Copyright © 1983, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

M 83 /27
[5] Ages

VICTOR: GLOBAL REDUNDANCY IDENTIFICATION

AND TEST GENERATION

by

I. Ratiu

Memorandum No. UCB/ERL M83/27

9 May 1983

VICTOR: GLOBAL REDUNDANCY IDENTIFICATION
AND TEST SENERATION

by

Ion Ratiu

Memorandum No. UCB/ERL M83/27
9 May 1983

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

VICTOR: Global Redundancy Identification and Test Generation

for VLS] Circuits
Doctor of Philosophy Ion Mircea Ratiu Electrical Engineering
and Computer Sciences
Abstract

During the generation of tests for a digital circuit, most of the effort is
spent on just a few faults. For some gf these faults, even an exhaustive
search cannot find a test, because no _tesf. exists; the fault is redundant, and
the effort has been wasted. For socme others, a test can be found only after
much computation, but most test generation procedures allocate fixed
resources —computer time and memory —per fault anid may stop the compu-
tation before a test is found. These hard-to-test, but detectable faults are
likely to be considered undetectable, hence lumped with the redundant
faults, and effort has been wasted again. Therefore, efficient test generation
for a digital circuit requires advance knowledge of ihe redundant and the

hard-to-test irredundant faults.

This report describes VICTOR (VLSI ldentifier of Controllability, Testabil-
ity, Observability, and Redundancy), a linear complexity method for global
redundancy identification and test generation for scan-testable VLSI circuits.
In four passes throﬁgh the circuit fault list, VICTOR identifies all redundant
and hard-to-test irredundant faults in a géneral combinational circuit and
generates test vectors for most irredundant faults, which are then collapsed
and the corresponding test vectors are compacted. The complexity of the
algorithm and of the data structure grows linearly with circuit size and pri-
mary input count. Several circuit examples are analyzed to illustrate the

operations in the algorithm.

The program implementation of VICTOR consists of approximately 4300
lines of ANSI FORTRAN 77.

ACKNOWLEDGEMENTS

The author wishes to express his gratitude to his research advisor, Prof.
Donald O. Pederson, for guidance and support, and to Constantin C. Timoc for
countless discussions and expert technical hints in the area of testing
throughout the development of this dissertation. He also gratefully ack-
nowledges advice and suggestions from Paul Bardeil (IBM), Thomas Villiams
(IBM). Kenneth Parker (Hewlett-Packard), Shigeru Takasaki (NEC), Ray
Mercer (University of Texas, Austin), Vishwani Agrawal (Bell Laboratories),
Erwin Trischier (Siemens), Predrag Kovijanic (SSperry). Alberto Sangiovanni-
Vincentelli, and Antony Fan (University'of Caﬁfomia. Berkeley).

Support for the research presented in this “hesis has been received from
the CMOS IC Design Department and the Computer-Aided Design Department
of Bell Laboratories and is gratefully acknowledged. The author wishes to
thank Eric Iwersen, Hermann Gummel, Ajoy Bose, Bernard Murphy, and Wes-

ley Grant for their encouragement and support.

The author thanks his parents, Rodica and Mircea, for infinite patience

and understanding during his graduate years.

ii

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION
CHAPTER 2: REDUNDANCY AND TESTABILITY ANALYSIS

2.1 INTRODUCTION
2.2 DIGITAL TESTING OVERVIEW
2.2.1 Basic Concepts in Digital Testing
2.2.2 Complexity of the Test Problem
2.2.3 Design for Testability and Testability Analysis
2.3 VLS TESTING ISSUES '
2.3.1 The VLSI Environment Constraints
2.3.2 The Need for New Fault Models in VLSI
2.3.3 The Viability of the Single-Stuck Fault Model
2.3.4 The Testing of Sequential VLSI Circuits
2.3.5 The Level-Sensitive Scan Design Technique
2.4 REDUNDANCY IN DIGITAL NETWORKS
2.4.1 Definition of Redundancy
2.4.2 The Rationale Behind Redundancy
2.4.3 Methods for Redundancy ldentification
2.5 TESTABILITY ANALYSIS OF DIGITAL NETWORKS
2.5.1 Investigative Studies
2.5.2 Early Work
2.5.3 Gate-Level Analysis
2.5.4 Functional-Level Analysis
2.5.5 Hybrid Circuit Analysis

iii

2.5.8 Probabilistic Approach
2.5.7 Algebraic Approach
2.5.8 A Critical View

CHAPTER 3: THEORETICAL FOUNDATION AND STRATEGY IN VICTOR

3.1 INTRODUCTION

3.2 LOGIC CIRCUIT AND FANOUT NODE MODELS
3.2.1 Logic Circuit Model
3.2.2 Fanout Node Model and Terminology

3.3 CIRCUIT AND REDUNDANCY CLASSIFICATION
3.3.1 Classification of Combinational Circuits
3.3.2 Classification of Redundant Faults

3.4 EQUIVALENCE AND IMPLICATION THEOREMS
3.4.1 Signal Dependence and Corivergent Fanout
3.4.2 Redundant Faults and Convergent Fanout

3.5 VICTOR STRATEGY
3.5.1 Goal and Feasibility Conditions
3.5.2 Global Linear Estimation
3.5.3 Control, Monitor, and Test Patterns

3.5.4 The Risk Measure Heuristic

CHAPTER 4: VICTOR ALGORITHM

4.1 INTRODUCTION

4.2 VICTOR TESTABILITY PRIMITIVES
4.2.1 The Set, Reset, and Monitor Pattern
4.2.2 The Risk and Size Testability Measures
4.2.3 Pattern Selection
4.2.4 Pattern Intersection

4.3 CIRCUIT LEVELIZING

iv

28
a7
28
30
30
30
30
31
32
32

38
38
38

41

42
43
45
45
45
45
47
48
50
52

4.4 CONTROLLABILITY CALCULATION
4.4.1 Controllability Initialization
4.4.2 Cell Controllability Calculation

4.5 OBSERVABILITY CALCULATION
4.5.1 Observability Initialization
4.5.2 Cell Observability Calculation

4.6 TEST GENERATION AND REDUNDANCY IDENTIFICATION

4.8.1 Test Generation
4.8.2 Redundancy Identification
4.7 ALGORITHM COMPLEXITY
CHAPTER 5: VICTOR PROGRAM IMPLEMENTATION
5.1 INTRODUCTION '
5.2 PROGRAM STRUCTURE
5.2.1 Module INPROC
5.2.2 Modules CONTRL and OBSERV
5.2.3 Module REPROC
5.3 FILE STRUCTURE
5.3.1 File Name and Circuit Description Files
5.3.2 Connection Error Files
5.3.3 Fault Information Files
5.4 DATA STRUCTURE
5.4.1 File Name Data
5.4.2 Circuit Node Data
5.4.3 Circuit Topology Data
5.4.4 Node Controllability/Observability Data
5.4.5 Test Data
5.5 PROGRAM PORTABILITY

55
57
57
58
60
60
62
65
67
67
87
87
68
73
73
74
74
75
75
76

3 3

78

5.5.1 Choice of FORTRAN 77
5.5.2 Program VICTOR Language
CHAPTER 6: VICTOR PERFORMANCE EVALUATION
6.1 INTRODUCTION
8.2 METHOD CORRECTNESS
6.2.1 Uncontrollable and Unobservable Redundancy
6.2.2 Schneider's Example
8.3 PROGRAM PERFORMANCE
CHAPTER 7: CONCLUSIONS

APPENDIKX 1: The Berkeley FORTRAN 77 Version of SCOAP
APPENDIX 2: VICTOR Cell Library '

APPENDIX 3: Analysis of the 74181 4-bit ALU

APPENDIX 4: Circuit Description of Industrial Example Circuit
APPENDIX 5: BLOCK DATA Subroutine SETUP

APPENDIX 8: Program VICTOR Source Listing

REFERENCES:

79
81
81
81
81
83
89
94

Al.l
A2.1
A3.1
Ad.l
AS5.1
AB.1

R1

CHAPTER 1

INTRODUCTION

Automated generation of tests solves the testing problem for small and
medium size digital circuits. For large sequential circuits, however, most
such techniques are too expensive, since they require vast amounts of data

processing and data storage [Goel 81].

Current very-large-scale-integrated (VLSI) circuits comprise upward of
10,000 logic gates. Automated test generation for a sequential circui.t of this
complexity is simply not feasible. Moreover, most test generation procedures
have difficultiss handling such complex circuits, even if scan-path techniques
[Williams 73] [Funatsu 75) [Eichelberger 77] [Koenemann 78] [Andc 80] [Mercer 81]
are employed and the circuit becomes scan-testable as a combinational cir-
cuit.

When generating tests for a digital circuit, most of the effort is spent on
just a few faults. For some of these faults, even an exhaustive search cannot
find a test, because no test e:dst;s: the fault is redundant [Breuer 76), and the
effort has been wasted. For some others, a test can be found only after much
computation, but most test generation procedures allocate fixed resources —
computer time and memory — per fault and may stop the computation before
a test is found. These hard-to-test, but detectable faults are likely to be con-
sidered undetectable, hence lumped with the redundant faults, and effort has
been wasted again. Therefore, efficient test generation for a digital circuit
requires advance knowledge of the redundant and the hard-to-test irredun-

dant faults.

Several methods for the identification of redundancy in combinational
circuits have been published {Yau 71] [Dandapani 74] [Lee 74] [Smith 78] [Si 78]}.
However, the methods either apply to special classes of circuits only, or are

as complex as the fault detection problem itself.

Recently, a set of fast, heuristic approaches for identifying potential
testing difficulties in a digital circuit - collectively called testability analysis
— have gained much attention. However, testability analysis employs overly
simplifed models for sequential circuits, hence the testability estimates for
sequential circuits are inheréntly erroneous. To facilitate computations, tes-
tability analysis approaches assume input signals to a circuit element to be
independent of each other. Unfortunately, this simplifying assumption proves
to be an Achilles’ heel, since testability ahﬂysis consistently identifies redun-
dant fzults as testable, irredundant ft:;ulté. and thus the method defeats its
purpos: [Ratiu 82] [Agrawal 82].

This report describes VICTOR (VLSI Identifier of Controllability, Testabil-
ity, Observability, and Redundancy), a linear complezity method for global
redundancy identification and test generation for scan-testable VLS circuits.
Two theoretical results are presented: signal dependence is equivalent to con-
vergent fanout, and redundancy implies convergent fanout. Based on these
theorems, potentially redundant faults are introduced as the set of redundant
and hard-to-test irredundant circuit faults, and a method for their
identification is described. For the rest of the faults, the irredundant ones,

tests are generated, and the test vectors are collapsed and compacted.

Chapter 2 reviews redundancy and testability analysis. First, the basic
concepts in digital testing and testing issues specific to VLSI circuits are

described. A detailed analysis of redundancy and its identification metheds

follows, and testability analysis, a fast, heuristic approach for identifying -
potential testing difficulties, is introduced. The various testability analysis

methods are extensively reviewed.

Chapter 3 establishes the theoretical foundation and the strategy in VIC-
TOR. the proposed method for redundancy identification and test generation.
After defining the circuit and fanout node models, combinational circuits and
redundant faults are classified based on fanout convergence. An equivalence
theorem for convergent fanout and dependent signals, and an implication
theorem for redundant faults and convergeat fanout are stated and proven.
The strategic goal for VICTOR is sketched out as the development of a global,
linear estimation tool that relies on the risk of convergence and evaluates the

primary input dependencies of every nodelin the circuit.

Chapter 4 presents the VICTOR algorithm and details its four steps. The
VICTOR testability primitives — pattern, risk, and size —are introduced as the
primary input dependencies of a circuit node, the risk of convergence for
these dependencies, and the number of such dependencies, and the pattern
operations — selection and intersection — are defined. Then, circuit leveliz-
ing, controllability calculation, observability calculation, and test generation
and redundancy identification, are described and illustrated on a small cir-

cuit example. An analysis of the algorithm complexity closes the chapter.

Chapter 5 explains the VICTOR program implementation. The program
structure, the files attached during program execution, and the structure of
the circuit and fault data are described in detail and exemplified. The reason
for choosing ANSI FORTRAN 77 and specific language use in program VICTOR

towards program portability are presented.

Chapter 6 deals with the evaluation of the performance of VICTOR, i.e.,
method correctness and program performance. Method correctness is shown
on some pathological circuits small enough to be intuitive, and on a 4-bit ALU,
which is analyzed in detail. For program performance, run time measure-

ments for program VICTOR are given on an industrial circuit example.

Chapter 7 summarizes the VICTOR approach, shows its strengths and

weaknesses, and suggests directions for future research.

Seven appendices are included in this report. A short history of the
development at Berkeley of the FORTRAN 77 version of the SANDIA SCOAP tes-
tability analysis program is given in Appendix 1. Appendix 2 lists the library
of predefined cells. The input data and the VICTOR analysis results for the
74181 4-bit ALU are presented in Appendix 3. and the circuit description of
the industrial example analyzed in Chapter 8 is listed in Appendix 4. Appen-
dix 5 contains the data initialization routine for program VICTOR, and Appen-

dix 8 lists the source code for the entire program.

CHAPTER 2

REDUNDANCY AND TESTABILITY ANALYSIS

2.1. INTRODUCTION

When generating tests for a digital network, a disproportionately small
fraction of the faults is responsible for most of the test generation effort. At
times, an exhaustive search cannot find a test for a fault; no test exists, ‘he
fault is redundant, and the effort has been wasted. Some other faults,
although detectable, require an inordinate amount of computation during
test generation. Since most test generation procedures limit the resources —
computer time and memory —spent on detecting a fault, such hard-to-test
faults may not be detected, hence they may be lumped together with the
redundant faults as "undetectable” faults. Thus, efficient test generation in a
digital network requires advance knowledge of redundant and hard-to-test
faults, therefore methods for redundancy identification or heuristic methods

capable of identifying potential testing difficulties must be used.

This chapter presents some of the basic concepts in digital testing and
analyzes the testing issues specific to a VL3I environment. Then, redundancy
in digital networks is reviewed, and techniques for redundancy identification
in combinational networks are presented. A fast, but approximate method to
identify potential testing difficulties, testability analysis, is introduced, and
the testability various approaches published in the past ten years are

reviewed.

2.2. DIGITAL TESTING OVERVIEW

A comprehensive review of the testing issues is given in the references
[Muehidorf 81]. In this section, the concepts, terms, and notations used in digi-
tal testing are briefly reviewed, and the complexity of the fault detection
problem is presented. Two different solutions to the testing problerr., design
for testability and testability analysis, are introduced.

2.2.1. Basic Concepts in Digital Testing

The process of detecting and identifying the causes of incorrec: circuit
operation is called festing. When detecting a circuit malfunction, relevant
circuit information is processed from "four universes of discourse, arranged
in an ascending order toward the user: (i) physical; (2) logical; (3) informa-
tional; and (4) external, or user's universe" [Avizienis 82]. Each of these four
universes has its own rules and terminology for the undesired event, i.e., the
disruption that produces unexpected and unwanted bebavior of the system as
perceived by the user: failure in the physical universe, fault in the logical
universe, error in the informational universe, and crash in the user’s
universe. The simplest universe to deal with is the logical one, since a vari-
able can have only one out of two possible values, 0 or 1, although it reflects a
variety of failures and causes sundry errors and crashes. In this logical
universe, the undesired event is a fault for which simple rules of Boolean alge-
bra apply. Depending on circuit representation, logic switch or logic gate, the

appropriate fault model is either a switch fault or a logic fault.

The circuit model used most often in testing consists of logic gates and
signal lines connected via primary inputs and primary outputs to the outside

world. In the stuck or stuck-—at fault model, logic gates always operate

correctly, but signal lines to and from the gates may remain fixed uninten-
tionally at a constant logic value (0 or 1). Thus, for an arbitrary signal line K
in the circuit, two faults are possible, K stuck-at-0 and K stuck-at-1, with the
notation K/0 and K/1, respectively. A widely used model in testing is the
single-stuck fault model, in which the circuit contains at most one stuck-at
fault. In the remainder of this report, the single-stuck fault model is

employed.

A test for a fault in a circuit is a sequence of logic 0 and 1 values applied
to the primary inputs that cause at least one erroneous primary output value.
The set of logic 0 and 1 values applied at the same time makes up a test pat-
tern or a test vector; a test usually comprises several patterns. Two faults
are said to be equivalent if any test whiéh detects one of them detects the
other one as well, and no test distinguiéheé between the two. If no test exists
for a fault, the fault and the circuit to which it belongs to are called redun-
dant. If a test exists for every fault in a circuit, both the faults and the cir-
cuit are called irredundant.

A widely used measure of test generation proficiency is the test set foult
coverage, which gives the percentage of detected faults out of all faults in the
circuit. Due to undetectable faults, the highest attainable fault coverage for
a redundant circuit is always less than 100%. Since the number of possible
faults depends exclusively on network topology, fault coverage does not indi-
cate how much of the irredundant part of a circuit has been tested if the cir-

cuit is redundant.

A test for a specific fault detects many other faults on its path from the
primary inputs to the primary outputs, hence Lthe effect of a test on the fauits

of a circuit must be evaluated. The procedure, called fault simulation, also

8

aids in finding tests for isolating the fault in the circuit (fault location) and in '
tracking down a fault based on specific erroneous output values (fault diag-

nosis).

2.2.2. Complexity of the Test Problem

Given an arbitrary combinational circuit with a total of p gates and pri-
mary inputs, does there exist a test generation algorithm that can compute a
test for any detectable fault in p" operations, where r is a finite constant? If

no such algorithm exists, the problem is NPcomplete.

By linking the single fault detection problem to classic combinatorial
problems in complexity theory e.g, the traveling salesman problem, Ibarra
and Sahni [Ibarra 75] prove that the tes_ting problem of combinational circuits
is NP-complete. Moreover, identifying single redundant faults in a combina-
tional circuit is an NP-complete problem aiso. To compound issues even
further, most useful circuits are not combinational, but sequential in nature,
since they contain feedback loops, hence are finite state machines. As is
shown later in this chapter, the complexity of the testing problem for sequen-
tial circuits is an exponential function of the testing problem for combina-

tional circuits.

The test problem is not NP-complete for any combinational circuit. For
instance, ripple-carry adders and decoders, which are known to be easily
testable, and other 2-level monotone/unate circuits are testable in polyno-
mial time [Fujiwara 82].

A frontal attack on the testing problem using automated test generation
(ATG) and fault simulation has worked well in the past yet has become prohi-

bitively expensive or infeasible for current circuit complexity. Goel reports

more than 23 hours of CPU time on a 370/168 computer system for the test

generation and fault simulation of a 50,000 gate circuit [Goel 81].

2.2.3. Design for Testability and Testability Analysis

As an alternative to the traditional approach of testing after design com-
pletion, design for testability addresses the testing problem during design by
building testability into the circuit by design. The approach resembles
preventive medicine; it does not represent a panacea, but it may shrink the
test problem to a manageable size. The price paid for testability by design is
ustally additional hardware and sometimes lower performance. Hence,
design constraints must be weighed carefully before deciding on any design
for testability technique. Three well-known techniques published extensively
in the past are: level-sensitive scan de.sigri (LSSD) [Eichelberger 77], signature
anelysis (SA) [Frohwerk 77]. and built-in logic block observation (BILBO)
[Koznemann 79). For a review of design for testability techniques, see a paper

by Williams and Parker [Williams 82].

Different from design for testability, testability analysis is a fast method
for approximating the difficulty in detecting circuit faults before generating
the test patterns. The resulting information serves as a guide for circuit
redesign for testability and as a good starting point for test generation and
fault simulation. A later section in this chapter presents reviews the various

testability analysis approaches.

2.3. VLSI TESTING ISSUES

In addition to the problems in testing large digital networks, new chal-

lenges arise for the testing of very large scale integrated (VLSI) circuits. Con-

10

straints imposed by the VLSI environment require the use of different fault
models, yet the traditional single-stuck fault model can be still used. Due to
the lack of feasible methods and tools, the testing of sequential VLSI circuits
is extremely difficuit. Therefore, design techniques that allow sequential cir-
cuits to be tested as combinational ones have gained acceptance. With this
assumption, the testing of VLSI can be regarded as the problem of testing

very large but purely combinational networks.

2.3.1. The V1LSI Environment Constraints

The essence of the constraints imposed by the very-large-scale-
integrated (VLSI) environment to design and testing alike is chip complexity.
Integrated circuits with half a million devibes or ten thousand logic gates on a
silicon chip are currently manufactured. If chip density continues to grow at
the same pace as during the past decade, it will double every year or year
and a half, and so will the associated testing difficulties.

Several problems arise from this steadily growing chip complexity. First,
how does one access tens of thousands of gates through a number of pins typ-
ically limited to less than hundred? Even exotic packaging techniques
achieve less than two hundred external input/output connections per chip
[Collins 82); therefore, information flow through a chip resembles two funnels
joined mouth to mouth: a few dozen input pins —thousands of internal signal
lines — a few dozen output pins. Second, are most signals on a chip still
independent of each other? As is shown in Chapter 3, signal convergences
imply dependent signals; hence, the double-funnel eflect causes many such
signals dependencies. Third, do finite-state machines still have a number of

states that can be considered practically finite? Out of the thousands of pos-

11

sible states of current 18 or 32 bit computer architectures [Blume 83], only a
few states are assigned for system operation. Most states should never be
reached during normal operation, thus the risk for unassigned states and ille-

gal operation codes to occur increases with chip complexity.

2.3.2. The Need for New Fault Moclels in VLSI

New fault models are required for VLSI because of developments specific

to the VLSI mainstream technology, MOS (Metal-Oxide-Semiconductor):

(1) merged MOS logic does not map into the traditional elementary logic

gate representation (i.e., AND, OR, NOT, NAND, NOR), and

(2) unconventional failure modes have become statistically significant for

MOS technologies.

To illustrate the first argument, Figure 2.1 depicts a merged MOS logic circuit
and an elementary AND/NOR gate level circuit, both implementing the same

logic function

Z = (AB + C)'.
In the MOS circuit of Figure 2.1(a), the drivers da and db share the load id
with the driver dc, which makes it impossible to assign ld to either just the
AND gate or just the NOR gate of Figure 2.1(b). Also, node I in the gate circuit
lacks an homologue in the MOS circuit; hence, stuck-at faults do not model
the physical MOS circuit failures. Although both circuits implement the same
function, any attempt to establish a structural analogy between the two is
contrived, since the gate circuit lacks enough resolution. For the required
level of detail, a complete fault analysis of such merged logic must resort to

device models instead of gate models [Hayes 82] [Bose 82].

12

| z
A — da
P ——[4b
C

(a)

(b)
21 AND-OR-INVERT Cell z={ab+c)'.
{a) NMOS circuit implementation.
(b) Logic gate representation
Several failure modes that have been ignored in the past without
affecting the chip fault coverage are prevalent in today's silicon implementa-
tions. The risk of multiple failures in a half-a-million device chip is real, can-

not be neglected, and can only increase with chip density. With device

geometries scaling down, in due time, crosstalk among “electronically adja-

13

cent” circuit parts is likely to cause the same pattern sensitivity faults that
plague high-density memory chips. Unfortunately, established memory test-
ing techniques dealing with this aspect, e.g., GALPAT, do not apply directly to

general-purpose circuit chips [Breuer 76].

A prevalent cause of circuit failure in CMOS is a transistor open or short
circuit. The corresponding fault models, stuck-ofl and stuck-on, cannot be
handled easily by traditional testing approaches; a stuck-at fault model
requires almost ten gates [Wadsack 78], whereas the global current-sensing
technique [Levi 81] only detects the presence of the failure and not its loca-
tionn Moreover, stuck-on and stuck-off faults cause sequential -circuit
behavior due to the charging time of the stray output line capacitance. Tech-
niques for their detection exist though: two vectors are assigned per fault,
with the first one applied such that cha;'ge/ discharge delays are controlled to
a known state, and the second one applied for fault detection [Timoc 82]. A
test set capable of detecting all stuck-off and stuck-on faults is also

guaranteed to detect all single stuck-at faults.

2.3.3. The Viability of the Single-Stuck Fault Model

Is the single-stuck fault model of any use in VLSI? Experimental data on
field reject rates shows that if 90-95% of the single-stuck faults are detected,
then most other fault types are detected as well. (Exceptions are faults that
cause sequential behavior, such as bridging faults and CMOS stuck-on and
stuck off faults.) The stuck-at fault model is based on Boolean algebra, there-
fore it has a simple structure, is computationally efficient, and is of general
use. Finally, for a combinational circuit with g nodes, only 2g single-stuck

faults are possible (K/0 and K/1 for each arbitrary node K), which implies

14

linear model complexity. If multiple stuck faults are analyzed, the complex-
ity is an exponential function (37 -1) of the circuit size [Hayes 71].

