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ABSTRACT

A method for extracting BJT small-signal parameters from s-
parameter measurements is described. Unlike other extraction
procedures, this method does require the use of nonlinear numeri-
cal methods. Thus the problems of nonconvergence, convergence
at local minima, and slow run times, intrinsic to nonlinear optimi-
zation programs, are avoided.

The method described here consists of two steps. First, linear
least-squares analysis is used to fit the data to network function
equations. The resulting fitting coefficients are then solved for the
element values of the model.

The method has been implemented for a modified version of
the EM3 BJT small-signal model, in a program named EHSS
(Extracting Bjt Small-signal parameters from S-parameter meas-
urements). The small-signal parameters derived by this program
accurately simulate the device data for frequencies below fr/ 5.
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1. Introduction

Computer-aided circuit sirnulatioh programs have proven to be an invalu-
able tool for evaluating circuit designs. Most, if not all, circuit design problems
can be diagnosed and corrected before the circuit is actually fabricated. When
fabricated circuits don’t perform as expected, it is usually because inadequate

models or inaccurate model parameters are used in the simulation.

In the case of small-signal analysis, the problem of finding an adequate
model and accurate model parameters is equivalent to that of finding a circuit
with element values which accurately simulates the n-port characterization of
the device. Specifically, this paper addresses itself to the problem of extracting
BJT small-signal parameters from 2-port S-parameter measurements in the
cornmon-emitter configuration. To minimize the effect of parasitics, the device

data was taken on chip.

1.1. Other Methods

One straightforward approach to the problem consists of solving a system of
nonlinear equations in terms of the small-signal parameters. This avenue has
been independently explored by Ebrahim Khalily [1] and the author. 2-port dev-
ice measurements taken at a single frequency point provide the known quanti-
ties. Equations for these quantities, namely the real and imaginary parts of
Y1 Y1z Y21 and yge (Khalily's approach), sy), 51, S;; and sg (the author's
approach), are solved for the small-signal parameters. This necessitates the use

of a program which solves nonlinear simultaneous equations.

The problems associated with such programs are well known. The most
severe of these is that they do not always converge. There are two reasons this
can happen. Programs of this type require the user to make a guess at the solu-

tion. If the initial guess is not sufficiently close to a root,t the program will
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diverge, or go to:a local minimum. Generally speaking, the more equations
there are, the better the initial guess must be. Alternatively, it may be that the
system has no solution. As an imperfect model is being used to fit imperfect

data, this can be a:serious difficulty.

When the program is implemented as described above, it almost always
diverges. Khalily found that the incidence of divergence could be substantially
reduced by treating re and rc as known guantities. Although this normally
allows the program to converge within 107% of th= data, the derived parameters
typically do not simulate the data very well at frequencies far from the one used
in the program. Khalily postulated that part o} the problem might lie in the
uncertainty incurred in transforming the S-pararneters into Y-parameters. This
is undoubtedly true. However, the results the author obtained using S-

parameters directly yielded no better results.

The crux-of the problem.is this. The program iterates until a solution is
reached that gives less than a 10% error in the Y-parameters. However, this is
not -equivalent to finding the small-signal parameters to within a 10% error. As
the -sensitivities of the S-parameters with respect to the various small-signal
parameters vary greatly with frequency, the derived model cannot be safely

-extrapolated to other frequencies.

The customary approach to small-signal parameter extraction is to utilize a
‘nonlinear fitting program. These programs attempt to find the parameters
which yield a least-squares fit to the data. This is by definition an optimal set of

parameters.

Still, these programs are not without their shortcomings. As with the above
‘method, the user is required to make an initial estimate of the solution. If this
-estimate is not sufficiently close to the global minimum, the program may

diverge or converge at a local minimum. In addition, the equations of interest

cry
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are quite complex. Run times can therefore be long, even on mainframe com-

puters.

1.2. Overview of the Present Method

The approach taken here can best be summarized by a brief outline.

1) Choose a small signal model.

Example

¥ %rn 'J]:Cn Im¥

2) Choose a two-port representation. ' Solve the admittance matrix of the

model for the appropriate network model equations. Network model
equations are network function equations in terms of the model parame-

ters.

Example

[Cu Tﬂ’] §=ImTn

Ya1 =
Fb To{Cy + c,,)]s +T.+ Ty

ey
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/
3) Fit network data equations to frequency response measurements of the
same two-port. The term network data equations is used to to describe
the equations which are fitted to the data. These have the same form as

network function equations.

Example
s
Qg + @18 (1 _Z—ﬁ
H(s)=bo+bs= o s
s (- 2y
Ea
4) The coefficients of the equations from steps 2) and 3) are matched. Thz

resulting system of equations is then solved fcr the element values.

5) Use SPICE, or some other program, to simulate S-parameter data frori
the derived model. If the agreement with measurement is not satisfac-

tory, reevaluate the model and/or the method used for fitting the data.

The above method does not offer any advantages over nonlinear optimiza-
* tion in the general case. But for several important models, the above method
can yield an extraction program which is much faster than a nonlinear optimiza-

tion program. The remaining sections cover step by step the procedure outlined

above.

vy
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‘To avoid confusing the network model equations with the network data

:equations, the following conventions are used.

This:convention is used to refer to the network model equations.

_aG) +a(G)s + - + an(G)s™
Gls) = bo(G) +b,(G)s + -+ - + b,(G)s™

The fully expanded network model equations can be large and cumbersome.

Thus, it is conveniant to have a concise way of referring to these expressions.

"The network data equations use a different convention.

: S 1 _ S 1... - s a
g(s) =g [1 B zl(g) J[l 22(9) § [1 zk(g) sP0(g)
° S r1__8S 3...71__S=S
L ) R - E R Sag¥
where

zp0(g) is an integer which accounts for poles and zeros at s = 0.
|z)| < |2zz| =|2g] -+ and

|P1l = |pal = |ps] - - -

‘The above conventions apply only to equations. The term S-parameters (as

opposed to s-parameters) will always be used in the text.

SVYy



2. Small-Signal Model

The choice of which small-signal model to use is crucial to the success of
the extraction procedure. This section aims to justify the selection of the

modified EM3 small-signal model.

2.1. Criterion and Guidelines for Maodel Selection

The only firm criterion for selecting a model is that it accurately simulate
the S-parameters. Beyond that, there are only guidelines. Still, these guidelines

are well worth mentioning. They are as follows:
(1) Use the simplest model that will do the job.

As we go to higher and higher frequencies, the modeling problem becomes
increasingly complex. Including high-frequency effects in a relatively
low-frequency ac simulation will only increase run time. The situation for
transient analysis is not so clear-cut. Ikawa et al.[2] showed that small-
signal S-parameters could be used to simulate large-signal switching tran-
sients. This was accomplished by integrating the Fourier transforms of
the S-paramete‘rs over the quasi-static operating points. They found that
input rise times of 7, required S-parameter data up to fp~ .35/ T,.. f3
is the system 3-dB frequency. This suggests that, for simulations with 1ns

rise times, our model need only be accurate up to 350 MHz.
(2) Bach element in the model should have a basis in device physics.

At first this may seem like an unnecessary constraint. Any model, no
matter how unorthodox, which accurately simulates the S-parameters is a
good model. That is, it meets the criterion for a good model. However, a
model with nonphysical elements is probably not going to be useful for
more than a handful of devices. Also, the extracted values of nonphysical

elements might fluctuate unpredictably over different operating points.

Ivp
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This would render the model useless for transient analysis.
(3) Every element of a model should be extractable.

Extractable means to be determinable by measurement. There are two
conditions for extractability. The first requires that a network model
equation be sufficiently sensitive to changes in the element value. The
second requires that the model parameters not be redundant. These con-

ditions can be restated mathematically.

a) A model element is sufficiently sensitive if for at least one S-parameter

in the frequency range of interest,

Hy, op Y

where,
p; is a model element.

H

4 is the network model equation of the S-parameter sy

&, is the relative error associated with the measurement of s;

If this condition is not met, the determination of the parame-

ter value will be overly sensitive to small changes in the data.
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b) A model element is redundant if, for all S-parameters in the frequency

range of interest, there exists a vector function a(p) such that,

H(e) - a®)
H,,(P) s

and

rank a(p) < rankp

where,

Hy

3 is the network model equation of the S-parameter s;

H ',j is the network model equation of s; reparameterized.

Es, is the relative error associated with the measurement of s;

If this condition is not met:an optimal set of parameters can still be
found, but the solution will not be unique. That is to say, we can

achieve the same modeling accuracy with fewer parameters.
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2.2. Modified EM3 model

The original intent of this project was to find a simple method for extracting

the small-signal parameters found in the EM3 small-signal model [3].
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This model was chosen because it is well-documented and frequently used. It is
also fairly simple. However, in the course of this project, it was found that this
mndel could not properly simulate phase even at medium-range frequencies.
While introducing a phase delay in g,, could account for the discrepancy in beta,
it could not explain the phase problem with input impedance. In addition, at
high frequencies, the magnitude of the input impedance was significantly lower
than that predicted by the model. All this suggested that a new capacitor, ¢,, be

introduced to the model.

Cx
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This is slightly more complicated than the EM3 model. However, because
the number of nodes has not been increased, it is expected that the impact on

simulation run times will be small.

The physical justification for this capacitance is similar to that used for c,.
The emitter-base junction capacitance c;, is distributed across 7,. A first-order
approximation to this distributed capacitance is the so-called 7 network. More-
over, T, is basically a pinch resistor formed by the emitter diffusion into the
base region. But, the largest contribution to cj, is from the sidewall region of
the base-emitter junction. Since this sidewall capacitance is charged through
only a small portion of r,,, much of ¢;; should probably be associated with c;. It
should be noted that the value for this capacitor was found to be an order of
magnitude larger than would be expected if it were due only to parasitic bonding

capacitances.

All of the model parameters are safficiently insensitive to small-changes in
the data except for r,. This element is effectively shorted out by 7, in the S-
parameter measurement set-up. There are also two sets of redundant parame-

ters. The first set can be reparameterized as,

Im Tn= B

Im Te = %o

If gyn. 74 and 7, are varied such that 8, and ¥, are constant, very little change
will be observed in the S-parameters. For typical values, the sensitivity of the
S-parameters to this reparameterization is less than .3% . The other set of

redundant parameters can be reparameterized as,

Jgyp
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Ceg t+ (gm'rc + l)ctc =C

where,
C¢e is the total emitter-base capacitance.

