

Copyright © 1983, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

(57 f*0*f

VICTOR: GLOBAL REDUNDANCY IDENTIFICATION

AND TEST GENERATION

by

I. Ratiu

Memorandum No. UCB/ERL M83/27

9 May 1983

VICTOR; GLOBAL REDUNDANCY IDENTIFICATION

AND TEST GENERATION

by

Ion Ratiu

Memorandum No. UCB/ERL M83/27

9 May 1983

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

VICTOR: Global Redundancy Identification and Test Generation

for VLSI Circuits

Doctor of Philosophy Ion Mircea Ratiu Electrical Engineering
and Computer Sciences

Abstract

During the generation of tests for a digital circuit, most of the effort is

spent on just a few faults. For some of these faults, even an exhaustive

search cannot find a test, because no test exists; the fault is redundant, and

the effort has been wasted For some others, a test can be found only after

much computation, but most test generation procedures allocate fixed

resources —computer time and memory —per fault and may stop the compu

tation before a test is found. These hard-to-test, but detectable faults are

likely to be considered undetectable, hence lumped with the redundant

faults, and effort has been wasted again. Therefore, efficient test generation

for a digital circuit requires advance knowledge of the redundant and the

hard-to-test irredundant faults.

This report describes VICTOR (VLSI Identifier of Controllability. Testabil

ity. Observability, and Redundancy), a linear complexity method for global

redundancy identification and test generation for scan-testable VLSI circuits.

In four passes through the circuit fault list, VICTOR identifies all redundant

and hard-to-test irredundant faults in a general combinational circuit and

generates test vectors for most irredundant faults, which are then collapsed

and the corresponding test vectors are compacted. The complexity of the

algorithm and of the data structure grows linearly with circuit size and pri

mary input count. Several circuit examples are analyzed to illustrate the

operations in the algorithm.

The program implementation of VICTOR consists of approximately 4300

lines of ANSI FORTRAN 77.

ACKN0WLE3XJEMENTS

The author wishes to express his gratitude to his research advisor, Prof.

Donald 0. Pederson, for guidance and support, and to Constantin C. Timoc for

countless discussions and expert technical hints in the area of testing

throughout the development of this dissertation. Ke also gratefully ack

nowledges advice and suggestions from Paul B*irdell (IBM), Thomas Williams

(IBM). Kenneth Parker (Hewlett-Packard), Sliigeru Takasaki (NEC). Ray

Mercer (University of Texas, Austin), Vishwani Agrawal (Bell Laboratories),

Erwin Trischler (Siemens). Predrag Kovijanic (ISperry). Alberto Sangiovanni-

Vincentelli, and Antony Fan (University of California. Berkeley).

Support for the research presented in this :hesis has been received from

the CMOS IC Design Department and the Computer-Aided Design Department

of Bell Laboratories and is gratefully acknowledged. The author wishes to

thank Eric Iwersen, Hermann Gummel, Ajoy Bose, Bernard Murphy, and Wes

ley Grant for their encouragement and support.

The author thanks his parents, Rodica and Mircea, for infinite patience

and understanding during his graduate years.

u

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION 1

CHAPTER 2: REDUNDANCY AND TESTABflJIY ANALYSIS 5

2.1 INTRODUCTION 5

2.2 DIGITAL TESTING OVERVIEW 6

2.2.1 Basic Concepts in DigitalTesting 6

2.2.2 Complexity of the Test Problem 8

2.2.3 Design for Testability and Testability Analysis 9

2.3 VLSI TESTING ISSUES 9

2.3.1 The VLSI Environment Constraints 10

2.3.2 The Need for New Fault Models in VLSI 11

2.3.3 The Viability of the Single-Stuck Fault Model 13

2.3.4 The Testing of Sequential VLSI Circuits 14

2.3.5 The Level-Sensitive Scan Design Technique 15

2.4 REDUNDANCY IN DIGITAL NETWORKS 16

2.4.1 Definition of Redundancy 16

2.4.2 The Rationale Behind Redundancy 16

2.4.3 Methods for Redundancy Identification IB

2.5 TESTABILITY ANALYSIS OF DIGITAL NETWORKS 20

2.5.1 Investigative Studies 20

2.5.2 Early Work 21

2.5.3 Gate-Level Analysis 23

2.5.4 Functional-Level Analysis 25

2.5.5 Hybrid Circuit Analysis 26

in

IV

2.5.6 Probabilistic Approach 26

2.5.7 Algebraic Approach 27

2.5.8 A Critical View 28

CHAPTERS: THEORETICAL FOUNDATION AND STRATEGY IN VICTOR 30

3.1 INTRODUCTION 30

3.2 LOGIC CIRCUIT AND FANOUT NODE MODELS 30

3.2.1 Logic Circuit Model 30

3.2.2 Fanout Node Model and Terminology 31

3.3 CIRCUIT AND REDUNDANCY CLASSIFICATION 32

3.3.1 Classification of Combinational Circuits 32

3.3.2 Classification of Redundant Faults 34

3.4 EQUIVALENCE AND IMPLICATION THEOREMS 36

3.4.1 Signal Dependence and Convergent Fanout 36

3.4.2 Redundant Faults and Convergent Fanout 38

3.5 VICTOR STRATEGY 40

3.5.1 Goal and Feasibility Conditions 41

3.5.2 Global Linear Estimation 42

3.5.3 Control, Monitor, and Test Patterns 42

3.5.4 The Risk Measure Heuristic 43

CHAPTER 4: VICTOR ALGORITHM 45

4.1 INTRODUCTION 45

4.2 VICTOR TESTABILITY PRIMITIVES 45

4.2.1 The Set, Reset, and Monitor Pattern 45

4.2.2 "DieRisk and Size Testability Measures 47

4.2.3 Pattern Selection 48

4.2.4 Pattern Intersection 50

4.3 CIRCUIT LEVEUZING 52

4.4 CONTROLLABILITY CALCULATION 54

4.4.1 ControllabilityInitialization 54

4.4.2 Cell Controllability Calculation 55

4.5 OBSERVABILITY CALCULATION 57

4.5.1 Observability Initialization 57

4.5.2 Cell Observability Calculation 58

4.6 TEST GENERATION AND REDUNDANCY IDENTIFICATION 60

4.6.1 Test Generation 60

4.6.2 Redundancy Identification 62

4.7 ALGORITHM COMPLEXITY 65

CHAPTER5: VICTOR PROGRAM IMPLEMENTATION 67

5.1 INTRODUCTION 67

5.2 PROGRAM STRUCTURE 67

5.2.1 Module INPROC 67

5.2.2 Modules CONTRL and OBSERV 68

5.2.3 Module REPROC 73

5.3 FILE STRUCTURE 73

5.3.1 File Name and Circuit Description Files 74

5.3.2 Connection Error Files 74

5.3.3 Fault Information Files 75

5.4 DATA STRUCTURE 75

5.4.1 File Name Data 76

5.4.2 Circuit Node Data 76

5.4.3 Circuit Topology Data 77

5.4.4 Node Controllability/Observability Data 77

5.4.5 Test Data 77

5.5 PROGRAM PORTABILITY 78

VI

5.5.1 Choice of FORTRAN 77 78

5.5.2Program VICTOR Language 79

CHAPTERS: VICTOR PERFORMANCE EVALUATION Bl

6.1 INTRODUCTION B1

6.2 METHOD CORRECTNESS 61

6.2.1 Uncontrollable and Unobservable Redundancy 81

6.2.2 Schneider*s Example 63

6.3 PROGRAM PERFORMANCE 69

CHAPTER 7: CONCLUSIONS 94

APPENDDC 1: The Berkeley FORTRAN 77 Version of SCOAP Al.1

APPENDIX 2: VICTOR CellLibrary A2.1

APPENDDC 3: Analysis of the 74181 4-bitALU A3.1

APPENDIX 4: Circuit Description ofIndustrial Example Circuit A4.1

APPENDDC 5: BLOCK DATA Subroutine SETUP A5.1

APPENDIX 6: Program VICTOR Source listing A6.1

REFERENCES: R1

CHAPTER 1

INTRODUCTION

Automated generation of tests solves the testing problem for small and

medium size digital circuits. For large sequential circuits, however, most

such techniques are too expensive, since they require vast amounts of data

processing and data storage [Goel 81].

Current very-large-scale-integrated (VLSI) circuits comprise upward of

10,000 logic gates. Automated test generation for a sequential circuit of this

complexity is simply not feasible. Moreover, most test generation procedures

have difficultiss handling such complex circuits, even if scan-path techniques

[Williams 73] [Funatsu 75] [Eichelberger 77] [Koenemann 79] [Ando 80] [Mercer 81]

are employed and the circuit becomes scan-testable as a combinational cir

cuit.

"When generating tests for a digital circuit, most of the effort is spent on

just a few faults. For some of these faults, even an exhaustive search cannot

find a test, because no test exists; the fault is redundant [Breuer 76], and the

effort has been wasted. For some others, a test can be found only after much

computation, but most test generation procedures allocate fixed resources —

computer time and memory —per fault and may stop the computation before

a test is found. These hard-to-test, but detectable faults are likely to be con

sidered undetectable, hence lumped with the redundant faults, and effort has

been wasted again. Therefore, efficient test generation for a digital circuit

requires advance knowledge of the redundant and the hard-to-test irredun

dant faults.

Several methods for the identification of redundancy in combinational

circuits have been published [Yau 71] [Dandapani 74] [Lee 74] [Smith 79] [Si 78].

However, the methods either apply to special classes of circuits only, or are

as complex as the fault detection problem itself.

Recently, a set of fast, heuristic approaches for identifying potential

testing difficulties in a digital circuit —collectively called testability analysis

— have gained much attention. However, testability analysis employs overly

simplif.ed models for sequential circuits, hence the testability estimates for

sequential circuits are inherently erroneous. To facilitate computations, tes

tability analysis approaches assume input signals to a circuit element to be

independent of each other. Unfortunately, this simplifying assumption proves

to be an Achilles' heel, since testability analysis consistently identifies redun

dant faults as testable, irredundant faults, and thus the method defeats its

purpose [Ratiu 82] [Agrawal 82].

This report describes VICTOR (VLSI Identifier of Controllability. Testabil

ity, Observability, and Redundancy), a linear complexity method for global

redundancy identification and test generation for scan-testable VLSI circuits.

Two theoretical results are presented: signal dependence is equivalent to con

vergent fanout, and redundancy implies convergent fanout. Based on these

theorems, potentially redundant faults are introduced as the set of redundant

and hard-to-test irredundant circuit faults, and a method for their

identification is described. For the rest of the faults, the irredundant ones,

tests are generated, and the test vectors are collapsed and compacted.

Chapter 2 reviews redundancy and testability analysis. First, the basic

concepts in digital testing and testing issues specific to VLSI circuits are

described. A detailed analysis of redundancy and its identification methods

follows, and testability analysis, a fast, heuristic approach for identifying

potential testing difficulties, is introduced. The various testability analysis

methods are extensively reviewed.

Chapter 3 establishes the theoretical foundation and the strategy in VIC

TOR, the proposed method for redundancy identification and test generation.

After defining the circuit and fanout node models, combinational circuits and

redundant faults are classified based on fanout convergence. An equivalence

theorem for convergent fanout and dependent signals, and an implication

theorem for redundant faults and convergent fanout are stated and proven.

The strategic goal for VICTOR is sketched out as the development of a global,

linear estimation tool that relies on the risk of convergence and evaluates the

primary input dependencies of every node in the circuit.

Chapter 4 presents the VICTOR algorithm and details its four steps. The

VICTOR testability primitives —pattern, risk, and size —are introduced as the

primary input dependencies of a circuit node, the risk of convergence for

these dependencies, and the number of such dependencies, and the pattern

operations —selection and intersection —are defined. Then, circuit leveliz-

ing. controllability calculation, observability calculation, and test generation

and redundancy identification, are described and illustrated on a small cir

cuit example. An analysis of the algorithm complexity closes the chapter.

Chapter 5 explains the VICTOR program implementation. The program

structure, the files attached during program execution, and the structure of

the circuit and fault data are described in detail and exemplified. The reason

for choosing ANSI FORTRAN 77 and specific language use in program VICTOR

towards program portability are presented.

Chapter 6 deals with the evaluation of the performance of VICTOR. i.e..

method correctness and program performance. Method correctness is shown

on some pathological circuits small enough tobe intuitive, and on a4-bit ALU.

which is analyzed in detail. For program performance, run time measure

ments for program VICTOR are given on an industrial circuit example.

Chapter 7 summarizes the VICTOR approach, shows its strengths and

weaknesses, and suggests directions for future research.

Seven appendices are included in this report. A short history of the

development at Berkeley of the FORTRAN 77 version of the SANDIA SCOAP tes

tability analysis program is given in Appendix 1. Appendix 2 lists the library

of predefined cells. The input data Jind the VICTOR analysis results for the

74181 4-bit ALU are presented in App.endix 3. and the circuit description of

the industrial example analyzed in Chapter 6 is listed in Appendix 4. Appen

dix 5 contains the data initialization routine for program VICTOR, and Appen

dix 6 lists the source code for the entire program.

CHAPTER 2

REDUNDANCYAND TESTABILITY ANALYSIS

2.1. INTRODUCTION

When generating tests for a digital network, a disproportionately small

fraction of the faults is responsible for most of the test generation effort. At

times, an exhaustive search cannot find a test for a fault; no test exists. ±e

fault is redundant, and the effort has been wasted. Some other faults,

although detectable, require an inordinate amount of computation during

test generation. Since most test generation procedures limit the resources -

computer time and memory - spent on detecting a fault, such hard-to-test

faults may not be detected, hence they may be lumped together with the

redundant faults as "undetectable" faults. Thus, efficient test generation in a

digital network requires advance knowledge of redundant and hard-to-test

faults, therefore methods for redundancy identification or heuristic methods

capable of identifying potential testing difficulties must be used.

This chapter presents some of the basic concepts in digital testing and

analyzes the testing issues specific to aVLSI environment. Then, redundancy

in digital networks is reviewed, and techniques for redundancy identification

in combinational networks are presented. A fast, but approximate method to

identify potential testing difficulties, testability analysis, is introduced, and

the testability various approaches published in the past ten years are

reviewed.

6

2.2. IHGITAL TESTING OVERVIEW

A comprehensive review of the testing issues is given in the references

[Muehldorf 61]. In this section, the concepts, terms, and notations used in digi

tal testing are briefly reviewed, and the complexity of the fault detection

problem is presented. Two different solutions to the testing problem, design

for testability and testability analysis, are introduced.

2.2.1. Basic Concepts in Digital Testing

The process of detecting and identifying the causes of incorrec: circuit

operation is called testing. When detecting a circuit malfunction, relevant

circuit information is processed from "four universes of discourse, arranged

in an ascending order toward the user: (1) physical; (2) logical; (3) informa

tional; and (4) external, or user's universe" [Avizienis 82]. Each of these four

universes has its own rules and terminology for the undesired event, i.e., the

disruption that produces unexpected and unwanted behavior of the system as

perceived by the user: failure in the physical universe, fault in the logical

universe. e7Tor in the informational universe, and crash in the user's

universe. The simplest universe to deal with is the logical one, since a vari

able can have only one out of two possible values, 0 or 1. although it reflects a

variety of failures and causes sundry errors and crashes. In this logical

universe, the undesired event is a fault for which simple rules of Boolean alge

bra apply. Depending on circuit representation, logic switch or logic gate, the

appropriate fault model is either a switch fault or a logic fault.

The circuit model used most often in testing consists of logic gates and

signal lines connected via primary inputs and primary outputs to the outside

world. In the stuck or stuck-at fault model, logic gates always operate

correctly, but signal lines to and from the gates may remain fixed uninten

tionally at a constant logic value (0 or l). Thus, for an arbitrary signal line K

in the circuit, two faults are possible, K stuck-at-0 and K stuck-at-1, with the

notation K/0 and K/l, respectively. A widely used model in testing is the

single-stuck fault model, in which the circuit contains at most one stuck-at

fault. In the remainder of this report, the single-stuck fault model is

employed.

A test for a fault in a circuit is a sequence of logic 0 and 1 values applied

to the primary inputs that cause at least one erroneous primary output value.

The set of logic 0 and 1 values applied at the same time makes up a test pat

tern or a test vector; a test usually comprises several patterns. Two faults

are said to be equivalent if any test which detects one of them detects the

other one as well, and no test distinguishes between the two. If no test exists

for a fault, the fault and the circuit to which it belongs to are called redun

dant. If a test exists for every fault in a circuit, both the faults and the cir

cuit are called irredundant.

A widely used measure of test generation proficiency is the test set fault

coverage, which gives the percentage of detected faults out of all faults in the

circuit. Due to undetectable faults, the highest attainable fault coverage for

a redundant circuit is always less than 100%. Since the number of possible

faults depends exclusively on network topology, fault coverage does not indi

cate how much of the irredundant part of a circuit has been tested if the cir

cuit is redundant.

A test for a specific fault detects many other faults on its path from the

primary inputs to the primary outputs, hence the effect of a test on the faults

of a circuit must be evaluated. The procedure, called fault simulation, also

aids in finding tests for isolating the fault in the circuit (fault location) and in

tracking down a fault based on specific erroneous output values (fault diag

nosis).

2.2.2. Complexity of the Test Problem

Given an arbitrary combinational circuit with a total of p gates and pri

mary inputs, does there exist a test generation algorithm that can compute a

test for any detectable fault inpr operations, where r is a finite constant? If

no such algorithm exists, the problem is NP-complete.

By linking the single fault detection problem to classic combinatorial

problems in complexity theory e.g, the traveling salesman problem, Ibarra

and Sahni [Ibarra 75] prove that the testing problem of combinational circuits

is NP-complete. Moreover, identifying single redundant faults in a combina

tional circuit is an NP-complete problem also. To compound issues even

further, most useful circuits are not combinational, but sequential in nature,

since they contain feedback loops, hence are finite state machines. As is

shown later in this chapter, the complexity of the testing problem for sequen

tial circuits is an exponential function of the testing problem for combina

tional circuits.

The test problem is not NP-complete for any combinational circuit. For

instance, ripple-carry adders and decoders, which are known to be easily

testable, and other 2-level monotone/unate circuits are testable in polyno

mial time [Fujiwara 82].

A frontal attack on the testing problem using automated test generation

(ATG) and fault simulation has worked well in the past yet has become prohi

bitively expensive or unfeasible for current circuit complexity. Goel reports

9

more than 23 hours of CPU time on a 370/168 computer system for the test

generation and fault simulation of a 50.000gate circuit [Goel 81].

2.2.3. Design for Testability and Testability Analysis

As an alternative to the traditional approach of testing after design com

pletion, design for testability addresses the testing problem during design by

building testability into the circuit by design. The approach resembles

preventive medicine; it does not represent a panacea, but it may shrink the

test problem to a manageable size. The price paid for testability by design is

usually additional hardware and sometimes lower performance. Hence,

design constraints must be weighed carefully before deciding on any design

for testability technique. Three well-known techniques published extensively

in the past are: level-sensitive scan design (LSSD) [Eichelberger 77], signature

anelysis (SA) [Frohwerk 77], and built-in logic block observation (BILBO)

[Kosnemann 79]. For a review of design for testability techniques, see a paper

by Williams and Parker [Williams 82].

Different from design for testability, testability analysis is a fast method

for approximating the difficulty in detecting circuit faults before generating

the test patterns. The resulting information serves as a guide for circuit

redesign for testability and as a good starting point for test generation and

fault simulation. A later section in this chapter presents reviews the various

testability analysis approaches.

2.3. VLSI TESTING ISSUES

In addition to the problems in testing large digital networks, new chal

lenges arise for the testing ofvery large scale integrated (VLSI) circuits. Con-

10

straints imposed by the VLSI environment require the use of different fault

models, yet the traditional single-stuck fault model can be still used. Due to

the lack of feasible methods and tools, the testing of sequential VLSI circuits

is extremely difficult. Therefore, design techniques that allow sequential cir

cuits to be tested as combinational ones have gained acceptance. With this

assumption, the testing of VLSI can be regarded as the problem of testing

very large but purely combinational networks.

2.3.1. The VIS Environment Constraints

The essence of the constraints imposed by the very-large-scale-

integrated (VLSI) environment to design and testing alike is chip complexity.

Integrated circuits with half a million devices or ten thousand logic gates on a

silicon chip are currently manufactured. If chip density continues to grow at

the same pace as during the past decade, it will double every year or year

and a half, and so will the associated testing difficulties.

Several problems arise from this steadily growing chip complexity. First,

how does one access tens of thousands of gates through a number of pins typ

ically limited to less than hundred? Even exotic packaging techniques

achieve less than two hundred external input/output connections per chip

[Collins 82]; therefore, information flow through a chip resembles two funnels

joined mouth to mouth: a few dozen input pins —thousands of internal signal

lines —a few dozen output pins. Second, are most signals on a chip still

independent of each other? As is shown in Chapter 3, signal convergences

imply dependent signals; hence, the double-funnel effect causes many such

signals dependencies. Third, do finite-state machines still have a number of

states that can be considered practically finite? Out of the thousands of pos-

11

sible states of current 16 or 32 bit computer architectures [Blume 83], only a

few states are assigned for system operation. Most states should never be

reached during normal operation, thus the risk for unassigned states and ille

gal operation codes to occur increases with chip complexity.

2.3.2. The Need for New Fault Moclels in VLSI

New fault models are required for VLSI because of developments specific

to the VLSI mainstream technology, MOS (Metal-Oxide-Semiconductor):

(1) merged MOS logic does not map into the traditional elementary logic

gate representation (i.e., AND, OR, NOT, NAND, NOR), and

(2) unconventional failure mode!? have become statistically significant for

MOS technologies.

To illustrate the first argument, Figure 2.1 depicts a merged MOS logic circuit

and an elementary AND/NOR gate level circuit, both implementing the same

logic function

Z = (AB + cy.

In the MOS circuit of Figure 2.1(a), the drivers da and db share the load Id

with the driver dc, which makes it impossible to assign Id to either just the

AND gate or just the NOR gate of Figure 2.1(b). Also, node I in the gate circuit

lacks an homologue in the MOS circuit; hence, stuck-at faults do not model

the physical MOS circuit failures. Although both circuits implement the same

function, any attempt to establish a structural analogy between the two is

contrived, since the gate circuit lacks enough resolution. For the required

level of detail, a complete fault analysis of such merged logic must resort to

device models instead of gate models [Hayes 82] [Bose 82].

(a)

(b)

Figure 2.1 AND-OR-INVERT Cell z=(ab+c)'
(a) NMOS circuit implementation.
(b) Logic gate representation

12

Several failure modes that have been ignored in the past without

affecting the chip fault coverage are prevalent in today's silicon implementa

tions. The risk of multiple failures in a half-a-million device chip is real, can

not be neglected, and can only increase with chip density. With device

geometries scaling down, in due time, crosstalk among "electronically adja-

13

cent" circuit parts is likely to cause the same pattern sensitivity faults that

plague high-density memory chips. Unfortunately, established memory test

ing techniques dealing with this aspect, e.g., GALPAT, do not apply directly to

general-purpose circuit chips [Breuer 76].

A prevalent cause of circuit failure in CMOS is a transistor open or short

circuit. The corresponding fault models, stuck-off and stuck-on, cannot be

handled easily by traditional testing approaches; a stuck-at fault model

requires almost ten gates [Wadsack 78], whereas the global current-sensing

technique [Levi 81] only detects the presence of the failure and not its loca

tion. Moreover, stuck-on and stuck-off faults cause sequential -circuit

behavior due to the charging time of the stray output line capacitance. Tech

niques for their detection exist though: two vectors are assigned per fault,

with the first one applied such that charge/discharge delays are controlled to

a known state, and the second one applied for fault detection [Timoc 82]. A

test set capable of detecting all stuck-off and stuck-on faults is also

guaranteed to detect all single stuck-at faults.

2.3.3. The Viability of the Single-Stuck Fault Model

Is the single-stuck fault model of any use in VLSI? Experimental data on

field reject rates shows that if 90-95% of the single-stuck faults are detected,

then most other fault types are detected as well. (Exceptions are faults that

cause sequential behavior, such as bridging faults and CMOS stuck-on and

stuck off faults.) The stuck-at fault model is based on Boolean algebra, there

fore it has a simple structure, is computationally efficient, and is of general

use. Finally, for a combinational circuit with q nodes, only 2g single-stuck

faults are possible (K/0 and K/l for each arbitrary node K), which implies

14

linear model complexity. If multiple stuck faults are analyzed, the complex

ity is an exponential function (3g-l) of the circuit size [Hayes 71].

Recent findings justify the choice of the single-stuck fault model. Most

failures for cascode emitter-coupled logic (CECL) and bipolar circuits can be

modeled as stuck-at faults [Beh 82]. Carter identifies certain techniques for

single-stuck fault detection that find a high percentage of the multiple stuck

faults [Carter 82].

2.3.4. The Testing of Sequential VLSI Circuits

In a widely used testing model for sequential circuits, the circuit is

transformed into an equivalent set of combinational circuits for which tests

are generated [Breuer 76]. For this transformation, the sequential circuit is

represented using the Huffman model, which consists of a combinational cir

cuit block, a feedback path, and a register in the feedback path. The

equivalent combinational circuit is obtained by breaking up the feedback

path and replicating the combinational block and the register for each state

of the finite state machine that the sequential circuit implements. Of course,

a A:-bit register generates 2* states, hence the complexity of the equivalent

combinational model and of its accompanying computations is exponential

compared to the complexity of the initial combinational block.

In spite of powerful computer aids for testing, it is unlikely that an ATG

will achieve a reliable fault coverage higher than 90% for complex sequential

circuits exceeding 5000 logic gates [Bottorff 80]. Moreover, a study [Jensen 82]

of the commercially available ATG programs (LASAR, TEGAS-5. and HILO-2)

finds that highly sequential networks, even for small circuits, require exten

sive computer resources.

15

2.3.5. The Level-Sensitive Scan Design Technique

A solution which eliminates the sequential testing problem altogether is

to design the circuit such that all machine states can be easily controlled or

observed, Le., easily set or checked by breaking up the feedback paths. Out

of several such methods published in the past [Williams 73] [Funatsu 75]

[Eichelberger 77] [Koenemann 79] [Ando 80] [Mercer 81], the Level-Sensitive

Scan Design approach has gained acceptance with many mainframe computer

and system manufacturers.

