HR's as views [ST0N75] of the form ¥

= (R UNION S) - T was suggested. In this case an implementation only

requires extending a relational DBMS and its associated view mechanism

with the UNION and - operators. Moreover, R can be a read-only relation

while S and T are append only. As a result, hypothetical relations may

- 1 -

offer cheap support for crash recovery and logging. Unfortunately,

there are problems with treating HR's as views. We first examine these

problems and show general solutions in Section 2. Next we combine these

solutions in Section 3 into a new mechanism for supporting HR's. Our

proposal has several similarities but a different orientation from one

in [KATZ82]. We then describe our implementation in Section 4. Finally

we analyze the performance of this implementation in Section 5.

2. PROBLEMS AND SOLUTIONS

Proposals for hypothetical relations as views contain various flaws

which must be removed before a realistic implementation can be

attempted.

2.U A Known Problem

[ST0N81J points out that the implementation of hypothetical rela

tions as W = (R UNION S) - T is flawed in the case where one wants to

re-append a tuple which has been deleted, as shown by the example in

figure 1. Initially there is a tuple in relation R corresponding to

Eric. Following the algorithm in [ST0N8lJ, the tuple can be deleted by

inserting it into relation T. Lastly a user re-appends Eric and an

appropriate tuple is inserted into S. Unfortunately, the resulting

relation, W does not contain the re-appended tuple, since (R UNION S) is

the same as R, and R - T is empty.

^2.2^. Jl Solution

As noted in [Agra82], this problem can be solved by adding a times-

tamp field to the relations S and T, and modifying the semantics of the

DIFFERENCE operator, "-". There will be no timestamps for the relation

- 2 -

R

iname isalary

leric i
i 10000

S

|eric i
i 10000

T

jeric i
i 10000

Figure 1.

R; hence these tuples can be thought of as having a timestamp of zero.

The timestamp field is filled in with the current time (from a sys

tem clock, or any other monotonicaly increasing source of timestamps)

whenever a tuple is appended to S or T. For any relations A and B with

timestamps as described, the DIFFERENCE, A - B is defined as all tuples

a in A for which there is no tuple b in B such that

(1) DATA(a) = DATA(b)

and

(2) TIMESTAMP(a) < TIMESTAMP(b)

The definition of R UNION S is unchanged, except for the addition of a

timestamp field in the result which contains either the timestamp of a

tuple in S, or a zero timestamp for a tuple in R. If tuples with ident

ical DATA appear in both R and S, the newer timestamp (from S) is chosen

for the result tuple.

In the above example, the timestamp of Eric's tuple in T would be

newer than that of Eric's tuple in R (zero), but would be older than the

timestamp of Eric's tuple in S; hence, (R UNION S) - T would be

- 3 -

equivalent to S, and W would contain the re-appended tuple.

2*3,. Jl New Problem

The addition of timestamps solves the problem of appending deleted

tuples. However, this solution is not free from problems. Consider the

case of a second level hypothetical relation, W' = (W UNION S') - T', as

shown in figure 2. Suppose Eric was given a 20 percent raise in W' at

timestamp 10 which caused the indicated entries in S' and T'. Since no

updates have occurred in W, S and T are empty. Now suppose a user gives

Eric a 50 percent raise in W at timestamp 20, which results in the

entries for S and T shown in figure 3. According to the algorithm

above, W' would contain two tuples for Eric, one with salary 15,000, and

one with salary 12,000. The problem is that the tuple in T' no longer

functions to exclude Eric from W UNION S' and hence an unwanted Eric

tuple is present.

There are at least two choices for the proper semantics for W'

under this update pattern:

R

name {salary |

eric j 10000|

name |salary jt-stamp

S'
iname |salary jt-stamp

eric J 12000, 10

name \salary jt-stamp

T'

name |salary jt-stamp

eric | 10000J 10

Figure 2, Eric's 20$ raise in W'.

- 4 -

{name {salary {
i

T

iname
1

ieric { 10000|
i

S

[name

———- j

{salary |t-stamp {salary {t-stamp{
1

ieric { 15000! 20 jeric
1

{ 10000! 20j
1

S'
{name

—————

{salary {t-stamp

1——

T'

{name {salary {t-stamp{

{eric { 12000J 10 [eric { 10000{ 10{

Figure 3, Eric's 50$ raise in W.