C¢c is the total collector-base capacitance.

gm and cg are determined elsewhere. That leaves ¢;, and r, as the redundant
parameters. The upshot is that it is difficult to tell the difference between ¢,
and Miller-effect on ¢, through 7. Actually, when we put typical values into
SPICE, we find that s3; is ableito distinguish ¢, from 7, at very high frequencies.
But at these frequencies, the impedance seen looking into the collector is less
than an order of magnitude larger than 7,. It is unrealistic to assume we can
measure 7, using sz without taking into account the distribution of cg, and ¢4

across 7;. ‘This has not been done in the modified EM3 model.

To circumvent the redundancy problem, the program as implemented here
requires the user to supply values for 7, and r,. The choice between 7, and ¢
is clear, but why not input the collector current and calculate g,, from

Om = ?f; ? If we account for Gummel-Poon low and high current effects,

_ 9%
Ym = T

where 5a<1

Unless one is very careful in accounting for temperature and Gummel-Poon

effects, the error associated with L--can be as large or larger than 7.
m

LS7v
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The program determines the quantity,

1
00 = —+T,
J g T e

So an error in —1——which is comparable to r; will have a catastrophic effect on
m

the determination of r,. On the other hand, a small error in the value given for
7, has little effect on g,,. If the user decides he wouid rather specify g,, and

obtain 7, the change can be easily made.
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3. Network Model Equations

The reasons for using S-parameters rather than H-parameters are
explained in this section. This section also shows how network model equations
can be derived from admittance matrices. Finally, the Q-parameters are

defined.

3.1. Sparameters vs. H-parameters

Most optimization procedures use H-parameters. These are found from the

S-parameters using the following equations.

2512

_ (1 +51) (1 4 5g5) — 51259 _
B7 (1—s15) (1 +s2p) + 51252

R, =
U7 (1 -5y (1 +822) + 59257

h

—2521
(1 —5y1) (1 + 5g2) + 51252,

B = (1 —5y3) (1 —Sg3) — 51282,
20 =51 (1 + 5g2) + 51259

hay =

The reason most often given for converting the data is that people have a
better intuitive grasp of H-parameters. While in theory one should be able to
use any two-port representation he chooses, there are some good reasons for
not using H-parameters. First, a computer is extracting the parameters, not a
person. A least-squares optimization program can be implemented as easily
with S-parameters as with H-parameters. Second, the application of least-
squares analysis is valid only if the errors in the data are mutually independent.
Yet, the H-parameters all have the same denominator. Thus, their errors are
certainly correlated. Third, the relative error in s;; is usually larger than that
for the other S-parameters. This is because its magnitude is small. Converting
to H-parameters causes this larger error to be incorporated in all of the data,

instead of just a part of it. Finally, the data should be weighted. The precision
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of the data points is a function of magnitude, phase, and frequency. A weighting
scheme based on the specifications of the network analyzer used to measure the
S-parameters is fairly straightforward to implement. It is more difficult to find

an appropriate weighting scheme for H-parameters.

For these reasons, the decision was made to work with S-parameters.
Regrettably, a scheme using S-parameters directly was not found. There is a
two-port representation, however, that makes the problem tractable while avoid-
ing some of the problems associated with H-parameters. These have been called

Q-parameters.

3.2. Deriving Network Model Equations from Admittance Matrices

The network model equations for the S-parameters can be defined for the

two-port
I, f_i
“ntyr - +
V:u v % .V-.‘Ss
"E; P A Zo Ze
Su = Dozl (3.1a)

i+ 2,711 |v,p=0

Vz —_— zol'a
Spy = ——— 2= 3.1b
2 P‘-!-zoll vgp =0 ( )

Vo— 2,12
S = e—— 3.10
2 Vz‘l‘Zolg val=° ( )




Vi—-2,1,

Sz = Va+ 2,15

(3.1d)

Vgy =0

Substituting 7,= V;y/2, — Vi/2, and V;; =V, +2,], into (3.1a) gives

(8.2a). Also, V33 = 0 implies Vp = —2, J;. Substituting this into (3.1b) gives (3.2b).

2V, '
= -1 3.2
Sn Va1 ] Vyp =0 (3.22)
27,
So = 3.2b
21 Vsl v = o ( )
Similarly,
Spp = |22 1] (3.2¢)
22 - Vsz ] v,1 = 0 )
Sa = eV (3.2d)
Va2 Vs =0

Thus, the network model equations for the S-parameters may be derived
from an admittance matrix using Cramer’'s rule. This has been done for the

modified EM3 model. The results are in Appendix A.

3.3. Qparameters

The Q-parameters are defined as follows:

N
@ = T, Le=° (3.3a)
@ = = (3.3b)
Iy Juye=0
V.
@2 = Y | (3.3¢)



Q= 7| (3.3d)

¢, is the impedance seen at port 1 when port 2 is terminated by 2,. @z, is
similar to hp; with the output terminated in 2, rather than short-circuited.

Similar interpretations apply to @,z and &y,.

The Q-parameters can be expressed in terms of the S-parameters.

_ 1+Su
Qll—za I—Sll (3'43)

_ Sa
le" Sll—l (3.4b)

Qz=2, 5, (3.4c)

@12= Sm1 (3.4d)

Although most of the arguments made against H-parameters apply to Q-
parameters as well, the problems are not as severe with Q-parameters. In par-
ticular, the variances of the Q-paraﬁleters will be smaller than those for the H-
parameters, and the S, problem is avoided. The advantage of Q-parameters
over S-parameters is that, in general, the coefficients in the network model
equations for Q-parameters depend on fewer device parameters than do those
for S-parameters. This leads to a higher degree of independence between the
coefficients. This is very useful in solving the system of equations obtained in

the fourth step of the method.

96 v
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3.4. Simplifying the Network Model Equations

A quick look at Appendix A should convince most people that some
simplifications are in order. There is one simplification which results in
significantly smaller equations with almost no loss in accuracy. It happens that
the parameter 7, is important only when it appears multiplied by g,,. By elim-
inating all terms in which r, appears without g,, gives us the equations found in
Appendix B. All of the above manipulations were carried out on the symbolic
algebraic manipulation program MACSYMA [4]. The use of this program is

strongly recommended to those whom may wish to explore the subject further.

LSy



-18 -

4. Fitting Polynomials to the Data

Among the easiest equations to fit are polynomials. This section describes

how polynomials can be fitted to the data.

4.1. Linear Least-Squares Analysis

There are a number of definitions for best fit. A good general purpose
definition says: "Find the values of the constants in the chosen>equation that
minimize the sum of the squared deviations of the observed values from those
predicted by the equation.”* One way of doing this is by minimizing the norm of

the error function.

o] pfptosrem an)®

Solving the system of equations given by

dlﬁszu.: 0 i=0,1,2..k
Oy

for a, gives us an optimal sel. of parameters.

The details can be found in a number of textbooks on statistical methods

(5] [8].

*Cuthbert Daniel and Fred S. Wood, Fitting Equations to Data ,(New York: Wiley, 1880), p.8.

8G Y
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4.2. Fitting Polynomials to the Data

There are two properties of BJTs which allow us to fit simple polynomials to

the data.
1) The zeros of s, and g, are negligible.

These zeros occur at frequencies beyond f7. Their location is approxi-

mately given by zg~ ch Typically, the effect these zeros have on
I

Sp; and g5 at fr/3 is about .2% in magnitude and about .3° of phase.
(Actually, the program can be made to estimate this zero and then
remove its effect from the data. However, this had an almost impercepti-

ble impact on the resuits.)

2 s s and sgp have the same poles as sg;. Also, q,;, has the same poles as

- ol . o

a2
This is true as long as there are no important parasitic inductances. The
simplest way to show this is to note that the network model equations for
S11, S12, Sz and §p; all have the same denominators. As the poles are
merely the roots of the denominators, they must have the same poles.

The same argument applies to g5, and q,;.

The first property allows fitting polynomials to ql— and -8—1— The second
21 21
s s Soo
allows fitting polynomials to 2R 22 and _9_1_1_
Sz1 Sa1 Sz 921

Example
Suppose gp, has two significant poles.

Then

1
——=ugg+ a,s + aps®

dai

64
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or
2 2 2
1 = 12 1+ wz 1+ wz
gz1 8o Py Pz
Suppose ¢, has one significant zero.
Then
921
or
iz

ing2 2
= Za s, o
g2 Bs 27

A choice must be made between fitting complex polynomials in terms of s
or real polynomials in terms of w. The program implemented here used pri-
marily the latter. It is an open question whether this is the best choice. The
decision to work with magnitudes is based on the fact that they are less sensi-
tive to parasitics and higher-order poles and zeros. If the major poles and zeros

are properly located using magnitude, the phase must fall into place.

J3g ¥
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4.3. Network Functions Selected for Fitting

The following functions were chosen because of their sensitivity to model
parameters and their relative insensitivity to perturbations in the data. The
quant';i.ties on the left-hand-side represent data. The quantities on the right-
bhand-side are polynomial functions of w. The polynomials are factored to
emphasize the coeflicients used in the next section. Once a coefficient is deter-

mined it may appear on the left-hand-side in subsequent fitting equations.

1 B o r o 1
921, - (921.)2 [1+[P1(921) } p_ej-'f_} J (#1)

gz1, is beta at low-frequencies and pyy; is an effective pole which allows for the

1+

effect of higher order poles on the magnitude of g,,. It is not used anywhere

2 o 2
= (gn,”? [1 ' [W} ] (42)

g3, is the input impedance at low-frequencies.

else.

921, 911
921

2 2
Sp1, S12 2 )
—_— =(s 1+ 7—] 4.3
o 321 ( 12‘,) [zl 312) ] ( )
§g; is already known at this point from the relation s5; = ~22 .
o 0 0 921,
qa:
Im S (PR DU SR S P (4.4)
_ _Jw 92 Pa(gz1)  Ps(ga1)
pl(??l)‘ '

This complex quantity is used to find ¢,. There are two reasons for using a com-
plex quantity here. First, p; and pg, usually occur at frequencies too high to be

determined by magnitude. Second, the primary effect of c, is on phase.

