

Copyright © 1983, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

ATTACHING AN ARRAY PROCESSOR

IN THE UNIX ENVIRONMENT

by

Clement T. Cole

Memorandum No. UCB/ERL M83/23

12 April 1983

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

ATTACHING AN ARRAY PROCESSOR IN THE

UNIX ENVIRONMENT

ClemeTtt T. Cole

Electronic Research Laboratory

Department of Electrical Engineering and Computer Sciences

University of California

Berkeley, California 94720

ABSTRACT

In this report the work necessary to attach a commercial
array processor, the Floating Point Systems FPS-164. to a VAX 11/780
running 4.X BSD UNIX is described. The FPS-164, its surrounding pro
gram development system, and the interaction with potential
application programs are also presented.

April 8, 1983

FPS is a Trademark of Floating Point Systems Incorporated.
MULTIBUS is a Trademark of Intel Corporation.
UNIX is a Trademark of Bell Laboratories.
VAXVMS, UNIBUS are a Trademarks of Digital EquipmentCorporation.

1. Introduction

This is a report concerning issues related to the use of an array processor

attached to a UNIX machine for the purposes of running CAD/CAM application

software. After a brief examination of the hardware involved in the project, the

software system built upon that hardware is described. First, a justification for

the use of such a system is presented. The ultimate goal is improved overall

system performance measured on the basis of cost effectiveness.

Throughout the report the term attached arrayprocessor refers to a single

processor attached to a general host computer for the purpose of speeding up

certain classes of computational tasks. It takes the name array because most of

the tasks maintain their storage in one-dimensional (vector) form. The machine

is not a standalone computing engine, in that it is attached as a peripheral to

some other host computer. The host is typically an minicomputer or midicomr

puter that includes hardware to retain large amounts of data, communicates

with users or other computers and is usually able to run the given application on

itself is a somewhat limited manner.

The complete case for attaching an array processor is not offered here. It

has been presented elsewhere.Col82, Kar82 Instead, this report covers the require

ments for attaching such a processor and how an application such a SPICES^73'

Coh76 uses sucn a processor. This work is a step in an on going research effort

aimed at improving the performance of electrical simulationCon81a- Vla83, Qua83

and device analysis01*79- 01d8°. Nflnfli for integrated circuits (ICs). Early results

have indicated a mxnirrvum of a 2.0 to 3.5 time speed increase for SPICE2 com

pared to the the VAX 11/780 UNIX program using the VAX floating point accelerator.

Preliminary results indicate that a speed up of up to 4 times (a 5 to 10 times

total speed up) would be possible by use of compiler optimizations and clever

programming.

1.1. Overview

The format of this report is as follows: An introduction and overview; some

results of the effort; examples of concepts associated with parallel processing in

general and array processing in specific; an examination of some fundamental

array processor hardware implementation issues, along with a presentation of

the hardware architecture of the FPS-164; a examination of software issues for

this computing system; a description of the conversion process itself; a few

suggestions for future work.

The intent of this report is to ba a detailed description of basics of attach

ing an array processor, to act as a guide to the software, and to give a starting

point for further work.

To provide a basis of comparison and establish some terminology, the

report includes some examples of contemporary computers and the

classifications normally applied to them according to their use. Typically, they

are segregated on the basis of instruction rate, memory addressing capability,

floating point operations performed per second, etc.. These terms are found in

the Appendix. Also included in the Appendix are the software terms used

throughout the report. A reader unfamiliar with this terminology should review

the Appendix. Of particular interest are the names of the different programs

which make up the entire FPS-164 software system.

1.2. Technology Issues and Formal Computer Classes

According to Enslow,Ens77 four system characteristics which serve as

motivation for continued development and use of such parallel processing

schemes are:

1.) Throughput

2.) Flexibility

3.) Availability

4.) Reliability

This report focuses on achieving greater throughput for the system. (More work

per unit time without significant compromise of any of the other characteris

tics). The way to increase the throughput is to decrease the time it takes to

perform a given computation. One way to do this is simply to use faster elec

tronic parts. As the switching times of modern devices approaches the physical

limits imposed by the speed of light and as propagation delays along the compu

tational path become more significant, alternative approaches to speedup are

necessary. In theory, given a computational task which takes T time units to

execute, if it can be partitioned into N independent tasks then applying N pro

cessors to the problem could result in consuming only T/N time units to exe

cute - a speedup of N times. While this limit is rarely achieved for practical

problems, a well-partitioned algorithm can gain a significant improvement in the

throughput from the N processors.

Flynn^y66 classifies computer systems into four groups, depending on pro

perties of the instruction and data streams.

Typical uniprocessors (serial computers) are classified as:

1.) SJSD: single instruction - single data stream.

Parallel computer systems are classed as:

2.) SUED: single instruction stream - multiple data stream

3.) IDSDc multiple instruction - single data stream

4.) mm: multiple instruction - multiple data stream.

Parallelism is achieved by replicating the instruction and/or data streams.

Typically, the faster machines employ techniques which classify them in

one or more of the 3 parallel categories. From minicomputers to supercomput

ers, the move is from essentially no parallelism to a large amount of parallelism

and, as a consequence, the speed and cost of the computation increase propor

tionally. Siewiorek. Bell, and NewellS"*82 represent this graphically in Figure 1.

L
figure 1. Computer systems as a function of cost and processing rate.

1.3. Cost Effectiveness Issues

Consider a simple interactive task, such as writing and editing a program,

the speed and computational power of the supercomputer are quite underutil

ized, and the money spent to procure such a system is hardly justified for this

type of computational task. A supercomputer must be kept busy a significant

portion of the time to be cost-effective.1 However, consider a task which con

sumes hours of cpu time, such as circuit simulation of a large integrated circuit,

or logic simulation of a sophisticated central processor. The cost associated

with the supercomputer is weighed against the fact that the simulation may not

even be able to be run on a smaller machine. The ability to run a program on a

machine is a concept which considers both the space the program and associ

ated data occupy as well as the runtime of the program. For example, if a simu

lation takes 10 hours of CRAY-i cpu time to run to completion, it might take on

the order of a week of VAX cpu time to run to completion. In most cases, such a

problem would be considered unable to be run on the VAX. When the ability to

run a program is considered, the user must make a the assumption that the

computing engine will not fail during the whole of his program run time. The

longer the program runs, the more chance of a failure.2

Even though the owner of a midicomputer or minicomputer may have the

legitimate need for the sophistication and speed of a supercomputer, the enor

mous initial costs and continuing maintenance costs associated with such a

machine (roughly an order of magnitude greater than the typical

minicomputer/midicomputer system) could easily prove to be an insurmount

able obstacle. The cost of machine is not just the simple outlay of dollars for the

1 Cost effectiveness mightbe denned as: (cost per run) = (cpu time) • (costper second),
where (cost per second) = (purchase price) / (60,000 hours) • 3600seconds/hour. H**81 A finer
analysis would consider programming and software development time, maintenance, etc.
which is examined later in this section.

8 A failure could be most anything, from human error, to power loss; from hardware mal
function to operating system malfunction.

100 1000 10,000 100,000

COST (THOUSANDS $)

Figure 2. Speed to Cost.^81

the cpu. The size of the maintenance staff (both software and hardware) is

related to the size of the machine - the larger the machine, the larger the staff

to maintain it. An alternative to this situation is found in the attached array pro

cessor. This processor, being attached to a minicomputer or midicomputer,

does not significantly increase the maintenance costs because it to not a com

plete host. Instead it increases the complexity of the total computing system,

HOST + AP, slightly, but not as much as a two completely separate hosts.3 Thus it

can be operated and maintained my the current existing staff, while still holding

the capital outlay to a minimum.

The issue is illustrated graphically in Figure 2. The domain of problems

represented by this curve includes numerically intensive problems, such as

3 The "it's easier to administrate" argument was one of the arguments presented when
the "dual processor" host such as the Purdue University Dual VAX ll/7B0Goi^1 systems were
created.

those solved with the FORTRAN programming language but does not include

interactive tasks, such as editing and compiling. Figure 2 shows constant cost-

per-operation-contours. The machines of interest here are the VAX 11/750 the VAX

11/780, the IBM 4341 and the IBM 3081. If you assume a cost of between $100K and

S150K for a VAX n/750 and a cost of $250K to $500K for the VAX n/780, the observer

will notice that both of these machines sit on the same cost contour as the

machines which cost in the ranges of $450K to $1M for the IBM 4341 and $5M to

$10M for the IBH 3081. The array processors are situated on a contour below that

of the CRAY-i style supercomputers, meaning that they give the user more pro

cessing power for the dollar spent. The observer should note that these type of

machines give the same amount of raw processing power as that of the maxi-

computer like the IBM 3081. but at the same price as the VAX n/780. In the curves

presented, Karplus has included only the cost of the array processor and has

assumed that the user of the AP, already owns the minicomputer or midicom-

puter with with it is attached. This is not unreasonable because, when the array

processor is added to the host, the host is still available to be used as a proces

sor in its own right. Even if the host is near saturation in use, the array proces

sor need not be a significant load as shown later. Most likely, the array proces

sor will help reduce the load on the host.

B

2. The Attached Peripheral Array Processor

Historically, the term array processor has been associated with all of the

previously defined classes of computer systems (SMD, SUSD, HMD). As examples,

there are systems composed of arrays of processing elements (siHD) such as the

EUAC, systems designed to process arrays of characters or strings (HBD) such as

the CDC 8000, systems designed to facilitate the processing of vector arrays of

data (SISD, MISD, or HMD depending on the particular system) such as the CRAY-1.

HOST

HOBt I/O CtMMMJ

z
AP

Figure 3. An HOST with an attached AP

To distinguish these types of systems from the attached array processor, a

more general definition is necessary and some distinguishing features of

attached peripheral array processors must be examined. The term array pro

cessor as used in this report, refers to a single peripheral processor which is

attached to a general purpose host computer system so that the tandem combi

nation provides a much greater computational (number crunching) capability

9

than achieved by the host computer system alone. TheSi Figure 3., is an example

of such a connection.

In terms of Flynn's classes, the array/host configuration can thus be viewed

as an HMD architecture,4 with the number of processors Np^2 .

Karplus and CohenKar81 distinguish an attached array processor as a special

digital computing device with all of the following features:

1.) It is designed as a peripheral for a conventional host computer and is lim

ited to enhance the performance of the host in specific numerical comput

ing tasks.

2.) It achieves highperformance through parallelism and/or pipelining.

3.) It includes an arithmetic section containing at least one adder and one mul

tiplier capable of operating in parallel with each other.

4.) It can be programmed by the user to accommodate a variety of arithmetic

problems.

5.) Typically operates on data in multi-dimensional (array) form.

A simple explanation of two of the main points are described in the appen

dix. The serious reader should refer to these sections to obtain a detailed

understanding of the interaction between the speed of a computation and the

implementation of an array processor.

2.1. The Floating Point System's FPS-164

The specific attached array processor used in the project is the Floating

Point System's FPS-164.

The hardware architecture of this computing engine is complex. The

machine contains a 64 bit word, 8 functional units, 7 high speed data paths and

4 It is likely that parallel I/O capability will exist. This is just another processing element.

10

one low performance interconnect to a host a VAX n/780 Unibus Adapter, an

APOLLO Multibus, or an IBM Channel.DEC7Sa» AP°8l.™70

Figure 4., Hie floating Point System's FPS-164

The FPS-164 is contains three primary architectural features: (see Figure 4.)

• multiple functional units

• multiple interconnects

• multi-operation instructions

In order to exploit the full power of the computing engine, all 8 functional units

must be kept operating at the same time. The FPS-164 is a dyadic computer,

which means that each functional unit is capable of operating on two items at

once. Thus, during each instruction cycle the AP can perform either two data

computations, two memory accesses, an address calculation, read two internal

registers, write two internal registers, or initiate a conditional branch. Each

11

functional unit is pipelined so that on each 167 nanosecond cycle, the AP can

move data from one pipe stage (segment) to another. Figure 5, shows the four

independent types functional units of FPS-164.

FIRST STAGE SECOND STAGE THIRD STAGE

BEGIN MANTISSA
PROOUCT

>
ADO EXPONENTS

\s—

COMPLETE
MANTISSA
PRODUCT

MULTIPLIER UNIT PIPELINE

>
ALIGN ANO

ADD

MANTISSAS

NORMALIZE
ANO ROUND

RESULT

ADDER UNIT PIPELINE

NORMALIZE
AND ROUND

RESULT

PROCESS
MEMORY

ADDRESS

BEGIN READ
OF MEMORY

LOCATION

COMPLETE READ
OF MEMORY

LOCATION

MAIN MEMORY REAO PIPELINE

PROCESS
MEMORY

AOORESS

READ
MEMORY

LOCATION

AUXILIARY MEMORY READ PIPELINE

Figure 5. FPS functional unit stages.^81

These functional units consist of either two or three segment pipelines and may

run in parallel. This means that a complete arithmetic operation is not com

pleted until two or three cycles after it is initiated. The short pipeline size

means that a small penalty will be paid when the pipeline must be flushed.