Recent findings justify the choice of the single-stuck fault model. Most
failures for cascode emitter-coupled logic (CECL) and bipolar circuits can be
modeled as stuck-at faults [Beh 82]. Carter identifies certain techniques for
single-stuck fault detection that find a high percentage of the multiple stuck

faults [Carter 82].

2.3.4. The Testing of Sequential VLSI Circuits

In a widely used testing model for sequential circuits, the circuit is
transformed into an equivalent set of combinational circuits for which tests
ere generated [Breuer 78). For this tr'ansformation. the sequential circuit is
represented using the Huffman model, which consists of a combinational cir-
cuit block, a feedback path, and a register in the feedback path. The
equivalent combinational circuit is obtained by breaking up the feedback
path and replicating the combinational block and the register for each state
of the finite state machine that the sequential circuit implements. Of course,
a k-bit register generates 2* states, hence the complexity of the equivalent
combinational model and of its accompanying computations is exponential

compared to the complexity of the initial combinational block.

In spite of powerful computer aids for testing, it is unlikely that an ATG
will achieve a reliable fault coverage higher than 90% for complex sequential
circuits exceeding 5000 logic gates [Bottorfl 80). Moreover, a study [Jensen 82]
of the commercially available ATG programs (LASAR, TEGAS-5, and HILO-2)
finds that highly sequential networks, even for small circuits, require exten-

sive computer resources.

15

2.3.5. The Level-Sensitive Scan Design Technique

A solution which eliminates the sequential testing problem altogether is
to design the circuit such that all machine states can be easily controlled or
observed, i.e., easily set or checked by breaking up the feedback paths. Out
of several such methods published in the past [Williams 73] [Funatsu 75]
[Eichelberger 77] [Koenemann 79] [Ando 80] [Mercer 81}, the Level-Sensitive
Scan Design approach has gained acceptance with many mainframe computer

and system manufacturers.

Level-Sensitive Scan Design (LSSD) [Eichelberger 77] is a design for testa-
bility technique which allows full combinational testing of a s;equential circuit,
be it a chip, card, subsystem, or full system, by imposing a set of design rules

following two conce:pts:

{1) all internal storage elements (other than memory) have to function also

as shift registers, and

(2) circuit operation must not depend on rise time, fall time, or minimum

delay of the separate circuits.

LSSD is a well established technique by now. Over the years, it has influenced
fault diagnosié methods [Arzoumanian 81] and automatic test generation pro-
cedures for a variety of environments: logic masterslices [Lowden 79), LSI
chips and printed circuit boards [Bottorfl 79], muitiple chip VLSI packages

[Goel 82b), and large systems [Bottorfl 77 & 81].

The LSSD approach is undergoing steady development; recently, a low
overhead variation of LSSD particularly suited to VLS] chips has been
reported [DasGupta 82). Also, in spite of the associated overhead, industry

acceptance of LSSD and of similar scan design techniques is growing.

16

2.4. REDUNDANCY IN DIGITAL NETWORKS

A concept related to fault testing is redundancy, the property of a sys-
tem to operate correctly if part of it is deleted. In this section, redundancy is
defined, the reasons for the use of redundancy in system and logic design are
given, and some of the proposed techniques to identify single redundancies in
a logic network are reviewed. None of these technigues is feasible for the

identification of all redundancies in a general combinational eircuit.

2.4.1. Definition of Redundancy

The IEEE Standard Dictionary of Electrical and Electronics Terms lists
four definitons of redundancy according to the its meanings in different
fields: infor:mation theory, transmiss'u?n of information, power systems, and
reliability. The broadest one, the definition for reliability, describes redun-
dancy as "the existence of more than one means for performing a given func-
tion.” This definition, applied to digital circuits and logic functions, is general
enough to encompass most other definitions found in literature and is used in

the remainder of this report.

2.4.2. The Rationale Behind Redundancy

The chief reason to introduce redundancy in a system is to render it
impervious to failure. In order to meet stringent specifications of reliability,
availability, and maintainability, designers of military [Bernhard 81), space [Wil-
Lams 81], and communication systems have traditionally employed redun-
dancy.

The low yield problem plaguing high-density memory chips has induced

various semiconductor companies to consider redundant design as a way to

17

increase chip manufacturability. Nowadays, redundancy can be found in a
variety of random access and read-only memory chips [McKenny 80] [Kitano
80] [Mano 80]. Moreover, redundancy in a design benefits both the yield and

the fleld reliability of large chips [Cliff 80].

What is the rationale of building in redundancy for an average industrial
chip design which does not target fault tolerance or high reliability? As men-
tioned previously, redundancy represents a safety margin for design, and
many practical circuits contain redundancy [To 73]. Also, redundancy can

eliminate logic hazards and sometimes simplifies circuit structures [Si 78].

To illustrate the point, the two redundant networks in Figure 2.2 are

analyzed. The first one, shown in Figure 2.2(a), implements the logic function

Z=AB +.BC+ AC
in which minterm AC is redundant, ie., it does rot affect function Z. (Note
that the input and output stuck-at-0 faults of the lower AND gate are redun-
dant.) If the lower AND gate is deleted, then for A:=C=1, any logic change of B
causes a static 1-hazard [Breuer 76] at output Z. However, the redundant
term AC preserves a logic 1 at Z during any transition on B and thus elim-
inates the hazard. Eichelberger and Williams apply a similar technique to

achieve level-sensitive latches for the LSSD scheme [Eichelberger 77].

The second example, Figure 2.2(b), is a phase splitter feeding a two input
AND gate with D and D’. Since the output Y is always 0, fault Y/0 and the two
stuck faults at the root of fanout node D, D/0 and D/1, are redundant. Some-
what modified, this scheme is used widely in high-speed circuitry to drive
both load and driver devices and therefore shorten the switching time [Blume

83].

18

(b)

Figure 22 Redundant circuit examples.
(a) Hazard-free impiementation
(b) Phase splitter

2.4.3. Methods for Redundancy Identification

By definition, redundant faults in a network cannot be detected. Their
identity is usually not known before test generation; hence, much effort
(about 90%) is wasted in the futile attempt to generate a test for the redun-
dant faults. Various approaches for redundancy identification (Rl) in a combi-
national network have been proposed, but most deal with particular circuit
configurations and cannot be expanded. A brief review of the published work

follows.

A simple algorithm to identify redundant variables of a combinational

logic function with the goal of achieving a simple realization has been

19

developed by Yau and Tang [Yau 71}. The method relies on the minterm
expansion of the function and some manipulation of the binary and decimal
number representation of minterms. No extension of the procedure is given

for the identification of redundancies that are embedded in the circuit.

Dandapani and Reddy [Dandapani 74] show that the Rl method which con-
siders all combinations of inputs in a general circuit is computationally
impractical. Instead, they analyze restricted prime-tree networks, which are
specially connected tree networks consisting of AND, OR, and NOT gates. An
algorithm to design such prime trees is given, and it is shown that prime

trees are easy to test for redundancy.

Lee and Davidson [Lee 74] develop a simple, necessary, and sufficient test
for Rl in a tree-type NAND network and generalize the resuit for multi-output
NAND, AND-OR, and NOR trees. General, nontree networks are handled by
converting them into an equivalent tree form; however, the transformation
may map a single connection onto several connections in the equivalent tree
form, and the single redundancy test is changed into a much more difficult
multiple redundancy test. Moreover, a counter-example to the proposed

transformation has been found by Smith [Smith 78 & 79].

Si [Si 78] proposes to use dynamic testing for redundancy identification.
His method relies on Clegg's structure and parity-observing output function
(SPOOF) [Clegg 73], which he modifies to handle delay information. The tech-
nique finds some statically undetectable faults, but does not guarantee the
identification of all redundancies and requires vast amounts of memory and

computation.

20

2.5. TESTABILITY ANALYSIS OF DIGITAL NETWORKS

In contrast to the algorithmic redundancy identification methods
presented before, a host of simple and fast heuristic methods have been
developed that single out the potential testing difficulties in digital networks.
These methods, collectively called testability analysis, usually employ
simplified circuit and fault models and rely on heuristics. Over thirty papers
on testability analysis have been published during the past ten years, as
shown in the chronology of publications given in Table 2.1. In the follcwing
review, they are grouped into investigative studies, early research work,
gate-level analysis, functional-level analysis, hybrid circuit analysis, proba-

bilistic approach, and algebraic approach.

2.5.1. Investigative Studies

Keiner and West [Keiner 77] introduce testability as a subset of maintaina-

bility and develop a framework for the derivation of testability measurss to

1. [Rutman 72] 17. [Kovijanic 81)
2. [Stephenson74] | 18. [Takesaki 81]
3. [Stephenson 78] 19. [Dunning 81]
4. [Dejke 77) 20. [Longendorfer 81]
5. [Keiner 77] 21. [Akers 82]
6. [Breuer 78] 22. [Bardell 82]
7. [Dussault 78) 23. [Hess 82])

8. [Danner 79) 24. [Fong 82a]
9. [Goldstein79] | 25. [Goel 82a]
10. [Grason 78] 26. [Savir 82]
11. [Kovijenic 78] 27. [Menzel 82]
12. [Longendorfer 79) | 28. [Fung 82]
13. [Breuer 79) 29. [Fong 82b]
14. [Goldstein 80] 30. [Agrawal 82]
15. [Bennets 80] 31. [Berg 82]

16. [Susskind 81] 32. [Ratiu 82)

Table 2.1 Chronology of Testability Analysis
Publications.

21

assist the design engineer in producing supportable systems. In their view,
testability should be a design parameter instead of a design goal, and an
optimum approach to the measurement of testability must rely on the syner-
gism between design for testability techniques and proven measurement

capabilities of existing computer-aided design (CAD) tools.

In the quest for a formalized theory of testing, Dejka [Dejka 77] studies
the use of circuit complexity as a measure of its testability. Gate count,
number of primary inputs, and controllability and observability (as defined

for linear sequential machines in control theory) are considered.

Investigating the testability of printed circuit boards, Danner and Con-
solla [Danner 79] establish a list of 56 testability circuit factors, that range
from the use of clocks and functional pfxrtitioning of circuits to the content of
unusual discrete components and warm-up time. The approach yields board
testability ratings that are empirical, but correlate well with experimental

results.

2.5.2. Early Work

A heuristic fault measure aiding fault detection in sequential networks is
introduced by Rutman. The approach models fault detection as a decision
tree corresponding to the path-sensitizing algorithm [Armstrong 66] and relies
on the similitude of this tree and the decision trees found in game-playing
algorithms. The cost of setting or resetting a circuit node is calculated as the
sum of the node costs for the nodes constrained to set or reset the given
node; a factor for the level number (see Chapter 4 for circuit levelizing) is
then added to the result. Costs for combinational and sequential elements

are evaluated alike. The node cost, a positive integer, serves as a measure of

22

conflict risk in a test generation procedure reminiscent of the D-algorithm
[Roth 86]: drive a D into a particular element, drive a D forward, justify a line
setting. The process ends when either a test has been computed, a test is
judged impossible (the tree has been exhaustively searched), or the program

runs out of time or memory space.

The concepts employed by Rutman have proven successful over the
years. A sophisticated branching heuristic in the decision tree is largely
responsible for the success of the PODEM-X ATG program [Goel 81]. Chess
playing algorithms in COPTR, a testability analysis preprocessor for the
TEGAS ATG program, speed up the latter by a factor of ten [Kirkland 83].

Stephenson and Grason [Stephenson 74 & 76] introduce the concept of a
testability measure and create an indgpé‘ndent design tool for large circuits
that can be specified at the register-transfer level. A numerical controllabil-
ity and observability is assigned to every node as a number’ between zero and
one that estimates how easily nodes within the circuit can be controlled from
the primary inputs and observed from the primary outputs, respectively.
Controllability and observability propagates through a circuit according to a
set of combining rules and a transfer factor for each circuit component. The
transfer factor of a combinational or sequential component is obtained by
lumping its input-output mappings to a single number; a default factor of 0.5
is assumed if no such information exists. The approach relies more on con-
nectivity than function and is computationally simple. Grason [Grason 79])
reports a program implementation, TMEAS, that includes a powerful postpro-

cessor for analyzing the generated testability data.

In a proposal for an ATG package for the 80s, Breuer [Breuer 78 & 79] pro-

poses two preprocessing concepts, cost and rate analysis, that should reduce

23

test generation time by two or three orders of megnitude. The cost analysis "
uses Rutman's cost function of controlling a node to logic 0 or 1 and applies
the same method to calculate the node observability. In the rate analysis,
the maximum rate of change on a line, expressed as a sequence of logic 0 and
1 values at the output of a sequential block, is evaluated. Since the rate
analysis precludes a wrong choice of the initialization sequence, it reduces

substantially the test generation eflort for sequential circuits.

2.5.3. Gate-Level Analysis

A gate-level approach based on Breuer's cost and rate analysis, SCOAP
[Goldsteinn 79 & 80] is probably the best-known testability analysis program.
SCOAP caiculates for each node three combinational measures, O-
controllability, 1-controllability, and observability. For sequential elements,
both sequential and combinational measures are computed: the sequential
controllebility and observability represents the number of time frames
required to reach a given node condition, and the combinational controllabil-
ity and observability represents the number of constrained nodes for each
time frame. Simplified sequential models are used, and the different sets of
node constraints for each time frame are merged to a single set of con-
straints. The algorithm handles feedback loops and is at worst quadratic with
circuit size. The circuit model consists of cells, logic gates and simple blocks
of gates, which must be predefined in a cell library containing a matrix-like
binary encoding of the cell controllability and observability equations. The
encoding of a cell is a formidable task: seven hundred binary terms for a sim-

ple AND-OR-INVERT block have been reported [Trischier 81].

24

The SCOAP program is publicly available: the FORTRAN 66 original from
the SANDIA National Laboratories, and an ANSI FORTRAN 77 version, written
by the author, from the University of California at Berkeley (see Appendix 1)
Several research papers listed in Table 2.1 stem from SCOAP; the gate-level
approaches are described below, while the functional-level approaches are

presented later in this chapter.

Hess [Hess 82] and Berg [Berg 82] have taken the Berkeley SCOAP version
and, by adding powerful input and output data processing capabilities, have
turned it into an industrial-grade testability analysis package for CMOS gate
arrays. Menzel [Menzel 82] has proposed and implemented a bidirectional
model in SCOAP. Goel [Goel 82a) has started from SCOAP, has enhanced the
sizquential model considerably by taking.into account individual constraints
for each time frame, and has build tﬁe algorithm upon selective trace; the
resulting program yields more accurate sequential values and executes ten

times faster.

Another major testability analysis approach based on Breuer's cost and
rate analysis is Kovijanic's TESTSCREEN [Kovijanic 79]. Although developed
independently, TESTSCREEN and SCOAP are similar, but for a different model-
ing of the combinational circuits. TESTSCREEN does not automatically
increase the controllability when traversing a circuit component, and it takes
into account the gate and primary input count. The TESTSCREEN analysis has
been expanded to include an estimate of the number of stuck faults and a glo-
bal testability measure for the whole circuit [Kovijanic 81] [Dunning 81]. The
global figure of merit results from a weighted sum of various circuit indica-

tors such as fanout, latches, primary input/output count, gate count, etc..

25

A final gate-level approach, CAMELOT [Bennets 80], employs the same
method of calculating the controllability as TMEAS, but refines the gate-
transfer factor and the dependence from the gate inputs by including infor-
mation about the cell function. Although clocking information is taken into
account, CAMELOT encounters computational difficulties with large sequential

circuits.

2.5.4. Functional-level Analysis

Takasaki [Takasaki 81] proposes an approach to functional-level analysis
.consist'm,g of two steps: a SCOAP evaluat.ion of all functional blocks at the gate
level, and the calculation of the functional testability values for the
input/output nodes of the functional blocks. The first step consists of a
SCOAP analysis for each functional bléck. Then, controllability and observa-
bility values internal to the block are discarded; each block pin is assigned a
weighting factor that, together with the number of available pins, enters a
norm-like calculation for the functional controllability and observability of
the entire block. The analysis results in three testability numbers attached

to each pin of the functional blocks.

Recognizing the prevalence of bus architectures in current designs, Fong
[Fong 82a & 82b] introduces a data-path controllability and observability along
with the usual SCOAP measures. To keep the computations simple, he
assumnes that for a data path with n branches, the 2" possible states are uni-
formly distributed, hence equally likely to occur. The method needs no gate-

level representation of the functional blocks.

26

2.5.5. Hybrid Circuit Analysis

An extension of the testability analysis domain to the device level is
hybrid circuit analysis, which uses a hybrid representation composed of logic

gates and circuit devices for the circuit.

Longendorfer [Longendorfer 79 & 81] defines a testability measure based
on graph theory alone but adjusts the results by empirically penalizing large
sequential depth, redundancy, and large circuit blocks. A connectivity matrix
of the transistor-level circuit is required to compute the reachability and
reaching matrices, which, in turn, generate the desired controllability and

observability values.

2.5.6. Probabilistic Approach

Two testability analysis approaches using probability theory have been
reported. The first employs information entropy in a chip, while the second

develops upon error latency.

Dussault [Dussault 78] sets his testability measure in the domain of infor-
mation theory and denotes it as the mutual information between the circuit
inputs and outputs. Controllability and observability are defined as the
inverse of the conditional output/input and, respectively, input/output
entropy. In his view, testability analysis should extract as much test data as
possible from the circuit, yet should stop short of generating the tests. The
algorithm requires much computational effort and memory space. Fung and
Fong [Fung 82] expand Dussault's approach to the functional level under

assumptions similar to the ones outlined earlier [Fong 82a & 82b].

Bardell [Bardell 82] uses error latency in a combinational circuit as a tes-

tability measure. Relying on the initial work on signal probability [Parker 75a

27

& 75b]. he expands the techniques for computing signal probabilities to calcu-
late fault detection probabilities for random pattern testing. Bardell deals
with reconvergent fanout in a systematic way and classifies combinational cir-
cuits based on reconvergence. However, the approach has difficulties with
large circuits because the symbolic data manipulation in the algorithm

requires massive computation and data storage.

2.5.7. Algebraic Approach

The application of Boolean algebra for testability analysis has received
some attention in the two papers reviewed below. Both handle only combina-

tional circuits and cannot be expanded easily to analyze sequential circuits.

In the first paper [Susskind 81], Susskind assigns a controllability and an
observability connotation to the two parts of the Boolean difference. The
approach is complete and theoretically consistent, but because the Boolean
difference generates all possible tests for every fauit in the circui’, large
amounts of computation and storage are required, even for circuits consist-

ing of only a few dozen gates.

In the second paper [Akers 82], a powerful logic structure [Akers 76] is
employed to count the number of tests that detect each fault. The measure
of testability Akers and Krishnamurthi propose is a lower bound on the
number of tests necessary to meet a prespecified set of test requirements for
the whole logic circuit. The necessary number of tests per circuit is counted
and is propagated through the network. If reconvergent fanout is present, it
is taken into account, and a near-optimal partitioning into fault-equivalence
classes is evaluated. The method involves propagating local effects and

requires at most four passes through the circuit.

28

2.5.8. A Critical View

Each of the testability analysis approaches reviewed above presents a
solution to the problem of estimating the potential testing difficulties. The
various approaches differ in domain and method, but share two basic prob-

lems:
(1) sequential circuits are not analyzed correctly, and
(2) redundant fauits are not identified.

In order to keep computations simple, the testability analysis
approaches dealing with sequential circuits employ overly simplified models.
which lose the essence of sequential behavior —the state transition —due to
low resolution. However, an appropriate model, e.g. the Huffman model
presented before, is not feasible, since it. requires vast compu:ational effort

and data storage.

Only two approaches [Bardell 82) [Susskind 81] identify reclundancy, but
at a high cost in computation and storage requirements. Both methods take
into account all signal dependencies in the entire network, in contrast to the
other methods that assume all signals to be independent. (In Chapter 3, the

necessity of the dependent signal assumption is proven.)

Simple circuits have been reported [Savir 82] [Ratiu 82] that are easy to
control, easy to observe, but comprise untestable (redundant) faults. How-
ever, testability analysis approaches that ignore signal dependencies predict

good testability for such redundant faults.

Experimental data supporting the preceding results has been presented
by Agrawal and Mercer [Agrawal 82]. They view the testability measure as a
statistical estimator and calculate the correlation between its capability to

predict which individual faults can be detected and the the fault data

29

(obtained through test generation and fault simulation) for a large chip. The
resulting coeflicient of correlation is always less than 0.4 and shows that a
level of resolution exists for which a testability measure can provide useful

information, but below which predictions are erroneous.

For VLSI circuits, the published testability analysis approaches do not
provide reliable fault data to aid in test generation. However, if used interac-
tively during design, testability analysis identifies some of the potentiai test-
ing difficulties and, therefore, constitutes a valuable tool to educate designers

about testing.

CHAPTER 3

THEORETICAL FOUNDATION AND STRATEGY IN VICTOR

3.1. INTRODUCTION

The theoretical foundation and the strategy for VICTOR, a new approach
for providing reliable fault data for VLSI circuits, are presented. Models for
the logic circuit and the fanout node are defined, combinational circuits and
redundancies are classified, and two theorems on the links among convergent
fanout, dependent signals, and redundant‘ faults are introduced. Finally, the
strategy in the design of the VICTOR approach to global redundancy

identification and test generation is outlined.

8.2. LOGIC CIRCUIT AND FANOUT NODE MODELS

The circuit and fanout node models and the terminology used in VICTOR

[Ratiu 82] are introduced.

3.2.1. Logic Circuit Model

A logic circuit is a network of cells interconnected via unidirectional
links, called nodes, in dialogue with the outside world through its primary
inputs (PIs) and primary outputs (POs). Each cell in the network is a func-
tional block that performs a predefined set of logic operations and bhas its own
cell inputs and outputs. Cell operations, when combined according to the
interconnecting circuit topology, yield the logic function implemented by the

circuit as a whole. Every link to a cell represents the location of a stuck-at

30

31

fault, and every node connecting exactly two cells corresponds to two
equivalent faults, an output fault for the driving cell and an input fault for the

driven cell.

3.2.2. Fanout Node Model and Terminology

A link that fans out to several destinations is called a fanout node and
consists of a root (stem, origin) and its corresponding branches. The fanout
of a node to n places “means the reproduction of that atom [node] in n dis-
tinct physical positions” [Kuck 78]. Although fanout root and branches
represent the same (electric). circuit node, faults located on root and
branches are not equivalent. A test that detects a root fault also detects at
least one branch fault, yet a local analysis cannot identify the branch; a test
that detects a branch fault must also cietect the root fault, but rarely detects
some of the other branch faults. Therefore, a correct fault analysis of a

fanout node requires explicit faults for the fanout root and the branches.

Since most description languages of logic circuits assign only one name
per circuit node, the same name designates root and branches of a fanout
node. To distinguish among these diflerent fault locations, the root is
assigned the name of the fanout node, and each branch is assigned a compo-
site node name of the form root-pin-output. Root is the original circuit node
name (the fanout root), while pin is the number of the input pin and output is
the name of the first output node of the cell connected to the fanout branch
(an ordering of the cell inputs and outputs is assumed). Figure 3.1 illustrates

the described fanout naming convention.

32

(a)

A-2-3 | [

A-3-D

(b)

3.1 Fenout node naming convention.
(a) Original name for fanout node A
(b) Composite names for the branches
of fanout node A

3.3. CIRCUIT AND REDUNDANCY CLASSIFICATION

3.3.1. Classification of Combinational Circuits

A classification of combinational networks based only on fanout topology
is proposed. Instead of using the traditional terms of nonreconvergent and

reconvergent fanout [Armstrong 66] [Schertz 72], the terms divergent and con-

33

vergent fanout are used for this purely topological classification. Three
classes of combinational circuits are distinguished: fanout-free circuits,

divergent fanout circuits, and convergent fanout circuits.

Fanout-free circuits do not contain any fanout nodes and have the sim-
plest structure. A typical example is the AND-OR-INVERT cell of Figure 2.1, in
which each logic gate has exactly one immediate successor. Only few large

fanout-free circuits have any practical value.

Divergent fanout circuits contain fanout nodes whose branch successors
always diverge, i.e., for all fanout nodes, no two successors of a node ever
serve as inputs to the same cell. Since divergent fanout circuits do not
include loops (sets of branches forming a closed path), divergent fanout cir-
cuits are tree networks [IEEE 77] and the general properties of tree structures
apply [Aho 74] [Knuth 73]). Although more important than the fanout-free cir-
cuits, divergent fanout circuits are limited to special applications that

require tree-like structures, e.g., error correction circuitry.