139Y



Because the data has not been weighted explicitly, it must be weighted
implicitly by selecting the the frequency range'over which the above equations
are to be fitted. The following table gives the suggested frequency ranges in
terms of the lowest available frequency, LF', and the unity gain frequency, fr.
The lowest available frequency is a function of the network analyzer used to

measure the S-parameters. These frequency ranges are determined empirically

-92.

and should be used only as a guideline.

Egn. | Frequency Range
4.1 LF frp

4.2 LF fq/3
4.3 LF fr/3
4.4 fr/10 fr/3

¢Sy
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5. Matching and Solving the Coefficients

In this section, the correspondence between the network model equations
and the network data equations is specified. An efficient methed for solving the

resulting system of equations is subsequently delineated.

5.1. Matching the Coefficients

There are two sets of coefficients. One set consists of the coefficients in the
network model equations derived in Section 3 and found in Appendix B. The
other set consists of the coefficients found by fitting the data to polynomials.
The task of matching the coefficients found in the previous two sections would
be trivial, but for one thing. The order of the polynomials in the network model
equations is sometimes larger than that of the corresponding network data
equation. That is because some of the poles and zeros predicted by the network
model equations occur at frequencies at which the model breaks down. Thus,
they cannot be found by fitting the data. We could find the roots of the network
model equations and match them with the appropriate poles or zeros, but this
results in nonlinear equations which must in turn be solved for the small-signal
parameters. Rather than resorting to nonlinear numerical methods, certain
approximations are made that result in linear equations which are easily

inverted.

The following network model coefficients can be identified with the
appropriate poles, zeros or scale factors by inspection. The symbol '::* should be

read as "corresponds to".
qu, = ag(@u) =7 + (GmTe + 1) 7y (5.1)

e, * Co(@21) = Im T (5.2)

tdv
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Siz, * @1(S12) = 22, {Cte (JmTe + )7+ Co7p) (5.3)
o) s - e T e ey a9
Approximations are made for the following matches.
P1(gz1) = Toot, [ den (@) ] (5.5a)

where,
den (@,,) is the denominator of &,,, (see Appendix B)

root, is the root with the smallest magnitude

The expanded expression for root,(den (&;;) is too complex to be useful. To a
good approximation, the effect of ¢y, 7, and 7, on this root is negligible. (Typi-

cally less than .1% .)

Thus,
root [ den (§2) ] % oot [ dem (@) s, =0,r, 07,20 ] (5.5b)
=[ ot Ctg (7o +25) 75 152
+[ (e (gm(re +2,) + 1)+ Yrpte (T +2,)]s +1

We could solve this directly using the quadratic formula, but further approxima-

tions must be made which resuit in a linear expression.

We have an equation in the form of,

VRS
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If 8% > 4a,
—b b (1- 2%
T~ b
2a
then,
Ty N~ ZpN - —
But,
- ..1_+ 1 =
Zy Zp
so a better approximation to z, is,
z
-b + .
We can rewrite this as,
-1—+ KND
z

a . .
where k = 37 is a small correction factor

From Equation (5.5b),
[ ( Cic (gm (Tc + zo) +1) + Cte )Tn + Cge (rc +zo) ]2 > 4‘[ C¢c Cte (e +zo)7'n]

This condition is satisfied as long as the dominant pole of g3, is far from the non-

dominant poles.
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So,

P_i(;al) +ip i =(Cro (gm (re + 2,) +1) + 045 )T + €y (15 +2,)  (5.5¢)

where,

- ‘(ctc (gm ("'c +2,) + 1) + Ctq )7'1t + Gy ('rc +2,)
Cec Ct (Tc +2, )Ty

Similar reasoring is used to match z,(g ;).

:21(g11) :: Toot , [num (@,,) ] (5.6a)

where,

num (@,,) is the numerator of ;,, (see Appendix B)

To a good approximation, the effect of ¢y on this root is negligible.

Thus,
oot [ num (@,,) ] ® root, [num (@n1)lc =0 ] (5.8b)
Then,
. ,
—_— = 5.6
zy(gu) * (5.6¢)

_ Ty + (gm 7 + )7y
"'ﬂ(’rc + zo)[ctc (gm Te + 1) +Cugm Tb] + 7y (T + zo)ctc + 7y Tﬂ[cp(gm Te +1) + cﬂ']

where,

= Tn('rc + zo)[ctc (girt Te + 1) + Cudm 7'b] + 7y (Tc +25)Cc + 7y Tn[cy.(gm're +1) + cn]
Ty (Te +.2,) 7 [(cz + cz)cpgm're +CpCqot c,ucz]
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Finally, the quantity from Equation (4.4) is matched.

1 1 1 1
b - 5.7
21(g21) |p2(g21) * Ps(921)J 2(Qa) 100t @2,) To0t 3(@ay) (5.78)

Now,
b2(Qz1) = 1 + L + 1

77 root,(Qa) T00t2(Qz;) = 700t ((@ey) T00ts(Qz) = T00t2(@z) To0t3(Qz21)
but,

1 > 1 1
root 1( Q) T00t3(Qz;) ' T00t5(Q2))

‘S0,

1 S W
Pi{gz1) |P2(ga) Ps(Qm)J B

b2(@zy) (5.7b)

See Appendix B for the expanded expression of bs(Qs,).

'There are now seven equations for eight unknowns. These can be solved for
-all the small-signal parameters except for c¢;. Network model coefficients were
found which were sensitive to ¢, but they were also sensitive to r,. Since the
value supplied by the user for r, might not be very accurate, a somewhat

different scheme was used to find ¢;. This is explained in the next subsection.

‘5.2. Solving for the Element Values

The equations in Subsection 5.1. have a useful characteristic. Though the
network model coefficients may be functions of several small-signal parameters,
they are generally strong functions of only a few parameters. This property

allows us to set up the equations for the small-signal parameters in a self-

L3
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converging loop. No initial estimates of the solution need be supplied by the

user. To get started, the program supplies its own guess.

Consider,

Zirg =7y + 8, (rg + L Y+ 7 (5.9a)
Im
This suggests,
Zin{jo) Ny, + Be)(r, + g—l ) +7, (5.9b)
m

If we approximate Zin(jw) with a 1 pole, 1 zero fanction, and g(jw) with a 1 pole

function, we can solve (5.9a) and (5.9b) for 9—1_+ Te.
m

Joo = —+71, =

Im 8,

1 Zin, Il--zz@_ ry (5.50)

where Ky is an error term.

Substitute the following expressions:

gy, for Zin,

gz, for g,

Pi{gz1) for pole

z,(s.3) for zero

Using the corresponding network model coefficients found in equations
(5.1),(5.2),(5.6c) and (5.5c), we can find an expression for Ky in terms of the
small-signal parameters. This rather involved expression can be found in the

program listing under Subroutine LOOP.

3979
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We now have expressions for g,, and .

Im = -ﬁol-_re (5.10a)
To =qu, —921,f00 —Te (5.10b)
From (5.1) and (5.10a),
Tr = Z;:’ (5.10c)
From (5.3),
o = SL;:“—T” (5.104)
Since,

Cc Q11, 2> CpuTp

the value for ¢, is not important. It is essentially another correction factor

which is found by iteration.

From (5.5¢),

= _Pl(‘kz)[‘-‘tc (1 + Im ('rc + zo))rﬂ' + Gy (Tc + zo)] +1
o P1(g21) 7

(5.10€)

The remaining expressions are long but straightforward to derive.

Equation (5.4) is solved for ¢ giving (5. 10f)

Equation (5.7b) is solved for c, giving {5.10g)

The expanded expressions for (5.10f) and (5.10g) can be found in Appendix E in

the program listing for Subroutine LOOP.

od7V



-30-

The equations are solved with the correction terms «,, «;, and £, set to
zero. These corrections are calculated and applied to p,{gz,). z,(g;) and foo,
respectively. By iterating through the equations, the program finds successively
better estimates for the element values, which converge on their final values

asymptotically. In practice, 3 to 5 iterations are all that is required.

The following diagram is used to find c,.

— .

r c Qz.
AN s :}

‘ CJ_ J_
z.3 ZT 3, "'C“ 49,V

11

=G

t
W
foy

)l‘-

1 _ 1
Qa2 =T: Qg

+5cg (5.10n)

The left-hand-side is determined by measurement. The guantity, @3, is a com-
plicated expression in terms of the other small-signal parameters. The values
for these parameters are supplied by Subroutine LOOP. The expanded expres-
sion for @z, can be found in Appendix E in the program listing for Subroutine
CCS. Equation (5.8) is solved for c, at several frequency points. The average
value is taken and returned to Subroutine LOOP. If this is done only for frequen-
cies such that | @z | > 7., the result will not be sensitive to the value given for
T.. Frequencies at which sz & 1 should also not be used, as they will lead to

inaccurate values for gg,.

\X‘/\«-—B a2



6. Results

Simulated and measured S-parameters are compared in the following plots.
The S-parameter measurements were taken with TECAP on a 800MHz device.
SPICE was used to simulate the S-parameters. Discrepancies between measure-
ment and simulation at low-frequencies are due primarily to measurement
error. The phase of s, is especially inaccurate. Discrepancies at high-
frequencies are mainly due to the efféct of the substrate resistance. The SPICE

files used in the simulation can be found in Appendix F.

The data is summarized by taking the average of the absolute values of the

errors.

gm; is the measured quantity at the ith frequency point. gs; is the simulated

quantity at the ith frequency point.

6LE
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The following table gives the aae for frequencies from 5Mhz to fr and from

S5MHz to fr/ 4.

