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ABSTRACT

This paper gives a definitive solution to the following fundamental problem:

When does a network containing nonlinear monotone resistors (characterized by
strictly-increasing onto function), dc sources (voltage and current sources), and
linear controlled sources (all 4 types) possess a unigue solution?

Our uniqueness criteria is couched in strictly topological terms. In particular,
the uniqueness of a large class of practical nonlinear circuits can be determined,
often by inspection, by checking for the presence of a new and fundamental topological
structure called a cactus graph.
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1. Introduction

In a remarkable theorem [1], Nielsen and Wilson demonstrated that a certain
class C of nonlinear resistive circuits has a unique solution for all values of
circuit parameters belonging to some parameter set P if and only if the circuit does
not possess a certain topological structure S. In the case of the Nielsen-Willson
theorem, C consists of circuits containing only transistors, linear passive resistors,
and independent sources; P consists of all positive resistance values, all positive
and negative values of dc sources, and all coefficients 0 < ag < 1, 0 < op < 1 for
the transistors; S consists of a 2-transistor feedback structure. Such graph-
theoretic results are extremely useful because it allows the difficult "existence
and uniqueness" question to be answered by a strictly topological analysis. For
simple circuits, this analysis can often be done by inspection.

Our objective in this paper is to derive a similar type of topological result
for a much more general class of nonlinear circuits; namely, circuits allowing

all 4 types of linear controlled sources. They are current-controlled current sources

(cccs), voltage-controlled voltage sources (VCVS), current-controlled voltage sources
(CCVs), and voltage-controlled current sources (VCCS). Without loss of generality,
we assume all controlled source coefficients to be positive real numbers.]

Since resistors having a non-monotonic v-i characteristic will in general result
in multiple solutions for certain values of biasing resistors and dc sources, we
assume all nonlinear resistors to be 2-terminal resistors characterized by strictly-
monotone increasing v-i curves. Moreover, to guarantee that the circuit has at least
one solution, we assume the v-i characteristics to be onto functions, i.e., v+ =

as i +x@and v+ -» as i + -o,

One is tempted to dismiss the above class of circuits as "too general" because
it is well known that nonlinear circuits containing controlled sources usually
exhibit multiple solutions. For example, all 4 circuits shown in Fig. 1 exhibit
multiple solutions for some R > 0, and for the rather liberal choices of controlling
coefficient o indicated. To see this, note first that the linear one-port to the
right of the nonlinear resistor R] is equivalent to a linear negative resistor.
Indeed, in Figs. 1(a) and l(b), we have

v = -kRi = Ry i where Req A-kR <0 (1)

where k is a positive number depending on a. Similarly, Req = -q < 0 in Fig. 1(c)

]If a controlled source coefficient is negat1ve, simply transpose the 2 terminals
to obtain a positive coefficient.
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" and Req = -1/a in Fig. 1(d). The resulting equivalent circuit in Fig. 2(a) can

be solved graphically by the standard load-1ine method [2]. Note that so long as
) R] is nonlinear, a load 1ine of appropriate slope (or equivalently, an appropriate
value of Req <0 in Fig. 2) can always be chosen to intersect the vR-iR curve in
at least 2 points.

The above examples seem to support the belief that no general existence and
uniqueness theorem could be derived, let alone the topological condition, for
nonlinear circuits containing controlled sources.

To show that the task is far from hopeless, note that if we only transpose the
2 terminals of each controlled source in Fig. 1, then Re would become positive and
all 4 "transposed" circuits would have only one solution for all a > 0 (because the
slope of the load 1ine in Fig. 2(b) would become negative, resulting in only one
intersection with any strictly monotone-increasing curve). This observation suggests
the possibility that indeed it may be possible to derive some “"topological structure®
which guarantees uniqueness of solution.

Our main contribution in this paper is to derive several topological criteria
for testing various classes of nonlinear circuits for unique solution.

Section 3 presents 6 topological criteria for testing the following 4 special
classes of circuits by inspection: o

1. Circuits containing one controlled source of any type.

2. Circuits containing two controlled sources of the same type.

3. Circuits containing two controlled sources of any type.

4. Circuits containing any number of controlled sources of the same type.

Section 4 presents the main theorems (Theorems 7 and 8) of this paper.
Theorem 7 presents the topological criteria for testing circuits containing all
4 types of controlled sources subject only to an interconnection assumption which
is satisfied in most practical circuits.

Theorem 8 présents the general topological criteria from which the criteria in
Sections3 and 4 are derived. This general result is applicable to any nonlinear
resistive circuits containing all 4 types of controlled sources. The proof of the
main topological criteria is extremely involved. Consequently, in Section 5 we have
broken up the proof into several lemmas so that the trees can be separated from the
forest. Because the proofs of the lemmas are rather technical, they are collected
in the Appendix. Readers interested only in the applications may skip this section
without loss of continuity. '




" 2. Notations, Symbols, Graph Operations, and Assumption

In order to state the various topological criteria-in this paper simply, and
without ambiguity, it is essential that all notations, symbols, and graph operations
be defined precisely. We will collect all of them here so that readers who have
forgotten them can turn quickly to this shbrt section for reference. To help the
reader in remembering some of the more commonly used notations and terminologies,
we have carefully chosen mnémonics for deciphering them.

A. Graph Notation '

1. Each independent voltage source, independent current source, or 2-terminal
resistor (linear or nonlinear) is represented by a directed edge whose direction
can be arbitrarily assumed. ‘

2. Each of the 4 types of controlled sources is represented by a pair
of directed edges whose directions are specified in Table 1. Here, the
directions .are uniquely determined by the type of controlled source and must be
adhered toreligiousiy.

To help remembering the notation, note that
1) the edge associated with a + and - sign is directed from + to -. This applies

to both the input edge (controlling voltage) of a VCCS or VCVS, and to the
~ output edge (controlled voltage) of a CCVS and VCVS. A

2) the input edge associated with the short-circuit (controlling current) of a CCVS
or CCCS is directed in the same direction as the controlling current i.

3) the output edge associated with the controlled current source of a VCCS or CCCS
is directed opposite to the arrow head inside the diamond-shaped symbo'l.2

B. Symbol '

Node numbers are always enclosed by a circle. The 2 nodes associated with the
input (resp., output) port of each controlled source are labelled by the same number
with a prime to distinguish them; e.g., @ and @) .

The 2 edges associated with each controlled source are labelled by the same
number with a hat """ added to that of the output edge. For example, edges 5 and 5
denote the input and output edge of controlled source 5, respectively.

C. Graph Operations

The topological criteria in the following sections require the given graph G to
be reduced into various simpler graphs via a combination of the following graph
operations:

2Unh’ke 1) and 2), this notation is somewaht unconventional if not occasionally
confusing. However, much more is gained in the resulting simplicity of the
topological criteria.




" 1. Open-circuit Operation 0(-) ,
Given an edge k, the operation 0(k) deletes the connecting line but leaves the
" nodes intact as shown in Fig. 3(a).
2. Short-circuit -Operation S(-)

Given an edge k, the operation S(k) coalesces the 2 nodes into one node as shown
in Fig. 3(b).
3. Open/Short Operation 0/S(-)
(a) Given a resistor edge R, the operation 0/S(R) A O(R) or S(R), i.e., replace R
by either Fig. 3(a) or Fig. 3(b). .
(b) Given a pair of edges associated with a controlled sources CS of any type, the
operation 0/S(CS) consists of open-circuiting one edge (either the input or output
edge) and short-circuiting the second edge, as shown in Fig. 4.
4. Zero Operation Z(-)

This operation sets an independent source, or a controlled source to zero in
the usual way:

(a) Given an edge Eg corresponding to an independent voltage source, the operation
2(Eg) A S(EJ); i.e., short-circuit E.
(b) Given an edge Is corresponding to an independent current source, the operation
Z(Is) é:O(Is); i.e., open-circuit Ig.
(c) Given a pair of edges associated with a controlled source of any type, the
operation Z (CS) transforms the 2 edges (k,E) in accordance with that shown in
Fig. 5 for each of the 4 types of controlled source. ’
D. Assumption

Throughout Sections 3 and 4, we make the following interconnection assumption
(this assumption is extremely weak and is satisfied by most circuits of practical
interest):

INTERCONNECTION ASSUMPTION

1. There is no loop made up exclusively of the following type of edges:
1) DC voltage source '
2) Output (controlled) edge of CCVS or VCVS
3) Input (controlling)edge of CCVS or CCCS

2. There is no cutset made up exclusively of the following type of edges:
1) DC current source
2) Output (controlled) edge of CCCS or VCCS
3) Input (controlling)edge of VCVS or VCCS




' Figures 6(a) and (c) (resp. 6(b) and (d)) give 2 examples of circuits which violate
_ the condition 1 (resp. 2) of the Interconnection Assumption.

3. Topological Criteria by Inspection

In this section, as well as the following section, it is of fundamental
importance to consider a particular graph having a special topological structure.
Since this graph pertains only to a reduced network containing exclusively of
controlled sources, the "input" edges will be labelled 1,2,...,n and the "output" edges
will be labelled 1,2,...,n, as shown in Table 1. To help visualize this structure
‘consider a typical cactus plant shown in Fig. 7(a), consisting of leaves (shaded area)
"hinged" between the top and the bottom only. The graph made up of the boundaries
of the leaves, as shown in Fig. 7(b), is called a cactus graph iff it satisfies the
following properties: it is made of 2n edges 1,2,...,n, T,ﬁ,...,ﬁ and:
1) it is connected
2) every loop is made of exactly 2 edges, k and E:ﬁ (k = 1,25...,03 ;:i = 1)
3) every cutset is made of exactly 2 edges
Formally, a cactus graph is defined by a fundamental loop matrix having the following
structure
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where €5 = 41. In Figs. 7(c)-(e) are shown several cactus graphs.