1) Eric's salary is set to the latest value, in this case the

15,000 from W.

2) Eric's salary is set to 12,000, corresponding to the original

update of W'•

We choose to follow the latter choice, and specify the following seman

tics:

Once a tuple has been changed at level N, changes at levels < N

cannot affect tuples at levels >= N.

£.4,. A New Solution

These semantics can be guaranteed by the addition of a tuple iden

tifier, and modification of the DIFFERENCE operator. A tuple identif

ier, TNAME, must be given to each tuple in R. Each tuple inserted into W

(and thereby added to S) must also be given an identifier. Then, any

inserts to S or T, which are used to replace or delete a tuple in W,

must be marked with the identifier for the original tuple in R or S

which they replace or delete. For any relations A and B with timestamps

- 5 -

and TNAMES as described, the DIFFERENCE, A - B is defined as all the

tuples a in A for which there is no tuple b in B such that

(1) TNAME(a) = TNAME(b)

and

(2) TIMESTAMP(a) < TIMESTAMP(b)

To guarantee that our chosen update semantics hold, tuples in A - B

are given timestamps of zero. Hence, at a second level, each tuple in

S' and T' will have a newer timestamp than its corresponding tuple in W.

In our example the identifier of all of the five Eric tuples from

figure 3 will be identical. Since the timestamp of the tuple in W is

treated as being older than that of the tuple in T', only Eric's tuple

from S' will be contained in W'.

A similar method is proposed in [KATZ82], to solve this problem.

2- A MECHANISM

Given these modifications to S, T and the DIFFERENCE operator, an

HR of the form W - (R UNION S) - T no longer has its original conceptual

simplicity. Moreover, support for HR's becomes considerably more com

plex than simply implementing UNION and - as valid operators in a DBMS.

Consequently, we have designed a mechanism based on differential file

techniques which builds on the above developments. The goal is to pro

vide a single-pass algorithm with proper semantics that will support

arbitrary cascading of HR's. The next two sections describe our data

structure and algorithm in detail.

- 6 -

3.-1* The Differential Relation

Each hypothetical relation W, built on top of a real or hypotheti

cal relation B, has an associated differential file D, which contains

all columns from B plus plus five additional fields. For example, the

differential relation D for the base relation R from Section 2 is shown

in figure 4» "Name" and "salary" are the attributes from R. The fields

"mindate" and "maxdate" are both timestamps. "Mindate" is exactly the

timestamp as defined above, while "maxdate" is another timestamp to be

explained in section 4.2. The fields "level" and "tupnum" are used to

identify the tuple which this tuple replaces or causes deletion of. Each

hypothetical relation is assigned a level number as indicated in figure

5. All real relations are at level zero, and an HR built from a real

relation is assigned a level of one. Then an HR built on top of a level

one HR is given a level of two. Here the column "level" identifies the

level number of a particular tuple, while the column "tupnum" is a

unique identifier at that level. Together "tupnum" and "level" comprise

the unique identifier, TNAME, of a tuple. Values for "tupnum" are just

a sequentially allocated integers. The last field in D, "type," marks

what form of update the tuple represents; thus, it has three values,

APPEND, REPLACE, and DELETE.

The following examples will illustrate the use of these extra

name c12

salary 14
mindate 14
maxdate 14
tupnum 14

level i1

type 11

Figure 4«

- 7 -

level 3

level 2

level 1

level 0 [8]

[W]
/ \

[W]
/ \
/ [D]

Figure 5»

fields. A precise algorithm is presented in Section 3.2,

Suppose the relation R has the following data:

iname {salary|

fred { 4000
sally { 6000

i—

tupnum of this tuple is 0
tupnum of this tuple is 1

Figure 6.

Initially W is identical to R, and D is empty.

Running the following QUEL command:

append to W (name » "nancy", salary = 5000)

would cause a single tuple to be inserted into D as follows:

name isalary{mindate {maxdate {tupnum {level [type

nancy { 5000| 30 i **! 0| 1{APPEND

Figure 7.