Average of the Absolute Errors
Quantity Ir fr/4
mag. q 3 4.7% 1.9%
mag. gz 1.8% 1.3%
mag. S 8.5% 5.6%
mag. gz 7.8% 3.2%
phase g, 4.7° 1.9°
phase ¢z, 3.1° .9°
phase s;; 10.3° 7.0°
phase ggp 8.7° 4.5°
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Simulated and measured S-parameters are compared in tables on the fol-
lowing pages. The S-parameter measurements were taken by Louis Pengue of
Tektronix on a 7GHz device. The tables also compare simulations from device
parameters produced by SCALE to measurements. SCALE is a program
developed by Tektronix Inc. which produces SPICE parameters from processing

parameters and device geometry.

This table gives the aae for SCALE and EBSS at two operating points.

Average of the Absolute Errors

Quantity I, =2ma. I, =5ma.
SCALE | EBSS | SCALE | EBSS
mag. g, 14.57% 4.8% 37.8% 4.57%
mag. gz; 6.17% 2.8% 4.2% 1.9%
mag. S 4.3% 4.77% 0.7% 4.7%
mag. ggp 15.9% 3.7% 14.5% 3.9%

phase g, 15.9° 3.7° 18.4° 1.5°

phase g3, 4.,2° 2.9° 4.8° 2.9°

phase s, 4.7 B8.6° 6.8° 5.6°

phase gpp 7.5° _2.7° 7.4° 3.0°

18¢€

© et A
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Magnitude of g,y , [c = 2ma, ¥, = 3V
Freq.(MHz) Measured | SCALE | A% EBBS A%
100 517.8 488.2 -5.7 553.4 6.9
200 310.2 270.3 | -12.8 301.5 -2.8
300 208.7 188.1 -9.0 206.4 -0.1
400 147.7 146.7 -0.6 157.9 6.9
500 125.1 122.5 -2.0 128.8 3.0
800 114.5 1086.9 -8.8 109.7 4.1
700 101.4 96.3 -5.1 96.3 -5.0
800 88.6 88.6 0.0 86.5 -2.4
800 81.3 83.0 2.1 79.0 -2.8
1000 76.3 78.7 3.2 73.2 -4.1
1100 72.9 75.4 3.4 88.6 -5.9
1200 85.1 72.8 11.8 64.9 -0.4
1300 57.7 70.7 22.4 81.8 7.1
1400 53.7 68.9. | 28.4 59.3 10.4
1500 52.9 87.5 27.8 57.1 8.1
1600 52.8 66.4 25.7 55.3 4.8
1700 52.0 65.4 25.7 53.8 3.4
1800 50.0 64.8 29.2 52.5 5.0
1800 47.5 63.9 34.5 51.3 8.1
2000 47.5 83.3 33.1 50.3 5.9
Phase of g,,, [ =2ma , ¥, =3V
Freq.(MHz) | Measured | SCALE | Adeg | EBBS | Adeg|
100 -54.3 -56.8 -2.5 -60.4 -6.1
200 -87.5 -83.9 3.6 -69.8 -2.2
300 -71.6 -63.1 B.8 -71.0 0.8
400 -71.8 -80.3 11.5 -70.3 1.5
500 -71.1 -56.9 14.2 -68.8 2.4
800 -87.9 -53.4 14.4 -66.9 1.0
700 -88.2 -50.1 18.1 -64.8 1.4
800 -83.6 -47.0 16.7 -62.8 0.8
900 -81.1 -44.1 17.0 -60.8 0.3
1000 -58.7 -41.4 17.3 -58.9 -0.2
1100 -55.9 -39.0 18.9 -57.1 -1.1
1200 -55.3 -36.8 18.5 -55.4 -0.0
1300 -54.8 -34.8 20.0 -53.8 1.0
1400 -54.9 -33.0 21.9 -52.3 2.7
1500 -52.8 -31.4 21.4 -50.9 1.9
1600 -50.8 -29.9 21.0 -49.8 1.2
1700 -49.9 -28.5 21.4 -48.5 14
1800 -49.0 -27.3 21.7 -47.4 1.6
1900 -47.5 -26.2 21.4 -46.5 1.1
2000 -46.3 -25.1 21.2 -45.6 0.7

L8Y



Magnitude of s;5, ;. =2ma , %, =3V
Freq.{MHz) | Measured | SCALE | A% EBBS A%
100 0.0200 0.0153 | -23.4 | 0.0138 | -30.9
200 0.0270 0.0294 8.9 | 0.0270 -0.0
300 0.0370 0.0415 12.2 { 0.0390 5.3
-400 0.0510 0.0516 1.2 | 0.0485 -2.9
500 0.0580 0.0600 3.4 | 0.05886 1.0
800 0.0840 0.0870 4.6 | 0.0863 3.6
700 0.0720 0.0730 1.4} 0.0729 1.2
800 0.0800 0.0784 -2.0 | 0.0785 -1.9
900 0.0880 0.0834 -3.1 | 0.0833 -3.1
1000 0.0900 0.0880 -2.2 | 0.0875 -2.7
1100 0.0820 0.0925 0.6 | 0.0913 -0.7
1200 0.0950 0.0989 2.0 | 0.0947 -0.3
1300 0.0990 0.1012 2.2 | 0.0979 -1.2
1400 0.1050 0.1055 0.5 ] 0.1008 -4.0
1500 0.1050 0.1097 4.5 | 0.1035 -1.4
16800 0.1080 0.1139 5.5 | 0.1082 -1.7
1700 0.1150 0.1182 2.8 | 0.1087 -5.5
1800 0.1220 0.1224 0.3 | 0.1111 -8.9
1900 0.1280 0.1266 0.5 | 0.1135 -9.9
2000 0.1260 0.1308 3.8] 0.1158 -8.1
Phase of 535, [ =R2ma , Vs =3V
Freq.(MHz) | Measured | SCALE | Adeg | EBBS | Adeg]
100 84.0 82.4 -1.6 83.3 -0.8
200 82.0 79.5 -8.5 76.8 -5.2
300 89.0 69.7 0.7 70.8 1.7
400 88.0 85.0 -3.0 65.3 2.7
500 69.0 814 -7.6 80.6 -8.4
800 66.0 98.7 -7.3 56.5 -9.5
700 59.0 56.7 -2.3 53.0 -8.0
800 53.0 55.3 2.3 50.0 -3.0
900 52.0 54.3 2.3 47.4 -4.6
1000 51.0 53.8 2.6 45.2 -5.8
1100 50.0 53.1 3.1 43.3 -6.7
1200 47.0 52.8 5.8 41.7 -5.3
1300 486.0 52.5 8.5 40.3 -5.7
1400 47.0 52.3 5.3 39.1 -7.9
1500 50.0 52.1 2.1 38.0 -12.0
1800 50.0 52.0 2.0 37.0 -13.0
1700 48.0 51.9 5.9 36.1 -9.9
1800 43.0 51.8 8.8 35.3 -1.7
1900 42.0 51.6 9.8 34.5 -7.5
2000 42.0 51.5 9.5 33.8 -8.2