12

Unfortunately, this relatively short pipeline means that that machine will not

perform as well as a longer pipelined machine such as the CRAY-i for long vector

operations without software aids.5

2.1.1. Functional Units

The important features of the FPS-164 are:

Arithmetic FimcHonal Unit. The adder unit performs floating point addi

tions and subtractions and data format conversion. It also performs integer

arithmetic, shifts, and divide/square root approximations.

Multipler Functional Unit. The multipler unit performs integer and float

ing point multiplication.

Memory Functional Unit. The primary store for the data words is main

memory. It is also the secondary store for instruction words. It has a size max

imum of 12 megabytes due to the current memory technology (16K-DRAMS). The

memory unit also contains a set of simple base and limit registers to aid in relo

cation of data and instruction text.

Auxiliary Memory. The auxiliary memory is smaller and optional. It is

used to contain read only constants such as cosine tables, specifically used for

FFT algorithms. This allows frequently used constants to be loaded into the AP

once, instead of every time a program is run. The size of this memory may

range from 64K bytes to 256K bytes.

Data Registers. The X and Ydata registers each contain 32, 64 bit regis

ters. One register per register file can be read and one per file can be written

per cycle.

Such as reworking the application program's internal data structures to tune them to
wards the pipeline structure ofthespncific processor that will execute the program. In the
case of the cbay-i, general experiencehas shown that data structures that are tuned in "8's"
(or multiples there of), tends to perform better than data structures that are say of size
"5". The cr&y-i is built around 8registers, 8pipeline stages etc.

13

Address Calculation Unit. The address calculation unit adds, subtracts,

and performs logical operations on memory addresses, loop counters and

integer data contained in the 32 bit wide address registers.

Address Registers. The address registers are similar to index registers of a

normal computer. The FPS-164 contains 64 of these.

Instruction Memory Unit. The instruction memory unit provides for the

primary storage of instructions. This separate memory allows instruction fetchs

to take place simultaneously with data fetches without mutual interference.

Unfortunately, the instruction memory is only 32k bytes in size. The FPS-164 can

fetch code from primary memory but at the cost of performance.

Branch Control The branch control logic is used to decide which instruction

to execute next in parallel with the completion of the current instruction. The

FPS-164 tries to execute both parts of the branch if it can, (i.e., if there are

enough functional units available). In this way it is not penalized significantly by

a branch.

2.1.2. Interconnection

The FPS-164's multiple functional unit architecture means that data paths

must exist between the functional units in order to keep all of the units operat

ing. Figure 6. shows the interconnection topology of the FPS-164.

ARITHMETIC

(r>—*

ARITHMETIC INPUTS
ncaULTS

AUXILIARY
MEMORY)

INOIVIOUAL

V

fc (

SWITCH

MAIN
MEMORY

k / -s

) f

i

c XOATA
REGISTERS)^•^

fc M f ^ ' * /N '(YOATA
REGISTERS)^ \ / ~ / *

)
UTILITY BUS

in
vu
(A

CD

k -

\ „. > s

4 i [OATA 1 V
ADDER MULTIPLIER

\
t < r

Figure 6.. The FPS-164 interconnection network.

The FPS-164 can produce six individual results at one time, from:

the multipler

the adder

the X register

the Y register

primary memory

the auxiliary memory

14

15

There are eight possible inputs for those results, from:

• the two*memories,

• the X register

• the Y register

• any of the four arithmetic operators

Due to the physically large number of interconnections, the FPS-164 only uses 30

of the possible 48 interconnections. For a 64 bit wide word, this means the FPS-

164 contains an interconnection network of 1920 connections. The crossbar is

implemented with seven dedicated busses each 64 bits wide. Four of the busses

are used to supply operands to the arithmetic units, and two are used to carry

the results away. The seventh bus is a utility bus which is not dedicated to the

processor and is used to link the register file to the memory file for fast register

flushing and loading.

2.1.3. Multi-operation Instructions

To run at full speed, the 64 bit wide word of the FPS-164 is divided into 10

subinstructions, called "parcels", (see Figure 7.) Each instruction in the FPS-164

can be thought of as direct access to the micro-instruction of a conventional

processor. Parcel's are analogous to single instructions on a conventional com

puter. The programmer (or compiler writer) is responsible for keeping all of the

parcels filled and non-conflicting. If all parcels are filled, then 10 simultaneous

operations will take place. By sharp programming, a complete vector loop is

possible in one complete FPS-164 instruction. With the 167 nanosecond cycle

time, and if all parcels are kept filled, the machine will operate at 60 million

total operations per second which becomes 12 million floating point operations

per second (12 MFL0PS).

AODRESS
UNIT

PARCEL

ADDER
UNIT

PARCEL

OPERATION
COOE

CONTROL
UNIT

PARCEL

FIRST

OPERANO
COOE

XRE6.
WRITE

PARCEL

SECONO
OPERAND

COOE

•64 BITS-

YREG.
WRITE
PARCEL

XREG.
REAO

ADDRESS

YREG.
READ

AODRESS

MULTIPLIER
UNIT

PARCEL

Figure 7., The FPS-164 Multi-Operation Instruction Format.

16

MAIN

MEMORY

PARCEL

3. The Software System

As with an conventional processor, an array processor must be supported

by some set of utility programs that allow the program to create and execute

programs to run on that computing engine. The FPS-164 is no exception. The

name for the this set of programs is the PDS, for Program Development Software.

Included in these utilities are an assembler, a linker, a librarian, and a compiler.

3.1. The Compilation Process

In a conventional computer, a program writer takes the source to his pro

gram and submits it to a translator, such as a FORTRAN compiler or an assembler

for the HOST machine. The output of this program is an object module, that con

tains the set of machine instructions that represent that program entity (sub

routine or complete program). This object can be archived together in another

AUXILIARY

MEMORY

PARCEL

17

file, with a librarian such as the UNIX archiver, ar(l).CSR81 The libraries, along

with other object modules, may be bound together to produce a executable pro

gram with a linker, such as the UNIX linker, id(l).CSR81 Figure 8, is an representa

tion of this process.

User's Host FORTRAN File

Host FTN

Host FORTRAN Object

Figure 8., Standard Compilation Process.

The standard compilation process breaks down with an array processor

because it has been built the assumption that every instruction generated by

the translator will be executed in what appears to be a local manner. On an

attached array processor, instructions are being executed on the behalf of the

user in a peripheral. The standard HOST translators have no knowledge of this

peripheral so they can not produce a set of instructions to be executed on the

peripheral processor. For a first-order view, we simply replace the standard

HOST translators with ones for the AP. The problem with this view is that when a

user runs a program on the HOST, the HOST needs an object module that contains

18

HOST instructions to execute and the AP's translators emit instructions for the AP.

FPS User

Pro9rqm , APLink64
Objects

FPS Binary
File on Host

Host FORTRAN File

Host FTN

Host FORTRAN Object

Figure 9., APCompilation Process.

As a result, the programmer must pick the set of routines that he wishes to

be executed remotely. These routines are submitted to either the assembler or

the translator for the AP. The programmer then binds together all of the rou

tines that will run on the AP with the AP's binding program (APLINK64 in this case).

The array processor's binder will emit a module that contains the instructions

that run on the AP. The problem is that the "main" part of the program runs on

the HOST.

Notice that there is a gap between the HOST and the AP: the AP translator

creates instructions for the AP and the HOST'S translators create instructions for

the HOST. This rift is spanned by a feature of the binder. Along with the execu

tion module for the AP, the AP translator also emits a set of subroutine stubs in

HOST FORTRAN. The module of stubs is called the HASI, (HOST-AP Software Inter-

19

face). The HASI is input to the HOST FORTRAN compiler to produce a HOST object

module. The object module can then be bound with the main object module and

other objects to produce a HOST execution image. The resultant image is a

"complete" HOST program that can be executed locally. Contained within HASI

stubs are a set of calls to the AP's runtime executive (APEX). Figure 9, shows the

AP compilation process.

This is the "classical" way the AP is used, but if the AP has been equipped

with a local disk, the AP can be used more efficiently.

3.2. APBC/SUH

The AP Executive is actually a collection of routines that are written for the

most part HOST FORTRAN.6 This collection of routines has the major responsibility

for communication and synchronization between the AP and the HOST. The opera

tions performed by the HASI through APEX calls areFPS82a« FPS82b

8 HOST FORTRAN was usedfor ail ofthe HOST independent routines, and most ofthe dependent
routines. For the actual I/O calls and the I/O waits etc, there exists two C modules that are
FORTRAN callable. This made the UNIX interface a bit simplier.

nacMN out

H03T rQKtMN
nacMN a

TO *»

HUJf FQKTMII

PM6MM CUU

afvux

HUt TMKSTCM

miosjuii AKO

own TO AT

km: wtkiivcs

Aurowrxe
MM FNXZSSXS6 ' HOST

CXECOTIOM

figure 10.. HOST -APEX-SOU - AP relationship.

20

.1. Assign a AP to the running HOST process

2. Initialize the APEX data base for later communication

3. Initialize the AP if need be.

4. Initialize the HISP if need be.

5. If need be, load and initialize from a HOST disk file, the SUM image

binary.

6. Load AP local routines for the HOST process from either HOST process

memory or for a HOST disk file.

7. Transfer data from the HOST process image to the AP process image.

8. Transfer data from the AP process image back to the HOST image.

9. Start up an AP process.

21

10. Handle AP exception conditions.

11. Provide AP debugger support if need be.

12. Terminate an AP process if need be.

13. Release the AP when the HOST process terminates.

The APEX calls cooperate with a set of routines in the SUM. It is the SUM that

actually does much of the work on the AP. Below APEX and the SUM is the device

driver and the HE3P (Host Interface Support Processor).F?SB2c See Figure 10, for a

view of the HOST/APEX/SUM/AP distribution. The driver specifics are covered later.

When an application program is written with APEX linkage to AP routines, it is

written to be executed on the HOST. The program will call routines that will exe

cute on the AP. Because the program has been written for execution on the HOST

all I/O (to terminals, files, devices etc.) is directed to the HOST. Thus is does not

make sense to attempt r/0 in the AP. In order to perform I/O from the HOST, a

protocol would have to be maintained by the two processors to insure that the

data move correctly between them. Such a protocol would be overly complex

and does not exist.

As a result, the programmer of an application must make sure that all rou

tines running on the AP are free of any I/O statements.7 This results in having

only the most computationally intensive portions running on the AP. There is an

obvious inefficiency with this method of execution. The data for each subroutine

must be moved between the HOST and the AP each time the program transfers

control from the HOST to the AP or vise versa.

7 For a large application program, such asSPICE, thetaskof removing that I/O is large.

22

With large data arrays, considerable overhead is associated with keeping valid

the data in memory on both processors.8

3.3. SJE/SFH

The single job executive (SJE) is a way to use the AP without requiring the

programmer to decide a priori which modules will best utilize the AP. With the

SJE, the entire program runs on the AP. Here in, lies another problem: something

must run on the HOST to actually get the AP started. As described previously,

APEX is responsible for starting programs and the transfer of images from the

HOST to the AP. To this end, the SJE is a standard HOST FORTRAN program that

makes calls to APEX, (see Figure 11.)

HOST

SJE

HOST

DIM

APEXW

MOST

IMTCKMl

AP

sun

/wxttsioan smelts
unices

use*

NtMMT

.£
rw-06*
OlSft

SUaSVSTEN

Figure 11., SJE - APEX - SDH - SFH relationship.

It is a conversational program which communicates with the application's user,

8 Thedata validity problem is a classic problem in distributed systems.

23

Notice that when writting an application program to run under SJE, the program

mer uses the AP's translators just like he used standard HOST translators. It os

not necessary to have the binder produce the HASL SJE will move the image from

the HOST to the AP. When using an SJE bound application program, it is the user of

that application who must be conscious of where the program is running.

The difference between standard APEX mode and SJE mode for a program

should be examined. SJE need not move data from the HOST for the active AP

application while it is running.9 Instead, the user of the application moves his

input data files from the HOST over to the AP's "local" disk. Once the application

has finished, he must move the results back from the AP local disk to the HOST'S

local file system. The portion of the AP's operating system that maintains the file

system is referred to as the Scratch File Manager (sfm). It takes this name

because files are not permanent. Each time theAP is reloaded," all files are lost.