The 30 stored in "mindate" is simply the current timestamp, and the

"type" is clearly APPEND. Since there is no corresponding tuple at

level 0, which the tuple replaces, the fields "level" and "tupnum" are

- 8 -

set to identify the tuple itself (i.e. "level" = 1, "tupnum" = 0)

Suppose we now change the salary of Sally as follows:

range of w is W

replace w (salary = 8000) where w.name = "sally"

After this update, D looks like:

name {salary{mindate {maxdate {tupnum {level {type

nancy { 5000{ 30{ **{ 0{ 1{APPEND
sally { 8000| 40{ **{ 1{ 0{REPLACE

Figure 8.

"Mindate" is 40, the current timestamp. The tuple which we are replac

ing in R has an identifier of (level = 0, tupnum = 1) (see figure 6).

Suppose we delete the tuple just replaced:

delete w where w.name = "sally"

The resulting form of D is:

{name {salary{mindate {maxdate {tupnum [level {type

{nancy { 5000{ 30{ **{ 0{ 1{APPEND
{sally [8000| 40{ **| 1{ 0{REPLACE
{ i { 50{ **{ 1| OJDELETE

Figure 9»

Since this operation is a delete and "name" and "salary" are no longer

important, they are set to null. "Tupnum" and "level" are the same as

in in figure 8, since they refer to the same tuple.

Suppose we now replace the tuple appended above; eg:

replace w (name = "billy") where w.name = "nancy"

The resulting form of D is:

- 9 -

name isalary{mindate {maxdate {tupnum {level {type

nancy |
sally {

5000

8000

0

i
i
i
i
i
i

billy { 5000{

301
401
501
601

**j

**!

1{APPEND
0|REPLACE
0{DELETE
1{REPLACE

Figure 10.

"Tupnum" and "level" identify the original "nancy" tuple (see figure 7

above). At this point, R is unchanged, and W looks like:

|name {salary!
i 1

{fred | 4000{
jbilly { 5000j

unchanged

billy replacing nancy

3.2. The Algorithm

There are two parts to the algorithm for supporting hypothetical

relations: accessing an HR, and updating an HR.

3,»2.\L* Accessing Hypothetical Relations

The algorithm for deriving a level N hypothetical relation W from a

base relation R and a collection of differential relations D1, •••, DN

is a one pass algorithm which starts with the highest level differential

relation and proceeds by examining each tuple, passing through each

lower level, and finally passing through the level 0 base relation.

Figure 11 shows this processing order more clearly. MaxLevel is the

level N of the relation H.

An auxiliary data structure, which will be called "seen-ids," is

maintained during the execution of this algorithm. This data structure

has one associated update routine, "see(level, tupnum)", and a boolean

retrieval function, "seen(level, tupnum)". The routine see(level,

- 10 -

FOR physlevel := MaxLevel DOWN TO 0 DO
BEGIN

WHILE (there are tuples at level physlevel) DO
BEGIN

tuple := get-next-tuple(physlevel);

END

examine-and-process-tuple(tuple, physlevel);

END.

Figure 11•

tupnum) inserts a TNAME into the data structure if it has not been seen

before, while seen(level, tupnum) returns the value TRUE if <level, tup-

num> is in seen-ids, FALSE otherwise.

The examine-and-process-tuple routine takes one or both of the fol

lowing actions: it can "accept" the tuple for inclusion in H and it can

call the routine "see" to place the identifier in "seen-ids". The

choice of actions is dictated by Table 1•

actionaction

jlevelO Inewest seen itype [accept samelevel see

lyes
no [[yes

no

no

no

iyes

{yes
{no {no
{no [yes {yes no

{no {yes {no [DELETE Ino yes no

{no [yes {no [REPLACE[yes yes no

{no [yes jno [APPEND [yes yes no

{no {yes jno [DELETE [no no yes

{no {yes {no [REPLACE[yes no iyes

Table 1, Processing criteria for HR's.