887Y



Magnitude of g5, , [ =2ma , Vs = 3V
Freq.{MHz) | Measured | SCALE | A% | EBBS | A%
100 33.42 31.39 -6.1 33.95 1.8
200 19.98 17.11 | -14.3 18.38 | -8.0
300 12.58 11.61 =7.7 12.48 | -1.0
400 8.80 8.77 -0.3 9.40 8.8
500 7.31 7.05 -3.6 7.53 3.1
600 6.43 5.89 -8.4 8.29 | 2.2
700 5.56 -5.08 -9.0 5.39{ -3.0
800 4.74 4.43 -6.5 472 | -0.5
800 4.24 3.95 -8.8 419 | -1.0
1000 3.87 3.56 -8.0 3.77 | -2.5
1100 3.58 3.24 -9.4 3.43 | -4.2
1200 3.15 2.98 -5.5 3.14 | -0.4
1300 2.82 2.76 -2.2 2.90 2.8
1400 2.60 2.57 -1.2 2.69 3.5
1500 2.50 2.40 -3.9 2.51 0.3
1800 2.43 2.28 -7.1 235 | -3.4
1700 2.32 2.13 -8.1 221} -4.8
1800 2.18 2.02 -6.4 2.08 | -3.4
1900 1.99 1.92 -3.5 1.97 | -0.8
2000 1.91 1.83 -4.1 1.87 | -1.9
Phase of go, . [ =2ma , ¥,y =3V
Freq.(MHz) | Measared | SCALE | Adeg | EBBS | Adeg
100 -80.1 -83.8 -3.7 -65.2 -5.1
200 -77.5 =77.7 -0.2 -79.2 -1.7
300 -87.6 -83.3 4.3 -85.3 2.3
400 -89.8 -86.9 _.7 -80.1 0.4
500 -89.6 -89.4 0.2 -92.1 -2.5
800 -88.7 -91.4 -2.7 -94.6 -5.9
700 -92.6 -93.2 -0.6 -96.8 -4.2
800 -97.6 -94.7 2.9 -98.9 -1.3
800 -103.5 -88.2 7.4 -100.8 2.7
1000 -105.1 -97.5 7.5 -102.8 2.4
1100 -103.8 -98.8 4.8 -104.4 -0.8
1200 -104.8 -100.0 4.8 -106.2 -1.8
1300 -106.5 -101.2 5.3 -107.9 -1.4
1400 -107.5 -102.4 5.1 -109.8 2.1
1500 -104.2 -103.6 0.6 -111.3 -7.1
1600 -104.2 -104.7 -0.5 -112.9 -8.7
1700 -108.5 -105.8 2.7 -114.5 -6.0
1800 -115.5 -108.9 8.6 -116.1 -0.6
1800 -119.1 -108.0 11.1 -117.7 1.4
2000 -118.5 -109.0 9.5 -119.3 -0.8
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Magnitude of ggo, [; = 2ma , Ve =3V
Freq.(MHz) | Measured | SCALE | A% | EBBS AZ
100 -74.8 -75.8 -1.0 -86.0 | -11.2
200 ~75.5 -73.4 2.1 -82.1 -6.6
300 -72.3 -69.0 3.3 -78.3 -8.0
400 ~72.8 -84.7 7.9 -74.9 -2.3
S00 -71.3 -80.9 10.4 =717 -0.4
600 -87.7 -57.7 10.0 -68.9 -1.3
700 -64.8 -55.1 9.6 -66.5 -1.8
800 -62.5 -52.9 9.6 -64.3 -1.9
800 -60.0 -51.2 8.8 -82.5 -2.5
1000 -58.2 -49.9 8.3 -61.0 -2.7
1100 -55.8 -49.0 6.9 -59.7 -3.9
1200 -54.8 -48.2 8.4 -58.8 -4.0
1300 -56.0 -47.7 8.3 -57.7 -1.7
1400 -57.7 -47.3 10.4 -57.1 0.7
1500 -57.9 -47.1 10.8 -56.5 1.4
1600 -58.2 -47.0 9.2 -56.1 0.1
1700 -54.8 -47.0 7.8 -35.8 -1.1
1800 -54.8 -47.1 7.7 ~-55.6 0.7
1900 -53.8 -47.2 6.4 -55.4 -1.8
2000 -52.8 -47.4 5.5 -55.3 -2.5
Phase of go2, [, =2ma , ¥V, = 3V
Freqg.(MHz) | Measured | SCALE | Adeg | EBBS | Adeg|
100 84.0 B82.4 -1.8 83.3 -0.8
200 82.0 75.5 -68.5 76.8 -5.2
300 69.0 69.7 0.7 70.8 1.7
400 68.0 65.0 -3.0 85.3 2.7
500 69.0 61.4 -7.8 80.8 -8.4
600 66.0 58.7 -7.3 56.5 -8.5
700 59.0 56.7 -2.3 53.0 -8.0
800 53.0 55.3 2.3 50.0 -3.0
900 52.0 54.3 2.3 47.4 -4.8
1000 51.0 53.8 2.8 45.2 -5.8
1100 50.0 53.1 3.1 43.3 -8.7
1200 47.0 52.8 5.8 41.7 -5.3
1300 48.0 52.5 6.5 40.3 -5.7
1400 47.0 52.3 5.3 38.1 -7.9
1500 50.0 52.1 2.1 38.0 | -12.0
1800 50.0 52.0 2.0 37.0 -13.0
1700 48.0 51.9 5.9 36.1 -9.9
1800 43.0 51.8 8.8 35.3 =7.7
1900 42.0 51.8 9.8 34.5 -7.5
2000 42.0 51.5 9.5 33.8 -8.2
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Magnitude of ¢, , f; = 5ma , ¥, = 3V
Freq.(MHz) | Measured | SCALE | A% EBBS A%
100 2486.1 275.6 12.0 245.8 | -0.1
200 181.7 185.6 2.4 153.4 | -56.1
300 108.1 120.8 11.5 110.1 1.8
400 81.3 98.0 20.5 86.8 6.8
500 70.2 85.1 21.3 72.8 3.8
600 865.1 77.1 18.4 63.86 | -2.2
700 58.3 71.7 23.0 57.3 | -1.7
800 52.7 68.0 29.0 52.8 0.1
800 48.1 85.4 35.9 49.4 2.6
1000 47.0 63.4 34.9 46.8 | -0.4
1100 46.0 61.9 34.8 44.8 | -2.8
1200 41.9 80.8 44.9 4.3.2 3.1
1300 38.2 59.9 52.8 42.0 7.1
1400 .38.4 59.1 54.1 41.0 6.8
1500 38.1 58.8 53.6 40.2 5.3
1800 37.5 58.1 55.1 39.5 5.3
1700 35.8 57.7 61.1 28.9 8.7
1800 35.2 57.4 63.2 38.5 9.3
1900 35.0 67.2 83.4 2B.1 8.9
2000 34.7 57.0 84.2 37.7 8.8
Phase of ¢, , [, =5ma , ¥, =3V
Freq.(MHz) | Measured | SCALE | Adeg | EBBS | Adeg]
100 -46.2 -45.2 1.0 -42.3 3.8
200 -57.8 -52.4 5.2 -54.8 2.8
300 -61.7 -50.8 10.9 -57.3 4.3
400 -61.2 -47.0 14.2 -56.6 4.7
500 -568.7 -43.0 15.7 -54.8 4.1
800 -55.1 -39.1 16.0 -52.2 2.9
700 -52.7 -35.7 17.0 -49.7 3.0
800 -49.2 -32.7 18.68 -47.3 2.0
900 -47.1 -30.0 17.1 -45.0 2.1
1000 -45.0 -27.7 17.3 -42.8 2.1
1100 -42.8 -256.8 17.1 -40.9 1.9
1200 -41.3 -23.9 17.5 -39.2 2.2
1300 -39.7 -22.3 17.4 -37.8 2.1
1400 -39.1 -20.9 18.2 -36.2 2.9
1500 -38.0 -19.7 18.3 -34.9 3.0
1800 -38.8 -18.8 18.3 -33.8 3.0
1700 -36.0 -17.8 18.4 -32.8 3.2
1800 -35.1 -16.7 18.4 -32.0 3.1
1900 -34.2 -15.9 18.3 -31.2 3.0
2000 -33.7 -15.1 18.5 -30.5 3.1




Magnitude of 5,2, /; =5ma, ¥, =3V
Freq.(MHz) | Measured | SCALE | A% EBBS AZ
100 0.0170 0.0137 | -19.4 | 0.0126 | -26.0
200 0.0250 0.0253 1.0 { 0.0237 -5.1
300 0.0330 0.0341 3.3 1 0.0328 -0.6
400 0.0410 0.0409 -0.2 | 0.0399 -2.8
500 0.0480 0.0464 1.0 | 0.0454 -1.3
600 0.0490 0.0513 4.7 | 0.0498 1.7
700 0.0530 0.0558 5.2 | 0.0538 1.0
800 0.0580 0.0601 3.7 | 0.0568 2.1
900 0.0810 0.0844 5.8 | 0.0598 -2.0
1000 0.0630 0.0887 9.0 | 0.0826 0.7
1100 0.0660 0.0730 10.6 | 0.0653 -1.1
1200 0.0870 0.0773 15.4 | 0.0679 1.3
1300 0.0730 0.0817 11.9 | 0.0705 -3.4
1400 0.0770 0.0860 11.8 | 0.0731 -5.1
1500 0.0780 0.0905 16.0 | 0.0756 -3.0
1800 0.0800 0.0949 18.6 | 0.0782 -2.3
1700 0.0860 0.0993 15.5 | 0.0808 -6.1
1800 0.0920 0.1038 126 | 0.0833 -8.4
1900 0.0980 0.1082 12.7 | 0.0859 | -10.5
2000 0.0870 0.1127 16.2 { 0.0885 -8.8
Phase of s)5. J; =5ma , Ve =3V
Freq.(MHz) | Measured | SCALE | Adeg | EBBS | Adeg
100 77.0 79.4 2.4 80.1 3.1
200 75.0 70.9 -4,1° 712 -3.8
300 62.0 65.0 3.0 63.9 1.9
400 60.0 61.3 1.3 58.2 -1.8
500 61.0 59.2 -1.8 54.0 -7.0
800 60.0 58.2 -1.8 50.9 -9.1
700 55.0 97.7 2.7 48.7 -8.3
800 51.0 57.8 6.7 47.0 -4.0
900 52.0 57.8 5.8 45.8 -8.2
1000 50.0 58.0 8.0 44.9 -5.1
1100 50.0 58.2 8.2 44.3 -5.7
1200 47.0 58.5 11.5 43.7 -3.3
1300 48.0 58.7 10.7 43.3 -4.7
1400 50.0 58.8 8.8 42.9 -7.1
1500 53.0 58.9 5.9 42.6 | -10.4
1800 53.0 59.0 6.0 42.2 -10.8
1700 49.0 58.9 9.9 41.9 -7.1
1800 46.0 58.9 12.9 41.6 -4.4
1900 46.0 58.8 12.8 41.2 -4.8
2000 48.0 58.6 12.8 40.9 -5.1




Magnitude of g5y, [; =5ma , Ve =3V
Freq.(MHz) | Measured | SCALE | A% | EBBS | A%
100 32.99 34.78 5.4 33.34 1.1
200 22.13 20.14 -9.0 20.51 | -7.3
300 14.09 13.88 -1.4 14.37 2.0
400 10.48 10.54 0.8 10.98 5.0
500 8.85 8.49 -4.1 8.86 0.1
800 7.70 7.10 -7.8 7.42 | -3.6
700 B8.61 8.10 -7.8 6.38 | -3.5
800 5.72 5.35 -6.4 5.59 | -2.3
900 4.97 . 4.77 -4.1 4,97 0.0
1000 4.55 4.30 -5.6 4.48 | -1.7
1100 4.18 3.91 -6.0 4.07 ; -2.3
1200 3.70 3.59 -2.9 3.73 0.8
1300 3.38 3.32 -1.7 3.44 1.8
1400 3.18 3.09 -2.8 3.20 0.5
1500 3.02 2.89 -4.2 2.98 | -1.2
16800 2.88 2.72 -5.2 2.7 ! -2.5
1700 2.68 2.56 -3.9 2.63 | -1.4
1800 2.49 2.43 -2.8 2.48 | -0.8
1800 2.34 2.30 -1.7 2.35 0.1
2000 2.22 2.19 -1.2 2.23 0.3
Phase of gp; , I =5ma , Ve =3V
Freq.(MHz) | Measured | SCALE | Adeg | EBBS | Adeg|
100 -53.9 -556.3 -1.4 -40.1 4.7
200 -71.0 -72.1 -1.1 -68.4 2.6
300 -82.2 -79.3 2.9 -77.4 4.9
400 -85.7 -83.5 2.2 -82.7 2.9
500 -84.7 -86.3 -1.8 -86.7 -2.0
600 -85.5 -88.6 -3.1 -89.8 -4.3
700 -90.5 -90.4 0.1 -92.4 -1.8
800 -98.3 -92.1 6.2 -94.7 3.6
900 -103.1 -93.5 9.5 -96.8 6.2
1000 -103.8 -94.9 8.8 -08.8 5.0
1100 -102.5 -96.2 8.3 -100.7 1.8
1200 -101.8 -97.4 4.4 -102.4 -0.7
1300 -104.3 -98.5 5.8 -104.2 0.2
1400 -104.9 -99.6 5.2 -105.9 -1.0
1500 -103.3 -100.7 2.6 -107.5 -4.2
1800 -102.7 -101.8 0.9 -109.1 -8.4
1700 -108.9 -102.8 4.2 -110.7 -3.8
1800 -112.4 -103.8 8.8 -112.3 0.1
1800 -116.0 -104.8 11.2 -113.8 2.2
2000 -114.7 -105.8 9.0 ~-115.3 -0.6