Hopefully, future versions of SJE and the SUM will allow a more permanent way of

retaining data.

A major limitation to the SFM is the size of a file. When a file is created, all of

the space for the file is allocated. Thus when a program runs, if it does not use

all of the space allocated to it, it "wastes" space on the disk. If the program

needs more space than requested, it is terminated prematurely. This is prob

lem if a user of SJE is interactively running a single application many times. If

the application program must create the output ahead of time, then it will have

to make it "large enough" for that data run. If the user then runs the program,

but is running many small runs, he will see the disk fill up even though he is only

using a small amount of space.

Of interest is the SFM/SUM relation to a broken program. It has been

observed that when a program terminates prematurely (from a divide by zero

9 Otherthan the normal terminal I/O traffic, which will be obviously low bandwidth data

24

fault, etc.), the SFH/SUH does not flush the data in the output buffer to the disk.

The SUM is using a technique called "write behind" which buffers data in the main

memory until it "has to" flush the data out to the disk. This technique uses the

disk transfer speed efficiently (data is optimally written out in full buffer incre

ments). Unfortunately, this efficiency is a hindrance to the application program

writer because it makes it difficult to tell were an error is occurring when

debugging.10 Thus liberal use of write statements will not always help debug a

program because the data written will stay in the SUM'S buffers and not be

flushed out to the disk.

As described before, the user of an SJE application program uses the AP in a

slightly different manner than the APEX application program. Under APEX, all I/O

(such as input files) is handled by the HOST; but active data must be moved

between the two machines as the program runs. Under SJE, the user must move

his input files from the HOST to the AP before he starts and his output files back

when it finishes. What is more, the SJE user must be aware of the fact that the AP

has different data formats from the HOST. Thus before moving data from the

HOST, the user may have to convert bis data files to a form that is suitable for the

AP. It follows logically that the inverse must be performed at program end. The

data conversion routines are contained within a library associated with the AP on

the HOST computer. The associated conversion routines reside in the utility

library.

10 Though to be fair, the debugger built into the SJE helps a great deal to this end. 3y li
beral use of watch points, break points and stack traces! the program writer has a fairly
good chance of catching his bugs.

25

3.4. The Driver

The Driver is the piece of operating-system-resident code that supports the

AP. It translates an I/O request into an I/O request to the AP or an AP start/stop

request. The driver routines are called from APEX.11 The driver in turn communi

cates with the HISP via a shared memory called the message ram (MRAM). The

driver is lowest level code that runs on the HOST. The primary responsibilities of

the driver are:

1.) Support the notion of an UNIX I/O device.&t7Q This means that the

driver must contain the normal entry points: open, close, read, write

and ioctl along with the special entry points such as the probe rou

tine for automatic device recognition at UNIX boot time.

2.) Start up an I/O transfer to or from the AP. This includes preforming

all VAX specific operations like page lock down/free up, obtaining and

releasing Unibus resources, and address translation into the Unibus

address space.

3.) Handle any interrupts from the AP. The AP can interrupt the HOST

asynchronously, so the driver must retain all interrupt state.

3.4.1. The Message Ram

As described before, the driver communicates with the HISP via a special

shared memory called the MRAM. This is 32 byte section of memory contained on

the VAX interface board that may be read or written by both the VAX and the HISP.

It is addressed by the VAX as "memory" locations in the Unibus memory space.

Figure 12. is a picture of the MRAM. The last four bytes of the MRAM are not actu

ally memory, they are the Control and Status bytes for the interface. The VAX

11 The Unibus Diagnostic, vuitm, called the driver though a subroutine called: dgpio - Diag
nostic Programmed I/O.

26

MRAM

Shored Memory

HOST AP

ISW Host R/Only

ICW Host W/Only

Figure 12., VAX/HJSP MRAM.

writes the ICW to inform the HISP of a change in status, the HISP will write into the

ISW to send status information back to the VAX.

&4.£ VAX/HBP HEAM Protocol

Whenever you have two processes that share a resource a protocol must be

obeyed by both processes. For the MRAM, the default case is that the HISP con

trols it. Independent of a particular operating system, if the VAX wishes to read

or write this resource, the VAX must take control from the HISP by writing a 1 into

the SETLOK bit in the ICW. The VAX then must wait for the LOKACK bit to be asserted

in the ISW. When this second bit is asserted (by the HISP) the VAX UNDC driver

"knows" that it has complete control of the MRAM. The HISP will not attempt to

modify the MRAM until the VAX relinquishes control by asserting the CLRLOK bit in

the ICW.

27

Interrupt Part -

Figure 13., VAX Interrupt State Diagram.

Whenever the VAX wishes to gain the attention of the HISP, it uses the HISP

attention bit in the ICW. Equally, whenever the HEP wishes to get the VAX's atten

tion, it will deposit a one in the Interrupt Indication (INTEND) bit in the CSW. If the

VAX has interrupts enabled (turning on the INTENB bit in the ICW) and the proces

sor is at a low enough priority, the VAX will take an interrupt from the FPS. The

interrupt causes the driver to do the following:

1.) lock the MRAM.

2.) make a local copy of the MRAM.

3.) release the MRAM.

4.) return to normal processing.

When the MRAM is released, the driver must clear the tNTIND flag by posting a CLRINT

FPS 64 Bit Word
0
I 16 QMS o I is ohT

VAX 16 bit short VAX 16 bit short VAX 16 bit short VAX 16 bit short
<3> <2> <i> <0>

28

64

Figure 14., FPS-164 word to 4 VAX shorts mapping.

in the ICW. Figure 13. is a state diagram of the interrupt process.

a4.3. The HCSR

Within the MRAM are 8 bytes of status information contains the state of the

HBP and the AP. These bytes are known as the HCSR and make up one FPS word.

FPS documents the bits within the HCSR using the FPS bit numbering which is

opposite of the VAX.12 In the VAX HOST Manual,FPS82c the HCSR is referred to an

HCSR(Upper) and HCSR(lower) for the two 32 bit upper and lower portions in VAX

longs. The issue is further clouded by looking at the HCSR as four VAX 16 bit

unsigned short integers (shorts). This is more natural because the HCSR[0..3]13

18 One of the more confusion parts of the driver is the mix between FPS 64 bit words,VAX 16
bit shorts (FPS sometimes calls these words), VAX 32 bit longs (fps sometimes calls these words
also). Danny Cohen describes this type of problem, in more detail for a variety of computing
systems.Cofcflo

13 Notice Carray reference naming conventions of a[0] for the first position within the ar
ray, not FORTRAN convention of a[l] for the same place within the array.

29

are the four shorts as the driver will see them though the MRAM. Figure 14 is the

mapping between the 4 shorts and the 1 FPS long for the HCSR. HCSR[2] contains

the interrupt masks. Whenever an interrupt is taken by the VAX from the FPS,

after the driver copy's the MRAM, it then looks at the type of interrupt the VAX

received and the posts UNDC I/O status information based on the type of interrupt

received. In all cases the MRAM data is copied and saved for use by APEX.14

3.4.4. Interrupt Status Information

Of particular interest is the problem associated with the AP and asynchro

nous interrupts to the HOST. Most peripherals conform to the disk drive model of

the world, that is, the peripheral will never interrupt the HOST without the HOST

having previously made a request to the disk. When a disk drive makes an I/O

request, the disk controller will interrupt it with one of a number of interrupts

(l/O done, I/O error, bad block error, etc.) In all cases, the interrupt is only gen

erated after the HOST has requested some service from the peripheral. The

interrupt is a message from the peripheral, informing the HOST of the result of

the service request. In each case, the HOST has some outstanding I/O request

waiting for the transfer complete.15 UNIX synchronizes its processes by causing

the process that makes the I/O request, to block (halt executing) in the driver

until "disk" finishes servicing the request. With a peripheral that produces

asynchronous interrupts such as the AP, the HOST can be interrupted asynchro

nously of a I/O request. Which is to say, there is not a user buffer available in

the HOST operating system for the status information from, the peripheral (the

14 This is sort ofa lie. CurrentUNIX doesnot supportpower fail, apex has no direct support
for such, so this interrupt is tossed on the floor. If you get this interrupt, unk will have
tossed cookies itself so this is not a problem. Further, there is a special type of "on-line'' in
terrupt that should be ignored. See the driver code for the details.2"63

15 Someoperating systems, such as dec's vhs, do not cause the user process requesting the
I/O to block while waiting. But in all cases, the process has some sort buffer allocated for the
status information from the peripheral. Thus when the I/O is complete, the peripheral driver
places that status information in the buffer and starts up the driver.

30

AP) and a process waiting for that information.

Consider the following problem: The user of the AP, sends to the AP an image

to be processed. The AP's device driver will start up a standard I/O request to the

AP to transfer the image it. When the image has been moved in the AP's memory

(saved on the disk as it were) the AP will interrupt the HOST with a HISP-DONE inter

rupt to inform it that the HISP has completed a I/O transfer. The HOST can then go

back and continue doing other work (possibly starting up another transfer to

the AP). The AP will then start executing the image that was just transferred. At

some later time, the AP will send the HOST a TASK-DONE interrupt to inform the HOST

that the AP is finished and ready for more work. The problem with this scenario

is that there is not a pending I/O request from the user to receive that interrupt.

To make sure that APEX and the SUM stay in synchronization, the driver must

buffer up the information in the MRAM from the asynchronous interrupt and save

it for later interpretation by APEX.

Due to the APEX/HISP protocol, it is possible for two interrupts to be out

standing from the HISP. The driver therefore implements a 2 position FIFO for the

MRAM in the HOST. When the first interrupt is taken, the driver places the status

in the first position. A state flag is set in the driver (FPSJIESG-RAMJTRSTJNT). If

another interrupt is taken, the driver, copies the MRAM into the second position

and asserts the MESSAGEJJAMJULL flag. If more interrupts come in before the the

driver's FIFO is emptied, the status is lost after an error message is printed on

console. If this message ever prints, something confused in the interface and

you could (probably do) have hardware problems on either the VAX or the AP.

Associated with APEX is a subroutine to read status information from the AP.

This is implemented in the driver as an I0CTL called: WAIT_FOR_VAX-INTERRUPT. When

this I0CTL is called, if there is status information in the FIFO, it is returned

immediately and the FIFO is popped one position. If the FIFO is empty, the pro-

31

cess is put to sleep until information comes back from the AP. Earlier their was

a reference to the interrupt handler posting UNDC I/O status information. This

status information is waking up of a process that may be waiting (blocked in the

driver) for that status information.

Of further interest is a convention maintained by APEX. When APEX calls the

driver, if the driver contains interrupt status information in its FIFO, the driver

does not execute the I/O currently requested. It returns normally, as though the

I/O had taken place. APEX will then call the driver to obtain the status informa

tion from the last I/O, but instead of returning that information, it will receive

the MRAM information in the driver's FIFO. APEX will recognize that this was not the

information from the last I/O request (because of course the last I/O never really

occurred) and eventually resend the missed I/O over again.

3.4.5. Interrupt Lock Out

There is an interresting subtlety here. If the user requests an I/O and does

a context switch into the driver, the driver will obviously check to see if there is

status information in the driver. If there is none, the driver will continue setting

up the I/O. What happens if the AP has the HBP post an interrupt during the time

that the driver is trying to set up the next I/O. When the driver is setting up an

I/O, it is in a critical section,Sha74 whicn means that interrupts are locked out.

With interrupts locked out, the VAX will not see the interrupt until after it has

started the I/O. According to protocol, the I/O should never get started. The

data in the HISP needs to be read. The driver has interrupts locked out, so the

VAX can not take the data from the HISP.

The protocol is modified to work as follows, when the driver is setting up an

I/O, after is usurps control of the Message RAM, it looks at the INTEND bit in the ISW.

If this bit is set, it means that that the HISP is trying to interrupt the VAX, but can

not because interrupts are locked out. If this is the case, the driver will release

32

the MRAM without starting up the I/O. It then lowers the interrupt priority level,

and takes the interrupt. Once the interrupt has been processed, the FIFO will

have data in it. The driver then returns to the user in a normal way, but without

starting up the I/O. Again, APEX will read out the MRAM from that last interrupt.

3.4.6. Command Parcels

Also contained within the MRAM is the location of the FPS equivalent to a dev

ice address register and a word/byte count register.

Command
Count
Addr of Data 1

Data Parcel N

Command
Count
Addr of Data 2

Data Parcel 2

Command
Count
Addr of Data 3

• Data Parcel 1

Command
Count
Addr of Data N

Data Parcel 3

Figure 15.. FPS-164 Command Parcel Chain.