Note that each leaf of a cactus graph consists of 2 edges labelled consecutively
(except the last number or when the graph has only 2 edges), one pertaining to an
input edge of one controlled source, the other to the output edge of another
controlled source. These 2 edges form a loop. In the following topological criteria,
each loop associated with a leaf of a cactus graph is said to be similarly directed
iff the 2 edges are directed in the same direction (clockwise or counterclockwise).

In this section, we present 6 topological criteria for determining, by
inspection, whether a given circuit belonging to the 4 special classes considered
below has a unique solution. For each case, the criteria is applied to one or more
simplified graphs obtained from the graph G by various graph operations described
in Section 2. Here G denotes a connected graph associated with a resistive nonlinear

-6-




circuit N containing 2-terminal linear positive resistors, 2-terminal nonlinear
_ resistors characterized by a continuous strictly-increasing onto function,
independent sources, and linear controlled sources with'gositive controlling
coefficients.. Proofs will be given in Section 5 after the proofs of Theorems 7
and 8. '
A. Circuits Containing One Controlled Source of Any Type

Theorem 1 (One Controlied Source)
Let N contain at most one controlled source. Then N has a unique solution

for all circuit parameter's3 if and only if the associated graph G can not be reduced
to the connected 2-edge graph4 shown in Fig. 8, which is a one-leaf cactus graph
with no similarly-directed loop, using only the following graph operations:
(a) Apply Z(ES) to each voltage source and Z(Is) to each current source.
(b) Apply 0/S(R) to each resistor.
Example 1 Applying Theorem 1. to the circuits shown in Fig. 9, we find only the -
graphs associated with Figs. 9(a), (c), (e) and (g) can not-be reduced to the graph
in Fig. 8 (recall from Table 1 that the output edge associated with the controlled
current source should be directed opposite to that of the arrow head). Hence, only
these 4 circuits haveé a unique solution. The other circuits on the right (obtained
by transposing-the controlled source terminals on the left) have multiple solutions
for some circuit parameters.
Remark: After a little practice, Theorem 1 can be applied directly to the circuit
without even drawing a graph.

B. Circuits Containing 2 Controlled Sources of the Same Type

Theorem 2 (Two Controlled Sources)

Let N contain 2 controlled sources of the same type. Then N has a unique
solution for all circuit parameters if and only if the associated graph G can not
be reduced to any one of the 2-leaves cactus graph in Fig. 10 with 0 or 2 similarly
directed loops by using only operations (a)-(b) (from Theorem 1), or to the one-leaf
cactus graph shown in Fig. 8 using only operations (a)-(b) and either operation
(c) or (d) below:
(c) Apply Z(CS) (defined in Fig. 5) to one of the 2 controlled sources.

3Throughgut this paper, the phrase "for all circuit parameters" means for any choice
of positive resistances for the linear resistors, any value of dc voltage and current
sources, and any positive controlling coefficient o for the controlled sources.

4Note the edges labelled 1 and 1 are associated with the controlled source.




After operations (a) and (b), the resulting graph G contains only 4 edges
_ (associated with the 2 controlled sources). Relabel these edges as {1, 3 for

controlled source 1 and {2, 2} for controlled source 2. The reduced graph Ges

is said to have a complementary tree structure if both input edges {1, 2} and
output edges {1, 2} form a tree of Geg- Since operation (b) allows each resistor
to be either open or short circuited, 2" graphs GCS may be generated for an
m-resistor circuit, though not all of them will have a complementary tree structure.
(d) Applying 0/S(CS) (defined in Fig. 4) to each reduced graph Geg which possesses
a complementary tree structure.

A1l the disallowed two-leaves cactus graphs are shown in Fig. A.1.

Example 2 Consider the circuit shown in Fig. 11(a). ‘AppIying operations (a) and
(b), the oh]y 4-edge subgraph of the form in Fig. 10 is shown in Fig. 11(b). However,
this graph is allowed because the number of similarly directed loops is one.

So we proceed and apply operation (a) O(Is), (b) s(R]), S(Rz), S(R3), 0(R4) and
(c) 2(CS) (to controlled source #1) and obtain the 2-edge graph shown in Fig. 11(c).
But this too is allowed because the disallowed graph in Fig. 8 has an oppositely
directed loop.

So we proceed further, this time we apply operation (a)‘O(IS), (b) S(R]). S(Rz),
S(R3), 0(R4) and (c) Z(CS) (to controlled source #2) and obtain the 2-edge graph
shown in Fig. 11(d). Since this graph is disallowed in Fig. 8, it follows from .
Theorem 2 that this circuit does not have a unique solution.

The reader should verify that if we reverse the reference diraction of 1] nd/or
i, in Fig. 11(a), the resulting circuit also does not have a unique solution.

Example 3 Consider the circuit shown in Fig. 12(a). Applying only operations (a)
and (b), no disallowed 2-leaves cactus graph is found. We proceed further applying
operations (a), (b), (c) and (a), (b), (d). In each case, we obtain either the
one-leaf cactus graph shown in Fig. 12(b) or 12(c) respectively. Since neither

is disallowed by Fig. 8, and since we have exhausted all combinations, we conclude
that this circuit has a unique solution.

On the other hand, if we reverse the reference direction of i], the circuit
does not have a unique solution.

Example 4 Consider the circuit shown in Fig. 13(a). It is easily seen that
operations (a) and (b) can not give rise to any of the disallowed 2-leaves cactus
graph. For example, applying S(Es), O(IS), O(R]), S(Rz) and S(R3); we obtain the
4-edge graph shown in Fig. 13(b).

* Applying operations (a), (b) and (c), or (a), (b) and (d), we find it is
impossible to reduce the graph to a 2-edge graph in Fig. 8, For example, applying
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operation Z(CS) to the controlled source edge {1, ?} in Fig. 13(b) gives us a reduced
-graph with 2 self-loops in Fig. 13(c), which is not in the form of Fig. 8. Note

that the graph in Fig. 13(b) (obtained by operations (a) and (b)) does not possess

a complementary tree structure. Hence we do not have to apply operation (d) in

this case.

A1l told, we conclude the circuit in Fig. 13(a) has a unique solution for all
circuit parameters, and regardless of the reference direction of 11 and iz.
Example 5 Consider the circuit in Fig. 14(a). Note that the reduced graph obtained
by applying operations {a) and (b) can never possess a complementary tree structure
because node (:) is connected only to output edges of the 2 controlied sources,
thereby preventing the input edges to form a tree. Hence, operation (d) need not
- be carried out.

Remember, however, that we must exhaust all possible operations stipulated in
Theorem 2 before drawing a conclusion. Indeed, applying operations (a), (b), and
(c), it is possible to obtain either the graph shown in Fig. 14(b), or 14(c). Since
neither graphs are of the form in Fig. 8, we conclude this circuit has a unique
solution.

Remark: Theorem 2 is valid only if the 2 controlled sources are of the same type.
To see this, consider the network shown in Fig. 15(a) which contains a CCCS and a
CCVS. Note that applying operations S(R]) and 0/S(CS) (controlled source #2) we
obtain the graph shown in Fig. 15(b), which was disallowed in Fig. 8. Yet, using
Theorem 3 below, we will see that this circuit has a unique solution.

C. Circuits Containing 2 Controlled Sources of Any Type

Theorem 3 (Two Controlled Sources)

Let N contain two controlled sources of any type. Then N has a unique solution
for all circuit parameters if and only if by applying the operations (a), (b), and
(c) (in Theorems 1 and 2), the associated graph G can not be reduced to any of the
graphs disallowed in Theorem 2, or to any of the graphs described by (1)-(3) below.
(1) the graphs in Figs. 16(a) and (b)

(2) the graphs obtained from those in (1) by exchanging 1 and i by 2 and 2,
respectively
(3) the graphs obtained from those in (1) and (2) by changing the directions of

two edges among the edges 1, T, 2, and 2.

Example 6 Consider the circuit in Fig. 15(a). By inspection, we find the associated
graph G can not be reduced to a two-leaves cactus graph, or to the graphs described
in (1)-(3) above by using only operations (a) and (b). Furthermore by using




. operations (a), (b), and (c) we cannot get a one-leaf cactus graph.5 Thus the
network has a unique solution.

However, if the direction of iz is changed, then the disallowed graph in
Fig. 16(b) can be obtained. Therefore in this case the solution is not unique.
Example 7 Consider the network in Fig. 17(a). In this case we cannot obtain any
4-edges disallowed graph by applying operation (a) and (b). By applying the operations
(a), (b) and (c) we have only two one-leaf cactus graphs in Figs. 17(b) and (c), both
of which are allowed. Therefore the circuit has a unique solution.

However, if the direction of i and/or 12 is changed, then the solution is not
unique.

D. Circuits Containing Any Number of Controlled Sources of the Same Type

Before stating the result we need to define some terminology and operations
which are the generalization of those mentioned previously.