o}



Magnitude of ggs, /. =5ma , ¥V, = 3V
Freq.(MHz) | Measured | SCALE | A% | EBBS A%
100 809.8 592.1 -2.9 668.1 9.8
200 354.7 317.9 | -10.4 344.7 -2.8
300 223.6 230.7 3.2 241.2 7.9
400 169.4 190.4 12.4 192.1 13.4
500 150.0 168.3 12.2 164.3 9.5
600 143.7 154.8 7.7 148.8 2.2
700 134.5 145.8 8.4 135.1 0.4
800 123.8 139.4 12.8 126.8 2.4
900 120.4 134.8 11.8 120.3 -0.1
1000 117.1 130.8 11.7 115.3 -1.5
1100 115.0 127.7 11.0 111.3 -3.2
1200 113.0 125.0 10.6 108.0 -4.4
1300 105.9 122.8 15.8 1056.1 -0.8
1400 97.6 120.4 23.5 102.5 5.1
1500 83.7 118.5 26.4 100.2 8.9
16800 94.8 118.8 23.2 98.1 3.7
1700 95.3 114.8 20.4 98.2 0.9
1800 94.9 113.1 19.1 94.3 -0.86
1900 92.4 111.4 20.8 92.6 0.2
2000 87.9 109.8 24.9 90.9 3.4
Phase of gga, I, =5ma , ¥, =3V
Freq.(MHz) | Measured | SCALE | Adeg | EBBS | Adeg|

100 -73.8 -68.6 5.0 -82.9 -9.3
200 -68.7 -64.6 4.0 -76.1 -7.5
300 -64.4 -58.5 5.9 -70.1 -5.7
400 -63.2 -53.0 10.2 -64.8 -1.6
500 -60.0 -48.6 11.5 -60.4 -0.3
600 -55.1 -45.1 10.0 -56.7 -1.8
700 -51.4 -42.5 9.0 -53.8 -2.4
800 -48.7 -40.5 8.2 -51.5 -2.8
800 -46.4 -39.0 7.4 -49.6 -3.3
1000 -44.1 -37.9 6.1 -48.2 ~4.1
1100 -42.8 -37.2 5.4 -47.2 -4.5
1200 -41.3 -36.7 4.8 -46.4 -5.1
1300 -43.6 -36.4 7.2 -45.8 -2.2
1400 -468.0 -36.3 9.7 -45.4 0.6
1500 -48.0 -36.3 9.7 -45.2 0.8
1800 -45.0 -36.4 8.5 -45.1 -0.2
1700 -43.7 -36.6 7.1 -45.1 -1.4
1800 -43.3 -36.8 8.5 -45.2 -1.9
1900 -42.6 -37.1 5.5 -45.4 -2.8
2000 -43.2 -37.4 5.7 -45.6 -2.4

-
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7. Conclusion

A method for extracting BJT small-signal parameters from S-parameters
measurements has been described. This method was implemented in the Pro-
gram EBSS. Although the results are not as accurate as can be achieved with a
nonlinear optimization program, we can achieve accuracy which is acceptable
for many applications. Offsetting this disadvantage is the fact that the program
will run 100 to 1000 times faster than an optimizing program, while avoiding the
problem of nonconvergence. It is estimated that EBSS would run in about 10
seconds on Stanford's TECAP automated measurement facility, which is driven
by a Hewlett-Packard 9845 microcomputer. This opens up the possibility of
using S-parameters to extract small-signal parameters for various applications
in which the use of a nonlinear optimizer is unwarranted. Theoretically, EBSS in
conjunction with TECAP, should be capable of producing a complete set of SPICE

BJT model paramsters.

Although this method is not readily adapted to more complex models, it can
easily be adapted to simpler ones. If, for instance, one doesn't wish to incor-
porate c; and ¢, in the small-signal model, then one need only set these values
to zero in the program. The model for which the program EBSS was developed is
sufficiently general that it might also be used as a preprocessor to a nonlinear
optimization program. EBSS will supply good estimates for the values of some of
the parameters in any model. This would help reduce overall run time of the
optimization program, while alleviating the problems of nonconvergence and

convergence at local minima.

EBSS is not without some remaining problems. The program output is
somewhat more sensitive to the data than desirable. This is primarily because
an explicit weighting scheme has not been applied to the data. Fitting the data

to complex quantities, rather than magnitudes, should also be attempted.

¢8¢



Finally, the program should be rewritten for a model which accounts for the dis-

tribution of ¢, and ¢4 across 7;.

The author feels that EBSS, in its present form, is not an industrial quality
program. However, it is hoped that this report has shown that the method
presented here offers some significant advantages over existing methods and

should be pursued further.
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F{CURCTFCURCXI ROMEP D+ (CXFCUFCSIRCIHF(CEFCP I IMCXF (T ESTCR I YHCUFCPDIRC FIRPC

+i{cutcpildczr+(—~cs=~cpilkcu-cpikcs)hkrb)

®Prpi
+i{cxtcutcslkcz+icuto s Rox ) krbkrg)
%20
+{{cukcz+ocukcx+oscu) hgmitrbkrckra+( (cutcpi dkcx+(cstopi ) koutcpiko 2) krbdrc!
Krpid
HEA2
+i{{—-crx—culqmirpi-CX—-CU~CS) HZ0A2+{ (~Cshgmitra+ (CX+ou ) Rgmbrc-cukgmerb+cz-cn
+cpi)
*rpi
+(cx+cutcsikrc+i{cz—cu~-cylkrbd)

*1O
+{{{cx+cutc sy kgmirctoukqmkrd i kra

+{cukqmikrbtcxtcutcslkrcticutepi)irb?
krpitlcx+cutcs) krbmrc)
#iztzotiqmbérasilkrpitrb)
/dalta

"
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daliial = rb¥rc
wllcwcuscze shouhc gy kgmitrg+{ (cutcpi dkcxtics+ocpildcudcpikosihos
FI{CEFCPI ) RCUFCD IRCFIRCXIRPD I REAS
+{irbk{{cukgrtowbkox)tgmbrat{icutcpitdhczticudcpithax)
+rCEk i {CsRCXFCsRCUl Rqmkra+ (Cukcz+CcURCE I kamerb+ic
+ics+cpilkcudcpides) i kerni

+i{ex+cutc sl kczF(CudrCcsIYRCX I krbkrciksA2

Fll{ocx+cul Raqmerra+ (CXFCUI ROMAPCHCZIFCXFCUFCPIIRPD
+i{catocutcsikrcticrtox i krbl ks+i

X+CUTCEIHCIF{CSFCP 1 I RO

qii = (rbskrckiicukcr+oumcxtoshculwgmiraricutcpiisctticstopiikcutepikes:
kP ikEAZ
+ilproki{cxtcutes)kgmirat+cukgmirbtcrtcutc sl rbticukgmibrztoutcpil 1Rrpi
+F{CXFTUFC SIRPDRPC I kS
+i{gmikpra+likprpid+rd)
Ffdeltal

gqai = ~(rbdiicwkcrtcuscxldgmiraticutcpil kol drpihzaz
={{{cxtculRqmipetcx+oUIRprpirCxkrb I ks+gmirpil
/daltai

daltaz2 = (pbkil{cskocukczdoshcukex)kgmkra+{{cutcpilRcx+i{cs+cpitkcutcpikosikes
+{{CcsdcpilkcubcpiBc sl RCXIRPrpD ihsAS
F{CERCXFCTEIRCUI RMKFPRF (CURCTFCURCX I ROMFPDF (CXFCUFCFIRCTH(CEFCDI I HTX
+{cxtcpilcubcpicsidkrpi
+i{cxt+eutcsrkcz+(cudcsIRexIkrd)
ksAgt{{cx+cul kqmEkrpitcXtcutcsi ksl ko
+rbk{ {cuscztoutcx+e shcul kgmirg+icutcpi kot (csdepithcutcpihes) krpiksA
+{{{cx+cutcs) kgmnkratrcuwkgmirb+cx+cutcsikrpitictrcutcsI krblks

qiz = ({(~cukcz-cukcxikqmra+{-cu~cpilkcxlspbhrpiksAaz
+i{{~Ccx~culdtgmre-cx—culkrpi—-cxikrb)ks)
/daltaz
gqa2 = (({rbd({cukczdcukcx)kgmiraticutcpitdcrdicutcpil k) krpiksAZ
+{t{cx+curkamiradcz+oxtcudcpiddrpit{cz+ox I krbl ks+i i kzo
+rbd{cukgmiretcutcpidkrpiss+igmirg+i)krpitrb)
fdaltaz}
+no
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USER INSTRUCTIONS WITH SAMPLE INPUT
~ ALSO

PROGRAM LISTING : EBSS

"
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Uzar!s Manual

EBSS reads the data from a fila cmlilad "in™. Tha first
line of this fila snodld hava listad in ordapr, rar Por and
tha numbapr of fraquancy points. Balow this i5 &8 S-column
formxt for the S—-parametar meazurements. Tha top half zon-
tains sii1 and 521, the bottom half 522 and si2. Thae first
column  contains thae fragquancy in Hr for both top and LHottom
halvaex. Enter the magnitudes of sii, the phmaze of =ii {in
daqraas), the magnituda of s21 and the phase of 521 in
columns two through five reszpactively in tha top hzalf.
Entar tha magnitude of s22: tha phass of s22: the maqnitude
of %12 and the phase of 512 in columns two through fFive
raspactivaly in the bottom half. {Seq sampla input file on
next page.)

