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ABSTRACT

This paper gives a definitive solution to the following fundamental problem:

When does a network containing nonlinear monotone resistors (characterized by

strictly-increasing onto function), dc sources (voltage and current sources), and

linear controlled sources (all 4 types) possess a unique solution?

Our uniqueness criteria is couched in strictly topological terms. In particular,

the uniqueness of a large class of practical nonlinear circuits can be determined,

often by inspection, by checking for the presence of a new and fundamental topological

structure called a cactus graph.
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1. Introduction

In a remarkable theorem [1], Nielsen and Wilson demonstrated that a certain

class C of nonlinear resistive circuits has a unique solution for all values of

circuit parameters belonging to some parameter set P if and only if the circuit does
not possess a certain topological structure S. In the case of the Nielsen-Will son

theorem, C consists of circuits containing only transistors, linear passive resistors,

and independent sources; P consists of all positive resistance values, all positive

and negative values of dc sources, and all coefficients 0<af < 1, 0<aR <1for
the transistors; 3 consists of a 2-transistor feedback structure. Such graph-

theoretic results are extremely useful because it allows the difficult "existence

and uniqueness" question to be answered by a strictly topological analysis. For

simple circuits, this analysis can often be done by inspection.

Our objective in this paper is to derive a similar type of topological result

for a much more general class of nonlinear circuits; namely, circuits allowing

all 4 types of linear controlled sources. They are current-controlled current sources

(CCCS), voltage-controlled voltage sources (VCVS), current-controlled voltage sources

(CCVS), and voltage-controlled current sources (VCCS). Without loss of generality,

we assume all controlled source coefficients to be positive real numbers.

Since resistors having a non-monotonic v-i characteristic will in general result

in multiple solutions for certain values of biasing resistors and dc sources, we

assume all nonlinear resistors to be 2-terminal resistors characterized by strictly-

monotone increasing v-i curves. Moreover, to guarantee that the circuit has at least

one solution, we assume the v-i characteristics to be onto functions, i.e., v •+ °°

as i + °° and v ••*• -°° as i •+ -°\

One is tempted to dismiss the above class of circuits as "too general" because

it is well known that nonlinear circuits containing controlled sources usually

exhibit multiple solutions. For example, all 4 circuits shown in Fig. 1 exhibit
multiple solutions for some R > 0, and for the rather liberal choices of controlling

coefficient a indicated. To see this, note first that the linear one-port to the

right of the nonlinear resistor R, is equivalent to a linear negative resistor.

Indeed, in Figs. 1(a) and 1(b), we have

v = -kRi = R i where R A -kR < 0 . (1)
eq eq =

where k is a positive number depending on a. Similarly, R = -a < 0 in Fig. 1(c)

If a controlled source coefficient is negative, simply transpose the 2 terminals
to obtain a positive coefficient.
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and R = -1/a in Fig. 1(d). The resulting equivalent circuit in Fig. 2(a) can

be solved graphically by the standard load-line method [2]. Note that so long as
R-j is nonlinear, a load line of appropriate slope (or equivalently, an appropriate
value of R <0 in Fig. 2) can always be chosen to intersect the vR-iR curve in
at least 2 points.

The above examples seem to support the belief that no general existence and

uniqueness theorem could be derived, let alone the topological condition, for

nonlinear circuits containing controlled sources.

To show that the task is far from hopeless, note that if we only transpose the

2 terminals of each controlled source in Fig. 1, then R would become positive and

all 4 "transposed" circuits would have only one solution for all a > 0 (because the

slope of the load line in Fig. 2(b) would become negative, resulting in only one

intersection with any strictly monotone-increasing curve). This observation suggests

the possibility that indeed it may be possible to derive some "topological structure"

which guarantees uniqueness of solution.

Our main contribution in this paper is to derive several topological criteria

for testing various classes of nonlinear circuits for unique solution.

Section 3 presents 6 topological criteria for testing the following 4 special

classes of circuits by inspection:

1. Circuits containing one controlled source of any type.

2. Circuits containing two controlled sources of the same type.

3. Circuits containing two controlled sources of any type.

4. Circuits containing any number of controlled sources of the same type.

Section 4 presents the main theorems (Theorems 7 and 8) of this paper.

Theorem 7 presents the topological criteria for testing circuits containing all

4 types of controlled sources subject only to an interconnection assumption which

is satisfied in most practical circuits.

Theorem 8 presents the general topological criteria from which the criteria in

Sections3and 4 are derived. This general result is applicable to any nonlinear

resistive circuits containing all 4 types of controlled sources. The proof of the

main topological criteria is extremely involved. Consequently, in Section 5 we have

broken up the proof into several lemmas so that the trees can be separated from the

forest. Because the proofs of the lemmas are rather technical, they are collected

in the Appendix. Readers interested only in the applications may skip this section

without loss of continuity.
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2. Notations, Symbols, Graph Operations, and Assumption

In order to state the various topological criteria in this paper simply, and

without ambiguity, it is essential that all notations, symbols, and graph operations

be defined precisely. We will collect all of them here so that readers who have

forgotten them can turn quickly to this short section for reference. To help the

reader in remembering some of the more commonly used notations and terminologies,

we have carefully chosen mnemonics for deciphering them.

A. Graph Notation

1. Each independent voltage source, independent current source, or 2-terminal

resistor (linear or nonlinear) is represented by a directed edge whose direction

can be arbitrarily assumed.

2. Each of the 4 types of controlled sources is represented by a pair

of directed edges whose directions are specified in Table 1. Here, the
directions are uniquely determined by the type of controlled source and must be

adheredtoreligiously.

To help remembering the notation, note that

1) the edge associated with a + and - sign is directed from + to -. This applies
to both the input edge (controlling voltage) of a VCCS or VCVS, and to the

output edge (controlled voltage) of a CCVS and VCVS.

2) the input edge associated with the short-circuit (controlling current) of a CCVS
or CCCS is directed in the same direction as the controlling current i.

3) the output edge associated with the controlled current source of a VCCS or CCCS

is directed opposite to the arrow head inside the diamond-shaped symbol.

B. Symbol

Node numbers are always enclosed by a circle. The 2 nodes associated with the
input (resp., output) port of each controlled source are labelled by the same number
with a prime to distinguish them; e.g., @ and (£) .

The 2 edges associated with each controlled source are labelled by the same

nu,nber with a hat "~" added to that of the output edge. For example, edges 5 and 5

denote the input and output edge of controlled source 5, respectively.

C. Graph Operations

The topological criteria in the following sections require the given graph G to
be reduced into various simpler graphs via a combination of the following graph

operations:

2Unlike 1) and 2), this notation is somewaht unconventional if not occasionally
confusing. However, much more is gained in the resulting simplicity of the
topological criteria.
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1. Open-circuit Operation Q(»)

Given an edge k, the operation 0(k) deletes the connecting line but leaves the

nodes intact as shown in Fig. 3(a).

2. Short-circuit Operation S(»)

Given an edge k, the operation S(k) coalesces the 2nodes into one node as shown

in Fig. 3(b).

3. Open/Short Operation 0/S[*)

(a) Given a resistor edge R, the operation 0/S(R) A 0(R) or S(R), i-e., replace R

by either Fig. 3(a) or Fig. 3(b).

(b) Given a pair of edges associated with a controlled sources CS of any type, the

operation 0/S(CS) consists of open-circuiting one edge (either the input or output

edge) and short-circuiting the second edge, as shown in Fig. 4.

4. Zero Operation Z(»)

This operation sets an independent source, or a controlled source to zero in

the usual way:

(a) Given an edge Es corresponding to an independent voltage source, the operation
Z(ES) A S(E ); i.e., short-circuit E .
(b) Given an edge I corresponding to an independent current source, the operation

Z(Ig) A 0(IS); i.e., open-circuit Ig.
(c) Given a pair of edges associated with a controlled source of any type, the

operation Z (CS) transforms the 2 edges (k,k) in accordance with that shown in

Fig. 5 for each of the 4 types of controlled source.

D. Assumption

Throughout Sections 3 and 4, we make the following interconnection assumption

(this assumption is extremely weak and is satisfied by most circuits of practical

interest):

INTERCONNECTION ASSUMPTION

1. There is no loop made up exclusively of the following type of edges:

1) DC voltage source

2) Output (controlled) edge of CCVS or VCVS

3) Input (controlling)edge of CCVS or CCCS

2. There is no cutset made up exclusively of the following type of edges

1) DC current source

2) Output (controlled) edge of CCCS or VCCS

3) Input (controlling)edge of VCVS or VCCS
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Figures 6(a) and (c) (resp. 6(b) and (d)) give 2 examples of circuits which violate

the condition 1 (resp. 2) of the Interconnection Assumption.

3. Topological Criteria by Inspection

In this section, as well as the following section, it is of fundamental

importance to consider a particular graph having a special topological structure.