Let G, be a graph composed of n pairs of.edges (k,k) (k = 1,2,...,n)
corresponding to n‘contr011ed sources. Then Go is said to have a complementary tree
structure if it is connected and both the input edges {k; k = 1,2,...,n} and the
6utput edges {k; k = 1,2,...,n} form a tree of Go.

As the generalization of operations (c) and (d) the operations (c') and (d')
are defined as

(c') Apply Z(CS) to some (possibly none) controlled sources.

(d') Apply 0/S(CS) to some (possible none) controlled sources if the graph
has a complementary tree structure.

Theorem 4

Let N contain only CCCS's or only VCVS's. Then N has a unique solution for
all circuit parameters if and only if the associated graph cannot be reduced to any
of the cactus graphs with an g!gg number (including zero) of similarly-directed
loops by applying operations (a), (b), (c') and (d').

Example 8 Consider the network in Fig. 18(a). Let the controlled sources be
denoted by (k,k) (k = 1,2,3). By inspection we can see that the network has a
unique solution as follows. We look for cactus graphs obtained from the associated
graph G. Note that there exists no cactus graph including all edges k (k = 1,2,3).
By applying operations (a), (b) and (c') we can obtain the cactus graphs in

Figs. 18(b) and (c). To apply operation (d'), we must first look for graphs with a
complementary tree structure by applying operations (a), (b), (c'). These graphs
are shown in Figs. (b)-(d). Applying operation (d') to the graph in Fig. (d), we

SNote that the 1-leaf cactus graph in Fig. 15(b) was obtained using operation (d)
in Theorem 2. But this operation is not allowed in Theorem 3.
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. obtain the cactus graphs in Figs. (e) and (f). Since all cactus graphs obtained
above have one similarly-directed loops, we conclude the network has a unique solution.
- Example 9 Consider the network in Fig. 19(a). Let the controlled sources be denoted
by (k,k) (k = 1,2,3) in the associated graph G. Let us look for all the cactus
graphs obtained from G. Note that there exists no three-leaves cactus graphs. By
inspection we see that there exists no cactus graph including edges 1 and 3, or
edges 2 and 3. We can get the complementary tree structure graph in Fig. 19(b) by
applying operations (a) and (b). Then by applying operation (d') to the graph in
Fig. 19(b), we get the cactus graphs in Fig. 19(c) and (d). Furthermore we can get
a cactus graph in Fig. 19(e) by applying operations (a), (b); and (c'). We can
easily verify that the cactus graphs obtainable by operations (a), (b), (c') and
(d') are only those shown in Figs. 19(c)-(e). Since the graph in Fig. 19(d) is.
disallowed, we see that the solution of the network is not unique.

However, if the direction of i3 is reversed, then the network has a unique
solution.

As is seen from Example 12 in Section 5, Theorem 4 cannot be applied to

networks containing CCVS's or VCCS's. However the following two theorems hold.

Theorem 5 Let N contain only CCVS's or only VCCS's. Then N has a unique
solution for all circuit parameters if the associated graph cannot be reduced to
any of the cactus graphs with an even number (including zero) of similarly-directed
loops by applying operations (a), (b), (c') and (d').

Theorem 6 Let N contain orily CCVS's (resp. VCCS's). Suppose that each output
edge of the CCVS's (resp. VCCS's) is -in series (resp. parallel) with some linear
or nonlinear resistor. Then the same conclusion as in Theorem 4 holds.

4. Main Theorems
Let G0 denote a graph™ with a complementary tree structure, and let BT denote
the left submatr'ix7 of the fundamental loop matrix

8 = [B; § 1] | (3)

6

Here, T denotes the tree made of the input edges and 1 means the identity matrix.
Then Gy is said to have a positive (resp. negative) complementary tree structure iff
the determinant of By, namely, IBTl is positive (resp. negative).

6

Here GO corresponds to a reduced network made of controlled sources only.

7The submatrix B~ will henceforth be referred to as the main part of the fundamental
loop matrix B. "Similarly, DL js called the main part of the fundamental cutset

matrix D o [1: D, ].
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Let N be a nonlinear resistive circuit composed of positive linear resistors,

. dc sources, nonlinear resistors, and controlled sources which satisfy the conditions
mentioned in the Introduction. The following two theorems are the main results of
this paper.

Theorem 7 Let N satisfy the interconnection assumption. Then N has a unique
solution for all circuit parameters if and only if the associated graph G cannot be
reduced to a graph with a negative complementary tree structure by applying operations
(a), (b), and (c') (in Theorem 4).

Theorem 8 (General Case) .

Let N be a general circuit. Then N has a unique solution for all circuit
parameters if and only if by applying operations (a), (b), and (c!') to the associated
graph , we can obtain at least one graph with a positive complementary tree structure,
or a graph with a negative complementary tree structure, but not both. (A one-node
graph is regarded as a'positive complementary tree structure graph.) In applying
operation (:'), the following restriction must be kept. _

Restriction: Suppose that in G there exist some loops (resp. cutsets) which do not
satisfy the Interconnection Assumption. Then in applying operation (c') we have

to keep intact a set of edges such that by opencircuiting (resp. short-circuiting)
these edges the loops (resp. cutsets) violating the Interconnection Assumption
disappear.

For example, in Fig. 6(c), at least one of the 3 edges {i;i,,a;1;} forming the
violated loop must be kept intact.

The praofs of Theorems 7 and 8 are given in Section 5.

Example 10 Consider the network in Fig. 20(a), which satisfies the Interconnection
Assumption. By app]ying operations (a), (b), and (c'), the graphs with a complementary
tree structure are obtained as shown irn Figs. 20(b)-(h). Since all these graphs

have a positive complementary tree structure, it follows from Theorem 7 that the
network has a unique solution.

Example 11 Consider the networks in Fig. 6 which do not satisfy the Interconnection
Assumption.

For the network in Fig. 6(a) (resp. 6(b)) we can obtain only one complementary
tree structure graph in Fig. 21(a) (resp. 21(b)). Note that a one-node graph
cannot be obtained in virtue of the Restriciton in Theorem 8. Thus we conclude from
Theorem 8 that both networks in Figs. 6(a) and (b) have a unique solution.

For the network in Fig. 6(c), we can obtain only two complementary tree structure
graphs in Figs. 21(c) and (d). Since both graphs have a negative complementary tree
structure, it follows from Theorem 8 that the network in Fig. 6(c) has a unique
solution.
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On the other hand, for the network in Fig. 6(d) we obtain two complementary
. tree structures in Figs. 21(e) and (f). The graphs in Figs. 21(e) and (f) has,
respecitvely, a positive and a negative complementary tree structure. Therefore
we conclude from Theorem 8 that the network does not have a unique solution.

However, if the direction of Vo is reversed, then the network has a unique
solution.

Example 12 Consider the network in Fig. 22(a), which contains 3 CCVS's. By
applying operations (a), (b), and (cf), we obtain the graphs with a complementary
tree structure in Figs. 22(b)-(h). Since all these graphs have a positive
complementary tree structure, we conclude from Theorem 7 that the network has a
unique solution (Note that the graph in Fig. 22(c) is not a cactus graph.)

By the way if we apply operations (a), (b), (c'), and (d') to this network,
we can obtain the cactus graph in Fig 22(i), which has an even number of
similarly directed loops. Therefore it follows that Theorem 4 cannot be applied
to this network.

If in Fig. 22(a) there is a resistor in series with the controlled voltage
source #3, then we can apply Theorem 6. In this case we can obtain the cactus
graph in Fig. 22(i) by applying operations (a), (b), (c'), (d'). Therefore we
conclude from Theorem 6 that the network does not have a unique solution.

5. Outline of the Proof of Theorems
First we consider the case where

the Interconnection Assumption is satisfied. (4)

Since a CCCS and a VCVS are rea]izabie as a combination of a CCVS and a VCCS, we
will restrict ourselves first to networks containing CCVS's and VCCS's only as
controlled sources.
5.1. Analytical Condition for the Solution to Be Unique

Consider the network N in Fig. 23 which consists of k CCVS's, & VCCS's, m
nonlinear -resistors, and a linear (2k+2%+m)-port N0 composed of passive linear
resistors and dc voltage and/or current sources. Let CCVS's be connected to the
first 2k ports of Ny, VCCS's to the next 2% ports and nonlinear resistors to the
last m ports as shown in Fig. 23. Let the port-currents and the port-voltages be
'iu and v, (u=1,2,...,2k+22+m), respectively, and let

1 Vi
T2 V2
Ia = va = .




R [ Vst
Ib - vb = .
] v
| Yok | Vok
okl Vok+T
I = : Ve © :
| Token | Vok+p
Tok+241 [ Voraps]
Id = Vd =
| Tok+2e | | Vok+2g
Toke20+] [ Voke29+1
Ie = . ve = °
| Tok+204m | Vok+22+m

The characteristics of CCVS's, VCCS's, and nonlinear resistors are represented

by
v, =0 (5a)
V, = AL, (5b)
I,=0 (5¢)
I4= BV, (54)
-V, = (1) | (e)
where
A= diag[a] ’°‘2""’°‘k] | (6a)
B = diag[B;,B,,...,B,]
0<a <o (u=1,2,....k (6b)

1,2,...,2)

0<Bu<co(u
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1S PO
F(1,) = : (7a)

folioke2gem)
and

fﬁ(u = 1,2,...,m) are strictly monotone-increasing functions mapping R' onto R'.