In applying table 1, to a particular tuple t, "levelO" is a boolean con

dition which is "yes" if physlevel from figure 11, is zero, "no" other

wise. A tuple t at physlevel N is "newest" if (as in Section 2.4) there

is no tuple tb at level N such that

- 11 -

(1) (t.level = tb.level and t.tupnum = tb.tupnum)
and

(2) ta.mindate < tb.mindate.

A tuple t has been "seen" when the pair <t.level, t.tupnum> has already

been entered into "seen-ids". Fast tests for "newest" and "seen" are

presented in Sections 4.2 and 4.3- The "type" of tuple t is t.type.

"Samelevel" is a boolean field to indicate if physlevel is the same as

t.level. The examining and processing of a tuple is shown in figure 12.

To demonstrate this processing we will generate W from D and R in

figures 6-10. The starting configuration is shown in figure 13. Pro

cessing starts with MaxLevel = 1 and physlevel - 1 in the differential

relation D; hence, for all of this level, levelO will be false. Tuple

(1) is not "newest", since tuple (4) has the same identifier, and a

higher mindate. Since levelO is false, the tuple corresponds to line

(3) of table 1, and the tuple is neither "accepted" nor "seen."

Tuple (2) is not "newest" either, because tuple (3) has the same

identifier, and a higher mindate, and so it also corresponds to line (3)

of table 1, and is neither "accepted" nor "seen."

Tuple (3) is "newest," because the only other tuple at this

physlevel with the same identifier, tuple (2) has a smaller mindate. It

has not been "seen," since seen-ids is empty and type is DELETE. We now

determine "samelevel" by comparing the level field with physlevel. Both

are 1, so "samelevel" is true and line (5) is applied. Hence, the tuple

is neither "accepted" nor "seen".

Tuple (4) is also "newest," has not been "seen," and type is

REPLACE. Comparing level and physlevel, we find "samelevel" is false,

since the level field is 0, and physlevel is still 1. hence, (9) is the

- 12 -

examine-and-process-tuple(t, physlevel)
BEGIN

levelO

newest

seen

type
samelevel

BOOLEAN;
BOOLEAN;
BOOLEAN;

(APPEND, REPLACE, DELETE);
BOOLEAN;

levelO := (physlevel = 0);

IF levelO then

BEGIN

newest := NULL;

seen := seen(t.level, t.tupnum);

type := NULL;

samelevel := TRUE;

END ELSE

BEGIN

newest := is_newest(t.mindate, t.level, t.tupnum);

seen := seen(t.level, t.tupnum);

type := t.type;

samelevel := (t.level = physlevel);
END;

IF table-accept(levelO, newest, seen, type) THEN
accept-tuple(t);

IF table-see(levelO, newest, seen, type, samelevel) THEN
see(t.level, t.tupnum);

END;

Figure 12, processing a tuple.

- 13 -

name [salary[mindate [maxdate [tupnum [level [type

nancy [5000|
sally | 8000|

I 0|

billy [5000[

R

name {salaryj

,fred { 4000|
Isally { 60001

seen-ids = {(

Tuples "accepted"

name {salary{

301
401
501
60{

**j

tupnum of this tuple is 0
tupnum of this tuple is 1

1{APPEND
0{REPLACE
0|DELETE
1{REPLACE

Figure 13, Initial structures for processing W.

correct line in table 1, and the tuple is both "seen" and "accepted"

At this point, W and seen-ids look like:

name {salary

billy { 5000

seen-ids » {<0, 1>)

Physlevel now changes to 0, "levelO" becomes true, and we start to

scan the base relation. Only lines (1) and (2) of table 1 are relevant

differing in the value of "seen". To check whether a tuple has been

"seen," at level 0, we look for the pair <level, location> in seen-ids.

For tuple (5) this pair is <0, 0> (see figure 6) which is not in seen-

ids. Hence, line (2) of table 1 is applied and we "accept" the tuple.

The pair <level, location> for tuple (6) is <0, 1>, which is in seen-

ids. The corresponding line is (1), so the tuple is not "accepted," and

- 14 -

is not "seen." We have reached the end of our scan, and have generated

the relation W as follows.

name {salary

3*2.£. Updating Hypothetical Relations

All updates to an HR of level N require appending tuples to the

differential relation DN at level N. The contents of the different

fields in the appended tuple are specified as follows:

(A) For APPENDS and REPLACES, The data columns of DN, are filled

with new data. For DELETES, the fields are NULL.