Since this graph pertains only to a reduced network containing exclusively of

controlled sources, the "input" edges will be labelled l,2,...,n and the "output" edges

will be labelled T,2,...,n, as shown in Table 1. To help visualize this structure

consider a typical cactus plant shown in Fig. 7(a), consisting of leaves (shaded area)
"hinged" between the top and the bottom only. The graph made up of the boundaries

of the leaves, as shown in Fig. 7(b), is called a cactus graph iff it satisfies the

following properties: it is made of 2n edges l,2,...,n, l,2,...,n and:

1) it is connected

2) every loop is made of exactly 2 edges, k and k+1 (k = l,2,...,n; n+1 =1)

3) every cutset is made of exactly 2 edges

Formally, a cactus graph is defined by a fundamental loop matrix having the following

structure

1

B=3 ' e. 0 ^ ! 1 ^ (2)

1 2 3 ••• n

0 e

e-j 0

e2 0 0
n

o ••,:,•

•V ^ *>

1 2 3

1

1

0

0

where e. = +1. In Figs. 7(c)-(e) are shown several cactus graphs.

Note that each leaf of a cactus graph consists of 2 edges labelled consecutively

(except the last number or when the graph has only 2 edges), one pertaining to an

input edge of one controlled source, the other to the output edge of another

controlled source. These 2 edges form a loop. In the following topological criteria,

each loop associated with a leaf of a cactus graph is said to be similarly directed

iff the 2 edges are directed in the same direction (clockwise or counterclockwise).
In this section, we present 6 topological criteria for determining, by

inspection, whether a given circuit belonging to the 4 special classes considered
below has a unique solution. For each case, the criteria is applied to one or more

simplified graphs obtained from the graph G by various graph operations described
in Section 2. Here G denotes a connected graph associated with a resistive nonlinear
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circuit N containing 2-terminal linear positive resistors, 2-terminal nonlinear

resistors characterized by a continuous strictly-increasing onto function,

independent sources, and linear controlled sources with positive controlling

coefficients. Proofs will be given in Section 5 after the proofs of Theorems 7

and 8.

A. Circuits Containing One Controlled Source of Any Type

Theorem 1 (One Controlled Source)

Let N contain at most one controlled source. Then N has a unique solution
3

for all circuit parameters if and only if the associated graph G can not be reduced

to the connected 2-edge graph shown in Fig. 8, which is a one-leaf cactus graph

with no simi 1arly-directed loop, using only the following graph operations:

(a) Apply Z(ES) to each voltage source and Z(IS) to each current source.
(b) Apply 0/S{R) to each resistor.

Example 1 Applying Theorem 1 to the circuits shown in Fig. 9, we find only the

graphs associated with Figs. 9(a), (c), (e) and (g) can not be reduced to the graph

in Fig. 8 (recall from Table 1 that the output edge associated with the controlled

current source should be directed opposite to that of the arrow head). Hence, only

these 4 circuits have a unique solution. The other circuits on the right (obtained

by transposing the controlled source terminals on the left) have multiple solutions

for some circuit parameters.

Remark: After a little practice, Theorem 1 can be applied directly to the circuit

without even drawing a graph.

B. Circuits Containing 2 Controlled Sources of the Same Type

Theorem 2 (Two Controlled Sources)

Let N contain 2 controlled sources of the same type. Then N has a unique

solution for all circuit parameters if and only if the associated graph G can not

be reduced to any one of the 2-1 eaves cactus graph in Fig. 10 with 0 or 2 similarly

directed loops by using only operations (a)-(b) (from Theorem 1), or to the one-leaf

cactus graph shown in Fig. 8 using only operations (a)-(b) and either operation

(c) or (d) below:

(c) Apply Z(CS) (defined in Fig. 5) to one of the 2 controlled sources.

3
Throughout this paper, the phrase "for all circuit parameters" means for any choice
of positive resistances for the linear resistors, any value of dc voltage and current
sources, and any positive controlling coefficient a for the controlled sources.

Note the edges labelled 1 and T are associated with the controlled source.

-7-



After operations (a) and (b), the resulting graph Gcs contains only 4 edges
(associated with the 2 controlled sources). Relabel these edges as {1, f} for
controlled source 1 and {2, 2} for controlled source 2. The reduced graph G^
is said to have a complementary tree structure if both input edges {1, 2} and

output edges {T, 2} form atree of Gcs. Since operation (b) allows each resistor
to be either open or short circuited, 2m graphs G~s may be generated for an
m-resistor circuit, though not all of them will have a complementary tree structure,

(d) Applying 0/S(CS) (defined in Fig. 4) to each reduced graph Gcs which possesses
a complementary tree structure.

All the disallowed two-leaves cactus graphs are shown in Fig. A.l.

Example 2 Consider the circuit shown in Fig. 11(a). Applying operations (a) and

(b), the only 4-edge subgraph of the form in Fig. 10 is shown in Fig. 11(b). However,

this graph is allowed because the number of similarly directed loops is one.

So we proceed and apply operation (a) 0(IS), (b) S(R.,), S(R2), S(R3), 0(R4) and
(c) Z(CS) (to controlled source #1) and obtain the 2-edge graph shown in Fig. 11(c).

But this too is allowed because the disallowed graph in Fig. 8 has an oppositely

directed loop.

So we proceed further, this time we apply operation (a) 0(I$), (b) S(R-j), S(R2),
S(R3), 0(R4) and (c) Z(CS) (to controlled source #2) and obtain the 2-edge graph
shown in Fig. 11(d). Since this graph is disallowed in Fig. Q, it follows from .

Theorem 2 that this circuit does not have a unique solution.

The reader should verify that if we reverse the reference direction of i-j and/or
i2 in Fig. 11(a), the resulting circuit also does not have a uniqje solution.
Example 3 Consider the circuit shown in Fig. 12(a). Applying only operations (a)

and (b), no disallowed 2-leaves cactus graph is found. We proceed further applying

operations (a), (b), (c) and (a), (b), (d). In each case, we obtain either the

one-leaf cactus graph shown in Fig. 12(b) or 12(c) respectively. Since neither

is disallowed by Fig. 8, and since we have exhausted all combinations, we conclude

that this circuit has a unique solution.

On the other hand, if we reverse the reference direction of i-j, the circuit
does not have a unique solution.

Example 4 Consider the circuit shown in Fig. 13(a). It is easily seen that

operations (a) and (b) can not give rise to any of the disallowed 2-leaves cactus

graph. For example, applying S(ES), 0(IS), 0(R-j)» S(R2) and S(R3), we obtain the
4-edge graph shown in Fig. 13(b).

'Applying operations (a), (b) and (c), or (a), (b) and (d), we find it is

impossible to reduce the graph to a 2-edge graph in Fig. 8. For example, applying
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operation Z(CS) to the controlled source edge {1, 1} in Fig. 13(b) gives us a reduced
graph with 2 self-loops in Fig. 13(c), which is not in the form of Fig. 8. Note

that the graph in Fig. 13(b) (obtained by operations (a) and (b)) does not possess

a complementary tree structure. Hence we do not have to apply operation (d) in

this case.

All told, we conclude the circuit in Fig. 13(a) has a unique solution for all

circuit parameters, and regardless of the reference direction of i-j and i2.
Example 5 Consider the circuit in Fig. 14(a). Note that the reduced graph obtained

by applying operations (a) and (b) can never possess a complementary tree structure

because node (3) is connected only to output edges of the 2 controlled sources,

thereby preventing the input edges to form a tree. Hence, operation (d) need not

be carried out.

Remember, however, that we must exhaust all possible operations stipulated in

Theorem 2 before drawing a conclusion. Indeed, applying operations (a), (b), and

(c), it is possible to obtain either the graph shown in Fig. 14(b), or 14(c). Since

neither graphs are of the form in Fig. 8, we conclude this circuit has a unique

solution.

Remark: Theorem 2 is valid only if the 2 controlled sources are of the same type.

To see this, consider the network shown in Fig. 15(a) which contains a CCCS and a

CCVS. Note that applying operations S(R-j) and 0/S(CS) (controlled source #2) we
obtain the graph shown in Fig. 15(b), which was disallowed in Fig. 8. Yet, using

Theorem 3 below, we will see that this circuit has a unique solution.

C. Circuits Containing 2 Controlled Sources of Any Type

Theorem 3 (Two Controlled Sources)

Let N contain two controlled sources of any type. Then N has a unique solution

for all circuit parameters if and only if by applying the operations (a), (b), and

(c) (in Theorems 1 and 2), the associated graph G can not be reduced to any of the

graphs disallowed in Theorem 2, or to any of the graphs described by (l)-(3) below.

(1) the graphs in Figs. 16(a) and (b)

(2) the graphs obtained from those in (1) by exchanging 1 and 1 by 2 and 2,

respectively

(3) the graphs obtained from those in (1) and (2) by changing the directions of

two edges among the edges 1, 1, 2, and 2.

Example 6 Consider the circuit in Fig. 15(a). By inspection, we find the associated

graph G can not be reduced to a two-leaves cactus graph, or to the graphs described

in (l)-(3) above by using only operations (a) and (b). Furthermore by using

-9-



5
operations (a), (b), and (c) we cannot get a one-leaf cactus graph. Thus the

network has a unique solution.

However, if the direction of i2 is changed, then the disallowed graph in
Fig. 16(b) can be obtained. Therefore in this case the solution is not unique.

Example 7 Consider the network in Fig. 17(a). In this case we cannot obtain any

4-edges disallowed graph by applying operation (a) and (b). By applying the operations

(a), (b) and (c) we have only two one-leaf cactus graphs in Figs. 17(b) and (c), both

of which are allowed. Therefore the circuit has a unique solution.

However, if the direction of v, and/or i*2 is changed, then the solution is not
unique.