(7b)

Suppose for the moment the following assumption is satisfied.
Assumption 1 The (2k+2%+m)-port Ng has an impedance representation.

The case where Assumption 1 does not hold will be treated in 5.4. Then Ny can
be represented by ‘

Va—1 Zaa Zab Zac Zad Zae Ia_] Ea—
Vb Zoa Zob Zbc Zbd Zbe || Ib Ep
Vel =1 Zca Zeb Zee Zed Zee || 1c | * | Ec (8)
Vg Zga Zap Zdc Zdd Zde || ld B4
_.Ve | Lzea Zop Zec Zed Zee 1L Ie 1 L]
Equations (5)-(8) are the basic equations for our present analysis. Set
Zaa Zab Zad Zae
ZpaR Zpy  Zpa Ipe
= -1
A= zca Zcb ch'B Zce (9)
zea Zeb zed Zee"’D

where D is a positive definite diagonal matrix.8

Llemma 1 For any given values of linear resistors, the network in Fig. 23 has a
unique solution for all A, B, and fu satisfying (6b) and (7b) if and only if

(-1)%4 > 0 for all A, B and D (10)

8Throughout this section we assume that A, B, and f,, satisfy (6b) and (7b),
respectively, and that D is a positive definite diagonal matrix, unless otherwise
stated.
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Proof: See Appendix 1.
Let K and L be sets of numbers {1,2,...,k} and {1,2,...,2%}, respgctive]y.
Let Ky and K, (resp. L, and L2) be a partition of K (resp. L). That is,
K=K UK, and Ky NK, = ¢, and so on. Some of K and L, (u =1,2) may possibly
be the null set. Set
K &k & om
a Zab z
ba Zbb Zbd
zcb ch
Zeb Z

~N
|

a ad “ae

N

b .
e = [p]pz LN X pkgq] oo qurl coe rg'i s] soe Sm] (]])

"z

|z
z ce
z

a
d

NN

ed ee+D

c
| €

and
b, = Itltz *ee tk gq] *** O 5"] ) §Sl "t Sp (12)
where

p]_l foru€K2

u zero column vector except for the (k+u)-th element = -1
for u € K]

(13a)

ru for u € L2

U, ® Yzero column vector except for the (2k+u)-th element = -1 (13b)

for p € L].

Lemma 2 The condition (10) is equivalent to the following condition (14).

(-1)£Am=§ 0 for all D and for any partition of K and L (14a)
and ‘
(-'I)R'A°° >0 for some D and for at least one partition of K and L (14b)

Proof: See Appendix 2.
It is easily verified by (4) that

(-1)%, > 0 for Ky =K, Ky = ¢ Ly = ¢, Ly =L and D> w9 (15)
Thus the condition (14b) is always satisfied.

Therefore it remains to investigate only the condition (14a).
9

D + = means that each diagonal element of D is sufficiently large. -
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5.2. Analysis of the Linear Network
We will investigate the condition for (14a) to hold for all values of linear
resistors and for all D. Let

_Zaa Zab Zac zad Zae
Z

ba Zbb Zbc Zbd Zbe

zca Zcb ch zcd Zce (16)
z

da Zdb Zdc Zdd Zde

Zea Zeb Zec Zed Zee+D

~NR
n

Equation (16) is the impedance matrix of the network in Fig. 24 where ﬁo is the
network obtained by short-circuiting dc voltage sources and open-circuiting dc
current sources, and Y, (u=1,...,m) denote the linear (positive) resistors. In
order to investigate the condition (14a) it suffices to consider Z.

The associated graph G of the network in Fig. 24 is defined as -the graph
obtained from Fig. 24 by replacing each resistor (including yu), each port
u (u =1,2,...,k), each port u+k (u = 1,2,...,k), each port 2k+u (p = 1,2,...,%),
each port 2k+2+u (p = 1,...,L), and each port 2k+22+u (u = 1,...,m), respectively,
by oriented edges Ru’ au, bu’ cu, du’ and eu. The direction of Ru is arbitrarily
~chosen. In Section 5.2 the directions of 3 bu’ Cyo du and e, are assumed to be
the same as those of port currents, though

gzengygc%fons of bu’ < and du are opposite to those defined (17)
wecallRu,~au, bu’ c, du’ and es respectively, R-, a-, b-, c-, d-, and e-edge.
The graph G is connected by assumption. We further assume that
Assumption 2 G has no loop consisting of a-, b-, c-, d-, and e-edges only.

The case where Assumption 2 does not hold will be treated in Section 5.4. Let

mg = rank of G - total number of a-, b-, c-, d-, and e-edges (18)

From Assumption 2 it follows that my > 0.

From Assumption 2 we can modify & by adding Mo g-edges gu (u =~1,2,...,m0) so that
all the a-, b-, c-, d-, e- and g-edges form a tree, say T, of G. For simplicity, we
denote hereafter the modified graph by the same symbol G. Let the main part of the
fundamental cutset matrix of G with respect to T be DL and let the rows of DL be
arranged in the order of a-, b-, c-, d-, e-, and g-edges. Without loss of generality
we will investigate the condition

=17-



(-n'a, 20 (19)

_ for
K] = {],2,...,k]} (0=<= k] < k)
K, = {k,+1,...,k}
2 (20)
L1 = {1,2,...,2]} (0< 2 < %)
Lz = {2]"‘],..-,1}

Set

ko = k-k
2 ! (21)
22 = 2,-9;1

Then D, can be written as in Fig. 25 where M=1{1,2,...,m} and My = {1,2,....m},
~ and aK] means the set of a-edges 2, (n € K]) and so on. Let

H=0 @D (22)

where the prime means the transpose of a matrix and(:)is a diagonal matrix whose
diagonal elements are the values of linear resistors (including Y, in Fig. 24).
Lemma 3

L85+ 1 HK :
(-1)%_ = (-1) 21 gy (23)

8o

where 60 is the determinant of the submatrix shaded by oblique lines in Fig. 26.

Proof: See Appendix 3. L8, 8 +k
Since |H| > 0, it is sufficient for us to consider the sign of (-1) 21 160.
By using (22), we can rewrite 60 as
- -1
8 = !DL]® Dl'_zl (24)

where D, (resp. D, ) is the submatrix of D in Fig. 25 shaded by oblique (resp.
1 2

vertical) lines.

Let (:)0 denote an arbitrary set of k]+2]+2+m0 R-edges and 6] (resp. 62) be
the determinant of the submatrix of DL (resp. DLZ) consisting of all the rows of
DL1 (resp. DLZ) and the columns corresaonding to (:)0 (See Figs. 25 and 27). Let

L+, +2,+k
6=("]) 2 ] 1

Then

648, . (25)
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Lemma 4 We can choose the values of resistors so that

-n*, <0 (26)
if and only if there exists a (), such that

§<0 . ' (27)

Proof: - See Appendix 4. '
Suppose that (27) holds for some (:)0. Since 84 and 89 (and therefore §) depend
on only the rows aK], bK ’ CL, dL’ and 9y and the columns (:)0 of DL’ we define
1 0

DEO) as shown in Fig. 27. Then 84 (resp. 62) is the determinant of the submatrix
shaded by the oblique (resp. vertical) lines in Fig. 27. By carrying out the
following operations (i)-(iii) appropriately, we can transform DLO) in Fig. 27 into
DEl) in Fig. 28 where Ty, Ty, and Ty are nonsingular diagonal matrix whose elements

are +1 and

q |
[QJ =, (28)

(i) Multiply some columns by +1.
(ii) Add the above columns to other columns
(iii) Interchange the columns.

Set
Pl 0= | 0 =1 (29)
P2 ] 02 .
Since
-
8y = ¢|Ty|{To| T3] |P]
1%
s = (1) ZelnlInplingliel (e=t)) ) (30)
21 2otk 48
= (1) V2V R, Ty
<~/
we have by (30) and (25)
2
§ = (-1) 2|P|. | (31)
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Set

a, ¢ b, d
. K] L2 K'l L2
@ . N g

p . (32)
(o
Ly

- . - -

5.3. Graph Theoretical Interpretation of D(z)
Lemma 5 - Let G(Z) be the graph obtained from G by the following operations:
(i) Apply S(+) to each e-edge and 0(+) to each g-edge
(i) Apply S(-) to R-edges belonging to (:)0 and O0(-) to all of the remaining
R-edges.
(i11) Apply S(-) to edges aKz and by

and 0(-) to edges ¢, and d, .
(2) 2 L
Then G is a connected graph with a complementary tree structure and has a

fundamental cutset matrix D'2) in (32) if and only if 6 # 0.
Proof: See Appendix 5.

Lemma 6 Suppose that G(z) obtained in Lemma 5 has a complementary tree structure.
Then & in (31) is positive (resp. negative) if and only if G(Z) has a positive
(resp. negative) complementary tree structure.

Proof: See Appendix 6.

Lemma 7 Under the Interconnection Assumption we can obtain a (connected) one-node
graph by applying operations (a), (b), and {(c') to G.

Proof: See Appendix 7.
From Lemmas 1 to 7, we conclude that Theorem 7 is true for the networks in
Fig. 23 if Assumptions 1 and 2 are satisfied.