(B) Mindate, is assigned the current timestamp. (Maxdate is dis

cussed in Section 4*2.)

(C) For APPENDS, tupnum and level are set to self-identify the

inserted tuple. For DELETES and REPLACES tupnum and level identify the

target tuple being deleted or replaced.

(D) Type is the type of the update, APPEND, DELETE or REPLACE.

4. IMPLEMENTATION

An implementation of HR's was done within the INGRES DBMS [ST0N76].

In order to create an HR, the following addition to QUEL was made:

DEFINE HYPREL newrel ON baserel

Once an HR has been defined, it can be updated and accessed just like an

ordinary relation. Since, "baserel" can be either a regular relation,

or an HR, an unlimited number of levels is allowed.

- 15 -

4..J_. Modifications

Within the INGRES access methods, a relation is accessed first by a

call to "find" which sets the range for a scan of tuples, and then "get"

is called repeatedly to access each tuple in this range. It is within

"get" that most of the HR algorithm is implemented. "Get" returns

tuples from each differential relation, and finally the tuples from the

base relation. The routines which perform REPLACES, DELETES, and

APPENDS are also modified to initialize and append the appropriate

tuples to the differential relation.

£»2» Newest

If tuples were appended to a differential relation at one end, and

the relation were scanned from the other direction, it would be possible

to tell when a tuple was the "newest" for a particular identifier by the

fact that it was the first one encountered. Unfortunately, INGRES

appends tuples and scans relations in the same direction. In order to

be able to tell from a single pass whether a tuple is "newest", an addi

tional timestamp field "maxdate" was added. When a tuple is appended,

maxdate is set to infinity. When the tuple is REPLACED or DELETED at

the same level, maxdate is updated. Thus a tuple is the "newest" if the

time of the current scan is between mindate and maxdate.

^•3,. Seen-ids

The data structure, seen-ids is stored in a series of main memory

bit-maps, one for each level. Thus to see a tuple with tupnum Y at

level L, bit Y in bitmap L is set. The boolean function "seen(L, Y)"

tests whether the corresponding bit is set.

- 16 -

.4*4• Optimization

If the base relation is organized as either a random hash structure

or an ISAM structure, then the differential relations Can be given a

similar structure and a sequential scan of the differential relation

avoided. To accomplish this, a correspondence must be established

between the pages in a differential relation and those in the base rela

tion. If a tuple would be placed on a certain page of the base rela

tion, then the tuple in the hypothetical relation must be placed on the

corresponding page in the differential relation.

To access a tuple in such a structured HR, the scan within each

relation is restricted to those pages corresponding to the key of the

query. For example, suppose the relation R(name, salary) is stored

hashed on name and the differential relation D is stored likewise.

Then, the query

range of w is W
retrieve (w.all) where w.name = "billy"

only requires accessing the appropriate hash bucket in both R and D.

There is one complication with this performance enhancement, which

stems from the fact that a REPLACE command can change the hash key, and

hence the page location of a tuple in a structured relation. For exam

ple, consider the following contents of R and D:

hashbucket

1

2

R

name {salary

suzy

tandy
J 3000
{ 25

name isalary{other

Figure 14, R and D hashed on name.

Then, suppose we do the following REPLACE:

- 17 -

range of w is W
replace w (name = "tandy") where w.name = "suzy"

As a result, R and D would look like

R D

[name [salary[[name [salary[type [*j
hashbucket [—[
1 jsuzy ! 3000J
2 {tandy j 251

1 1
1 1

1
1

1 1

tandy [3000[REPLACE[1

Figure 15, problematic hashed replace,

and the query:

retrieve (w.all) where w.name s "suzy"

would generate the result:

[name [salary[
i 1

1suzy [30001
! j

Despite the fact that we changed suzy's name, she appears in the result

because the algorithm indicates searching hashbucket 1 of D, where

there are no tuples, then searching hashbucket 1 of R, where susy's

tuple appears. This tuple in hashbucket 1 of R is "accepted", because

no tuples have been "seen." Unfortunately, the algorithm never searches

hashbucket 0 of D to discover the correct tuple.