Convergent fanout circuits contain fanout nodes that have at least two
convergent branch successors, i.e., at least one fanout node exists whose suc-
cessors serve as inputs to the same cell. By definition, convergent fanout cir-
cuits include loops, allow arbitrary fanout topology and are, therefore, gen-
eral, nontree networks. Most useful digital circuits and practically all VLSI
circuits belong to this category; hence, any circuit investigation that ignores
convergent fanout ignores an essential circuit aspect and produces incorrect

results.

34

8.3.2. Classification of Redundant Faults

By definition, a fault is redundant if no test exists that can detect it. An
arbitrary node X is called totally redundant if both faults K/0 and K/1 are
redundant; if one of the two faults is irredundant, K is called partiaily redun-
dant. Three classes of redundant faults in a circuit can be distinguished:
uncontrollable faults, unobservable faults, and untestable-controllable-

observable faults.

Uncontrollable faults cannot be provoked from the Pls, i.e., no pattern
exists that can set or reset the corresponding node to the correct logic value.
Accordingly, uncontrollable stuck-at-0 faults are 1-uncontrollable, and uncon-
trollable stuck-at-1 faults are O-uncontrollable. For example, node K in Fig-
ure 3.2 is always at logic 0, since A-1-K and J always carry A and A’. Fault K/0
cannot be provoked; therefore, fault K/0 is 1-uncentrollable, and node Kis

partially redundant.

Unobservable foults cannot be propagated to the POs, i.e., no pattern

exists that can monitor the corresponding node from the POs. In Figure 3.3, a

A T——Doi K

B VA

Figure 3.2 Redundant circuit containing
1-uncontrollable fault K/0.

35

o>

Dt

Figure 3.3 Redundant circuit containing
uncbservable faults A70 and A/1.

fault on node A propagates to the output Z if and only if both B-2-J=1 and B-
2-Z=0, but these conditions require node B to be simultaneously at logic 0 and
1, which is impossible. Therefore, both faults A/0 and A/1 are unobservable,

and node A is totally redundant.

Untestable-controllable-observable faults can be provoked from the Pls,
can be propagated to the POs, but no pattern exists that can both provoke
and propagate the faults at the same time. When trying to match the two pat-
terns, all combinations lead to Pl conflicts. Schneider’'s example [Schneider
67], shown in Figure 3.4, contains two faults, B-1-K/0 and C-2-K/0, that are
both controllable and observable, but untestable. Pattern 0000 is the only
one that propagates the faults to the POs, and it cannot provoke either fault,
although both faults are easily controllable.

A fault is redundant if and only if it is uncontrollable, unobservable, or
untestable-controllable-observable. Uncontrollable redundancies are easiest
to identify, since they involve just one PI function each. More eflort is needed
for the identification of unobservable redundancies, because establishing a
propagation path to the POs involves a series of control conditions on the

nodes adjacent to the path. A global evaluation of the circuit is needed to

36

o

Figure 3.4 Redundant circuit containing
untestable-controllabie-observable
faults B-1-K/0 and C-2-K/1.

identify the untestable-controllable-observable redundancies; shortcuts per-
forming a partial analysis cannot find these redundancies. Therefore, sys-
tematic iterative attempts are required to match patterns for possible con-

trol and monitor paths through the entire circuit.

3.4. EQUIVALENCE AND IMPLICATION THEOREMS

An equivalence theorem between convergent fanout and signal dependen-
cies and an implication theorem on the necessity of convergent fanout for

redundancy are introduced in this section.

3.4.1. Signal Dependence and Convergent Fanout

Within the circuit, fanout branches supply internal signals in the same

manner as the primary inputs supply external signals to the entire chip.

37

Both fanout branches and primary inputs represent the skeleton of the logic
network and are commonly referred to as checkpoints [Breuer 76). Their
importance in combinational circuit testing has been recognized by Schertz
and Metze [Schertz 72], who prove in their checkpoint theorem that any test
that detects single (multiple) stuck faults on all checkpoints detects all single

(multiple) faults in the circuit.

Every checkpoint is the root of a tree with a set of dependent branches
and branch successors; new dependencies emerge when trees converge.

Wken are two inputs to an arbitrary circuit cell dependent on each other?

Equivalence Theorem: In a combinational network, inputs to a
cell in the network depend on each other if and only if they
belong to a convergent fanout -tree, i.e., they stem from the

same fanout node. =

Proof (by definition): If some circuit branches depend on each
other, they must belong to the same fanout tree, else they are
independent. Since they are cell inputs, the fanout tree is con-
vergent by definition. The opposite implication follows directly
from the definition of a convergent fanout and the properties of

a tree. -

If two cell inputs depend on each other, a condition imposed on one input
affects the other input also. The Equivalence Theorem specifies the relation
between function and structure in a general combinational network and
guarantees that a complete structural (functional) analysis of dependencies
is still complete if parts of it use the function (structure) as shown by the

theorem.

38

3.4.2. Redundant Faults and Convergent Fanout

The relation between convergent fanout and redundant faults has been
enalyzed first by Armstrong when introducing the single-path sensitization

method for test generation {Armstrong 66]. His method deals with two cases:

Cuse 1: All reconverging fanout paths between a specified fanout node
and a specified node of reconvergence have the same Inversion Parity.

Cuse 2: Not all these paths have the same Inversion Parity. The Inver-
sion Parity of a reconverging fanout is defined to be the number of inversions,
modulo 2, along the path between the specified fanout node and the specified
node of reconvergence.

If a test is applied that simultaneously sensitizes two converging fanout paths,
Armstrong finds only the second case to entail redundant faults, since the
output of the node of convergence does nct change its value; therefore, the

effect of tke fault cannot propagate beyorid it.

An example illustrating Armstrong’s findings is shown in the circuit in
Figure 3.2 which contains two paths with unequal inversion parity, <A, A-1-K,
K> and <A, A-1-J, J, K>. As shown before, node K is 1-uncontrollable, because
it does not. change its value from logic O regardless of any logic change on

node A, the originating fanout node (node A is totally redundant).

Attempts to expand Armstrong's inversion parity criterion for redun-
dancy identification have failed [Ratiu 81], because inversion parity is neither
necessary, nor sufficient to cause redundancy. For example, the circuit in
Figure 3.3 contains the totally redundant node A, even though the two conver-
gent fanout paths, <B, B-2-J, J, Z> and <B, B-2-Z, Z>, have equal inversion par-
ity. On the other hand, the irredundant circuit in Figure 3.5 (a particular
implementation of an XOR gate), contains two convergent fanout paths, <A,
A-1-M, M, Z>, <A, A-1-K, K, N, Z>, and <B, B-1-J, J, M, 2>, <B, B-2-N, N, 2>, with

unequal inversion parity, but no faults are redundant.

39

{>6Jj'

1

Figure 3.5 Irredundant circuit containing
multiple convergences.

In general, when multiple convergence occurs at the input of a cell, noth-
ing can be inferred regarding the redundant na..t.ure of the faults at the ori-
ginating fanout node or after the point of convergence. In Schneider's exam-
ple, Figure 3.4, the four input signals converge at the output NOR gate Y, and
all have unequal inversion parity along the different paths, yet only faults B-
1-K/0 and C-2-K/0 are redundant.

Since inversion parity is neither necessary, nor sufficient to cause redun-
dancy, its use for redundancy identification (RI) is limited. However, conver-

gent fanout is related to redundant faults.

Implication Theorem: A fault is redundant if all paths from the
primary inputs to the primary outputs that include the fault

traverse a convergent fanout circuit. =

40

Proof (by contradiction): A path from the Pls to the POs
traverses a convergent fanout circuit if and only if either all
control paths are convergent, or all monitor paths are conver-
gent, or the control and monitor paths are divergent separately,
but convergent if teken together as a whole path. In any case,
dependent signals arise (as proven in the Equivalence Theorem).
The assumption is made that signals are independent, i.e., the
path does not traverse a convergent fanout circuit, and redun-
dant faults exist. Then, a change in any of the signals uniquely
affects the circuit function end, by definition, the circuit cannot
contain redundant faults; the initial assumption has been con-
tradicted. Therefore, the path inust traverse a convergent

fanout circuit for the fault to be redundant. -

The Implication Theorem states thal. redundancy requires convergence:
no fault can be redundant if a divergent fanout path exists along which the
fault location can be controlled and observed. The opposite implication is
false, however, since not every convergence causes redundancy. As was
shown before, the XOR gate of Figure 3.5 contains a double convergence at

the output gate, but no redundancies are present in the circuit.

3.5. VICTOR STRATEGY

After having laid out the theoretical foundation, the strategy for redun-

dancy identification and test generation in VICTOR is presented.

41

3.5.1. Goal and Feasibility Conditions

The goal in the design of VICTOR (VLSI Identifier of Controllability, Testa-
bility, Observability, and Redundancy) has been a fast method for producing
reliable fault data for VLSI circuits. To attain this goal, VICTOR must meet

several feasibility conditions.

Linear complexity. Tailored to the fast-growing VLSI chip complexity,
computer-aided testing (CAT) tools must involve a number of variables and of
operations that are both linear or near-linear functions of the chip complex-
ity; the complexity of the data base and the algorithm is then said to be
linear or near-linear. As was shown in Chapter 2, the testing of sequential cir-
cuits employs a circuit model that grows exponentially with circuit size, but
by incorporating a scan-path, the testing'. can be performed on an equivalent
linear combinational model of the original circuit, i.e., the circuit becomes
scan-testable. To fulfill the linear-complexity requirement, VICTOR handles
only combinational circuits, hence only scan-testable VLS] circuits. However,
current trends in VLSI design show a growing willingness of circuit designers

to incorporate such scan-paths (see Chapter 2).

Appropriate fault models. The tools involved in the testing of a circuit
(testability analyzer, redundancy identifier, automated test generator, and
fault simulator) must use the same fault model in order to form a useful test
system. For the reasons outlined in Chapter 2, VICTOR uses the single-stuck
fault model described above (fanout root and branches of a fanout node
represent separate fault locations).

Dependent signal assumption. Signals must be assurned dependent on

each other and all dependencies must be taken into account. Both the

author’'s experience with SCOAP and the analysis of SCOAP by Agrawal and

42

Mercer [Agrawal 82] show that testability analyzers employing the independent
signal assumption do not recognize redundant faults. Furthermore, the
theorems outlined above prove that a necessary condition to identify redun-

dancy is to consider all signal dependencies.

3.5.2. Global Linear Estimation

A novel feature in VICTOR is the linear and global approach to rzdun-
dancy identification. Rather than analyzing faults in succession, as is done in
conventional automatic test pattern generation (ATG), VICTOR sweeps through
the entire circuit a few times and processes ali faults. A fixed numter of
passes is needed, regardless of circuit complexity, and no iterations or back-

tracks are involved.

All necessary signal dependencies in the circuit are expressed as func-
tions of Pls only in order to keep the data base linear. (The PI count of a VLSI
chip is, owing to packaging constraints, a weak function of circuit complex-
ity.) However, the information on signal dependencies is not approximate, but

exact and complete.

8.5.3. Control, Monitor, and Test Patterns

Signal dependencies on a node are expressed as Pl patterns, i.e., strings
of logic values composed of one value for each Pl. Modeled after the
classification of redundancies introduced earlier, three patterns are calcu-

lated for each fault: control, monitor, and test pattern.

The control pattern of a node is a collection of sufficient Pl conditions to
provoke a fault on that node. Since two faults are possible, stuck-at-0 and

stuck-at-1, two control patterns exist, set pattern and reset pattern.

43

The monitor pattern of a node is a collection of sufficient PI conditions to
propagate a fault on that node to the POs. Finding a possible monitor pattern
for a node is inherently more difficult than finding the appropriate set or
reset pattern, because the monitor conditions are the intersection of all con-

trol conditions that sensitize a path to the POs.

Finally, the test pattern of a node is a collection of sufficient Pl assign-
ments that simultaneously provoke (from the Pls) and propagate (to the POs)
a fault on that node. Thus, the desired test pattern results from the merger
of control and monitor pattern: reset and monitor pattern for a stuck-at-1

fault, and set and monitor pattern for a stuck-at-0 fault.

3.5.4. The Risk Measure Heuristic

The underlying heuristic in VICTOR is the risk of convergence, the selec-
tion criterion among different possible patterns. The Implication Theorem
shows that convergence leads to conflict in the calculation of the test pat-
terns for redundant faults, but also for some irredundant faults. Faults for
which conflicts arise during test generation are called potential redundancies
and comprise the truly redundant faults and some hard-to-test irredundant
faults, called false redundancies. If the pattern corresponding to the lowest
risk of convergence is selected, the risk of conflict is minimized, hence a
selection of patterns based on the lowest risk of convergence minimizes the
number of false redundancies during test generation. Applied successively to
each cell during a circuit pass, the minimum risk selection tries to find a
conflict-free test pattern for every fault; a global optimum is approximated
through a succession of local optimizations, a standard CAD technique. Some

false redundancies remain (a linear approach cannot solve an NP-complete

problem), but their number has been minimized.

In existing ATG programs, redundancies, true or false, are the cause of
the many iterations that degrade program performance. The amount of
-<flort per fault (iteration count or computer time) is limited in most ATG pro-
grams, and the test generation for the fault is st.opper.i once this limit has
been reached. Without further probing, false redundancies cannot be
separated from the genuine ones; hence, the fault may or may not be redun-
dant, situation which the choice of the term potential redundancy tries to
suggest.

Two types of errors can occur in redundancy identification: (1) redun-
dant faults are falsely predicted irreduntiant. and (2) irredundax.ut faults are
" faisely predicted redundant. The first type renders the Rl technique useless
and is, therefore, catastrophic (such érrors occur in the testability analysis
methods described in Chapter 2). The second type produces false redundan-
cies énd is acceptable, as long as it does not contaminate the major part‘of

the estimation.

The approach to redundancy identification inr VICTOR resembles statisti-
cal estimation techniques, where absolute precision matters less than
knowledge of error behavior and error bounds. In VICTOR, the lowest risk
heuristic biases the estimate such that no errors of the first type ever occur
at the cost of many errors of the second type. VICTOR identifies all redundan-
cies but its Rl estimate includes many false redundancies that must be dealt

with later.

CHAPTER 4

VICTOR ALGORITHM

4.1. INTRODUCTION

The basic algorithm used in VICTOR consists of four steps: circuit leveliz-
ing, controllability calculation, observability calculation, and redundancy
identification and test generation. Two testability operations, pattern selec-
tion ard intersection, and two testability measures, risk and size, are
employad [Ratiu 82]. To illustrate the succession of operations in VICTOR, a
small circuit example is analyzed. The chapter ends with an analysis of the

linear complexity of the algorithm.

4.2. VICTOR TESTABILITY PRIMITIVES

Before detailing the VICTOR algorithm, the testability primitives underly-
ing its operations are defined. For the purpose of redundancy identification
and test generation, the circumstances under which a node is set, reset, or
monitored are characterized by a a testability triplet of pattern, risk, and
size. The pattern expresses exact primary input (PI) conditions, while risk
and size are estimates of the risk of convergence conflict and pattern count,

respectively. Two pattern operations, selection and intersection, are defined.

4.2.1. The Set, Reset, and Monitor Pattern

Given a circuit and its primary inputs (Pls) and primary outputs (POs),

three patterns are defined for an arbitrary node V in the circuit:

45

46

o set pattern, V,: a sufficient collection of Pl conditions to force node
V to logic 1.

o reset pattern, V,: a sufficient collection of Pl conditions to force
node V to logic 0.

e monitor pattern, V,,: a sufficient collection of Pl conditions to sensi-
tize a path from node V to the POs.

Node patterns represent Pl signal dependencies expressed as an ordered
string of logic symbols. Patterns contain exactly one symbol for each pri-
mary input; consequently, patterns are of equal length for a given circuit.
Currently, four-valued logic is implemented, i.e., a symbol may take one of

four logic values (but VICTOR may handle any finite multiple-valued logic).

logic O eassighment
logic 1 assignment
no assignment (don't care)

conflicting logic 0 and logic 1
assignment (clash)

W K]]| O

The circuit in Figure 4.1 has two primary inputs only, A and B; thus, all
node patterns consist of two symbols, the first corresponding to A, and the
second to B. The primary inputs themselves have the following control pat-
terns:

A=1zx, A=0z; B;=zl1, B,=z0.
The structure of a PI control pattern for any circuit is unique and consists of
a 0 or 1 symbol in the position of the respective primary input and an x sym-
bol in all other positions. Monitor patterns for any circuit contain only x sym-
bols, since primary outputs are by definition observable and, therefore, do

not impose Pl constraints.

47

Usually, internal nodes can be set, reset, or monitored in a variety of
ways; hence, many patterns of one type exist. For instance, the three pat-
terns 01, 11, and x1 are valid set patterns for node Z. An internal node has
exactly one pettern if and only if it depends on all primary inputs, i.e., the

pattern consists exclusively of 0 and 1 symbols.

A clash in a pattern highlights a Pl convergence conflict and thus a
potential redundancy. For example, K=1 requires both A-1-K=1 and J=1, but
these conditions are equivalent to A=) and A=1, a conflicting requirement. In
Chapter 3, node K has been shown to be partially redundant (1-
uncontrollable); hence, the clash in :he set pattern K =#x corresponds to a
true redundancy. Condition Z=1 requires either K=1 or B=1, and the two set
patterns for node Z are #x and x1; the fault on node Z can be considered a
potential redundancy if pattern #x is ct;osen. Such a decision is in general far
less obvious and aflects the patterns of many succeeding nodes. If, for
instance, node Z is deeply embedded in the network and pattern #x is chosen,
many successors of node Z would be identified incorrectly as potential redun-

dancies; a false redundancy contaminates other patterns in the circuit.

4.2.2. The Risk and Size Testability Measures

Except for the patterns, the testability of each node is characterized by
two positive integers, a risk and a size testability measure. The former
expresses the risk of convergence associated with each pattern, hence the
risk of conflict, and the latter estimates the total number of patterns that
exist per node. The risk and size measures are defined below for an arbitrary
node V in the circuit (the evaluation of the measures is presented later in this

chapter).

48

Risk Measures
o get risk, risk{V,): weighted sum of constrained checkpoints on the
chosen path from the Pls to set node V, for pattern ¥;.
ereset risk, risk(V,): weighted sum of constrained checkpoints on the
chosen path from the Pls to reset node V, for pattern ;.
o monitor risk, risk(V,,): weighted sum of ccnstrained checkpoints on
the sensitized path from the node V to the POs for pat-

tern V,.

Size Measures
«get size, size (¥,): number cf patterns ¥, that can set node V.
ereset size, size (V,): numbe:- of patterns V; that can reset node V.
e menitor size, size(V,,): nurnber of patterns ¥, that can monitor node

V.

4.2.3. Pattern Selection

As shown before, the many ways to set, reset, or monitor a node produce
a multitude of patterns for the given action. If propagated through the net-
work, these patterns multiply rapidly from node to node and computations as
well as data storage per node become unwieldy. Therefore, one pattern is
chosen among the various patterns of a certain type, and this pattern alone
enters further computations. The operation is called pattern selection, and
the question mark has been chosen as the selection operator owing to its

everyday connotation.

Definition: Given two patterns, P and Q, the selection of P and Q pro-
duces a pattern S equal to the lowest-risk, lowest-level pattern between

P and Q. The selection of P and Q is written as follows:

49

S=P?Q=?(P.Q)
The risk and size of the resulting pattern S are:

risk (S) = risk (P) or risk(Q), size(S) = size(P) + size(Q)

The selection operation implements the minimum risk strategy outlined
in Chapter 3 by using the risk testability measure. Whenever a choice exists,
the pattern with the lowest risk of convergence is selected, and tke chance
for potential redundancies is minimized. In case of a tie, the lowest-level pat-
tern is selected (levels are introduced in the next section of this chapter),
and the choice implements a shortest-path heuristic. If the tie persists, the
first pattern to enter the operation is chosen. Pattern selection always gen-
erates a unique result, and the opergtio’n is commutative, associative, and
any pattern of risk 99999 acts as ideniit.y element. The selection heuristics

strongly influence the algebraic structure.

The risk measure of the selected pattern becomes the risk measure of
the result. To evaluate the size measure of the result, the individual sizes of
P and Q must be combined to reflect the increased pattern count. Since sig-
nal dependency is handled correctly by the patterns, signals are assumed
independent to simplify the size calculation which then becomes a simple
addition.

Example: LetP, Q, and R be the patterns below.
P=0zzj§, r(P)=99999, s(P)=0, level=2
Q=z1z0, 7(@)=32, s(@)=9, level=6

R=0z10, r(R)=32, s(R)=5, level=4
Then,

S=P? =Q=z1z0, 7(S)=r(Q)=32, s(S)=s(P)+s(Q)=0+9=9

50

T=Q? R=R=0z10, r(T)=r(R)=32, s(T)=s(Q)+s(R)=9+5=14

During every selection, pattern information is lost, but the pattern con-
sidered most likely to succeed is propagated; hence, the damage is heuristi-
cally confined. No new patterns are generated, because existing patterns are
steered to successive nodes, and therefore the selection operation is indepen-

dent of the logic structure.

4.2.4. Pattern Intersection

To set. reset, or monitor a node sometimes requires the simultaneous
action of two or more node patterns. For example, to observe one of the
inputs of a two-input AND gate requires that the output be monitored and the
other input be set, i.e., the monitor pattern of the input under investigation is
a combination of the output monitor pattern and the other irput reset pat-
tern. The operation defining such a combination of patterns is called patiern
intersection, and the exclamation mark has been chosen as the intersection

operator owing to its everyday imperative connotation.

Definition: Given two patterns, P and Q, the intersection of P and Q
produces a pattern 1, the symbols of which are obtained by combining
the two homologous symbols in P and Q according to the following com-

bination table:

K = O] -
IO O|O
e = N
MM - Ol %
T s W s (I

The intersection of P and Q is written as follows:

51

I=P1Q=1(P.Q)

If the resuilting pattern 1 includes a clash (#), then the risk and the size

of the resulting pattern] are:
risk(]) = 99999, size(/)=0.
If pattern I includes no clashes, then the measures are:

risk(I) = risk(P) + risk(Q)., size(J) = size(P) * size(Q).

The intersection operation guarantees that signal dependencies are
taken into account and that all additional constraints (and potential conflicts)
enter the computations as they arise. If patterns must act simultaneously,
then the primary input conditions they represent must be met simultane-
ously: hence, the symbols must be combined. The pattern combination rule
for four-valued logic defined in the above table is commutative, associative,
and has a unique identity element (a pattern composed entirely of don't
cares); therefore, it constitutes an abelian semigroup. Any other composition
table for multiple-valued logic can be used if the operation it defines has the
same algebraic properties. As expected, don't cares are overridden by any
symbol, clashes override any symbol, and new clashes result only out of a 0-1

or 1-0 intersection.

Signals are again assumed independent when calculating the testability
measures of the result. The risk measure of the result is the sum of the two
initial risks, since both patterns must act simultaneously. For each possible
pattern for P, the gamut of patterns for Q is available; hence, the size of] is

the product of the sizes of P and Q.

52

Example: Let P, Q R, and T be the patterns below.

P=0zz#, r(P)=99999, s(P)=0
=z 120, r(Q)=32, s(Q)=9
R=0z10, r(R)=32, s(R)=5
T=1010, =(T)=18, s(T)=3
Then,

I=P1Q=01z§, r(/)=95999, s(/)=0
J=Q'R=0110, 7(J)=r(Q@)+r(R)=32+32=64, s(J)=s(Q)*s{R)=9*5=45
K=R'\T=#§010, r(K)=99999, s(X)=0

No information is lost during pattern intersection, but an improper
choice in a previous selection may cause the occurrence of a clash when a
clash-free pattern for the node exists. Unless one of the patterns is the iden-

tity element, pattern intersection always generates a new pattern.

4.3. CIRCUIT LEVELIZING

Circuit levelizing, the first step in the basic algorithm of VICTOR, parti-
tions the circuit description into segments corresponding to complete cell
modules (cell name and cell input and output nodes) and orders the cell
modules. Circuit levelizing is static and is based on topology. If the signal
fiow determines the relative ranking of cells, the ordering is dynamic and is
called event-driven or selective trace. Dynamic ordering is especially
efficient if a logic change causes a low level of activity in the network. Since
in VICTOR all signal dependencies are taken into account, the testability
evaluation at every node causes a high level of activity; hence, circuit leveliz-

ing is used in VICTOR.