Level-Sensitive Scan Design (LSSD) [Eichelberger77] is a design for testa

bility technique which allows full combinational testing of a sequential circuit,

be it a chip, card, isubsystem, or full system, by imposing a set of design rules

following two concepts:

(1) all internal storage elements (other than memory) have to function also

as shift registers, and

(2) circuit operation must not depend on rise time, fall time, or minimum

delay of the separate circuits.

LSSD is a well established technique by now. Over the years, it has influenced

fault diagnosis methods [Arzoumanian 81] and automatic test generation pro

cedures for a variety of environments: logic masterslices [Lowden 79], LSI

chips and printed circuit boards [Bottorff 79], multiple chip VLSI packages

[Goel82b], and large systems [Bottorff 77 &81].

The LSSD approach is undergoing steady development; recently, a low

overhead variation of LSSD particularly suited to VLSI chips has been

reported [DasGupta 82]. Also, in spite of the associated overhead, industry

acceptance of LSSD and of similar scan design techniques is growing.

16

2.4. REDUNDANCY IN DIGITAL NETWORKS

A concept related to fault testing is redundancy, the property of a sys

tem to operate correctly if part of it is deleted. In this section, redundancy is

defined, the reasons for the use of redundancy in system and logic design are

given, and some of the proposed techniques to identify single redundancies in

a logic netirork are reviewed. None of these techniques is feasible for the

identification of all redundancies in a general combinational circuit.

2.4.1. Definition of Redundancy

The IEEE Standard Dictionary of Electrical and Electronics Terms lists

four definit.ons of redundancy according to the its meanings in different

fields: information theory, transmission of information, power systems, and

reliability. The broadest one, the definition for reliability, describes redun

dancy as "the existence of more than one means for performing a given func

tion." This definition, applied to digital circuits and logic functions, is general

enough to encompass most other definitions found in literature and is used in

the remainder of this report.

2.4.2. The Rationale Behind Redundancy

The chief reason to introduce redundancy in a system is to render it

impervious to failure. In order to meet stringent specifications of reliability,

availability, and maintainability, designers of military [Bernhard 81]. space [Wil

liams 81], and communication systems have traditionally employed redun

dancy.

The low yield problem plaguing high-density memory chips has induced

various semiconductor companies to consider redundant design as a way to

17

increase chip manufacturability. Nowadays, redundancy can be found in a

variety of random access and read-only memory chips [McKenny 80] [Kitano

80] [Mano 80]. Moreover, redundancy in a design benefits both the yield and

the field reliability of large chips [Cliff 80].

What is the rationale of building in redundancy for an average industrial

chip design which does not target fault tolerance or high reliability? As men

tioned previously, redundancy represents a safety margin for design, and

many practical circuits contain redundancy [To 73]. Also, redundancy can

eliminate logic hazards and sometimes simplifies circuit structures [Si78].

To illustrate the point, the two redundant networks in Figure 2.2 are

analyzed. The first one, shown in Figure 2.2(a), implements the logic function

Z = AB + FC + AC

in which minterm AC is redundant, Le., it does rot affect function Z. (Note

that the input and output stuck-at-0 faults of the lower AND gate are redun

dant) If the lower AND gate is deleted, then for A:=C=1. any logic change of B

causes a static 1-hazard [Breuer 76] at output Z. However, the redundant

term AC preserves a logic 1 at Z during any transition on B and thus elim

inates the hazard. Eichelberger and Williams apply a similar technique to

achieve level-sensitive latches for the LSSD scheme [Eichelberger 77].

The second example, Figure 2.2(b), is a phase splitter feeding a two input

AND gate with Dand D'. Since the output Y is always 0, fault Y/0 and the two

stuck faults at the root of fanout node D, D/0 and D/l, are redundant. Some

what modified, this scheme is used widely in high-speed circuitry to drive

both load and driver devices and therefore shorten the switching time [Blume

83].

6

I

(a)

(b)

figure 2.2 Redundant circuit examples.
(a) Hazard-free implementation
(b) Phase splitter

18

2.4.3. Methods for Redundancy Identification

By definition, redundant faults in a network cannot be detected. Their

identity is usually not known before test generation; hence, much effort

(about 90%) is wasted in the futile attempt to generate a test for the redun

dant faults. Various approaches for redundancy identification (Rl) in a combi

national network have been proposed, but most deal with particular circuit

configurations and cannot be expanded. Abrief review of the published work

follows.

A simple algorithm to identify redundant variables of a combinational

logic function with the goal of achieving a simple realization has been

19

developed by Yau and Tang \Yau 71]. The method relies on the minterm

expansion of the function and some manipulation of the binary and decimal

number representation of minterms. No extension of the procedure is given

for the identificationof redundancies that are embedded in the circuit.

Dandapani and Reddy [Dandapani 74] show that the RI method which con

siders all combinations of inputs in a general circuit is computationally

impractical. Instead, they analyze restricted prime-tree networks, which are

specially connected tree networks consisting of AND. OR, and NOT gates. An

algorithm to design such prime trees is given, and it is shown that prime

trees are easy to test for redundancy.

Lee and Davidson [Lee 74] develop a simple, necessary, and sufficient test

for Rl in a tree-type NAND network and generalize the result for multi-output

NAND, AND-OR, and NOR trees. General, nontree networks are handled by

converting them into an equivalent tree form; however, the transformation

may map a single connection onto several connections in the equivalent tree

form, and the single redundancy test is changed into a much more difficult

multiple redundancy test. Moreover, a counter-example to the proposed

transformation has been found by Smith [Smith 78 &79].

Si [Si 78] proposes to use dynamic testing for redundancy identification.

His method relies on Clegg's structure and parity-observing output function

(SPOOF) [Clegg 73], which he modifies to handle delay information. The tech

nique finds some statically undetectable faults, but does not guarantee the

identification of all redundancies and requires vast amounts of memory and

computation.

20

2.5. TESEABILJTY ANALYSIS OF DIGITAL NETWORKS

In contrast to the algorithmic redundancy identification methods

presented before, a host of simple and fast heuristic methods have been

developed that single out the potential testing difBculties in digital networks.

These methods, collectively called testability analysis, usually employ

simplified circuit and fault models and rely on heuristics. Over thirty papers

on testability analysis have been published during the past ten years, as

shown in the chronology of publications given in Table 2.1. In the following

review, they are grouped into investigative studies, early research work,

gate-level analysis, functional-level analysis, hybrid circuit analysis, proba

bilistic approach, and algebraic approach.

2.5.1. Investigative Studies

Keiner and West[Keiner 77] introduce testability as a subset of maintaina

bility and develop a framework for the derivation of testability measures to

1. [Rutman72] 17. [Kovijanic 81]
2. [Stephenson 74] 18. [Takasaki81]
3. [Stephenson 76] 19. [Dunning 81]
4. [Dejka77] 20. [Longendorfer 81]
5. [Keiner 77] 21. [Akers82]
6. [Breuer78] 22. [Bardell82]
7. [Duasault78] 23. [Hess 82]
8. [Danner79] 24. [Fong82a]
9. [Goldstein 79] 25. [Goel82a]

10. [Grason79] 26. [Savir82]
11. [Kovijanic 79] 27. [Menzel82]
12. [Longendorfer 79] 28. [Fung 82]
13. [Breuer79] 29. [Fong82b]
14. [Goldstein 60] 30. [Agrawal82]
15. [BennetsBO] 31. [Berg 82]
16. [Susskindei] 32. [Ratiu82]

Table 2.1 Chronology of Testability Analysis
Publications.

21

assist the design engineer in producing supportable systems. In their view,

testability should be a design parameter instead of a design goal, and an

optimum approach to the measurement of testability must rely on the syner

gism between design for testability techniques and proven measurement

capabilities of existing computer-aided design (CAD) tools.

In the quest for a formalized theory of testing, Dejka [Dejka 77] studies

the use of circuit complexity as a measure of its testability. Gate count,

number of primary inputs, and controllability and observability (as defined

for linear sequential machines in control theory) are considered.

Investigating the testability of printed circuit boards, Danner and Con-

solla [Danner 79] establish a list of 56 testability circuit factors, that range

from the use of clocks and functional partitioning of circuits to the content of

unusual discrete components and warm-up time. The approach yields board

testability ratings that are empirical, but correlate well with experimental

results.

2.5.2. Early Work

A heuristic fault measure aiding fault detection in sequential networks is

introduced by Rutman. The approach models fault detection as a decision

tree corresponding to the path-sensitizing algorithm [Armstrong 66] and relies

on the similitude of this tree and the decision trees found in game-playing

algorithms. The cost of setting or resetting a circuit node is calculated as the

sum of the node costs for the nodes constrained to set or reset the given

node; a factor for the level number (see Chapter 4 for circuit levelizing) is

then added to the result. Costs for combinational and sequential elements

are evaluated alike. The node cost, a positive integer, serves as a measure of

22

confiict risk in a test generation procedure reminiscent of the D-algorithm

[Roth 66]: drive a Dinto a particular element, drive a D forward, justify a line

setting. The process ends when either a test has been computed, a test is

judged impossible (the tree has been exhaustively searched), or the program

runs out of time or memory space.

The concepts employed by Rutman have proven successful over the

years. A sophisticated branching heuristic in the decision tree is largely

responsible for the success of the PODEM-X ATG program [Goel 81]. Chess

playing algorithms in COPTR, a testability analysis preprocessor for the

TEGAS ATG program, speed up the latter by a factor of ten [Kirkland 83].

Stephenson and Grason [Stephenson 74 &76] introduce the concept of a

testability measure and create an independent design tool for large circuits

that can be specified at the register-transfer level A numerical controllabil

ity and observability is assigned to every node as a number between zero and

one that estimates how easily nodes within the circuit can be controlled from

the primary inputs and observed from the primary outputs, respectively.

Controllability and observability propagates through a circuit according to a

set of combining rules and a transfer factor for each circuit component. The

transfer factor of a combinational or sequential component is obtained by

lumping its input-output mappings to a single number; a default factor of 0.5

is assumed if no such information exists. The approach relies more on con

nectivity than function and is computationally simple. Grason [Grason 79]

reports a program implementation, TMEAS, that includes a powerful postpro

cessor for analyzing the generated testability data.

In a proposal for an ATG package for the 80s, Breuer [Breuer 78 &79] pro

poses two preprocessing concepts, cost and rate analysis, that should reduce

23

test generation time by two or three orders of magnitude. The cost analysis

uses Rutman's cost function of controlling a node to logic 0 or 1 and applies

the same method to calculate the node observability. In the rate analysis,

the maximum rate of change on a line, expressed as a sequence of logic 0 and

1 values at the output of a sequential block, is evaluated. Since the rate

analysis precludes a wrong choice of the initialization sequence, it reduces

substantially the test generation effort for sequential circuits.

2.5.3. Gate-Level Analysis

A gate-level approach based on Breuer's cost and rate analysis, SCOAP

[Goldstein 79 & 80] is probably the best-known testability analysis program.

SCOAP calculates for each node three combinational measures, 0-

controlkibility, 1-controllability, and observability. For sequential elements,

both sequential and combinational measures are computed: the sequential

controll2ibility and observability represents the number of time frames

required to reach a given node condition, and the combinational controllabil

ity and observability represents the number of constrained nodes for each

time frame. Simplified sequential models are used, and the different sets of

node constraints for each time frame are merged to a single set of con

straints. The algorithm handles feedback loops and is at worst quadratic with

circuit size. The circuit model consists of cells, logic gates and simple blocks

of gates, which must be predefined in a cell library containing a matrix-like

binary encoding of the cell controllability and observability equations. The

encoding of a cell is a formidable task: seven hundred binary terms for a sim

ple AND-OR-INVERT block have been reported [Trischler 81].

24

The SCOAP program is publicly available: the FORTRAN 66 original from

the SANDIA National Laboratories, and an ANSI FORTRAN 77 version, written

by the author, from the University of California at Berkeley (see Appendix l)

Several research papers listed in Table 21 stem from SCOAP; the gate-level

approaches are described below, while the functional-level approaches are

presented later in this chapter.

Hess [Hess 82] and Berg [Berg 82] have taken the Berkeley SCOAP version

and, by adding powerful input and output data processing capabilities, have

turned it into an industrial-grade testability analysis package for CMOS gate

arrays. Menzel [Menzel 82] has proposed and implemented a bidirectional

model in SCOAP. Goel [Goel 82a] has started from SCOAP, has enhanced the

sequential model considerably by taking into account individual constraints

for each time frame, and has build the algorithm upon selective trace; the

resulting program yields more accurate sequential values and executes ten

times faster.

Another major testability analysis approach based on Breuer's cost and

rate analysis is Kovijanic*s TESTSCREEN [Kovijanic 79]. Although developed

independently, TESTSCREEN and SCOAP are similar, but for a different model

ing of the combinational circuits. TESTSCREEN does not automatically

increase the controllability when traversing a circuit component, and it takes

into account the gate and primary input count. The TESTSCREEN analysis has

been expanded to include an estimate of the number of stuck faults and a glo

bal testability measure for the whole circuit [Kovijanic 81] [Dunning 81]. The

global figure of merit results from a weighted sum of various circuit indica

tors such as fanout, latches, primary input/output count, gate count, etc..

25

A final gate-level approach, CAMELOT [Bennets 80], employs the same

method of calculating the controllability as TMEAS, but refines the gate-

transfer factor and the dependence from the gate inputs by including infor

mation about the cell function. Although clocking information is taken into

account, CAMELOT encounters computational difficulties with large sequential

circuits.

2.5.4. Functional-Level Analysis

Takasaki [Takasaki 81] proposes an approach to functional-level analysis

consisting of two steps: a SCOAP evaluation of all functional blocks at the gate

level, and the calculation of the functional testability values for the

input/output nodes of the functional blocks. The first step consists of a

SCOAP analysis for each functional block. Then, controllability and observa

bility values internal to the block are discarded; each block pin is assigned a

weighting factor that, together with the number of available pins, enters a

norm-like calculation for the functional controllability and observability of

the entire block. The analysis results in three testability numbers attached

to each pin of the functional blocks.

Recognizing the prevalence of bus architectures in current designs, Fong

[Fong 82a &82b] introduces a data-path controllability and observability along

with the usual SCOAP measures. To keep the computations simple, he

assumes that for a data path with n branches, the 2n possible states are uni

formly distributed, hence equally likely to occur. The method needs no gate-

level representation of the functional blocks.

26

2.5.5. Hybrid Circuit Analysis

An extension of the testability analysis domain to the device level is

hybrid circuit analysis, which uses a hybrid representation composed of logic

gates and circuit devices for the circuit.

Longendorfer [Longendorfer 79 & 81] defines a testability measure based

on graph theory alone but adjusts the results by empirically penalizing large

sequential depth, redundancy, and large circuit blocks. Aconnectivity matrix

of the transistor-level circuit is required to compute the reachability and

reaching matrices, which, in turn, generate the desired controllability and

observability values.

2.5.6. Probabilistic Approach

Two testability analysis approaches using probability theory have been

reported. The first employs information entropy in a chip, while the second

develops upon error latency.

Dussault [Dussault 78] sets Ms testability measure in the domain of infor

mation theory and denotes it as the mutual information between the circuit

inputs and outputs. Controllability and observability are defined as the

inverse of the conditional output/input and. respectively, input/output

entropy. In his view, testability analysis should extract as much test data as

possible from the circuit, yet should stop short of generating the tests. The

algorithm requires much computational effort and memory space. Fung and

Fong [Fung 82] expand Dussaulfs approach to the functional level under

assumptions similar to the ones outlined earlier [Fong82a &82b].

Bardell [Bardell 82] uses error latency in a combinational circuit as a tes

tability measure. Relying on the initial work on signal probability [Parker 75a

27

&75b], he expands the techniques for computing signal probabilities to calcu

late fault detection probabilities for random pattern testing. Bardell deals

with reconvergent fanout in a systematic way and classifies combinational cir

cuits based on reconvergence. However, the approach has difficulties with

large circuits because the symbolic data manipulation in the algorithm

requires massive computation and data storage.

2.5.7. Algebraic Approach

The application of Boolean algebra for testability analysis has received

some attention in the two papers reviewed below. Both handle only combina

tional circuits and cannot be expanded easily to analyze sequential circuits.

In the first paper [Susskind 81], Susskind assigns a controllability and an

observability connotation to the two parts of the Boolean difference. The

approach is complete and theoretically consistent, but because the Boolean

difference generates all possible tests for every fault in the circuit, large

amounts of computation and storage are required, even for circuits consist

ing of only a few dozen gates.

In the second paper [Akers 82], a powerful logic structure [Akers 76] is

employed to count the number of tests that detect each fault. The measure

of testability Akers and Krishnamurthi propose is a lower bound on the

number of tests necessary to meet a prespecified set of test requirements for

the whole logic circuit. The necessary number of tests per circuit is counted

and is propagated through the network. If reconvergent fanout is present, it

is taken into account, and a near-optimal partitioning into fault-equivalence

classes is evaluated. The method involves propagating local effects and

requires at most four passes through the circuit.

28

2.5.6. A Critical'View

Each of the testability analysis approaches reviewed above presents a

solution to the problem of estimating the potential testing difficulties. The

various approaches differ in domain and method, but share two basic prob

lems:

(1) sequential circuits are not analyzed correctly, and

(2) redundant faults are not identified.

In order to keep computations simple, the testability analysis

approaches dealing with sequential circuits employ overly simplified models,

which lose the essence of sequential behavior —the state transition —due to

low resolution. However, an appropriate model, e.g. the Huffman model

presented before, is not feasible, since it requires vast computational effort

and data storage.

Only two approaches [Bardell 82] [Susskind 81] identify redundancy, but

at a high cost in computation and storage requirements. Both methods take

into account all signal dependencies in the entire network, in contrast to the

other methods that assume all signals to be independent. (In Chapter 3, the

necessity of the dependent signal assumption is proven.)

Simple circuits have been reported [Savir 82] [Ratiu 82] that are easy to

control, easy to observe, but comprise untestabie (redundant) faults. How

ever, testability analysis approaches that ignore signal dependencies predict

good testability for such redundant faults.

Experimental data supporting the preceding results has been presented

by Agrawal and Mercer [Agrawal 82]. They view the testability measure as a

statistical estimator and calculate the correlation between its capability to

predict which individual faults can be detected and the the fault data

29

(obtained through test generation and fault simulation) for a large chip. The

resulting coefficient of correlation is always less than 0.4 and shows that a

level of resolution exists for which a testability measure can provide useful

information, but below which predictions are erroneous.

For VLSI circuits, the published testability analysis approaches do not

provide reliable fault data to aid in test generation. However, if used interac

tively during design, testability analysis identifies some of the potential test

ing difficulties and, therefore, constitutes a valuable tool to educate designers

about testing.

CHAPTER 3

THEORETICAL FOUNDATION AND STRATEGY IN VICTOR

3.1. INTRODUCTION

The theoretical foundation and the strategy for VICTOR, a new approach

for providing reliable fault data for VLSI circuits, are presented. Models for

the logic circuit and the fanout node are defined, combinational circuits and

redundancies are classified, and two theorems on the links among convergent

fanout, dependent signals, and redundant faults are introduced. Finally, the

strategy in the design of the VICTOR approach to global redundancy

identification and test generation is outlined.

3.2. LOGIC CIRCUIT AND FANOUT NODE MODELS

The circuit and fanout node models and the terminology used in VICTOR

[Ratiu 82] are introduced.

&2.1. Logic Circuit Model

A logic circuit is a network of cells interconnected via unidirectional

links, called nodes, in dialogue with the outside world through its primary

inputs (Pis) and primary outputs (POs). Each cell in the network is a func

tional block that performs a predefined set of logic operations and has its own

cell inputs and outputs. Cell operations, when combined according to the

interconnecting circuit topology, yield the logic function implemented by the

circuit as a whole. Every link to a cell represents the location of a stuck-at

30

31

fault, and every node connecting exactly two cells corresponds to two

equivalent faults, an output fault for the driving cell and an input fault for the

driven cell.

3.2.2. Fanout Node Model and Terminology

A link that fans out to several destinations is called a fanout node and

consists of a root (stem, origin) and its corresponding branches. The fanout

of a node to n places "means the reproduction of that atom [node] in n dis

tinct physical positions" [Kuck 78]. Although fanout root and branches

represent the same (electric) circuit node, faults located on root and

branches are not equivalent A test that detects a root fault also detects at

least one branch fault, yet a local analysis cannot identify the branch; a test

that detects a branch fault must also detect the root fault, but rarely detects

some of the other branch faults. Therefore, a correct fault analysis of a

fanout node requires explicit faults for the fanout root and the branches.

Since most description languages of logic circuits assign only one name

per circuit node, the same name designates root and branches of a fanout

node. To distinguish among these different fault locations, the root is

assigned the name of the fanout node, and each branch is assigned a compo

site node name of the form root-pin-output. Root is the original circuit node

name (the fanout root), while pin is the number of the input pin and output is

the name of the first output node of the cell connected to the fanout branch

(an ordering of the cell inputs and outputs is assumed). Figure 3.1 illustrates

the described fanout naming convention.

(a)

A'l-lj
B

A / —-^
2)

A-5-2>\ f

F

(b)

Figure 3.1 Fanout node naming convention.
(a) Original name for fanout node A
(b) Composite names for the branches

of fanout node A

3.3. CIRCUIT AND REDUNDANCY CLASSIFICATION

32

3.3.1. Classification of Combinational Circuits

A classification of combinational networks based only on fanout topology

is proposed. Instead of using the traditional terms of nonreconvergent and

reconvergent fanout [Armstrong 66] [Schertz 72], the terms divergent and con-

33

vergent fanout are used for this purely topological classification. Three

classes of combinational circuits are distinguished: fanout-free circuits,

divergent fanout circuits, and convergent fanout circuits.

Fanout-free circuits do not contain any fanout nodes and have the sim

plest structure. A typical example is the AND-OR-INVERT cell of Figure 2.1. in

which each logic gate has exactly one immediate successor. Only few large

fanout-free circuits have any practical value.

Divergent fanout circuits contain fanout nodes whose branch successors

always diverge, i.e., for all fanout nodes, no two successors of a node ever

serve as inputs to the same cell. Since divergent fanout circuits do not

include loops (sets of branches forming a closed path), divergent fanout cir

cuits are tree networks [IEEE 77] and the general properties of tree structures

apply [Aho 74] [Khuth 73]. Although more important than the fanout-free cir

cuits, divergent fanout circuits are limited to special applications that

require tree-like structures, e.g., error correction circuitry.

Convergent fanout circuits contain fanout nodes that have at least two

convergent branch successors, i.e., at least one fanout node exists whose suc

cessors serve as inputs to the same cell. By definition, convergent fanout cir

cuits include loops, allow arbitrary fanout topology and are, therefore, gen

eral, nontree networks. Most useful digital circuits and practically all VLSI

circuits belong to this category: hence, any circuit investigation that ignores

convergent fanout ignores an essential circuit aspect and produces incorrect

results.

34

3.3.2. Classification of Redundant Faults

By definition, a fault is redundant if no test exists that can detect it. An

arbitrary node K is called totally redundant if both faults K/0 and K/1 are

redundant; if one of the two faults is irredundant, K is called partially redun

dant. Three classes of redundant faults in a circuit can be distinguished:

uncontrollable faults, unobservable faults, and untestable-controllable-

observable faults.

Uncontrollable faults cannot be provoked from the Pis, Le., no pattern

exists that can set or reset the corresponding node to the correct logic value.

Accordingly, uncontrollable stuck-at-0 faults are 1-uncontrollable, and uncon

trollable stuck-at-1 faults are 0-uncontrollable. For example, node K in Fig

ure 3.2 is always at logic 0, since A-l-K and J always carry Aand A'. Fault K/0

cannot be provoked; therefore, fault K/0 is 1-uncontrollable, and node K is

partially redundant.

Unobservable faults cannot be propagated to the POs, i.e., no pattern

exists that can monitor the corresponding node from the POs. In Figure 3.3, a

Figure 3.2 Redundant circuit containing
1-uncontrollable fault K/0.

A
B

Figure 3.3 Redundant circuit containing
unobservable faults A/0 and A/1.

35

fault on node A propagates to the output Z if and only if both B-2-J= 1 and B-

2-Z=0, but these conditions require node B to be simultaneously at logic 0 and

1, which is impossible. Therefore, both faults A/0 and A/1 are unobservable,

and node A is totally redundant.

Untestable-controllable-observable faults can be provoked from the Pis,

can be propagated to the POs, but no pattern exists that can both provoke

and propagate the faults at the same time. When trying to match the two pat

terns, all combinations lead to PI conflicts. Schneider's example [Schneider

67], shown in Figure 3.4, contains two faults, B-l-K/O and C-2-K/0, that are

both controllable and observable, but untestable. Pattern 0000 is the only

one that propagates the faults to the POs, and it cannot provoke either fault,

although both faults are easily controllable.

A fault is redundant if and only if it is uncontrollable, unobservable. or

untestable-controllable-observable. Uncontrollable redundancies are easiest

to identify, since they involve just one PI function each. More effort is needed

for the identification of unobservable redundancies, because establishing a

propagation path to the POs involves a series of control conditions on the

nodes adjacent to the path. A global evaluation of the circuit is needed to

Figure 3.4 Redundant circuit containing
untestable-controllabie-observable
faults B-l-K/0 and C-2-K/1.

36

identify the untestable-controllable-observable redundancies; shortcuts per

forming a partial analysis cannot find these redundancies. Therefore, sys

tematic iterative attempts are required to match patterns for possible con

trol and monitor paths through the entire circuit.

3.4. EQUIVALENCE AND IMPLICATION THEOREMS

An equivalence theorem between convergent fanout and signal dependen

cies and an implication theorem on the necessity of convergent fanout for

redundancy are introduced in this section.

3.4.1. Signal Dependence and Convergent Fanout

Within the circuit, fanout branches supply internal signals in the same

manner as the primary inputs supply external signals to the entire chip.

37

Both fanout branches and primary inputs represent the skeleton of the logic

network and are commonly referred to as checkpoints [Breuer 76]. Their

importance in combinational circuit testing has been recognized by Schertz

and Metze [Schertz 72], who prove in their checkpoint theorem that any test

that detects single (multiple) stuck faults on all checkpoints detects all single

(multiple) faults in the circuit.