This problem can be solved by the addition of a fourth type of dif

ferential tuple, FORWARD. An additional FORWARD tuple is appended in

hashed and ISAM differential relations whenever a REPLACE is done which

inserts a tuple in a different hashbucket (or ISAM data page) than that

of the target tuple. With this correction, D of figure 15 would look

like:

- 18 -

hashbucket

1

2

name [salary|mindate[maxdate [tupnum[level[type

I 0{ 100{INFINITY{ 0{ 0[FORWARD]
tandy { 3000{ 100{INFINITY| 0[0|REPLACE!

Figure 16.

The processing of the query would then start in hashbucket 1 of D in

figure 16, where a FORWARD tuple would be found, and the ordered pair

<0, 0> would be added to seen-ids. Next, hashbucket 1 of R would be

scanned, but since <0, 0> is in seen-ids, Suzy's tuple, tuple 0 of R,

would not be accepted.

4,-5,. Functionality

With this refinement all QUEL commands have been made operational

on HRs for any INGRES storage structure. Such HR's could be used as the

basis for a crash recovery scheme as suggested in [ST0N81J with minor

modifications to the our algorithms. Moreover, "snap-shots" of the state

of an HR at any point in the past can be generated by setting the scan

time to a time prior to the current time. Minor changes to the QUEL

syntax would allow a user to run retrieval commands against an HR as of

some previous point in time.

If at any time one wanted to make the changes in an HR permanent,

he can use a series of QUEL statements to update the base relation using

the information in the differential relations. Alternately, a simple

utility could be constructed to perform the same function.

5.. PERFORMANCE MEASUREMENT AND ANALYSIS

Our performance analysis is aimed at comparing the performance of

standard QUEL commands on real relations versus the same ones on HRs and

- 19 -

our tests were run on a single user VAX-11/780. The following four com

mands are used to measure update performance for a real parts relation

parts500(pnum, pname, pweight, pcolor) of 5000 tuples stores as a heap.

Baseparts will serve both as a real relation and an HR.

range of b is baseparts
range of p is parts5000

(a) append to baseparts (p.all)

(b) delete b

(c) replace b (weight = b.weight + 1000)

(d) replace b (pnum - b.pnum * 1000)

Table 2 indicates the results of running commands a) - c) first for a

real baseparts relation of 5000 tuples stored as a heap and then for

baseparts as an HR. In the latter case it consists of an empty dif

ferential relation, D and a 5000 tuple real relation, R stored as a

heap. Command d) was not run in this situation because it should pro

duce comparable results to command c) for unstructured relations.

Notice that real and hypothetical relations perform comparably.

To test retrieval performance we ran query (e) for four different

compositions of baseparts, including

range of b is baseparts
(e) retrieve (m = max(b.weight))

a 10 tuple real relation, a 10000 tuple real relation, a 10 tuple HR and

a 10000 tuple HR. The hypothetical relations had sizes of differential

- 20 -

query operation relation-type oputime

(a)
(a)
(b)
(b)
(o)
(c)

append
append
delete

delete

replace
replace

regular

hypothetical
regular

hypothetical
regular

hypothetical

24.47 sees

26.57 sees
24-38 sees

19*78 sees

26.03 sees
25.03 sees

elapsed

32 sees

36 sees
26 sees

25 sees

28 sees

35 sees

Table 2, updates on 5000 tuples unstructured.

query operation relation-type cputime

(a) append regular 74.68 sees
(a) append hypothetical 64.82 sees
(b) delete regular 20.15 sees
(b) delete hypothetical 21.32 sees
(c) replace regular 42.32 sees
(c) replace hypothetical 40.97 sees
(d) replace regular 91.33 sees
(d) replace hypothetical 89.63 sees

elapsed

268 sees

226 sees

31 sees

37 sees

47 sees

59 sees

345 sees
422 sees

Table 3, updates on 5000 tuples, hashed on salary.

relations, D, varying from 0 to 200# of the size of the R. Tables 4 and

5 show the results of these tests.

relation

type
size of D cputime elapsed

time

regular

hypothetical
hypothetical
hypothetical

0%
50%
1002

0.16 sees

0.20 sees

0.26 sees

0.26 sees

1 sec

1 sec

1 sec

1 sec

Table 4, Query (e) run with 10 tuple base.