53

Levelizing is the process of assigning a nonnegative integer value to every
node and cell in the network. By definition, the level of the Pl nodes is zero,
and the level of a node other than a primary input is the level of the cell
which has the node as an output. The level of a cell in the network is calcu-

lated as the maximum input node level plus one.

In VICTOR, the levelizing procedure starts out by initializing all node lev-
els to infinity and PI levels to zero. The procedure consists of successive
searches for the cells that have not been assigned a logic level but the inputs
of which have been already levelized. Once such a cell is found, its level is cal-
culated, and the operation is repeated. The procedure stops when a circuit
pass does not produce any new cell levels. When applied to the cirzuit exam-
ple in Figure 4.1 (a repetition of Figure 3.2), circuit levelizing produces the

levelized cell list INVERTER, AND2, OR2, and the following node levels:

level: A B
level 1: J
level 22 K
level 3: 2

The use of circuit levelizing has several implications. First, each circuit

node is considered to be the output of at most one cell, otherwise the node

A LD&}K

B Z

Figure 4.1 Simple circuit example.

54

level is undefined; hence, tied cell outputs (wired logic) cannot be handled by
VICTOR. Second, if all nodes are connected properly, infinite levels point out
the presence of feedback loops in the circuit. If a loop exists, at least one cell
input level is inflnite; hence, all cell output levels are infinite too, and the
situation is replicated for the cells in the loop and the cells driven by the ones
in the loop. VICTOR identifies the presence of feedback loops (design-rule vio-
lations in combinational circuits) and gives the boundary of the circuit area
containing the feedback loop as the list of cells with finite levels feeding cells
with infinite levels. Third, levelizing introduces a total order relation in the
network and generates a levelized cell list, a list of cells sortad in increasing
order of their level. The list comprises al} cells in the networx and forms the

basis of the ensuing testability calculations.

4.4. CONTROLLABILITY CALCULATION

The controllability calculation in VICTOR consists of the controllability
initialization and the evaluation of the node controllability triplets. The com-
putation is completed in a single pass through the circuit and proceeds cell
by cell in the order given by the levelized cell list. Fanout nodes are handled
as single fault locations, because the controllability triplets for root and

branches are identical: controlling the root also controls the branches and

vice versa.

4.4.1. Controllability Initialization
Since the calculation of controllability parallels the forward flow of sig-
nals from the primary inputs to the primary outputs, only the PI triplets —

pattern risk, and size — need to be initialized. For the rest of the nodes,

65

triplets are generated as the controllability calculation progresses.

The Pl set pattern consists of a 1 for the symbol of the particular pri-
mary input and all don't cares (x) for the other Pl symbols. Similarly, the Pl
reset pattern is formed of only don't cares and a 0 for the particular primary

input. Thus, the Pl patterns of the example circuit are:

A =1z, A =0z,
B,=z1, B,=z0.

The set and reset risk for a primary input driving a single cell is equal to
one. For a fanout node, however, the risk of convergence grows with fanout
and distance to the primary outputs. A "risk rectangle area” is calculated as
the product of fanout and the level count to the furthest primary output. For

the analyzed example:
risk(4,) = risk(4,) =2*3=6, risk(B,) =risk(5,) =1
A PI node can be set or reset in exactly one way, hence both set and reset

sizes are equal to one.

size(4;) = size(4,) =1, size(B,) =size(B,)=1

4.4.2. Cell Controllability Calculation

Except for the primary inputs, all circuit nodes are cell output nodes.
Therefore. node control triplets are calculated by processing cell after cell
from the levelized cell list. The rules to derive output control triplets from
input control triplets for a cell constitute its control equations, which must

be predefined in a cell controllability library (see Appendix 2).

The procedure to calculate control triplets outlined above is shown on
the circuit example. Circuit cells are dealt with in the following order:

INVERTER, AND2, OR2. To simplify notation, the control pattern, risk, and size

56

of a node are represented collectively as triplets. The set and reset triplet of

any node V in the circuit are:

Vrs = § Y. Tisk(;), size(%;) §
Vi = | Y. risk(V,), size(V;)]
The first processed cell, the INVERTER, is governed by the following con-
trol equations:
Js=A =4
(The relation betwgen patterns implies a similar relation for risk and size.)

The control triplets for node J are Jy5={0x, 8, 1] and Jyp={1x, 6, 1}.

The next cell is the two-input AND gate, AND2, which has the control
eguations given below:
) K=4'/ K=A4?J
(Risk and size evaluation is implicit to the pattern operations.) The control

triplets for K are Krs={#x, 99999, 0} and K7p={0x, 6, 2{.

The final cell is the 2-input OR gate, OR2, with the following control equa-

tions:

Z,=K,? B, Z.=K!B5.
The control triplets for Z, the primary output of the circuit, are Zrs={x1, 1, 1}
and Zy’R=100, 7, 2!.

After processing the last entry in the levelized cell list, the controllability
calculation is complete. If any of the cell outputs is a fanout node, its risk is
increased by an amount equal to the product of the fanout and the number of
levels to the furthest PO node (the additional risk is analogous to the "risk

rectangle area” of the Pl fanout nodes).

57

Cell control equations stem from the cell logic equations a'nd have simi-
lar algebraic properties. Based on the associativity of pattern selection and
intersection, the generic gates (AND/NAND, OR/NOR) need only a single entry
in the controllability library, regardless of the number of cell inputs. A
method and a program for translating logic into testability equations, LITE

[Van Egmond 82), has been developed.

4.5. OBSERVABILITY CALCULATION

The obsembiﬁty calculation in VICTOR consists of the observability ini-
tialization and the evaluation of the node observability triplets. Similar to the
controllability calculation, the computation is completed in a single pass
through the circuit, but proceeds in the ‘reverse order of the levelized cell
list. When analyzing the observability of fanout nodes, branches must be
identified and handled as entities separate from the root; therefore, VICTOR
assigns them unique names according to the convention introduced in
Chapter 3. The triplet notation introduced for node controllability is used for

node observability also.

4.5.1. Observability Initialization

Since the observability calculation follows the inverted signal flow, only
the PO node triplets need to be initialized. Primary outputs are uniquely
observable without imposing any checkpoint constraints; hence, their moni-
tor pattern is the identity element for intersection, the risk is zero, and size
is 1. In the circuit example of Figure 4.1, the monitor triplet of primary out-

put Z is initialized this way: Zpy={xx, 0, 1.

56

4.5.2. Cell Observability Calculation

Observability and controllability are dual notions and so are the pro-
cedures for calculating them. Node monitor triplets are calculated cell by
cell, from the primary outputs to the primary inputs, in reverse order of the
levelized cell list. The rules to derive input monitor triplets from output mon-
itor triplets for a cell constitute its monitor equations, which must be

predefined in a cell observability library (see Appendix 2).

The procedure to calculate monitor triplets outlined above is shown for
the circuit example in Figure 4.1. Circuit cells are dealt with in the following

order: OR2, AND2, INVERTER.

The first cell to be processed, OR2, has the following monitor equations:
Kn=Zm' By " Bn=Zn'K.
Monitor risk and size follow the definitions given earlier in this chapter. The

monitor triplets for nodes K and B are K7y ={x0, 0, 1} and Bry={0x, 0, 1.

The next cell to be processed, AND2, has fanout node A as an input. VIC-
TOR identifies it, names the branch A-1-K (root-pin-output, see Chapter 3),
and calculates the branch risk as another "risk rectangle area” from the cell
to the root of the fanout node. The risk of A-1-K, the product of fanout and
the number of levels from the cell to the fanout root, 2#(2-0)=4, enters the
monitor calculation of the other cell input, J. The input monitor triplets are
calculated as

A-1-Kp = Kpn ' Jyo Jm =Kn!A-1-K;,
resulting in A-1-Kyy=1{00, 0, 1} and Jpx={10, 4, 1}. Because one of the cell
inputs, A-1-K, is a fanout branch, VICTOR starts evaluating the root monitor
trip'let. by performing the set-monitor and reset-monitor intersections and

storing the results.

59

A-1-K ' A-1-K, = {#z,
A-1-K 1 A-1-K, = 00.

The last cell in the observability pass, the INVERTER, is connected to the
second branch of fanout node A. VICTOR names it A-1-J, calculates its risk,
and using the cell monitor equations

A=-1-Jp, = Jp,
computes the monitor triplet A=1-J7y={10, 4, 1]. Cell input A-1-J is a fanout
branch, and the set-monitor and reset monitor intersections are calculated

and stored again.
A=-1-J; ' A-1-J, =10,
#zx.

For the calculation of fanout node observability, all branch monitor tri-

A=1-J, t A=1=Jp,

plets must be evaluated fi'st, and then the root pattern is set equal to the
branch monitor pattern forr which both set-monitor and reset-monitor inter-
sections are clash-free. If many such patterns exist, the one with the least
input constraints (most don't cares) is selected; the next tie-breaker is
weight, then order of operation (the root calculation always generates a
unique monitor triplet). The root risk and size are calculated following the
rules defined for pattern selection. In no such pattern exists, then the root

monitor triplet is set to {###...## 99999, 0.

In the example, node A-1-J is the second of two branches of node A:
therefore, all data necessary for the evaluation of the root monitor triplet has
been computed. For both branch patterns, the set-monitor and reset-

monitor intersections contain a clash; thus, the root monitor triplet is set to

An={#4#. 99999, 0}.

60

After a single pass through the levelized cell list, all observability values
have been calculated. Monitor equations, like control equations, are derived
from the logic equations of the cell, and for generic gates less entries in the
library are needed: AND/NAND gates share the same observability library
entry, as do OR/NOF. and XOR/XNOR gates. Similar to cell control equations,
the observability encoding of complex functional blocks can proceed

automatically, as is done in LITE [Van Egmond 82].
4.8. TEST GENERATION AND REDUNDANCY IDENTIFICATION

4.6.1. Test Generation

A test for a fault is a sufficient cougct;ion of PI conditions that simultane-
ously control and observe the fault, i.e., provoke the fault from the primary
inputs and propagate the fault to the primary outputs. The simultaneous
requirements translate into simultaneous PI constraints identical to the ones
defined previously for pattern intersection; hence, VICTOR generates tests by
intersecting control and monitor patterns for every the node in the circuit.

Two tests are needed to detect the stuck-at faults on an arbitrary node V:

V/0 test: V3! Vn, V/1 test: V! V.
The resulting patterns may or may not include clashes.

Patterns containing no clashes, but only 0, 1, and x, represent valid test
patterns and can be used as such. The detected faults are, by definition,
irredundant. In the circuit shown in Figure 4.1, VICTOR finds eight irredun-
dant faults by generating the following test patterns (stuck-at-0 tests on the

left, stuck-at-1 tests on the right):

81

10 A-1-J
00 A-1-K
01 00 B
10 J
x1 00 Z

Although such a table grows only linearly with circuit size, the resulting
amount of test data causes difficulties in test application [Muehldorf 81]. To
limnit this explosion of test data, VICTOR searches two times through the list of

test vectors and achieves fault collapsing and test compaction.

Fault collapsing reduces the number of tests by matching faults
detected by the same test pattern and eliminates multiple occurrences of the
same test pattern. For instance, pattern 00 appears four times in the previ-
ous fault list, but just once followed by a four in the list of collapsed test pat-

terns shown below:

00 ...
10 .
x1 .
01 ..

- D)

Test compaction reduces the number of collapsed tests by merging
different test patterns that are equal but for some don't cares. For example,
patterns x1 and 01 are compacted to 01, but patterns 00 and 10 cannot be
compacted, because the resulting pattern, #0, comprises a clash. During test
compaction, a don't care is the "weak"” term (the identity element), and a 0-1
compaction leads to a clash; the operation implementing such rules is pat-
tern intersection. When applied to the list of collapsed faults, test compaction
generates the tests listed below in decreasing order of the number of faults

detected per test.

62

00 ... 4 50.0% 50.07%
o1 ... 2 25.07% 75.0%
10 ... 2 25.0% 100.0%

The percentages give the fault coverage and the cumulative fault coverage

per test vector for the irredundant faults only and not for the entire circuit.

4.8.2. Redundancy Identification

If the intersection of the control and monitor patterns for a fault results
in a pattern that includes at least one clash, the inmpossible condition aborts
the attempt to generate a test for the given fault. Every clash represents a Pl
conflict due to convergent fanout and indicates a potential redundancy. ViIC-
TOR identifles three types of redundancies (corresponding to the

classification of redundancy introduced in Chapter 3):

(1) wuncontroliable redundancy (0 or 1): a clash in the control patterns, no

clash in the monitor pattern;

(2) unobservable redundancy: a clash in the monitor pattern, no clash in the

control patterns;

(3) untestable-controliable-observable redundancy: no clash in the control or

monitor patterns, but a clash in the test pattern.

In the example of Figure 4.1, the two node patterns including a clash,
K,=#x and A, =#0, identify the l-uncontrollable node K and the unobservable
node A, which means that faults X/0, A/0, and A/1 are redundant. VICTOR
finds six potentially redundant faults in the circuit. The six faults and their
aborted test patterns are listed below (impossible test patterns for stuck-at-0

faults on the left, for stuck-at-1 faults on the right):

63

0 §0 A
§0 A-1-J

#0 A-1-K

#0 J

#0 K

Exhaustive circuit testing (patterns 00, 01, 10, 11) proves that the three addi-
tional faults, A-1-J/1, A-1-K/0, and J/0, are redundant and that no other
redundancies exist; for the analyzed circuit, the redundancy estimate of VIC-

TOR is correct.

In general, many potential redundancies identified by VICTOR are false
redundancies. The linear, heuristic algorithm must err at times when trying
to solve the NP-complete problem of fault detection, no matter how good the
heuristics. However, the set of potential redundancies includes all true
redundancies, since VICTOR detects all fanout convergences. The magnitude
of the redundancy identification (RI) error is crucial, because the larger the
set of false redundancies, the less information on true redundancies VICTOR

gives.

The structure of the potential redundancies in VICTOR is illustrated by
the onion model of Figure 4.2: a kernel of correct data, the true redundan-
cies, surrounded by layers and layers of incorrect data, the false redundan-
cies. When the onion grows to encompass a major portion of the fault set, and
the kernel of true redundancies stays constant, the RI result loses informa-
tion content. If the onion includes all circuit faults, the information content
of the Rl result is zero. VICTOR predicts the triviality that every node in the

circuit could be redundant.

The task of identifying the redundant faults in a circuit can be viewed as
a two-step process: {1) separate potentially redundant faults from the total

fault set, and (2) eliminate false redundancies from the set of potential

Figure 4.2 Onion model for potentially
redundent faults

redundancies. The first step is perforﬁzed by VICTOR during test generation:
find a clash-free test pattern for a fault, thus prove the fault to be irredunant.
In the second step, the set of potential redundancies is searched for irre dun-
dant faults, the false redundancies. The compacted test patterns generated
previously are simulated and many potentially redundant faults are detected.
In the onion model, the procedure is analogous to peeling off layer after layer
of false redundancies, thus increasing the relative size of the kernel com-
pared to the bulk of the onion. The efliciency of this process grows with cir-
cuit complexity, since a test in a large circuit can detect hundreds and some-
. times thousands of faults [Bottorff 80). The process residue is composed of
hard-to-test irredundant faults and, if the circuit is redundant, a kernel of

redundant faults, both of which require much effort during test generation.
If in a particular circuit VICTOR identifies half the circuit faults as poten-

tially redundant, the Rl resuilt provides little information, since half the faults

in the circuit must be investigated further. Without any previous information,

65

all circuit nodes must be investigated. In rare cases, such as the example
analyzed in this chapter, the potential redundancies identified by VICTOR con-

tains no false redundancies.

4.7. ALGORITHM COMPLEXITY

VICTOR constitutes an approach to global redundancy identification and
test generation that manages to keep algoritkm complexity linear through

the extensive use of heuristics.

Except for a few search procedﬁres. the operations in the four steps of
the algorithm relate linearly to circuit fault and primary input count. Once
the circuit has been read in and the noc}e structure established (an nlogn
process present in any CAD algorithm), the ensuing circuit levelizing is linear.
Then, both controllability and observability calculation are complete after a
single pass through the levelized cell list, and the amount of cell computation
scales linearly with the number of node testability triplets per cell. Test gen-
eration and redundancy identification involve one pass through the entire
fault list and one pattern operation per fault. Finally, fault collapsing and

test compaction for irredundant faults require an nlogn search each.

Data storage in VICTOR is a linear function of circuit fault and primary
input count. Every node is assigned a set, reset, and monitor triplet, and two
test vectors (for the two stuck faults). Therefore, the amount of storage
required per node is 2*3=6 integers and 3+2=5 patterns. The patterns for a
given circuit depend only on the number of "logical primary inputs”, i.e., the
chip primary input count and the number of points in the scan path used as
test inputs. The former is constrained by packaging constraints, and the

latter is constrained by memory limitations during test application [Muehldorf

66

81]. Hence, the length of a pattern is a weak function of circuit complexity
and can be considered constant for VLSI. Finally, intermediate calculations

employ a fixed number of variables.

A comparison can be drawn between the Boolean Difference algorithm,
the D-algorithm [Breuer 76), and the algorithm in VICTOR. The Boolean
Difference method generates all tests for every fault in the circuit. No
heuristics are involved, and the algorithm. is complete, but of only theoretical
interest because of vast amounts of computations and of data. The Boolean

Difference algorithm identifies all redundant faults.

If a test exists, the D-algorithm generates a test for every fault in the cir-
cuit. The D-algorithm is complete and its efficiency relies on heuristics. It
uses considerably less computation a{mdv storage space than the Boolean
Difference, but program implementation for automatic test pattern genera-
tion (ATG) is unwieldy. The D-algoﬁt.hm identifies all redundancies, but after

an exhaustive search that requires many :terations and backtracks.

Employing only four linear passes through the circuit and linear storage
space, VICTOR generates o test for some of the faults in the circuit. If a
redundancy exists, VICTOR identifies it, but VICTOR also flags many hard-to-
test irredundant faults as potential redundancies. The extensive use of the
risk heuristic drastically reduces algorithm complexity and biases the results
such that VICTOR always errs on the conservative side. Irredundant faults are
considered redundant, risks predictions are bigh, and size predictions are

low.

CHAPTER 5

VICTOR PROGRAM IMPLEMENTATION

5.1. INTRODUCTION

The global method for redundancy identification and test generation
introduced in the previous chapter has been implemented in a program. This
chapter presents the details of the VICTOR program implementation: the pro-
gram structure, the flles attached during program execution, and the data
base underlying the testability operations.' The last section analyzes program

portability and language specifics.

5.2. PROGRAM STRUCTURE

The program consists of four modules: the input processor INPROC, the
controllability calculation module CONTRL, the observability calculation
module OBSERV, and the result processor REPROC. The main routine in each
of the four modules contains information on the common blocks and files
used in the module. Program VICTOR consists of about 4300 lines of ANSI
FORTRAN 77 grouped into 72 routines as shown in Table 5.1 (the entire pro-

gram source listing is given in Appendix 6).

5.2.1. Module INPROC

The interactive input processor INPROC allows the user to specify input
and output file, it checks the input syntax, levelizes the circuit, and copies

the analysis data to a set of files. The user specifies interactively the input

87

68

Program VICTOR modules I routines | lines l
main program & setup routine 2 100
input processor 21 1400
controllability calculation 26 1300
observability calculation 12 700
result processor 11 800
Program VICTOR (total) 72 4300

Table 5.1 Routine and line count in program VICTOR.

file containing the circuit description and the output file to which the global
results of program VICTOR are copied. Ncde name length, library cell name,
and cell input/output node count are verified and error messages, if any, are
displayed on the terminal. The names of the currently available cells i1 pro-
gram VICTOR are defined in subroutine SETUP as shown in Figure 5.1.. While
checking the input syntax, INPROC sets uiJ the node list and encodes circuit
topology into a machine-readable form. Nodes are verified for correct con-
nectivity, and floating nodes and wired logic (tied cell outputs) are detected
and reported to the user. Module INPROC produces a levelized cell list and
detects the presence of (illegal) feedback loops. The user is warned again,
and the boundary of the circuit portion containing feedback loops is deter-
mined. Finally, INPROC calls a debugging subroutine NETBUG, to write out all
circuit topology data to file VIC.BUG (the data serves only in program debug-

ging and maintenance).

6.2.2. Modules CONTRL and OBSERY

The controllability and observability calculation modules, CONTRL and
OBSERV, follow closely the algorithm described in the previous chapter.
Since the program has been implemented at an early stage in the develop-

ment of VICTOR, some terms used in the program differ from the ones

69

¢ library cell nomes and cell outpul and inpul node count

c ..
data
+ libr(l) /'and2 out=! in=2'/, tidbr(2) /'and3 out=! in=3'/
+ lidr(3) /'and4 out=! in=4'/, lidr(4) /'and5 out=l in=5°/
+ lidr(5) /'end6 out=1 in=6'/, lidbr(6) /’and? out=1 in=7'/
+ 1idr(?7) /'and8 out=l in=8'/, lidbr(8) /'ondf out=] in=0'/
+ lidr(B) /'aoi2l out=I in=3°/, lidr(10)/'a0i22 out=1 in=4'/
+ lidr({11)/'a0i3! out=1 in=4'/, tidr(12)/°buf out=! in=1'/
+ lidr(13)/'inv out=1 in=1'/, lidr(14)/ yuz2 out=1 in=3'/
+ Libr(15)/ 'nand2 out=l! in=2'/, libr(16)/ ‘nand3 out=l! in=3'/
+ lidr(17)/'nand4 out=! in=4'/, tibr(18)/ ‘nand5 out=l! in=5'/
+ libr(18)/'nand6 out=l in=6'/, libr(20)/ 'nand? out=l in=7'/
+ libr(21)/ 'nand8 out=! in=§'/, libr(22)/ 'nandf® out=Il in=9'/
data
+ lidbr(23)/'nor2 out=1 in=2'/, lidr(24)/ 'nor3 out=l in=3'/
+ 1ibdr(25)/ 'nord out=! in=4°/, lidbr(26)/'nor5 out=l in=5's
+ 1ibr(27)/ 'nor6 out=1 in=6'/, 1idr(28)/ 'nor? out=l in=7'/
+ Libr(29)/ 'nor8 out=] in=8'/, 1ibr(30)/ 'norf out=l1 in=9"'/s
+ lidbr(31)/ 'oai21 out=! in=8'/, libr(32)/'0ai22 out=l in=4'/
+ lidr(33)/‘'0ai3! out=! in=4'/, libr(34)/'08i33 out=l! in=6"'/
+ lidbr(35)/'cr2 out=l in=2'/, lidbr(36)/'or3 out=1 in=3'/
+ lidr(37)/'or4 out=1 in=4'/, Libr(38)/'or5 out=l in=5'/
+ 1ibr(39)/'0or6 out=1 in=6'/, lidr(40)/'or7 out=l In=7'/
+ libr(41)/'or8 out=l in=8'/, lidr(42)/'or8 out=l in=98'/
+ 1ibr(43)/'trag out=l in=2'/, lidr(44)/ 'znor2 out=! in=2'/
+ Libr(45)/ ‘zor2 out=1 in=2's

Figure 5.1 Library cell name and cell cutput/input
connection definition in subroutine SETUP.

introduced in Chapter 4. The following equivalences hold (terms used in the

FORTRAN code on the left, terms defined and used in Chapter 4 on the right):

label <=> pattern
weight <=> risk
merge <=> intersect

Both CONTRL and OBSERV rely on the implementation of the testability equa-
tions of each library cell; two dedicated subroutines encode the controllabil-
ity and the observability cell equations such that general operations are per-

formed at compile time and just circuit specific calculations are executed at

70

run time.

For example, the controllability routine in module CONTRL for an OR-
AND-INVERT cell is presented in Figure 5.2. After term initialization, the rou-
tine employs only two operations, SELECT and INTERSECT, to calculate the
cell output controllability. Both operations are associative; hence, a two
operand composition rule is enough to evaluate an arbitrary number of
operands. Since the basic logic functions (AND, NAND, OR, and NOR) map
directly into a single SELECT or INTERSECT operation, one generic routine for
each handles any number of gate inputs. Cells of the same type but different
number of inputs, e.g., NOR4, NOR5, NOR8, have been given different names
merely to aid the syntax checker in verifying the correctness of the cell

input /output connections.

Of special interest is the encoding of INTERSECT, the sole operation in
VICTOR that creates new patterns. Consistent with the general algorithmic
approach that the symbolic data manipulation described in Chapter 4 allows,
the routine implementing the two-operand INTERSECT (see Figure 5.3) can be
changed easily to implement a different operation. The composition table, a
4x4 array of 18 entries, is encoded in four CHARACTER DATA statements. If
the algebraic structure in VICTOR is expanded from 4 variables to 16, the only
required change in the program is to encode the corresponding 256 entries in

the new 16x18 table.