D. Circuits Containing Any Number of Controlled Sources of the Same Type

Before stating the result we need to define some terminology and operations

which are the generalization of those mentioned previously.

Let Gq be a graph composed of n pairs of edges (k,k) (k = l,2,...,n)
corresponding to n controlled sources. Then GQ is said to have a complementary tree
structure if it is connected and both the input edges {k; k = l,2,...,n} and the

output edges {k; k = l,2,...,n} form a tree of Gq.
As the generalization of operations (c) and (d) the operations (c1) and (d*)

are defined as

(c') Apply Z(CS) to some (possibly none) controlled sources.

(d1) Apply 0/S(CS) to some (possible none) controlled sources if the graph

has a complementary tree structure.

Theorem 4

Let N contain only CCCS's or only VCVS's. Then N has a unique solution for

all circuit parameters if and only if the associated graph cannot be reduced to any

of the cactus graphs with an even number (including zero) of similarly-directed

loops by applying operations (a), (b), (c1) and (d1).

Example 8 Consider the network in Fig. 18(a). Let the controlled sources be

denoted by (k,k) (k = 1,2,3). By inspection we can see that the network has a

unique solution as follows. We look for cactus graphs obtained from the associated

graph G. Note that there exists no cactus graph including all edges k (k = 1,2,3).
By applying operations (a), (b) and (c') we can obtain the cactus graphs in

Figs. 18(b) and (c). To apply operation (d1), we must first look for graphs with a

complementary tree structure by applying operations (a), (b), (c*). These graphs

are shown in Figs, (b)-(d). Applying operation (d1) to the graph in Fig. (d), we

5Note that the 1-leaf cactus graph in Fig. 15(b) was obtained using operation (d)
in Theorem 2. But this operation is not allowed in Theorem 3.
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obtain the cactus graphs in Figs, (e) and (f). Since all cactus graphs obtained

above have one similarly-directed loops, we conclude the network has a unique solution

Example 9 Consider the network in Fig. 19(a). Let the controlled sources be denoted

by (k,k) (k = 1,2,3) in the associated graph G. Let us look for all the cactus

graphs obtained from G. Note that there exists no three-leaves cactus graphs. By

inspection we see that there exists no cactus graph including edges 1 and 3, or

edges 2 and 3. We can get the complementary tree structure graph in Fig. 19(b) by

applying operations (a) and (b). Then by applying operation (d') to the graph in

Fig. 19(b), we get the cactus graphs in Fig. 19(c) and (d). Furthermore we can get

a cactus graph in Fig. 19(e) by applying operations (a), (b)* and (c1). We can

easily verify that the cactus graphs obtainable by operations (a), (b), (c') and

(d') are only those shown in Figs. 19(c)-(e). Since the graph in Fig. 19(d) is

disallowed, we see that the solution of the network is not unique.

However, if the direction of i3 is reversed, then the network has a unique
solution.

As is seen from Example 12 in Section 5, Theorem 4 cannot be applied to

networks containing CCVS's or VCCS's. However the following two theorems hold.

Theorem 5 Let N contain only CCVS's or only VCCS's. Then N has a unique

solution for all circuit parameters if the associated graph cannot be reduced to

any of the cactus graphs with an even number (including zero) of similarly-directed

loops by applying operations (a), (b), (c') and (d').

Theorem 6 Let N contain only CCVS's (resp. VCCS's). Suppose that each output

edge of the CCVS's (resp. VCCS's) is in series (resp. parallel) with some linear

or nonlinear resistor. Then the same conclusion as in Theorem 4 holds.

4. Main Theorems
———————

Let Gq denote a graph with a complementary tree structure, and let By denote
the left submatrix of the fundamental loop matrix

B= [BT :1] (3)

Here, T denotes the tree made of the input edges and 1 means the identity matrix.

Then Gq is said to have a positive (resp. negative) complementary tree structure iff
the determinant of By, namely, |By| is positive (resp. negative).

Here Gq corresponds to a reduced network made of controlled sources only.
The submatrix By will henceforth be referred to as the main part of the fundamental
loop matrix B. Similarly, D, is called the main part of the fundamental cutset

matrix DA[1: DLJ.
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Let N be a nonlinear resistive circuit composed of positive linear resistors,

dc sources, nonlinear resistors, and controlled sources which satisfy the conditions

mentioned in the Introduction. The following two theorems are the main results of

this paper.

Theorem 7 Let N satisfy the interconnection assumption. Then N has a unique

solution for all circuit parameters if and only if the associated graph G cannot be

reduced to a graph with a negative complementary tree structure by applying operations

(a), (b), and (c') (in Theorem 4).

Theorem 8 (General Case)

Let N be a generai circuit. Then N has a unique solution for all circuit

parameters if and only if by applying operations (a), (b), and (c1) to the associated

graph , we can obtain at least one graph with a positive complementary tree structure,

or a graph with a negative complementary tree structure, but not both. (A one-node

graph is regarded as a positive complementary tree structure graph.) In applying

operation (•:'), the following restriction must be kept.

Restriction: Suppose that in G there exist some loops (resp. cutsets) which do not

satisfy the Interconnection Assumption. Then in applying operation (c1) we have

to keep intact a set of edges such that by opencircuiting (resp. short-circuiting)

these edges the loops (resp. cutsets) violating the Interconnection Assumption

disappear.

For example, in Fig. 6(c), at least one of the 3 edges {i-|i2,a-ji-|} forming the
violated loop must be kept intact.

The proofs of Theorems 7 and 8 are given in Section 5.

Example 10 Consider the network in Fig. 20(a), which satisfies the Interconnection

Assumption. By applying operations (a), (b), and (c'), the graphs with a complementary

tree structure are obtained as shown in Figs. 20(b)-(h). Since all these graphs

have a positive complementary tree structure, it follows from Theorem 7 that the

network has a unique solution.

Example 11 Consider the networks in Fig. 6 which do not satisfy the Interconnection

Assumption.

For the network in Fig. 6(a) (resp. 6(b)) we can obtain only one complementary

tree structure graph in Fig. 21(a) (resp. 21(b)). Note that a one-node graph

cannot be obtained in virtue of the Restriciton in Theorem 8. Thus we conclude from

Theorem 8 that both networks in Figs. 6(a) and (b) have a unique solution.

For the network in Fig. 6(c), we can obtain only two complementary tree structure

graphs in Figs. 21(c) and (d). Since both graphs have a negative complementary tree

structure, it follows from Theorem 8 that the network in Fig. 6(c) has a unique

solution.
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On the other hand, for the network in Fig. 6(d) we obtain two complementary

tree structures in Figs. 21(e) and (f). The graphs in Figs. 21(e) and (f) has,
respecitvely, a positive and a negative complementary tree structure. Therefore

we conclude from Theorem 8 that the network does not have a unique solution.

However, if the direction of v2 is reversed, then the network has a unique
solution.

Example 12 Consider the network in Fig. 22(a), which contains 3 CCVS's. By

applying operations (a), (b), and (c'), we obtain the graphs with a complementary

tree structure in Figs. 22(b)-(h). Since all these graphs have a positive

complementary tree structure, we conclude from Theorem 7 that the network has a

unique solution (Note that the graph in Fig. 22(c) is not a cactus graph.)
By the way if we apply operations (a), (b), (c'), and (d') to this network,

we can obtain the cactus graph in Fig 22(i), which has an even number of

similarly directed loops. Therefore it follows that Theorem 4 cannot be applied

to this network.

If in Fig. 22(a) there is a resistor in series with the controlled voltage

source #3, then we can apply Theorem 6. In this case we can obtain the cactus

graph in Fig. 22(i) by applying operations (a), (b), (c'), (d'). Therefore we
conclude from Theorem 6 that the network does not have a unique solution.

5. Outline of the Proof of Theorems

First we consider the case where

the Interconnection Assumption is satisfied. (4)

Since a CCCS and a VCVS are realizable as a combination of a CCVS and a VCCS, we

will restrict ourselves first to networks containing CCVS's and VCCS's only as

controlled sources.

5.1. Analytical Condition for the Solution to Be Unique

Consider the network N in Fig. 23 which consists of k CCVS's, I VCCS's, m

nonlinear resistors, and a linear (2k+2Jt+m)-port NQ composed of passive linear
resistors and dc voltage and/or current sources. Let CCVS's be connected to the

first 2k ports of NQ, VCCS's to the next 21 ports and nonlinear resistors to the
last m ports as shown in Fig. 23. Let the port-currents and the port-voltages be

i and v (u = 1,2,...,2k+2£+m), respectively, and let

!a = Va =

-13-



by

k+1 rk+l

xb- Vb =

2k r2k

2k+l r2k+l

Jc = V

2k+i '2k+£

2k+A+l 7k+Jl+1

V Vd =
'2k+2£ r2k+2£

'2k+2£+l r2k+2A+l

xe- Ve =

'2k+2A+m r2k+2&+m

The characteristics of CCVS's, VCCS's, and nonlinear resistors are represented

V.

Ij =

-V. =

0

AIa
0

BVc

F(Ie)

(5a)

(5b)

(5c)

(5d)

(5e)

where

A =

B =

0 <

0 <

diag[(*i »a2,,•• 'ak^

diag[31,B2,...,$Jl]

a < °° (y = 1,2,... ,k)

3y <°° (p =1,2,...,£)

-14-
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f,(1lvl2k+2il+l

Fde) - (7a)

Vi2k+2£+m
and

f (y = l,2,...,m) are strictly monotone-increasing functions mapping R' onto R1

(7b)

Suppose for the moment the following assumption is satisfied.