Every checkpoint is the root of a tree with a set of dependent branches

and branch successors; new dependencies emerge when trees converge.

When are two inputs to an arbitrary circuit cell dependent on each other?

Equivalence Theorem: In a combinational network, inputs to a

cell in the network depend on each other if and only if they

belong to a convergent fanout tree, i.e., they stem from the

same fanout node. •

Proof (by definition): If some circuit branches depend on each

other, they must belong to the same fanout tree, else they are

independent. Since they are cell inputs, the fanout tree is con

vergent by definition. The opposite implication follows directly

from the definition of a convergent fanout and the properties of

a tree. •

If two cell inputs depend on each other, a condition imposed on one input

affects the other input also. The Equivalence Theorem specifies the relation

between function and structure in a general combinational network and

guarantees that a complete structural (functional) analysis of dependencies

is still complete if parts of it use the function (structure) as shown by the

theorem.

38

3.4.2. Redundant Faults and Convergent Fanout

The relation between convergent fanout and redundant faults has been

analyzed first by Armstrong when introducing the single-path sensitization

method for test generation [Armstrong 66]. His method deals with two cases:

Case 1: All reconvening fanout paths between a specified fanout node
and a specified node of reconvergence have the same Inversion Parity.

Case 2: Not all these paths have the same Inversion Parity. The Inver
sion Parity of a reconverging fanout is defined to be the number of inversions,
modulo 2, along the path between the specified fanout node and the specified
node of reconvergence.

If a test is applied that simultaneously sensitizes two converging fanout paths,

Armstrong finds only the second case to entail redundant faults, since the

output of the node of convergence does net change its value; therefore, the

effect of the fault cannot propagate beyond it.

An example illustrating Armstrong's findings is shown in the circuit in

Figure 3.2 which contains two paths with unequal inversion parity, <A, A-l-K,

K> and <A, A-l-J, J, K>. As shown before, node K is 1-uncontrollable, because

it does not change its value from logic 0 regardless of any logic change on

node A, the originating fanout node (node Ais totally redundant).

Attempts to expand Armstrong's inversion parity criterion for redun

dancy identification have failed [Ratiu 81], because inversion parity is neither

necessary, nor sufficient to cause redundancy. For example, the circuit in

Figure 3.3 contains the totally redundant node A, even though the two conver

gent fanout paths, <B. B-2-J, J. Z> and <B, B-2-Z. Z>, have equal inversion par

ity. On the other hand, the irredundant circuit in Figure 3.5 (a particular

implementation of an XOR gate), contains two convergent fanout paths. <A,

A-l-M. M, Z>, <A. A-l-K, K, N, Z>, and <B, B-l-J, J, M, Z>, <B, B-2-N. N. Z>. with

unequal inversion parity, but no faults are redundant.

B —*

Figure 3.5 Irredundant circuit containing
multiple convergences.

39

In general, when multiple convergence occurs at the input of a cell, noth

ing can be inferred regarding the redundant nature of the faults at the ori

ginating fanout node or after the point of convergence. In Schneider's exam

ple. Figure 3.4, the four input signals converge at the output NOR gate Y, and

all have unequal inversion parity along the different paths, yet only faults B-

1-K/O and C-2-K/0 are redundant.

Since inversion parity is neither necessary, nor sufficient to cause redun

dancy, its use for redundancy identification (RI) is limited. However, conver

gent fanout is related to redundant faults.

Implication Theorem: Afault is redundant if all paths from the

primary inputs to the primary outputs that include the fault

traverse a convergent fanout circuit. •

40

Proof (by contradiction): A path from the Pis to the POs

traverses a convergent fanout circuit if and only if either all

control paths are convergent, or all monitor paths are conver

gent, or the control and monitor paths are divergent separately,

but convergent if taken together as a whole path. In any case,

dependent signals arise (as proven in the Equivalence Theorem).

The assumption is made that signals are independent, i.e., the

path does not traverse a convergent fanout circuit, and redun

dant faults exist Then, a change in any of the signals uniquely

affects the circuit function and, by definition, the circuit cannot

contain redundant faults; the initial assumption has been con

tradicted. Therefore, the path must traverse a convergent

fanout circuit for the fault to be redundant. •

The Implication Theorem states thai; redundancy requires convergence:

no fault can be redundant if a divergent fanout path exists along which the

fault location can be controlled and observed. The opposite implication is

false, however, since not every convergence causes redundancy. As was

shown before, the XOR gate of Figure 3.5 contains a double convergence at

the output gate, but no redundancies are present in the circuit.

3.5. VICTOR STRATEGY

After having laid out the theoretical foundation, the strategy for redun

dancy identification and test generation in VICTOR is presented.

41

a 5.1. Goal and Feasibility Conditions

The goal in the design ofVICTOR (VLSI Identifier of Controllability, Testa

bility, Observability, and Redundancy) has been a fast method for producing

reliable fault data for VLSI circuits. To attain this goal, VICTOR must meet

several feasibility conditions.

Unear complexity. Tailored to the fast-growing VLSI chip complexity,

computer-aided testing (CAT) tools must involve a number of variables and of

operations that are both linear or near-linear functions of the chip complex

ity; the complexity of the data base and the algorithm is then said to be

linear or near-linear. As was shown in Chapter 2, the testing of sequential cir

cuits employs a circuit model that grows exponentially with circuit size, but

by incorporating a scan-path, the testing can be performed on an equivalent

linear combinational model of the original circuit. i.e., the circuit becomes

scan-testable. To fulfill the linear-complexity requirement, VICTOR handles

only combinational circuits, hence only scan-testable VLSI circuits. However,

current trends in VLSI design show a growing willingness of circuit designers

to incorporate such scan-paths (see Chapter 2).

Appropriate fault models. The tools involved in the testing of a circuit

(testability analyzer, redundancy identifier, automated test generator, and

fault simulator) must use the same fault model in order to form a useful test

system. For the reasons outlined in Chapter 2, VICTOR uses the single-stuck

fault model described above (fanout root and branches of a fanout node

represent separate fault locations).

Dependent signal assumption. Signals must be assumed dependent on

each other and all dependencies must be taken into account. Both the

author's experience with SCOAP and the analysis of SCOAP by Agrawal and

42

Mercer [Agrawal 82] show that testability analyzers employing the independent

signal assumption do not recognize redundant faults. Furthermore, the

theorems outlined above prove that a necessary condition to identify redun

dancy is to consider all signal dependencies.

3.5.2. Global linear Estimation

A novel feature in VICTOR is the linear and global approach to redun

dancy identification. Rather than analyzing faults in succession, as is done in

conventional automatic test pattern generation (ATG). VICTOR sweeps through

the entire circuit a few times and processes all faults. A fixed number of

passes is needed, regardless of circuit complexity, and no iterations or back

tracks are involved.

All necessary signal dependencies in the circuit are expressed as func

tions of Pis only in order to keep the data base linear. (The PI count of a VLSI

chip is, owing to packaging constraints, a weak function of circuit complex

ity.) However, the information on signal dependencies is not approximate, but

exact and complete.

3.5.3. Control, Monitor, and Test Patterns

Signal dependencies on a node are expressed as PI patterns, i.e., strings

of logic values composed of one value for each PI. Modeled after the

classification of redundancies introduced earlier, three patterns are calcu

lated for each fault: control, monitor, and test pattern.

The control pattern of a node is a collection of sufficient PI conditions to

provoke a fault on that node. Since two faults are possible, stuck-at-0 and

stuck-at-1, two control patterns exist, set pattern and reset pattern.

43

The monitor pattern of anode is a collection of sufficient PI conditions to

propagate a fault on that node to the POs. Finding a possible monitor pattern

for a node is inherently more difficult than finding the appropriate set or

reset pattern, because the monitor conditions are the intersection of all con

trol conditions that sensitize a path to the POs.

Rnally, the test pattern of a node is a collection of sufficient PI assign

ments that simultaneously provoke (from the Pis) and propagate (to the POs)

a fault on that node. Thus, the desired test pattern results from the merger

of control and monitor pattern: reset and monitor pattern for a stuck-at-1

fault, and set and monitor pattern for a stuck-at-0 fault.

3.5.4. The Risk Measure Heuristic

The underlying heuristic in VICTOR is the risk of convergence, the selec

tion criterion among different possible patterns. The Implication Theorem

shows that convergence leads to confiict in the calculation of the test pat

terns for redundant faults, but also for some irredundant faults. Faults for

which confiicts arise during test generation are called potential redundancies

and comprise the truly redundant faults and some hard-to-test irredundant

faults, called false redundancies. If the pattern corresponding to the lowest

risk of convergence is selected, the risk of conflict is minimized, hence a

selection of patterns based on the lowest risk of convergence minimizes the

number of false redundancies during test generation. Applied successively to

each cell during a circuit pass, the minimum risk selection tries to find a

conflict-free test pattern for every fault; a global optimum is approximated

through a succession of local optimizations, a standard CAD technique. Some

false redundancies remain (a linear approach cannot solve an NP-complete

44

problem), but their number has been minimized.

In existing ATG programs, redundancies, true or false, are the cause of

the many iterations that degrade program performance. The amount of

•effort per fault (iteration count or computer time) is limited in most ATG pro

grams, and the test generation for the fault is stopped once this limit has

been reached. Without further probing, false redundancies cannot be

separated from the genuine ones; hence, the fault may or may not be redun

dant, situation which the choice of the term potential redundancy tries to

suggest.

Two types of errors can occur in redundancy identification: (l) redun

dant faults are falsely predicted irredundant, and (2) irredundant faults are

falsely predicted redundant. The first type renders the RI technique useless

and is, therefore, catastrophic (such errors occur in the testability analysis

methods described in Chapter 2). The second type produces false redundan

cies and is acceptable, as long as it does not contaminate the major part of

the estimation.

The approach to redundancy identification in VICTOR resembles statisti

cal estimation techniques, where absolute precision matters less than

knowledge of error behayior and error bounds. In VICTOR, the lowest risk

heuristic biases the estimate such that no errors of the first type ever occur

at the cost of many errors of the second type. VICTOR identifies all redundan

cies but its RI estimate includes many false redundancies that must be dealt

with later.

CHAFFER 4

VICTOR ALGORITHM

4.1. INTRODUCTION

The basic algorithm used in VICTOR consists of four steps: circuit leveliz-

ing, controllability calculation, observability calculation, and redundancy

identification and test generation. Two testability operations, pattern selec

tion arid intersection, and two testability measures, risk and size, are

employed [Ratiu 82]. To illustrate the succession of operations in VICTOR, a

small circuit example is analyzed. The chapter ends with an analysis of the

linear complexity of the algorithm.

4.2. VICTOR TESTABILITY PRIMITIVES

Before detailing the VICTOR algorithm, the testability primitives underly

ing its operations are defined. For the purpose of redundancy identification

and test generation, the circumstances under which a node is set, reset, or

monitored are characterized by a a testability triplet of pattern, risk, and

size. The pattern expresses exact primary input (PI) conditions, while risk

and size are estimates of the risk of convergence conflict and pattern count,

respectively. Two pattern operations, selection and intersection, are defined.

4.2.1. The Set. Reset, and Monitor Pattern

Given a circuit and its primary inputs (Pis) and primary outputs (POs),

three patterns are defined for an arbitrary node V in the circuit:

45

46

• set pattern, Va: a sufficient collection of PI conditions to force node

V to logic 1.

• reset pattern, Vr: a sufficient collection of PI conditions to force

node V to logic 0.

• monitor pattern, Vm: a sufficient collection of PI conditions to sensi

tize a path from node V to the POs.

Node patterns represent PI signal dependencies expressed as an ordered

string of logic symbols. Patterns contain exactly one symbol for each pri

mary input; consequently, patterns are of equal length for a given circuit.

Currently, four-valued logic is implemented, Le., a symbol may take one of

four logic values (but VICTOR may handle any finite multiple-valued logic).

0 logic 0 assignment

1 logic 1 assignment

X no assignment (don't care)

conflicting logic 0 and logic 1
assignment (clash)

The circuit in Figure 4.1 has two primary inputs only, A and B; thus, all

node patterns consist of two symbols, the first corresponding to A, and the

second to B. The primary inputs themselves have the following control pat

terns:

A. = lx, 4-=0x; £s=xl. £r=x0.

The structure of a PI control pattern for any circuit is unique and consists of

a 0 or 1 symbol in the position of the respective primary input and an x sym

bol in all other positions. Monitor patterns for any circuit contain only x sym

bols, since primary outputs are by definition observable and, therefore, do

not impose PI constraints.

47

Usually, internal nodes can be set, reset, or monitored in a variety of

ways; hence, many patterns of one type exist. For instance, the three pat

terns 01. 11, and xl are valid set patterns for node Z. An internal node has

exactly one pattern if and only if it depends on all primary inputs, i.e., the

pattern consists exclusively of 0 and 1 symbols.

A clash in a pattern highlights a PI convergence conflict and thus a

potential redundancy. For example, K=l requires both A-1-K=l and J=l, but

these conditions are equivalent to A=0 and A=l, a conflicting requirement. In

Chapter 3, node K has been shown to be partially redundant (l-

uncontrollable); hence, the clash in :he set pattern J&=#x corresponds to a

true redundancy. Condition Z=l requires either K=l or B=l, and the two set

patterns for node Z are #x and xl; the fault on node Z can be considered a

potential redundancy if pattern #x is chosen. Such a decision is in general far

less obvious and affects the patterns of many succeeding nodes. If, for

instance, node Z is deeply embedded in the network and pattern #x is chosen,

many successors of node Z would be identified incorrectly as potential redun

dancies; a false redundancy contaminates other patterns in the circuit.

4.2.2. The Risk and Size Testability Measures

Except for the patterns, the testability of each node is characterized by

two positive integers, a risk and a size testability measure. The former

expresses the risk of convergence associated with each pattern, hence the

risk of conflict, and the latter estimates the total number of patterns that

exist per node. The risk and size measures are defined below for an arbitrary

node V in the circuit (the evaluation of the measures is presented later in this

chapter).

48

Risk Measures

• set risk, risk(VB): weighted sum of constrained checkpoints on the

chosen path from the Pis to set node V, for pattern Va.

• reset risk, risk(Vr): weighted sum of constrained checkpoints on the

chosen path from the Pis to reset node V, for pattern Vr.

• monitor risk, risk(Vm): weighted sum of constrained checkpoints on

the sensitized path from the node V to the POs for pat

tern Vm.

Size Measures

• set size, size (Va): number of patterns Va that can set node V.

•reset size, size(Vr): number of patterns Vr that can reset node V.

• monitor size, size(Vm): number of patterns Vm that can monitor node

V.

4.2.3. Pattern Selection

As shown before, the many ways to set, reset, or monitor a node produce

a multitude of patterns for the given action. If propagated through the net

work, these patterns multiply rapidly from node to node and computations as

well as data storage per node become unwieldy. Therefore, one pattern is

chosen among the various patterns of a certain type, and this pattern alone

enters further computations. The operation is called pattern selection, and

the question mark has been chosen as the selection operator owing to its

everyday connotation.

Definition: Given two patterns. P and Q. the selection of P and Qpro

duces a pattern S equal to the lowest-risk, lowest-level pattern between

P and Q. The selection of P and Q is written as follows:

49

S = P*> Q = ?(P.Q)

The risk and size of the resulting pattern S are:

risk(S)= risk(P) or risk(Q), size(5) = size(P) + size(Q)

The selection operation implements the minimum risk strategy outlined

in Chapter 3 by using the risk testability measure. Whenever a choice exists,

the pattern with the lowest risk of convergence is selected, and the chance

for potential redundancies is minimized. In case of a tie, the lowest-level pat

tern is selected (levels are introduced in the next section of this chapter),

and the choice implements a shortest-path heuristic. If the tie persists, the

first pattern to enter the operation is chosen. Pattern selection always gen

erates a unique result, and the operation is commutative, associative, and

any pattern of risk 99999 acts as identity element. The selection heuristics

strongly influence the algebraic structure.

The risk measure of the selected pattern becomes the risk measure of

the result. To evaluate the size measure of the result, the individual sizes of

P and Q must be combined to reflect the increased pattern count. Since sig

nal dependency is handled correctly by the patterns, signals are assumed

independent to simplify the size calculation which then becomes a simple

addition.

Example: Let P. Q. and R be the patterns below.

P=0xr#. r(P)=99999, s(P)=0, level=Z

Q=xlxO, r(Q)=3Z, s(Q)=9, level =6

/?=OxlO. r(i?)=32, s(fl)=5, level=4

Then.

5=p? Q=Q=xlxO, r(S)=r(£)=32, s(S)=s(P)+s(Q)=0+9=9

50

T=Q*> R=R=OxlQ. r(r)=r(J?)=32, s(7')=s(^)+s(/?)=9+5=14

During every selection, pattern information is lost, but the pattern con

sidered most likely to succeed is propagated; hence, the damage is heuristi-

cally confined. No new patterns are generated, because existing patterns are

steered to successive nodes, and therefore the selection operation is indepen

dent of the logic structure.

4.2.4. Pattern Intersection

To set, reset, or monitor a node sometimes requires the simultaneous

action of two or more node patterns. For example, to observe one of the

inputs of a two-input AND gate requires that the output be monitored and the

other input be set, i.e., the monitor pattern of the input under investigation is

a combination of the output monitor pattern and the other input reset pat

tern. The operation defining such a combination of patterns is called pattern

intersection, and the exclamation mark has been chosen as the intersection

operator owing to its everyday imperative connotation.

Definition: Given two patterns. P and Q, the intersection of P and Q

produces a pattern 1, the symbols of which are obtained by combining

the two homologous symbols in P and Qaccording to the following com

bination table:

1 0 1 x §
0

1

X

#

0 # o §
§ 1 1 #
0 1 x #

#

The intersection of P and Q is written as follows:

51

I = P\Q = \(P.Q)

If the resulting pattern 1includes a clash (#), then the risk and the size

of the resulting pattern 1 are:

risA: (/) = 99999. size (/) = 0.

If pattern I includes no clashes, then the measures are:

risk (I) = risk(P) + risk(Q). size (I) = size(P) * size(Q).

The intersection operation guarantees that signal dependencies are

taken into account and that all additional constraints (and potential confiicts)

enter the computations as they arise. If patterns must act simultaneously,

then the primary input conditions they represent must be met simultane

ously; hence, the symbols must be combined. The pattern combination rule

for four-valued logic defined in the above table is commutative, associative,

and has a unique identity element (a pattern composed entirely of don't

cares); therefore, it constitutes an abelian semigroup. Any other composition

table for multiple-valued logic can be used if the operation it defines has the

same algebraic properties. As expected, don't cares are overridden by any

symbol, clashes override any symbol, and new clashes result only out of a 0-1

or 1-0 intersection.

Signals are again assumed independent when calculating the testability

measures of the result. The risk measure of the result is the sum of the two

initial risks, since both patterns must act simultaneously. For each possible

pattern for P, the gamut of patterns for Q is available; hence, the size of 1 is

the product of the sizes of P and Q.

52

Example: Let P, Q, R> and T be the patterns below.

P=Gxx#. r(/>)=99999. s(P)=0

Q=xlxQ. r(£)=32, s(£)=9

/?=0xl0. r(tf)=32, s(/?)=5

7=1010, r(7)=18, s(r)=3

Then,

/=P!£=01x#, r(/)=99999. s(/)=0

/=£!J?=0110. r(/)=r($)+rU?)=32+32=64, s(/)=s(£)»s(/?)=9*5=45

A=tf!r=#010. r(if)=99999. s(fl=0

No information is lost during pattern intersection, but an improper

choice in a previous selection may cause the occurrence of a clash when a

clash-free pattern for the node exists. Unless one of the patterns is the iden

tity element, pattern intersection always generates a new pattern.

4.3. CIRCUIT LEVEI2ZING

Circuit levelizing. the first step in the basic algorithm of VICTOR, parti

tions the circuit description into segments corresponding to complete cell

modules (cell name and cell input and output nodes) and orders the cell

modules. Circuit levelizing is static and is based on topology. If the signal

flow determines the relative ranking of cells, the ordering is dynamic and is

called event-driven or selective trace. Dynamic ordering is especially

efficient if a logic change causes a low level of activity in the network. Since

in VICTOR all signal dependencies are taken into account, the testability

evaluation at every node causes a high level of activity; hence, circuit leveliz

ing is used in VICTOR

53

Levelizing is the process of assigning anonnegative integer value to every
node and cell in the network. By definition, the level of the PI nodes is zero,
and the level of a node other than a primary input is the level of the cell
which has the node as an output. The level of acell in the network is calcu

lated as the maximum input node level plus one.

In VICTOR, the levelizing procedure starts out by initializing all node lev

els to infinity and PI levels to zero. The procedure consists of successive
searches for the cells that have not been assigned alogic level but the inputs

of which have been already levelized. Once such acell is found, its level is cal

culated, and the operation is repeated. The procedure stops when a circuit

pass does not produce any new cell levels. When applied to the circuit exam
ple in Figure 4.1 (a repetition of Figure 3.2), circuit levelizing produces the
levelized cell list INVERTER, AND2, 0R2. and the following node level:?:

level 0: A, B
level 1: J
level 2: K
level 3: Z

The use of circuit levelizing has several implications. First, each circuit

node is considered to be the output of at most one cell, otherwise the node

Figure 4.1 Simple circuit example.

54

level is undefined; hence, tied cell outputs (wired logic) cannot be handled by
VICTOR. Second, if all nodes are connected properly, infinite levels point out
the presence of feedback loops in the circuit. If a loop exists, at least one cell

input level is infinite; hence, all cell output levels are infinite too, and the

situation is replicated for the cells in the loop and the cells driven by the ones

in the loop. VICTOR identifies the presence of feedback loops [design-rule vio

lations in combinational circuits) and gives the boundary of the circuit area

containing the feedback loop as the list ofcells with finite levels feeding cells

with infinite levels. Third, levelizing introduces a total order relation in the

network and generates a levelized cell list, a list of cells sorted in increasing

order of their level. The list comprises ail cells in the networ.< and forms the

basis of the ensuing testability calculations.

4.4. CONTROLLABILITY CALCULATION

The controllability calculation in VICTOR consists of this controllability

initialization and the evaluation of the node controllability triplets. The com

putation is completed in a single pass through the circuit and proceeds cell

by cell in the order given by the levelized cell list. Fanout nodes are handled

as single fault locations, because the controllability triplets for root and

branches are identical: controlling the root also controls the branches and

vice versa.

4.4.1. Controllability Initialization

Since the calculation of controllability parallels the forward flow of sig

nals from the primary inputs to the primary outputs, only the PI triplets -

pattern, risk, and size - need to be initialized. For the rest of the nodes.

55

triplets are generated as the controllability calculation progresses.

The PI set pattern consists of a 1 for the symbol of the particular pri

mary input and all don't cares (x) for the other PI symbols. Similarly, the PI

reset pattern is formed of only don't cares and a 0 for the particular primary

input. Thus, the PI patterns of the example circuit are:

4,=lx, i4r=0x,

Ba-xlt Br=xQ.

The set and reset risk for a primary input driving a single cell is equal to

one. For a fanout node, however, the risk of convergence grows with fanout

and distance to the primary outputs. A "risk rectangle area" is calculated as

the product of fanout and the level count to the furthest primary output. For

the analyzed example:

risfcCO = risk(Ar) =2*3 =6. risk(Bs) =risk(Br) = 1

A PI node can be set or reset in exactly one way. hence both set and reset

sizes are equal to one.

sizei^^sizeiAr) = 1. size(Bt) =size (Br) = 1

4.4.2. Cell Controllability Calculation

Except for the primary inputs, all circuit nodes are cell output nodes.

Therefore, node control triplets are calculated by processing cell after cell

from the levelized cell list. The rules to derive output control triplets from

input control triplets for a cell constitute its control equations, which must

be predefined in a cell controllability library (see Appendix 2).

The procedure to calculate control triplets outlined above is shown on

the circuit example. Circuit ceils are dealt with in the following order:

INVERTER, AND2, 0R2. To simplify notation, the control pattern, risk, and size

56

of a node are represented collectively as triplets. The set and reset triplet of

any node V in the circuit are:

^75 = 1 VBt risk(VM). size(Va)\

Vm = \ Vr, risfc(Kr), size(Vr)\

The first processed cell, the INVERTER, is governed by the following con

trol equations:

J8 - Ar, Jr = A

(The relation between patterns implies a similar relation for risk and size.)

The control triplets for node J are Jfs-\0x« 6» lj and Jm=\lx, 6« 1J-

The next cell is the two-input AND gate, AND2, which has the control

equations given below:

(Risk and size evaluation is implicit to the pattern operations.) The control

triplets for K are KTs=l#x> 99999, 0{ and KTR=\0x, 6. 2J.

The final cell is the 2-input OR gate, 0R2, with the following control equa

tions:

ZB = K8 ? B9, Zr —Kr ! Br.

The control triplets for Z, the primary output of the circuit, are ^={xl, 1, 1J

and Zt7?=(00. 7. 2j.

After processing the last entry in the levelized cell list, the controllability

calculation is complete. If any of the cell outputs is a fanout node, its risk is

increased by an amount equal to the product of the fanout and the number of

levels to the furthest PO node (the additional risk is analogous to the "risk

rectangle area" of the PI fanout nodes).

57

Cell control equations stem from the cell logic equations and have simi-

lar algebraic properties. Based on the associativity of pattern selection and

intersection, the generic gates (AND/NAND, OR/NOR) need only a single entry

in the controllability library, regardless of the number of cell inputs. A

method and a program for translating logic into testability equations, LITE

[VanEgmond 82], has been developed.

4.5. 0BSE3^ABI1JTY CALCULATION

The observability calculation in VICTOR consists of the observability ini

tialization and the evaluation of the node observability triplets. Similar to the

controllability calculation, the computation is completed in a single pass

through the circuit, but proceeds in the reverse order of the levelized cell

list. When analyzing the observability of fanout nodes, branches must be

identified and handled as entities separate from the root: therefore, VICTOR

assigns them unique names according to the convention introduced in

Chapter 3. The triplet notation introduced for node controllability is used for

node observability also.