5.4. On the Interconnection Assumption and Assumptions 1 and 2

Lemma 8 Theorem 7 holds for the network in Fig. 23. (That is, Assumptions 1 and 2
are not necessary.) L
Proof: See Appendix 8. Finally we obtain -

Lemma 9 Theorem 8 holds for the network in Fig. 23.

Proof: See Appendix 9.

5.5. The Case Where Four Types of Controlled Sources Are Included

Let N be an original circuit containing four types of controlled sources.
As is well known, a CCCS and a VCVS in Figs. 29(a) and (b) can be realized by a
cascade connection of a CCVS and a VCCS as shown in Figs. 29(c) and (d),
respectively. Let Nm be the circuit obtained from N by replacing CCCS's and
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VCVS with its equivalents in Figs. 29(c) and (d). Let the graphs associated with
N and Nm be G and Gm, respectively. Note that if G satisfies the Interconnection
Assumption, then so do Gm.

Consider first a CCCS. Renumber the edges of the CCCS and its equivalent as
shown in Fig. 30. Since Nm contains only CCVS's and VCCS's, we can apply Lemma 8
to Nm' Let one of the complementary tree structure graphs derived from Gm by
opera;ions (a), (b), and (c') be Gmo. Then there exist at most four cases:

1) Edges 1', ', 1", and 1" in Fig. 30(b) remain in Gy,

. 0 ..
2) Edges 1' and 1' are short-circuited and edges 1" and 1" remain in Gmo.
3) Edges-1' and 1' remain in Gmb and edges 1" and ?" are open-circuited

4) Edges 1' and ?"are short-circuited and edges 1" and 1" are open-circuited.

However, the cases 2) and 3) never occur since G_ has a complementary tree-structure.
In case 2), for example, edge 1" form a self-loop.

Appl{ing to G the same operations cqrried out to Gm by identifying 1' and ?"
as 1 and 1, respectively, yields the graph Go. Then the cases 1) and 4) mentioned
above correspond, respectively, to
1') edges 1 and 1 remain in Go A
4') edge 1 is short-circuited and edge 1 is open-circuited.

To avoid ambiguity, let us introduce the following: Let G be a graph with a
complementary tree structure. Then we denote the main part of the fundamental Toop
matrix of G with respect to a cotree T by MFL(E;T).

Let

B = MFL(B,, ; output edges)
moT my (33)

BOT = MFL(GO; output edges)

Then referring to Figs. 30(a) and (b), we can write B 1 and B,7 as follow:

'Il ]ll
11 By Br2 | Bag |
Bpor = 1] -1 { 0 | O (34)
B31 | B3z | B3
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1 o o
B, B
oT . B B
: ol 321t 733

From (34) and (35) it follows that

|8 (36)

1Brot! = 1Borl

As easily seen, Eq. (36) holds for the case where there are many CCCS's.

In the case of VCVS's we obtain the same result as (36) since the graph
representation of Fig. 29(d) is also given by Fig. 30(b).

Thus we conclude that if a graph with a positive (resp. negative)
complementary tree structure is obtained frbm‘Gm, then‘(another)graphuﬁth a
positive (resp. negative) complenentary tree structure can also be obtained from
G by operations (a), (b), and (c'). Therefore it is unnecessary to replace
CCCS's and VCVS's by the more complicated equivalent circuits in Figs. 29(c) and
(d). That is, Theorems 7 and 8 hold for circuits containing 4 types of controlled
sources.

5.6. On Theorems 1 to 6 .

Theorems 1 and 3 follow immediately as special cases of Theorem 7. For
Theorems 2, 4, 5, and 6, we need only consider circuits containing CCCS's and
CCVS's. For circuits containing VCCS's and VCVS's, the dual discussion holds.

5.6.1. Proof of Theorem 4 for the case of CCCS .

Let N be a circuit which satisfies the Interconnection Assumption and does not
have a unique solution and let G be its associated graph. Then by Theorem 7 we can
obtain a graph GO with a negative complementary tree structure by applying
operations (a), (b), and (c') to G.

Let '

Br = MFL(G,; output edges) (37)
Then by definition
IB;] <0 o (38)

Lemma 10 Let B%l) denote an arbitrary principal submatrix of Br. There exists an
operation {c') which operates on Gp to produce a graph G(]) such that
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B%l) = MFL(G(]); output edges) . (39)

Proof: See Appendix 10.
We can find such a principal submatrix, B%z), of BT satisfying the following
condition:

1) |B§2)| <0
2) Each principal minor (except for lB%z)l) of B%z) is -positive or zero.

Suppose that some principal minors of B%z) are'positive. Then we can choose

a principal submatrix B§3) such that:
1) 183 >0

(2) Each principal minor (except for |B(3)| and IB(Z)]) of B(z) which includes
843) in it is zero.

Without loss of generality we can rewrite B%z) as

(3)
B{?) = il ‘ P2 | (40)
Byy | Ba2 S

8) _ 3
8{*) = B,, - B, B() By, - (41)

Set

Lemma 11 8(4) in (41) has the following properties.
1) |B <0 (42)
2) Each principal minor (excluding iB§4)|) is zero (43)

3) There exists a graph 6(4) such that
844) = MFL(G(4); output edges)

Proof: See Appendix 11.

Lemma 12 6(4) in Lemma 11 #s a cactus graph with an even number of similarly
directed loops.

Proof: See Appendix 12.
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Lemma 13 The process of obtaining Bé]), B%Z) and 843) corresponds to the operation
(c') and that of obtaining 844) corresponds to the operation (d').

It follows from Lemmas 10-13 that Theorem 4 holds for the case of CCCS.

5.6.2. Proof of Theorem 5 fer the case of CCVS
Let N contain CCVS's. Suppose that we obtain a graph GO with a comp]ementary
tree structure by applying operations (a), (b), (¢').:

By = MFL(Gy; output edges) . (44)

Suppose that N has a unique solution. Then we have
|By] >0 ' (45)
Since Lemma 10 does not necessarily hold for N, the statement"
each principal minor of By is positive or zero : : (46)

is not necessarily true. However, we can verify that for networks satisfying (45)
and (46) we cannot obtain any cactus graph with an even number of similarly directed
Toops. Conversely, if we cannot obtain such a cactus graph then (45) and (46) hold.

From this and from Lemmas 11-13 Theorem 5 follows

5.6.2. Proof of Theorem 6 for the case of CCVS

Consider the network N in which each controlled voltage source is in series
with some resistor. For this network we can prove easily that Lemma 10, as well
as Lemmas 11-13 are applicable. From this we conclude Theorem 6.

Theorem 6 can also be proved as follows: By applying Thevenin's Theorem, we
can transform controlled voltage sources (with a series resistor) into controlled
current sources (with a parallel resistor). Then we can apply Theorem 4 to this
modified network. Now we can easily prove that

if for the modified network we can obtain a graph with a positive (or negative)
complementary tree structure, then the same is true for the original network.
(46)
5.6.3. Proof of Theorem 2 .
The case of CCCS is a special case of Theorem 4. So we prove Theorem 2 for
the case of the CCVS. _
Necessity: Suppose that the network N does not have a unique solution. Then we
see from Theorem 3 that one of the graphs in Fig. 16 or one- or two-leaves cactus
graphs with zero or two similarly-directed loops can be obtained by operations
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(a), (b), (c). If one of the graphs in Fig. 16 is obtained, then we can get at
. least one graph in Fig. 8 by applying operation (d).

Sufficiency: Suppose that we obtain a cactus graph Go with zero or two similarly-
directed loops by applying operations (a), (b), or operations (a), (b), (c), or
operations (a), (b), (d). If operations (a), (b) or operations (a), (b), (c) are
used to derive Go, then it is apparent from Theorem 3 that the solution is not
unique. .

Suppose that operations (a), (b), (d) are used to derive GO' (In this case,
of course, G, is a one-leaf cactus graph.) Let G, be a graph to which operation (d)
is applied. Then G] has a complementary tree structure. Furthermore we can verify
that G] is either one of the graphs in Fig. 16. -Therefore we see from Theorem 3
that the solution of this network is not unique.

In order to complete the proof we have to show that we can obtain the graph
Go by applying operations (a), (b), (c). We will omit the detail, but we can show
this by using the following facts:

1) the network satisfies the Interconnection Assumption,

2) the graph G] in Fig. 16 can be derived from the network.
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Appendix 1. Proof of Lemma 1
. Necessity: Consider the case where fu (y=1,...,m) are linear functions,
that is >

F(Ic) = DI, . (A1.1)
Then Eqs. (5) and (8)_can be written as
_ -y - -
Zaa Zab Zad zae Ia Ea
ZpasA Zpp Zpg Zpe Ib |_ |5 (A1.2)
-1 s - .
Zca Zep ZegB Lee BV, Ec
_Zea Zeb Zed zee+D_ _Ie B _Ee_
Equation (A1.2) has a unique solution for all A, B, D and E if and only if
A#0 for all A, Band D . (A1.3)
From (9) it is easily seen that as D ~«, A+ 0, and B +~ 0, we have
Z
s~ (422 2Pl o) . (A1.4)
ba “bb
Since the impedance matrix in (8) is nonnegative definite,
A Z :
Zaa Zab >0 (A1.5)
ba “bb|

holds in general. The equality in (A1.5) however does not hold because of the
Interconnection Assumption. Since |B| > 0 and |D| > 0, the sign of the right hand
side of (A1.4) is the same as (-1)2. Therefore from (A1.3) and the continuity of
the function, we obtain (10). Thus the condition (10) is necessary for the network
to have a unique solution.