EBSS prompts the user to snter values which detsrming
the fraquency rangas over which tha fitting is dona. Thaesa
are frequaency points called idac, jdec and kdac. Idac
datarminas thae fraquency point to start tha fitting of
i/p2+1/p3. Jdec datarmines the fraequency point to end the
fitting oOf qii. 512, cs and 1/p2+1/p3. Kdac datarminas the
frequancy point to start the fitting for cs. For instanca;
antaring % for Kdaec would cauzae the program to iqnore tha
first giqht fraquency points when it findz cx. The user isx
alsc askad to anter a tolaranca valua. This detesrmines whan
tha program axits out of the Subroutine Loop. For - most
caszes: .01 should give sufficiently convargant valiuex.

Commants

The user ix laft to his own devices for detarmining re
and rc. AZ the mode! does not account for tha distribution
of ctc and cs across rcy the best rasults arae obtaingd if
anly the portion of rc which contributes to the Millar
affect on ctc iz antarad. This iz gqenerally =about 1/2 +to
1/3 of tha dc valua far ro.



Appandix

The S—-parameters are for a $0OMH: devica.
idacy 19 for jdac,

SAMPLE INPUT FILE

.4

SN RN T
[rs
&

is

C

23

. 274
. 978
N
. 978
. 974
. 978
. 974
. 975
974
. 974
. 271
. 948
.94

. 749
. 934
. 9158
. 888
.B58
.818
. 783
. 744

.719
.718

[ T T TS TS

59

. 799

. 999
. 799

. 994
. 395

.79
. 984

77

. 9867
. 754
. 9234
.11
. 874
. 858
. Bds

¥ for kdac

{put

i
LU G N (U o

I
w
RN TRV T IV JEN PSR,

i
-
s

B+ YW

i
[N
o

w o i

it i1n a fila callad

.73
.72
.72
.72
.72
.72
.72
.71
.71
.78
.48
. &5
. &2
.55
.45
.33
.19
. B4
. 874
.738
.5469
436
. 385

[ S T O O Tl Ll o O T O T A iy Ay Wy

NS PR WWNE R e

[ N BN I I TTRE TS O ) 1

and

178

-179.5

i78

177,
178.
177.
176.
174,
174,
i72.
1569.
144,
1ai.

154

147.
142,
124,
iz2s.
116,
106,

g2.
85.
88.

.95e-4
.11a-4
.37a-4
.27¢~4
.13a-4
. 84@~-4
.?1a-4
.42a-4
.21la-4 .
1.98a-3 74
1.449-3 78.4
. 98a-3
.4%9g-2
.1%a~-3
. 94633
. B2a-3
. 24a-3
.01a-3
. ?ba-3
.2la-2
. 39a-2
. 4782
.97a-2

.7

DWOrNWL MUOENUN AR

72

B81.
77.
7h.
7.
73.
71.
71.

&8

&7.

&5
75

81.

@0 MuwNwW e

.81 for tol.

.2

BwWwmyo o ko

oy

Pagqa =

Entar 15 for

llinl‘}
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appandix Faga 3

arogram EBESS

SEXtracting

#ABipolar

gSmall-siqgnal paramatars from
#S—paramagtar maasursmants

complax $111(338), 21 (38), 512{(328); x22(28)
complay qii{30),q21(3)

rzal mii.m3i,mi2;, m22

real frogql3@)

comman fraegqi(30), 522(20); ndac, jdac

pi=3. 14192

3=pi/180.

# program assuma 52 ohm charactaristic impadanca
10=54.

# load data, rcy ra; number of fraguancy point s,

# and S-parameter mexzurements.
opaniunit=7: s5tatus='old?’,;fila=?in?’)
rauind{unit=7)
raxd (7:%) rg; rcs, npts
do i=i,npts {
read (7:%) fraeqfil:;mii;aii,ma2i,acl
siitil=cmplximiikcos(akaiil,mitksin{akalls:
s23itil=cmplxim2itkcosindn2i),; maiksin(akali)d)
}
do i=i,npts ¢
raad (7,%) freqii),ma2,a22,miad;aid
g22lil=cmplx (m22kcos(axaz2); m22ksin (akaz2))
gi2fi)=cmplx(mi2kcosiakal2) ,mi2ksin(akala))
qii{il=zok(i+sid(id¥/(1-511¢(i})}
qaifir=gs2i(i)/{s11i{i)-1)

8 convert hartz to angular frgquancy
fraqli)=2%kpikfraq(i}
b
closefunit=7; status='old’)

# thesa paramatars dacide what fraquancy points ara

# uzgd for finding the various fitting coefficiants.

% thay provida the implicit wseighting of the data.
print %:’'gnter fraquency point to start Ffitting for 1/p2+1i/p3!
read #; idac
print % ‘antar fraquancy point to end fitting of qil, 512,
cx and 1/p2+1i/p3¢
raad ¥k, jdac
print #:;’gantar frgqueancy point to start fitting for cs’
raad ik, kdac '
print %, ‘’'antar tolaranca’
read %w:tol

B thase subroutines find the fitting cosfficiants
call g2ifiti{freq:;q2i,;q2l0:polg2i,;npts)
print %, ’'ga2io=t, q2ios ? polqgqai=’, polga2l

call qiifiti{fraq:qz2i:q2iorqlii:qiiorzargil,; jdac?
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rint #,/gqiio=’, gqiios ! rarqii=?; zargil

call zi2fitifraq, s2i, 5129210, 31205 2ar5128, idaec)
print #,?'sizZo=', 5120, ! Tarsiz=’, zarsi2

call ppfitifraq;qzi:q2lo:ppq:polazl, jdac, idac!
print #;/i/pii{i/pad 4+ 1/p3l=!,ppq

# thiz zubroutine Qxtracits the small-xignal paraneiars
tall loop{ra:rcsi10:g2lorqilorpola2i:zarglil si2o:12rsis,

and

L)
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PROGRAM LISTING : FITTING SUBROUTINES
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subroutinag qR2ifit{fregq:,q2i:q2iopolal:npts)

# thix zubroutineg fits tha inverse of tha squars of g2i1
tO P =8 + b wkk2 + ¢ wkikd

# a; b, and c are solvad for g2lo and pi(gzil

complax q2i{34;

rgaxl fraqi20)

doublae praecision Sy, sSX2y:s 5X4y: syz: sx242: sx4U2: 5x44y2: 5x242:a:hs ¢
y=2; sx24y=9; sx4y=9; sy2=8; sx2Yy2=0; sx4Yy3=9; IN&EY2=J: s234y2=9
do iz=i,nptst

x
u

fragii}/i08eé
abs{i/q821(i) ykk2

sy = sy+isy
5X3Yy = sxaytxik2/y

i

5x44 Ex4ytxkikd /y

2 = syI+1i/yiek

5x2yz2 = sx2ya+ukk2/yrk2
sxd4yd = sxdy2+xkhd /g
EX4UZ = sxby2H+xdmh/yhk
3X8Yy2 = sxBYS+X KRB/ yghk2

a8 = ((sx4y2hsx8y2-sxby2kk2) ksy+sxa2ya_
kisxdyhsxbya-sx2yksis8ya)
+EX2URIXAUDREXNAYS-SX4URSXAUY2EREKE ) _
Fisxdy2hsxgy2-sx sy ) hsy2-—sx3y24iakzx8y2a__
F+2REX2UDRSXAYZRIXAY2~5X4U2FHKI)

b = —{i{sxdyksxbyz-sx2yksxsy2lksy2__
+(sx2yasxBy2-sxdy2kzxoy2) hsytsxSyksxdyaduka__
-SX2YUBRsx4yksx4y2y
Jiisxdyadksx8y2—-sxsyduk2) hsyd-sxySih2hzx8ya_
+ERSXBY2KREXIYSKIXOYS2-3X4Yy2KRK2)

€ = ((sx4yksxdy2—sx2uyRsxby2Iksy2+ (sXZYSREXAYZ2-sx4y2kRk2 ) _
hsy+sxIyksxydksxdyd-sx3yahkahsxdyl __

JU{sX4yZRsABYUS~-SXEYSKKZ ) KSUS-SXSUSKREKEXBUS
+2Rsx3yeksxdyhsxsy2—-sx4y2kkd)

cC =c/a

q2io = sqri(i/a)
polael = —sqri(2/(sqrt (bick2-4kC)I+b) I %1B@es

raturn
and
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subrouting qlifFiti{freq:q2irqEiorqii,qiio,zaro, jdacs
# thix subroutineg fits thg squars of gqilsgal

# to P =a + b wik2

# a and b are solvaed for Qqlio and z1igii:

complax q21{(28). gliiz9}
raal fraq(39)

sy=H; sx3y=9; sy2=a; sx2y2=9; sx4y2=9
do i=i, jdac{

x = fraqiil/igs
4 = {(g2iokabsi{qiili))/abs(q2iii)}ie%

fu

54 = sy+i/y

s5X3Yy = sx2y+xkm2/7y

42 = zy2+i/ykk2

SX2Y2 = sxAY2JeXME3S/ykk2
gxX4yz = sxdy2xkid/yrk2

3
A = {zxdyksy—-sx2yhsxayd) /s isxdyIksyc-seIydh3)
b = {sx3yhsy2-sx2yaksyl)/isxdysksyd-zx3yahka)

qliioc = sqrtia}

ero = -sqrtia/blkigs

raturn
and

subrouting si2fiti{fraqg:s2i,si2,q2io, 5120, zarsiz, jdac)
# thix subroutine fits tha square of 312/321

## to P = a + b wkk2

8 a3 and b are solvad for 5120 and 110512}

real freq(3@)
complax 521(30):, xiz2(3@)

sy=0: sx24y=0; sy2=0; sx2y=2=0; sxiy=2=n
do i=i, jdaci

X = fraqflild/le?
y = mbsig2loksi2 (i) /7 (xks21i (1)) Yk

sy = sytisy
£X2Yy = sX2ytxki2/y
542 = zy2+i/ydek

31}



ket
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LTS & 2 =F ALY § 1=
sxdy2+xciohd Fydek2

in

{sx4yaksy—sx3Ykzx3y2) 7/ {sxdy2esyc-sx2y2Hhi2)

a
b = {(sx2ysksya—-sx2yaksy)/{sxdyahsya-srayakia)
gi20 = zgrtial/ie9

2arzsi2 = ~zgqrtia/blkie?