4.5.1. Observability Initialization

Since the observability calculation follows the inverted signal flow, only

the PO node triplets need to be initialized. Primary outputs are uniquely

observable without imposing any checkpoint constraints: hence, their moni

tor pattern is the identity element for intersection, the risk is zero, and size

is 1. In the circuit example of Figure 4.1. the monitor triplet of primary out

put Z is initialized this way: ZTJ/=\-xx, 0.1}.

56

4.5.2. Cell Observability Calculation

Observability and controllability are dual notions and so are the pro

cedures for calculating them. Node monitor triplets are calculated cell by

cell, from the primary outputs to the primary inputs, in reverse order of the

levelized cell list. The rules to derive input monitor triplets from output mon

itor triplets for a cell constitute its monitor equations, which must be

predefined in a cell observability library (see Appendix 2).

The procedure to calculate monitor triplets outlined above is shown for

the circuit example in Figure 4.1. Circuit cells are dealt with in the following

order: 0R2, AND2. INVERTER.

The first cell to be processed. 0R2, has the following monitor equations:

Km = Zm ! Br, ' Bm = Zm\ Kr.

Monitor risk and size follow the definitions given earlier in this chapter. The

monitor triplets for nodes Kand Bare At»=|xO, 0. Ij andBjy=\0x, 0. IJ.

The next cell to be processed. AND2, has fanout node Aas an input. VIC

TOR identifies it, names the branch A-l-K (root-pin-output, see Chapter 3),

and calculates the branch risk as another "risk rectangle area" from the cell

to the root of the fanout node. The risk of A-l-K, the product of fanout and

the number of levels from the cell to the fanout root, 2*(2-0)=4. enters the

monitor calculation of the other cell input, J. The input monitor triplets are

calculated as

A-l-Kn = Km ! /.. Jm = Km ! A-l-K,

resulting in A-1-Xh,=\00, 0. 1) and /»=(10. 4, IJ. Because one of the cell

inputs, A-l-K, is a fanout branch. VICTOR starts evaluating the root monitor

triplet by performing the set-monitor and reset-monitor intersections and

storing the results.

59

A-l-K. • A-1-Km = #z,

A-l-Kr \ A-l-Km =00.

The last cell in the observability pass, the INVERTER, is connected to the

second branch of fanout node A VICTOR names it A-l-J, calculates its risk,

and using the cell monitor equations

A-1-Jm = Jm>

computes the monitor triplet A—1-1/7^=110, 4, lj. Ceil input A-l-J is a fanout

branch, and the set-monitor and reset monitor intersections are calculated

and stored again.

.4-1-J, \A-1-Jm = 10,

A-1-JT ! A-1-Jm = #x.

For the calculation of fanout node observability, all branch monitor tri

plets must be evaluated first, and then the root pattern is set equal to the

branch monitor pattern for which both set-monitor and reset-monitor inter

sections are clash-free. If many such patterns exist, the one with the least

input constraints (most don't cares) is selected: the next tie-breaker is

weight, then order of operation (the root calculation always generates a

unique monitor triplet). The root risk and size are calculated following the

rules defined for pattern selection. In no such pattern exists, then the root

monitor triplet is set to $###...##, 99999, 0J.

In the example, node A-l-J is the second of two branches of node A

therefore, all data necessary for the evaluation of the root monitor triplet has

been computed. For both branch patterns, the set-monitor and reset-

monitor intersections contain a clash: thus, the root monitor triplet is set to

4a=i##. 99999. 0J.

60

After a single pass through the levelized cell list, all observabilityvalues

have been calculated. Monitor equations, like control equations, are derived

from the logic equations of the cell, and for generic gates less entries in the

library are needed: AND/NAND gates share the same observability library

entry, as do OR/NOR and XOR/XNOR gates. Similar to cell control equations,

the observability encoding of complex functional blocks can proceed

automatically, as is done in LITE [Van Egmond 82].

4.6. TEST GENERATION ANDREDUNDANCY IDENTIFICATION

4.6.1. Test Generation

Atest for a fault is a sufficient collection of PI conditions that simultane

ously control and observe the fault. i.e.. provoke the fault from the primary

inputs and propagate the fault to the primary outputs. The simultaneous

requirements translate into simultaneous PI constraints identical to the ones

defined previously for pattern intersection; hence. VICTOR generates tests by

intersecting control and monitor patterns for every the node in the circuit.

Two tests are needed to detect the stuck-at faults on an arbitrary node V:

V/0 test : V, ! Vm, V/ 1 test : Vr ! Vm.

The resulting patterns may or may not include clashes.

Patterns containing no clashes, but only 0. 1. and x, represent valid test

patterns and can be used as such. The detected faults are. by definition,

irredundant. In the circuit shown in Figure 4.1. VICTOR finds eight irredun-

dant faults by generating the following test patterns (stuck-at-0 tests on the

left, stuck-at-1 tests on the right):

10 A-l-J
00 A-l-K

01 00 B
10 J

xl 00 Z

61

Although such a table grows only linearly with circuit size, the resulting

amount of test data causes difficulties in test application [Muehldorf 81]. To

limit this explosion of test data, VICTOR searches two times through the list of

test vectors and achieves fault collapsing and test compaction.

Fault collapsing reduces the number of tests by matching faults

detected by the same test pattern and eliminates multiple occurrences of the

same test pattern. For instance, pattern 00 appears four times in the previ

ous fault list, but just once followed by a four in the list of collapsed test pat

terns shown below:

00 ... 4

10 ... 2

xl ... 1

01 ... 1

Test compaction reduces the number of collapsed tests by merging

different test patterns that are equal but for some don't cares. For example,

patterns xl and 01 are compacted to 01, but patterns 00 and 10 cannot be

compacted, because the resulting pattern, #0, comprises a clash. During test

compaction, a don't care is the "weak" term (the identity element), and a 0-1

compaction leads to a clash; the operation implementing such rules is pat

tern intersection. When applied to the list of collapsed faults, test compaction

generates the tests listed below in decreasing order of the number of faults

detected per test.

00 ... 4 50.0% 50.0%

01 ... 2 25.0% 75.0%

10 ... 2 25.0% 100.0%

62

The percentages give the fault coverage and the cumulative fault coverage

per test vector for the irredundant faults only and not for the entire circuit.

4.6.2. Redundancy Identification

If the intersection of the control and monitor patterns for a fault results

in a pattern that includes at least one clash, the impossible condition aborts

the attempt to generate a test for the givenfault. Every clash represents a PI

conflict due to convergent fanout and indicates a potential redundancy. VIC

TOR identifies three types of redundancies (corresponding to the

classification of redundancy introduced in Chapter 3):

(1) uncontrollable redundancy (0 or 1): a clash in the control patterns, no

clash in the monitor pattern;

(2) unobservable redundancy: a clash in the monitor pattern, no clash in the

control patterns;

(3) untestable-controUable-observable redundancy: no clash in the control or

monitor patterns, but a clash in the test pattern.

In the example of Figure 4.1, the two node patterns including a clash,

A;=#x and i4m=#0, identify the 1-uncontrollable node Kand the unobservable

node A. which means that faults K/0, A/0, and A/1 are redundant. VICTOR

finds six potentially redundant faults in the circuit. The six faults and their

aborted test patterns are listed below (impossible test patterns for stuck-at-0

faults on the left, for stuck-at-1 faults on the right):

63

#0 #0 A
#0 A-l-J

#0 A-l-K
#0 J
#0 K

Exhaustive circuit testing (patterns 00, 01, 10, 11) proves that the three addi

tional faults. A-l-J/1, A-l-K/0, and J/0, are redundant and that no other

redundancies exist; for the analyzed circuit, the redundancy estimate of VIC

TOR is correct.

In general, many potential redundancies identified by VICTOR are false

redundancies. The linear, heuristic algorithm must err at times when trying

to solve the NP-complete problem of fault detection, no matter how good the

heuristics. However, the set of potential redundancies includes all true

redundancies, since VICTOR detects all fanout convergences. The magnitude

of the redundancy identification (RI) error is crucial, because the larger the

set of false redundancies, the less information on true redundancies VICTOR

gives.

The structure of the potential redundancies in VICTOR is illustrated by

the onion model of Figure 4.2: a kernel of correct data, the true redundan

cies, surrounded by layers and layers of incorrect data, the false redundan

cies. When the onion grows to encompass a major portion of the fault set, and

the kernel of true redundancies stays constant, the RI result loses informa

tion content. If the onion includes all circuit faults, the information content

of the RI result is zero. VICTOR predicts the triviality that every node in the

circuit could be redundant.

The task of identifying the redundant faults in a circuit can be viewed as

a two-step process: (1) separate potentially redundant faults from the total

fault set. and (2) eliminate false redundancies from the set of potential

64

Figure 4.2 Onion model for potentially
redundant faults

redundancies. The first step is performed by VICTOR during test generation:

find a clash-free test pattern for a fault, thus prove the fault to be irredunant.

In the second step, the set of potential redundancies is searched for irredun

dant faults, the false redundancies. The compacted test patterns generated

previously are simulated and many potentially redundant faults are detected.

In the onion model, the procedure is analogous to peeling off layer after layer

of false redundancies, thus increasing the relative size of the kernel com

pared to the bulk of the onion. The efficiency of this process grows with cir

cuit complexity, since a test in a large circuit can detect hundreds and some

times thousands of faults [Bottorff 80]. The process residue is composed of

hard-to-test irredundant faults and. if the circuit is redundant, a kernel of

redundant faults, both of which require much effort during test generation.

If in a particular circuit VICTOR identifies half the circuit faults as poten

tially redundant, the RI result provides little information, since half the faults

in the circuit must be investigated further. Without any previous information,

65

all circuit nodes must be investigated. In rare cases, such as the example

analyzed in this chapter, the potential redundancies identified by VICTOR con

tains no false redundancies.

4.7. ALGORITHM COMPLEXITY

VICTOR constitutes an approach to global redundancy identification and

test generation that manages to keep algorithm complexity linear through

the extensive use of heuristics.

Except for a few search procedures, the operations in the four steps of

the algorithm relate linearly to circuit fault and primary input count. Once

the circuit has been read in and the node structure established (an nlogn

process present in any CAD algorithm); the ensuing circuit levelizing is linear.

Then, both controllability and observability calculation are complete after a

single pass through the levelized cell list, and the amount of cell computation

scales linearly with the number of node testability triplets per cell. Test gen

eration and redundancy identification involve one pass through the entire

fault list and one pattern operation per fault. Finally, fault collapsing and

test compaction for irredundant faults require an nlogn search each.

Data storage in VICTOR is a linear function of circuit fault and primary

input count. Every node is assigned a set, reset, and monitor triplet, and two

test vectors (for the two stuck faults). Therefore, the amount of storage

required per node is 2*3=6 integers and 3+2=5 patterns. The patterns for a

given circuit depend only on the number of "logical primary inputs", i.e., the

chip primary input count and the number of points in the scan path used as

test inputs. The former is constrained by packaging constraints, and the

latter is constrained by memory limitations during test application [Muehldorf

66

81]. Hence, the length of a pattern is a weak function of circuit complexity

and can be considered constant for VLSI. Finally, intermediate calculations

employ a fixed number of variables.

A comparison can be drawn between the Boolean Difference algorithm,

the D-algorithm [Breuer 76], and the edgorithm in VICTOR. The Boolean

Difference method generates all tests for every fault in the circuit. No

heuristics are involved, and the algorithm, is complete, but of only theoretical

interest because of vast amounts of computations and of data. The Boolean

Difference algorithm identifies all redundeint faults.

If a test exists, the D-algorithm generates a test for every fault in the cir

cuit. The D-algorithm is complete and its efficiency relies on heuristics. It

uses considerably less computation and storage space than the Boolean

Difference, but program implementation for automatic test pattern genera

tion (ATG) is unwieldy. The D-algorithm identifies all redundancies, but after

an exhaustive search that requires many Iterations and backtracks.

Employing only four linear passes through the circuit and linear storage

space, VICTOR generates a test for some of the faults in the circuit. If a

redundancy exists, VICTOR identifies it. but VICTOR also flags many hard-to-

test irredundant faults as potential redundancies. The extensive use of the

risk heuristic drastically reduces algorithm complexity and biases the results

such that VICTOR always errs on the conservative side. Irredundant faults are

considered redundant, risks predictions are high, and size predictions are

low.

CHAPTER 5

VICTOR PROGRAM IMPLEMENTATION

5.1. INTRODUCTION

The global method for redundancy identification and test generation

introduced in the previous chapter has been implemented in a program. This

chapter presents the details of the VICTOR program implementation: the pro

gram structure, the files attached during program execution, and the data

base underlying the testability operations. The last section analyzes program

portability and language specifics.

5.2. PROGRAM STRUCTURE

The program consists of four modules: the input processor INPROC. the

controllability calculation module CONTRL. the observability calculation

module OBSERV, and the result processor REPROC. The main routine in each

of the four modules contains information on the common blocks and files

used in the module. Program VICTOR consists of about 4300 lines of ANSI

FORTRAN 77 grouped into 72 routines as shown in Table 5.1 (the entire pro

gram source listing is givenin Appendix 6).

5.2.1. Module INPROC

The interactive input processor INPROC allows the user to specify input

and output file, it checks the input syntax, levelizes the circuit, and copies

the analysis data to a set of files. The user specifies interactively the input

67

Program VICTOR modules routines lines

main program & setup routine
input processor
controllability calculation
observability calculation
result processor

2

21
26

12

11

100

1400

1300

700
800

Program VICTOR (total) 72 4300

68

Table 5.1 Routine and line count in program VICTOR.

file containing the circuit description and the output file to which the .global

results of program VICTOR are copied. Node name length, library cell name,

and cell input/output node count are verified and error messages, if any, are

displayed on the terminal. The names of the currently available cells i:i pro

gram VICTOR are defined in subroutine SETUP as shown in Figure 5.1. While

checking the input syntax, INPROC sets up the node list and encodes circuit

topology into a machine-readable form. Nodes are verified for correct con

nectivity, and floating nodes and wired logic (tied cell outputs) are detected

and reported to the user. Module INPROC produces a levelized cell list and

detects the presence of (illegal) feedback loops. The user is warned again,

and the boundary of the circuit portion containing feedback loops is deter

mined. Finally. INPROC calls a debugging subroutine NETBUG, to write out all

circuit topology data to file VIC.BUG (the data serves only in program debug

ging and maintenance).

5.2.2. Modules CONTRL and OBSERV

The controllability and observability calculation modules, CONTRL and

OBSERV, follow closely the algorithm described in the previous chapter.

Since the program has been implemented at an early stage in the develop

ment of VICTOR, some terms used in the program differ from the ones

c library call norms and cell output and input node count

data
+ libr(l)
+ libr(3)
+ libr (5)
+ libr(7)

/'and2
/'and4

/'and6
/'andd

out=l

out-1

out-1
out=l

in=2'/,
in=4'/,
in=6'/t
iw=0'/,

+ libr(9) /'aoi21 out-1 itv*3'/,
+ libr(U)/'aoi3J out=l in=4'/,
+ libr(13)/'inv out=l in=l'/,

+ libr(15)/'nand2 out=l in=2'/,
+ libr(17)/'nand4 out=l in=4'/.
+ Hbr(J9)/'nand6 out-1 in=6'/,
+ Hbr(21)/'nandB out=l in=8'/,

data
+ libr (23) /'nor2
+ libr(25)/'nor4
+ libr (27) /'nor6
+ libr (29) /'nor8

out=l in=2'/,
out-1 in=4'/,
out-1 in=6V,
out-1 in=8'/,

+ libr(31)/'oai21 out^l tn=SV,
+ Hbr(33)/'oai31 out-1 in=4'/.

+ libr(35)/'or2 oui-1 in^2'/.
+ Hbr(37)/'or4 out=l in=4'/,
+ libr (39) /'or6 out-1 in=6'/,
+ Ubr(41)/'or8 out-1 in=8'/,

+ libr(43)/'trag out-1 im=2'/,
+ libr(45)/"xor2 out=l in=2'/

libr(2) /'and3 ou«=/ in=3'/
libr(4) /'and5 out-1 in=5'/
libr(6) /'and7 out=l in=7'/
libr(8) /'and9 out=l iw=9'/

Ubr(10)/'aoi22 out-1 in=4'/
libr(12)/'buf out=l in^l '/
libr(14)/tmtx2 out=l in=3/

Ubr(16)/'nand3 out=l in=3'/
Ubr(l8)/'nand5 out=l in=5'/
Hbr(20)/'nand7 out=l in-7/
libr(22)/'nand9 out=l in=9'/

libr(24)/'nor3 out-1 in=3'/
libr(26)/'nor5 out=l in=5'/
libr(28)/'nor7 out=l in=7'/
libr(30)/'nor9 out=l in=9'/

Ubr(32)/'oai22 out=l in=4'/
Ubr(34)/'oai33 out=l in=6'/

Hbr(36)/'or3 out-1 in=3'/
tibr(38)/'or5 out=l iw=5'/
Ubr(40)/'or7 out=l in=7'/
Ubr(42)/or9 out-1 in=9'/

libr(44)/'xnor2 out-1 in=2'/

Figure 5.1 Library cell name and cell output/input
connection definition in subroutine SETUP.

69

introduced in Chapter 4. The following equivalences hold (terms used in the

FORTRAN code on the left, terms defined and used in Chapter 4 on the right):

label <=> pattern
weight <=> risk
merge <=> intersect

Both CONTRL and OBSERV rely on the implementation of the testability equa

tions of each library ceil; two dedicated subroutines encode the controllabil

ity and the observability cell equations such that general operations are per

formed at compile time and just circuit specific calculations are executed at

70

run time.

For example, the controllability routine in module CONTRL for an 0R-

AND-INVERT cell is presented in Figure 5.2. After term initialization, the rou

tine employs only two operations. SELECT and INTERSECT, to calculate the

cell output controllability. Both operations are associative; hence, a two

operand composition rule is enough to evaluate an arbitrary number of

operands. Since the basic logic functions (AND, NAND, OR, and NOR) map

directly into a single SELECT or INTERSECT operation, one generic routine for

each handles any number of gate inputs. Cells of the same type but different

number of inputs, e.g., N0R4, N0R5, N0R8, have been given different names

merely to aid the syntax checker in verifying the correctness of the cell

input/output connections.

Of special interest is the encoding of INTERSECT, the sole operation in

VICTOR that creates new patterns. Consistent with the general algorithmic

approach that the symbolic data manipulation described in Chapter 4 allows,

the routine implementing the two-operand INTERSECT (see Figure 5.3) can be

changed easily to implement a different operation. The composition table, a

4x4 array of 16 entries, is encoded in four CHARACTER DATA statements. If

the algebraic structure in VICTOR is expanded from 4 variables to 16, the only

required change in the program is to encode the corresponding 256 entries in

the new 16x16 table.

In an effort closely related to VICTOR the transformation from standard

logic equations into control and monitor equations has been automated [Van

Egmond 82]. With the aid of program LITE, the entire cell library in program

VICTOR can be customized in a few hours.

71

subroutine coai33

c or-and'invert gate: out=z, in^al,a2, ,a3,bl,b2,b3 ;
c z=((alHi2+a3). (bl+b2+b3)) '

parameter (lbram=100, ndrrax=10000, mxxpi-120, kio=200)
comnon /nodind/ list (nomax) ,ndjout (nomax) .ndlev (nomax)
comnon /nodcol/ conO(nomax) ,conl(nomax),obs (nomax), lab(kio)
comnon /nodco2/ IvttO(nomax), IsizO(nomax), lutl (nomax), Isizl(nomax),

+ Irtfto(nomax), Isizo(nomax),kouts(kio),kins(kio),nout ,nin,
+ Ivtt (kio), Isiz(kio), lev (kio)

character Inazpi, conO, conl, obs, lab

nodout=kouts(1)

c for cO (compute two intermediate labels)
call interc('cl',kins(l),l, 'oai22')
call interc('cl',kins(2),2, 'oai22')
call interc('cl',kins(3),3, 'oai22')

call select(l,3,lab(10),lwt(10),lsiz(10))

call interc('cl',kins(4),4, 'oai22')
call interc('cl \kins(5),5, 'oai22')
call intercf 'cl ',kins(6),6, 'oai22')

call select (4, 6, lab(U),lwt (11), Isiz(ll))

c compute cO
call merge(10,11 ,conO(nodout), IwtO(nodout), IsizO(nodout))

c for cl: compute tuo intermediate labels
call interc('cO',kins(l),l. 'oai22')
call interc('cO',kins(2),2. 'oai22')
call interc('c0',kins(3),3, 'oai22')

call merge(l,3.lab(10),lvA(10),lsiz(10))

call interc('c0',kins(4),4, 'oai22')
call intercf 'c0',kins(5),5, 'oai22')
call interc('cO',kins(6),6, 'oai22')

call merge(4,6,lab(ll).lwt(ll),lsiz(ll))

c compute cl (assumt intermediate labels have level-1)
lev(10)-l
lev(ll)-l

call select (10, 11, conl (nodout), IvA 1(nodout), Isizl (nodout))

return

end

Figure 5.2 Controllability routine for cell 0AI33.

subroutine mmrge2(lbl,wl,sl, Ib2,w2,s2, Ibmerg,vmerg,smerg)

c merge the two incoming labels Ibl, lb2 (weight wl, w2, size si, s2)
c symbol by symbol and return merged label, weight, and size.

c symbol composition table:
c | 0 1 x c
c —

c 0 | 0 c 0 c
c 1 \ c 1 1 c
c x \ 0 1 x c
c c I c c c c

parameter (maxpi-120)
comnon /actsix/ npiel .npoel,ndel ,ndlog.ncell ,ninput .nlevel

character trnxpi, Ibl, lb2, Ibmerg
integer wl, v£, vmerg, si, s2, smerg
logical clash

* 4-valued logic is implemented in the following data statements
* modify ONLY symbop and symlis for new logic system

character *4 symbop(4), symlis
data symbop(l) /'OcOc '/,

+ symbop(2) /'die'/,
+ symbop (3) /'Olxc ' /,
+ symbop (4) /'ccccV

data symlis /'Olxc'/

merge the two labels character by character & flag occurring clashes,
clash - .false,
do 10 l=l,npiel

irow - index (symlis,Ibl(I:I))
jcol = index (symlis, lb2(l:I))
lbmerg(l:l) = symbop(irow) (j col: jcol)
if (lbmerg(l:l) .eg. 'c ') clash = .true.

10 continue

compute the weight and size of new label.
if (clash) then

vmerg - 99999
smerg = 0

else
vmerg - wl+w2
smerg - sl*s2

end if

return
end

Figure 5.3 Two operand intersection subroutine MERGE2.

72

73

5.2.3. Module KEPROC

The result processor. REPROC, has no special implementation features.

It uses the same INTERSECT operation for test pattern generation and test

compaction, performs several shell sorts for alphabetical and numerical ord

ering of the fault data, and writes the output to several files.

5.3. FILE STRUCTURE

The user specified input and output files containing the circuit descrip

tion and the final results, and another twenty scratch files are attached to

program VICTOR during execution. Both names and logical unit (device)

numbers assigned to the files are de!med in subroutine SETUP, as shown in

Figure 5.4. Files are used during input processing to log syntax errors and

c .

c file structure: file names and logical unit assignment
c -.

data tmpfil /
+ 'vic.io', 'vic.syn', 'vic.flo ', 'vic.fb', 'vic.net',
+ 'vie.red', 'vic.vec', 'vic8', 'vic9', 'viclO',
+ 'vicll', 'vicl2'. 'vic!3', 'vicl4', 'vicl5',
+ 'vicl6\ 'vic!7', 'vicl8', 'vic!9', 'vic20'/

c tmpfil(1) (vic.io): user-specified input and output file names
c tmpfil(2) (vic.syn): circuit description in standard form
c tmpfil(3) (vic.flo): floating nodes and wired logic
c tmpfil(4) (vic.fb): boundary of feedback loop area
c tmpfil (5) (vic.net): machine-readable circuit net list
c tmpfil(6) (vie.red): potentially redundant faults and aborted
c test vectors
c tmpfil(7) (ic.vec): test vectors for guaranteed irredundant faults
c tmpfil (8)-tmpfil (20) (vic8-vic20): spare files for future extensions

c device number assignments for vax/unix (machine dependent):
c 1-4 - input files; 5 - standard input (from terminal)
c 7-10 - output files; 6 = standard output (to terminal)

data lu /1,2,3,4,5,6,7,8, 9,10/

Figure 5.4 File structure definition in subroutine SETUP.

74

during result processing to store the output; examples are given in the next

chapter.

5.3.1. file Name and Circuit Description Rles

VIC.IO The file contains the user-specified input and output file names, one

per line.

VIC.SYN The file contains the circuit description in standard form obtained

from the initial circuit description by deleting comment lines, blank

lines, leading blanks, and the characters right of the line continua

tion sign (plus), by substituting a single blank for all separators

(tab, blank, comma, colon, semicolon, parentheses) and by preced

ing each line with a current line number.

VIC.NET The file contains the circuit node and topology information in the

machine readable form used by modules CONTRL and OBSERV and

serves only for debugging.

5.3.2. Connection Error Files

VIC.FLO The file contains floating nodes, incorrectly connected primary input

and output nodes, tied cell output nodes (wired logic), and warning

messages of possible redundancy for wired logic at the output of

identical cells.

VIC.FB The file contains the boundary of the feedback loop regioa i.e.. the

highest level cells that feed cells with infinite level.

75

5.3.3. Fault Information Files

VIC.RED The file contains an alphabetic list of all potentially redundant faults

with the corresponding aborted test patterns (patterns contain at

least one clash).

V1C.VEC The file contains information on the faults guaranteed to be irredun

dant: an alphabetic list of faults with their corresponding test pat

terns and the global fault coverage, test patterns for the collapsed

faults and compacted test patterns listed in decreasing order of the

number of detected faults per vector and the per cent test data

reduction, and a histogram of the fault coverage and the cumulative

fault coverage per vector.

output This user-specified output file contains the global result:?: circuit

data and fault data synopses, alphabetic list of all faults (for fanout

nodes, the root precedes the branches) and their corresponding tri

plets of pattern, risk, and size for each of the set, reset, and moni

tor operations.