Sufficiency: Suppose that (10) holds. Let

- ~
Zaa Zab zad
Z10 = | Zpah Ly Zpg
-1
__an zcb ch'B
~ ' Al.6
Z,o ( )
212 = Zbe ? 22] = [Zea Zeb Zed]
che
Z22 = Zee
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Since (10) holds even if D + =, we have
(-1)%Z,] > 0 for a1l A and 8,0 (A1.7)

which means Z;, is nonsingular. On the other hand, we have from (5)-(8)

F(I,) + Ayl = B, © (A1.8)
where |
Ag = Zzz'zz1z§}zlg ) .5)
By = -E¢*Zy 2 E: >
e |

The following lemma is well known.

Lemma A.1 (Sandberg and Willson [3]) Equation (A1.9) has a unique solution for all
By and all F if and only if AO € PO.
A0 € P, means that

0
|Ag.+ D| # 0 for all D. (A1.10)
Since |A; + D| > 0 as D » =, Eq. (A1.10) means that
|Ag + D| >0 for al1 D (A1.11)

From the identity

I 0 Z /A Z z
_] nof2 | _ | 4 (A1.12)

we have
A= |Z”||A0 + D] . (A1.13)

From Egs. (10), (A1.7) and (A1.13) we conclude that (A1.11) is satisfied. This
completes the proof.

10

Note that the equality does not hold in (A1.7). For, suppose that |Z1]| = 0 for

some A and some B. Since A and B belong to open neighborhoods, there exist some
A and B such that (-T)QIZ]]I < 0, which is not allowed.
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" Appendix 2 : .
Consider first the following:

Lemma A.2. Let f(x],xz, -+ s Xy ) be a function of degree one in each variable
X, (W =1,25...5n). Let S be an open set of points such that § =

u=1,2,...,n}. Then

f>0 for all x €S

{Xlaﬁ <X, <Bj

(A2.1)

if and only if the function f evaluated at the "bdundary" points where X, =&, or

Bu (w = 1,2,...,n) is nonnegative (at least one of'them must be positive).

Proof of Lemma A.2: By the assumption of Lemma A.2, f can be written as

where
= - 1
fo - fo(Xz,Xago-n ,Xn) - -B-]_‘-&-"— f(B] ,xz’x3’o.o ,Xn)

= =1
f-l - f](XZ,X3,...,xn) = 'B]T.'] f(O.-I ,XZ,X3,...,Xn)
Similarly fO and f] can be written as
fo = (xpmap)fgg + (Bp=xp) Ty
f1 = (xpmap)fyg + (By=xp)fyy
where
- - ] f )\
foo = foo(Xs,oo-,xn) = Bz-az 0(82,X3,¢oogxn
= _ 1
fo-l - fo] (XB,.o- ,Xn) - 'B'z_-a_z f (GZ’X3’.-- ,Xn) >
f-lo = f]o(X3,o-o,xn) = Bz-a f](BZ,X:,’,...,Xn)
_ =
f-l-l - f]](X3’o-o,Xn) - '82__62 f](az,x3,...,xn)J
Continuing this recursive procedure, we finally obtain

f = (x-l‘a])(X2“U.2) R (xn-an)foo ....0

+ (x]-a])(xz-az) oo (Xn_]'an-])(sn-xn)foo .. 01
+ ...

+(By-x1) (Bo=%) «ov (Bp=x ) fq7 7
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where f€1€2"'en is a constant and is obtained by replacing xu by @, (when €, = 1)

or by Bu (when €, = 0). Now if all of fe g are nonnegative and at least one
]..0 n
of them is positive, then f is positive for all x € S.
Conversely, if some of f is negative, then f can be made negative for

5152...5" .
are zero, then f vanishes identically. This

n
completes the proof of Lemma A.2.

Lemma A.2 holds even if some au and Bu are not finite, as demonstrated in the
following example: '

Example A.1 Let

some x €S. If all of 1’5;]e2“.e

a11¥byyXys ayp*hyo%y

(A2.7)
251Dy Xys Ax5thooXs

f(x],xz) =

The function f satisfies the condition of Lemma A.2. ‘Let S be an open set such
that S = {x|0 < X, <@ U= 1,2} . Then f > 0 for all x €S if and only if

a a a b T
31 89 351 bay B
b a b b

nofiz o [P Py
ARy bay by )

where at least one of the above equalities does not hold.

Proof of Lemma 2. Consider A in Eq. (9) as a function of o, (p=1,...,k) and
B, (p=1,...,2) satisfying (6b). Applying Lemma A.2 to A, we obtain Lemma 2.
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Appendix 3. Proof of Lemma 3
First we shall describe the relation between the matrix H in (22) and the
impedance matrix 7 of the network in Fig. 24.
In order to calculate 2, we connect current sources J to each of the a-, b-,
c-, d-, and e-edges, as well as the g-edges. Here, the elements of J are arranged
in the order of a-, b-, c-, d-, e-, and g-edges and

-— —

N 2k+20+m
d=1: (A3.1)
Jok+204m
| 0 _}%
Let the voltage vector of the current source J be U. Then we have the
standard cutset equation
-HU = J (A3.2)

(The minus sign in (A3.2) is cue to the fact that the positive directions of the
voltages are taken opposite tc those of the current sources.) From (A3.2) it
follows that Z is given as the upper left (2k+2%+m) x (2k+22+m) principal submatrix
of ™.

Next consider A _ for K],?Kz, Ly and L, in (20). Let Z; be the matrix Z in
Fig. A.2 with the columns aK] and dL] replaced, respectively, by

"0 |3k 0 |r2k
-1 1K, and -1 |1, .
0 }k2+22+m 0 }optetm

L o L -

Then p_ is equal to the determinant of the shaded submatrix of Z1 in Fig. A.2. For
the calculation of the above determinant, we can apply Laplace expansion with
respect to the columns ay and dL]' Consequently, we have
kq+2q+kky
s, = (-1) 1Z,] (A3.3)

where Z, is the submatrix of Z consisting of the rows ay , sz, CL » €y and the
2

columns ay s bK’ d, , ey- We can relate |22| with a minor of H by the following

L,
well-known lemma.
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Lemma A.3 [4] Let A be a nonsingular matrix of order n. If B = A"1

. arbitrary
iy < i, < eee <
1< 1 2 P <n
h] < h2 & oo <& h
?*’u": My fhihg...ht
§ad.. . (-1) Mitie. . qn”
B( ] 2..0 p) - ] 2 -l 2.-. n-p
L] ,...,n
hhye .. A(}22eee-om)

where i] < i2 < ees < 1§

, then for

(A3.4)

P and i]' < ié < ser < i'n form a complete system of
indices 1,2,...,n, as do hy < h2 < -o-<hp and hi < hé < see < h‘
Since 22 is the submatrix of H 1, we can apply Lemma A.3 to IZZI By setting

A=H
n = 2k+2£+m+m0
pP= k+k2+22+m

i = U(u = ]929“'sk)

T = k+kytu(u = 1,2,...,ky)
1k2+k+u = 2k+2]+u(u =1,2,...,%,)
k+k2 , = 2k+28+u(un = 1,2,...,m)
hu = k]+u(u = 1,2,...,k2)
hk2+u = k+u(u = 1,2,...,K)
hk+k2+u =.2k+2+l]+u(u = 1,2,...,22)
hk+k2+22+u = 2k+22+up = 1,2,...,Mm)
we have 5
Ko+kko +22y 4
12,1 = (1) M1 s, (A3.5)

From (A3.3) and (A3.5), we get Eq. (23).
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. Appendix 4. Proof of Lemma 4

Suppose that we calculate 60 in (24) by using the Binet-Cauchy's formula [4].
Since 6] and 8o depend on the choice of (:) » we write them temporarily as
81(@ ) and ,(@ ). Let the principal minor of () corresponding to ®, be
n((:)o) Then Binet-Cauchy's formula says that

80 = Z5;(® ) 6,(@ M (@) (A4.1)

where the summations are taken over all possible combinations of (:)o Note that
((:)0) 1s positive. If § > 0 for each (:)0, then we have by (23), (25) and
(A4 1) (- 1) A, > 0.

Conversely suppose that there exists a (:)0 such that § < 0. Then by (A4.1)
we can make (- 1) A, negative by choosing the values of resistors included in (:)0
sufficiently small and those of all other resistors sufficiently large. This
completes the proof.
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Appendix 5. Proof of Lemma 5

First we introduce some notations, Let G0 be a graph having a set E of edges
and a tree T. Let E] and E2 be subsets of E such that E1 F\Ez = ¢. Then
GO(E]; Ez) is defined as the graph obtained from Gy by applying S(+) to each of
the edges in E, and 0(+) to each of the edges in E,.

Let MFC(GO; T) denote the main part of the fundamental cutset matrix of Gy
with respect to T. It is well known that

1) Deletion of a row of MFC(GO; T) corresponds to applying operation S(-)

to an edge belonging to the tree T. (A5.1)
2) Deletion of a column of MFC(GO; T) corresponds to applying operation

0(+) to an edge belonging to the cotree T.
Let

6l0) = &(eys "®-®,) - (A5.2)

Then it follows from (A5.1) that G(O) is connected and
- p(0) . (0),

In order to understand the graphical meaning of D(Z), we need the following
lemma.