In an effort closely related to VICTOR, the transformation from standard
logic equations into control and monitor equations has been automated [Van
Egmond 82]. With the eid of program LITE, the entire cell library in program

VICTOR can be customized in a few hours.

..0‘.0’....00O..‘OO..’O.C..0'0....‘.0..‘0.0000..00...’00.’0..0.0..‘0'.’

subroufine coai33
.0..0..00.0.0..'..0.“..0.0.0.0.’....0.‘000‘.."........0..0..0'..‘..'0

¢ or-and-invert gate: oul=z, in=ual,a2,,a3,b1,02,b3 ;
c z=((al+a2+a3). (b1+b2+b3)) "’

parameier (lbrurc100, ndmaz=10000, mazpi=120, kio=200)

comon /nodind/ list (ndmz) ndfout (ndmz), ndlev(ndmz)

camrun /nodcol/ conO(ndmaz),conl(ndmaz), obs (ndmaz), lab(kio)
camon /modco2/ lwtO(ndmaz), Isiz0(ndmz), lut 1 (ndmaz), Isizl(ndmaz),
+ luto(ndmaz), Isizo (ndmz) kouts (kio), kins(kio), nout ,nin,
+ lwt(kio), lsiz(kio), lev(kio)

character %uzpi, conld, conl, obs, lab

nodout=kouts (/)

¢ Jur c0 (compute tuo interrmediate labels)
call interc(‘cl’,kins(1),1, ‘0ai22’)
call interc(’'cl’ kins(2),2, '0oai22’)
call tnterc('cl’ kins(3),3, ‘oail2’)

call select(l,3,lab(10),lur(10), Lsiz(10))

call interc(‘'cl’' kins(4),4, ‘0ai22’)
call interc(’c!’ kins(5),5, 'oai22’)
call interc('cl’ kins(6),6, ‘0ai22’)

call select(4,6,lab(11), lut(11), isiz(11))

¢ cumpute c0
call merge (10,11, conO(nodout), lwt O(nodout }, lsiz0(nodout))

¢ for cl: compute tuo intermediate labels
call interc(‘cO0’ kins(1),1, 'oai22’)
call interc('c0’ kins(2),2, '0ai22"')
call interc(’'cO’ kins(3),3, ‘vai22’)

call merge(1,3,lab(10), lwt(10),lsiz(10))

call interc(’c0’ kins(4).4, ‘0oai22"’)
call interc('c0’ kins(5),5, ‘'0ai22’)
call interc('c0’ kins(6),6, '0aid2’)

call merge(4,6,lab(11), Wt (11) Isiz(11))

¢ compute cl (assum infermediate ladels have level=1)
lev(10)=1

lev(11)=1
call select(10,11,conl(nodout), lutl(nodout),lsizl(nodout))

refurn
end

Figure 5.2 Controllability routine for cell OAI33.

71

T2

POCPPPSCPVPOPVPOCPPPPOPPPOPPOOPRICUVOPPPPP IOV PP IV IS POP PP IOPPIPIPISIOPRIOPPPPOYS
subrouting marge2(ibl,wl,si,1b2,u2,s2, ltrerg, wnery, SRTY)

POPC V0O IPOP VOOV PP POPSOPIPO OISO PIPPOICPPSPOPITPIVOIPOIVIEIIPOISIOIPOIRIOITVPOPOTRPTS

¢ mmrge the tuv incoming labels lbl, 1b2 (usight wl, w2, size si, s2)

c symbol by symbol and refurn merged ladbel, weight, and size.

symbol composition table:
0 1 c

GNNQi]

¢
c
¢
4

aaoncotan
OH~O
co0o
€0 e O

paromeier (mazpi=120)
camron /actsiz/ npisl,npoel ,ndel, ndlog.ncell , ninput, nlevel

character fmzpi, lb!, lb2, lbmerg
integer w!, u2, wmry, sl, s2, smery
logical clash

GO OO POPPIVECPPICIPTPEPCOOCP PRIV PPPOOIPOP PO IOPOEPISOIUPIPIOPIPIOIPSIIVPIOPIOIIPIS

* 4-valued logic is vplemenied in the following data staterenis
’ modify QNLY symbop und synlis for new logic sysiam

character *4 symbop(4), symlis
data symdop(l1) /’0clOc’/,

+ symop(2) /'clic’/,
+ symbop(3) /'0lzc’/,
+ symbop(4) /’cecc’'/

data symlis /'01zc '/

SOOIV OPOPCPOPPPIPIOIVP VORIV PEPOPIVIPPOPIPPPPIIIPISISPSPPIIPIVIPIPIOIROSITITSIS

¢ merge the two ladels character by character & flag occurring clashes.

clash = .false.

do 10 l=I,npiel
irow = index (symlis,lbi(l:l))
Jcol = indez (symiis,lb2(l:l))
lamerg(l:l) = symbop(irow)(jcol jcol)
if (lmerg(l:l) .eq. 'c’} clash = .true.

10 contirue

¢ compute the weight and size of new label.
if (clash) then

wrerg = BRERL
smmrg = 0
else
wmneryg = witul
seryg = s1%2
end if
return
end

Figure 5.3 Two operand intersection subroutine MERGE2.

73

5.2.3. Module REPROC

The result processor, REPROC, has no special implementation features.
It uses the same INTERSECT operation for test pattern generation and test
compaction, performs several shell sorts for alphabetical and numerical ord-

ering of the fault data, and writes the output to several files.

5.3. FILE STRUCTURE

The user specified input and output files containing the circuit descrip-
tion and the final results, and another twenty scratch files are attached to
program VICTOR during execution. Both names and logical unit (device)
numbers assigned to the files are de‘fined in subroutine SETUP, as shown in

Figure 5.4. Files are used during input processing to log syntax errors and

c ---
c file structure: file nomes and lugical wnil assigrmment
c ---
data tmpfil /
+ ‘'vic.i0°’, ‘vic.syn’, ‘vic.flo’, ‘wic.fb’, ‘vic.net’,
+ ‘vic.red’, ‘vic.vec’, ‘vic8’', ‘vich®’, ‘vicl0’,
+ ‘vicll’, ‘'vicl2’, ‘'vicl3', ‘vicl4’, ‘vicls’,
+ ‘vicl6', ‘vicl?’', ‘vicl8’, ‘viclf', ‘vic20'/
¢ tmpfil(1) (vic.i0): user-specified input and ouiput file names
¢ tmpfil(2) (vic.syn): circuil description in standard form
¢ bmpfil (3) (vic.flo): floating nodes and wired logic
c tmgfil(4) (vic.fb). boundary of feedback loop area
¢ inpfil(5) (vic.net): machine-readable circuil net lisi
¢ brpfil(6) (vic.red): potentially redundant foulls and aborted
c test vectors
¢ tmpfil(7) (ic.vec): test vectors for guaranieed irredundant faulls
¢ tmpfil (8)-bmpfil (20) (vic8-vic20): spare files for fulure eztensions
¢ device nunber assignments for vaz/uniz (machine dependent):
c I-4 = input files, 5 = standerd input (from terminal)
c 7-10 = output files; 6 = standard output (to terminal)

data lu /1,2,3,4,5,6,7,8,6,10/

Figure 5.4 File structure definition in subroutine SETUP.

T4

during result processing to store the output; examples are given in the next

chapter.

5.3.1. File Name and Circuit Description Files

VIC.10

VIC.SYN

VIC.NET

The file contains the user-specified input and output file names, one

per line.

The file contains the circuit description in standard form obtained
from the initial circuil. description by deleting comment lines, blank
lines, leading blanks, and the characters right of the line continua-
tion sign (plus), by substituting a single blank for all separators
(tab, blank, comma, colon, senﬁgolon. parentheses) and by preced-

ing each line with a current line number.

The file contains the .circuit node and topology information in the

machine readable form used by modules CONTRL and OBSERV and

serves only for debugging.

5.3.2. Connection Error Files

VIC.FLO

VIC.FB

The file contains floating nodes, incorrectly connected primary input
and output nodes, tied cell output nodes (wired logic), and warning
messages of possible redundancy for wired logic at the output of

identical cells.

The file contains the boundary of the feedback loop region, i.e., the

highest level cells that feed cells with infinite level.

7

5.3.3. Fault Information Files

VIC.RED The file contains an alphabetic list of all potentially redundant faults

VIC.VEC

output

with the corresponding aborted test patterns (patterns contain at

least one clash).

The file contains information on the faults guaranteed to be irredun-
dant: an alphabetic list of faults with their corresponding test pat-
terns and the global fault coverage, test patterns for the collapsed
faults and compacted test patterns listed in decreasing order of the
number of detected faults per vector and the per cent fest data
reduction, and a histogram of the fault coverage and the cumulative

fault coverage per vector.

This user-specified output file contains the global results: circuit
data and fault data synopses, alphabetic list of all faults (for fanout
nodes, the root precedes the branches) and their correspoading tri-
plets of pattern, risk, and size for each of the set, reset, and moni-

tor operations.

5.4. DATA STRUCTURE

The data base in program VICTOR is composed of eleven common blocks

grouped in several functional categories. The common blocks used in each of

the four program modules are listed in the main calling routine of the

module.

To allow for future expansion, the dimensions of the arrays and the

lengths of some key character variables are adjustable, as shown in Figure

5.5. Overflow protection is enforced throughout the program: an error mes-

sage specifying the violated dimension or length of a variable is displayed,

and execution is terminated.

a0 a0o0

3]

A

76

define the variable array sizes. all paromeicr sialemenis in
the entire programmust bes changed if these sizes are changed.

tdbnun: mwmber of predefined libdrary cells

ndmaz: wozitrum number of nodes in the circuit

mazpi; raziem number of primury inputl nodes in the circuil

kio: razorun nunbsrt of input /output nodes per cell
porameter (lbnun=100, ndmaz=10000, mazpi=120, kio=200)

11! do not change lengths of the following characier variables /!’
wunless you are willing te update all occurrences in the program.

character fmazpi, conf, conl, ods, lab, veclis
charactier 40 trpfil, inpf, outf, lidr*30, logned*72

Figure 5.5 Adjustable variable sizes in subroutine SETUP.

description of the various common blocks extracted directly from sub-

routine SETUP follows.

5.4.1.

5.4.2.

00

anca0can

File Name Data

camon slulist/ lu(10)
tu(10): device nunber assigmment

comron Aukfile/ tmpfil (20)
tmpfil (20) : tarporary work filss

camon /iofile/ inpf, outf
inpf, oulf: user-specified input and ocutpul file names

Circuit Node Data

comyon /nodnam/ libr(lbnum), lognod(ndmaz)
lidbr (lbnum): lidrary cell nomes and outpul /input node count
lognod (ndmaz) : names of circuil nodes and composite fanoul
branch names

camron /odind/ list (ndmz), ndfout (ndraz) ,ndlev (ndmz)
list (ndmaz): scraich array for general storage.
node fanin in module INPROC
Janout node root inder in module QBESERV
sorted array pointers in module REFROC
ndfout (ndmz): node fanout
ndlev(ndmaz): node level

5.4.3.

] a0 00000

a0

annooaooa

5.4.4.

aaocaoon

annaonoo0on

5.4.5.

Circuit Topology Data
common /ckttop/ inpckt (2°ndmz), levord(ndmaz/2)
inpcktl (2°dmaz): rachine-readable circuii descripiion as a
colleciion of standard cell entriss of the form:
0
cell indez (libr array indez of cell)
negative cell output node index
myutiv.c' .c.c.l.l. output node tndez
positive cell inputl node index
positive cell input nods indez
where cell index = lidr array indez of cell nome
and node indezr = lognod array indsz of node name

levord(ndmz/2): levelized cell list: list of inpckt indezes
corresponding to cells in ascending order
of their level

camon /fctsiz/ npiel,npoel ,ndel ,ndlog,ncell, nimput,nlevel

npiel,npoel . nurber of primary input and primary outpul nodes

ndel,ndlog: number of (electricel) nodes and foul! locaiions
{logical nodes) in the circuitl

ncell: nurber of circuil cells

ninput . element count in array inpckl

nlevel: nurder of circuit levels

Node Controllability /Observability Data

camon /nodcol/ conlO(ndmaz),con! (ndmaz), obs (ndraz), lab(kio)

conO(ndmaz) : node O-controllability label (reset patiern)
conl(ndmz): node I-controllability label (set pattern)
obs (ndmaz): nods observability label (monitor patiern)
lab(kio): scratch pad array for label calculations

comon odco2/ lutO(ndmz), lsiz0(ndmaz), lut ! (ndmaz)}, Isizl(ndmaz).
+ luto(ndmaz), Isizo (ndmz), kouts (kio), kins (kio), nout ,nin,
+ Jut(kio),lsiz(kio)},lev(kio)

lwtO(ndmaz), lsiz0(ndmaz): reset (0) weight and size

lut I (ndmaz), isizl(ndmaz): set (1) ueight ond size

luto (ndmaz), Isizo (ndmaz) : monitor ueight and size

kouis (kio) kins(kio): cell oulput and input node indezes

nout ,nin: cell output and input node counts

{ut (kio), lsiz(kio), lev(kio): scraich ueight, size, and level arrays

Jor cell testability calculations

Test Data

comon /tesvec/ veclis(ndmaz)
veclis (ndvmaz): sorted test vectors in decreasing order of
the detscted faults per vector

77

78

camon /aciest/ nirred,nred,nfcol

¢ nirred,nred,.nfcol. nurbsr of guaranteed irredundant and poteniially
c vedundant faults
¢ nfcol: irredundant fault count afier fault collapsing

5.5. PROGRAM PORTABILITY

Program portability is the property of a program to compile and execute
on a variety of computers. Ideally, no change shoud be necessary in the origi-
nal program code, but if only minor changes are required, the program is still
considered to be portable. However, the necessary changes should be small,
easy to identify, and localized in a few subroutines. The choice of the pro-

gramming language and the way it is used are the two determining factors in

the portability of a program.

The goal of the program implernentétion for VICTOR has been source
code portability, and to attain it, speed and memory performance of the pro-
gram have been sacrificed. The current VICTOR program implementation is
given as a proof of method and should be used as a prototype together with
the benchmark examples given in Chapter 8. The input/output processing
routines must be extended and augmented, and some core subroutines
implementng the testability calculations must be rewritten using an efficient
programming language and dynamic memory management to achieve the

performance expected from a software product.

5.5.1. Choice of FORTRAN 77

The selection of a programming language for a given application follows a
set of prioritized criteria. Newton [Newton 81] compares several programming
languages while searching for a "blue collar language for CAD" and lists the

employed decision factors: ease of algorithms translation, portability, execu-

78

tion efficiency, and maintenance. His candidates are PASCAL, C, and FOR-
TRAN preprocessors such as RATFOR.

For VICTOR, the major criterion has been code portability: standardiza-
tion and availability of the the programming language. Four languages, LISP,
PASCAL, C, and FORTRAN 77, have been investigated from this angle. LISP is
nonstandard and nonportable, PASCAL has many different dialects, and C
lacks a standard document defining the language. FORTRAN 77 has been
chosen over C (in spite of the latter’'s superior control structures and overall
qualities), because FORTRAN 77 is available on practically any computer, and
an ANSI document exists with the specific goal of promoting "portability of
FORTRAN programs for use on a variety of data processing systems” [ANSI 78]
FORTRAN 77 is actually ANSI X3.9-1978 FORTRAN.

5.5.2. Program VICTOR Language

Language use in program VICTOR ows much to the experience gained by
implementing the SCOAP algorithm [Goldstein 79] in FORTRAN 77 for use on a
variety of systems within Bell Laboratories (see Appendix 1). The lessons
learned from SCOAP make up the implementation philosophy employed for
VICTOR: abide by the rules, push for legal performance, and document every-
thing.

The code follows the FORTRAN ANSI reference (any possible inconsistency
is unintentional), even if the writing of such code has required considerable
effort. For example, only two structured control statements, block IF and
computed GO TO, are used in the entire program. Machine-dependent code
(file names, device number allocation, variable array dimensions, character

variable length) is localized in a BLOCK DATA subroutine SETUP (Appendix 5),

80

which also describes the entire program data base. As a rule, the code does
not exploit any machine idiosyncrasy. For example, the routine that converts
integers represented as characters to their numeric value, subroutine ATOI

(see Appendix 8), consists solely of FORTRAN 77 statements.

The forte of FORTRAN 77, character variables, constitutes the core of
many operations in the VICTOR program implementation. During input pro-
cessing, line parsing uses the character INDEX function to check for input
syntax errors and to set up the circuit node list. INDEX is used again as the
basic operation in the evaluation of pattern intersection, as shown in Figure
5.3. All patterns — set, reset, monitor, and test — are character variables;
therefore, bit packing occurs at compile time and does not depend on
machine word length. The inherent B-l?it ASCII encoding allows for ample (up
to 256 logic values) future expansion of the symbolic algebra used in VICTOR.

The VICTOR program implementation includes the necessary documenta-
tion on its operation in the source code. About one out of every five lines in
the program is a comment line explaining the next few lines of code, and
every routine starts with a description of the operations performed by the
routine. Detailed information about the data structure, file structure, and
library cell names is given in subroutine SETUP. The information in the code

should suflice for program maintenance and extension.

CHAPTER 6

VICTOR PERFORMANCE EVALUATION

6.1. INTRODUCTION

The performance of VICTOR, the approach to global redundancy
identification and test generation, is evaluated in this chapter. First, the
correctness of the approach is shown by analyzing several small pathological
circuits. Then, program performance is measured for the 74181 4-bit ALU
and for an industrial example. Finally, program VICTOR is compared to testa-

bility analysis program SCOAP.

6.2. METHOD CORRECTNESS

The benchmarks chose: to verify method correctness in VICTOR are the

the circuits examples illustrating the three different redundancy types.

6.2.1. Uncontrollable and Unobservable Redundancy

The first circuit (Figure 6.1) has been analyzed in Chapter 4. VICTOR gen-
erates a list of potential redundancies that include not only the 1-
uncontrollable node K, but also faults A-1-J/1, A-1-K/0, J/0, A/0, and A/1. As
shown before, the redundancy estimate is exact: all potential redundancies
are true redundancies. It is important that VICTOR identify the fanout root
faults, A/0 and A/1, as redundant, since the circuit falls under the conditions
of Armstrong’s analysis (simple fanout convergence with unequal inversion

parity, see Chapter 3) and fault propagation from the root of the fanout node

81

82

A E{>o¢ .

B Z

Tigure 6.1 Redundant circuit containing
1-uncontrollable fault K/0.
stops at node K, the convergence point. In the second circuit (Figure 6.2),
VICTOR identifies faults A/0, A/1, B-2-J/0, and J /0 as potentially redundant,

and the faults are aci.ually redundant; hence, the result is 100% correct.

The analysis of the simple examples described above shows that all signal
dependencies in the circuit must be taken into acount. To that end, the
SCOAP testability analysis algorithm [Goldstein 79 & 80] is applied to the circuit

in Figure 6.1. SCOAP calculates a node O-controllability, CCO, and a node 1-

D=t

oPr

6.2 Redundant circuit containing
unobservable faults A/0 and A/1.

83

controllability, CC1, as the number of constrained nodes on the path from the
primary inputs to the node, such that the node is reset or set. For every cell
traversed by the path, controllability is incremented by one, and the path is
chosen such that the lowest controllability value is propagated. A simple cal-

culation yields the following controllabilities:

CCO | CC1 | Node
1 1 A
1 1 B
2 2 J
1 3 K
2 2 yA

The velues for node J are obvious, and for node K the controllabilities are cal-

culated below:

CC 0(X) = min (CC O(A).-_cé o(J)) =min (1,2) = 1
CCUK)=CC1{A)+ CCLJ) = 1+2 = 3

SCOAP predicts three node constraints for K=1, but fails to recognize that
condition A=1 and J=1 is impossible, since node J depends on node A. This
error is not just a slight inaccuracy, but a gross mistake, since a redundant
fault is predicted to be irredundant. Many such mistakes are present during
the SCAOP evaluation, because cell inputs are assumed independent of each
other. A similar SCOAP analysis of the second example incorrectly predicts
all four redundant faults to be testable. In general, any testability analysis
program that does not take into account signal dependencies does not gen-

erate reliable fault data.

8.2.2. Schineider's Example

Schneider’'s example (Figure 6.3) contains two redundancies, the

untestable-controllable-observable faults B-1-K/0 and C-2-K/0. The circuit

Figure 6.3 Redundant circuit containing
untestable-controllable-cbservable
faults B-1-K/0 and C-2-K/1.

description serving as input for program VICTOR is:

tnput abcd
oulput z y 2
L J

nor2 i,
nor2 k,
nor2 j,
nore z,
nor2 p,
nor2 q,
nor2 z,
nord y,

He.rpopoo
oA TOR

-]
N

The program puts out a synopsis of circuit and fault data,

FAULT DATA CIRCUIT DATA
total singlc-stucl-c SJoults : 82 primary inputs——
Jaults on fanout bdranches . 28 primary oulpuls

(54% of total)

circuit nodes

potentially redundant faults: 7 circuit cell cowunt

(13% of total)

circutl level count.

84

85

and then prints out an alphabetically ordered list of fault locations with their

set, reset, and monitor triplets.

LEGEND:

> SET, RESET, MONITOR: node testability triplets
> 123..., R, §: pattern, risk, ond size of a iriplet
>0, 1, = (don't care), # (clash): Pl valuss
> monilor pattern containing only clashes indicate
ong of the following:
® flonting nodss and their predecessors
(check floating node file vic.flo)
® unobservadle fanout rooils and predecessors
¢ clashes on all promry inpuls
> order of primary inputls in a pattern.

1. @

2. b

J. ¢

4. d

SET RESET MONITOR

1234 R S8 1234 R S ‘ 1234 R S NODE
lzzz 8 1 Ozzz 6 I' zi1l1 6 3 a
Izzz 6 1 Ogzzz 6 I zll1 6 1 a-I-p
lzzz 86 I Ozzx 6 1 z00z 2 a-2-1
zlzz p 1 =02z g 1 1zzz 0 4 b
xlzz & 1 x0zz 8 1 11§0 89999 0 b-1-k
xlzz 9 1 z0zz 9 1 lzzz 0 2 b-I-z
zlzz 8 | z0zz & ! zz00 8 2 b-2-5
zzlz 8 1! 0z B ! zzzl 0 4 c
zzlz g 1 zz0z 6 I 00zzx 8 2 c-1-t
xzzlz 9 1 zx0z O I 1§10 99889 0 c-2-k
zziz g 1 zz0z g 1 223z g 2 c-2-2
zzT! & 1 zzz0 6 ! 111z 6§ 3 d
zzzl 6 1 zzz0 6 1 200z 8 2 d-1-j
zzz! 6 I 2220 6 I 111z 6 1 d-2-q
Oz0z 15 1 lzzz 6 2 z0zz 6 2 i
2Cx0 15 1 zzx! 6 2 zz0z 6 @2 J
z00z 22 1 zlzz 13 2 1116 8 & k
z00z 22 | zlzz 13 2 1110 8 1 k-1-q
z00z 22 1 zlzz 13 2 o111 8 1 k-2-p
Oizz 18 2 lzzz 6 2 z111 ¢ 1 P
xlz0 180 2 zzz! 6 2 111z 4 ! q
10z 17 2 zlzz 11 2 zZIT o 2 z
10z 17 2 zlzx 11 2 1z11 2 1 z-1-y
1111 34 16 10zz 17 &8 TzTT 0 1 v
zz0! 17 2 zzlz 11 2 zzzT o 2 H
zz01 17 2 zzlz 11 2 11zl 2 1 z-4-y

86

Before the analysis of potential redundancies, the risk and size testabil-
ity measures are investigated. For instance, setting node K imposes more
checkpoint constraints than setting node 1 or J, and the set risk values indi-
cate that. The risk measure does not increase monotonically with level, since
the risk rectangle area may shrink when approaching the primary outputs.
For example, the set risk of Q exceeds that of node X, a primary output node.
A simple inspection of the circuit reveals that primary output node Y can be
set in more ways than primary output node X or Y; the node set sizes reflect
tais discrepancy.