Assumption 1 The (2k+2£+m)-port NQ has an impedance representation.
The case where Assumption 1 does not hold will be treated in 5.4. Then NQ can

be represented by

"aa •ab "ac 'ad Se

"ba Abb ^bc *"bd ^be

•ca ^cb cc •cd "ce

•da £db L6c Ld6 L6e

"ea •eb "ec •ed ee

_Ia1 Ea
h Eb
lc + Ec
*d Ed

Equations (5)-(8) are the basic equations for our present analysis. Set

& =

zaa Zab Zad Zae
Zba"A zbb Zbd zbe

Zca zcb Zcd-B-' Zce
zea Zeb Zed Zee+D

(8)

(9)

where D is a positive definite diagonal matrix.

Lemma 1 For any given values of linear resistors, the network in Fig. 23 has a

unique solution for all A, B, and f satisfying (6b) and (7b) if and only if

(-1)*A >0 for all A, B and D (10)

throughout this section we assume that A, B, and fy satisfy (6b) and (7b),
respectively, and that D is a positive definite diagonal matrix, unless otherwise
stated.
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Proof: See Appendix 1.

Let K and L be sets of numbers {l,2,...,k} and {1,2,...,£}, respectively.

Let K.j and K2 (resp. L, and L2) be apartition of K(resp. L). That is,
K=K1 u K2 and K-, n K2 = <J>, and so on. Some of K and Ly (y =1,2) may possibly
be the null set. Set

k k 9, m

aa ab ad ae

Zba Zbb Zbd Zbe

ca cb cd ce

Zea Zeb Zed Zee+D

=[P!P2 •- Pk | <l! •'• %\r] "• rj,!si '•• s«? OD

and

K.' 1*1*2 — t|ti«h ••* \ =ul "• UA Is! "• sm1

where

p>v for y € K2
\ ~ \ zero column vector except for the (k+y)-th element =-1

L for y G^

frp for ^ e L2
uy = )zero column vector except for the (2k+y)-th element =-1

L for y € L,.

Lemma 2 The condition (10) is equivalent to the following condition (14).

H) A« >0 for all D and for any partition of K and L
and

(-1)^ >o for some Dand for at least one partition of Kand L

Proof: See Appendix 2.

It is easily verified by (4) that

(-1)\, >0 for K-| =K, K2 =4>, L1 =<J>, L2 =L and D•*• «.9
Thus the condition (14b) is always satisfied.

Therefore it remains to investigate only the condition (14a).

9D •+ » means that each diagonal element of D is sufficiently large.

-16-
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5.2. Analysis of the Linear Network

We will investigate the condition for (14a) to hold for all values of linear

resistors and for all D. Let

aa ab ac ad ae

Zba Zbb Zbc Zbd Zbe

Z = Zca Zcb Zcc Zcd Zce

Zda Zdb Zdc Zdd Zde
z«a ZflK Zar 1aA Z +D
ea eb ec ed ee

(16)

Equation (16) is the impedance matrix of the network in Fig. 24 where NQ is the
network obtained by short-circuiting dc voltage sources and open-circuiting dc

current sources, and y (y = l,...,m) denote the linear (positive) resistors. In

order to investigate the condition (14a) it suffices to consider Z.

The associated graph G of the network in Fig. 24 is defined as the graph

obtained from Fig. 24 by replacing each resistor (including yu)» each port
y (y =1,2 k), each port y+k (y = l,2,...,k), each port 2k+y (y = 1,2•...,£),

each port 2k+£+y (y = 1,...,£), and each port 2k+2£+y (y = l,...,m), respectively,

by oriented edges R , a , b , c , d , and e . The direction of R is arbitrarily

chosen. In Section 5.2 the directions of a , b , c , d and e are assumed to be

the same as those of port currents, though

the directions of b , c and d are opposite to those defined
in Table 1. *f v p -^ (17)

We call R, a , b , c , d , and e , respectively, R-, a-, b-, c-, d-, and e-edge.

The graph G is connected by assumption. We further assume that

Assumption 2 G has no loop consisting of a-, b-, c-, d-, and e-edges only.

The case where Assumption 2 does not hold will be treated in Section 5.4. Let

ihq = rank of G - total number of a-, b-, c-, d-, and e-edges (18)

From Assumption 2 it follows that mQ > 0.

From Assumption 2 we can modify G by adding iru g-edges g (y = l,2,...,m0) so that
all the a-, b-, c-, d-, e- and g-edges form a tree, say T, of G. For simplicity, we

denote hereafter the modified graph by the same symbol G. Let the main part of the

fundamental cutset matrix of G with respect to T be D|_ and let the rows of Dj_ be
arranged in the order of a-, b-, c-, d-, e-, and g-edges. Without loss of generality

we will investigate the condition

-17-



H)\,>0 (19)
for

^ ={1,2,...,^} (0< ^ < k)

2 • (20)
L| = {1,2,...,^} (0< Z} < Jt)

L2 = U-,+1,...,*}

Set

ko = k-kn
21 (21)

Then D, can be written as in Fig. 25 where M={l,2,...,m} and MQ = {1 ,2,...,itiq},
and a„ means the set of a-edges a (y e K-.) and so on. Let

N-i y i

H=Dl®"^' (22)

where the prime means the transpose of a matrix and® is a diagonal matrix whose
diagonal elements are the values of linear resistors (including y in Fig. 24).
Lemma 3

h)\= H) 2 ] Vi \ (23)
where 60 is the determinant of the submatrix shaded by oblique lines in Fig. 26.
Proof: See Appendix 3. i+n2+Z.+k}

Since |H| > 0, it is sufficient for us to consider the sign of (-1) 6q.
By using (22), we can rewrite 6Q as

*o =idLi®'1dl2I (24)
where D, (resp. D, ) is the submatrix of D, in Fig. 25 shaded by oblique (resp.

Ll L2 L
vertical) lines.

Let ®0 denote an arbitrary set of k^+a+mQ R-edges and ^ (resp. 62) be
the determinant of the submatrix of D. (resp. D, ) consisting of all the rows of

1 y x^vD, (resp. D, ) and the columns corresponding to (H)0 (See Figs. 25 and 27). Let
Ll L2

6= (-1) 2 ] hfr . (25)
Then

-18-



Lemma 4 We can choose the values of resistors so that

(-1)\<0
if and only if there exists a ®Q such that

6 < 0 .

(26)

(27)

Proof: See Appendix 4.

Suppose that (27) holds for some (H)Q. Since 61 and 62 (and therefore 6) depend
on only the rows aK ,bK ,CL, dL, and gM and the columns ®Q of DL, we define
d[°) as shown in Fig. 27. Then 61 (resp. 62) is the determinant of the submatrix
shaded by the oblique (resp. vertical) lines in Fig. 27. By carrying out the

following operations (i)-(iii) appropriately, we can transform D£ ' in Fig. 27 into
dP' in Fig. 28 where Ip IU, and r3 are nonsingular diagonal matrix whose elements
are +1 and

= -1

(i) Multiply some columns by +1.

(ii) Add the above columns to other columns

(iii) Interchange the columns.

Set

P =
1

Q =
!1

(=-1).

Since

«i =eK-,1 jr2i |r3i |P|
^\

41*2«2= H) ' ^^[^1 |r2||r3||Q| (£=±D )

=H) 12 ] e|r1||r2nr3|,

we have by (30) and (25)
J

6 - (-1) '|P|.

-19-
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Set

a„ c, bw d,
a r- Kl L2 . Kl 4-,
a

,(2) = Kl
L2

(32)

5.3. Graph Theoretical Interpretation of D*2'
_ _.

Lemma 5 •Let Gv ' be the graph obtained from G by the following operations:

(i) Apply S(«) to each e-edge and 0(») to each g-edge

(ii) Apply S(-) to R-edges belonging to (H)q and 0(») to all of the remaining
R-edges.

(iii) Apply S(*) to edges a„ and b„ and 0(») to edges cL and d^ .
(21 c 2 11

Then Gv ' is a connected graph with a complementary tree structure and has a

fundamental cutset matrix d' ' in (32) if and only if 6^0.
Proof: See Appendix 5.

Lemma 6 Suppose that G^ ' obtained in Lemma 5 has a complementary tree structure.
Then 6 in (31) is positive (resp. negative) if and only if G* ' has a positive
(resp. negative) complementary tree structure.

Proof: See Appendix 6.

Lemma 7 Under the Interconnection Assumption we can obtain a (connected) one-node

graph by applying operations (a), (b), and (c') to G.

Proof: See Appendix 7.

From Lemmas 1 to 7, we conclude that Theorem 7 is true for the networks in

Fig. 23 if Assumptions 1 and 2 are satisfied.

5.4. On the Interconnection Assumption and Assumptions 1 and 2

Lemma 8 Theorem 7 holds for the network in Fig. 23. (That is, Assumptions 1 and 2

are not necessary.)

Proof: See Appendix 8. Finally we obtain

Lemma 9 Theorem 8 holds for the network in Fig. 23.

Proof: See Appendix 9.