Lerma A.4. Let Go be a connected graph with a tree, T, and let DoL = MFC(Ggs T).
Suppose that the element (i,j) of Doy is nonzero. Then we multiply the j-th

column of DOL by 1, -1, or 0 and add them to all the other columns so that all the
elements of the i-th row except for the element (i,j) vanish. We call this operation
"sweeping out by the pivot (i,j)." Let the new matrix obtained by the above
operation be 60L' Let 60 be the (connected) graph derived from Gy by

1) short-circuiting the edge j of the cotree, and

2) inserting the new edge j so that the edge j and the edge i (tree branch) are
in series, and the edges i and j have the same (opposite) direction in the
fundamental cutset of éo if they have the same (opposite) direction in the
fundamental cutset of G, (see Fig. A.3).

Then the edges in T form a tree T of GO and

Dy, = MFC(Gys T). (A5.4)

In addition, applying O(¢) to the edges i and j of G leaves a connected graph.
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Since the proof of Lemma A.4 is rather involved, it is omitted here.
. However, we will give an example illustrating Lemma A.4.

Example A.2 Let Gy be a graph shown in Fig. A.4(a). We choose a tree T as
{a,b,c}. Then Dy 1is given by

123 4 5
a 1 1

Do, = b| 1 SNE) (A5.5)
c 1 -1 -1

Apblying the "sweeping out by the pivot (b,5)" operation we get

i1 2 3 4 5
a 1 1
DOL = b -] (A506)
c| -1 1 -1
Then Dy, = MFC(Gy: T) where Gy is the graph shown in Fig. A.4(b).
Suppose that
5 #0
(A5.7)
62 #0

Under the condition (A5.7) we can continue to apply the sweebing out by appropriate

privots operation until DE]) in Fig. 28 is obtained. Then from Lemma A.4 it follows
that
(1) _ (1),

Here, G(]) is the graph obtained from G(O) by short-circuiting each R-edge and
inserting it in series with one of bK]’ CL]’ dL]’ sz and 9o 23S stated in Lemma A.4.
Let
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I p
52) . 2| ___ | (q=-1) (A5.9)
byy 0
da|
and

where (:)i(i = 1,2,3,4) are sets of R-edges corresponding to the columns r], rz,
T3 and P in Fig. 28. Then it follows from (A5.1) that

6(2) = MFC(E(Z); Ay bK]’ €2 sz) (A5.11)
and that
each R-edge in @‘2) is in series with one of bK] and sz and
(A5.12)
has the same direction with it.
Let .
82) = 8,005 @) (A5.13)
Then from (A5.12) we have
= 8(2),
From the definitions of G(z) and 6(2), we conclude that
6(2) = §(2) | (A5.15)
from which the first part of Lemma 5 follows.
We can also verify that
if 5] =0 or 62 = 0 then the graph G(z) obtained in Lemma 5 (A5.16)

is not connected or does not have a complementary tree structure.

Proof of (A5.16) is omitted.
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Appendix 6 Proof of Lemma 6
Until now we have adopted the direction (17). If we adopt the direction in
Table 1, then we have to reverse the direction of b-, c-, and d-edges. We represent
MFC(+) and MFL(*) (defined in Section 5.5) based on the direction in Table 1 by
MFCT]( ) and MFLT1( )}, respectively.
Since the graph 6(2) includes k] b-edges, Lo c-edges, and 22 d-edges,
respectively.

' k422
2 2 2
MFe (60205 aqae )] = (1)1 2IMRC(E(?); ag ), (A6.1)
k]+222
= (-1) |P|
It therefore follows from (31) that
k, +2
5= (-1) 1 2mrce, (6125 apg.cp,)] (h6.2)

Since MFLT](G( ) byy L2) is equal to -[MFCT](G ) K]’CLZ)]" it follows that
k,+2
1

IMFL (60205 bpad )] = (1) 1 2Ry (642D aac )] (86.3)

From (A6.2) and (A6.3) it follows that

5 = |MFLp (6(2); (A6.4)

by sd )| -

From (A6.4) and from the definition of a positive (or negative) complementary tree
structure, Lemma 6 follows.
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Appendix 7 Proof of Lemma 7

Applying Z(+) to all the elements in the network, we get a connected one-node
graph. For, otherwise, there exists a cutset consisting of dc current sources,

controlled current sources, and voltage controlling edges. This contradicts the
Interconnection Assumption.
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" Appendix 8 Proof of Lemma 8

First consider Assumption 2. Since each e-edge is in series with an R-edge,
it suffices to consider a loop £ consisting of a-, b-, c-, and d-edges only. For
simplicity we assume that Assumption 1still holds. From the Interconnection
Assumption we see that L includes some c- or d-edges. Let one of them be £. Then
we modify the associated graph G by inserting an R-edge, say RO’ in series with £.
Since this corresponds to inserting a resistor in series with an input of a VCCS
or VCVS, or with an output of a VCCS or CCCS, this does not affect the currents
and voltages of each element (except for £) of the network. Thus the insertion of
the R-edge RO does not affect the uniqueness of the solution. Let the modified
graph be Gm. Since Gm satisfies Assumptions 1 and 2, we_can apply Theorem 7 to Gm.
Let us investigate whether the edge Ro should be open-circuited or short-circuited
when applying operations (a), (b) and (c').

Suppose first that £ is open-circuited in operation (c'). Then the resultant
graph does not depend on whether R0 is open-circuited or short-circuited because
& and Ry were in series. In this case therefore we can regard that Rg is short-
circuited.

Suppose that the edge £ remains after operations (a), (b), (c¢'). Then since¢
must be a branch of a tree in the resultant graph,]] R0 should be short-circuited .
in this case.

After all we can regard that the edge R0 should always be short-circuited in
operation (b). This means that we need not insert the new edge RO at all. Thus
we conclude that Theorem 5 still holds even if Assumption 2 is not satisfied.

Next consider Assumption 1. For simplicity we assume that Assumption 2 holds.
Suppose that Assumption 1 is not satisfied. Then there exists a cutset C consisting
of a-, b-, ¢-, d-, and e-edges only. From the Interconnection Assumption it follows
that C contains at least one a-, b-, or e-edge. Let it be £.

We modify the associated graph G by inserting an R-edge, say Ro, in paraliel
with £. Let the modified graph be Gm' Insertion of the R-edge R0 corresponds to
the following operations. ~

1) If £ is an a-edge, then connect a resistor in parallel with an input port of a
CCVS or CCCS.

]]Note that the resultant graph must have a complementary tree structure.

-38-



2) If £ is a b-edge, then connect a resistor in parallel with an output port of
a VCVS or CCVS.

3) If £ is an e-edge, then replace a nonlinear resistor in Fig. A.5(a) by the
network in Fig. A.5(b).

Apparent]y cases 1) and 2) do not affect the uniqueness of the solution. It
is not true that the nonlinear resistor f always has an equivalent network in
Fig. A.5(b) where f and f satisfy (7b) and R is positive. In spite of this, the
replacement of Fig. A.5 is valid for our discussion. For, assume that the original
network has a-unique solution for all circuit parameters (including nonlinear
characteristics). Then since the network in Fig. A.5(b) belongs to a class of
nonlinear resistors, the modified network also has a unique solution.

Conversely assume that the original network has more than one solution for some
circuit parameters. Then let the operating points of the nonlinear resistor f
be (v],i]) and (vz,iz) in Fig. A.6. We can replace the nonlinear resistor f by
the network in Fig. A.5(b) which has the same operating points (v],i]) and (vz,iz).
Thus the network obtained by the replacement has more than one solution.

Thus we see that case 3) does not affect the uniqueness of the solution.
Now we can apply Theorem 7 to Gm. Let us investigate whether the R-edge R0 should
be open-circuited or short-circuited in operation (b). If £ is an e-edge, then
we can regard that Ry is open-circuited because R-edges £ and R0 are in parallel
in Gm. Suppose that £ is an a- or a b-edge. If £ is short-circuited in operation
(c'), then we can regard that R0 is open-circuited. If £ remains after operation
(c'), then Ry must be open-circuited. For, £ must be a tree branch of a resultant
graph (otherwise, £ forms a self-loop). Thus we can regard that R0 should always be
open-circuited in operation (b). Consequently, we conclude that the insertion of
R0 is not necessary. That is, Theorem 7 holds even if Assumption 1 is not satisfied.

Even in the case where neither Assumption 1 nor 2 is satisfied, similar
discussion holds. '
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Appendix 9 Proof of Lemma 9

By referring to Lemma 7, it is seen that the difference between Theorems 7 and 8
is that Theorem 8 includes the case where the Interconnection Assumption is not
satisfied. So we consider only this case for the network in Fig. 23.

If the Interconnection Assumption is not satisfied, then in the associated
graph G there occurs at least one of the following situations.
1) There exist 1oops consisting of a-edges only or b-edges only.

2) There exist cutsets consisting of c-edges only or d-edges only.
3) There exist loops consisting of both a-edges and b-edges.
4) There exist cutsets consisting of both c-edges and d-edges.