All node patterns are clash-free, except for B ~1-K, and C —2-K, . The
full potential redundancy estimate of VICTOR is:

POTENTIALLY REDUNDANT FAULTS

LEGEND:
>0, 1, z (don't care), # (clash) - Pl values
> clash for a Pl indicales conflicting 0 and 1 requiremenis
due io convergence, hence polsntial redundancy
> veclors containing only clashes indicate one of the following:
® floaling nodes and their predecessors
(check floating node file vic.flo)
* unobservable fanout roois and their predecessors
® clashes on all primory inpuls
> order of primary inputs in a test vector:

1. e
2. b
S. ¢
4. d
> left colum: test veclors for siuck-at-0 faults

> middle colum. test veclors for stuck-at-J faulls
> right colum. nore of stuck fault locations

1234 1234 FAULT LOCATIGN
1130 1440 b-1-k

1410 1440 c-2-k

1440 k

1440 k-1-g

oi#! k-2-p

SWMMARY: 62 possible faulis
7 faults are potentially redundant (13%)

The VICTOR result contains five false redundancies, which are dealt with later.

87
Program VICTOR also generates test vectors for some of the redundant faults.

TEST VECTORS FOR IRREDUNDANT FAULTS

LEGEND:
>0, 1, = (don't care) - primury inpul values
> order of primary inpuls in a fest vecior:

. @
2. b
3. c
4 d
> left colum: test vectors for stuck-ai-0 faulls

> middle colum. test vectors for stuck-ai-! faulls
> right colum. name of stuck faull locatiions

1234 1234 FALLT LOCATION
1111 0111 a
1111 0111 a-1-p
100z 000z a-2-1
1lzz 10zz)
1]zz 10zz b-1-z
z100 2000 b-2-5
zzil zz01 c
001z 000z c-1-1
xz1! xz01 c-&-z
1111 1110 d
z001 =000 d-1-J
1111 1110 d-2-g
000z 10zz 1
000 zz0! J
1110 k
1110 k-1-q
0111 k-2-p
0111 1111 P
1110 1111 g
10zz zlzz z
1011 1111 z-1-y
1111 10zz]
zz01 iz z
1101 1111 z-4-y

SUMMARY: 52 possible faults
45 faults are certainly irredundent (87%)

These test patterns are collapsed, and a first test data reduction is achieved.

TEST VECTORS FOR COLLAPSED IRREDUNDANT FAULTS

SIMMARY: 17 test vectors for 45 irredundant faulls
(62% reduction)

> left colum: tes! vectors after foult collapsing
> right colum. nurber of detected faults per vecior
1111 ... e
10zz ... 5

1110 ... 5

88

o111
2201
000z
=000
221!
llzx
2160
zlzz
100=
2ziz
1011
1101
001z
z001

O A A N L L L Y XS

After test compaction, only nine test vectors remain.

CQMPACTED TEST VECTORS FQR IRREDUNDANT FAULTS

SUMARY : 8 test! vectors for 45 irredundant faults
(B0 rectuction)
> leftrost colum: test vectors after test carmpactiion
> center left colum: wamler of detected faults per veclor
> cenier right colwm. fault coverage per test vector

> rightrost colum. cun:lative faull coverage per lesi vector
1. 1111 15 . 83.3% 33.3%
2. 1001 cen 11 24.4%8 57.8%
3. o060 ... 6 13.3% 71.1%
4. 1110 - 5 11.1% 82.2%
6. 0111 4 8.9% 81.1%
6. 1011 v 1 2.2% 83.3%
7. =100 ... 1 2.2% 85.6%
8. 001z v 1 2.2% §7.8%
8. 1101 ... 1 2.2% 100.0%

The above list gives the number of faults that the test vector is guaranteed to
detect, although it may detect some other faults as well, and represents the

final test generation result in the VICTOR program.

After having processed the irredundant faults, the investigation of the
five potential redundancies identified by VICTOR is carried further. The com-
pacted.test vectors, listed previously in decreasing order of detected faults
per vector, are simulated for faults. Test pattern 0000 detects all five false
redundancies, and after exhausting all test patterns, only faults B-1-K/0 and
C-2-K/0 are left as potential redundancies. Again, the VICTOR estimate is

exact. In general, however, the set of potential redundancies includes many

89

false redundancies, the hard-to-test irredundant faults, as is shown in the

next section.

8.3. PROGRAM PERFORMANCE

For the program performance evaluation, a medium size circuit exam-
ple, the 74181 4-bit ALU, has been chosen. The circuit is large enough to allow
for data explosion, but small enough (see the circuit diagram in Figure 8.4) to
allow for hand analysis and fault evaluation. Also, detailed fault analysis data

exists [Akers 82].

The circuit description of the 74181 ALU used by the VICTOR program
implementation and the resulting fault testability information, i.e., the poten-
tially redundant faults with the aborted test patterns and the irredundant
faults with the corresponding valid test patterns, is included in Appendix 3. A

synopsis of the fault data produced by program VICTOR is given belov:

FAULT DATA CIRCUIT DATA
total single-stuck faults ;s 374 primary inpuls : 14
Joults on fanou! braonchss ;220 prumry outpuls ;8
(56% of total) circuit nodes ;77
potentially redundant faulis: 210 circui! cell count : 63
(56% of total) circuit level cownt: 7

It is known that the ALU is irredundant, thus all 210 potential redundancies
are false ones. Following the same procedure as for Schneider’'s example,
test generation in VICTOR yields 21 compacted test vectors, and the test data

processing achieves a reduction of 877%.

COMPACTED TEST VECTORS FOR IRREDUNDANT FAULTS

SUMMARY: 21 test vectors for 164 irredundant faults
(87% reduction)

> leftrmost colum: tes! vectors after test carpucliion

> center left colum. number of detecied faults per vectior

90

w

Figure 64 74181 ALU logic diagram

91

> center right colum. foul! coverage per tesi! vector

> rightmost colum. cwrulative fault coverage per test vector
1. lzxzl111111100 ... 33 20.1% 20.1%
2. 1z0100z1111101 ces 26 15.0% 36.0%
8. 110z110100010!1 cen 17 10. 4% 46.3%
4. 1z0z11110601100 . 15 p. 1%z 55.5%
5. 110x0100110000 ... 15 p.1%X 84.6%
§. 110x110001000z ces 14 8.5% 73.2%
7. 1z1z00z1z11111 ‘e 7 4.3% 77.4%
8. =z00110z1z10101 6 3.7% 81.1%
§. 1x0z1100z1xz100] 3.7% 84.8%
10. =2z0z00000000z0 6 3.7 88.4%
11. =zz0z0izlzizlzz 3 1.8% 80.2%
12. =z00z010001000z 3 1.8% §2.1%
13. 1z0x1100z1z110 3 1.8% 83.9%
J14. =zz0010zizizizz 2 1.2% Bs. 1%
15. 1z0z0000110010 2 1.2% §6.3%
16. 1zzz 110000002z 1 0.6% 87.0%
17. 1z0zzz1100z110 1 0.6%2 67.6%Z
18. 1zzz00110000=z 1 0.6% 98.2%
16. z002zz0100zz0z 1 0.6% 88.8%
20. 1zzz00000011zz 1 0.6% P9. 4%
21. 1z022z11110000 1 0.6% 100.0%

Again, the compacted tests are simulated for faults, and a histogram indicat-
ing the success in eliminating potentiél redundancies per vector is given in
Figure 8.5 (the values for the <o> and <#> symbols correspond to fault simu-

lation ignoring don't cares and taking them into account, respectively).

The residue of this fault simulation is a kernel of 33 potential redundan-
cies listed in Appendix 3. These faults are all false redundancies, but they
include the critical faults [Akers 82], known to be hard to test. VICTOR
effectively partitions the problem, and not the circuit; instead of having to
generate tests for the 374 circuit faults, only 33 faults must be considered,

which amounts to a reduction of the problem size by an order of magnitude.

Finally, the industrial example given in Appendix 4 has been analyzed by
VICTOR. Lacking a fault simulator, potentially redundant faults cannot be
eliminated by simulating the compacted test vectors by hand, therefore no

final results could be obtained.

92

35 -

LyNOaEmY

#
#
#
¢
L4
¥
¥
¥
¥
¥
¢
#
#
#
#
¢
#

DY

15 - of o#

©
L3
o
Uy
o
*
o O
s ity iz D W Tz T T T Tk

o
T
o
Y
o
XA
o

o# of ofofod
offo#o¥ofofo#ofo#o
0 4eemnenmens |=eeememen | === nmeeev |-eenmmnes |

0 5 10 15 20

TEST VECTOR

Ty Tz e W T T e S e Ay e e s e Ao Wz Wa W W W W IR

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
¥
#

B M Wy T o e W
iy Hk 2 iy S Sk M S o s St Sty e S te T th

=
L
o

-—-->

Figure 6.5 Histogram of eliminated false
redundencies per test vector
To illustrate the performance of the VICTOR program implementation,
the execution times in CPU seconds on a VAX/UNIX 11/780 computer of pro-
gram VICTOR and program SCOAP are given for three circuits. The first cir-
cuit is Shneider's example (Figure 6.3), the second circuit is the 74181 ALU

(Figure 8.4), and the third circuit is the industrial example listed in Appendix

93

4. The performance comparison between the two programs is given in the

table below.

Faults | VICTOR | SCOAP
52 7 27
374 26 103
1728 172 1003

VICTOR is faster than SCOAP by about a factor of five, and as the circuit grows
in size, this factor increases rapidly since the algorithm in SCOAP is qua-
dratic. The linear operations employed by VICTOR keep computational costs
down and require near-linear execution times. The deviation from linearity is
caused by the three search procedures during input processing, fault collaps-

ing, and test compaction (see Chapter 4).

CHAPTER 7

CONCLUSIONS

The complexity of current VLSI circuits and the presence of redundant
and hard-to-test irredundant faults render computer-aided test procedures
prohibitively expensive, even if the circuits contain a scan path and are,
therefore, scan testable. The established alternatives, redundancy
identification and testability analysis methods, offer little relief: redundancy
identification techniques do not handle general circuits, and testability
analysis approaches do not identify redundancy because signal are assumed

to be independent.

VICTOR offers a solution to the problem in the form of a linear complexity
method for global redundancy identification and test generation for scan-
testable VLSI circuits. Rather than partitioning the circuit, VICTOR partitions
the test problem into separate control and monitor problems that are
merged later. VICTOR identifies all redundant and hard-to-test irredundant
faults in a general combinational circuit and generates test vectors for most
irredundant faults, then collapses and compacts the tests by about an order
of magnitude. The algorithm requires only four passes through the fault list,
and the algorithm data and computational complexity grows linearly with cir-
cuit size and primary input count.

The VICTOR approach relies on a four-valued algebraic structure that can
be easily expanded up to 256 logic values. The primitive testability opera-
tions, pattern selection and intersection, allow for a direct translation from

cell logic equations to cell testability (control and monitor) equations, which

94

95

in turn are mapped directly into program code, one routine per cell. Thus,

the cell library can be customized in a few hours.

A prototype program for VICTOR has been written in ANS] FORTRAN 77.
To achieve portability, program performance (speed and memory) have been
sacrificed. The intent bas been to provide a prototype program that executes
on a variety of computers. If portability can be sacrificed, however, the per-
formance of the current irnplementation can be substantially improved by
rewriting some key routines in an efficient programming language and by
using dynamic memory management for the data structures. Furthermore,
the input/output processing requires major upgrading if program VICTOR is
to be used as a production software tool. The code contains much documen-
tation as comment lines (about one out of .every five lines in the program) and

it is hoped that it is sufficient for maintenance and further development.

VICTOR can be used as an independent tool but is limited by the uncer-
teinty in the potential redundancy estimate. If a fault simulator is available,
the uncertainty can be reduced significantly by simulating the already gen-
erated and compacted test patterns, and a high fault coverage can be

obtained.

VICTOR, the global approach to redundancy identification and test gen-
eration, can be viewed as a component of an integrated computer-aided test
system and can be extended in several directions. A simple, serial fault simu-
lation capability can be built into VICTOR and one more global operation per-
formed after test generation. Once the uncertainty of the redundancy esti-
mate is reduced this way, the testability calculation in VICTOR can be
repeated. This time, though, advance information on potential redundancies

exists and is used to guide the pattern selection. Since the procedures in

86

VICTOR are global, even this iterated approach is still linear with circuit size.
Finally, the required number of such iterations and the achieved fault cover-
age needs further investigation on a statistically relevant number of indus-

trial VLSI eircuits.

All

APPENDIX 1

The Berkeley FORTRAN 77 Version of SCOAP

Appendix 1 presents the history of the development of the Berkeley FORTRAN
77 version of Dr. Lawrence Goldstein's testability analysis program SCOAP.

A1.2

SCOAP is a testability analysis program developed by Dr. Lawrence Gold-
stein at SANDIA National Laboratories [Goldstein 79 & 80]. Program SCOAP is
written in FORTRAN 68, executes on a DEC 20 computer, and includes a large

portion of nonportable code.

The author has received the source code frora Dr. Goldstein early in
1980. After a few unsuccessful attempts to adapt the program to the
VAX/UNIX computer environment, the author has decided to rewrite the
entire program in ANSI FORTRAN 77. While a summer visitor at Bell Labora-
tories, the author has developed the FORTRAN 77 version of SCOAP. The
author gratefully acknowledges Dr. Goldstein's expert advice and the excel-
lent research environment he enjoyed at Bell Laboratories, environment
made possible by Dr. Bernard Murphy, Dr. Wesley Grant, Dr. Hermann Gum-

mel, and Dr. Ajoy Bose.

The FORTRAN 77 version of SCOAP implements =xactly the original algo-
rithm and contains about 3000 lines of portable code. The program runs on a
32-bit machine, the VAX 11/780, under either the UNIX or the VMS operating
system, and on a 24-bit machine, Harris 570, under the VULCAN operating

system.

After returning to the University of California, Berkeley, the author has
continued to develop the FORTRAN 77 version of SCOAP. The comments of Mr.
Bob Hess of UTMC and of Mr. Steve Menzel of Carleton University have been
most helpful and are gratefully acknowledged. In April 1981, the author has
started to release the Berkeley version of SCOAP. Currently, more than 35
copies of the Berkeley FORTRAN 77 version of SCOAP have been sent to vari-

ous industrial and academic locations.

APPENDIX 2

VICTOR Cell Library

Appendix 2 presents the list of names and logic equations of the cells
predefined in the VICTOR controllability and observability cell library.

general <and> gate: out=z, in=a,b.c....
z=a.b.c...

<and-or-invert> gate: out=z, in=al,a2,b
z=(al.a2 + b)’

<and-or-invert> gate: out=z, in=al,a2,b1,b2
z=(al.a2 + b1.b2)’

<and-or-invert)> gate: out=z, in=al,a2,a3,b
z=(al.a2.a3 + b)’

<signal buffer>: out=z, in=a
=a

<signal inverter>: out=z, in=a
z=a’

2-input <Kmux>: out=z, in=d1,d2,c
=d1l.c’ + d2.c

general <nand> gate: out=g, in=a,b,c,...
z=(a.b.c...)’

general <nor> gate: out=z, in=a,b,c....
z=(at+b+c+...)

<or-and-invert> gate: out=z, in=al,a2,b
z=((al+a2).b)’

<or-and-invert)> gate: out=z, in=al,a2,b1,b2
z=((a1+a2).(b1+b2))’

<or-and-invert> gate: out=z, in=al,a2,a3,b
z=((a1+a2+a3).b)’

<or-and-invert> %ate: out=z, in=al,a2,a3,b1,b2,b3

z=((al1+a2+a3).(b1+b2+b3))’

general <or> gate: out=z, in=a,b,c,...
z=a+b+c+...

2 input <xnor> gate: out=z, in=a,b
z=a.b +a'.t’

2 input <xor> gate: out=z, in=a,b
z=a.b'+a'.b

APPENDIX 3

Analysis of the 74181 4-bit ALU

Appendix 3 presents the circuit description and the VICTOR results for the

74181 4-bit ALU example analyzed in Chapter 6.

* 74181 ALU (4 bit arithmetic logic wnit)

d circuit description

tnputs S3 S2 S1 SO B3N ASN B2N A2N BIN AIN BON AON H CN
outputs GN CN4 PN FIN F2N A=B FIN FON

L

inv B3 BAN

inv B2 B2N

inv B! BIN

<nv B0 BON

inv N M

L]

end3 1, B3N
and3 2, ASN
end2 3, B3
and2l 4, SO0
buf 5, A3N
nore A, 1
nor3 B, 3

L

and3 6, B2N
and3 7, A2N
and? 8, B2
and?2 39, So
buf 10, A2SN
nor2 C, 6
nor3 D, 8

and3 11, BIN
and3 12, AIN

g
8
tt)g Shb&hbm Qo

and4 38,

S3
S2
S1
B3N

S3
S2
S1
Bz2N

S3
s2
S1
BIN

12
14

S3
S2
S1
BON

17

—~
©

Tyow

gﬁﬂﬁﬁb

o0

A3N
B3

Bz

10

AIN
B1

15

AON
Bo

20

PLELE
2

Ef) f&ﬂDQﬁ:
g

X by

nor4

nor2
*

40,
41,
37,

45,
46,
43,

49,
50,
48,

nand?2 52,
L]

zor2
zorl
zor?2
zor2
and4

FaN,
F2N,
FIN,
FON,
A=B,

g aTg fwtg gUo
8 5 859 j5=o gk~

MN

40 41

E MN

SN

46

m L2

35

FIN FON

POTENTIALLY REDUNDANT FAULTS

LEGEND:

>0, 1, z (don't care), # (clash) - primary input values
> clash for a primary input indicates conflicting 0 and !

requirements due to convergence, hence potential redundancy
> vectors containing only clashes indicate one of the following:

¢ floating nodes and their predecessors
(check floating node file vic.flo)

* unobservable fanout roots and their predecessors

® clashes on all primry inputs
> order of primary inputs in a test vector:

S3
s2
S1
S0
B3N
A3N
B2N
ARN
BIN
10. AIN
11. BON
12, ACN
13. M
14. CN

ONDNA QNN

> left colum:

test vectors for stuck-at-0 faults

> middie colum: test vectors for situck-at-1 faults
> right colum: name of stuck foult locations

- 12345678801234

120z 1#00zzzz 0x
lz0zzzi 1002202
1z0zzzzz 140002

lzfzzzzz{# 0002
1z01zzzz 14000z
lz0zzzzz# 1000z
lzzzzzzzTz 1401

1z 1zzzzzTzz{#01
1z201zzzz2Z 1§01

1z0zzzzzzz# 101
22020400z 1z 1z
220z 040400z 1z
2z 0z 00§04 00zx

1z0z##00zz220x
lzzz 1104040401
120z 1 10400000
120z 1104002100
120zzz##00xz 0z
1zzzzz 11040401
1z0zzz 11040000
1z0zzzzTH# 0002

12345678901234

2202040022220z
120zzz##002202
2z0z2222 040002
2202222204000z
1z0zzz22##0002
1z0zz222##0002
1z0zzzTZTH# 0002
zzzzzTT2e 0401
zzzrrzz2T0#01
1z0zzzz22ZH{01
1z0zzzzT2ZH##01
220z 0§00zz220z
1z0zzz222z##01

zzzz 040404 Oz 1

FAULT LOCATION

1
10
11
12
13
14
15
16
17
18
19
2
20
32
33
34
35
36
38
39
40
42
4“4
45
47

1zzzzzzz 1 10§01
1z0zzzzzz2##01
12022z 14#00220z

Iz§zzz{#00z20x
12012z 1400220z

220204 00zz2202
zz0z 0400z iz 1z
2202040400z 12z
220204 0§ 0§00z
222z O} O} O} 0fz 1
2z0z04002z22 02

1z0zzzzz22#101
Izzzzzzzzz 1§01

1z0zzzz2# 10002
1z0zzzzz 1#000x

1z0zxzz# 100220z
1z0zzz 1400220z

120z 1§00zzzz0x
1z0zi##00zzzz 0z

Iz lzzzzzzz##01

zlzzzz2zzzH 101
lzzzzrzzzez 1§01
z lzzzzzzzzi# 101
1201zzzzzz 1§01

1z4zzzzz##000x

2 10zzz22# 1000z
1z0zzz22 1#0002
z10zzzzzf 1000z
1201zzzz 1#000x

1z{zzz## 002z 02

x10x22§100zz0z
12022z 1400220z
z10zzz# 100220z
12012z 1§#00zz 0z

120z 1§ 00zz22 02
2z iz§Oz iz 1z iz
220z22 0400220z
1z0z 1104002100
zz0zz2 0400220z
220z 040400z 1zz
zz0z 04 040§ 002z

2202220400220z
2z0z220§002202
1z0zzz##00z20x
1z0zzz##00zz0x

120z 110400z Jz2
120z 1 1040400z
1zz2 110§ 040§z 1

z lzzz2z222 0401
z lzz2222220401
1z0zzz2z2ZH##01
lzzzzzzzzT 1§01
2 10xzzzz 040002
z10x222204000z
1z0zzzzZH#000x
1z0zzzz2 140002
2102220400220
1z0zzz##00zz0x
2102220400220z
1z0z2x 14002202

x1020400zz220z

120z 1400zzzz02

zlzzzzzre2f101
1z 1zzzzzzT##01
z1zzzzzz2o#101

lzzzzzzzzz 0401

1z01zzz222§#01
2 10zzzzz# 10002
lzfizzzzzH## 0002
z10zzz22# 1000

1z0zzzzz 040002

1z01zzzzH#0002
z10zzz§ 1002202
1z§zzz##00220x
z10zzz§ 100220z

1z0zzz 0400220z

1z201zz§#00220z
zzlzflz iz iz izz
2z lz§0z iz iz lz2
z10z# 100222202
120z 040022220z

1202041100z 1zz
120204 110§00zx

mg%

-32
-33
-34
-35

LS SN Y

habhhhbhoN
(%]

-36
AON
AON-1-17
AON-1-20
AON-3-16
AIN
AIN-1-12

BIN
BiIN-1-11
BIN-1-B1
BIN-2-14
B2
B2-1-8
B2-3-7
BeN
B2N-1-6
B2N-1-B2
B2N-2-9
B3
B3-1-8
B3-3-2
B3N-1-1
B3N-1-B3
c

C-1-40
C-1-42
C-2-33
C-2-34

22220404040}z 1
120z 1 104040000
122z 1104040401
1zz2 1 10§0#04#01
lzzz2z 11040401
lzzzzzzT 110401
222z 0§ 040§ 04z 1
1z0zzz##00z20x
zz0z0400z 1z 122
1202224#0022 02
zz0zzz2204 000
120z 1 104040000
1z0zzz 11040000
zz0z2222 040002
220z 0/ 04 0§ 00xz
22z 04 0f0#0fz 1
1zzz 1 104040401
lzzzzz 1 10#0401
1z20zz2zz##000x
120z 110#00x100
1z0zzzzz## 000z
220z 040#00z 12z

sz 001
zzzzzzzzzz04#01
lzzz110#0#040!
1zzz2z 11040401
lzzzzzzz110401
zzzz 04 OfOf Oz 1
lz0zzzzz2e{i0!
1z0zzz 11040000
1z20zzzzz2z 01
120z 1 1040§0000
2202040404 002z2
120z 1104002100
1z0zzxz 11040000
lzzzzzzx 110401
1z0z 1 104#0#0000
1zzzzx 1 1040401
lzzz110#0#0#01
1z01zzzz 14000z
1z01zzzzz2 1#01
1z01zz 1#00220z
lz§zzzzz#{ 0002
1z 1zzzzZZTH#01
1zfzzz##002202
FFRAHFRHEFAHHA
1202 1#00x2220x
1z20zzzzz 1#000x
lzzzzzzrzz 1§01
1z20zzz 1#002202

122z 0§ 110404z 1
1z0z 1111040000
lzzz 1111040401
1zzz 110§ 040400
lzzzzz 11040400
lzzzzz22110400

22220} Of O 0420

zzzz0fzlz iz Iz

120z 1104110000

120z 0404 1100zz
12zz0#0# 110421
lzzz 1104110401
Izzzzz 11110401

lzzz 110§z 12100
zzzz040%z 1z 122

lzz21111111104
1z02111111##00

120z 1111§##1100

1z0x 1144111100

lzzx110§40#1101
lzzzzz 11041101

lzzzO# 0§04 1121
lzzzzz 11042100

lzzz 1104042100
222z O O Offz 1z
1z20x110400z110
1z0zzx 11040010
lzzzzzzx110#11
1202 1104040010
lzzzzz 11040411
lzzz 1 10§040#11
1200zzzz 13000z
1200zzzz22 1401
12002z 100220z
12 0zzz224#§# 000z
1z0zzzzzT2##01
120z22#§ 00220z
FEHEHERREHIHR
0z 0z 14#00zzzz 0z
Oz Ozzzzz 140002
Oxzzzzzz2e 1#0!
Ox0zzz 1400220z