5.5. The Case Where Four Types of Controlled Sources Are Included

Let N be an original circuit containing four types of controlled sources.

As is well known, a CCCS and a VCVS in Figs. 29(a) and (b) can be realized by a

cascade connection of a CCVS and a VCCS as shown in Figs. 29(c) and (d),

respectively. Let Nm be the circuit obtained from N by replacing CCCS's and
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VCVS with its equivalents in Figs. 29(c) and (d). Let the graphs associated with

N and N be G and G , respectively. Note that if G satisfies the Interconnection
m m

Assumption, then so do Gm.
Consider first a CCCS. Renumber the edges of the CCCS and its equivalent as

shown in Fig. 30. Since Nm contains only CCVS's and VCCS's, we can apply Lemma 8
to Nm. Let one of the complementary tree structure graphs derived from Gm by
operations (a), (b), and (c') be G^ . Then there exist at most four cases:

1) Edges T, 1', 1", and V in Fig. 30(b) remain in G .
0 „

2) Edges V and T are short-circuited and edges 1" and 1" remain in G .

3) Edges V and 1' remain in Gm and edges 1" and 1" are open-circuited

4) Edges V and 1' are short-circuited and edges 1" and 1" are open-circuited.

However, the cases 2) and 3) never occur since Gm has a complementary tree structure

In case 2), for example, edge 1" form a self-loop.

Applying to G the same operations carried out to Gm by identifying 1' and 1"
as 1and 1, respectively, yields the graph GQ. Then the cases 1) and 4) mentioned
above correspond, respectively, to

V) edges 1 and 1 remain in GQ
4') edge 1 is short-circuited and edge T is open-circuited.

To avoid ambiguity, let us introduce the following: Let G be a graph with a
complementary tree structure. Then we denote the main part of the fundamental loop
matrix of G with respect to a cotree T by MFL(G;T).

Let

BmoT =MFL^Bmn; outPut ed9es)
By =MFL(GQ; output edges)

Then referring to Figs. 30(a) and (b), we can write BmoT and BoT as follow:

V

B T = 1"moT

V 1

phi B12 B13
-1 0 0

B31 B32 333

-21-
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1

1

B12

• • •

B13
•

•

• _B32 B33_
BoT = 1 • (35)

From (34) and (35) it follows that

lBmoTl " lBoll (36>

As easily seen, Eq. (36) holds for the case where there are many CCCS's.

In the case of VCVS's we obtain the same result as (36) since the graph

representation of Fig. 29(d) is also given by Fig. 30(b).

Thus we conclude that if a graph with a positive (resp. negative)

complementary tree structure is obtained fronrG , then (another) graph with a

positive (resp. negative) complenentary tree structure can also be obtained from

G by operations (a), (b), and (c'). Therefore it is unnecessary to replace

CCCS's and VCVS's by the more complicated equivalent circuits in Figs. 29(c) and

(d). That is, Theorems 7 and 8 hold for circuits containing 4 types of controlled

sources.

5.6. On Theorems 1 to 6

Theorems 1 and 3 follow immediately as special cases of Theorem 7. For

Theorems 2, 4, 5, and 6, we need only consider circuits containing CCCS's and

CCVS's. For circuits containing VCCS's and VCVS's, the dual discussion holds.

5.6.1. Proof of Theorem 4 for the case of CCCS

Let N be a circuit which satisfies the Interconnection Assumption and does not

have a unique solution and let G be its associated graph. Then by Theorem 7 we can

obtain a graph GQ with a negative complementary tree structure by applying
operations (a), (b), and (c*) to G.

Let

By = MFL(GQ; output edges) (37)

Then by definition

|BT| < 0 (38)

Lemma 10 Let Bi ' denote an arbitrary principal submatrix of BT. There exists an
operation (c') which operates on GQ to produce a graph Gv ; such that
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BJ1) =MFL(G^; output edges) . (39)

Proof: See Appendix 10.

We can find such a principal submatrix, B|ty, of By satisfying the following
condition:

1) B<2)| <0

s(2)

2) Each principal minor (except for |b| '|) of b| ' is positive or zero.
(2)

Suppose that some principal minors of Bl ' are positive. Then we can choose
(31a principal submatrix B-J- ' such that:

1) B<3)| >0
,(3) ,(2) ,(2)(2) Each principal minor (except for \B\ '\ and Bi ' ) of B\ ' which includes

(3} III
By ' in it is zero.

(21Without loss of generality we can rewrite Bj ' as

Set

(2) = r43) B12~

LB21 B22_

T B22 B21BT B12

Lemma 11 b| ' in (41) has the following properties.
1) |BJ4)|< 0
2) Each principal minor (excluding |b| '|) is zero

(41
3) There exists a graph Gv ' such that

BJ4) =MFL(G^; output edges)

Proof: See Appendix 11.

Lemma 12 G^ ' in Lemma 11 is a cactus graph with an even number of similarly
directed loops.

Proof: See Appendix 12.

-23-

(40)

(41)

(42)

(43)



Lemma 13 The process of obtaining Bi ', b| and Bi ' corresponds to the operation
(41

(c') and that of obtaining Bi ' corresponds to the operation (d').

It follows from Lemmas 10-13 that Theorem 4 holds for the case of CCCS.

5.6.2. Proof of Theorem 5 for the case of CCVS

Let N contain CCVS's. Suppose that we obtain a graph GQ with a complementary
tree structure by applying operations (a), (b), (c'). Let

By = MFL(GQ; output edges) . (44)

Suppose that N has a unique solution. Then we have

|BT|>0 (45)

Since Lemma 10 does not necessarily hold for N, the statement

each principal minor of By is positive or zero (46)

is not necessarily true. However, we can verify that for networks satisfying (45)

and (46) we cannot obtain any cactus graph with an even number of similarly directed

loops. Conversely, if we cannot obtain such a cactus graph then (45) and (46) hold.

From this and from Lemmas 11-13 Theorem 5 follows

5.6.2. Proof of Theorem 6 for the case of CCVS

Consider the network N in which each controlled voltage source is in series

with some resistor. For this network we can prove easily that Lemma 10, as well

as Lemmas 11-13 are applicable. From this we conclude Theorem 6.

Theorem 6 can also be proved as follows: By applying Thevenin's Theorem, we

can transform controlled voltage sources (with a series resistor) into controlled

current sources (with a parallel resistor). Then we can apply Theorem 4 to this

modified network. Now we can easily prove that

if for the modified network we can obtain a graph with a positive (or negative)

complementary tree structure, then the same is true for the original network.

(46)

5.6.3. Proof of Theorem 2

The case of CCCS is a special case of Theorem 4. So we prove Theorem 2 for

the case of the CCVS.

Necessity: Suppose that the network N does not have a unique solution. Then we

see from Theorem 3 that one of the graphs in Fig. 16 or one- or two-leaves cactus

graphs with zero or two similarly-directed loops can be obtained by operations
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(a), (b), (c). If one of the graphs in Fig. 16 is obtained, then we can get at

least one graph in Fig. 8 by applying operation (d).

Sufficiency: Suppose that we obtain a cactus graph GQ with zero or two similarly-
directed loops by applying operations (a), (b), or operations (a), (b), (c), or

operations (a), (b), (d). If operations (a), (b) or operations (a), (b), (c) are
used to derive GQ, then it is apparent from Theorem 3 that the solution is not
unique.

Suppose that operations (a), (b), (d) are used to derive GQ. (In this case,
of course, GQ is a one-leaf cactus graph.) Let G-j be a graph to which operation (d)
is applied. Then G-. has a complementary tree structure. Furthermore we can verify

that G-. is either one of the graphs in Fig. 16. Therefore we see from Theorem 3

that the solution of this network is not unique.

In order to complete the proof we have to show that we can obtain the graph

Gq by applying operations (a), (b), (c). We will omit the detail, but we can show
this by using the following facts:

1) the network satisfies the Interconnection Assumption,

2) the graph G-, in Fig. 16 can be derived from the network.
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Appendix 1. Proof of Lemma 1

Necessity: Consider the case where f (y = l,...,m)are linear functions

that is,

F(IC) = DIC .

Then Eqs. (5) and (8) can be written as

(Al.l)

aa

Zu.-A Z
ba

ca

"ea

Zab Zad
bb Zbd

"ae

:be

Zcb Zcd"B Zce

Zeb Zed ee

BV(

I.

(A1.2)

Equation (A1.2) has a unique solution for all A, B, D and E if and only if

A t 0 for all A, B and D . (A1.3)

From (9) it is easily seen that as D + ~, A •*- 0, and B -*• 0, we have

A+ (-1)

Since the impedance matrix in (8) is nonnegative definite,

Zaa Zab
Zba Zbb

Zaa Zab
Zba Zbb

B"1IIDI

> 0

(A1.4)

(A1.5)

holds in general. The equality in (A1.5) however does not hold because of the

Interconnection Assumption. Since |B| > 0 and |D| > 0, the sign of the right hand

side of (A1.4) is the same as (-1)£. Therefore from (A1.3) and the continuity of
the function, we obtain (10). Thus the condition (10) is necessary for the network

to have a unique solution.