5.4. DATA STRUCTURE

The data base in program VICTOR is composed of eleven common blocks

grouped in several functional categories. The common blocks used in each of

the four program modules are listed in the main calling routine of the

module. To allow for future expansion, the dimensions of the arrays and the

lengths of some key character variables are adjustable, as shown in Figure

5.5. Overflow protection is enforced throughout the program: an error mes

sage specifying the violated dimension or length of a variable is displayed,

and execution is terminated.

c_. — —

c define the variable array sixes, all parameter statements in
c the entire program must be changed if these sixes are changed.
c..—.—.....

c Ibnvn: number of predefined library cells
c nomax: maximum number of nodes in the circuit
c maxpi: maximum number of primary input nodes in the circuit
c kio: maximum number of input /output nodes per cell

parameter (lbnum=100. ndmax-10000, maxpi-^120, kio-200)

c !!! do not change lengths of the following character variables J!!
c unless you are willing to update all occurrences in the program.

character+naxpi, conO, conl, obs, lab, veclis
character*40 tmpfil, inpf, outf, libr*30, lognod*72

Figure 5.5 Adjustable variable sizes in subroutine SETUP.

76

A description of the various common blocks extracted directly from sub

routine SETUP follows.

5.4.1. File Name Data

comnon /lulist/ lu(10)
lu(10): device number assignment

comnon Atkfile/ tmpfil (20)
tmpfil (20): temporary work files

comnon /iofile/ inpf, outf
inpf, outf: user-specified input and output file names

5.4.2. Circuit Node Data

comnon /nodnam/ libr(lbnTwn), lognod(nomax)
c libr(lbmtn): library cell names and output /input node count
c lognod(namax): names of circuit nodes and composite fanout
c branch names

comnon /nodind/ list (nomax) ,ndfout (nomax) ,ndlev(nomax)
c list (nomax): scratch array for general storage:
c node fanin in module INPROC
c fanout node root index in module OBSERV
c sorted array pointers in module REPROC
c ndfout (nomax): node fanout
c ndlev(nomax): node level

77

5.4.3. Circuit Topology Data

comnon /ckttop/ inpckt (2*nomax), levord(nomax/2)
c inpckt (2*nomax): machine-readable circuit description as a
c collection of standard cell entries of the form:
c 0
c cell index (libr array index of cell)
c negative cell output node index
c

c negative cell output node index
c positive cell input node index
c

c positive cell input node index
c uhere cell index - libr array index of cell name
c and node index - lognod array index of node name

c levord(nomax/2): levelized cell list: list of inpckt indexes
c corresponding to cells in ascending order
c of their level

comnon /actsiz/ npiel ,npoel ,ndel .ndlog,ncell .ninput ,nlevel
c npiel,npoel: nxwrber of primary input and primary output nodes
c ndel,ndlog: number of (electrical) nodes and fault locations
c (logical nodes) in the circuit
c nee 11: number of circuit cells
c ninput: element count in array inpckt

nlevel: number of circuit levelsc

5.4.4. Node Controllability/Observability Data

comnon /nodcol/ conO(ndmax), conl (nomax) ,obs (nomax), lab(kio)
c conO(nomax): node 0-control lability label (reset pattern)
c conl (nomax): node 1-controllability label (set pattern)
c obs(nomax): node observability label (monitor pattern)
c lab (kio): scratchpad array for label calculations

comnon /nodco2/ lwtO(ndmxx) ,lsizO(ndmax), Iwt1(nomax), Isizl (nomax),
+ Iwto(nomax), Isizo (nomax) .kouts (kio), kins (kio) ,nout ,nin,
+ lwt(kio),lsiz(kio),lev(kio)

c Iwt0(nomax),lsizO(nomax): reset (0) weight and size
c Iwtl(nomax), Isizl(nomax): set (1) weight and size
c Iwto (nomax), Isizo (nomax): monitor weight and size
c kouts (kio), kins (kio): cell output and input node indexes
c nout,nin: cell output and input node counts
c lwt(kio),lsiz(kio),lev(kio): scratch weight, size, and level arrays
c for cell testability calculations

5.4.5. Test Data

comnon /tesvec/ veclis(nomax)
c veclis(nomax): sorted test vectors in decreasing order of
c the detected faults per vector

78

cannon /detest/nirred,nred,nfcol
c nirred,nred,nfcol: number of guaranteed irredundant and potential ly
c redundant faults
c nfcoI: irredundant fault count after fault collapsing

5.5. PROGRAM PORTABILITY

Program portability is the property of a program to compile and execute

on a variety of computers. Ideally, no change shoud be necessary in the origi

nal program code, but if only minor changes are required, the program is still

considered to be portable. However, the necessary changes should be small,

easy to identify, and localized in a few subroutines. The choice of the pro

gramming language and the way it is used are the two determining factors in

the portability of a program.

The goal of the program implementation for VICTOR has been source

code portability, and to attain it, speed and memory performance of the pro

gram have been sacrificed. The current VICTOR program implementation is

given as a proof of method and should be used as a prototype together with

the benchmark examples given in Chapter 6. The input/output processing

routines must be extended and augmented, and some core subroutines

implementng the testability calculations must be rewritten using an efficient

programming language and dynamic memory management to achieve the

performance expected from a software product.

5.5.1. Choice of FORTRAN 77

The selection of a programming language for a given application follows a

set of prioritized criteria. Newton [Newton 81] compares several programming

languages while searching for a "blue collar language for CAD" and lists the

employed decision factors: ease of algorithms translation, portability, execu-

79

tion efficiency, and maintenance. His candidates are PASCAL, C, and FOR

TRAN preprocessors such as RATFOR.

For VICTOR, the major criterion has been code portability, standardiza

tion and availability of the the programming language. Four languages, LISP.

PASCAL. C, and FORTRAN 77. have been investigated from this angle. LISP is

nonstandard and nonportable, PASCAL has many different dialects, and C

lacks a standard document defining the language. FORTRAN 77 has been

chosen over C (in spite of the latter's superior control structures and overall

qualities), because FORTRAN 77 is available on practically any computer, and

an ANSI document exists with the specific goal of promoting "portability of

FORTRAN programs for use on a variety of data processing systems" [ANSI 78];

FORTRAN 77 is actually ANSI X3.9-1978 FORTRAN.

5.5.2. Program VICTOR language

Language use in program VICTOR ows much to the experience gained by

implementing the SCOAP algorithm [Goldstein 79] in FORTRAN 77 for use on a

variety of systems within Bell Laboratories (see Appendix 1). The lessons

learned from SCOAP make up the implementation philosophy employed for

VICTOR: abide by the rules, push for legal performance, and document every

thing.

The code follows the FORTRAN ANSI reference (any possible inconsistency

is unintentional), even if the writing of such code has required considerable

effort. For example, only two structured control statements, block IF and

computed GO TO, are used in the entire program. Machine-dependent code

(file names, device number allocation, variable array dimensions, character

variable length) is localized in a BLOCK DATA subroutine SETUP (Appendix 5),

60

which also describes the entire program data base. As a rule, the code does

not exploit any machine idiosyncrasy. For example, the routine that converts

integers represented as characters to their numeric value, subroutine ATOI

(see Appendix 6), consists solely of FORTRAN 77 statements.

The forte of FORTRAN 77, character variables, constitutes the core of

many operations in the VICTOR program implementation. During input pro

cessing, line parsing uses the character INDEX function to check for input

syntax errors and to set up the circuit node list. INDEX is used again as the

basic operation in the evaluation of pattern intersection, as shown in Figure

5.3. All patterns —set, reset, monitor, and test —are character variables;

therefore, bit packing occurs at compile time and does not depend on

machine word length. The inherent B-bit ASCII encoding allows for ample (up

to 256logic values) future expansion of the symbolic algebra used in VICTOR

The VICTOR program implementation includes the necessary documenta

tion on its operation in the source code. About one out of every five lines in

the program is a comment line explaining the next few lines of code, and

every routine starts with a description of the operations performed by the

routine. Detailed information about the data structure, file structure, and

library cell names is given in subroutine SETUP. The information in the code

should suffice for program maintenance and extension.

CHAPTER 6

VICTOR PERFORMANCE EVALUATION

6.1. INTRODUCTION

The performance of VICTOR, the approach to global redundancy

identification and test generation, is evaluated in this chapter. First, the

correctness of the approach.! is shown by analyzing several small pathological

circuits. Then, program performance is measured for the 74181 4-bit ALU

and for an industrial example. Finally, program VICTOR is compared to testa

bility analysis program SCO^J3.

6.2. METHOD CORRECTNESS

The benchmarks chosen to verify method correctness in VICTOR are the

the circuits examples illustrating the three different redundancy types.

6.2.1. Uncontrollable and Unobservable Redundancy

The first circuit (Figure 6.1) has been analyzed in Chapter 4. VICTOR gen

erates a list of potential redundancies that include not only the 1-

uncontrollable node K, but also faults A-l-J/1. A-l-K/0, J/0, A/0, and A/1. As

shown before, the redundancy estimate is exact: all potential redundancies

are true redundancies. It is important that VICTOR identify the fanout root

faults, A/0 and A/l, as redundant, since the circuit falls under the conditions

of Armstrong's analysis (simple fanout convergence with unequal inversion

parity, see Chapter 3) and fault propagation from the root of the fanout node

81

llgurefi.l Redundant circuit containing
1-uncontroUable fault K/0.

B2

stops at node K, the convergence point. In the second circuit (Figure 6.2),

VICTOR identifies faults A/0. A/1. B-2-J/0. and J/0 as potentially redundant,

and the faults are actually redundant; hence, the result is 100% correct.

The analysis of the simple examples described above shows that all signal

dependencies in the circuit must be taken into acount. To that end. the

SCOAP testability analysis algorithm [Goldstein 79 &80] is applied to the circuit

in Figure 6.1. SCOAP calculates a node O-controllability. CCO. and a node 1-

A
B

Figure 6.2 Redundant circuit containing
unobservable faults A/0 and A/1.

83

controllability, CC1. as the number of constrained nodes on the path from the

primary inputs to the node, such that the node is reset or set. For every cell

traversed by the path, controllability is incremented by one, and the path is

chosen such that the lowest controllability value is propagated. A simple cal

culation yields the following controllabilities:

ceo CC1 Node

1 1 A

1 1 B

2 2 J

1 3 K

2 2 Z

The values for node J are obvious, and for node K the controllabilities are cal

culated below:

CC Q(K) = min (CC 0(A). CC Q(J)) = win (1.2) = 1

CC 1(K) = CC 1(A) + CC 1(J) = 1+2 = 3

SCOAP predicts three node constraints for K=l. but fails to recognize that

condition A=l and J=l is impossible, since node J depends on node A This

error is not just a slight inaccuracy, but a gross mistake, since a redundant

fault is predicted to be irredundant. Many such mistakes are present during

the SCAOP evaluation, because cell inputs are assumed independent of each

other. A similar SCOAP analysis of the second example incorrectly predicts

all four redundant faults to be testable. In general, any testability analysis

program that does not take into account signal dependencies does not gen

erate reliable fault data.

6.2.2. Schneider's Example

Schneider's example (Figure 6.3) contains two redundancies, the

untestable-controllable-observable faults B-l-K/0 and C-2-K/0. The circuit

Figure 6.3 Redundant circuit containing
untestable-controllable-observable
faults B-l-K/0 and C-2-K/1.

description serving as input for program VICTOR is:

input abed
output x y z
0

nor2 i, c a
nor2 k, b c
nor2 j, d b
nor2 x, b i
nor2 p, a k
nor2 q, k d
nor2 z, j c
nor4 y, x p q z

The program puts out a synopsis of circuit and fault data.

FAULT DATA

52

CIRCUIT DATA

total single-stuck faults primary inputs • 4

faults on fanout branches 28 primary outputs • 3

(54% of total) circuit nodes 12

potentially redundant faults. 7 circuit cell count • 8

(13X of total) circuit level count 3

84

85

and then prints out an alphabetically ordered list of fault locations with their

set, reset, and monitor triplets.

LEGEND:

> SET, RESET, UONITOR: node testability triplets
> 123..., R, S: pattern, risk, and size of a triplet
> 0, 1, x (don't care), # (clash): PI values
> monitor pattern containing only clashes indicate

one of the following:
* floating nodes and their predecessors

(check floating node file vic.flo)
* unobservable fanout roots and predecessors
* clashes on all primary inputs

> order of primary inputs in a pattern:
1. a

2. b

3. c
4. d

SET RESET
t

MONITOR

1234 R S 1234 R S 1234 R S NODE

lxxx 6 1 Oxxx 6 1' xlll 6 3 a

Ixxx 6 1 Oxxx 6 1 xlll 6 1 a-l-p
lxxx 6 1 Oxxx 6 1 xOOx 9 2 a-2-i

xlxx 9 1 xOxx 9 1 lxxx 0 4 b

xlxx 9 1 xOxx 9 1 U§0 99999 0 b-l-k

xlxx 9 1 xOxx 9 1 lxxx 0 2 b-l-x

xlxx 9 1 xOxx 9 1 xxOO 8 2 b-2-f
XX Ix 9 1 xxOx 9 1 xxxl 0 4 c

XX Ix 9 1 xxOx 9 1 OOxx 8 2 c-l-i

XX lx 9 1 xxOx 9 1 1§10 99999 0 c-2-k

XX lx 9 1 xxOx 9 1 xxxl 0 2 c-2-z

XXX1 6 1 xxx0 6 1 lllx 6 3 d

XXX1 6 1 xxxO 6 1 xOOx 9 2 d-l-j
XXX1 6 1 xxxO 6 1 lllx 6 1 d-2-q
OxOx 15 1 lxxx 6 2 xOxx 6 2 i

xOxO 15 1 xxxl 6 2 xxOx 6 2 J
xOOx 22 1 xlxx 13 2 1110 8 2 k

xOOx 22 1 xlxx 13 2 1110 8 1 k-l-q
xOOx 22 1 xlxx 13 2 0111 8 1 k-2-p
Olxx 19 2 lxxx 6 2 xlll 4 1 V

xlxO 19 2 xxxl 6 2 lllx 4 1 9.

lOxx 17 2 xlxx 11 2 xxxx 0 2 X

lOxx 17 2 xlxx 11 2 lxll 2 1 x-l-y
1111 34 16 lOxx 17 8 xxxx 0 1 V
xxOl 17 2 xx lx 11 2 xxxx 0 2 z

:01 17 -lx 11 llxl x-4-y

86

Before the analysis of potential redundancies, the risk and size testabil

ity measures are investigated. For instance, setting node K imposes more

checkpoint constraints than setting node I or J, and the set risk values indi

cate that. The risk measure does not increase monotonically with level, since

the risk rectangle area may shrink when approaching the primary outputs.

For example, the set risk of Q exceeds that of node X, a primary output node.

A simple inspection of the circuit reveals that primary output node Y can be

set in more ways than primary output node X or Y; the node set sizes reflect

tois discrepancy.

All node patterns are clash-free, except for B -l~Kn and C -Z-Kn . The

f jll potential redundancy estimate of VICTOR is:

POTENTIALLY REDUNDANT FAULTS

LEGEND:
> 0, 1, x (don't care), * (clash) - PI values
> clash for a PI indicates conflicting 0 and 1 requirements

due to convergence, hence potential redundancy
> vectors containing only clashes indicate one of the following

0 floating nodes and their predecessors
(check floating node file vic.flo)

* unobservable fanout roots and their predecessors
* clashes on all primary inputs

> order of primary inputs in a test vector:
1. a

2. b
3. c

4. d
> left colvmn: test vectors for s tuck -at- 0 faults
> middle column: test vectors for stuck-at-1 faults
> right column; name of stuck fault locations

1234 1234 FAULT LOCATION

11*0 1**0 b- 1-k

1*10 1**0 c- 2-k

1**0 k

WO k- 1-q

0**1 k- 2-p

SIMIARY: 52 possible faults
7 faults are potentially redundant (13%)

The VICTOR result contains five false redundancies, which are dealt with later.

87

Program VICTOR also generates test vectors for some of the redundant faults.

TEST VECTORS FOR IRREDUNDANT FAULTS

LEGEND:
> 0, 1, x (don't care) - primary input values
> order of primary inputs in a test vector:

1. a

2. b
3. c
4 d

> left column:
> middle column.
> right colwn;

test vectors for stuck-at-0 faults
test vectors for stuck-at-1 faults
name of stuck fault locations

1234 1234 FAULT LOCATION

a

a-l-p
a-2-i
b
b-l-x

b-2-j
c

c-l-i
c-2-z

d
d-l-j
d-2-q
i

j
k

k-l-q
k-2-p
P

V
x

x-l-y

y
z

x-4-y

1111 0111
1111 0111

lOOx OOOx
llxx lOxx
11XX lOxx
xlOO xOOO

xxll xxOl
OOlx OOOx

xxll xxOl

1111 1110
xOOl xOOO

1111 1110
OOOx lOxx
xOOO xxOl

1110
1110
0111

0111 1111

1110 1111
lOxx xlxx

1011 1111

1111 lOxx
xxOl XX lx

1101 mi

SUfBiARY: 52 post
45 faults are certainly irredundant (87%)

These test patterns are collapsed, and a first test data reduction is achieved.

TEST VECTORS FOR COLLAPSED IRREDUNDANT FAULTS

SIMIARY: 17 test vectors for 45 irredundant faults
(62% reduction)

> left column: test vectors after fault collapsing
> right column: nxwnber of detected faults per vector

nil ... 9
lOxx ... 5

1110 ... 5

0111
9X01
OOOx
xOOO
xxll

llxx
xlOO
xlxx

lOOx
xxlx

1011
1101
OOlx
xOOl

After test compaction, only nine test vectors remain.

COiPACTED TEST VECTORS FOR IRREDUNDANT FAULTS

SVUiARY: 9 test vectors for 45 irredundant faults
(80% reduction)

> leftmost column: test vectors after test compaction
> center left colvmn: mmter of detected faults per vector
> center right column: fault coverage per test vector
> rightmost column: cumulative fault coverage per test vector

1. 1111
2. 1001

3. 0000
4. 1110
5. 0111

6. 1011
7. xlOO
8. OOlx
9. 1101

15 33.3% 33.3%

11 24.4% 57.8%

6 13.3% 71.1%

5 11.1% 82.2%
4 8.9% 91.1%

1 2.2% 93.3%

1 2.2% 95.6%
1 2.2% 97.8%

1 2.2% 100.0%

88

The above list gives the number of faults that the test vector is guaranteed to

detect, although it may detect some other faults as well, and represents the

final test generation result in the VICTOR program.

After having processed the irredundant faults, the investigation of the

five potential redundancies identified by VICTOR is carried further. The com

pacted test vectors, listed previously in decreasing order of detected faults

per vector, are simulated for faults. Test pattern 0000 detects all five false

redundancies, and after exhausting all test patterns, only faults B-l-K/0 and

C-2-K/0 are left as potential redundancies. Again, the VICTOR estimate is

exact. In general, however, the set of potential redundancies includes many

B9

false redundancies, the hard-to-test irredundant faults, as is shown in the

next section.

6.3. PROGRAM PERFORMANCE

For the program performance evaluation, a medium size circuit exam

ple, the 74181 4-bit ALU, has been chosen. The circuit is large enough to allow

for data explosion, but small enough (see the circuit diagram in Figure 6.4) to

allow for hand analysis and fault evaluation. Also, detailed fault analysis data

exists [Akers 82].

The circuit description of the 74181 ALU used by the VICTOR program

implementation and the resulting fault testability information, i.e., the poten

tially redundant faults with the aborted test patterns and the irredundant

faults with the corresponding valid test patterns, is included in Appendix 3. A

synopsis of the fault data produced by program VICTOR is given belovr:

FAULT DATA CIRCUIT DATA

374 primary inputs 14

220 primary outputs 8

circuit nodes 77

210 circuit cell count : 63
circuit level count: 7

total single-stuck faults
faults on fanout branches

(59% of total)
potentially redundant faults: 210

(56% of total)

It is known that the ALU is irredundant, thus all 210 potential redundancies

are false ones. Following the same procedure as for Schneider's example,

test generation in VICTOR yields 21 compacted test vectors, and the test data

processing achieves a reduction of 87%.

COMPACTED TEST VECTORS FOR IRREDUNDANT FAULTS

SUUHARY: 21 test vectors for 164 irredundant faults
(87% reduction)

> leftmost column: test vectors after test compaction
> center left column: number of detected faults per vector

l3 0-^>

X3°-

figure 6.4 74181 ALU logic diagram

> center right column: fault coverage per test vector
> rightmost colvmn: cumulative fault coverage per test vector

1. lxxxllllllllOO
2. 1x0100x1111101
3. 110x1101000101
4. 1x0x1111001100
5. 110x0100110000
6. 110x11000lOOOx
7. IxlxOOxlxlllll
8. xOOl 10x1x10101

9. 1x0x1100x1x100
10. xxOxOOOOOOOOxO
11. xxOxOlxlxlxlxx

12. xOOxOl 0001 OOOx
13. IxOxllOOxlxllO
14. xxOOlOxlxlxlxx

15. 1x0x0000110010

16. lxxxllOOOOOOxx
17. IxOxxxl100x110
18. lxxxOOl lOOOOxx
19. xOOxxxOlOOxxOx
20. lxxxOOOOOOllxx

21. IxOxxxl1110000

33
26
17
15

15

14

7

6
6
6
3
3
3

2
2

20.1%
15.9%

10.4%
9.1%
9.1%
8.5%
4.3%
3.7%

3.7%
3.7%
1.8%
1.8%
1.8%
1.2%
1.2%
0.6%
0.6%

0.6%
0.6%
0.6%

0.6%

20.1%
36.0%
46.3%
55.5%

64.6%

73.2%
77.4%

81.1%
84.8%
88.4%
90.2%
92.1%
93.9%
95.1%

96.3%
97.0%
97.6%
98.2%
98.8%
99.4%

100. 0%

91

Again, the compacted tests are simulated for faults, and a histogram indicat

ing the success in eliminating potential redundancies per vector is given in

Figure 6.5 (the values for the <o> and <#> symbols correspond to fault simu

lation ignoring don't cares and taking them into account, respectively).

The residue of this fault simulation is a kernel of 33 potential redundan

cies listed in Appendix 3. These faults are all false redundancies, but they

include the critical faults [Akers 82], known to be hard to test. VICTOR

effectively partitions the problem, and not the circuit; instead of having to

generate tests for the 374 circuit faults, only 33 faults must be considered,

which amounts to a reduction of the problem size by an order of magnitude.

Finally, the industrial example given in Appendix 4 has been analyzed by

VICTOR. Lacking a fault simulator, potentially redundant faults cannot be

eliminated by simulating the compacted test vectors by hand, therefore no

final results could be obtained.

*
35 -

1
*
*
*

D 1 *
E 1 *
T 30 = *
E 1 *
C 1 *
T 1 *
E 1 *
D 25 - *

*
* *
* *

F * *
A 20= * * *
U * * *
L * * *
T o* o* * *
S o* o* * *

15 - o* o* * * *
o* o* o* * • * *
o* o* o* * * *
o* o* o* * * *

o* o* o* * * *
o* o* o* * * * *

i0= og 9* o* * * * *
1 o* o* o* * * * *
1 e# o* o* * * * *
1 o* o§ o* * * * * * *
1 o* o* o* * * * * * * *

5 - o* o* o* * * * * * * *
o* o* o* o* * * * * * *

o* o* o* o* * * § * * *
9* o* o* o* * * § * * * *
o* o* 0*0*0* * * * * * * *

^

0*0*0*0*0*0*0*0*0* * * * * * * * *

0 5 10 15 20

TEST VECTOR

Rgore 6.5 Histogram of eliminated false
redundancies per test vector

92

To illustrate the performance of the VICTOR program implementation,

the execution times in CPU seconds on a VAX/UNIX 11/780 computer of pro

gram VICTOR and program SCOAP are given for three circuits. The first cir

cuit is Shneider's example (Figure 6.3), the second circuit is the 74181 ALU

(Figure 6.4). and the third circuit is the industrial example listed in Appendix

93

4. The performance comparison between the two programs is given in the

table below.

Faults VICTOR SCOAP

52

374

1728

7

26

172

27

103

1003

VICTOR is faster than SCOAP by about a factor of five, and as the circuit grows

in size, this factor increases rapidly since the algorithm in SCOAP is qua

dratic. The linear operations employed by VICTOR keep computational costs

down and require near-linear execution times. The deviation from linearity is

caused by the three search procedures during input processing, fault collaps

ing, and test compaction (see Chapter 4).

CHAFFER 7

CONCLUSIONS

The complexity of current VLSI circuits and the presence of redundant

and hard-to-test irredundant faults render computer-aided test procedures

prohibitively expensive, even if the circuits contain a scan path and are,

therefore, scan testable. The established alternatives, redundancy

identification and testability analysis methods, offer little relief: redundancy

identification techniques do not handle general circuits, and testability

analysis approaches do not identify redundancy because signal are assumed

to be independent.

VICTOR offers a solution to the problem in the form of a linear complexity

method for global redundancy identification and test generation for scan-

testable VLSI circuits. Rather than partitioning the circuit, VICTOR partitions

the test problem into separate control and monitor problems that are

merged later. VICTOR identifies all redundant and hard-to-test irredundant

faults in a general combinational circuit and generates test vectors for most

irredundant faults, then collapses and compacts the tests by about an order

of magnitude. The algorithm requires only four passes through the fault list,

and the algorithm data and computational complexity grows linearly with cir

cuit size and primary input count.

The VICTOR approach relies on a four-valued algebraic structure that can

be easily expanded up to 256 logic values. The primitive testability opera

tions, pattern selection and intersection, allow for a direct translation from

cell logic equations to cell testability (control and monitor) equations, which

94

95

in turn are mapped directly into program code, one routine per cell. Thus,

the cell library can be customized in a few hours.

A prototype program for VICTOR has been written in ANSI FORTRAN 77.

To achieve portability, program performance (speed and memory) have been

sacrificed. The intent has been to provide a prototype program that executes

on a variety of computers. If portability can be sacrificed, however, the per

formance of the current implementation can be substantially improved by

rewriting some key routines in an efficient programming language and by

using dynamic memory management for the data structures. Furthermore,

the input/output processing requires major upgrading if program VICTOR is

to be used as a production software tool. The code contains much documen

tation as comment lines (about one out of every five lines in the program) and

it is hoped that it is sufficient for maintenance and further development.