With a normal DEC I/O device, the I/O hardware contains a register that is loaded

by the driver with the address of the memory location to start an I/O into or

from. Associated with that register is a limit or count register that contains the

number of bytes from the base that the I/O will include. The FPS-164 does not con

tain these two registers directly. Instead the MRAM contains two registers that

work in a similar manner but instead of pointing to the actual data for the

33

transfer, the base address points to the base address of a "chain of command

parcels," and the "count" is the number of parcels in that chain. Each parcel is

a 12 bytes (3 VAX longs) of I/O information (see Figure 15). These parcels

comprise of a command word, a count word and an address pointer. A parcel is

three VAX "longs" in size. This unusual I/O scheme is used because FPS observed

that under most operating systems, such as DEC'S VMS, the time it takes to per

form a single I/O call was high.1^60 UNDC is no exception to the high system call

overhead problem.J<^60 Agreat deal of the time is spend doing a context switch

between a user program and the operating system to perform the actual system

call. As a result of the hardware, each APEX call to the driver is potentially able

to contain a number I/O operations. Thus the HOST task only pays one context

switch for a number of I/O operations. Unfortunately this "non-standard"

hardware interface raises a number of ugly problems for the driver.

3.4.7. Physical I/O Subsystem

Most operating systems have a singular view of all peripheral hardware. In

this way the device drivers can share much of the operating system code,

mininiizing the amount of "device specific" code necessary. In UNDC all I/O to

major peripherals is done though the physical I/O system.K^73*lAo77 This routine

is responsible for allowing physical I/O into a user's own address space (thus

avoiding an internal data copy).16 The physical I/O system will lock down any

page that may be needed for the operation and call the device specific "strategy

routine." Once the strategy routine completes, the physical I/O system returns

to the user the status of the I/O operation. The strategy routine is responsible

for obtaining any physical resources for that device, such as Unibus Map

registers,DEC79b deciding which I/O to perform next (seek scheduling for disk is

16 Physical I/O to the user's data buffer is known as rawl/o. When the kernel supplies the
I/O buffers (for read-ahead, write behind etc), it will call physicall/o on it own.

34

done here), and calling a device specific "start" routine. The start routine will

actually load the base address of the I/O (after suitable address translation) into

the interface's address register, loads the count register and starts up the I/O

and then return to the strategy routine. The strategy routine will then put the

user to sleep and wait for the I/O to complete. When the completion interrupt is

received, the device specific interrupt handler will send a wakeup to the process

sleeping in the strategy routine. The process, now awake, looks at the comple

tion codes from the interrupt, frees up the resources that it needs and returns

to physical I/O.

Unfortunately, with the FPS-164 life is not as simple. The above separation

only works if all routines obey the same basic hardware strategy, and thus phy

sical I/O can perform page lock-down and address translation in the start rou

tine. The major problems with the FPS-164 hardware encountered are the two just

mentioned: page lock down and address translation.

a4.8. Page Lock Down

WhenI/O is started up, the VAX lacks the ability to let an I/O device fault on a

page reference. Thus before any I/O takes place, the page that will receive the

I/O must be marked valid and locked into main memory. VMS and UNDC handle this

problem with two different methods.DEC81 Under VMS, every page table entry

(PTE) has an associated reference count. Whenever an I/O requests comes in that

requires a page be locked down, the count is incremented. When that I/O is com

pleted, the lock count is decremented. Once the reference count goes to 0, the

page is marked to be reclaimed. UNDC does not support asynchronous I/O or

shared memory, thus it never has needed of a reference count on PTE's. As a

result, a page may only be locked down once. If the kernel ever detects a

request to lock down a page a second time the driver panics.17 The FPS

17 Panic is a UNIX term used when the kernel voluntarily shut itself down, after deciding

35

hardware's parcel chain can (and often will) have two different pointers to the

same page in memory.

Command
Count
Addr of Data N

Data Parcel N

Command
Count
Addr of Data 2

Data F'arcel 2

Command
Count
Addr of Data 1

Data Parcel 1

Command
Count
Addr of Data 3

Data Parcel 3

Figure 16.. Parcels After Sorting.

Under VMS, the driver needs to just take the address from each parcel and lock

down each page. Under UNDC this method will result in attempting to lock the

same page down twice. To protect from this problem, the driver walks the par

cel chain and makes a copy of the chain in a local copy in kernel memory. It

then sorts this copy with a kernel version of "quicker sort.',GSRS1 At that point

the driver knows that it can make a linear scan of all pages needed. References

that are to the same (or adjacent) pages will appear next to each other.

Figure 16 represents the three possible cases that can occur after the sort.

In the first case; complete overlap; the driver just ignores the second entry. In

that something serious (that should never happen), has in fact occurred (hell just froze
over). The kernel will shutdown before more damage is done. In IBM terms this is called a
"major supervisor error" or a "1411."

38

the second case, it will have either adjacent pages or an overlap of the first

entry into the second. In this case, the driver extends the limit of the first entry

to include the second entry and then ignores the second entry. In the third

case, the driver has two distinct sets of page entrys. The driver can therefore

lock down the first set of pages because the sorting of the parcel list guarantees

that all entries following will not be the in (or below) the range of all entries pre

viously seen.

3.4.9. Address Translation

On the VAX there are multiple address spacss available: user virtual, kernel

virtual, physical and unibus physical.DEC7eb When a process runs for a user, the

addresses that the user generates are "user virtual" addresses. Each address is

passed through a virtual to physical hardware translation to produce that actual

page in physical main memory. If that page is not available (not actually con

tained within the physical memory), the user i.s said to "page fault." The VAX

receives a "page fault" interrupt and the operating system's paging software

must fetch that page from secondary storage and add an entry to the user's

active pages (a PTE is created). The program can then be restarted and the

translation hardware can proceed without faulting.

Unfortunately in the case of I/O, the translation is not automatic. The I/O

hardware works with physical address. Thus when either the user or the kernel

wishes to perform an I/O, the address placed in the I/O registers must have been

translated in software to be the physical address. As described earlier, that

physical page must be "locked" into memory because the I/O hardware can not

fault.18 To cloud the issue further, the VAX includes a way to retrofit I/O inter-

18 Page locking is used in the process of deciding if a page is "allowed" to be migrated to
secondary storage when more mm-n memory needs to created for the current process. A
locked page is a page that can not be removed.

37

faces from the PDP-11 to this newer hardware.

3.4.10. The Unibus Adapter

The PDP-11's l/o architecture was built around a 18 bit bus called the

Unibus. The VAX contains a separate "Unibus Adapter"DEC79b that provides the

glue between the 32 bit address of the VAX and the 18 bit addresses of the PDP-

11.

Unibus Address

17 Map # Offset

UBA Map Registers

14 . PTE

23 PTE 8 Offset

Physical Address

figure 17., Unibus to Physical Address Mapping.

The adapter contains a set of registers that map between the 18 bit addresses

generated by the Unibus devices and physical addresses in the VAX main

memory. These mapping registers are shared between all users and all devices

wishing to perform I/O between the two memory spaces. UNIX, by convention,

uses the strategy routine to obtain enough map registers for the I/O. Each rou

tine calls the ubasetup() routine to perform that operation. When the kernel

calls ubasetup(), it sends the virtual address of where the I/O is to be performed,

38

a count for the amount of data to be moved, some uba specific information,19

and which virtual address map to base the I/O from. The setup routine will then

translate the virtual address into page table entries, grab enough registers for

the transfer and load the uba's map registers with the correct PTE's. By conven

tion, the ubasetup() returns a 32 bit magic number that is then broken down,

into which uba, how many registers, and the starting register. The driver can

then use this result to load the device specific register with a 18 bit unibus

address that will point to the map registers that the driver just received from

the allocation routine. Figure 17 is a pictorial view of the translation process.

3.4.11. The FPS-164 Address Translation

The FPS-164 uses the Unibus as its interconnect with the VAX. Therefore the

driver must set up the map registers for the I/O. Unfortunately the operat.on

described above is not quite what must happen for the FPS-164. As described pre

viously, the user passes the address of the command parcel chain to the driver.

Obviously, the interface hardware needs the address of the parcel list in order

for it to perform it's I/O. Unfortunately, the addresses contained within the pjar-

cel list, are also user virtual address and thus they must also be translated.

Because the Unibus can only operate on 18 bit addresses, the parcel list must

only contain 18 bit addresses. To alleviate this problem, the driver makes yet

another copy of the parcel list in kernel memory. This version will not be

sorted, but rather it is modified to contain 18 bit addresses. Thus when the

hardware is given the base address of the command parcel list, the address that

it is pointed at will always be the address of this kernel copy, not the actual

address user's version.

During the process of locking down memory described earlier, the kernel

19 Uba specific information might include, which uba to use, which data Bathin the uba to
use, etc.

39

takes the virtual address that it just locked down and calls ubasetupQ with that

address. It then modifies all parcels in the kernel copy of the parcel list with

value returned from the ubasetupO routine.

3.4.12. FPS Physical I/O

The two problems with physical I/O are taken care of in a driver routine

specifically written for the FPS-164 called: fpsphysio(). It is this routine, not the

normal UNIX physical I/O routine (physio()), that must guarantee that pages are

locked and address translated. Once the 1/0 actually takes place', fpsphysio() is

onlyhalf way to completing its job. After the I/O has completed (the HISP returns

a HBF-DONE interrupt), the fps strategy routine will return to fpsphysio().

Fpsphysio() must then walk through the sorted copy of the parcel list and

release all unibus registers that it used and then it must unlock all memory

pages that it had previously locked.

3.4.13. The Timer

As described previously, UNIX does not allow asynchronous I/O. This design

feature causes another problem here. When an I/O transfer is in progress the

process is put to sleep, and continues be blocked until an interrupt is received

from the FPS-164 that causes UNDC to finish the I/O and restart the process. If the

FPS-164 hangs, (which happened frequently in the development stages of the pro

ject), the process would stay blocked forever. UNDC has a mechanism for sending

an interrupt to a process from the keyboard (~C or). Unfortunately this

mechanism will not allow the user to unhang the process doing I/O with the FPS-

164. This is an artifact of the implementation of ~C and the interaction with the

kernel "sleep" mechanism.

When a process is put to sleep in the kernel, the kernel will pick a priority

at which the process is put to sleep. This priority determines how ~C is handled.

40

If the priority is "low enough" and an user interrupt (~C) is entered while the

process is asleep, the process will "immediately" abort the I/O in progress and

return to the user. If the priority is "high enough," the interrupt is posted but

the process is not restarted. When the process is restarted by whatever the nor

mal awaking procedure for this driver, the process will then recognize the ~C

interrupt and abort immediately after that point. The problem described is

two-fold, if the process sleeps at a low priority, then the the user will abort the

I/O without finishing. If he aborts, then the final cleanup phases of physio() will

not be executed. If the clean up phase in physio() is not executed, then

resources such as the Unibus map registers will not be reclaimed and locked

down pages free up. If the process is sleeping at a high priority then the ~C

interrupt is- not recognized. As a compromise, there is a timer associated with

each I/O transfer. It is currently set for 20 hours.20 If the hardware does not

respond, when the timer triggers it will awaken the process from its sleep state.

The process will then tidy up its environment and return to the user with a

"timeout" error.

The user still can send a ~C, but can also run a program from another ter

minal called "nukefps." This special program will use an alternate entry point in

the driver, and reset the timer to 1 second. Nukefps will make sure that the

timer goes off before it returns. If the timer goes off, APEX will receive a fatal

error and stop all processing.

3.4.14. Init for New User

The last piece of the driver that must be examined is a special I/O control

routine (an I0CTL) for APEX. When APEX starts up for a new user of the AP, it will

80 The APEX will occasionally send a TR- w/7fPS88b channelprogramwhen it wishes to wait for
the FPS-184 to preform some computation. Some computations, such a SPICE2 run, may take
over 20 hours to compute.

41

enter the driver and request that the driver restart the AP. The driver will reset

the Interface and wait for an interrupt, it will set an interrupt to the HISP and

make sure the HISP is operating. If both of those operations fail, the driver will

preform a hard restart of the AP. APEX will reload the SUM (if need be) and the

SUM/APEX protocol will begin.Broa2- mBZ

&5. The Utility library

When writing production FORTRAN programs, a common problem is writing

programs to run efficiently while still allowing the programs to be portable

between a number of different manufacturers. A popular solution is to use a

preprocessor, such as RATFOR, that will transform the user's source code into a

host specific FORTRAN program. This solves the portability problem, but leaves

the efficiency problem. RATFOR solves the efficiency problem by looking at a com

mon efficiency problem: I/O statements.