- 21 -

relation size of D cputime elapsed

type time

regular — 11.88 sees 13 sees

hypothetical o% 13*86 sees 15 sees

hypothetical 10% 14*40 sees 15 sees

hypothetical 25* 15.22 sees 16 sees

hypothetical 50% 16.73 sees 18 sees

hypothetical 100% 18.60 sees 21 sees

hypothetical 200# 21.58 sees 30 sees

Table 5, Query (e) run with 10000 tuple base.

Query (e) was also run against a second level HR based on a first

level HR with 50$ of its tuples replaced. The results of this test are

in table 6.

Lastly, we ran query (f) against a baseparts relation hashed on

pnum.

range of p is parts5000
range of h is RELATION

(f) retrieve (p.weight, h.weight) where p.pnum = h.pnum

In this case table 7 compares performance where RELATION is either a

5000 tuple real relation hashed on pnum, or a 5000 tuple HR hashed on

hypothetical
relation level

1

2

2

2

2

2

size of D cputime elapsed
time

50 16.73 sees 18 sees

0% 17.35 sees 18 sees

10% 17.73 sees 19 sees

25% 18.52 sees 19 sees

50% 18.78 sees 21 sees

100% 20.75 sees 24 sees

Table 6, Query (e) 10000 tuples, 2 levels.

- 22 -

pnum, with 50% of its tuples replaced. Parts5000 is an unstructured

Query (f)

relation type cputime elapsed

hashparts regular 131 sees 5.85 minutes
hhashparts hypothetical 185 sees 9.88 minutes

Table 7, hashed access results.

5000 tuple relation.

Two comments are appropriate about the numbers in Table 7. First,

notice that INGRES is I/O bound in both tests and elapsed time substan

tially exceeds CPU time. The reasons include the particular query pro

cessing tactic chosen for this query and the fact that a substantial

amount of data is printed on the output device. The second point is

that joins on hypothetical relations are less than a factor of two

slower than those on real relations.

Thus we can see that the performance of INGRES using hypothetical

relations in many types of query is never worse than a factor of its

level number and usually much better. We assume that for more complex

queries involving an HR, the same general result would hold.

6_. CONCLUSIONS

We have described a mechanism for supporting HR's which is shown

to overcome the problems of previous proposals. We have described an

implementation of HR's and provided performance data to show that per

formance of HR's is in general no worse than a factor of one per level

of HR. Moreover, in most cases, performance is considerably better than

- 23 -

this.

ACKNOWLEDGEMENT

This research was supported by the Advanced Research Project Agency

under contract #N00039-C-0235•

REFERENCES

[AGRA82] Agrawal, R. and DeWitt, D. J., "Updating Hypothetical Data

Bases," Unpublished working paper.

[KATZ82J Katz, R. and Lehman, T., "Storage Structures for Versions and

Alternatives," University of Wisconsin - Madison, Computer

Sciences Technical Report #479, July 1982.

[SEVR76] Severance, D. and Lohman, G., "Differential Files: Their

Application to the Maintenance of Large Databases," TODS, June

1976.

[STON75] Stonebraker, M., "Implementation of Integrity Constraints and

Views by Query Modification," Proc. 1975 ACM-SIGMOD Conference

on Management of Data, San Jose, Ca., June 1975*

[ST0N76] Stonebraker, M. et. al., "The Design and Implementation of

INGRES," TODS 2, 3, September 1976.

[ST0N80] Stonebraker, M. and Keller, K., "Embedding Expert Knowledge

and Hypothetical Data Bases Into a Data Base System," Proc.

1980 ACM-SIGMOD Conference on Management of Data, Santa Mon

ica, Ca., May 1980

[ST0N81] Stonebraker, M., "Hypothetical Data Bases as Views," Proc.

1981 ACM-SIGMOD Conference on Management of Data, Ann Arbor,

Mich., June 1982.

- 24 -

	Copyright notice 1983
	ERL-83-2