VICTOR can be used as an independent tool but is limited by the uncer

tainty in the potential redundancy estimate. If a fault simulator is available,

the uncertainty can be reduced significantly by simulating the already gen

erated and compacted test patterns, and a high fault coverage can be

obtained.

VICTOR, the global approach to redundancy identification and test gen

eration, can be viewed as a component of an integrated computer-aided test

system and can be extended in several directions. A simple, serial fault simu

lation capability can be built into VICTOR and one more global operation per

formed after test generation. Once the uncertainty of the redundancy esti

mate is reduced this way, the testability calculation in VICTOR can be

repeated. This time, though, advance information on potential redundancies

exists and is used to guide the pattern selection. Since the procedures in

96

VICTOR are global, even this iterated approach is still linear with circuit size.

Finally, the required number of such iterations and the achieved fault cover

age needs further investigation on a statistically relevant number of indus

trial VLSI circuits.

APPENDIX 1

The Berkeley FORTRAN 77 Version of SCOAP

Al.l

Appendix 1 presents the history of the development of the Berkeley FORTRAN

77 version of Dr. Lawrence Goldstein's testability analysis program SCOAP.

A1.2

SCOAP is a testability analysis program developed by Dr. Lawrence Gold

stein at SANDIA NaUonal Laboratories [Goldstein 79 k 80]. Program SCOAP is

written in FORTRAN 66, executes on a DEC 20 computer, and includes a large

portion of nonportable code.

The author has received the source code from Dr. Goldstein early in

1980. After a few unsuccessful attempts to adapt the program to the

VAX/UNIX computer environment, the author has decided to rewrite the

entire program in ANSI FORTRAN 77. While a summer visitor at Bell Labora

tories, the author has developed the FORTRAN 77 version of SCOAP. The

author gratefully acknowledges Dr. Goldstein's expert advice and the excel

lent research environment he enjoyed at Bell Laboratories, environment

made possible by Dr. Bernard Murphy, Dr. Wesley Grant. Dr. Hermann Gum-

mel, and Dr. Ajoy Bose.

The FORTRAN 77 version of SCOA? implements exactly the original algo

rithm and contains about 3000 lines of portable code. The program runs on a

32-bit machine, the VAX 11/780. under either the UNDC or the VMS operating

system, and on a 24-bit machine. Harris 570. under the VULCAN operating

system.

After returning to the University of California, Berkeley, the author has

continued to develop the FORTRAN 77 version of SCOAP. The comments of Mr.

Bob Hess of UTMC and of Mr. Steve Menzel of Carleton University have been

most helpful and are gratefully acknowledged. In April 1981, the author has

started to release the Berkeley version of SCOAP. Currently, more than 35

copies of the Berkeley FORTRAN 77 version of SCOAP have been sent to vari

ous industrial and academic locations.

APPENDIX 2

VICTOR CeU Ubrary

A2.1

Appendix 2 presents the list of names and logic equations of the cells

predefined in the VICTOR controllability and observability cell library.

general <and> gate: out=z. in=a,b.c...
z=a.b.c...

<and-or-invert> gate: out=z, in=al,a2,b
z=(al.a2 + b)'

<and-or-invert> gate: out=z, in=al,a2,bl,b2
z=(al.a2 + bl.b2)'

<and-or-invert> gate: out=z, in=al,a2,a3,b
z=(al.a2.a3 + b)'

<signal buffer>: out=z, in=a
z=a

<signal inverter>: out=z. in=a
z=a*

2-input <mux>: out=z, in=dl,d2,c
z=dl.c' + d2.c

general <nand> gate: out=z. in=a,b,c,...
z=(a.b.c...)'

general <nor> gate: out=z, in=a,b,c,...
z=(a+b+c+...)'

<or-and-invert> gate: out=z, in=al,a2,b
z=((al+a2).b)'

<or-and-invert> gate: out=z, in=al,a2,bl,b2
z=((al+a2).(bl+b2))'

<or-and-invert> a ate: out=z, in=al,a2,a3,b
Z=ual+a2+a3).b)'

<or-and-invert> gate: out=z, in=al.a2,a3,bl,b2,b3
Z=((al+a2+a3).(bl+b2+b3))'

general <or> gate: out=z, in=a,b,c,...
z=a+b+c+...

2 input <xnor> gate: out=z, in=a,b
z=a.b + a'.b'

2 input <xor> gate: out=z. in=sub
z=a.b* + a'.b

A2.2

APPENDIX 3

Analysis of the 741614-bit ALU

A3.1

Appendix 3 presents the circuit description and the VICTOR results for the

74181 4-bit ALU example analyzed in Chapter 6.

* 74181 ALU (4 bit arithmetic logic unit)
• circuit description
inputs S3 S2 SI SO B3N A3N B2N A2N BIN AIN BON AON M CN
outputs GN CN4 PN F3N F2N A=B FIN FON

iwt/ B3 B3N
inv B2 B2N
inv Bl BIN
inv BO BON
inv m M

and3 1, B3N S3 A3N
an&3 2, A3N S2 B3
and2 3, B3 SI
and2 4, SO B3N
buf 5, A3N
nor2 A, 1 2

nor3
9

B, 3 4 5

ond3 6. B2N S3 A2N
and3 7. A2N S2 B2
and2 8. B2 SI
and2 9. SO B2N
buf 10, A2N
nor2 c, 6 7

nor3 D. 8 9 10

ondL3 U. BIN S3 AIN
and3 12, AIN S2 Bl
and2 13, Bl SI
and2 14, SO BIN
buf 15, AIN
nor2 E, 11 12

nor3 F, 13 14 15

and3 16, BON S3 AON
and3 17. AON S2 BO
and2 18, BO SI
and2 19, SO BON
buf 20, AON
nor2 G. 16 17

nor3 H, 18 19 20

zor2 36, A B
xor2 42, C D

xot2 47, E F
xot2
0

51. G H

buf 31. B
and2 32, A D
an&3 33, A C F
and4 34, A C E H
nan&5 35, A C E G
ntmd4 PN, A C E G
nor4
0

CN, 31 32 33 34

osnaS 38, CN G E C
and4 39, E C H MN

CN

UN

A3.2

and3 40, C F MN
and2 41, D UN

nor4
0

37. 38 39 40

wnd4 44, CN G E

and3 45, E H UN

and2 46, F m
nor3
0

43. 44 45 46

and3 49. CN G MN

and2 50, H m
nor2
0

48, 49 50

nom&2 52,
0

CN m

nand2 CN4, CN 35

xor2 F3N, 36 37

xot2 F2N, 42 43

xot2 FIN, 47 48

xot2 FON, 51 52
and4 A=B, F3N F2N Fll

41

MN

FON

A3.3

A3.4

POTENTIALLY REDUNDANT FAULTS

LEGEND:
> 0, 1, x (don't care), # (clash) - primary input values
> clash for a primary input indicates conflicting 0 and 1

requirements due to convergence, hence potential redundancy
> vectors containing only clashes indicate one of the following.

♦ floating nodes and their predecessors
(check floating node file vic.flo)

• unobservable fanout roots and their predecessors
* clashes on all primary inputs

> order of primary inputs in a test vector:
1. S3
2. S2
3. SI
4. SO
5. B3N
6. A3N
7. B2N
8. A2N
9. BIN

10. AIN
11. BON
12. AON
13. M
14. CN

> left column: test vectors for stuck--at-0 faults
> middle column: test vectors for stuck--at-1 faults
> right column: name of stuck fault locations

12345678901234 12345678901234 FAULT LOCATION

lxOx IftOOxxxxOx xx0x0*00xxxx0x 1

lxOxxxftlOOxxOx Ix0xxx**00xx0x 10

lxOxxxxxl*000x xxOxxxxxO*OOOx 11

xxOxxxxx0#000x 12

lx#xxxxx**000x lxOxxxxxf§OOOx 13

1x0lxxxxl* OOOx lxOxxxxx##O00z 14

lxOxxxxx*1000x lx0xxxxx#*O0Oz 15

Ixxxxxxxxx1*01 xxxxxxxxxxOftOl 16

xxxxxxxxxxOftOl 17

lxlxxxxxxx**01 lxOxxxxxxx**01 18

lxOlxxxxxx 1*01 lxOxxxxxxx§*01 19
xx0x0*00xxxx0x 2

lxOxxxxxxx*101 lxOxxxxxxx**01 20

xx0x0*00xlxlxx 32

xxOx0§0*00x1xx 33

xx0x0*0*0*00xx 34
xxxx0*0*0*0*xl 35

Ix0x**00xxxx0x 36

lxxx 110*0*0*01 38

1x0x110*0*0000 39

1x0x110*00x100 40

lx0xxx**00xx0x 42

lxxxxx 110*0*01 44

IxOxxxl 10*0000 45

lx0xxxxx**000x 47

txxxxxxx110*01 49

lxQxxxxxxx##01 51

lxOxxx l*00xxOx xxOxxxO*OOxxOx 6
xxOxxx0*OOxxOx 7

lx*xxx**00xx0x Ix0xxx**00xx0x 8
1x0lxx 1*OOxx Ox Ix0xxx**00xx0x 9

xxOxO*OOxxxxOx A

xxOxO*OOx lx lxx A-l-32
xxOxO*0*O0xlxx 1x0x110*00x1xx A-l-33

xxOx0*0*0*00xx 1x0x110*0*OOxx A-l-34
xxxx0*0*0*0*xl lxxxllO#0*0*xl A-1-35

xx0x0*00xxxx0x A'1-36

xlxxxxxxxx0*01 AON
xlxxxxxxxx0*01 AON-1-17

lxOxxxxxxx*101 lXOXTXZXXTft*01 AON-1-20
lxxxxxxxxx1*01 AON-3-16

xlOxxxxx0*00Ox AIN
xlOxxxxx0*OOOx AIN-1-12

lxOxxxxx* 1OOOx lxOxxxxx** OOOx AIN-1-15
lxOxxxxxl*OOOx 1x Oxxxxx 1* OOOx AlN-3-11

x 1Oxxx0*OOxxOx A2N
Ix0xxx*100xx0x Ix0xxx**00xx0x A2N-1-10

Xl0xxx0*00xx0x A2N-1-7

IxOxxxl*OOxxOx IxOxxxl*00xx0x A2N-3-6

Xl0x0*00xxxx0x A3N-1-2

1x0x1*OOxxxxOx 1x0x1*OOxxxxOx A3N-3-1

lx0x#* OOxxxxOx B-2-36

xlxxxxxxxx*101 BO

lxlxxxxxxx**01 lxlxxxxxxx**01 BO-1-18

xlxxxxxxxx*101 BO-3-17

xlxxxxxxxx^101 BON

lxxxxxxxxx1*01 lxxxxxxxxx0*01 BON-1-16

xlxxxxxxxx*101 BON-1-BO

1x0lxxxxxx1*01 1x0lxxxxxx**01 BON-2-19

xlOxxxxx*!OOOx Bl

lx*xxxxx**OOOx lx*xxxxx**OOOx Bl-1-13
xlOxxxxx* 1OOOx Bl-3-12

xlOxxxxx*1OOOx BIN

lxOxxxxxl#OOOx Ix0xxxxx0*000x BIN-1-11

xlOxxxxx*!OOOx B1N-1-B1
1x0Ixxxxl*OOOx 1x0Ixxxx**OOOx BIN-2-14

xlOxxxfrlOOxxOx B2

lx*xxx**OOxxOx lx*xxx#*OOxxOx B2-1-8
x 1Oxxx* 1OOxxOx B2-3-7

xlOxxx§100xxOx B2N

Ix0xxxl*00xx0x Ix0xxx0*00xx0x B2N-1-6

x 1Oxxx* 1OOxxOx B2N-1-B2
Ix01xxl*00xx0x Ix01xx**00xx0x B2N-2-9

xxlx*Oxlxlxlxx B3
xxlx*Oxlxlxlxx B3-1-3
x 1Ox* 1OOxxxxOx B3-3-2

1x0x1*OOxxxxOx 1x0x0*OOxxxxOx B3N-1-1

xxlx*Oxlxlxlxx B3N-1-B3
xxOxxxO*OOxxOx C

1x0x110*00x100 C-1'40

xxOxxx0*OOxx Ox C'1'42

xxOxO*0*OOxlxx 1x0x0*1 lOOx lxx C-2-33

xxOxO*0*0*OOxx 1x0x0*110*OOxx C-2-34

A3.5

xxxxO*0*0*0*xl lxxxO*110*0*xl C-2-35

1x0x110*0*0000 1x0x11110*0000 C-2-39

lxxx110*0*0*01 Ixxxl1110*0*01 C-4-38

lxxx 110*0*0*01 lxxx 110*0*0*00 CN-1'38

Ixxxxxl10*0*01 ixxxxxl10*0*00 CN-1'44

Ixxxxxxxl10*01 lxxxxxxx110*00 CN-1'49

xxxxO*0*0*0*xl xxxxO*0*0*0*xO CN-5-35

Ix0xxx**00xx0x D
xxOxO*OOxlxlxx xxxxO#xlxlxlxx D-2-32

lxOxxx**OOxxOx D-2-42

xx0xxxxx0*000x E
1x0x110*0*0000 1x0x110*110000 E-l-39

IxOxxxl 10*0000 E-l-45

xx0xxxxx0*000x E-l-47

xxOx0*0*0*00xx 1x0x0*0* 11 OOxx E-3-34

xxxx0*0*0*0*xl lxxx0*0*110*xl E-3-35

lxxx 110*0*0*01 lxxx110*110*01 E-3-38

Ixxxxxl 10*0*01 Ixxxxxl1110*01 E-3-44

lxOxxxxx**OOOx F
1x0x110*00x100 Ixxxl I0*x lxl00 F-2-40
lxOxxxxx** OOOx F-2-47

xxOxO*0*OOxlxx xxxx0*0*x lx lxx F-3-33

Ixxxl11111110* FON'4-A^B
1x0x111111**00 FlN-3-A=B
1x0x1111**1100 F2N-2-A=B
1x0x11**111100 F3N-1-A=B

xxxxxxxxxx0*01 G

xxxxxxxxxx0*01 G-l-51

Ixxxl 10#0*0*01 Ixxxl10*0*1101 G-2-38

ixxxxxl10*0*01 Ixxxxxl10*1101 G-2-44

Ixxxxxxxl10*01 G-2-49

xxxxO*0*0*0*x 1 lxxxO*0*0*llxl G-4-35

lxOxxxxxxx**01 H

IxOxxxl10*0000 lxxxxxllO*xlOO H-2-45

lxOxxxxxxx**01 H-2-51
1x0x110*0*0000 Ixxxl10*0*x100 H-3-39

xx0x0*0*0*00xx xxxx0*0*0*x lxx H-4-34

1x0x110*00x100 1x0x110*00x110 MN-3-40

IxOxxxl 10*0000 IxOxxxl10*0010 MN-3-45

Ixxxxxxxl 10*01 lxxxxxxx110$11 MN-3-49
1x0x110*0*0000 1x0x110*0*0010 MN-4-39

Ixxxxxl10*0*01 Ixxxxxl10*0*11 MN-4-44

Ixxxl 10*0*0*01 lxxx110*0*0*11 MN-5-38

1x0lxxxxl*OOOx lxOOxxxx 1* OOOx SO-1-14

1x0lxxxxxx 1*01 lx00xxxxxxl*01 SO-1-19

Ix0lxxl*00xx0x Ix00xxl*00xx0x SO-1-9

lx*xxxxx**O0Ox lxOxxxxx** OOOx SI-2-13

lxlxxxxxxx**01 lxOxxxxxxx**01 SI-2-18

lx*xxx**OOxxOx lxOxxx**OOxx Ox SI-2-8

************** ####*********# S3

1x0x1*OOxxxxOx OxOxl*OOxxxxOx S3-2-1

lxOxxxxx l*000x OxOxxxxxl*OOOx S3-2-11

lxxxxxxxxx1*01 Oxxxxxxxxx1*01 S3-2-16

Ix0xxxl*00xx0x

SUMMARY: 374 poi

0x0xxxl*00xx0x

ssible faults

S3-2-6

210 faults are potentially redundant (56%)

A3.6

TEST VECTORS FOR IRREDUNDANT FAULTS

LEGEND:
> 0, 1, x (don't care) - primary input values
> order of primary inputs in a test vector:

1. S3
2. S2
3. SI
4. SO
5. B3N
6. A3N
7. B2N
8. A2N
9. BIN

10. AIN
11. BON
12. AON
13. M
14. CN

> left column:
> middle column:
> right column:

12345678901234

xlOxxxxxOlOOOx
x lxxxxxxxxOl 01
x 10x01 OOxxxx Ox

xxlxOOxlxlxlxx
xxOxOOxlxlxlxx

xxxxx lxlxlxlxO

lxxx llxlxlxlxO

xxOUOxlxlxlxx

1x0x1100x1x100

Ixxxxxl lxlxlxO

IxOxxxl 100x100

lxxxxxxx11x1x0

xxOxOlxlxlxlxx
lxOxxxxx 110000

xlOxxx01 OOxx Ox

test vectors for stuck-at-0 faults
test vectors for stuck-at-1 faults
name of stuck fault locations

12345678901234

xxOxOOxlxlxlxx
xxxxx lx lx lx lxx

xxxxx lx lx lx lxx

xxxxx lx lx lx lxx

xxxxxlxlxlxlxx

1x0x11 OOxxxx Ox
1x0x11 OOxxxx Ox
Ixxxl lxlxlxlxO
Ixxxl lxlxlxlxO
xxOxOOxlxlxlxx
Ixxxl lxlxlxlxO
Ixxxl lxlxlxlxO
IxOxxxl lOOxxOx
IxOxxxl lOOxxOx
IxxxxxllxlxlxO
Ixxxxxl lxlxlxO
IxxxxxllxlxlxO
lxOxxxxx11OOOx
lxOxxxxx11OOOx
lxxxxxxx11x1x0
xxOxOOxlxlxlxx
lxxxxxxx11x1x0
lxxxxxxxxx1101
lxxxxxxxxx1101

1x0x11OOxxxxOx
IxOxllOOxlxlxx
1x0x11 OOxxxx Ox

FAULT LOCATION

12
17

2

3
31
32
33
34
35
36
37
38
39
4

40
41

42
43
44

45

46

47

48
49

5

50

51

52
7

A

A-l-32
A-1-36

A3.7

xxxxOOOOOOOOxx
x lxxxxxxxx0101
x lxxxxxxxx0101
xlOxxxxxOlOOOx
x1 Oxxxxx01OOOx
xlOxxxOlOOxxOx
xlOxxxOlOOxxOx
xxOxOlx lx lx lxx
xlOxOlOOxxxxOx
xxOxOlxlxlxlxx
IxxxllllllllxO
xxOxOOxlxlxlxx

xxOxOOx lx lx lxx

x lxxxxxxxx0101
x lxxxxxxxx0101

x 1Oxxxxx01 OOOx
XlOxxxxxOlOOOx

XlOxxxOlOOxxOx
XlOxxxOlOOxxOx

xxlxOOxlxlxlxx
xxlxOOxlxlxlxx
XlOxOlOOxxxxOx
xxOHOxlxlxlxx

xxOHOxlxlxlxx

xxxxOOOOOOOOxx
lxxxxxxxxx 1101
lxxxxxxxxx1101
xxOxOOxxxxxxxx

IxOxllOOxlxlOO

xxxxOOOOOOOOxx

IxOxxxl 100x100

lxxxxxxxxx11x0
IxxxllllllllxO
lxxxxxxx11x1x0
IxxxllllllllxO
Ixxxxxl lxlxlxO
IxxxllllllllxO
lxxx llxlxlxlxO
IxxxllllllllxO

IxxxllOOOOOOxx A-l-PN
AON
A0N-1-17
AIN
AIN-1-12
A2N
A2N-1-7

xxOxOOxlxlxlxx A3N
A3N-1-2

xxOxOOxlxlxlxx A3N-1-5

lxxxxxxxxx1101 A=B
xxxxx lx lx lx lxx B

xxxxx lx lx lx lxx B-l-31

1x0x1 lOOxxxxOx B-2-36
BO
BO-3-17

xIxxxxxxxxOl01 BON
xIxxxxxxxxOl01 BON-1-BO

Bl
Bl-3-12

xlOxxxxxOlOOOx BIN
XlOxxxxxOlOOOx B1N-1-B1

B2
B2-3-7

XlOxxxOlOOxxOx B2N
XlOxxxOlOOxxOx B2N-1-B2

B3
B3-1-3
B3-3-2

xxOlOOxlxlxlxx B3N
xxlxOOxlxlxlxx B3N-1-B3
xxOlOOxlxlxlxx B3N-2-4
IxOxxxl lOOxxOx C

1x0x111100x100 C-l-40

IxOxxxl lOOxxOx C-l-42
lxxxOOHOOOOxx C-2-PN
lxxxxxxxxx1100 CN
lxxxxxxxxx1100 CN-1-52

xxxxx lx lx lx lx0 CN4
IxOxxxl lOOxxOx D
IxxxllxlxlxlOO D-l-41
IxOxxxl lOOxxOx D-2-42

lxOxxxxx 11 OOOx E

IxOxxxl 1110000 E-l-45
lxOxxxxx 11 OOOx E-l-47

lxxx000011 OOxx E-3-PN
lxOxxxxx 11 OOOx F
lxxxxxllxlxl00 F-l-46

lxOxxxxx 11 OOOx F-2-47

lxxxxxxxxx1101 FON
F0N-4-/&B

lx Oxxxxx 11 OOOx FIN
FlN-3-A=B

IxOxxxl lOOxxOx F2N
F2N-2-A?=B

1x0x1 lOOxxxxOx F3N
F3N-1-A=B

lxxxxxxxxx1101 G

A3.8

xxxxOOOOOOOOxx
xxxxxlxlxlxlxx
xxxxxlxlxlxlxO

lxOxxxxx 110000

1x0x1100x1x110
1x0x1100x1x100
1x0x1100x1x100
IxOxxxl 100x100
lxOxxxxx110000

xxOllOxlxlxlxx
xxOllOxlxlxlxx
xx lxOOx Ixlx lxx
xxlxOOxlxlxlxx
x 10x01 OOxxxx Ox
XlOxxxxxOlOOOx
x lxxxxxxxx0101
XlOxOlOOxxxxOx
XlOxxxOlOOxxOx

lxxxxxxxxx1101
Ixxxxxxxl11101
lxxxOOOOOOllxx
xxOxOOxxxxxxxx
xxOxOOxxxxxxxO
lxxxxxxxxx1101
lxxxxxxxllxl00

1x0x1100x1x100
1x0x1100x1x110
1x0x1100x1x110
IxOxxxl 100x110
lxOxxxxx110010
lxxxxxxxxx1111
xxxxOOOOOOOOxx
xxOOlOxlxlxlxx
xxOOlOx lxlx lxx
xxOxOOxlxlxlxx
xxOxOOxlxlxlxx
xOOxOlOOxxxxOx
xOOxxxxxOlOOOx
xOxxxxxxxx0101
x00x01 OOxxxx Ox
xOOxxxOlOOxxOx

G-l-51
G-2-49
G-4-PN
GN
CN-1-CN4

H
H-l-50
H-2-51
M

MN
MN-2-41
MN-2-46
MN-2-50
MN-2-52
PN
SO
SO-1-4
SI

SI-2-3
S2

S2-2-12
S2-2-17
S2-2-2
S2-2-7

SlMiARY: 374 possible faults
164 faults are certainly irredundant (44%)

A3.9

TEST VECTORS FOR COLLAPSED IRREDUNDANT FAULTS

SUMMARY: 48 test vectors for 164 irredundant faults
(71% reduction)

> left column: test vectors after fault collapsing
> right column: number of detected faults per vector

lxxxxxxxxx1101
xxOxOOxlxlxlxx
x lxxxxxxxx0101
x 1 OxxxxxOl OOOx
x 1 OxxxOl OOxx Ox
lxQxxx11OOxxOx
lxOxxxxx11OOOx
xxxxx lx lx lx lxx
lxxx llxlxlxlxO
1x0x1 lOOxxxxOx
xxlxOQx lxlxlxx
XlOxOlOOxxxxOx
xxOllOxlxlxlxx
1x0x11OOxlxl00
Ixxxxx 1 lx lx lx 0
xxxxOOOOOOOOxx
IxxxllllllllxO
lxxxxxxxllxlxO
lxOxxxxx 110000
xxxxxlxlxlxlxO
1x0x1100x1x110
IxOxxxl 100x100
xxOxOlxlxlx lxx
xxOOlOxlxlx lxx

xxOlOOxlxlxlxx
xOOxOl OOxxxxOx
lxxxxxxxxx 1100
lxxxxxxxxx11x0
xOOxxxOl OOxx Ox
Ixxxxxxxl11101
x 0 Oxxxxx01 OOOx
lxxxxxxxxx1111

IxOxxxl1110000
lxxxOOllOOOOxx
lxxx OOOO11 OOxx

lxOxxxxx 110010
lxxx Uxlxlxl 00
lxxx0000001 lxx
lxxxxxxx 11x100
Ixxxxxllxlxl 00
1x0x111100x100
x Oxxxxxxxx0101
xxOxOOxxxxxxx0
IxxxllOOOOOOxx
IxOxxxl 100x110
lxxx1lxxxxxxxx

1x0x1 lOOxlx lxx

11
10

8
8
8
7

7
7

6

6
6

5

5

5

5

5

5

4

3

3
3
3
3
2
2
2
2
2

2

A3.10

A3.ll

COMPACTED TEST VECTORS FOR IRREDUNDANT FAULTS

SIMiARY: 21 test vectors for 164 irredundant faults
(87% reduction)

> leftmost column: test vectors after test compactxon
> center left column: number of detected faults per vector
> center right column: fault coverage per test vector
> righknost column: cumulative fault coverage per test vector

J. IxxxllllllllOO
2. 1x0100x1111101
3. 110x1101000101
4. 1x0x1111001100
5. 110x0100110000
6. 110x110001 OOOx
7. lxlxOOxlxlllll
8. xOOl 10x1x10101
9. 1x0x1100x1x100

10. xxOxOOOOOOOOxO
11. xxOxOlxlxlxlxx
12. xOOxO10001 OOOx
13. 1x0x1100x1x110
14. xa'.OOlOxlxlxlxx
15. 1x0x0000110010
16. IxxxllOOOOOOxx
17. IxOxxxl 100x110
18. IxxxOOllOOOOxx
19. xOOxxxOlOOxxOx
20. IvjxxOOOOOOIIxx
21. IxOxxxl 1110000

33 20.1% 20.1%

26 15.9% 36.0%

17 10.4% 46.3%

15 9.1% 55.5%

15 9.1% 64.6%

14 8.5% 73.2%

7 4.3% 77.4%

6 3. 7% 81.1%

6 3.7% 84.8%

6 3.7% 88.4%

3 1.8% 90.2%

3 1.8% 92.1%

3 1.8% 93.9%

2 1.2% 95.1%

2 1.2% 96.3%

0.6% 97.0%

0.6% 97.6%

0.6% 98.2%

0.6% 98.8%

0.6% 99.4%

0.6% 100. 0%

APPENDIX 4

Circuit Description of Industrial Example Circuit

A4.1

Appendix 4 presents the gate-level description of the industrial example

referenced in Chapter 6. The circuit has been obtained through the courtesy

of the Siemens Corporation.