Standard FORTRAN I/O, while being portable, is awkward for most common

prograinming tasks such as character manipulation. As a result, most manufac

tures "enhance" their compilers with special, efficient, but non-portable I/O

primitives. The RATFOR solution is to define a set of primative routines to per

form the I/O for the user program. A program writer can use these calls rather

than the standard FORTRAN calls and still maintain portability. The efficiency

issue is therefore handled by a system programmer who understands the

subtleties of the particular machine that RATFOR has been "ported" too.

For the FPS PDS these primatives are called the utility Hbrary.^SBZd By

definition they are written with efficiency as the most important design goal.

The UNDC version is written in three languages: FORTRAN, C, and UNDC/VAX assembler.

In the case of the data conversion routines, most of these were originally written

in VMS dependent FORTRAN. In many cases these routines were sanitized and con

verted to standard FORTRAN-77. Some routines that are difficult to write in

42

FORTRAN, such as the time and date conversion routines, were rewritten into

C.Ker78 c was also used for all of the I/O primitives. These routines are difficult to

write, and C provided a efficient, clean, and portable way of implementing them.

The FPS PDS uses 84 bit integers, but since C does not support such a data type an

arbitrary precision arithmetic package, developed at 3TL, was used. Although

these routines are functionally correct, they are not efficient and thus

extremely slow. Because efficiency is the most important issue for this library,

the 64 bit package was eventually written in assembler.

The UNDC manual pages for this library can be found in the Appendix. One

routine from it must be discussed, the CLI. The CLI is the command line inter

preter. When a user runs an application program, APAL for example, he will type

some command line for the operating system. The* HOST operating system will

pass that line to the application program for interpretation. In the C/UNDC

environment, these are the "argc/argv" parameters passed to every C program.

The CLI accepts these user typed parameters and in turn must interpret them

for the application program which called it. Unfortunately, in the UNDC environ

ment there is a problem. When FPS defined the CLI they had never encountered a

computing system that was as flexible as UNDC. Under other systems, such as

DECsVMS or Prime's PRiMOS, there is a specific order to parameters typed on a

command line. Under UNDC we have free form, "mixed case" command line

input The CLI can not decode all switches if any switches have optional sub-

parameters, as is the case with some of the switches for the librarian. The

manual page for each program should be referred to for an explanation of the

switches. Furthermore, FPS assumed that all terminal I/O, such as the CLFs

switches would be "case folded."

To handle case folding, a set of compromises is used. All programs in the

FPS PDS use upper case for their switch definitions. VMS folds all file names to

43

upper case, so the VMS version of the CLI can blindly case fold its input. The UNDC

version can not fold the input because due a small flaw in the semantics of the

CLI definition. In general, the CU can not distinguish between a switch as input

and a filename as input. Under UNDC filenames are mixed case. Case folding

therefore can not be done. This is unfortunate for the user, because it more

natural to type lower case than upper case. In order to allow lower case for

each program in the PDS, each program would have had to be modified in the

supposedly HOST independent portions. This annoyance was weighed against the

fact that a UNDC user rarely runs a program such as the compiler "directly."

Instead, that user usually creates a Makefile and has the make(l) programFei78a

call the compiler (or assembler or linker or ...) for the user. The make(l) pro

gram can handle upper case as easily has lower case.

44

3.6. Some Results

As a demonstration that the conversion was successful, the SPICE221 program

was compiled and run. No optimization was used by the compiler (i.e. APFTN64

was run with OPT=o). No modifications were done to the program other than the

usual supplying of the system dependent routines such as the time call and the

routine to move characters from one memory location to another.22 The results

of these runs are included in the Table 1. All numbers are in cpu seconds.

Circuit VAX FPS-164 Speed Up Factor Corrected by 1.5

Benchmark 372.90 75.13 4.96 3.31

UA741 Op Amp 95.33 31.38 3.04 2.03

Proprietary Digital Circuit 4589.18 1271.97 3.61 2.41

Table 1., FPS-164/VAX Sg>eed Differential for SPICE2.

The three circuits are the standard SPICE Benchmark suite, distributed with

SPICE, the UA741 Operational Amplifier, and a industrial digital circuit from a VLSI

computer chip. The encouraging result is that without any optimization the FPS-

164 ran 3.0 to 4.5 times faster than the VAX UNDC FORTRAN version. One industrial

firm has seen that with just using optimization from the APFTN64 compiler, the

speed up is in the order of 3 to 5 times for SPICE 2G5 between the APFTN64 and VMS

FORTRAN. The VMS FORTRAN compiler is reported to produce code that runs approx

imately 1.2 to 1.5 faster than the code produced by the UNDC FORTRAN compiler.

81 Aprelease version2Ca spice wasused for the bench mark. At the time of writing, 2Ca is in
beta test, and will be available for public distribution shortly.

22 The move routine wasnon-trivial on this machine due toFoan&N-ry's lack of dealing with
characters in a rational manner. The FPS-164 being a word addressed machine, stores 8 char
acters in word. A character pointer is thus the tuple: Word Address, Index within Word. Thus
en arbitrary move routine can not use a simple, indirection through an address (as in this
case with a byte addressed machine). Instead a routine was written that called a routine to
pack and unpack characters from a FPS-164 word.

45

Using 1.5 for the correction, we get a range between 2.0 and 3.5 times for the

speed up. This result leads to the conclusion that by using compiler optimiza

tion and using smarter data structures, such as used in CLASSE^1*03 a speed up in

the order of 5 to 10 times would not seem unreasonable.

46

4. The Conversion Process

At the time of this writing, Floating Point System does not support UNDC as

an operating system for the FPS-164. The CAD group at UC Berkeley uses both UNDC

and VHS. As a result, the need arose to "port" the PDS to the UNDC environment.

Figure 18. shows the time line for the conversion process.
>K

to

^*-

or
o
u.

O
a

01
0)

H; f)
< •*
OT *"' c

o

01

O
£ c
«* or 01 o»

O
>

'5

4>

£
5

4>
>

L.

"M-

c

o

'•5
01

© > or 4) _o 4)
o o

o
4»

0T

O

CO
a
a.

c
,2
'5
V.

4)
>

O
u.

>*. #> 01

o
or

a
0.

c
9

c
o

01
41

1-

a

o

o»

a

S
o

a

QT

•o
4)
>

4)
U
4)

Q

1

01

V

01

o
a

X
LU
0.

o

E
c
4)

CO

c
o

"5
<D

>

i
<r
P

c
o

e»
w

u

>

CM

C
_o

w

41
>

©

o
01
01
o

a.

c>
o
i_

-Q

"oi
0)
4>
o
o
t.

a

QT

£

CO

a.
<

z
-j
a.
<

<

"a
E
o

o

z

t

"O

'a.
E
o

o

2

or

a

c

or
o
u.

01
01
o
a

CM
O
u.

z
o

o
u.

a

'5
01
01
o
a.

m
o

<

"O
c
o

01
_2

a

E
o

o

M
—3

O
c
4)

GQ

01
c
3
k.

(O
o
CM
Ui
o

*

01
4)
a
o

H-

c
#o

3
ja

*c S < < a. a 13 5 z z Q. 01

i

o

1

Q

. , 1

3 or

•

(T < <

i

en

i

or

i

a

t

o

1

•A

1

to

1

a

i

CM CM CM CM CM CM CM CM «o ro m n 1 IO K)
GO 00 <D ao ao 03 03 ao 03 03 03 GO S 03 03

.0

i2
O

3
a

<
3

O

>
o

z
in

o
4>

a

a
41

a

c
o

-> u.

o*
CM

.0
o

k.

o
2

w

O

2

in

w

O

2

a
<

Figure 18., Unix Conversion Time line.

Most of the PDS, as distributed from FPS, is written is a host-dependent FORTRAN.

It is written to make calls to the Utility library and each program may make

calls to a a few host local modules. These modules are written in C for portabil-

23 An example of the type is routines in Care the trap handlers for SJE or the routine that
returns the size of a file in a some strange FPS size format. C was picked because it is Port
able and interfaces well with operating system routines without the readability problems of
using Fortran for the same type of routine.

47

ity and ease of understanding.23

4.1. History of Conversion

In February of 1982, UC Berkeley received a copy of the VAX/ VMS PDS and

Driver - Release B. At this time, the conversion process began. At the same

time, the Whippany Electrical Power Systems laboratory at Bell Telephone

Laboratories began the same process. The two groups joined forces to speed the

process up. The work was originally split between the two groups in this

manner:

• UC Berkeley would provide all Unixdependent (OS portions)

• BTL would provide all Unix F77 dependent portions.

This split required UC Berkeley to deal with the Driver and all of the I/O por

tions of the code. BTL worked on the conversion of the PDS for the Unix FORTRAN-77

compiler, F77. This included many of the routines in the Utility library written in

F0RTRAN-77.Pel78b As time went on, most ofthe I/O portions of the librarymoved to

UC Berkeley and BTL spent most of its time working on the data conversion rou

tines.24 In the end all of the PDS conversion was moved to UC Berkeley.

In March of 1982, I wrote the first version of driver while at Whippany. At

the end of the week, the FPS VAX Unibus Interface Diagnostic (VUIT64) ran through

every test except the last (interrupt test). About a month later, the members of

both team when to the FPS factory to work with the FPS Engineering staff to make

the interrupt test work. Bythe end of the second trip, the FPS-164 was capable of

running VUIT64. The driver was left alone as the next phase of the conversion pro-

84 An example of data conversion routines are the routines that convert between an FPS
floating point-formats and a VAX Unix printable ASCII string. These routines were originally
written inVAX / vhs Fortran, and some of these were relying onvhs local Fortran compiler op
tions for correct interpretation. They are numerically difficult routines. The conversion to
the Unix F77 was no small effort. AllVHsism's have been removed and now all FORTRAN code
should workon anyFortran 77 compilerwithout strange options.

48

cess went into effect.

During this time, more of the Utility library was written (rewritten) as both

teams tried to bring the PDS up under Unix. This effort resulted in limited suc

cess. After discussions with the FPS engineering staff, all groups determined that

the Release B of the PDS was too old to be a useful starting point. In late August,

FPS sent Version C of the code to UC Berkeley. It was during this time that both

teams learned from FPS engineering that the PDS was actually written in

RATF0R.Ker78 The distributed PDS was the host dependent, post processed output

from the RATFOR preprocessor.

Discussions were initiated that produced an agreement between FPS and UC

Berkeley such that UC Berkeley was released the RATFOR source under non

disclosure agreement. On September 22, 1982, the major conversion work

began again. By late December 1982 most of the Release C was processed into

Unix F77 format. At this time, the debugging process revealed many bugs in the

Release C version of the PDS. At this time, FPS was shipping to the field the

Release D version. The team at UC Berkeley was reluctant to take yet another dis

tribution, feeling that it would be more of a set back than a help. After a month

of negotiation, UC Berkeley agreed and the new tapes were mailed. On March 6,

1983 SPICE2 ran for the first time as an application program under SJE, UNDC and

the FPS-164.

4.2. RATFOR Headers

The PDS, as distributed by FPS, is the output of a RATFOR preprocessing step.

These FORTRAN programs are compiled by the host FORTRAN compiler to produce

executable programs for the host. For future maintenance of the FPS PDS

software, it is essential to be aware of how the PDS is put together in the RATFOR

source form. The installer of the PDS on a host need not worry about the RATFOR

process other than be aware of it's existence and recognize that it is a potential

49

rp164

apai apftn oplibr oplink

i 1 r

host.1 src Makefile fortsrc sjo.src apex.src

*.r SCCS *.h *.f

s.«.r s.*.h

Figure 19., ARATFOR/PDS source directory.

source of error,

A piece of the source tree is shown in Figure 19. The top most level in the

tree is the "rpl64" directory. Each piece of the PDS is a subdirectory within that

directory. Above, "^164" is the top of the master data base tree,

"master.src." For more detail here, refer to the appendix.

For each of the PDS programs in RATFOR form25 there exists a file in each

master subdirectory for that program called "host.i."Nak82 This file contains the

host specific defines, such as conversion constants for the local machine's

numerical representation and the FPS-164 representation or the mapping

between a function to perform an Exclusive-OR of two 32 bit integers and return

a 32 integer result. If the local operating system, in this case VAX UNDC has a

25 APALB4. APDEBUG84. AFEXB4. APFTN64, APUBK84. APUNKB4. APSIH84. SJE64 are all members of the PDS
that must be processed withRATFOR. Each of these exist in the subdirectory:

50

primative in the compiler for this function, then the local intrinsic is defined in

this file. RATFOR will replace the macro with the intrinsic.

Also found within the "hosti" file is the absolute pathname for any of the

include files used in the source code. If a source program trys to include one of

these files, the define within nhost.i,, will inform RATFOR where to find the file to

be included - causing RATFOR to replace the include line in the source file with a

lines from the included file.