Sufficiency: Suppose that (10) holds. Let

'aa Zab Zad

•11 Zba"A Zbb Zbd
-1

12

"ca

"ae

'be

'ce

Z22 = Zee

•cb

•21

Zcd"B

Zo, = [Z_ Z
ea eb edZ.J

(A1.6)
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Since (10) holds even if D -*•», we have

H)*lzlll >° for a11 Aand B»T0
which means Z,, is nonsingular. On the other hand, we have from (5)-(8)

F(g+AoIe = B0

where

A0 = Z22"Z21Z11Z12

B0 =-Ee+Z21Zl]

(A1.7)

(A1.8)

(A1.9)

The following lemma is well known.

Lemma A.l (Sandberg and Willson [3]) Equation (A1.9) has a unique solution for all

Bq and all F if and only if AQ € pQ.
Aq € p means that

|A0 + D| t 0 for all D.

Since |AQ + D| >0 as D+ », Eq. (ALIO) means that

|A0 + D| >0 for all D

From the identity

I 0

-Z21ZU l

we have

•11 "12

Z21 Z22+D

A= |Zn||A0 + D|

zn zi2
o a0+d

(ALIO)

(Al.ll)

(Al.12)

(A1.13)

From Eqs. (10), (A1.7) and (Al.13) we conclude that (Al.ll) is satisfied. This
completes the proof.

Note that the equality does not hold in (A1.7). For, suppose that |Z,,| =0 for
some A and some B. Since A and B belong to open neighborhoods, there exist some
Aand Bsuch that (-IJ^jZ^I <0, which is not allowed.
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Appendix 2

Consider first the following:

Lemma A.2. Let f(x,,x2,...,x ) be a function of degree one in each variable
x (y = 1,2,...,n). Let S be an open set of points such that S = {x|or < x < 3 ;

y = 1,2,...,n>. Then

f > 0 for all x e s

if and only if the function f evaluated at the "boundary" points where x !

3 (y = l,2,...,n) is nonnegative (at least one of them must be positive).

(A2.1)

% or

Proof of Lemma A.2: By the assumption of Lemma A.2, f can be written as

f = (xrai) fQ + (Bj-x^fj

where

f0 =fo(x2'x3",,,xn^ =p1-o1 TVP-l »X« »^o»• • • »Xp/

B^oTj" f(ai»x2»x3'-",xn'f*| = f] (X^Xg, ' ' ' 'Xn' =

Similarly fp and f, can be written as

f0 = (x2-a2)f00 + (B2-x2)f01

f-[ = (x2-a2)f10 + (Bg-Xgjf^

where
1 ""\

*n\Po»x'3»* •• »xp)?00 =Wx3*-*',xn) =Bo-cto '0VM2,A3

f01 = f01^x3"",xn^ =

11 irA3

'2 "2

j-^- f0(a2,x3,...,xn)

f10 =f10^x3»",,xn^ =B^a^ fl(^2,x3"-*»xn'
Tt t = i t i vX-3» • • • »Xn) = c d~" '1 \^7 >Xq, . • . »X_/B2-B2 '1^2»A3

Continuing this recursive procedure, we finally obtain

f = (xrai)(x2-a2) .... (xn-an)f00-_0

+(xrai)(x2-a2) .... (\_}'%_^)(en-\)foo..Q^
+

+(31-x1)(B2-x2) .... (6n-xn)fn >-b1

-28-
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where f _. is a constant and is obtained by replacing x^ by a (when e = 1)

or by 3 (when e =0). Now if all of f . are nonnegative and at least one
y y 1* n

of them is positive, then f is positive for all x € S.

Conversely, if some of f_ _ _ is negative, then f can be made negative for
ele2"-en

some x € S. If all of f are zero, then f vanishes identically. This
e1e2*--en

completes the proof of Lemma A.2.

Lemma A.2 holds even if some a and 3 are not finite, as demonstrated in the

following example:

Example A.I Let

f(xrx2) = all+bllxr a12+b12x2
a21+b21xT a22+b22x2

(A2.7)

The function f satisfies the condition of Lemma A.2. let S be an open set such

that S = {x|0 < x < »; y = 1,2} . Then f > 0 for all x e S if and only if

l11 a12

l21 a22

'11 d12

>21 a22

> 0

> 0,

lll °12

l21 b22

'11 °12

>21 b22

> 0 (A2.8)

> 0

where at least one of the above equalities does not hold.

Proof of Lemma 2. Consider A in Eq. (9) as a function of a (y = l,...,k) and

3 (y = !,...,£) satisfying (6b). Applying Lemma A.2 to A, we obtain Lemma 2.
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Appendix 3. Proof of Lemma 3

First we shall describe the relation between the matrix H in (22) and the

impedance matrix Z of the network in Fig. 24.

In order to calculate Z, we connect current sources J to each of the a-, b-,

c-, d-t and e-edges, as well as the g-edges. Here, the elements of 0 are arranged

in the order of a-, b-, c-, d-, e-, and g-edges and

J =

Jl

J2k+2Jt+m

0

2k+2Jl+m

_jym0

Let the voltage vector of the current source J be U. Then we have the

standard cutset equation

-HU = J

(A3.1)

(A3.2)

(The minus sign in (A3.2) is cue to the fact that the positive directions of the

voltages are taken opposite tc those of the current sources.) From (A3.2) it
follows that Z is given as the upper left (2k+2£+m) x (2k+2Jl+m) principal submatrix

-1
of H

Next consider A^ for K-,, ~K2, L-, and L2 in (20). Let Z-, be the matrix Z in
Fig. A.2 with the columns aK and dL replaced, respectively, by

0 }k 0 }2k

-1 >kl and -1 Hi

0 }k2+2fc+m 0 H2+£+m

Then A^ is equal to the determinant of the shaded submatrix of Z-j in Fig. A.2. For
the calculation of the above determinant, we can apply Laplace expansion with

respect to the columns a„ and d. . Consequently, we have
Kl Ll

kn+in+kkn

A =H) ^ ] IZ (A3.3)

where Z2 is the submatrix of Z consisting of the rows aK , bK , C|_ , e^ and the

columns aK ,bK, dL ,eM- We can relate |Z2| with aminor of Hby the following
well-known lemma.
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Lemma A.3 [4] Let A be a nonsingular matrix of order n. If B« A" .then for
arbi trary

ii < io < ••• < i,

(- h1 < h2 < ••• < h I

(-D1 ' A'hlh2-h;-p\J^Z-'A .— .. -"V^g-.-W (A3.4)
V2.-V A(ij;:::;")

where l^ < i*2 <••• <ip and i-p <i£ <••• <i'n_p form acomplete system of
indices 1,2 n, as do h] <h2 <-'^hp and h^ <h£ < ••• <h^_p.

Since Z2 is the submatrix of H"1, we can apply Lemma A.3 to |Z2| . By setting

A = H

n = 2k+2jt+m+m0

p * k+k2+ju+m

1 = m(m = l,2,...,k)

\+y =^l4^ =1.2,...,k2)
\z+k+n - 2k+A1+y(y =1,2,...,*2)

ik+k2+Vy =2k+2Uy(y =l,2,...,m)
ny =h4^ =1»2,...,k2)

hk +y =k+^y =1»2»---»k)
nk+k +y =.2k+£+Jl1+y(y =1,2,...,^2)

hk+k2+,2+u =2k+2^(y =l,2,...,m)
we have 9

k^+kk9+U9 , . „ r.|Z2| =(-1) 2 2|Hr16Q (A3.5)

From (A3.3) and (A3.5), we get Eq. (23).
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Appendix 4. Proof of Lemma 4

Suppose that we calculate 6Q in (24) by using the Binet-Cauchy's formula [4].
Since 61 and 62 depend on the choice of (R)q, we write them temporarily as
<5-|(®0) and 62((h)q). Let the principal minor of (H) corresponding to (h)q be
n(®0). Then Binet-Cauchy's formula says that

60 =16,(®0) 62((H)Q)n*1(®Q) (A4.1)

where the summations are taken over all possible combinations of ®Q. Note that
n" (®0) is Positive. If 6>0for each ®Q, then we have by (23), (25) and
(A4.1) {^)hm>0.

Conversely suppose that there exists a ®Q such that 6<0. Then by (A4.1)
we can make (-1) Aw negative by choosing the values of resistors included in (h)0
sufficiently small and those of all other resistors sufficiently large. This
completes the proof.
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Appendix 5. Proof of Lemma 5

First we introduce some notations. Let Gq be a graph having a set E of edges
and a tree T. Let E, and E2 be subsets of E such that E-i n E2 = <j>. Then
Gq(E-| ;E2) is defined as the graph obtained from GQ by applying S(*) to each of
the edges in E-j and 0(») to each of the edges in E2.

Let MFC(Gq; T) denote the main part of the fundamental cutset matrix of GQ
with respect to T. It is well known that

1) Deletion of a row of MFC(GQ; T) corresponds to applying operation S(-)
to an edge belonging to the tree T.

2) Deletion of a column of MFC(GQ; T) corresponds to applying operation
0(«) to an edge belonging to the cotree f.

(A5.1)

Let

g(0) =5<V R®-® >• (A5-2>
0

Then it follows from (A5.1) that G* ' is connected and

D<0) =MFC(G(0); aK .bK ,cL, d,_, gM ). (A5.3)
In order to understand the graphical meaning of D^ ', we need the following

lemma.