A4.2

• Industrial Circuit Example (Siemens Circuit)

input 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 28 29 30 +
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 +
51 52 60 61 62 63 72 73 79 82 83 95 103 fake

output 23 25 27 53 55 57 59 75 78 81 97 99 104 169 183

inv faken, fake

• LEVEL 0 signal 10
and2 10, fake faken

• LEVEL 1 signal 11
or2 11, fake faken

• 1QU 66 LO 65 LO 64
• Iqu 66 , 10 65 10 64
nor2 lqul , 10 65
inv lqu2 , lqul
nor2 lqu3 , 10 lqu2
nor2 lqu4 . lqul 64
nor2 66 . Iqu3 lqu4

• 1PT 67 XX XX 48 LO LO LO LO
• Ipt 67 xx xx , 48 10 10 10 10
inv xx , 48
inv 67 , xx
or4 xx , 10 10 10 10

• 2PT 68 XX XX 50 LO LO LO LO
• 2pt 68 xx xx , 50 10 10 10 10
inv xx , 50
inv 68 , xx
or4 xx . 10 10 10 10

• 3PT 69 XX XX 49 LO LO LO LO
• 3pt 69 xx xx , 49 10 10 10 10
inv xx , 49
inv 69 , xx
or4 xx , 10 10 10 10

• 4PT 70 XX XX 51 LO LO LO LO
• 4pt 70 xx xx , 51 10 10 10 10
inv xx , 51
inv 70 , xx
or4 xx , 10 10 10 10

• 5PT 71 XX XX 52 LO LO LO LO
• 5pt 71 xx xx , 52 10 10 10 10
inv xx , 52
inv 71 , xx
or4 xx . 10 10 10 10

• 1QX 53 XX LO LO 72
• lqx 53 XX , 10 10 72 10 10 10

or4 53 . 10 10 72 10
or2 xx , 10 10

A4.3

LO LO LO

• 2QX 55 XX LO LO 73 LO LO LO
• 2qx 55 xx , 10 10 73 10 10 10
or4 55 . 10 10 73 10
or2 xx , 10 10

• 2QU 75 71 LO 74 72
• 2qu 75 . 71 10 74 72
nor2 2qul , 71 10
inv 2qu2 , 2qul
nor2 2qu3 . 74 2qu2
nor2 2qu4 , 2qul 72
nor2 75 , 2qu3 2qu4

• 3QU 78 71 LO 77 76
• 3qu 78 , 71 10 77 76
nor2 3qul , 71 10
inv 3qu2 , 3qul
nor2 3qu3 , 77 3qu2
ncr2 3qu4 , 3qul 76
nor2 78 , 3qu3 3qu4

• 4QU 81 71 LO 80 79
• 4qu 81 , 71 10 80 79
nor2 4qul , 71 10
inv 4qu2 , 4qul
nor2 4qu3 , 80 4qu2
nar2 4qu4 , 4qul 79
nor2 81 , 4qu3 4qu4

• 3QX 57 XX LO LO 82 LO LO LO
• 3qx 57 xx , 10 10 82 10 10 10
or4 57 , 10 10 82 10
or2 xx , 10 10

• 4QX 59 XX LO LO 83 LO LO LO
• 4qx 59 xx . 10 10 83 10 10 10
or4 59 , 10 10 83 10
or2 xx , 10 10

• 6PT 76 XX XX 61 LO LO LO LO
• 6pt 76 xx xx , 61 10 10 10 10
inv xx , 61
inv 76 . xx
or4 xx , 10 10 10 10

• 7PT 84 XX XX 60 LO LO LO LO
• Tpt 84 xx xx , 60 10 10 10 10
inv xx , 60
inv 84 , xx
or4 xx . 10 10 10 10

• 8PT 85 XX XX 63 LO LO LO LO
• dpi 85 xx xx , 63 10 10 10 10

inv xx , 63
inv 85 , XX

or4 xx , 10 10 10 10

• 9PT 86 XX XX
♦ 9pt 86 XX XX , 62 i
inv xx , 62
inv 86 , XX

or4 xx , 10 10 10 10

62 LO LO LO LO
62 10 10 10 10

• 5QU 89 LO 88 LO 87
♦ 5qu 89 , 10 88 10 87
nor2 5qul . 10 88
inv 5qu2 , 5qul
nor2 5qu3 , 10 5qu2
nor2 5qu4 , 5qul 87
nor2 89 , 5qu3 5qu4

♦ 10PT 90 XX XX 32 LO LO LO LO
• lOpt 90 xx xx , 32 10 10 10 10
inv xx , 32
inv 90 , xx
or4 xx , 10 10 10 10

♦ HPT 91 XX XX 30 LO LO LO LO
♦ llpt 91 xx xx , 30 10 10 10 10
inv xx , 30
inv 91 , xx
or4 xx , 10 10 10 10

♦ 12PT 92 XX XX 31 LO LO LO LO
• 12pt 92 xx xx , 31 10 10 10 10
inv xx , 31
inv 92 , xx
or4 xx , 10 10 10 10

* 13PT 93 XX XX 28 LO LO LO LO
♦ 13pt 93 xx xx , 28 10 10 10 10
inv xx , 28
inv 93 , xx
or4 xx , 10 10 10 10

♦ MPT 94 XX XX 29 LO LO LO LO
* 14pt 94 xx xx , 29 10 10 10 10
inv xx , 29
inv 94 , xx
or4 xx . 10 10 10 10

• 5QX 27 XX LO LO 79 LO LO LO
• 5qx 27 xx . 10 10 79 10 10 10
or4 27 , 10 10 79 10
or2 xx , 10 10

• 6QX 25 XX LO LO 95 LO LO LO
♦ 6qx 25 xx , 10 10 95 10 10 10
or4 25 , 10 10 95 10
or2 xx , 10 10

A4.4

♦ 6QU 97 71 LO
+ 6qu 97 , 71 10 96 73
nor2 6qul , 71 10
•inv 6qu2 , 6qul
nor2 6quS , 96 6qu2
nor2 6qu4 , 6qul 73
nor2 97 , 6qu3 6qu4

♦ 7QU 99 71 LO

• Tqu 99 , 71 10 98 95
nor2 7qul , 71 10
inv 7qu2 , 7qul
nor2 7qu3 , 98 7qu2
nor2 7qu4 , 7qul 95
nor2 99 , 7qu3 7qu4

♦ 8QU 102 LO 101

♦ 8qu 102 , 10 101 10 100

nor2 8qul , 10 101
inv 8qu2 , 8qul
nor2 8qu3 . 10 8qu2
nor2 8qu4 , Bqul 100
nor2 102 , 8qu3 8qu4

• 7QX 23 XX LO
♦ Tqx 23 xx , 10 10 103 I

96 73

98 95

LO 100

LO 103 LO LO LO
\03 10 I

or4 23 , 10 10 103 10
or2 xx , 10 10

• 15PT XX 104 XX 20 LO LO LO LO
• 15pt xx 104 xx , 20 10 10 10 10
inv 104 . 20
inv XX , 104

or4 XX . 10 10 10 10

• 16PT 105 XX XX 19

* 16pt 105 xx xx , 19 10 10 10 10

inv XX , 19

inv 105 , xx

or4 xx , 10 10 10 10

LO LO LO LO

• 17PT 107 106 XX 17 LO LO LO LO
• 17pt 107 106 xx , 17 10 10 10 10
inv 106 , 17
inv 107 . 106
or4 xx , 10 10 10 10

• 18PT 109 108 XX 18 LO LO LO LO
• 18pt 109 108 xx . 18 10 10 10 10
inv 108 , 18
inv 109 , 108
or4 xx , 10 10 10 10

• 19PT 111 110 XX 16 LO LO LO LO
• 19pt 111 110 xx , 16 10 10 10 10
inv 110 , 16
inv HI , 110
or4 xx , 10 10 10 10

A4.5

* 9QU 114 LO 113 LO 112
* 9qu 114 , 10 113 10 112
nor2 9qul , 10 113
inv 9qu2 , 9qul
nor2 9qu3 , 10 9qu2
nor2 9qu4 , 9qul 112
nor2 114 , 9qu3 9qu4

♦ 1PU 115 XX XX 46 LO LO
• Ipu 115 xx xx , 46 10 10
inv xx , 46
inv 115 , xx
or2 xx , 10 10

♦ 2PV 116 XX XX 47 LO LO
♦ 2pu 116 xx xx , 47 10 10
inv xx , 47
inv 116 , xx
or2 xx , 10 10

• 3PU 117 XX XX 44 LO LO
♦ 3pu 117 xx xx , 44 10 10
inv xx , 44
inv 117 , xx
or2 xx , 10 10

♦ 4PV 118 XX XX 45 LO LO
* 4pu 118 xx xx , 45 10 10
inv xx , 45
inv 118 , xx
or2 xx , 10 10

• 5PU 119 XX XX 42 LO LO
* 5pu 119 xx xx . 42 10 10
inv xx , 42
inv 119 , xx
or2 xx , 10 10

• 6PU 120 XX XX 43 LO LO
• 6pu 120 xx xx , 43 10 10
inv xx , 43
inv 120 . xx
or2 xx , 10 10

• 7PU 121 XX XX 41 LO LO
♦ 7pu 121 xx xx . 41 10 10
inv xx , 41
inv 121 , xx
or2 xx , 10 10

• 8PU 122 XX XX 40 LO LO
• 8pu 122 xx xx , 40 10 10
inv xx , 40
inv 122 , xx
or2 xx . 10 10

• 9PV 123 XX XX 39 LO LO
• 9pu 123 xx xx , 39 10 10

A4.6

inv xx , 39
inv 123 , xx
or2 xx , 10 10

• 10PU 124 XX XX 38 LO LO
• lOpu 124 xx xx , 38 10 10
inv xx , 38
inv 124 , xx
or2 xx , 10 10

• 11PV 125 XX XX 37 LO LO
• llpu 125 xx xx , 37 10 10
inv xx , 37
inv 125 , xx
or2 xx , 10 10

• 12PU 126 XX XX 36 LO LO
• 12pu 126 xx xx , 36 10 10
inv xx , 36
inv 126 , xx
or2 xx , 10 10

• 13PU 127 XX XX 35 LO LO
• 13pu 127 xx xx , 35 10 10
inv xx , 35
inv 127 , xx
or2 xx , 10 10

• 14PU 128 XX XX 33 LO LO
• 14pu 128 xx xx , 33 10 10
inv xx , 33
inv 128 , xx
or2 xx , 10 10

• 15PU 129 XX XX 34 LO LO
• 15pu 129 xx xx . 34 10 10
inv xx , 34
inv 129 , xx
or2 xx , 10 10

• 16PU 130 64 65 2 131 132
• 16pu 130 64 65 , 2 131 132
inv 64 , 2
inv 130 , 64
or2 65 , 131 132

• 17PU 133 134 135 1 131 130
• ITpu 133 134 135 . 1 131 130
inv 134 , 1
inv 133 . 134
or2 135 , 131 130

• 18PU 136 87 137 3 131 130
• I8pu 136 87 137 , 3 131 130
inv 87 , 3
inv 136 , 87
or2 137 . 131 130

A4.7

• 19PU 138 132 139 4 130 138
• ISpu 138 132 139 , 4 130 138
inv 132 , 4
inv 138 , 132
or2 139 , 130 138

* 20PU 140 XX 88 5 134 110
• 20pu 140 xx 88 , 5 134 110
inv xx , 5
inv 140 , xx
or2 88 , 134 110

♦ 21PU 141 131 142 6 134 136
♦ 2lpu 141 131 142 , 6 134 136
inv 131 , 6
inv 141 . 131
or2 142 , 134 136

• 22PU 143 XX 144 7 134 136
• 22pu 143 xx 144 , 7 134 136
inv xx , 7
inv 143 , xx
or2 144 , 134 136

• 23PU 145 XX 146 8 136 111
• 23pu 145 xx 146 , 8 136 111
inv xx , 8
inv 145 , xx
or2 146 . 136 111

• 24PU 147 148 XX 9 LO LO
• 24pu 147 148 xx , 9 10 10
inv 148 . 9
inv 147 . 148
or2 xx , 10 10

• 25PU 149 XX 151 11 148 150
• 25pu 149 xx 151 . 11 148 150
inv xx , 11
inv 149 . xx
or2 151 . 148 150

• 26PU 150 112 152 10 148 150
• 26pu 150 112 152 , 10 148 150
inv 112 , 10
inv 150 . 112
or2 152 . 148 150

• 27PU 153 154 113 13 148 155
• 27pu 153 154 113 , 13 148 155
inv 154 . 13
inv 153 . 154
or2 113 . 148 155

• 28PU 156 155 158 12 108 157
• 28pu 156 155 158 . 12 108 157
inv 155 , 12
inv 156 , 155

A4.8

or2 158 , 108 157

♦ 29PU 159 XX 160 15 108 157
♦ 29pu 159 xx 160 , 15 108 157
inv xx , 15
inv 159 , xx
or2 160 , 108 157

♦ 30PU 157 100 101 14 108 154
♦ 30pu 157 100 101 , 14 108 154
inv 100 , 14
inv 157 , 100
or2 101 . 108 154

♦ IQD 162 161 164 163 107 67 118 I59 7C) 107 117 68 116 115

• iqd: 162 161 164 163 , 107 67 118 6S> 70 107 117 68 .116 115

inv iqdl . 107

inv Iqd2 . 107
nor2 Iqd3 . 107 67
nor2 lqd4 . Iqdl 118
nor2 lqd5 , 107 69
nor2 lqd6 . iqdl 70
nor2 lqd7 , 107 117
nor2 lqd8 , lqd2 68
nor2 lqd9 , 107 116
nor2 Iqd 10' . Iqd2 115
nor2 162 , lqd3 lqd4
nor2 161 , lqd5 lqd6
nor2 164 , lqd7 lqd8
nor2 163 , lqd9 Iqd 10

• IQH 98 80 171 170 LO LI 161 172 173 107 164 174

• lqh 98 80 , 171 170 10 11 161 172 173 107 164 174

inv lqhl , 171
inv lqh2 , 170
nor3 lqh3 , 171 170 10
nor3 lqh4 , lqhl 170 11
nor3 lqh5 , 171 lqh2 161
nor3 lqh6 , lqhl lqh2 172
nor3 lqh7 , 171 170 173
nor3 lqh8 . lqhl 170 107
nor3 lqh9 . 171 lqh2 164
nor3 IqhlO' . lqhl lqh2 174
nor4 98 , lqh3 lqh4 IqhS lqh6
nor4 80 , lqh7 lqh8 lqh9 IqhlO

♦ 2QL) 166 165 168 167 107 124 125 123 121 107 119 120 122 126

• 2qd: 166 165 168 167 , 107 124 .125 123 121 107 119 .120 122 126

inv 2qdl , 107
inv 2qd2 , 107

nor2 2qd3 . 107 124
nor2 2qd4 , 2qdl 125
nor2 2qd5 , 107 123
nor2 2qd6 . 2qdl 121
nor2 2qd7 . 107 119
nor2 2qd8 . ZqdZ 120
nor2 2qd9 . 107 122
nor2 2qdlO' . 2qd2 126

A4.9

A4.10

nor2 166 . 2qd3 2qd4
nor2 165 , 2qd5 2qd6
nor2 168 , 2qd7 2qd8
nor2 167 , 2qd9 2qdlO

♦ 2W 77 96 171 170 LI LI LO 175 LO LO 162 176
♦ 2qh 77 96 , 171 170 11 11 10 175 10 10 162 176
inv 2qhl ,171
inv 2qh2 , 170
nor3 2qh3 , 171 170 11
nor3 2qh4 , 2qhl 170 11
nor3 2qh5 , 171 2qh2 10
nor3 2qh6 , Zqhl 2qh2 175
nor3 2qh7 , 171 170 10
nor3 2qh8 , 2qhl 170 10
nor3 2qh9 , 171 2qh2 162
nor3 2qhlO , 2qhl 2qh2 176
nor4 77 , 2qh3 2qh4 2qh5 2qh6
nor4 96 , 2qh7 2qh8 2qh9 2qhlO

• IPF 177 XX 178 XX XX 84 137 138 135 85 144 111 142 LO LO
♦ lpf 177 xx 178 xx xx , 34 137 138 135 85 144 HI 142 10 10
or2 lpf I , 84 137
or2 lpf2 , 138 135
nor2 lpf3 , Ipfl lpf2
nor2 lpf4 , lpfl lpf3
nor2 lpf5 , lpf3 lpf2
nor2 xx , lpf4 lpf5
inv 177 , xx
or2 lpf6 . 85 144
or2 lpf7 , 111 142
nor2 lpf8 , lpf6 lpf 7
nor2 lpf9 , lpf6 lpf8
nor2 lpf10 , lpf8 lpf7
nor2 xx , lpf9 lpf10
inv 178 , xx
or2 xx , 10 10

♦ 3QD 180 179 169 183 106 143 149 145 140 71 181 83 182 82
• 3qd 180 179 169 183 , 106 143 149 145 140 71 181 83 182 82
inv 3qdl , 106
inv 3qd2 , 71
nor2 3qd3 , 106 143
nor2 3qd4 . 3qdl 149
nor2 3qd5 , 106 145
nor2 3qd6 , 3qdl 140
nor2 3qd7 , 71 181
nor2 3qd8 , 3qd2 83
nor2 3qd9 , 71 182
nor2 3qdl0 . 3qd2 82
nor2 180 , 3qd3 3qd4
nor2 179 , 3qd5 3qd6
nor2 169 , 3qd7 3qd8
nor2 183 . 3qd9 3qdl0

• 4QD 175 176 172 174 106 128 127 129 90 106 91 94 92 93
• 4qd 175 176 172 174 , 106 128 127 129 90 106 91 94 92 93
inv 4qdl . 106

inv 4qd2 , 106
nor2 4qd3 , 106 128
nor2 4qd4 , 4qdl 127
nor2 4qd5 , 106 129
nor2 4qd6 , 4qdl 90
nor2 4qd7 , 106 91
nor2 4qd8 . 4qd2 94
nor2 4qd9 , 106 92
nor2 4qdl0 , 4qd2 93
nor2 175 , 4qd3 4qd4
nor2 176 . 4qd5 4qd6
nor2 172 . 4qd7 4qd8
nor2 174 , 4qd9 4qdW

♦ 3Qti 170 173 105 107 102 66f 114 89 109 141 147 133
• 3qh. 170 173 , 105 107 102 66 114 89 109 141 147 133
inv 3qhl , 105
inv 3qh2 , 107
nor3 3qh3 , 105 107 102
nor3 3qh4 , 3qhl 107 66
nor3 3qh5 , 105 3qh2 114
nor3 3qh6 , 3qhl 3qh2 89
nor3 3qh7 , 105 107 109
nor3 3qh8 , 3qhl 107 141
nor3 3qh9 . 105 3qh2 147
nor3 3qhl0 , 3qhl 3qh2 133
nor4 170 , 3qh3 3qh4 3qh5 3qh6
nor4 173 , 3qh7 3qh8 3qh9 3qhl0

• 4QH 74 XX 171 184 LO LO LI 163 LO LO LO LO
♦ 4qh 74 xx , 171 184 10 10 11 163 10 10 10 10
inv 4qhl , 171

inv 4qh2 . 184
nor3 4qh3 , 171 184 10
nor3 4qh4 , 4qhl 184 10
nor3 4qh5 . 171 4qh2 11
nor3 4qh6 . 4qhl 4qh2 163
nor3 4qh7 . 171 184 10
nor3 4qh8 . 4qhl 184 10
nor3 4qh9 , 171 4qh2 10
nor3 4qhl0 . 4qhl 4qh2 10
nor4 74 , 4qh3 4qh4 4qh5 4qh6
nor4 XX , 4qh7 4qh8 4qh9 4qhl0

♦ 5QH 181 182 171 184 185 168 166 180 186 167 165 179

♦ 5qh 181 182 , 171 184 185 168 166 180 186 167 165 179
inv 5qhl , 171
inv 5qh2 . 184
nor3 5qh3 . 171 184 185
nor3 5qh4 . 5qhl 184 168
nor3 5qh5 , 171 5qh2 166
nor3 5qh6 , 5qhl 5qh2 180
nor3 5qh7 , 171 184 186
nor3 5qh8 , 5qhl 184 167
nor3 5qh9 , 171 5qh2 165
nor3 5qhl0 , 5qhl 5qh2 179
nor4 181 . 5qh3 5qh4 5qh5 5qh6
nor4 182 , 5qh7 5qh8 5qh9 5qhl0

A4.ll

A4.12

• 6QH 171 184 105 107 187 177 188 178 190 189 191 192
• 6qh 171 184 , 106 107 187 177 188 178 190 189 191 192
inv 6qhl , 105
inv 6qh2 , 107
nor3 6qh3 . 105 107 187
nor3 6qh4 , 6qhl 107 177
nor3 6qh5 , 105 6qh2 188
nor3 6qh6 , 6qhl 6qh2 178
nor3 6qh7 , 105 107 190
nor3 6qh8 , 6qhl 107 189
nor3 6qh9 , 105 6qh2 191
nor3 6qhl0 , 6qhl 6qh2 192
nor4 171 , 6qh3 6qh4 6qh5 6qh6
nor4 184 , 6qh7 6qh8 6qh9 6qhl0

• 7QH 185 186 105 106 159 85 86 84 156 111 153 138
• 7qh 185 186 . 105 106 159 85 86 84 156 111 153 138
inv 7qhl , 105
inv 7qh2 , 106
nor3 7qh3 , 105 106 159
nor3 7qh4 , 7qhl 106 85
nor3 7qh5 , 105 7qh2 86
nor3 7qh6 . 7qhl 7qh2 84
nor3 7qh7 , 105 106 156
nor3 7qh8 , 7qhl 106 111
nor3 7qh9 , 105 7qh2 153
nor3 7qhl0 , 7qhl 7qh2 138
nor4 185 , 7qh3 7qh4 7qh5 7qh6
nor4 186 , 7qh7 7qh8 7qh9 7qhl0

• 2PF 187 XX 188 XX XX 86 158 153 160 159 151 156 152 LO LO
• 2pf 187 xx 188 xx xx , 86 158 153 160 159 151 156 152 10 10
or2 2pfl , 86 158
or2 2pf2 , 153 160
nor2 2pf3 , 2pfl 2pf2
nor2 2pf4 , 2pfl 2pf3
nor2 2pf5 , 2pf3 2pf2
nor2 xx , 2pf4 2pf5
inv 187 , xx
or2 2pf6 , 159 151
or2 2pf7 , 156 152
nor2 2pf8 , 2pf6 2pf7
nor2 2pf9 . 2pf6 2pf8
nor2 2pflO , 2pf8 2pf7
nor2 xx , 2pf9 2pfl0
inv 188 , xx
or2 xx , 10 10

• PK 190 191 XX 189 XX 192 108 157 153 148 150 156 131 139 134 146
• pk 190 191 xx 189 xx 192 , 108 157 153 148 150 156 131 139 134 146
nor3 190 . 108 157 153
nor3 191 , 148 150 156
nor2 189 , 131 139
inv xx , 189
nor2 192 , 134 146
inv xx . 192

APPENDIX 5

BLOCK DATA Subroutine SETUP

A5.1

Appendix 5 presents the BLOCK DATA subroutine SETUP which initializes the

data and file strucure of program VICTOR.