The RATFOR source for each program is found an a subdirectory called:

"src." Under the "src" directory another directory is found called: "SCCS." All

sources are in SCCSD°178 format. The sources found in the "src" directory have

been checked out of the SCCS database. All modifications of the PDS software

since the original FPS Version D release may be followed. Simple comments

explaining each modification are included. The prt(sccs) command is used to

read these comments.

In the top level directory (.../master.src/rpl64/<whatever>) there are at

least two other directories. The directory "deOl" contains the raw VAX VHS

specific files from FPS. Some of these files are needed by the UNDC version and

thus have been checked into SCCS format in the "src" directory if they were

used. The other files have no bearing on the UNDC version and are ignored. The

unused files are left as added documentation on the functionality of certain

pieces of the FPS code.

The other important directory is the directory "fort.src." This contains the

output of the RATFOR preprocessor. The distribution uses symbolic links,cSRB2 of

the new 4.2 BSD file system, to point from the distribution area into these direc

tories. If the make{l) programFel78a is run in the top directory, all RATFOR

sources that have changed will be preprocessed, run through the host fortran

compiler, and a test version will be generated in the current directory. Running

51

make{l) with the argument "clean" will cause the objects to be removed and

general directory clean up will be preformed.

The FPS FORTRAN Compiler (APFTN64) contains three other subdirectories. The

compiler must be able to support both the SJE product and the APEX product. As

a result, the 3 files that are different between the two versions of the compiler

are contained within the subdirectorys: "sje.src" and "apex.src." Finally, the

subdirectory "unix.files" contains a set of UNDC specific files that are included

when RATFOR is run on the input sources.

The Debugger and SJE both need a small number of host specific subroutines

that are specific to these programs, such as the interrupt trap handler or the

routine that returns the size of a host file in FPS disk blocks. In each case these

routines are written in C and stored in the "src" and the SCCS directories.

52

5. Suggestions for future work

The FPS software can be usedin its current form, but this is just the starting

point for more work. Programs can now be run on the AP, but at this time, none

are running optimally on this hardware configuration. SPICE2 is currently run

ning with the compiler optimization set to the lowest level. A possible future

project would be to exploit more of the parallelism of the machine with the use

of compiler optimization. Aresearch project, similar to the the research begun

by Andrei Vladimirescu^83 can now begin using this new processor. Other pro

grams that are memory intensive, such as WOMBAT^83 (assuming a C Compiler)

can begin to explore the memory pipeline of the FPS-164.

The FPS-164 would make a useful addition to a local-area-network if it could

be directly attached to a local Ethernet. However, in its current form, the AP

must be connected via the VAX. By attaching the FPS-164 to an Multibus Unix pro

cessor such as the SUN 68000 Computer System8**080 instead of the VAX, the SUN

board could handle all of the APEX calls, while allowing many users on the Ether

net to have access to the AP, instead of limiting its use to users that have access

to the VAX. Such a environment is similar to that proposed by many researchers

doing CAD/CAM. In order to move to this type of environment, the SJE and SUM will

need to be reworked somewhat. SJE must become a process manager, and the

SUM will need extensions to handle permanent files.28

The ability to move data between the host and the AP more invisibly might

be explored. An example, would be to allow the AP's disk to become part of the

local operating system's disk. Thus a user could:

cd <fps_disk_directory> ! move the current directory to the AP
Is ! obtain a catalog of files in that directory

26 The file naming conventions willneed a little work also. They currently work 3ne for the
SFH, but when multiple users need to attach to the machine, directories and subdirectories
willneed to be implemented.

53

Further the ability to automatically run a program on the AP with out having

to enter SJE would seem a logical extension. The UNDC exec(2) system call, which

is used to create a new process, could quite easily be extended to perform this

operation. The current facility to execute a command procedure (execute a

shell fill in UNDC parlance), is exactly the same operation as loading a co

processor. At the present time, when UNDC notices that you are trying to "exe

cute" a text file, not an object file, UNDC loads and executes the UNDC command

interpreter (the shell). The shell in turn is passed the user's text file as a

parameter for it to interpret. If follows logically that when UNDC notices that the

user is trying to execute an object linked with the FPS binder, not the UNDC

binder, UNDC simply loads and executes a UNDC program (something similar to an

extended version of SJE) that will load the AP with an object file. This program in

turn is offered as a parameter the name of the FPS-164 object file to load and

start running on the AP.

Much new CAD/CAM development has moved from FORTRAN, to more modern

programming languages. Programs such as WOMBAT,sPi83 KIC,91131, and SPLICEa,1^83

are written in the C programming language. Until a C compiler is available for

the FPS-164, these programs will not be able to use the machine, which is unfor

tunate.

54

6. Acknowledgements

Many people helped me in many ways as this work was in progress. I can

not name them all. There are a few that should be named for there moral and

intellectual support throughout: Dr. Richard Newton and Dr. Donald 0. Pederson

of UC Berkeley EECS Department, for advise on how to make a research project

proceed; Tektronix, and Bell Telephone Laboratories for financial support, Float

ing Point Systems for providing the FPS-164; the Engineering Systems Group of

the Digital Equipment Corporation for providing the VAX 11/780 computer to which

the AP was attached; Dr. Richard LeFaivre and Dr. Ian Getreu of Tektronix, Mike

Carey of UC Berkeley/Carnegie-Mellon University and Dr. Eugene Bartel of

Carnegie-Mellon University for helping me pursue a graduate degree and sup

porting me throughout the entire endeavor; Rick Spickelmier of UC Berkeley,

for being the best "grammer" program I've used; Tom Quarles, Peter Moore, Ken

Keller and Jim Kleckner of the UC Berkeley for help in solving different program

ming problems; Ken Brown and Steve Nakamoto of Floating Point Systems for

answering my many "non-normal" questions about how the FPS-164 was supposed

to work; Robert Rodriguez, Richard Drake and Edward Wheian of BTL Whippany

Electrical Power System's group for help on the BTL end of this project; the

entire UC Berkeley CAD group for moral support; Paul Hansen of UC Berkeley,

whom with I co-wrote a paper on array processing that made me put together

my thoughts on how the system was interrelated; Mark Hofmann, Scott Baden

and Giles Billingsley, men of the world, for constantly keeping me laughing, and

most of all to my father for teaching me the three most important tools I used in

the project: to never give up, never lose your sense of humor, and never let

"your schoolin get the way of your education."

{got by with a lot of help from my friends.

56

attached A small computing element with large main storage, on same order as

a midicomputer or maxicomputer, with a computing element similar to

a maxicomputer or supercomputer in floating point speed, i.e. 1-15

HFLOPS. This machine is attached to another computer as a peripheral.

The attached processor (ap) is number cruncher, and as such does lit

tle if any I/O. The FPS-164 and HAP-200 are examples of attached array

processors.

integral A small processing element integrating into the main CPU as a

hardware option. The address range of these processors will be the

same as the CPU they are connected. Such a processor is added to

speed the normal processing rate of the main cpu. An example of

these might be the floating point accelerator for the PDP-11 or VAX or the

array processors that are available as options for certain IBM machines.

7.2. Software Terms

In order to understand the software system described later, some of the

major software terms are listed here.

AP Attached Array Processor - In this case the Floating Pointing System's

FPS-164.

APEX AP Executive - The host resident routines that interact with the AP and

the SUM to actually transfer data and control information between the

host programs and the AP resident programs.

Binder Aprogram that takes multiple object files, and possiblely library files,

and "binds" them together into one runnable object image. It finds all

occurrence of an external reference within a module and "binds" it to

its actual location else where in the complete object image.

55

7. Appendix

7.1. Computer Types

mini A minicomputer is a relatively small computer, such as an Hewlett-

Packard HP1000 or a Digital Equipment Corporation PDP n. Typically,

such a computer is characterized by having 16 to 18 bits of address

range, 8 or 16 bit word size, and an instruction rate of less than .5 mil

lion instructions per second (SUPS).

midi A midicomputer is a medium scale computer, examples being the DEC

VAX 11 series, or Data General ECLIPSE. Machines of this range typically

have at least 20 to 24 bits of directly addressable main memory, a

minimum 16 bit word size (and possibly 24 or 32 bits) and an instruc

tion rate of at between .5 and 1 MIPS. Furthermore, these machine,

might be capable of executing floating point operations at a rate of

500,000 per second, or 0.5 MFL0PS.

maxi A maxicomputer or full-sized computer is a large scale machine such

as the LBH 370 or Burroughs B6700. These machines have 24 bits or

greater of addressable main memory, a 24 to 60 bit word size, and at

least 2 MIPS of processing power. Also included is floating point

hardware capable of at least a 1MFL0P rate.

super A supercomputer is a processor like the CRAY-i or CDC Cyber 205. Such

machines typically have at least 16 megabytes of main memory,

(although the CRAY-i is somewhat constrained in main memory capabil

ity) at least 10 HIPS, with 100 MIPS not being unusual. Further, the float

ing point processor is typically capable of from 10 to 100 MFL0PS, with

some short bursts exceeding 250 MFL0PS. Siefl2

57

Driver The host kernel resident routine that communicates with the HOST/AP

interface hardware.

HASI Host AP Software Interface - A set of FORTRAN stubs that call APEX rou

tines tb allow communication between the HOST and the AP.

HBP Host Interface Support Processor - A bit slice computing engine that

resides in the AP used to move data and status information from the AP

back to the Host.

MRAM The message ram is a shared memory between the AP and the VAX. It is

used as the communications channel between the two processors for

processor specific information.

PTE Page Table Entry - an entry in the system tables for virtual to physical

address translation.

PDS Program Development Software - the collection of utilities used to

create an object program run on a computer. This is the term that

includes, the assembler (APAL64), the'linker (APLINK64) and Ubrarian

(APLIBR64), the FORTRAN compiler (APFTN64), as well as the debugger (APDE-

BUG64) and simulator (APSIH64).

SFH Scratch File Manager -The set of SUM calls that maintain the file system

on the AP's disk.

SJE Single Job Executive - a utility program, similar in function to the UNDC

shell*™™ that is used to create files, execute programs on the AP and

to the move files between the host computer and the AP.

SUM Single User Monitor - the AP resident "operating system."

Translator Aprogram used to "translate" atextual format file into abinary for

mat. An example is a FORTRAN compiler that translates from an ASCII or

EBCLDIC representation of a FORTRAN program (or subprogram) and pro-

58

duces a binary object of the machine instructions for those routines.

7.3. Computation Issues for Array Processors

The array processor, like the super computer, use two major hardware

techniques to obtain speed: Parallelism and Pipelining. A brief explanation fol

lows describing the basics of these techniques and how they are used by the FPS-

164. To exploit the parallelism, data must be moved from one functional unit to

another. Ihis problem, interconnection, is inherent to an array processor, and

as such is also examined.

rUMTOC
PONT

CPU

CACHE

MAIN
HKMCRY

U-BOS
HAP

UMBOS

HIGH-SPEED
CONTROLLER

HIGH-SPEED
CONTROLLER

KICH-SPEED
CONTROLLER

HIGH-SPEED
CONTROLLER

10

uus

V

10

UUS

V

10

BUS

V

10

BUS

V

UNIBUS
PERIPHERAL

MAS3-ST0UR
J'KKtPIIKUAL

figure 20. DEC PDP n/?o block diagram with parallel I/O processors.

»

£

7.3.1. Parallelism and Rpelining

Both parallel (overlap) and pipeline processing rely on the simple notion of

division of labor, a total job is partitioned into individual subjobs, to be parceled

out to different working units. St»fiO The term parallelism describes the simul

taneous execution of completely independent tasks. Synchro-parallelism

59

denotes the condition of identical units working in unison. Many early and

recent parallel machines (Burrough's Illiac IV, Goodyear's STARAN, SDC's PEPE,

Burrough's BSP, CDC's Cyber 205, etc.) consist of a number of arithmetic/logic

units operating in parallel under the supervision of a single control processor.

Parallelism in I/O and instruction preparation/execution are two common exam-

pie of parallelism. This parallel structure is commonly used on minicomputer

and miciicomputers such as the DEC PDP n/70. DEC78 Figure 20 illustrates the first

of these.

Car 1000 Car999 C*r998 Car997

Car 1001 Car 1000

?—T

b) At tim« r0+10 minutes

Figure 21. An automobile assembly line.

The term pipelining describes the execution of precedence constrained

subjobs in accomplishing an overall task. Concurrency is possible since each

subjob is being completed simultaneously by independent segments, which in

turn pass their complete subjobs to the next station(segment) in sequence (the

pipe) for further processing. Asimple analogy is an automobile assembly line,

where each station is specialized to perform one part of the overall task. Figure

60

21 illustrates this simple example. St°80

INPUT OUTPUT

figure 22. Pipelined processing task with 3 stages.