Lemma A.4. Let GQ be a connected graph with a tree, T, and let Dq, = MFC(G0; T).
Suppose that the element (i,j) of Dq, is nonzero. Then we multiply the j-th
column of DQL by 1, -1, or 0 and add them to al1 the other columns so that al1 the
elements of the i-th row except for the element (i,j) vanish. We call this operation

"sweeping out by the pivot (i,o)." Let the new matrix obtained by the above

operation be Dq, . Let Gq be the (connected) graph derived from GQ by

1) short-circuiting the edge j of the cotree, and

2) inserting the new edge j so that the edge j and the edge i (tree branch) are

in series, and the edges i and j have the same (opposite) direction in the

fundamental cutset of Gq if they have the same (opposite) direction in the
fundamental cutset of GQ (see Fig. A.3).

Then the edges in T form a tree T of (L and

D0L =MFC(GQ; f). (A5.4)
In addition, applying 0(«) to the edges i and j of G leaves a connected graph.
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Since the proof of Lemma A.4 is rather involved, it is omitted here.

However, we will give an example illustrating Lemma A.4.

Example A.2 Let GQ be a graph shown in Fig. A.4(a). We choose a tree T as
{a,b,c}. Then Dq, is given by

12 3 4 5

'OL

a " 1 1

= b 1 -1 (3
c 1 -1 -1

Applying the "sweeping out by the pivot (b,5)" operation we get

'OL

12 3 4 5

a 1 1
—

b -1

c _-1 1 -1

•V A

Then Dq, = MFC(GQ; T) where Gq is the graph shown in Fig. A.4(b)

Suppose that

(A5.5)

(A5.6)

(A5.7)

Under the condition (A5.7) we can continue to apply the sweeping out by appropriate

privots operation until D; ' in Fig. 28 is obtained. Then from Lemma A.4 it follows

that

d[]) =MFC(G(1); aK1, bK1, CL, dL, gMQ) (A5.8)

Here, g' ' is the graph obtained from G^ ' by short-circuiting each R-edge and
inserting it in series with one of b^,, C, ••, d. «•, d,2 and g»Q as stated in Lemma A.4,
Let
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and

*K1

B(2) =°L2
bKl

dL2

®,

(Q = -1)

G(2) =G(1)(cL1, du, gM0; ®r ®2, ®3)

(A5.9)

(A5.10)

where ®.-(i =1,2,3,4) are sets of R-edges corresponding to the columns T^, r2
r3 and Pin Fig. 28. Then it follows from (A5.1) that

D^ =MFC(G(2^; aK1, bR1, cL2, dL2)

and that

each R-edge in G* ' is in series with one of b^ and d^2 and

has the same direction with it.

Let

g(2) - M *; ®4)J2V Y* ^4<

Then from (A5.12) we have

P=MFC(G(2); aR1, cL2) .

From the definitions of G* ' and Gvt/, we conclude that

G<2> =8(2) ,

from which the first part of Lemma 5 follows.

We can also verify that

if 6, =0 or 62 =0 then the graph G* ' obtained in Lemma 5
is not connected or does not have a complementary tree structure,

Proof of (A5.16) is omitted.

1(2)
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Appendix 6 Proof of Lemma 6

Until now we have adopted the direction (17). If we adopt the direction in

Table 1, then we have to reverse the direction of b-, c-, and d-edges. We represent

MFC(«) and MFL(*) (defined in Section 5.5) based on the direction in Table 1 by

MFC-n(/) and MFLj-j(*)» respectively.
Since the graph g' 'includes k-j b-edges, &2 c-edges, and &2 d-edges,

respectively.

k +2£

|MFCT1(G(2); aKl,cL2)| =(-1) } 2|MFC(G(2); a^.c^)! (A6.1)

-(-D ] 2|P|

It therefore follows from (31) that

6=(-1) 1+ 2|MFCT1(G(2); aK1,cL2)| (A6.2)
Since MFLT1(G^2^; bK1 ,dL2) is equal to -[MFC^tG^; aK1,cL2)]', it follows that

k +JL

|MFLT1(G(2); bK1,dL2)| =(-1) } 2|MFCT1(G(2); aKl,cL2)| . (A6.3)
From (A6.2) and (A6.3) it follows that

6=|MFLT1(G(2); bK1,dL2)| . (A6.4)

From (A6.4) and from the definition of a positive (or negative) complementary tree

structure, Lemma 6 follows.
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Appendix 7 Proof of Lemma 7

Applying Z(0 to all the elements in the network, we get a connected one-node

graph. For, otherwise, there exists a cutset consisting of dc current sources,

controlled current sources, and voltage controlling edges. This contradicts the

Interconnection Assumption.
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Appendix 8 Proof of Lemma 8

First consider Assumption 2. Since each e-edge is in series with an R-edge,
it suffices to consider a loop £ consisting of a-, b-, c-, and d-edges only. For

simplicity we assume that Assumption 1still holds. From the Interconnection

Assumption we see that X includes some c- or d-edges. Let one of them be £. Then

we modify the associated graph Gby inserting an R-edge, say RQ, in series with £.
Since this corresponds to inserting a resistor in series with an input of a VCCS

or VCVS, or with an output of a VCCS or CCCS, this does not affect the currents

and voltages of each element (except for £) of the network. Thus the insertion of

the R-edge RQ does not affect the uniqueness of the solution. Let the modified
graph be Gm. Since Gm satisfies Assumptions 1and 2, we can apply Theorem 7 to Gm.
Let us investigate whether the edge RQ should be open-circuited or short-circuited
when applying operations (a), (b) and (c').

Suppose first that £ is open-circuited in operation (c1). Then the resultant

graph does not depend on whether RQ is open-circuited or short-circuited because
£ and Rq were in series. In this case therefore we can regard that RQ is short-
circuited.

Suppose that the edge £ remains after operations (a), (b), (c1). Then since £

must be a branch of a tree in the resultant graph, RQ should be short-circuited ...
in this case.

After all we can regard that the edge RQ should always be short-circuited in
operation (b). This means that we need not insert the new edge RQ at all. Thus
we conclude that Theorem 5 still holds even if Assumption 2 is not satisfied.

Next consider Assumption 1. For simplicity we assume that Assumption 2 holds.

Suppose that Assumption 1 is not satisfied. Then there exists a cutset C consisting

of a-, b-, c-, d-, and e-edges only. From the Interconnection Assumption it follows

that C contains at least one a-, b-, or e-edge. Let it be £.

We modify the associated graph G by inserting an R-edge, say RQ, in parallel
with £. Let the modified graph be Gm« Insertion of the R-edge RQ corresponds to
the following operations.

1) If £ is an a-edge, then connect a resistor in parallel with an input port of a
CCVS or CCCS.

Note that the resultant graph must have a complementary tree structure.
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2) If £ is a b-edge, then connect a resistor in parallel with an output port of

a VCVS or CCVS.

3) If £ is an e-edge, then replace a nonlinear resistor in Fig. A.5(a) by the

network in Fig. A.5(b).

Apparently cases 1) and 2) do not affect the uniqueness of the solution. It

is not true that the nonlinear resistor f always has an equivalent network in

Fig. A.5(b) where f and f satisfy (7b) and R is positive. In spite of this, the

replacement of Fig. A.5 is valid for our discussion. For, assume that the original

network has a unique solution for all circuit parameters (including nonlinear

characteristics). Then since the network in Fig. A.5(b) belongs to a class of

nonlinear resistors, the modified network also has a unique solution.

Conversely assume that the original network has more than one solution for some

circuit parameters. Then let the operating points of the nonlinear resistor f

be (vpij and (v2,i2) in Fig. A.6. We can replace the nonlinear resistor f by
the network in Fig. A.5(b) which has the same operating points (v-pi-j) and (v2»i2).
Thus the network obtained by the replacement has more than one solution.

Thus we see that case 3) does not affect the uniqueness of the solution.

Now we can apply Theorem 7 to G . Let us investigate whether the R-edge Rq should
be open-circuited or short-circuited in operation (b). If £ is an e-edge, then

we can regard that Rq is open-circuited because R-edges £ and Rq are in parallel
in Gm. Suppose that £ is an a- or a b-edge. If £ is short-circuited in operation
(c*), then we can regard that Rq is open-circuited. If £ remains after operation
(c1), then Rq must be open-circuited. For, £must be a tree branch of a resultant
graph (otherwise, £ forms a self-loop). Thus we can regard that RQ should always be
open-circuited in operation (b). Consequently, we conclude that the insertion of

Rq is not necessary. That is, Theorem 7 holds even if Assumption 1 is not satisfied.
Even in the case where neither Assumption 1 nor 2 is satisfied, similar

discussion holds.
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Appendix 9 Proof of Lemma 9

By referring to Lemma 7, it is seen that the difference between Theorems 7 and 8

is that Theorem 8 includes the case where the Interconnection Assumption is not

satisfied. So we consider only this case for the network in Fig. 23.

If the Interconnection Assumption is not satisfied, then in the associated

graph G there occurs at least one of the following situations.

1) There exist loops consisting of a-edges only or b-edges only.

2) There exist cutsets consisting of c-edges only or d-edges only.

3) There exist loops consisting of both a-edges and b-edges.

4) There exist cutsets consisting of both c-edges and d-edges.