A5.2

block data setup

c setup the data structure, file structure, and the machine
c dependent parameters in program, victor

c "
c define the variable array sizes, all parameter statements in
c the entire programrust be changed if these sizes are changed.
c-- — - - *

c Ibnvm: number of predefined library cells
c ndmax: ynaxxmum,number of nodes in the circuit
c maxpi: rnaxvrunnumber of prxmary input nodes in the circuit
C kio: rnaxvrun number of input /output nodes per cell

parameter (IbnumzlOO, ndmax=10000, maxpi-120, kio-200)

c — " * "

c define the data structure (basic comnon block arrays)
c — - "

comnon /lulist/ lu(10)
c lu(lO): device number assignment

comnon Aikfile/ tmpfil (20)
c tmpfil (20): temporary xmrk files

comnon /iofile/ inpf, outf
c inpf, outf: user-specified input and output file nones

comnon Awdnon/ libr (Ibnvm), lognod(ndmax)
c libr (Ibnvm): library cell nones and output/input node count
c lognod(ndmax): names of circuit nodes and composite fanout
c branch nones

comnon /nodind/ list (ndmax),ndf out (ndmax) ,ndlev (ndmax)
c list (ndmax): scratch array for general storge:
c node fanin in modal e INPROC
c fanout node root index in module OBSERV
c sorted array pointers in module REPROC
c ndfout (ndmax): node fanout
c ndlev(ndmax): node level

comnon /ckttop/ inpckt(2*nan%x), levord(ndmax/2)
c inpckt (2*nanax): machine-readable circuit description as a
c set of standard cell entries of the form:

c °c cell index (libr array index of cell)
c negative cell output node index
c

c negative cell output node index
c positive cell input node index
c
c positive cell input node index
c uhere cell index - libr array index of cell none
c and node index = lognod array index of node none

A5.3

c levord(ndmax/2): levelized cell list: list of inpckt indeces
c corresponding to cells in ascending order
c of their level

comnon /actsiz/ npiel ,npoel tndel ,ndlog ,ncell .ninput,nleve I
c npiel,npoel: number of primary inputs and primary outputs
c ndel,ndlog: number 0/ circuit nodes and number of
c fault locations in the circuit
c ncell: number of circuit cells
c ninput: element count in array inpckt
c nlevel: number of circuit levels

comnon /nodcol/ conO(ndmax), coni(ndmax),obs (ndmax), lab (kio)
c conO(ndmax): node 0-control lability label (reset pattern)
c conl (nomax): node 1-control lability label (set pattern)
c obs(ndmax): node observability label (monitor pattern)
c lab (kio): scratch pad array for label calculations

comnon /node 02/ Iwt0(ndmax),li\izO(nanax). Iwt 1(ndmax), Isizl (ndmax),
+ Iwt0 (ndmax), Isizo (ndmax) kouts (kio), kins (kio),nout,nin,
+ lwt(kio),lsiz(kio), lev(k'io)

c Iwt0(ndmax), IsizO(ndmax): reuet (0) weight and size
c Iwtl (ndmax), Isizl (ndmax): se\ (1) weight and size
c Iwto(ndmax), Isizo (ndmax): monitor weight and size
c kouts (kio), kins (kio): ce.'.I output and input node indeces
c nout.nin: ce.'.l .output and input node counts
c Iwt(kio),Isiz (kio),lev(kio): acratch weight, size, and level arrays
c for cell testability calculations

comnon /tesvec/ veclis(nantx)
c veclis(n±max): sorted test vectors in decreasing order of
c the detected faults per vector

comnon /actest/ nirred.nred.nfcol
c nirred.nred.nfcol: number of guaranteed irredundant and
c potentially redundant faults
c nfcol: irredundant fault count after fault collapsing

c !!! do not change lengths of the following character variables .'.'.'
c unless you are willing to update all occurencies in the program.

character*maxpi, conO, conl, obs, lab, veclis
character*40 tmpfil, inpf. outf, libr*30. lognod*72

c --

c file structure: file nones and logical unit assignment
c -- - -

data bnpfil /
+ 'vic.io'. 'vic.syn', 'vic.flo', 'vic.fb', 'vic.net'.
+ 'vie.red', 'vic.vec', 'vic8', 'vic9'. 'viclO'.
+ 'vicll'. 'vie 12', 'vie 13', 'vie 14', 'vie 15',
+ 'vie 16', 'vie 17', 'vie IB', 'vie 19', 'vic20'/

c tmpfil (1) (vic.io): user-specified input and output file nones
c tmpfil (2) (vic.syn): circuit description in standard form
c tmpfil (3) (vic.flo): floating nodes and wired logic
c tmpfil(4) (vic.fb): boundary of feedback loop area

A5.4

tmpfil (5) (vic.net):
tmpfil(6) (vie.red):

tmpfil (7) (ic .-vec):
tmpfil (8) - tmpfil (20):

vic8-vic20

machine-readable circuit net list
potentially redundant faults and aborted
test vectors
test vectors for irredundant faults

spare files for future extensions

c device number assignments for vax/unix (machine dependent):
c 1-4 = input files; 5 = standard input (from terminal)
c 7-10 = output files; 6 - standard output (to terminal)

data lu /1,2,3,4,5,6, 7.8,9,10/

library cell names and cell output and input node count

data
+ libr(l) /'and2
+ libr(3) /'andA
+ libr(5) /'and6
+ libr(7) /'and8

out=l in=2'/,
out-1 in=4'/,
out-1 inr=6'/,
out-1 in=8'/,

+ libr(9) /'aoi21 out-1 in=3'/%
+ libr(ll)/'aoi31 out=l in=4'/,
+ libr(13)/'inv out-1 in=l'/.

out-1 in=2'/,
out=l in=4 '/,
out-1 in^6'/,
out-1 in=8'/,

+ libr(15)/'nand2
+ Ubr(17)/'nand4
+ libr (19) /'nande
+ libr(21)/'nand8

data
+ libr(23)/'nor2
+ libr (25)/'nor4
+ libr (27)/'nor 6
+ libr (29)/'nor8

out-1 in=2'/,
out-1 in=4'/,
out=i in=6'/,
out-1 in=8'/,

+ Hbr(31)/'oai21 out=l in=3'/,
+ Ubr(33)/'oai31 out-1 in=4'/,

+ libr(35)/'or2 out=l in*2'/,
+ libr (37)/'or4 out-1 xre=4'/,
+ libr(39)/'or6 out-1 in=6'/,
+ libr(41)/'or8 out-1 in=8'/,

+ libr(43)/'trag out-1 in=2'/,
+ Hbr(45)/'xor2 out=i in=2'/

end

libr(2) /'and3 out-1 in=3'/
libr(4) /'andS out=l in=S/
libr(6) /'and7 out-1 in=7'/
libr(8) /'and9 out-1 in=3'/

libr(10)/'aoi22 out-1 in^4'/
libr(12)/'buf out-1 xn=l'/
libr(14)/)mux2 out=l in=3'/

Ubr(16)/'nand3
Ubr(18)/'nand5
libr(20)/nand7
libr(22)/"nand9

out-1 in^3'/
out-1 in^5'/
out-1 iwz7'/
out=l in^9'/

libr(24)/'nor3 out=l in=3'/
libr(26)/'nor5 out=l in^5'/
libr (28)/'nor 7 out-1 in=7'/
libr(30)/'nor9 out=l in=9'/

libr(32) /"'oa%22 out-1 in=4'/
Hbr(34)/'oai33 out=l in=6'/

libr(36)/'or3
libr(38)/'or5
libr(40)/'or7
libr(42)/'or9

oufr=l vn=3'/
out-1 vn=5'/

out=l in=7'/
out-1 in=9'/

libr(44)/'xnor2 out=l in=2'/

APPENDIX 6

Program VICTOR Source listing

A6.1

Appendix 6 contains the complete FORTRAN source code ofprogram VICTOR.

To obtain copies of Appendix 6 address inquiries; to:

Pamela Bostelman
Industrial Liaison Program
499A Cory Hall
University of California
Berkeley, CA 94720
tel: (415) 642-8312

R.1

REFERENCES

[Aho 74] A. V. Aho, J. E. Hopcroft, and J. D. UUman. 77ie Design of and Analysis

of Computer Algorithms, Addison-Wesiey, 1974.

[Agrawal 82] V. D. Agrawal and M. R. Mercer, 'Testability Measures —What Do

They Tell Us?", Proceedings International Test Conference, Philadel

phia, Nov. 1982, pp. 391-396.

[Akers 76] S. B. Akers, "A Logic System for Fault Test Generation," IEEETran

sactions on Computers, Vol. C-25, June 1976, pp. 620-630.

[Akers 82] S. B. Akers and B. Krishnamurthy, "A Test Counting Approach to

Testability Analysis," private communication, April 1982.

[Ando 80] H. Ando, 'Testing VLSI with Random Access Scan," Digest of Papers

Compcon 80, San Francisco, Feb. 1980, pp. 50-52.

[ANSI 78] American National Standard Programming Language FORTRAN,

ANSI X3.9-1978, American National Standards Institute, New York,

1978.

[Armstrong 66] D. B. Armstrong, "On finding a Nearly Minimal Set of Fault

Detection Tests for Combinational Logic Nets," IEEE Transactions on

Electronic Computers, Vol EC-15. Feb. 1966. pp. 86-73.

[Arzoumanian 81] Y. Arzoumanian and J. Waicukauski, "Fault Diagnosis in an

LSSD Environment." Proceedings 1981 IEEE Test Conference, Phi

ladelphia, Oct 1981, pp. 86-86.

R.2

[Avizienis 82] A. Avizienis. "The Four-Universe Information System Model for

the Study of Fault-Tolerance," Digest of FTCS-12, 12th Annual Inter

national Symposium, on Fault-Tolerant Computing, Santa Monica,

June 1982. pp. 6-13.

[Eardell 82] P. H. Bardell, "On a Testability Measure for Random Pattern Test

ing," private communication, April 1982.

[Eeh 82] C. C. Beh, K. H. Arya, C. E. Radke, and K E. Torku, "Do Stuck Fault

Models Reflect Manufacturing Defects," Proceedings IEEE Interna

tional Test Cbnference, Philadelphia, Nov. 1982. pp. 35-42.

[Etennets 80] R. G. Bennets, G.D. Robinson, and C. Maunder, "Computer-Aided

Measure for Logic Testability: the CAMELOT Program," Proceedings

IEEE International Conference on Circuits and Computers, Port

Chester. Oct. 1980, pp. 1162-1185.

[Berg 82] W. C. Berg and R. D. Hess, "COMET: ATestability Analysis and Design

Modification Package," Proceedings International Test Conference,

Philadelphia, Nov. 1982, pp. 364-378.

[Bemhard 81] R. Bernhard, "#5: Lessons from the Military," Special Report:

Reliability, IEEE Spectrum, Vol. 18, Oct. 1981. pp. 73-78.

[Bernhard 82] R. Bernhard. "Rethinking the 256-kb RAM," IEEE Spectrum, Vol.

19. May 1982, pp. 46-51.

[Blume 83] H. M. Blume, Jr.. private communication, Jan. 1983.

[Bose 82] A. K. Bose, P. Kozac. C.-Y. Lo. H. N. Nham. E. Pacas-Skewes. K. Wu.

"A Fault Simulator for MOS LSI Circuits," Proceedings 19th Design

R.3

Automation Conference, LasVegas, June 1982, pp. 400-409.

[Bottorff 77] P. S. Bottorfl. R. E. France, N. H. Garges. and E. J. Orosz. "Test

Generation for Large Logic Networks." Proceedings 14th Design Auto

mation Conference, New Orleans, June 1977, pp. 479-485.

[Bottorff 79] P. S. Bottorff. R. E. France, and H. C. Godoy, "Automatic Test

Generation for LSI Chips and Printed Circuit Boards," Digest of Techn

ical Papers, 1979 International Solid-State Circuits Conference, New

York. Feb. 1979. pp. 252-253.

[Bottorff 80] P. S. Bottorfl, "Computer Aids to Testing - An Overview," Com

puter Design Aids for VLSI Circuits, Sijthoff&Noordhoff International

Publishers. The Hague. 1981. pp. 417-464.

[Bottorff 81] P. S. Bottorff. "Partitioning Large LSSD Networks for Test Gen

eration," presentation at the 4th Annual Workshop on Design for Tes

tability, Vail, April 1981.

[Breuer 76] M. A. Breuer and A. D. Friedman, Diagnosis & Reliable Design of

Digital Systems, Computer Science Press, 1976.

[Breuer 78] M. A. Breuer. "New Concepts in Automated Testing of Digital Cir

cuits," Proceedings Symposium on Computers-Aided Design of Digital

Electronic Circuits and Systems, Brussels. Belgium. Nov. 1978. pp.

57-80.

[Breuer 79] M. A. Breuer and A. D. Friedman. "TEST/80 - A Proposal for and

Advanced Automatic Test Generation System." Proceedings IEEE

AUTOTESTCON, Oct. 1979, pp. 305-312.

R.4

[Carter 82] W. C. Carter, "Signature Testing with GuaranteedBounds for Fault

Coverage," Proceedings IEEE International Test Conference, Phi

ladelphia, Nov. 1982, pp. 75-82.

[Clegg 73] F. Clegg. "Use of SPOOFs in the Analysis of Faulty Logic Networks,"

IEEE Transactions on Cttmputers, Vol. C-22, March 1973. pp. 229-234.

[Cliff 80] R. A. Clifl. "Acceptable Testing of VLSI Components Which Contain

Error Correctors," IEEE Journal of Solid-State Circuits, Vol. SC-15,

Feb. 1980, pp. 61-70.

[Collins 82] C. A. Collins, "IBM 3081 System Overview and Technology,"

Proceedings 19th Design Automation Conference, Las Vegas, June

1982, pp. 75-82.

[Dandapani 74] R. Dandapani and S. Reddy, "On the Design of Logic Networks

with Redundancy and Testability Considerations," IEEE Transactions

on Computers, Vol. C-24, Nov. 1974. pp. 1139-1149.
•

[Danner 79] F. Danner and W. Consolla, "An Objective PCB Rating System."

Proceedings 1979 IEEE Test Conference, Cherry Hill, Oct. 1979. pp.

23-28.

[DasGupta 82] S. DasGupta, P. Goel, R. G. Walther, and T. W. Williams, "A Varia

tion of LSSD and Its Implication on Design and Test Pattern Genera

tion in VLSI," Proceedings IEEE International Test Conference, Phi

ladelphia. Nov. 1982, pp. 63-66.

[Dejka 77] W. J. Dejka. "Measure of Testability in Device and System Design."

Proceedings 20th Midwest Symposium, on Circuits and Systems, Aug.

R.5

1977, pp. 39-52.

[Dunning 81] B. Dunning and P. Kovijanic, "Demonstration of a Figure of Merit

for Inherent Testability," Proceedings IEEE AUTOTESTCON, Orlando,

Oct. 1981. pp. 515-520.

[Dussault 78] J. A. Dussault. "A Testability Measure," Proceedings Semicon

ductor Test Conference, Cherry Hill, Oct. 1978, pp. 113-116.

[Eichelberger 77] E. B. Eichelberger and T. W. Williams. "A Logic Design Struc

ture for LSI Testability," Proceedings 14th Design Automation Confer

ence, New Orleans, June 1977, pp. 462-468.

[Fong 82a] J. Y. 0. Fong, "A Generalized Testability Analysis Algorithm for Digi

tal Logic Circuits," Proceedings IEEE International Symposium on

Circuits and Systems, Rome, May 1982, pp. 1160-1163.

[Fong 82b] J. Y. 0. Fong;. "On Functional Controllability and Observability

Analysis," Proceedings IEEE International Test Conference, Philadel

phia, Nov. 1982, pp. 170-175.

[Frohwerk 77] R. A. Frohwerk. "Signature Analysis: A New Digital Field Service

Method," Hewlett-Packard Journal, May 1977, pp. 2-8.

[Fujiwara 82] H. Fujiwara and S. Toida. "The Complexity of Fault Detection

Problems for Combinational Logic Circuits," IEEE Transactions on

Computers, Vol. C-31. June 1982, pp. 555-560.

[Funatsu 75] S. Funatsu, N. Wakatsuki, and T. Arima, "Test Generation Sys

tems in Japan," Proceedings 12th Design Automation Symposium,

June 1975. pp. 114-122.

R.6

[Fung 82] H. S. Fung and J. Y. 0. Fong, "An Information Flow Approach to

Functional Testability Measures," Proceedings IEEE International

Conference on Circuits and Computers, New York, Sept. 1982. pp.

460-463.

[Goel 81] P. Goel and B. C. Resales, "PODEM-X: An Automatic Test Generation

System for VLSI Logic Structures," Proceedings 18th Design Automa

tion Cbnference, Nashville, June 1982, pp. 260-268.

[Goel 82a] D. K. Goel and R. M. McDermott, "An Interactive Testability Analysis

Program —ITTAP," Proceedings 19th Design Automation Conference,

Las Vegas. June 1982, pp. 581-5B6.

[Goel 82b] P. Goel and M. T. McMahon, "Electronic Chip-in-Place Test,"

Proceedings IEEE International Test Conference, Philadelphia. Nov.

1982, pp. 83-90.

[Goldstein 79] L. H. Goldstein, "Controllability/Observability Analysis of Digital

Circuits." IEEE Transactions on Circuits and Systems, Vol. CAS-26,

Sept. 1979. pp. 685-691.

[Goldstein 80] L. H. Goldstein and E. L. Thigpen. "SCOAP: SANDIA

Controllability/Observability Analysis Program," Proceedings 17th

Design Automation Conference, Minneapolis, June 1980, pp. 190-196.

[Grason 79] J. Grason, "TMEAS, a Testability Measurement Program." Proceed

ings 18th Design Automation Conference, San Diego. June 1979. pp.

156-161.

[Hayes 71] J. P. Hayes. "A NAND Model for Fault Diagnosis in Combinatorial

R.7

Logic Networks." IEEE Transactions on Computers, Vol. C-20, Dec.

1971. pp. 1496-1506.

[Hayes 78] J. P. Hayes, Computer Architecture and Organization, McGraw-Hill.

1978.

[Hayes 82] J. P. Hayes, "A Fault Simulation Methodology for VLSI," Proceed

ings 19th Design Automation Conference, Las Vegas, June 1982. pp.

393-399.

[Hess 82] R. D. Hess, "Testability Analysis: An Alternative to Structured

Design for Testability," VLSI Design, March/April 1982. pp. 22-27.

[Ibarra 75] 0. H. Ibarra and S. K. Sahni. "Poiynomially Complete Fault Detec

tion Problems," IEEE Transactions on Computers, Vol. C-24, March

1975, pp. 242-249.

[IEEE 77] IEEE Standard Dictionary of Electrical & Electronics Terms, The

Institute of Electrical and Electronics Engineers, Inc., 1977.

[Jensen 82] L. Jensen, Investigation of Commercially Auailable Programs and

Algorithms for Automatic Test Pattern Generation, Christian Rovsing

A/S Technical Report, Copenhagen, September 1982.

[Keiner 77] W. Keiner and R. West. "Testability Measures." Proceedings AUTO-

TESTCON 1977, pp. 49-55.

[Kirkland 83] T. Kirkland and V. Flores, "Software Checks Testability and Gen

erates Tests of VLSI Design," Electronics, Vol. 56. No. 5, March 10,

1983. pp. 120-124.

R.8

[IGtano 80] Y. Kitano. S. Kohda. H. Kikuchi. and S. Sakai. "A 4Mb Full Wafer

ROM." Digest of Technical Papers, 1980 International Solid-State Cir

cuits Conference, San Francisco, Feb. 1980, pp. 150-151.

[Khuth 73] D. E. Knuth. The Art of Computer Programming, Volume 1/Funda-

mental Algorithms, Addison-Wesley, 1973.

[Koenemann 79] B. Koenemann, J. Mucha, G. Zwiehoff, "Built-in Logic Block

Observation Techniques," Proceedings 1979 IEEE Test Conference,

Cherry Hill, Oct. 1979, pp. 37-41.

[Kovijanic 79] P. G. Kovijanic, 'Testability Analysis," Proceedings 1979 IEEE

Test Conference, Cherry Hill, Oct. 1979, pp. 310-316.

[Kovijanic 81] P. G. Kovijanic, "Single Testability Figure of Merit," Proceedings

IEEE Test Conference, Philadelphia, Oct. 1981, pp. 521-529.

[Kuck 78] D. J. Kuck, The Structure of Computers and Computations, John

Wiley 8c Sons, 1978.

[Lee 74] H.-P. S. Lee and E. S. Davidson, "Redundancy Testing in Combina

tional Networks," IEEE Transactions on Computers, Vol. C-23, Sep.

1974, pp. 1029-1047.

[Levi 81] M. W. Levi, "CMOS is Most Testable." Proceedings 1981 International

Test Conference, Philadelphia, Oct. 1981, pp. 217-220.

[Lineback 82] J. R. lineback, "CAD Program Evaluates Circuits, Generates

Tests Automatically," Electronics, Vol. 55, No. 22, Nov. 3. 1982, pp.

45-46.

R.9

[Longendorfer 79] B. Longendorfer, "A Testability Measure for Hybrid Cir

cuits," Proceedings 1979 IEEE Test Conference, Cherry Hill, Oct.

1979. pp. 298-305.

[Longendorfer 81] B. Longendorfer, "Computer-Aided Testability Analysis of

Analog Circuitry." Proceedings IEEE AUTOTESTCON, Nov. 1981. pp.

122-127.

[Lowden 79] R. P. Lowden, 'Testing a High Density Logic Masterslice," Digest

of Technical Papers, 1979 International Solid-State Circuits Confer

ence, New York, Feb. 1979, pp. 250-251.

[Mano 80] T. Mano, K Takeya, Y. Watanabe, K Kiuchi, T. Ogawa and K Hirata,

"A 256k RAM Fabricated with Molybdenum-Polysilicon Technology,"

Digest of Technical Papers, 1980 International Solid-State Circuits

Conference, San Francisco. Feb. 1980. pp. 234-235.

[McKenny 80] V. G. McKenny. "A 5V 64k EPR0M Utilizing Redundant Circuitry."

Digest of Technical Papers, 1980 International Solid-State Circuits

Conference, San Francisco, Feb. 1980, pp. 146-147.

[Menzel 82] S. P. Menzel, Testability Analysis considerations of Digital Cir

cuits, M.S. thesis. Department of Electronics. Carleton University.

Ottawa. Canada. Aug. 1982.

[Mercer 81] M. R. Mercer. V. D. Agrawal. and C. M. Roman, 'Test Generation for

Highly Sequential Scan-Testable Circuits Through Logic Transforma

tion." Proceedings 1981 IEEE Test Conference, Philadelphia, Oct.

1981. pp. 561-565.

R.10

[Muehldorf 81] E. I. Muehldorf and A. D. Savkar. "LSI Logic Testing —An Over

view," IEEE Transactions on Computers, Vol. C-30, Jan. 1981, pp. 1-17.

[Newton 81] R. A. Newton. "A Blue Collar Language for CAD." Digest of Papers

Compcon 81, San Francisco, Feb. 1981, pp. 81-82.

[Parker 75a] K P. Parker and E. J. McCluskey, "Analysis of Logic Circuits with

Faults Using Input Signal Probabilities," IEEE Transactions on Com

puters, Vol. C-24. May 1975. pp. 573-578.

[Parker 75b] K. P. Parker and E. J. McCluskey. "ProbabiUstic Treatment of

General Combinational Networks," IEEE Transactions on Computers,

Vol. C-24. June 1975. pp. 668-670.

[Ratiu 81] I. M. Ratiu, "Macromodels for Testability Analysis," presentation at

the 4th IEEE Workshop on Design forTestability. VaiL April 1981.

[Ratiu 82] I. M. Ratiu. A. Sangiovanni-Vincentelli. and D. 0. Pederson, "VICTOR:

A Fast Testability Analysis Program." Proceedings IEEE International

Test Conference, Philadelphia. Nov. 1982, pp. 397-401.

[Roth 66] J. P. Roth. "Diagnosis of Automata Failures: A Calculus and a

Method." IBM Journal of Research and Development, Vol. 10. July

1966. pp. 278-293.

[Rutman 72] R. A. Rutman. Fault-Detection Test Generation for Sequential

Logic by Heuristic Tree Search, IEEE Computer Repository Paper No.

R-72-1B7.

[Savir 82] J. Savir, Good CantrolabUity and Observability Do Not Guarantee

Good Testability, IBM Research Report. RC 9432 (#41597). June 1982.

R.11

[Schertz 72] D. R. Schertz and G. Metze. "A New Representation for Faults in

Combinational Circuits." IEEE Transactions on Computers, Vol. C-21,

Aug. 1972, pp. 858-866.

[Schneider 67] P. R. Schneider, "On the Necessity to Examine D-chains in

Diagnostic Test Generation —An Example," IBM Journal of Research

and Development, Vol. 11, Jan. 1967, pp. 114.

[Si 78] S.-C. Si, "Dynamic Testing of Redundant Logic Networks." IEEE Tran

sactions on Computers, Vol. C-27, Sep. 1978, pp. 82B-832.

[Smith 78] J. E. Smith, "On the Existence of Combinational Circuits Exhibiting

Multiple Redundancy." IEEE Transactions on Computers, Vol. C-27,

Dec. 1978, pp. 1221-1225.

[Smith 79] J. E. Smith. "Comments on 'Redundancy Testing in in Combina

tional Networks,'" IEEE Transactions on Computers, Vol. C-28, March

1979. pp. 261-262.

[Stephenson 74] J. E. Stephenson. A Testability Measure for Register Transfer

Level Digital Circuits, Ph.D. dissertation, Department of Electrical

Engineering. Carnegie-Mellon University, Pittsburgh, Pennsylvania,

Nov. 1974.

[Stephenson 76] J. E. Stephenson and J. Grason. "A Testability Measure for

Register Transfer Level Digital Circuits," Proceedings 6th Interna

tional Symposium, on Fault Tolerant Computing, Pittsburgh, June

1976, pp. 101-107.

[Susskind 81] A Susskind, Testability and Reliability of LSI. RADC Report.

R.12

RADC-TR-80-3B4, Jan. 1981. pp. 99-122.

[Takasaki 81] S. Takasaki, M. Kawai. S. Funatsu. and A. Yamada. "ACalculus of

Testability Measure at the Functional Level." Proceedings 1981 Inter

national Test Conference, Philadelphia, Oct. 1981, pp. 95-101.

[Timoc 82] C. C. Timoc. private communication, April 1982.

[To 73] K. To. "Fault Folding for Irredundant and Redundant Combinational

Circuits." IEEE Transactions on Computers, Vol. C-22. Nov. 1973. pp.

1008-1015.

[Trischler 81] E. Trisclaler, private communication, Sept. 1981.

[Van Egmond 82] K Van Egmond. LITE: Automatic Transforrnjation of Logic

Equations mJo Testability Equations," M.S. report, Department of

Electrical Engineering and Computer Sciences, University of Califor

nia, Berkeley, Dec. 1982.

[Wadsack 82] R. L.Wadsack, "Fault Modeling and Logic Simulation of CMOS and

MOS Integrated Circuits," Bell Systems Technical Journal, May-June

1978, pp. 1449-1474.

[Williams 73] M. J. Y. Williams and J. B. Angell, "Enhancing Testability of Large

Scale Integrated Circuits via Test Points and Additional Logic," IEEE

Transactions on Computers, Vol. C-22, Jan. 1973, pp. 46-60.

[Williams 81] W. C. Williams, "#6: Lessons from NASA," Special Report: Reliabil

ity, IEEE Spectrum, Vol. 18, Oct. 1981. pp. 79-84.

[Williams 82] T. W. Williams and K. P. Parker, "Design for Testability —A Sur-

R.13

vey," IEEE Transactions on Computers, Vol. C-31, Jan. 1982, pp. 2-15.

[Yau 71] S. S. Yau and Y. S. Tang, "On the Identification of Redundancy and

Symmetry of Switching Functions," IEEE Transactions on Computers,

Vol. C-20. Dec. 1971, pp. 1609-1613.

	Copyright notice 1983
	ERL-83-27 (1 of 2)
	ERL-83-27 (2 of 2)