Table 2. Initiation sequence for a 3-stage pipeline.

Time States Through the Pipe

Stages tl t2 t3 t4 t5 t6 t7 t8 tl) tio til tl2 tl3 tl4 tl5 tie tl7 tie

SI A B C D E F
• • •

S2 A A A B B B C C c D D D E E E F F

S3 A B C D E
•

Examples of pipelined architectures include the TIASC, SDC's PEPS, IBM 360/91,

CRAY-i. CDC Star-100, etc. Rani77 Such machines are sometimes called vector pro

cessors since the chain of operands streaming into/out of such pipelined arith

metic units are largely organized as vector data structures. Vectoring is pre

formed to amortize the cost associated -with filling the pipe over a large number

of computations. For example, floating point multiplication may consist of con

currently performing exponent addition and mantissa multiplication. Such

operation requires at least 2 function-units capable of simultaneous operations,

with the advantage of a possible factor of 2 speedup. As a series of operands is

provided, a series of results is produced, one every clock-tick.

81

S2'

(3)

INPUT

&
SI

(1)
S2"

(3)
S3

(1)

OUTPUT

>

S3'"

(3)

figure 23. Pipelined processing task with 3 parallel stage 2 segments.

Table 3. Initiation sequence for the pipeline shown in Figure 23.

Time States Through the Pipe

Stages tl t2 t3 t4 t5 ts t7 ts t9 tio til tl2 tl3 tl4 tl5 tl6 tl7 tie

Si A B C D E F
•

S2* A A A D D D Q G G J J J M U M N N

S2" 3 B B E E E H H H K K 1 K N tf N Q

S2,M C C C F F F I I r L L L 0 0 0

S3

i

A B C D E F G H I J K L H N

An array processor is designed to employ the advantages of both types of

concurrency: parallelism and pipelining. For example, consider a processing

task which takes 5 time units for completion. Aserial processor would take 5*N

time units to complete N instructions. Consider further that the 5 time-unit

62

task can be partitioned and pipelined as shown in Figure 22, where the stage

time is indicated in parentheses. The initiation sequence of such a processor is

shown in Table 2.

Such a system can be shown to require (5+3*(N-l)J time units to process N

uninterrupted instructions. For large values of N, this represents a speedup fac

tor of approximately 1.7 over serial processing (speedup Sp - Tl/Tp).

Now, consider paralleling 3 stages which are identical to stage 2 m function.

(You will note that stage 2 is the bottleneck of the computation pipeline.) The

resulting pipelined processor would appear as shown in Figure 23. The initiation

sequence for our modified pipeline processor is shown in Table 3.

Such a system can be shown to require j5+(N-l)J time units to process N

uninterrupted instructions. For large values of N, this represents a speedup fac

tor of approximately 5 over serial processing. This is illustrated graphically in

Figure 24.

As methods to speed computation and enhance overall system efficiency,

parallel and pipelined techniques provide distinct advantages. Next we consider

some of the basic issues of such multiple processor systems.

7.3.2. Interconnection. Issues

Enslow's paper on multiprocessor organization20377 and Feng's paper on

interconnection networks^1177 serve to guide this brief examination of issues

relating to interconnection schemes for multiprocessor systems. Ensiow

characterizes the hardware organization by the nature of the system used in

organizing the primary functional units (processor, memory and input/output

channels). The 3 basic schemes are categorized as:

1.) Time shared busses.

20

COMPUTATIONS 15

COMPLETED

10

83

PARALLEL AND PIPELINED

PIPELINED ALONE

5 10 15 20 25 30 35

TIME UNITS

Figure 24. Comparison of serial, pipelined, and parallel-pipelined

computation times.

2.) Cross-bar switch matrix.

3.) Multibus, multiport memories.

This serves to partition the higher level aspects of the system. A more

recent analysis by Feng indicates that the system designer must consider 4

topics when selecting an interconnection network for his processing element

environment. These are:

1.) Operation mode - either synchronous, asynchronous, or combined

depending on whether the connection requests are issued statically, dynam

ically, or a combination of both.

2.) Control strategy - either distributed or centralized, depending on who

manages the switching element.

64

3.) Switching methodology - either circuit switching (a physically esta

blished path) or packet switching, which relies on chunks of information

flowing through a network in no predetermined path. (Note: this topic

relates to computer networks at a higher level and won't be considered in

this paper.)

4.) Network topology - either static or dynamic depending on the ease and

timeliness of interconnection reconfiguration capabilities.

The practical aspects of these four topics usually consider the the multipro

cessor system at a higher level than the internal structure of an array proces

sor. The question is: given a number of processing elements (computers) what

is the best strategy (in terms of operation mode, control, switching method, and

topology) to lash them all together in a productive system? However, these are

also important considerations to apply to the structure of an attached array

processor itself and will be dealt with in the following sections. For each of the 3

topics, the general notions and how they apply to array processors is presented.

We will then present specific examples of each idea by describing the implemen

tation of the Floating Point Systems FPs-i64Chafll and Computer Signal Processing

Incorporation HAP-200Coh81b array processors.

7.3.2.1. Operation Mode

The choice between synchronous and asynchronous operation can be

influenced by several factors. Fully synchronous operation will typically lend

itself to simple pipelined implementations. Since the sequencing of stages is

metered and known, control relies on the ability to test and generate hardware

pipeline interlocks. Such interlocks are necessary since stage-times may not be

equal or may vary with the type of processing being done. Kam77

Asynchronous operation will typically lend itself to parallel implementations

65

containing multiple (identical) physical or virtual execution units. In this case,

if no data dependencies exist, it is possible to allow computations to finish out of

sequence relative to when they were initiated. Thus, such sequence reordering

can come as a result of certain hazard conditions or simply because one event

takes less computation time than another.

Various problems result from both modes of operation. Obviously, where

strict data dependencies exist, or control flow changes occur (branch, jump,

etc.), the initiation sequence will possibly degenerate into purely sequential exe

cution, with performance comparable to a serial processor. Likewise, for asyn

chronous operation of parallel execution units, similar hazards may occur when

two active instructions are simultaneously in process, where one execution unit

may need information provided by another unit. Ramamoorthy and LiRani77

present a one essay on such control problems associated with asynchronous sys

tems. They consider:

1.) read after write

2.) write after write

3.) write after read.

Special consideration is given to the first of these three problems, and they sug

gest solutions which apply to the other two.

Briefly, the FPS-164 is a fully synchronous pipelined architecture, while the

Computer Signal Processing Inc. MAP-200 uses an asynchronous, nonpipelined

architecture to achieve parallelism. (Figures 25 and 26 show the structure of

each of these attached array processors.)

7.3.2.2. Control Strategy

Controlling the execution unit(s) in an attached array processor can be

realized either centrally or on a distributed basis. Synchronous operation lends

66

itself to centralized control, and is commonly found in pipelined systems. A

current text by Peter Kogge^S81 presents a thorough examination of the control

problems of synchronous pipeline architectures and includes many useful design

techniques and examples which are also mentioned by Ramamoorthy and LL

(We have considered this topic extensively in our previously completed home

work assignments. Please refer to them for our conclusions and observations.)

Distributed control is likely to be found in asynchronous systems, where the

flow of information may proceed on the basis of availability of resources, not

necessarily a fixed point in time. An analogy might be a line of cars on a freeway

during a moderate traffic jam. As the car ahead of you is able to advance, you

will fill up the gap he leaves behind. The driver of each car determines when to

advance based on the space available to him, which is an example of an asyn

chronous pipeline under distributed controL

The FPS-164, being a fully synchronous pipelined architecture relies on cen

tralized control, while the HAP-200 relies on FIFO's and queues which allows data-

driven processing, suggesting a fully distributed control structure. Figure 25

illustrates the HAP-200 architecture.

7.&2.3. Topology.

A key issue which determines many of the choices in the design of an

attached array processor is the topology - how the processing elements are phy

sically linked. The paths between various elements can either be passive and

thus dedicated (static), or they may be reconfigurable through active switching

elements (dynamic). Combinations of both static and dynamic topologies are

also possible. The spectrum of choices for static topologies range from a single

common data bus approach (as used in the IBM 360/91 arithmetic unit) to fully

interconnected schemes. Even if we consider bidirectional data paths, the fully

connected scheme is 0rder[N*N] in complexity and quickly becomes

gar?-1, *pyray iw^t»n»»^ii#»m.^

APS

PROGRAM
MEMORY

11 «rriifa>ii«i • «•

£:.

v:r"- ••-***;< ■*♦,j *»*y »• j* *•* ^

MEMORY BUSES

SYSTEM
FUGS

.•fcfct »»g»-y:

Figure 25. CSPr HAP-200 asynchronous architecture.

API)

67

PROGRAM
MEMORY

prohibitively expensive. A possible solution is timesharing in a sense, in which

the data path can be dynamically reconfigured to make the proper connection

between processing elements. Again, a spectrum of choices between a single

stage and multiple stages is possible, with a full-crossbar switch providing total

flexibility (any output can be mapped to any input without blocking).

The choice between static and dynamic may well be driven by how much

time overhead is associated with setting up the path in the dynamic case, versus

the expense of having the fully static connection always available. In terms of

utilization of resources, the dynamic solution is more economical, even though it

may be considerably slower. Feng provides many examples of the various forms

and presents the design decisions involved in choosing a topology.

The FPS-164, as can be seen in Figure 26 employs a cross-bar structure for

its topological interconnection scheme. The HAP-200, as seen previously in Figure

68

25 is a bus-interconnected architecture, with some being shared and others

strictly static. This correlates with the overall asynchronous system architec

ture.

Figure 26. FPS-164 internal structure.

7.4. Installer's Guide

To install the PDS software on the FPS-164, three steps must executed.

1.) Read the magnetic tape

2.) Install the system dependent portions (driver, system directories).

3.) Compile all source code into executable binary code.

4.) Install all executable code.

7.4.1. The Distribution Tape

The FPS UNDC Distribution is contained on one 2400 foot magnetic tape. It has

been written with the standard UNDC tar(l) program in ASCII at 1600 bits-per-inch

69

(1600 BPl) with the normal UNDC blocking factor of 20 blocks-per-record. This will

yield a tape made up of 10240 bytes ASCH records. The last record has not been

filled to the full 10240 bytes. All standard unix file names and directories are

contained within the tape. Tar(l) will build all directories as it reads the tape.

The tape can be read on a 4.1 BSD UNDC system with:

%cd <where-ever_youjiave_50jnegs_pf_>space>
% tar x

When the tape has been read you should have a directory entry in the

current directory called: "src" A directory listing of that directory should yield:

Makefile aplibr/ apslib/ man/ util/

apal/ aplink/ driver. 4.1/ sje/ vuit/

apdebug/ apmath/ driver.4.1C/ sum/

apex/ aprlib/ fpskey/ report/

apftn/ apsim/ lev3/ tools/

Certain FPS customers are not licensed for SJE. and will not receive the

directories "sje" and "aprlib." The directories: "apal," "apdebug," "apex,"

"apftn." "aplibr," "aplink," "apsim," "sje," "sum" contain the obvious piece of

FPS PDS code. The "apmath" library is the FPS math library. The libraries,

"aprlib" and "apslib", are runtime libraries for the compiler. The utility library

is contained within the directory, "util." The driver diagnostic is found in "vuit".

The confidence tests is found in "lev3". The directory, "fpskey," contains

header files for the build process. The "nukefps" and other tools are in "tools."

The "man" directory has standard UNDC manual pages for the whole system. A

copy of this report is found in the "report" directory. Last of all, are two ver

sions of the driver, the two directorys left. The 4.1C version is the latest, but

can not run on a 4.1 system.

70

7.4.2. Dependent System Installation

To install the FPS PDS system, you will need to follow these directions care

fully. First, two bugs in the UNDC F77 compiler must be corrected and installed.

The first fix is for APEX'S huge data initialization and the second one for the lexi

cal and semantic analyzer in APFTN.

To add these fixes on a normal 4.1 system.

cd /usr/src/cmd/f77

Near the beginning of the file "data.c," is a format statement in the form:

static char datafmt[] = "%s\t%051d\t%051d\t%d" ;

This must be changed to: .

static char datafmt[] = "%s\t%091d\t%09ld\t%d" ;

This fixes a bug with large data statement initializers.

In the file "defs," the define of HAXLAB was changed from 125 to 256. This fixes a

bug with computed goto's. This will allow a switch/case statement of all of the

alphabetics (e.g. alpha = [0..255]).