Suppose that case 1) occurs. For simplicity we assume that cases 2), 3), 4) do
not occur. Then since the rows (and columns) aK and bK of Z are linearly dependent,
A in (9) vanishes identically independent of A, B and D. Therefore we see that

the solution is not unique in this case. On the other hand we cannot obtain any

graph with a complementary tree structure by applying operations (a), (b), (c1)
in virtue of the Restriction in Theorem 8. Therefore we conclude that Theorem 8

holds for case 1).

Since case 2) is the dual of case 1), similar discussion holds.

Next consider case 3). For simplicity we assume that cases 1), 2), and 4)

don't occur. Then the impedance matrix in (8) satisfies

Zaa Zab

Zba Zbb
=0 (A9.1)

Therefore in this case (10) is not necessary for the network to have a unique

solution. Instead of (10) however we can show that either of the condition (A9.2)

must be satisfied.

(-D^A >0 for all A, B, and D (A9.2a)

(-l)ilA<0 for all A, B, and D. (A9.2b)

Equation (A9.2a) is the same as (10). Note that there exist networks satisfying

(A9.2b). For example, the networks in Figs. 6(a) and (c) satisfy (A9.1) and (A9.2b)
and therefore have a unique solution.
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Let us investigate the condition (A9,2a) or (A9,2b). In case (A9.1) we can

insert m-, resistors e (y = l,,..,!^) in series with some a-edges so that the
modified network N satisfies the Interconnection Assumption and Assumptions 1 and

2. Here, the number m, is equal to the number of independent loops consisting of

a-edges and b-edges only. The values of resistors e are assumed to be sufficiently

small. For the modified network N, we can follow the discussion described in
m

Sections 5.1-5.5. However, note that in this case (H)0 in Fig. 25 must always
include all e (y = 1,2,... ,1^). This means from the graph-theoretical point of
view that the Restriction in Theorem 8 must be satisfied.

In case 4)the dual situation holds.

This completes the proof.
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Appendix 10 Proof of Lemma 10

Let Gq be agraph with acomplementary tree structure, let T and fdenote a
tree and a cotree of Gq, and let

BqT =MFL(GQ; f) (A10.1)

Then it is well known that

1) the deletion of a row of By corresponds to open-circuiting an edge belonging
to T, and

2) the deletion of a column of By corresponds to short-circuiting an edge belonging
to T.

Since operations (c') for CCCS's means the operations S (input edge) and 0(output

edge), we obtain Lemma 10.
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Appendix 11 Proof of Lemma 11

Property 1) follows immediately from the identity

(2). .
B(3> BBy B12

21

(3)

B
22

« IB B22-B21By
-1

12
(All.l)

To prove 2), suppose that the upper left n9xn9 principal submatrix Bi '
(f Bj ') is nonsingular. Let Bj ' be an n,xn^ matrix. Then we can easily verify
that the upper left (n-j+n2) x (n-j+n2) principal minor of By ' is nonzero (more
exactly, positive by the definition of Bi '. This contradicts the definition of
B(3) TBy .

Let

(2) .

Ott Ut/ Si/ &.</

HI H2 HI H2

(3)

'21

12

72

Then B^ ' is the fundamental loop matrix of g' ' with respect to a cotree b„
(31-1 1

Multiplying the row b„ by Bv ' and adding it to the row b„ , we get
HI H2

B<2> mb
11

k12

BJ3)"1 0 I B^BBy B12

•B21By I 0 B^

(All.2)

(All.3)

~(2) (?)
The matrix Bi ' is the fundamental loop matrix of Gv ' with respect to a cotree

,v »..« dv . Open-circuiting edges a» and short-circuiting edges b„ we get
H2 HI Hi HI

and a.

:(4)a graph Gv ' of which the fundamental loop matrix is given by
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H2 H2

B^=bK12[ I B<4)] . (All.4)

This proves property 3).
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Appendix 12 Proof of Lemma 12

Let

S=MFL(G^; output edges) (A12.1)

Lemma A.5 Suppose that

1) S is nonsingular

2) each principal minor (except for |S|) is zero (A12.2)

Then G* ' is a cactus graph

Proof of Lemma A.5 Let S = [S..] be an nxn matrix. By (A12.2) we have

Su =0 (i =1,2,...,n) (A12.3)

Without loss of generality we assume that

S21 =e1 f 0. (A12.4)

From (A12.3) and (A12.4) it follows that

S12 =0. (A12.5)

For, otherwise

0 S
12

S21 °
t 0 ,

which contradicts (A12.2). Similarly we can assume

s32 =e2 *°' (A12.6)

from which

S13 =S23 =0 (A12.7)

follows. Continuing this process, we conclude that S has the form
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r o o

S = (A12.8)

where e. = +1.

We have to show that each element of the shaded part in (A12.8) is zero. Let

S(npn2,..,nt) denote the principal minor of Sconsisting of rows n1,n2,...,nt and
columns n19n2,...,nt. Then we can conclude that S^. =0(for i>j+1) using the
fol1owlng relations:

"s(l,n) =0=>Snl= 0

S(1,2,n) =0=*Sn2= 0

S(l,2,3,n) =0=>Sn3 =0

S(1,2,...,n-2,n) =0«* Sn>f|_2 =0

S(l,n-l,n) =0 =>Sn-1>1 =0

S(l,2,n-l,n) = 0=> Sn-1 z =0

^
S(l,2 n-3,n-l,n) =0 =*Sn_ljn_3 =0

S(l,n-2,n-l,n) =0^S^., =0

Finally we obtain

-46-
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S =

° 0""
e2 0

ov.e i 0
n-1

(A12.10)

Therefore G^ ' is a cactus graph, by definition. From (A12.10) we have

|S|(=|BJ4)|) =(-Dn"1e1 e2 ... en . (A12.ll)

Let n+ (resp. n_) denote the number of positive (resp. negative) e-. Then we see
that

|S| <0

if and only if

both n and n are even

or

both n and n are odd

Equation (A12.12) can be summarized as follows

n+(= n-n_) is even .

This completes the proof of Lemma 12.
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Figure Caption

Fig. 1. Simple circuit containing one controlled source (4 different types) and a

strictly monotone-increasing resistor.

Fig. 2. Load line intersecting vR-iR curve in at least 2 points.
Fig. 3. (a) Open-circuit operation k •* 0(k)

(b) Short-circuit operation kH»$(k)

Fig. 4. (k,£) ~ (0(k), S(k)) or (S(k); 0(k))
Fig. 5. Definition of the operation Z(CS)

Fig. 6. Circuits which do not satisfy the Interconnection Assumption

Fig. 7. Cactus graphs

Fig. 8. Disallowed graph: edge 1 is associated with the input (controlling)
variable and edge 1 is associated with the output (controlled) variable

of the controlled source.

Fig. 9. Circuits for Example 1 (<x>0): only circuits on the left have a unique

solution.

Fig. 10. 2-leaves cactus graph in which the direction of edges is not assigned.

Edges {1, 1} are associated with controlled source 1; edges {2, 2}

are associated with controlled source 2. Disallowed 2-leaves cactus

graph is defined as the graph with zero or two similarly-directed loops

in Fig. 10.

Fig. 11. Circuit for Example 2: the disallowed graph in (d) implies the solution

is not unique.

Fig. 12. Circuit for Example 3: No disallowed graphs are found; hence the solution

is unique.

Circuit for Example 4

Circuit for Example 5

Circuit containing 2 different types of controlled sources.

Fig. 16. Typical disallowed 4-edge graphs which are different from 2-leaves cactus

graph.

Circuit for Example 7

Circuit for Example 8

Circuit for Example 9

Circuit for Example 10

Complementary tree structure graphs obtained from networks in Fig. 6.

Circuit for Example 12

Circuit containing "k" CCVS's, "£" VCCS's and "m" nonlinear resistors.

Fig. 13.

Fig. 14.

Fig. 15.

Fig. 16.

Fig. 17.

Fig. 18.

Fig. 19.

Fig. 20.

Fig. 21.

Fig. 22.

Fig. 23.



Fig. 24. Linear resistance (2k+2Jt+m)-port corresponding to Z in (16).
Fig. 25. The main part of the fundamental cutset matrix of the graph G. The a-,

b-, c-, d-, e-, and g-edges are chosen to be the tree.

Fig. 26. The coefficient matrix Hassociated with the cutset equation in (A3.2).
Fig. 27. Submatrix of D, in Fig. 25. This is identified as the main part of the

L (01
fundamental cutset matrix of the graph Gv '.

Fig. 28. Matrix obtained from d[0^ by applying the "sweeping-out-by-some-pivots"
operations. This is indentified as the main part of the fundamental

cutset matrix of the graph G^ '.
Fig. 29. Equivalent circuits of a CCCS and a VCVS by using a CCVS and a VCCS.
Fig. 30. Graph representation of the networks in Fig. 29.

Fig. A.l. Disallowed 2-leaves cactus graph.

Fig. A.2. Impedance matrix Z of the network in Fig. 24.

Fig. A.3. Graph-theoretical interpretation of "sweeping-out-by-the-pivot (i,j)"
operation.

Fig. A.4. Graphs for Example A.2. Figs (a) and (b) correspond to (A5.5) and (A5.6),
respectively.

Fig. A.5. Replacement of nonlinear resistor f by the parallel combination of f and Rq,
Fig. A.6. Characteristic v-i curve of a nonlinear resistor.
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