SIMMARY: 374 possible faults
210 foults are potentially redundant (56%)

C-2-35
c-2-39
C-4-38
CN-1-38
CN-1-44
CN-1-49
CN-5-35

D-2-32
D-2-42

E-1-39
E-1-45
E-1-47
E-3-34
E-3-35
E-3-38
E-3-44

F-2-40
F-2-47
F-3-33
FON-4-A=B
FIN-3-4=B
F2N-2-A=8B
F3N-1-AB

G-1-61
G-2-38
G-2-44
G-2-49
G-4-35

H-2-45
H-2-51
H-3-39
H-4-34
HMN-3-40
MN-3-45
MN-3-49
HN-4-39
MN-4-44
MN-5-38
S0-1-14
S0-1-19
So0-1-9
S1-2-13
S1-2-18
S1-2-8
S3
S3-2-1
S3-2-11
S3-2-16
S3-2-6

TEST VECTORS FOR IRREDUNDANT FAULTS

LEGEND:

>0, 1, z {don't care) - primary input values

> order of primary inputls in a test vector:

1. 83
2. Sk
3. 81
4. S0
5. B3N
6. A3N
7. B2N
8. AN
8. BIN
10. AIN
11. BON
12. AON
13. 4
14. CN

> left colum:

test vectors for stuck-at-0 faults

> middle colum: test vectors for stuck-at-1 faults
> right colum: mnome of stuck foult locations

12345678901234
z 102222201000z
zizzzzzzz20101
z21020100zxzzz20x

zz 1200z 1z iz 122
zz0z00z 1z 1z 122

zzzzzlzlzlz 120

lzzz 1121212120

zx0110z1z1z 12z
12021100z 12100

lzzzzz 11212120

1z0z2211002100
I1zzzz2 112120

220201z lzlz 1z
lz0zzz22 110000

lzzzzzzzzr1120
2102220100220z

12345678901234

zz0z002 1212 122
zzzzTlz iz iz 1T
zzzzTiziz iz iz
zzzzz iz iz izl
zzzzziz iz iz iz

120z 110022220
120z 1100zzzz0z
lzzz 11z 1z1z120
lzzzllz 1z 12120
zz0200z 1212 122
lzzzlizlz 1z 120
1zzz 11z 1212120
120z22 11002202
12022z 1100220z
lzzzzz 11212120
lzzzzz1lz 12120
lzzzzzllz iz 120
1z0zzz22 110002
1z0zzzzx 11000z
lzzzzz22 112120
2z0200z 1z 1z 122
lzzzzzzz] 12120
lzzzzzzzz 1101
lzzzzzzTz1101

120z 1100x2220x
12021100z 1z 12z
1202 1100x2220x

FAULT LOCATION

12
17
2

3

a1
32
33
34
35
36
37
38
39

2222000000002
z1zzzzz220101
zlzzzzzzz2010!
z10zz222010002
2102222201000
2102220100220z
z 102220100220z
220201z lzlz iz
21020100z2zz20x
zz0z0lz iz iz l2x
lzz21111111120
220200z i1z1z 122
zz0z00z 1z 1z 1zx

z 1zzzz22220101
z lzzzzz2220101

= 10zzz2zz010002
z 1022222010002

z 102220100220z
2102220100220z

2z 1z00z 1z 1z 122
zz 1200z 1212122
z10z20100zzzz0x
220110z 1z 1z 1zx

20110z 1z 1z 1z

z2z2 00000000z
lzzzzz22221101
lzzzzzzr221101
z2z0z00zzzZ2TTT

12021100z 12100

222200000000z
120222 11002100

lzzzzzzzzT 1120
1z221111111120
lzzzzzz2 112120
lzzz 1111111120
lzzzzz 11212120
lzzz1111111120
1zzzllzlz 12120
lzzz1111111120

lzzxz 110000002z

zz0200z 1z 1z 122

zz0200z 1212 122
lzzzzzeez21101
zzzzzilziziz iz
zzzezz iz iz iz iz
120z 110022220

zlzzzzz2220101
zlzzzzr2z220101

z10xz222010002
z10zz222010002

z102z20100zz0z '

2102220100220z

220100z 1z 12122
2z 1z00z 1z 1z 122
zz0100z 1z 1z 1z
120z221100220x
1201111002100
120222 1100zz0x
12z200110000zz
lzzzz222221100
lzzzzzzz2z 1100
zzzzz iz i1z 12120
120zz2 1100220z
lzzz 1121212100
1202221100220z
lz0zzz2z2 11000z
1z0zzx 11110000
1z0zzzzz 110002
122200001100z
1z0zzz22 110002
1zzz2211212100
1z20zzzzx 110002
lzzzzzrzz 1101

lz0z2z22 110002
1z0zzz2 1100220z
120z 1100zzzx0x

lzzzzzzzz2z 1101

A-1-PN
AON
AON-1-17
AIN
AIN-1-12
AZN
A2N-1-7
A3N
A3N-1-2
A3N-1-5
A=B

B

B-1-31
B-2-36
Bo
BO-3-17
BON
BON-1-B0
B1
B1-3-12
BIN
RIN-1-B1
B2
B2-3-7
B2N
B2N-1-B2
B3
B3-1-3
B3-3-2
B3N
B3N-1-B3
B3N-2-4
c

C-1-40
C-1-42
C-2-EN
N
v-1-52
CN4

D

D-1-41
D-z-42

E

E-1-45
E-1-47
E-3-PN

F

F-1-46
F-2-47
FON
FON-4-4A=B
FIN
FIN-3-A=B
F2N
F2N-2-4B
F3N
F3N-1-4=B
G

222200000000zz
zz2iz iz iz iz
zzzZzZT iz iz iz 120

120z22zz 110000

12021100212110
12021100z 12100
12021100z 12100
120zzz 11002100
120zzz22110000
lzzzzzzTz2110!
lzzz] l1z222222Z
zz0110z1zlz 122
220110z 1z 1z 1z
zz1z00z 1z 1z 122
2z 1200z 1z 1z 1z2
z1020100zzzz0z
2102222201000z
z l1zzzz22220101
z21020100xzzz0z
2102220100220z

1zzzzz2222110!
lzzzz222111101
12220000001 122
2z0z00zzz2222
220z 00z2z22220
1zzzzzT22T1101
lzzzzz22112100
lzzzzzzzT21101
12021100z 12100
1z0x 1100212110
1z021100212110
1202211002110
1z0z2222110010
lzzzzzzze21111
222200000000z
z220010z1z1z 1z
zz0010z 1z 1z 122
zz0z00z 1z 1z 1zz
220200z 1z 1z 1z2
20020100z2zz02
z200zzz22010002
z0zzzzzzzz00101
20020100z22z0x

2002220100220z

SUAMARY: 374 possible faults
164 foults are certainly irredundant (44%)

TEST VECTORS FOR COLLAPSED IRREDUNDANT FAULTS

STEMARY : 48 test vectors for 164 irredundant faults
(71% reduction)
> left colum: test vectors afiar fault collapsing

> right colum:

. lzzzzzzz21101
zz0200z 1z 1z 122
zlzzzzz2220101
z210zz222201000z
2102220100220z
1202221100220z
1z0zzzz2 110002
2zzzziz iz iz iz
lzzzllzlzilziz0
120z 1100zzzz 02
zz 1200z 1z 1z 122
x21020100zz22202
zz0110z1z1z1z2
120211002 12100
Izzzzzllz 12120
2222000000002
lzzz1111111120
lzzzzzzz] 12120
lz0zzz22110000
zzzzzizlzlz 120
1202110012110
1z0z22 11002100
zz0z01z 1z 1z 122
zz0010z 1z 1z 1z
2z0z00zxz22222
220100z i1z 1z lzz
z00z20100zzzz0x
lzzzzzzaz21100
lzzzzzzzzz 1120
20022201002z 0z
lzzzzz22111101
200zzz22010002
l1zzzzzzzTzz1l11
l1z0zzx2 11110000
122200110000z
122z 00001 100zz
1z0zzz22110010
lzzz11zl212100
122z 0000001 1zz
lzzzzzzx112100
lzzzzz 11212100
1201111002100
20zzzzz2220101
2z 0z 00zz222220
lzzz 11000000z
lz0zzx 11002110
lzzz ! lzz22222T
12021100z 1z 1zz

nurber of detected faults per vector

11
10

MRt ki he b s e b R e e e e NNV N WVWWWLUARAMOOOOOOINININD D

A3.10

SUMMARY :

CCOMPACTED TEST VECTORS FOR IRREDUNDANT FAULTS
W

21 test vectors for 164 irredundant faults

(87% reduction)

> leftmost colum:

> center left colum:
> center right colum: feult coverage p

> rightmost colum:

DRNSUA N~

lzxx1111111100
1201001111101
1101101000101
12021111001100
11020100110000
1102110001000z
121200z 1211111
z00110x1210101
120211002 12100
2202000000000
220201z 1z 12 122
z{(02010001000z
1202 1100212110
22:0010z 1212 122
12:020000110010
122z 11000000z
12:0z2211002110
12:2200110000zz
z00z220100z20x
122220000001 1z
1520222 11110000

33
26
17
15
15
14

MmO WWII] N

cwulative fault coverage p

OOO0OONN N~ LOLOLADD D!
@
N

o
R

test vectors after test compaction
number of detected faulls per vector

er test vector

er test vectlor

20. 1%
36.0%
46.3%
55.5%
64.6%
73.2%
77. 4%
81.1%
84.8%
88. 4%
90.2%
92.1%
83. 9%
95. 1%
86.3%
87.0%
97.6%
98.2%
8. 8%
99.4%
100. 0%

A3.11

Ad4.1

APPENDIX 4

Circuit Description of Industrial Example Circuit

Appendix 4 presents the gate-level description of the industrial example
refzrenced in Chapter 6. The circuit has been obtained through the courtesy

of the Siemens Corporation.

G0COPEFCETCPC ST EVCOSCNCEPECICOPITENCISEL ORI NETOIEERNTVECREOOPOIVIITSTS

* Industrial Circuit Ezample (Siemens Circuit)

GO 00C 0PV COCC0SCVEISEP00CETOCTIPOCOCE0000RESC00CCUPREITEQOIOIOEIOIOCTTYT

input 1 23456789 101112135 14 1516 17 18 19 20 28 29 30
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 48 50
51 52 60 61 62 63 72 73 79 82 83 95 103 fake

output 23 25 27 53 55 57 59 75 78 81 §7 99 104 169 183

CCCOCPCTPICCPLTOICOEINIEIPOEENIEIOPO00C0COOEIIRNCCPOIOIETY

inv faken, fake

* LEVEL O signal O
and2 [0, fake faoken

* LEVEL 1 signal L1
or2 1l1, fake faken

00000 GOV PCICPCONPCEC POV OV PICOPOVENCOOOOREOOOPEIRNOITOPTYS

. 1QU 66 Lo 65 Lo €4
* lqgu 66, LO 65 10 64

nor2 1gqul , 10 65

inv Ilqu?2 , lgul

nor2 Iqu3 , L0 lqul

nor2 lqud , Igqul 64

nor2 66 , I1qu3d Ilgqu4

* IPT 67)04 b0 ¢ 48 Lo Lo Lo Lo
* Ipt 67 zz zx , 4810101010

invy zz , 48

v 67, zz

ord zz , lO IO IO IO

* 2FPT 68 XX XX 50 Lo Lo Lo Lo
¢ 2pt 66zz 2z, 5010101010

inv zz , 50

inv 68 , zz

or4 zz , lOIlOI0 IO

*® 3PT 69 XX .0 ¢ 49 Lo Lo Lo Lo
* 3ot 692z 2z, 4910101010

inv zz , 49

tnv 69, zz

or4 zz , lO IO IO IO

$ 4FT 70 XX XX 51 Lo Lo Lo Lo
* 4pt 70zzzx , 5110101010

inv 2z , 51

inv 70, zz

ore zz , IO IO 10 1O

® S5PT 71 po g D¢ ¢ 52 Lo Lo Lo Lo
* 5pt 7l1zzzz, 5210101010

inww zz , 52

inv 71, zz

or4 2z , IO IO IO IO

Ad4.2

+ 4+

* IQX 53 XX Lo Lo 72
® gz 532z, lOlO 72101010
or4 53, 0107210

ore zz , 1010

* 2QX 55 XX Lo Lo 73

* 29z 55z, lOID73101010

orde 55, lO01l0 7310
or2 zz , lO IO

* 20U 725 71 Lo 74 72
*2qu 75, 711074 72

nor2 Zqul , 7110

inv 2que , Zqul

nor2 2qul , 74 Z2qul

nor2 Zgud , 2qul 72

rors 75 , 2qud 2gqu4

* 39U 78 71 Lo 77 76
* 3qu 78, 7110 77 76

nor2 3gqul , 71 10

tnww Squ2 , 3Jqul

ror2 Jqul , 77 Squ2

ner2 Jqu4 , 3qul 76

nor2 78 , 3qul 3qu4

* 48U 81 71 Lo 80 79
®* 4qu 81, 71108079

nor2 4qul , 7110

tny 4que , 4qul

nor2 4gul , 80 4qu2

nor2 4qud , 4qul 78

nor2 81 , 4qul 4qu4

* 3Qx 57 XX Lo Lo 82
®* 5qz S57zz, lO1l10821l01010
or4 57, l0l0 8210

ore zz , LO L0

* 40X 59 .0 ¢ Lo Lo 83
®* 4z 59zz, lOlOB31l01l010
or4 59, l01l0 83 10

or2 zz , LO IO

® 6PT 76 XX XX 61 Lo
* 6pt 76zzxzz, 6110101010
tnv zz , 61

sty 76 , zz

or4 zz , lO 1O IO 10

* 7PT 84 XX XX 60 Lo
* 7ot 842z 2z, 6010101010
tnv zz , 60

tnv 84 , zz

ors zz , lOIlOLlO IO

* 8PT 85 XX XX 63 Lo
* 6t 85zz 2z, 6310101010

Lo

Lo

Lo

Lo

Lo

Lo

Lo

Lo

Lo

Lo

Lo

Lo

Lo

Lo

Lo

Lo

Lo

Lo

Lo

Lo

Lo

A4.3

tnv 2z, 63
tnw 85, zz
ors zz , 1O IlO IO L0

* QFT 86 XX XX 62 Lo
* gpt 86 zzx 2z, 6210101010
inv zz , 62

tny 86 , zx

or4 zz , lO IO 10 IO

* 5QU 89 Lo 88 Lo 87
* 5qu 89, L0 88 10 87

nor2 Squl , LO 88

inv Squ2 , Squl

nored Squld , 10 Sgu?

ror2 OSqué , Squl 87

nor2 89 , 5qu3 S5qu4

* 10PT 80 XX XX 3z
* 10pt 90 zz 2z , 3210 10O L0 10
inww zz, 32

tnvy 90, zz

or4 zz , 10101010

® 11FPT 81 XX XX 30
* Iipt 91 zz 2z, 30 10101010
inv zz , 30

tnv 81, zz

orse zz , lO IO IO 1O

* 12FT 92 XX XX 31
¢ 1Z2pt S92 zzzz , 31 10101010
inv zz , J1

inv 92, zz

or4 zz , lO IO IO IO

* I3FPT 93 XX XX 28
¢ 13t 953 zz 2z, 28 LO IO L0 1O
inv zz , 28

inw 83, zz

ord zz , lO IO IO 1O

* [4PT 84 XX XX 29
* 14pt B4 2zz 22, 2910101010
inv zz, 29

tinv 94 , zz

ord4d zz , 101010 !0

* 5QX 27 po¢ Lo Lo 79
® 50z 27=2z, lOIlO 79101010
ord 27, lO L0 79 IO

or2 zz , 1010

* 6QX 25 p.o ¢ Lo Lo 85
*6gx 252z, lOlOBSIOLlO IO
ord 25, lOo 1O 95 10

or2 zz , LO IO

Lo

Lo

Lo

Lo

Lo

Lo

Lo

Lo

Lo

Lo

Lo

Lo

Lo

Lo

Lo

Lo

Lo

Lo

Lo

Lo

Lo

Lo

Lo

Lo

Lo

Lo

Lo

Lo

Lo

Ad.4

* 8QU 87 71 Lo g6 73
®* 6qu 897, 7110 96 73

nor2 6qul , 7110

inv G6qu2 , 6qul

nor2 6gus5 , 96 6qul

nor2 ©6gqus , 6qul 73

nor2 97 , 6quld 6qu4

. QU 99 71 Lo 88 85
* 2qu 99, 71 10 88 95

nor2 7qutl , 7110

tnv 7que , 7qul
norZ2 7qu3 , 98 7qu2
nor2 7qué ., 7qul 95
nor2 99 , 7qul 7qu4

* 8QU 102 Lo 101 LO 100
* Squ 102, 10 101 LO 100

nor2 8qul , 10 10!

v Squ2 , Squl

nor2 8qul , 1O &qu2

nor2 8gqué , 8qul 100

nor2 102 , Bgqul Bqu4

* 79X 23 XX Lo Lo i03
* 7gz 23zz, 1010103101010
or4 23, 101010310

or2 zz , 1010

* 15FT XX 104 XX 20 Lo
* 15pt zz 104 2zz , 2010101010
inv 104 , 20

inv zz , 104

or4 zz , lOl0O IO !0

* 16FPT 105 XX XX 19 Lo
* 16pt 105zz zz , 19 1010 L0 IO
inv zz , 19

inv 105 , z=z

ors zz , lololo 0O

* 17PT 107 106 XX 17 Lo
e 17pt 107 106 2z , 17 10101010
inv 106 , 17

inv 107, 106

or4d zz , lO0IlO1I0O 1O

* 18PT 109 108 XX 18 Lo
* 18pt 109 108 zx , 18 101010 10
tnv 108 , 18

inv 109 , 108

or4 zz , 10101010

* 19PT 111 110 XX 16 Lo
* 19pt 111 1102z , 16 10101010
inv 110, 16

inv 111, 110

or4 zz , IO IO Ll0O IO

Lo

Lo

Lo

Lo

Lo

Lo

Lo

Lo

Lo

Lo

Lo

Lo

Lo

Lo

Lo

Lo

Lo

Lo

A4.5

* 9QU 114 LO

* Squ 114 ,

113 L0

10 113 10 112

nor2 Squl , 1o 113

mv

Squ2 , fgul
nor2 Squ3 , lO 9qu2

nor2 8qué , Sgul 112
nor2 114 , 9qul Squs

* IPU 115
* Ipu 115 zz 2z
inv zz , 46
inv 115, zz
or2 2z , I0 10

* 2PU 116 XX
* Zpu 116 zz zz
Tt zz , 47
v 116 , zz
or2 zz , I0 10

* 3FU 117 XX
* Jpu 117 zz 2z

inv 22, 44
tnv 117, zz
or2 zz , LO 1O

* 4PU 118 XX
* 4pu 118 zz zz

inw =zz , 45
inv 118 , zz
or2 zz , lO IO

* 5PU 119 XX
* Spu 119 zz zz
tny zz , 42
inv 119, zz
or2 zz , lO 1O

* 6PU 120 XX
* fpu 120 zz zz
inv zz , 43

inv 120, 2=z
or2 zz , I0 10
* ?PU 121 p.0.¢

* 7pu 121 zz 22
v zz , 41
inv 121 , zz
or2 zz , lO IO

* 8PU 122 XX
®* fpu 122 zz 2z
finv 2z , 40
inv 122 , 2z
or2 zz , 1010

* 9PU 123 XX
* 9pu 123 zz z2

XX xx

’

46
46 1010

xx 47
47 10 10

XX 45
451010

XX 42
42 10 10

XX 43
43 10 10

XX 41
411010

xx 40
40 10 10

XX 39
39 1010

112

Lo

Lo

Lo

Lo

Lo

Lo

Lo

Lo

Lo

Lo

Lo

Lo

Lo

Lo

Lo

Lo

Lo

Lo

tnw zz , 39
inv 123 , zz
or2 zz , 1010

* 10FU 124 XX XX 38
® 10pu 124 2z 2z, 38 10 10

inv zz , 38

tnww 124 , zz

or2 zz , lO IO

* 11FU 125 XX Do ¢ 37
® Jlpu 1252z 2z , 37 10 10

tnw 2z, 37

tny 125, zz

or2 zz , LO 1O

* 12FPU 126 XX XX 36
* 120u 126 zz 2z , 36 10 1O

inv zz , 36

tnv 126 , zz

or2 zz , lO 1O

* 13PU 127 XX XX 35
* I13pu 127 zz 2z , 3510 10

tinv zz , 35

inv 127 , ==

or2 zz , LO IO

* 14PU 128 XX p.0. ¢ 33
* ldpu 128 zz 2z , 33 10 IO

inv zz , 33

tnv 128 , zz

or2 zz , LO IO

* 15PU 129 XX XX 34
* i5pu 129 zz 2z , 34 1010

inv zz , 34

inv 129 , 2=z

or2 zz , L0 10

* 16FPU 130 64 65 2
* 16pu 130 64 65 , 2 131 132
iny 64, 2

inv 130 , 64

or2 65, 131 132

* 17PU 133 134 135 1
¢ 17pu 133 134 135 , 1 131 130
inv 134 , 1

fnv 133, 134

or2 135, 131 130

* 18PU 136 87 137 3
* 18pu 136 87 137 , 3 131 130
tnw 87, 3

inv 136 , 87

or2 137, 131 130

Lo

Lo

Lo

Lo

Lo

Lo

131

131

131

Lo

Lo

Lo

Lo

Lo

Lo

132

130

130

A4.7

* 19FPU 138 132 139 4
* 19ou 138 132 139 , 4 130 138
inv 132, 4

inv 138 , 132

or2 139 , 130 138

* 20PU 140 XX 88 5
* 20pu 140 zz 88 , 5 134 110
inv zz, §

inv 140 , zz

ar2 88, 134 110

* 21PU 141 131 142 6
* 21pu 141 131 142 , 6 134 136
tinv 131, 6

inv 141, 131

r2 142 , 134 136

* 22PU 143 XX 144 7
* 22pu 143 2z 144 , 7 134 136
tnv 2z, 7

tnv 143, zz

r2 144 , 134 136

¢ 23PU 145 XX 146 8
* 23pu 145 zz 146 , 8§ 136 111
tinv zz , 8

tny 145 , zz

or2 146 , 136 111

* 24PU 147 148 XX g
* 24pu 147 148 zz , 9 10 10
tnv 148 , 8

tnv 147 , 148

or2 zz, lO 10O

* 25PU 149 XX 151 11
* 25pu 149 zz 151 , 11 148 150
inv zz , 11

inv 149 , zz

or2 151 , 148 150

* 26PU 150 112 152 10
* 26pu 150 112 152 , 10 148 150
inv 112, 10

tnv 150, 112

or2 152 , 148 150

* 27PU 153 154 113 13
* 27pu 153 154 113 , 13 148 155
tnv 154 , 13

inv 153 , 154

or2 113, 148 155

* 28PU 156 155 158 12
* 28pu 156 155 158 , 12 108 157
inv 155 , 12
inv 156 , 155

130

134

134

134

136

Lo

148

148

148

108

138

110

136

136

111

Lo

150

150

156

157

A4.8

A4.9

or2 158 , 108 157

* 29PU 159 XX 160 15 108 157
* 29pu 159 zz 160 , 15 108 157

v 2z, 15

tnww 159 , zz

or2 160 , 108 157

¢ 30PU 157 100 101 14 108 154
* 30pu 157 100 101 , 14 108 154

inv 100, 14

inv 157, 100

or2 101 , 108 154

* I1QD 162 161 164 163 107 67 118 69 70 107 117 68 116 115

* 1gd 162 161 164 163 , 107 67 118 69 70 107 117 68 116 115
inv lgdl , 107

tny Igd2 , 107

nor2 1gd3 , 107 67

nor2 1gqd4 , 1gdl 118
nor2 1gqd5 , 107 69

nor2 1gqd6 , 1qdl 70
nor2 1qd7 , 107 117
nor2 1gd8 , 1gd2 68
nor2 1gd9 , 107 116

nor2 1g9dl10 , lgd2 115
nor2 162 , lgd3 1qd4
nor2 161 , 19d5 1gdé6
nor2 164 , 1qd7 lqdé
nor2 163 , 1qd9 19di0