After making those fixes, type:

make

Now, make sure no user is running the UNDC FORTRAN compiler by running the UNDC

ps(l) program. Once the coast is clear, type:

make install

You now have a new FORTRAN compiler. The new 4.2 BSD UNDC system has the

second change, the first will not be included because that part of the compiler

was changed.

At this point you should create a directory for the PDS libraries. The distri

buted "Makefile" assumes this to be: "/usr/lib/fps" and is writable by the

"userid" of the person building the PDS (root most likely). The Makefile is

parameterized for this directory to be changed, though it is not suggested.

71

Next create the directory for the binaries. It it currently named "bin" and

in the same directory as the "src" directory. This is also parameterized, so

read the Makefiles if you wish to change this directory.

Now ccfpy the driver files ("fps.c" and "fps.h") into the operating system

source directories: "/usr/sys/dev" and "/usr/sys/h" The file named:

"/usr/src/conf/files," must be updated with the line:

dev/fps.c optional fps device-driver

The configuration file for your machine must be updated to include a line

for the FPS-164. The line from UCBCAD looks like:

device fpsO at uba? csr 0162000 vector fpsint

Now the system can be configured with:

%cd /usr/sys/conf
%config <Your_Host_Name>
%cd ../<Your_Host_name>
%make depend
% make

At this time, the current directory contains a copy of a runnable UNDC system

with the FPS-164 device driver linked into it. The current version of the operating

system should be saved and the new version installed in its place with:

%mv /vmunix /saveunix
%mv vmunix /vmunix
% sync

The system then can be rebooted with:

%/etc/shutdown -r +10 "Reboot With FPS-164"

The 10 can be changed to how many minutes ^rou would like to wait before kick

ing the users off the machine. While you are waiting for the shutdown, you

should turn on the FPS-164 and make sure its ON-LINE light comes on. If it does

not, check to make sure the switches on the diagnostic microprocessor's front

panel are correct.

UNDC will reboot normally with the addition of restarting the AP. A word of

72

caution, the FPS-164 can take a long time for the restart. The time it takes is a

function of the amount of memory in the AP. UNDC must wait for the AP to restart

before it continues to autoconflgure. The UNDC wait time is tunable in the driver

header flle (fps.h). Unfortunately, Amessage prints out on the console whenUNDC

is waiting. This message is normal, and is included so that an operator will not

become nervous when the machine is "idle" for 15 seconds or so on reboot.

After rebooting, the unibus diagnostic should be run to verify everything is

functioning properly. This program is called: "vuit64." To run it:

%cd <where_you_read_the-tape>/src/vuit
%make

%vuit64

> apnum= 1
> r we

> exit

The details of this diagnostic are in the standard FPS manuals. Assuming no

errors, you should proceed.

7.4.3. The Make Process

The simplest part of the process is the build process. This is done with:

%cd <where_ever-you_read_the_tape>
%make |& cat -u > errs&

This will compile everything and log the results in the file "errs." If you are curi

ous of the state of the build, you might try:

% tail -f errs

This will print the last lines of the errs file on the terminal. This process takes

about 4-6 hours on the UCBCAD VAX 11/780 with a nominal load.

7.4.4. The Install Process

This is just like a make, except you need to inform the make system that

you wish to install the binaries.

73

%cd <where_ever_you_read_the-tape>
%make install |& cat -u » errs&

Notice that you did a » not a >. You can again, tail(l) the errs file. The install

will run in about 10 minutes.

7.4.5. A Quick Test

After everything is installed and properly built, the three confidence test

should be run. This is accomplished by:

%cd <where_ever_you_read_the_tape>/src/lev3
% make

%cnf01

%cnf02

%cnf03

74

References

Apo81.Apollo, Technical Staff, Apollo Domain Architecture, Apollo Computer Cor

poration, N. Billerica, MA. February 1981.

Bec80.Bechtolsheim, Andreas and Baskett, Forest, The SUN Workstation, Com

puter Science Department, Stanford University, November 12, 1980.

Biiar.Billingsley, Giles and Keller. Ken, "Program Reference for KJC2," Electron

ics Research Laboratory Memorandum, vol. ERL-???, Berkeley, CA, To

Appear.

Bou78.Bourne, Steven R., "An Introduction to the UNIX Shell," in Unix Program

mers Manual, voL 2A, Bell Labortories, November 12, 1978.

Bro82.Brown, Ken W., Private Communication, Floating Point Systems. April

198a

Cha81.Charlesworth, Alan E., "An Approach to Scientific Array Processing: The

Architectural Design of the AP-120B/FPS-164 Family," Computer, vol. 14,

no. 9, pp. 18-27, September 1981.

Coh80.Cohen, Danny. "On Holy Wars and a Plea for Peace," TEN, no. 137,

USC/ISI, April 1, 1980.

Coh76.Cohen. EUis, "Program Reference for SPICE2," Electronics Research

Laboratory Memorandum, vol. ERL-M592, Berkeley, CA, June 14, 1976.

Coh8la.Cohen, Ellis, "Performance Limits of Integrated Circuit Simulation on a

Dedicated Minicomputer System," PhD Thesis, EECS - UCB, Berkeley, CA,

May 22, 1981.

Coh8lb.Cooler, Edmund U. andStorer. James E., "Functionally Parallel Architec

ture for Array Processors," Computer, vol. 14, no. 9, pp. 28-36, September

1981.

75

Col82.Coie, Clement T. and Hansen, Paul M., On Attached Array Processors,

EECS-UCB, May 1982.

CSR81.CSRG, Technical Staff, Seventh Edition, Virtual VAX-11 Version, Computer

Systems Research Group, June, 1981. Computer Science Division, Dept of

EECS, U. C. Berkeley

CSR82.CSRG, Technical Staff, 4.2 BSD Users Quids, Computer Systems Research

Group, EECS-UCB, June 1982.

DEC76.DEC, PDP 11/70 Processor Handbook, Digital Equipment Corporation,

Maynard, MA, 1976. .

DEC79a.DEC, Technical Staff, VAX 11/780: Architecture Handbook, Digital Equip

ment Corp., Maynard, MA, 1979.

DEC79b.DEC. Technical Staff. VAX 11/780: Hardware Handbook, Digital Equip

ment Corp., Maynard, MA, 1979.

DEC81.DEC, Technical Staff, VAX/VMS Internals and Data Structures, AA-K785A-

TE, Digital Equipment Corp., Maynard, MA, April 1981.

Doi78.Dolotta, T. A., Haight, R C, and Mashey, J. R, "The Programmer's Work

bench," The Bell System Technical Journal, vol. 57, no. 6 Part 2, July-

August 1978. •

Ens77.Enslow, Philip Jr., "Multiprocessor Organization - A Survey," ACM Comput

ing Surveys, vol. 9, no. 1, pp. 103-129, March 1977.

Fel78a.Feldman, Stuart I., "Make - A program for Maintaining Computer Pro

grams," in Unix Programmers Manual, vol. 2A, Bell Labortories, August 15,

1978.

Fel78b.Feldman, Stuart I. and Weinberger, Peter J., "A Portable FORTRAN 77

Compiler," in Unix Programmers Manual, vol. 2A, Bell Labortories,

November 12, 1978.

78

Fen77.Feng, Tse-Yun and li, H.F., "An Overview of Parallel Processors and Pro

cessing," ACMComputing Surveys, vol. 9, no. 1, pp. 1-2, March 1977.

Fly66.Flynn, Michael J., "Very High-speed Computing Systems," Proceedings of

the IEEE, no. 54, pp. 1901-1909, 1966.

FPS82a.FPS, Technical Staff, FPS-164: Operating System Manual, 860-7491-

00[0,2.3]A, Floating Point Systems. Inc. February 1982.

FPS82b.FPS, Technical Staff, FPS-164: DAPEX Designer's Guide, 860-7491-001A,

Floating Point Systems, Inc. January 1982.

FPS82c.FPS, Technical Staff, FPS-164: VAX Host Manual, 860-7493-OOOA, Floating

Point Systems, Inc. February 1982.

FP!382d.FPS. Technical Staff, FPS-164: Utilities Designer's Guide, 860-7490-000,

Floating Point Systems, Inc, January 1982.

GobSl.Goble, George H. and Marsh, Michael H., A Dual Processor VAX 11/780,

TR-EE 81-31, Purdue University, West Lafayette, Indiana, September 1981.

IBM70.IBM, Technical Staff, IBM 360 Principles of Operation, GN22-0354 (Ninth

Edition), November 1970.

Joy80.Joy, William N., Comments on the Performance of UNIXon the VAX, Com

puter Systems Research Group, EECS-UCB, March 1980.

Kar81.Karplus, Walter J. and Cohen, Danny, "Architectural and Software Issues in

the Design and Application of Peripheral Array Processors," Computer, vol.

14, no. 9, pp. 11-17, September 1981.

Kar82.Karplus, Walter J., Peripheral Array Processors, Society for Computer

Simulation, October 1982.

Kas80.Kashtan, David, UNIX on the VAX - Some Performance Comparisons, SRI

International, January 1980.

77

Ker76.Kernighan, Brian W. and Plauger, P. J., Software Tools, Addison-Wesley,

Reading Massachusetts, 1976.

Ker78.Kernighan, Brian W. and Ritchie, Dennis M., The CProgramming Language,

Prentice-Hall, Inc., Englewood Cliffs, NJ, 1978.

Kle83.Kleckner, James E., "Advanced Mixed-Mode Simulation Techniques," PhD

Thesis, EECS- UCB, Berkeley, CA, 1983.

Kog81.Kogge, Peter M., The Architecture of Pipelined Computers, McGraw-Hill

and Hemisphere Publishing Company, New York, NY, 1981.

Iio77.Lions, John, Commentary on the Unix Operating System, University of New

• South Wales and Western Electric, New South Wales and Murry Hill, NJ, 1977.

Mar81.Maron, Neil and Brengle, Thomas A., "Integrating an Array Processor into

a Scientific Computing System," Computer, vol. 14, no. 9, pp. 41-44, Sep

tember 1981.

Mil82.Miller. Ed, Private Communication, Floating Point Systems, April 1982.

Nag73.Nagel, L. and Pederson, D., "Simulation Program with Integrated Circuit

Emphasis (SPICE)," 16th Midwest Symposium on Circuit Theory, Waterloo,

Ontario, April 12, 1973.

Nak82.Nakamoto, Steven, Private Communication, Floating Point Systems, April

1982.

Nan81.Nandgraonkar, S. N., Oldham, W. G., and Neureuther, A. R, "Integrated

Circuit Process Modeling with SAMPLE," Proceedings of the 4th Biennial

University /Government /Industry Microelectronic Symposium, pp. 32-40,

Presented at Mississippi State University, May 26, 1981.

01d79.Oldham, W. G., Nandgraonkar, S. N., Neureuther, A. R, and O'Toole, M. M.,

"A General Simulator for VLSI Lithography and Etching Process: Part I -

Application to Projection Lithography," IEEE Transactions on Electronic

78

Devices, vol. ED-26, no. 4, pp. 717-722, April 1979.

01d80.0ldham, W. G., Neureuther, A. R., Sung. C, and Nandgraonkar, S. N., "A

General Simulator for VLSI Lithography and Etching Process: Part II - Appli

cation to Deposition and Etching," IEEE Transactions on Electronic Dev

ices, vol. ED-27, no. 8, pp. 1455-1459, August 1980.

Qua83.Quarles, Thomas, "SPICE3: User's Manual," Master Report, EECS - UCB,

Berkeley, CA, 1983.

Ram77.Ramamoorthy, C.V. and Li, H.F., "Pipeline Architecture," ACM Computing

Surveys, voL 9, no. 1, pp. 61-102, March 1977. •

Rit78.Ritchie, Dennis M., "The Unix I/O System," in Unix Programmers Manual,

vol. 2B, Bell Labortories, November 12, 1978.

Sha74.Shaw, Alan C, The Logical Design of Operating Systems, Prentice-Hall,

Englewood Cliffs, NJ, 1974.

Sie82.Siewiorek, Daniel P., Bell, C. Gordon, and Newell, Allen, Computer Struc

tures: Principles and Examples, McGraw-Hill, New York, NY, 1982.

Spi83.Spickelmier, Rick L, "Verification of Circuit Interconnectivity," MS

Report, EECS- UCB, Berkeley, CA, May 1983.

Sto80.Stone, Harold S., Introduction to Computer Architecture, SRA, Palo Alto,

CA, 1980.

The81.Theis, Douglas J., "Array Processor Architecture," Computer, vol. 14, no.

9, pp. 8-9, September 1981.

Vla83.Vladimirescu, Andrei, "Simulating VLSI Circuits," PhD Thesis, EECS- UCB,

Berkeley, CA, Jan 1983.

	Copyright notice 1983
	ERL-83-23