Suppose that case 1) occurs. For simplicity we assume that cases 2), 3), 4) do
not occur. Then since the rows (and columns) ay and bK of i are linearly dependent,
A in (9) vanishes identically independent of A, B and D. Therefore we see that
the solution is not unique in this case. On the other hand we cannot obtain any
graph with a complementary tree structure by applying operations (a), (b), (c')
in virtue of the Restriction in Theorem 8. Therefore we conclude that Theorem 8
holds for case 1).

Since case 2) is the dual of case 1), similar discussion holds.

Next consider case 3). For simplicity we assume that cases 1), 2), and 4)
don't occur. Then the impedance matrix in (8) satisfies
Z Z

aa "abj _ (A9.1)
z

ba - Zbb

Therefore in this case (10) is not necessary for the network to have a unique

solution. Instead of (10) however we can show that either of the condition (A9.2)
must be satisfied. '

(-1)% > 0 for all A, B, and D (A9.2a)
(-1)*a < 0 for all A, B, and D. : (A9.2b)

Equation (A9.2a) is the same as (10). Note that there exist networks satisfying
(A9.2b). For example, the networks in Figs. 6(a) and (c) satisfy (A9.1) and (A9.2b)
and therefore have a unique solution.
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Let us investigate the condition (A9,2a) or (A9,2b). In case (A9.1) we can
insert m resistors-eu (n = 1,...,m]).in series with some a-edges so that the
modified network Nm satisfies the Interconnection Assumption and Assumptions 1 and
2. Here, the number ™ is equal to the number of independent loops consisting of
a-edges and b-edges only. The values of resistors € are assumed to be sufficiently
small. For the modified network Nm we can follow the discussion described in
Sections 5.1-5.5. However, note that in this case (:)0 in Fig. 25 must always

include all € (u = 1,2,...,m]). This means from the graph-theoretical point of
view that the Restriction in Theorem 8 must be satisfied.

In case 4)the dual situation holds.
This completes the proof.
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Appendix 10 Proof of Lemma 10
Let GO be a graph with a complementary tree structure, let T and T denote a
tree and a cotree of Go, and let

B, = MFL(Gy3 T | (A10.1)

Then it is well known that

1) the deletion of a row of BoT corresponds to open-circuiting an edge belonging
to T, and

2) the deletion of a column of BoT corresponds to short-circuiting an edge belonging
to T.

Since operations (c') for CCCS's means the operations S (input edge) and 0(output
edge), we obtain Lemma 10.
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Appendix 11 Proof of Lemma 11

Property 1) follows immediately from the identity

L

B B

21

To prove 2), suppose that the upper left nyXny principal submatrix B%s)

(3)
Bi™ By

22

' -1
lB'(r3) | |522‘321B$3) B

12l

(A11.1)

(# 844)) is nonsingular. Let 843) be an nyXxng matrix. Then we can easily verify

that the upper left (n]+n2) x (n]+n2) principal minor of B%z is nonzero (more
exggtly, positive by the definition of BT

By
Let

Then B(z) is the fundamental loop matrix of G(z) with respect to a cotree bK .

Multiplying the row bK by B and adding it to the row bK » we get

b
Kn{
52 = p

b
Ky

a
Ky

O™

N
b
STRLY:

A

& a
Kit K2

I 0

0 I

11

—
3
8{3)

(3)-1

(3)
Br™" (B2

B

By |B22

0

-1
3
(| 8

B2

-1
-g..pt3)

K
1) b
K]Z{

The matrix 542) is the fundamental loop matrix of G(z) with respect to a cotree
and short-circuiting edges bK]]

b
K12 11

a graph 6(4) of which the fundamental loop matrix is given by

| P2a1%7

and a, . Open-circuiting edges a
K K11

II|OIB-$.4)
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This contradicts the definition of

(A11.2)

(A11.3)

we get



B P T O NN

b a
Kiz2 K2

b
ECRLW S

This proves property 3).
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Appendix 12 Proof of Lemma 12
Let

s = MrL(6{); output edges) (A12.1)

Lemma A.5 Suppose that
1) Siis noﬁsingu1ar

2) each principal minor (except for |S|) is zero (A12.2)

Then 6(4) is a cactus graph

Proof of Lemma A.5 Let S = [Sij] be an nxn matrix. By (A12.2) we have
Sii =0 (i =1,2,...,n) (A12.3)

Without loss of generality we assume that

52] = 8] # 0. (A]2.4)
From {(A12.3) and (A12.4) it follows that

S]2 =0 : (A12.5)
For, otherwise

0

#0,
521

which contradicts (A12.2). Similarly we can assume

532 =€y #0, (AR12.6)
from which
513 = 523 =0 (A12.7)

follows. Continuing this process, we conclude that S has the form
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] (A12.8)

where g, = #1.

We have to show that each element of -the shaded part in (A12.8) is zero. Le;
S(n],nz,..,nt) denote the principal minor of S consisting of rows Nysfgse.eshy and

columns Nyshoseesshy. Then we can conclude that Sij =0 (for i > j+1) using the
following relations:

f
S(1,n) = 0=’Sn]- 0

s(1,2,n) = 0=>Sn2= 0

—

s(1,2,3,n) =0 = Sn3 =0

LF(l,Z,...,n-Z,n) =0=S 12°=0 (A12.9)
f

$(1,n-1,n) =0 =S 4 ,=0

5(1,2,n-1,0) =0=S ;=0

M —

&§(1,2,...,n-3,n-1,n) =0 =5 0

n-1,n-3

$(1,n-2,n-1,n) =0 =S, 5, =0

Finally we obtain
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s = ©2 0 (A12.10)

Therefore 6(4) is a cactus graph, by definition. From (A12.10) we have
1511888 ]) = (1) Tey ey ey (A12.11)

Let n_ (resp. n_) denote the number of positive (resp. negative) €;. Then we see
that

IS| <0 (A12.12)
if and only if

both n and n_ are even

or (A12.13)
both n and n_ are odd .

Equation (A12.12) can be summarized as follows
n,(=n-n_) is even . (A12.14)

This completes the proof of Lemma 12.
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Figure Caption

" Fig. 1. Simple circuit containing one controlled source (4 different types) and a
strictly monotone-increasing resistor.
Fig. 2. Load 1ine intersecting VR'iR curve in at least 2 points.
Fig. 3. (a) Open-circuit operation k = 0(k)
(b) Short-circuit operation k + S(k)
Fig. 4. - (k,k) = (0(k), S(k)) or (S(k); 0(k))
Fig. 5. Definition of the operation Z(CS)
Fig. 6. Circuits which do not satisfy the Interconnection Assumption
Fig. 7. Cactus graphs
Fig. 8. Disallowed graph: edge 1 is associated with the input (controlling)
variable and edge 1 is associated with the output (controlled) variable
of the controlled source.
Fig. 9. Circuits for Example 1 (a>0): only circuits on the left have a unique
solution.
Fig. 10. 2-leaves cactus graph in which the direction of edges is not assigned.
Edges {1, i} are associated with controlled source 1; edges {2, 5}
are associated with controlled source 2. Disallowed 2-leaves cactus
graph is defined as the graph with zero or two similarly-directed loops
in Fig. 10.
Fig. 11.. Circuit for Example 2: the disallowed graph in (d) implies the solution
is not unique.
Fig. 12. Circuit for Example 3: No disallowed graphs are found; hence the solution
is unique.
Fig. 13. Circuit for Example 4
Fig. 14. Circuit for Example 5
Fig. 15. Circuit containing 2 different types of controlied sources.
Fig. 16. Typical disallowed 4-edge graphs which are different from 2-leaves cactus
graph.
Fig. 17. Circuit for Example 7
Fig. 18. Circuit for Example 8
Fig. 19. Circuit for Example 9
Fig. 20. Circuit for Example 10
Fig. 21. Complementary tree structure graphs obtained from networks in Fig. 6.
Fig. 22. Circuit for Example 12
Fig. 23. Circuit containing "k" CCVS's, "2" VCCS's and "m" nonlinear resistors.



Fig. 24. Linear resistance (2k+2%+m)-port corresponding to Z in (16).

- Fig. 25. The main part of the fundamental cutset matrix of the graph €. The a-,
b-, c-, d-, e-, and g-edges are chosen to be the tree.

Fig. 26. The coefficient matrix H associated with the cutset equation in (A3.2).

Fig. 27. Submatrix of DL in Fig. 25. This is identified as the main part of the
fundamental cutset matrix of the graph G(o).

Fig. 28. Matrix obtained from Déo) by applying the "sweeping-out-by-some-pivots"
operations. This is indentified as the main part of the fundamental
cutset matrix of the graph G(l).

Fig. 29. Equivalent circuits of a CCCS and a VCVS by using a CCVS and a VCCS.

Fig. 30. Graph representation of the networks in Fig. 29.

Fig. A.1. Disallowed 2-leaves cactus graph.

Fig. A.2. Impedance matrix Z of the network in Fig. 24.

Fig. A.3. Graph-theoretical interpretation of "sweeping-out-by-the-pivot (i,3)"
operation.

Fig. A.4. Graphs for Example A.2. Figs (a) and (b) correspond to (A5.5) and (A5.6),
respectively.

Fig. A.5. Replacement of nonlinear resistor f by the parallel combination of f and RO'

Fig. A.6. Characteristic v-i curve of a nonlinear resistor.
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