and
subrouting ppfitifreq:q2i:q2lo:ppgspolaqa2i, jdac: idac!
# this subroutine finds ppq = 1i/pi(qail#f i/pa2igqai) + 1/p3(gqa2iid

real fragi{3d!}
complazx q21(3@)

sy=0
do izidac: jdect

X
y

fragq(i}
aimagi{gaio/si{gaitirwcmplx{l,; ~fraeqii)/polgai) )}

sy = sy + y/x
3

ppq = —~-i/polqa2isisy/{jdec—-idac+i))

raturn
and
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' PROGRAM LISTING : LOOF AND CCS SUBROUTINES
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subroutine loopira:rcr,zo:q3tosqilo:polasl,zargiis sizos,zarsiz:ppa:toll
# thizs subroutine extracts the small-zignal paramctaers
# and prints tham out

real Kappa+f. Kkappap: Kappal

# zave zaroq and polaq for corraction factors Kappaz and KIphap
zarol = zarqii
polai = polqza2l

% affactiva rc is rct+zo in all aequations (axcapt subrouting ccs)
rc = pctn
% bagin loop iterutations {iterations sat to 5. mora than
# enough to guarantee convargencs to final valuax).
rapesat {
rbx = rb; rpix = rpi; gms = qm; Cpis = Cpi
CI% = CZ; CUS = CuU: €X5 = CX; C55 = C5
# hlock finds rb and gm
foo = {(giio/sq2iotwi{zarqitl-polqall/isrqll - kappaf
- rh = qiig--q2lo%kfoo-re
am = g2io/(qilo-rb-q2lokra-ra)

$ block finds rpi
roi=q2io0/qm

# block finds ctc
ctc = (si2o+cuwrblsqilo

# block finds cte and cpi .
cta = ~(polgaiki{ictchkgmberctctoikrpitctodrci+i)/(polga2ikrpi)
cpi = cta-cz

# blocyk finds cu and cx

a8 = {gmkrbikrat+rblikrpikzarsia
b = t(fcz—-ctoclugmirbdredicz—cig-ctoldrb)rpihzarsi2-rbd
€ = {(-citckagmkrg—-ciclkrpi-ctokczkamiErbRraRrpikzarsiz
CX = —=(h=-3qrt (b#kS-dltmmc) )/ (2%ha)
cu = ctc-cx

# subroutine finds cx
call costra:rc,zorb rpisgmicCUsICXICPisCTICE)

# block findzs cz

-rb#krpi

(cukgmbkrbkratcuwkgmirbkrct (~cx+cutct)krb)drpiticxtcutcs) krbkrc

{{(cshkexteshou) kgmercrcukcxkgmirb} kpad (cukcxkqmirb+(Cta+CsIkax
+i{cta+cslhcudcnketa)kroticudctatkexkrb b drpiticutc sl Roxromrc—-ppe

CI = —~{b~sqrt (bhkSZ-4kakcl )/ (2ka)

a
b
<

# block findz corraction term to foo
Kappaf = ~(-ctokgmircihk+rchk{ctokgmrc~cxkqmirb) +ctckrct(~cz~cxlirb) _
Jtictokgmick@krct (Cta+ctCIRgmMI KPP i+t ORgMRPC)



Lo

# block finds corraction tarm to ol of gzi
Rappap = polaikictokctamrodrpil
polg2i = 1/li/polai+kappap?

# block finds correciion tarm to 21 of gii
Rappaz = ({cumcrdoukex)kgmberbhrchra
+licurcpilRexFopidcul frbhkroldrnikigrol/qilo
zarqii = i1/{i/zeroi+kappaz)

until {(ral(rb:rbs) { tol &% ralirpi,rpisy ¢{ tO! & raligm.qms)

relicpi,ecpis) ¢ tol & erl{czrozs) { tol %2 ralicu,cusz!

ral{cx:cxs) { tol & pallcs,cxs) ¢ tol)
rC = rc-10

print %; ‘pb=!;prd
print % ‘re=’,rg
print % lppi=?ippi
print % '‘cus=’,;cu
print ks, fcx=!,cx
print %;‘cpi=’,cpi
print #H: Q2= Q2
print #,/'cE=';Cx
opint Ry 'pc=tpc
print %, /‘gm=‘;qgqm
raturn

and

functicon relix,;xs)
ral = abs{{x-xs5s)/X)

raturn
end

subrouting ccsire:rcyzospbirpirgmscuscx,cpiCz 8}

# thix subroutine finds cx by finding ths diffarancs
# betwaan tha calculataed admittanca and tha

# maasurad admittance

real fraq{39)

complax s22(38),q22:5

common freqi30), 522(38), kdgc, jdec
zx=9; sx2=9

do i=kdac: jdac{

T = cmplx{@:,fragl{ill



Appendix E Faga 2

qzgz = { ({ {cukczrowkex ) kqmkrbkra+ ( (cutspil®kcz+icutcpi ) RCXIRPrDIRPrD ikSRES_
+{{{cetculgmbrat+cztextoutcpidthrpiticztexdhrblikstiihzo_

+lcukgmikrbkrad (cutcpilRerblikrpikst{gmera+idsrpitrdl _
Jit{{icutcpilhcxks+opikcuks)kor+opikcwh{cxks) Virbhrp idshsd_
+(((cu*c1+cu$cxl$qm$rb+(cx+cu)$cz+cpl$cx+cpi*cu?$rpi+((cx+cu3$cz+cu$cx)_
drb ) kshRE+((cxtcurgmbrpitoxtcu) ks k1o

+{{cukcz+cukcx I kgmirbkra+ { (CUFCPidRCXFCP IRCUIRPD I RHPD I RERKZ_

+{{ (cx+cu) kgmiretcwkgmirbtextcul #rpit(cxtculkrb)hs)

raal (i/q3z2)

a

b aimagil/qza;
youtm = i/abs(zokiit+gzz2iirisii-sa22(itt-rc+z0!
Xx = (sartigoutmks-akk2)-bl/fragli)

5x = 5% + 1i/x

5x2 = sx2 + L/xumk2

b

€Y = sx/s5x2

ratuarn
and
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Davica measurad with TECAP

zii and x21i
.width out=39
.options nomod numdgt=4

i1 1 @ ac -20m
rzol 1 @ 53
rIo2 2 O 5B

b 1 3 368

fC 4 2 15

rg 5 @ .5

rp1 3 5 3781

cu 3 4 .98p

X 1 4 . @eip

cpi 3 8 3.93p

€z 1 5 .74p

qm 4 58 3 5 .01904

s 4 @ 1.3p
i

i1 12 0 a2
vii 19 11 ac 1
rii 11 92 1
g2i 21 o 2 @ 2
r2i 24 9 1

.print ac vmi{il) vp{ii) vm(2i) vp(21)
.ac dac B 1aes 1a9
.and

2232 and gi2

.width out=89

.options nomod numdgt=4d
iz 2 @ ac -2@m

rzol 1 2 5@

rio2 2 @ =0

rb 1 3 348

re 4 2 18

rq 5 @ .5

rpi 3 5 3781

cu 3 4 .@8p

X 1 4 .@s81p

cpi 3 5 3.%3p

€z 1 5 .7ép

gm 4 5 3 5 .21904

5 4 B P

e22 1id
vaz2 1@
ra22 22
gi2 12
ri2 12
.print ac vm{22) vpia2) vm{i2) vp{ia}
.ac dac 8 ias 1z

.and

3
2

g2
2 ac 1

a

588U
TRy
]
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il 1 9 ac -20m
1052
2 @ E@
rk L 3 &4.2
2 11
@ .5&2
rpi 35 1135
cu 3 4 .09
cx 1 4 .175p
cpi 3 5 1.29p
cz 1 5 .31ip

numdgi=4

qm 4 5 3 5 .9473

€3 4 @ .34p
2lli 16 @8 1 8 2
¥vil 19D 11 ac 1
rii 11 8 1
221 21 6 2 @ 2
rel 21 8 1

.print ac vm(ii}) vpi(l1i) vm{21) vpi2i}
.ac lin 20 10dc4 29

.&nd

szz and sizZ
.width out=8@

.options nomod numdqt=a

i2 2 @ ac -20m
rzol 1 @ 52
rzoz & @ 5@
rb 1 3 &4.2
rc 4 2 11

rR 5 D .54&2
rpi 3 5 1136
cu 3 4 ,.@5%
cx 1 4 .175p
Zpi 3 5 1.2%p
cz 1§ .3ip

gm 4 58 3 5 .D473

cs 4 @ . 34p
a2z 18 @8 2 B 2
vE2 18 22 ac 1
r22 22 0 1
iz 12 8 1 8 2
ri2 12 @ 1

.print ac vmi2z2! vpi22) vmil2) vplial)
.8Cc lin 20 100es& 229

.end
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Takironix 76Hz davica at Ic=:tma.

gii and =x2i

.width out=83

.options nomod numdgt=4
il 1 92 ac -28m

rzol 1 O 50
rzo2 2 @ 59
rh 1 3 54,1
rc 4 2 11
ra 8 B .542

rgi 3 5 281

cu 3 4 .9545p

cx 1 4 185D

cpi 35 2.92p

€z 1 & . 35p

am 4 8 35 .1744

o5 4 @ . 34p

@ii1 12 @21 0 2

vii 19 11 ac 1

rii 11 0 1

e21 21 0 2 0 2

r2l 21 @ 1

.print ac vmiii) vpiii) vm(21i} vp{21)
.8C lin 20 100aé 289

.&nd :

z22 and si2
.width out=80
.cptions nomod numdgt=4

12 2 @ ac -20m
riot 1 ©¢ 50
rzo02 2 @ 50

rb 1 2 54.1

rc 4 2 11

fa 5 @ .5462
rpi 3 5 281

cu 3 4 .Q054p

X 1 4 .18%5p

cpi 3 58 2.92p

€z 1 58 .35p

gm 4 58 3 858 1744

Cx 4 @ | 34p

22 i 2 2 @ 2

vaa 19 22 ac 1

r22 22 @ 1

gi2 12 a3 12 2

ri2 i2 9 1

.print ac vm{22) vp{22) vmi{i2) vp(id}
.ac lin 20 i0d@aesé 229
.and
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