* IQH 968 80 171 170 LO L1 161 172 173 107 164 174

* Igh 98 80, 171 170 10 L1 161 172 173 107 164 174
inv Igh! , 171

tnv Igh2 , 170

nor3 1gh3 171 170 10O

nor3 1igh4 , 1ghl 170 11
nor3 IghS5 , 171 1gh2 161
nor3 1gh6 , 1ghl 1ghl 172
nor3 1Igh7 , 171 170 173
nor3 1Igh8 , Ighl 170 107
nor3 1gh9 , 171 1qh2 164

nor3 1IghlO , 1Ighl I1qgh2 174
nor4 98 , 1gh3 I1gh4 1ghS5 1gh6
nor4 80 , 1gh7 I1gqh8 I1qgh9 1ghi10

* 20D 166 165 168 167 107 124 125 123 121 107 119 120 122 126

* 2qd 166 165 168 167 , 107 124 125 123 121 107 119 120 122 126
inv 2gdl1 , 107

tnv 2qd2 , 107

nor?e 2qd3 , 107 124
nor2 2gd4 , 29dl1 125
nor2 2qdS5 , 107 123
nor?2 2qd6 , 2qd1 121
nor2 29d7 , 107 119
nor2 29d8 , 2q9d2 120
nor2 2qd9 , 107 122

nor2 2qdl10 , 29d2 126

nor2 166 , 2gd3 2gd4

nor2 165 ., 2qd5 29d6
nor2 168 . 29d7 2qd8
nor2 167 . 2qd9 29410

* 20QH 77 96 171 170 L1 L1 LO 175 LO LO 162 176

® 2qh 77 96, 171 170 11 1110 1751010 162 176
tnw 2gh! , 171

inv 2gh2 , 170

nor3 2qh3 171 170 U1

nor3 Zghd4 , 2ghl 170 L1
nor3 2gh5 , 171 2qh2 10
nor3 2gh6 , 2ghl 2qh2 175
nor3 2gh7 , 171 170 1O
nor3 2gh8 , 2ghl 170 10
nor3 2qh9 , 171 2gh2 162

nor3d 2ghl0 , Zghl 2qh2 176
nord 77 , 2qh3 2qgh4 2qh5 2qh6
nord4 96 , 2gh7? 2gh8 2qh9 27h10

* IFF 177 XX 178 XX XX 84 137 138 135 85 144 111 142 LO LO
* Ipf 177 zz 1768 zz zxz , 54 137 138 135 85 144 111 142 10 10
or2 Ipfl! , 84 137

or2 Ipf2 , 138 135

nor2 Ipf3 , Ipf! ipf2

nor2 1pf4 , lpfi1 Ipf3

nor2 IpfS , 1lpf3 Ipf2

nor2 zz , Ipf4 Ipfs

inv 177, zz

or2 Ipf6 , 85 144

or2 Ipf7 ., 111 142

nor2 Ipf8 , Ipf6 Ipf7

nor2 1Ipf9 , Ipf6 Ipf8

nor2 Ipf10 , 1pf8 Ipf7

nor2 2z , Ipf9 lpfio

inv 1768 , zx

or2 2z , L0 10

* 3QD 180 179 169 183 106 143 149 145 140 71 181 83 182 82
* 5qd 180 179 169 183 , 106 143 149 145 140 71 181 83 182 82
inv 3gd! , 106

inv 3qd2 , 71

ror2 3qd3 , 106 143
nor2 3gd4 , 3qdl 149
nor2 3qd5 , 106 145
nor2 3qd6 , Sqdl 140
nor2 3qd7 , 71 181

nor2 3qd8 , 3qd2 83
nor2 3qd9 , 71 182

nor2 3qd10 , 3qd2 82
ror2 180 , 3gd3 3qd4
nor2 179 , 3qd5 3qd6
nor2 169 , 3gd? 3gd8
nor2 183 , Sgd8 3qd10

* 4QD 175 176 172 174 106 128 127 129 90 106 91 94 92 93
* ggd 175 176 172 174 , 106 128 127 129 90 106 91 94 82 93
inv 4gdl , 106

A4.10

A4.11

inv 4gqd2 , 106

nor2 4qd3 , 106 128
nor2 4qd4 , 4gdl1 127
nor2 4q9d5 , 106 129
nor2 49d6 , 4qdl 90
nor2 4qd7 , 106 91

nor2 4qdf , 4qd2 94

nor2 4qd9 , 106 92
nor2 4qd10 , 4qd2 93
nor2 175 , 4qd3 4qd4

nor2 176 . 4qd5 4qd6-
nor2 172 , 4gd7 4qd8
nor2 174 , 49d9 49di1C
* 3QH 170 173 105 107 102 66 114 89 109 141 147 133

® 3gh 170 173, 105 107 102 66 114 89 109 141 147 133
inv 3ghl , 105

invy 3gh2 , 107

nor3 3qh3 105 107 102

nor3 S3gh4 ., S3qhl 107 66
nor3 3qgh5 , 105 3qhl 114
nor3 3gh6 , Sghl 3qh2 89
nor3 Sqgh7 , 105 107 109
nor3 3qh8 , Sghl 107 141
nor3 3gh9 , 105 Sqh 147

nor3 3gqhl10 , Sghl 3gh2 133
nor4 170 , 3gh3 3gh4 Sgh5 3gh6
nord 173 , Sgh7 3gh8 :3gh89 3qhl10

* 4QH 74 XX 171 184 L0 LO L1 163 LO LO LO LO
v 4gh 74 zz, 171 184 1010 L1 163 LO 1O 10 10
inv 4qhl , 171

inv 4qh2 , 184

nor3 4gh3 , 171 184 10
nor3 4qh4 , 4ghl 184 10
nor3 4qh5 , 171 4gh2 11
nor3 4qh6 , 4qhl 4gh2 163
nor3d &h7 , 171 184 10
nor3 4gh8 , 4ghl 184 10
nor3 4gh9 , 171 4gh2 1O

nor3 4qhl0 , 4qhl 4qh2 l0
nor4 74 , 4qgh3 4qh4 49h5 4gqh6
nord4 =zz , 4qh7 4qh8 49h9 4qhl10

* S5QH 181 182 171 184 185 168 166 180 186 167 165 179

* 5gh 181 182 , 171 184 185 168 166 180 186 167 165 179
inv S5¢hl , 171

inv O8gh2 , 184

nor3 5gh3 , 171 184 185

nor3 S5ghd , Sqhl 184 168
nor3 5gh5 , 171 5qh2 166
nor3 5qh6 , 5qhl 5qh2 180
nor3 5qh7 , 171 184 186

nor3 5qgh8 , 5qhl 184 167
nor3 5qh9 , 171 5qh2 165

nor3 5qhi0 , 5qhl Sqh2 179
ror4 181 , 5gh3 5gh4 5qh5 5qh6
nor4 182 , 5gh7 5gh8 5qh9 5¢qhi0

* 6QH 171 184 105 107 187 177 188 178 190 189 191 1892
* 6gh 171 184 , 106 107 187 177 188 178 190 189 191 192
inv 6ghl , 105

inv 6gh2 , 107

nor3 6gh3 , 105 107 187

nor3 6qgh4 , 6ghl 107 177
nor3 6gqh5 , 105 6gh2 188
nor3 6gh6 , 6gqhl 6gh2 178
nor3 6gqh7 , 105 107 1890
nor3 6gh8 , 6qhl 107 189
nor3 6gqh89 , 105 6gh2 191

nor3 6ghl0 , 6qhl 6gh2 192
nor4 171 , 6qh3 6gh4 6gh5 6gh6
nord 184 , 6gh7 6qh8 6qh9 6qhi0

* 7QH 185 186 105 106 159 85 86 84 156 111 153 138

* 7qgh 185 186 , 105 106 159 85 86 84 156 111 153 138
inv 7ghl , 105

inv 7gh2 , 106

nor3 7gh3 , 105 106 159
nor3 7gh4 , 7ghl 106 85
nor3 7gh5 , 105 7gh2 86
nor3 7qh6 , 7ghl 7qh2 84
nor3 7qh7 , 105 106 156
nor3 7gh8 , 7gqhl 106 111
nor3 7gh9 , 105 7ghl 153

nor3 7ghl0 , 7qhl 7gh2 138
nor4 185 , 7qh3 7gh4 7qh5 7gh6
nord4 186 , 7qgh7 7gh8 7qh8 7qhi0

* 2PF 187 XX 188 XX XX 86 158 153 160 159 151 156 152 LO LO

* 2pf 187 zz 188 zz zz , 86 158 153 160 159 151 156 152 10 IO

or2 2pf1 , 86 158
or2 2pf2 , 153 160
nor2 2pf3 , 2pfl 2pf2
nor2 2pf4 ., 2pf1 @pf3

nor2 zz , Zpf4 apfd
inv 187 , 2=

or2 2pf6 , 159 151
or2 2pf7 ., 156 152
nor2 2pf8 ., 2pf6 2pf7
nor2 2Zpf9 , 2pf6 2pfé
nor2 2pfl10 , 2pf8 2pf7
nor2 zz , 2pf9 2pf10
inv 188 , 2=z

or2 zz , LO IO

A4.12

* PK 190 191 XX 189 XX 192 108 157 153 148 150 156 131 139 134 146
® pk 190 191 zz 189 zz 192 , 108 157 153 148 150 156 131 139 134 146

nor3 190 , 108 157 153
nor3 191 , 148 150 156
nor2 189 , 131 139
inv zz , 189

nor2 192 , 134 146
inv zz , 182

APPENDIX 5

BLOCK DATA Subroutine SETUP

Appendix 5 presents the BLOCK DATA subroutine SETUP which initializes the

data and file strucure of program VICTOR.

c".......“....“.‘“..O...0.....“..‘OOQ‘..‘000....“..0.0.....

block data setup

c‘........O...“......’.0‘.".....‘.0...0..Q.'OO‘.'.’.......‘.O'.

setup the data structure, flle structure, ond the rachine
dependent parameters in program victor

00

define the variable array sizes. acll parometer statements in

the entire progranvust be changed if these sizes are changed.
lbram: vwurmber of predefined lidrary cells
ndmaz: wvozimun rumber of nodes in the circuit
mazpi: wozimum number of prumary input nodes in the circuit
kio: mazimun number of input/output nodes per cell

OO0 O0O O

parameter (lbram=100, ndmaz=10000, mazpi=120, kio=200)

cammon /lulist/ lu(10)
¢ lu(10): device nunber assignment

carnon Aukfile/ tmpfil (20)
¢ tmpfil (20): terporary work files

camon /iofile/ inpf, outf
¢ inpf, outf: user-specified inpul and output file names

comon /nodnam/ libr(ldbnun), lognod(ndmaz)

¢ lidr(idram): lidrary cell names and output/input node count
¢ lognod(ndmaz): names of circuit nodes and composite fanout
c branch names
comon /odind/ list (ndmaz) ndfout (ndmaz), ndlev (ndmaz)
¢ list(ndmz): scratch array for general storge:
c ‘ node fanin in module INPROC
c Jonout node root indez in ymodule OBSERV
¢ sorted array pointers in module REPROC
¢ ndfout(ndmaz): node fonout
¢ ndlev(ndmz): node level
camon /ckttop/ inpckt(2'ndmaz), levord(ndmaz/2)
inpckt (2*ndmaz): yachine-readadble circuit descripiion as a
set of standard cell eniries of the form:
0

cell indez (lidbr array indez of cell)
negative cell output node index
negative cell output mode indez
positive cell input node index
positive cell input node indez
uhere cell index = libr array index of cell nome
and node indez = lognod array index of node name

00D OHDOOO0O

00 OO0 O o000 000000 [N 2 +)

O00O

©

[I I >)

oOOno0

Ab.3

levord(mdmaz/2): levelized cell list: list of inpckt indeces
corresponding to cells in ascending order
of their level

cammon /actsiz/ npiel ,npoel ,ndel,ndlog,ncell ninput, nlevel

npiel,npoel: nunber of primory inputs and primary oulputs
ndel ,ndlog: runber of circuit nodes and nurder of
Jault locations in the circuit

ncell: rurber o/ circuit cells
ninput: element count in array inpckt
nlevel: number o circuit levels

canmon Anodcol/ conO(ndmaz), conl(ndmaz), obs (ndmaz), labd (kio)
conO(mdmaz): node O-comtrollability label (reset pattern)
con! (rdmaz): node I-controllability ladbel (set pattern)
obs (ndmaz): node observadility label (monitor pattern)
labikio): scratch pad array for label calculations

camon /odcol/ lwtO(ndmaz), liiz0(ndmaz), lut 1 (ndmaz), lsizl(ndmaz),
+ luwtc (ndmaz), lsizo (ndmaz) kouts(kio), kins(kio), nout, nin,
+ lwt(kio),lsiz(kio),lev(kio)
luwtO(ndmaz), lsizO(ndmaz): reset (0) weight and size
twt 1 (ndmaz), lsizi(ndmz): set (1) weight and size
lwto (ndmaz), lsizo (ndmaz): monitor ueight end size
kouts(kio),kins(kio): ce.l output and input node indeces
nout,nin. ce..l output ond input node counts
twt (kio), lsiz(kio), lev(kio): scratch uweight, size, ond level errays
Jor cell testadility calculations

common /tesvec/ veclis (ndmiz)
wveclis (ndmaz): sorted test vectors in decreasing order of
the detected foults per vector

comrnon /actest/ nirred,nred,nfcol
nirred,nred,nfcol: number of guaranteed irredundant and
potentially redundant faults
nfcol: trredundant foult count after fault collapsing

11! do not change lengths of the following character variables !!!
wnless you ere willing to update all occurencies in the program

characterymzpi, con0, conl, obs, labdb, veclis
character®40 tmpfil, inpf. outf, Lidbr*30, lognod*72

--

data trpfil /

+ ‘'wic.i0°, ‘wic.syn’', ‘vic.flo’, ‘vic.fb’, ‘vic.met’,
-+ ‘wic.red’, ‘'vic.vec’', ‘vic8’, ‘vicI’, ‘vtc10’,

-+ ‘wicll’, ‘'viecl2’, ‘wicl13’, ‘vicl4’, ‘vicls’,

+ 'wic16’, ‘'vicl17’, ‘vicl8', ‘vicl9’, 'vic20°'/

drpfil (1) (vic.i0): user-specified input and ouilput flle names
drpfil (2) (vic.syn): circuit description in standard form
tmpfil (3) (vic.flo): floating nodes and wired logic

brpfil (4) (vic.fb): boundary of feedback loop area

BOOOOO

00

(2]

tmpfil (5) (vic.net): wmachine-readable circuit net list

tmpfil (6) (vic.red): potentially redundant faults and aborted

test vectors
bmpfil (7) (ic.vec): test vectors for irredundant foults

tmpfil (8)-tmpfil (20): spare files for future eztensions
vic8-vic20

device number assignments for vaz/uniz (machine dependent):
1-4 = input flles; 5 = standard input (from terminal)
7-10 = output flles; 6 = standard output (to termminal)

data lu /1,2,3,4,5,6,7,8,9,10/

data

+ Lidr(1) /’and2 oul=l in=2'/, lidr(2) /'and3 out=! ¢
+ lidr(3) /'and4 out=! in=4'/, lidr(4) /'and5 out=l ¢
+ libr(5) /'and6 out=l1 in=6'/, lidr(6) /'and?7 out=!
+ lidr(7) /'end8 out=1 in=8°'/, 1idr(8) /'and9 out=1 i

--

+ lidr(9) /'aoil! out=! in=3'/, 1idbr(10)/'@0i22 out=1 in=4'/
+ lidr(11)/'a0i31 out=1 in=4'/, Lidr(12)/'buf out=1 in=1'/
+ Lidr(13)/'inv out=1 in=1'/, . lidr(14)/ yuz2 out=1 in=3'/
+ Libr(15)/ nand2 out=! in=2'/, Libr(16)/'nand3 out=! in=3'/
+ Llidr(17)/ 'nond4 out=1 in=4'/, lidr(18)/ nand5 out=1 in=5'/
+ libr(19)/ nand8 out=l in=6'/, 1ibr(20)/ nand? out=1 in=7'/
+ 1ibr(21)/ 'nend8 out=1 in=8'/, 1idr(22)/ nand9 out=1 in=9'/
data

+ lidbr(23)/ 'nor2 out=l in=2'/, libr(24)/ mor3 out=l in=3'/
+ lidbr(25)/ 'nor4 oui=l in=4'/, 1idr (26)/ nor5 oul=l in=5'/
+ lidbr(27)/ 'nor6 out=l in=6'/, Lidr(26)/ 'nor? out=l in=7'/
+ 1idbr(29)/ nor8 out=! in=8'/, 1ibr(30)/ nor9 out=! in=39'/
+ lidr(31)/'0ai21 out=! in=3°/, Lidbr(32)/'0ai22 out=] in=4'/
+ Lidr(33)/'0ai3l out=l in=4°/, lidr(34)/'0at33 out=! in=6'/
+ 1idr(35)/'or2 out=l in=2°/, lidr(36)/'0r3 out=1 in=3'/
+ ltdr(37)/'or4 out=l in=4'/, libdbr(38)/‘or5 out=1 in=5°/
+ lidbr(39)/'or6 out=! in=6'/, lidr(40)/'or7 out=l in=7'/
+ Libr(41)/'or8 out=1 in=8'/, Lidr(42)/'0r9 out=l in=9'/
+ 1idbr(43)/ 'trag out=l in=2°/, Lidr(44)/ 'znor2 out=! in=2'/
+ lidr(45)/ 'zor2 out=l in=2'/

end

AB.1

APPENDIX 6

Program VICTOR Source Listing

Appendix B8 contains the complete FORTRAN source code of program VICTOR.

To obtain copies of Appendix 6 address inquiries to:

Pamela Bostelman
Industrial Liaison Program
499A Cory Hall

University of California
Berkeley, CA 94720

tel: (415) 642-8312

R1

REFERENCES

[Aho74] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design of and Analysis
of Computer Algorithms, Addison-Wesley, 1974.

[Agrawal B2] V. D. Agrawal and M. R. Mercer, '"Testability Measures —What Do
They Tell Us?", Proceedings International Test Conference, Philadel-
phia, Nov. 1982, pp. 391-396.

[Akers 76] S. B. Akers, "A Logic System for Fault Test Generation,” JEEE Tran-
sactions on Computers, Vol. C-25, June 1976, pp. 620-830.

[Akers 82] S. B. Akers and B. Kﬁshnémurthy. "A Test Counting Approach to

Testability Analysis," private communication, April 1982.

[Ando 80] H. Ando, "Testing VLSI with Random Access Scan,” Digest of Papers
Compcon 80, San Francisco, Feb. 1980, pp. 50-52.

[ANSI 78] American National Stendard Programming Language FORTRAN,
ANSI X3.9-1978, American National Standards Institute, New York,
1978.

[Armstrong 86] D. B. Armstrong, "On Finding a Nearly Minimal Set of Fault
Detection Tests for Combinational Logic Nets,” JEEE Transactions on

Electronic Computers, VoL EC-15, Feb. 1866, pp. 86-73.

[Arzoumanian 81] Y. Arzoumanian and J. Waicukauski, "Fault Diagnosis in an
LSSD Environment,” Proceedings 1981 IEEE Test Conference, Phi-
ladelphia, Oct. 1981, pp. 86-86.

R2

[Avizienis 82] A. Avizienis, "The Four-Universe Information System Model for
the Study of Fault-Tolerance,” Digest of FTCS-12, 12th Annual Inter-
national Symposium on Fault-Tolerant Computing, Santa Monica,
June 1982, pp. 6-13.

[Eardell 82] P. H. Bardell, "On a Testability Measure for Random Pattern Test-

ing,” private communication, April 1982.

[Eeh 82] C. C. Beh, K H. Arya, C. E. Radke, and K. E. Torku, Do Stuck Fault
Models Reflect Manufacturing Defects,” Proceedings JIEEE Mmterna-
tional Test Conference, Philadelphia, Nov. 1982, pp. 35-42.

[Eennets 80] R. G. Bennets, G.D. Robinson, and C. Maunder, "Computer-Aided
Measure for Logic Testability: the CAMELOT Program,” Proceedings
IEEE International Conference on Circuits and Computers, Port
Chester, Oct. 1980, pp. 1162-1185.

[Berg 82] V. C. Berg and R. D. Hess, "COMET: A Testability Analysis and Design
Modification Package,” Proceedings International Test Conference,
Philadelphia, Nov. 1882, pp. 364-378.

[Bernhard 81] R. Bernhard, "#5: Lessons from the Military,” Special Report:
Reliability, JEEE Spectrum, Vol. 18, Oct. 1981, pp. 73-78.

[Bernhard 82] R. Bernhard, "Rethinking the 256-kb RAM," JEEE Spectrum, Vol.
19, May 1982, pp. 48-51.

[Blume 83] H. M. Blume, Jr., private communication, Jan. 1983.

[Bose 82] A. K. Bose, P. Kozac, C.-Y. Lo, H. N. Nham, E. Pacas-Skewes, K. Wu,
“A Fault Simulator for MOS LS Circuits,” Proceedings 19th Design

R3

Automation Conference, Las Vegas, June 1982, pp. 400-409.

[Bottor 77] P. S. Bottorfl, R. E. France, N. H. Garges, and E. J. Orosz, "Test
Generation for lLarge Logic Networks,” Proceedings 14th Design Auto-
mation Conference, New Orleans, June 1977, pp. 479-485.

[Bottorf 79] P. S. Bottorfl, R. E. France, and H. C. Godoy, "Automatic Test
Generation for LSI Chips and Printed Circuit Boards," Digest of Techn-
ical Papers, 1979 International Solid-State Circuits Conference, New
York, Feb. 1979, pp. 252-253.

[Bottorft 80) P. S. Bottorfl, "Computer Aids to Testing - An Overview,” Com-
puter Design Aids for VLSI Circuits, Sijthofl & Noordhoff International

Publishers, The Hague, 1981, pp. 417-464.

[Bottorff 81] P. S. Bottorfl, "Partitioning Large LSSD Networks for Test Gen-
eration,"” presentation at the 4th Annual Workshop on Design for Tes-
tability, Vail, April 1981.

[Breuer 76] M. A. Breuer and A. D. Friedman, Diagnosis & Reliable Design of
Digital Systems, Computer Science Press, 1976.

(Breuer 78] M. A. Breuer, "New Concepts in Automated Testing of Digital Cir-
cuits,” Proceedings Symposium on Computers-Aided Design of Digital
Electronic Circuits and Systems, Brussels, Belgium, Nov. 1978, pp.
57-80.

[Breuer 78] M. A. Breuer and A. D. Friedman, "TEST/80 - A Proposal for and
Advanced Automatic Test Generation System,” Proceedings IEEE
AUTOTESTCON, Oct. 1979, pp. 305-312.

R4

[Carter 82) W. C. Carter, "Signature Testing with Guaranteed Bounds for Fault
Coverage,” Proceedings IEEE Mnternational Test Conference, Phi-
ladelphia, Nov. 1882, pp. 75-82.

[Clegg 73] F. Clegg. "Use of SPOOF's in the Analysis of Faulty Logic Networks,"
IEEE Transactions on Computers, Vol. C-22, March 1973, pp. 229-234.

[clif 80] R. A. Cliff, "Acceptable Testing of VLS] Components Which Contain
Error Correctors,” IEEE Journal of Solid-State Circuits, Vol. SC-15,
Feb. 1980, pp. 61-70.

[Collins 82] C. A Collins, "IBM 3081 System Overview and Technology,”
Proceedings 19th Design Automation Conference, Las Vegas, June
1982, pp. 75-82. L

[Dandapani 74] R. Dandapani and S. Reddy, "On the Design of Logic Networks
with Redundancy and Testability Considerations,” JEEE Transactions
on Computers, Vol. C-24, Nov. 1974, pp. 1139-1148.

[Danner 79] F. Danner and VW. Consolla, "An Objective PCB Rating System,”
Proceedings 1979 IEEE Test Conference, Cherry Hill, Oct. 1979, pp.
23-28.

[DasGupta 82] S. DasGupta, P. Goel, R. G. Walther, and T. W. Williams, "A Varia-
tion of LSSD and Its Implication on Design and Test Pattern Genera-
tion in VLS1," Proceedings IEEE International Test Conference, Phi-
ladelphia, Nov. 1982, pp. 83-66.

[Dejka 77] W. J. Dejka, "Measure of Testability in Device and System Design,"”
Proceedings 20th Midwest Symposium on Circuits and Systems, Aug.

RS

1977, pp. 39-52.

{Dunning 81] B. Dunning and P. Kovijanic, "Demonstration of a Figure of Merit
for Inherent Testability,” Proceedings JEEE AUTOTESTCON, Orlando,
Oct. 1981, pp. 515-520.

[Dussault 78] J. A. Dussault, "A Testability Measure,” Proceedings Semicon-
ductor Test Conference, Cherry Hill, Oct. 1978, pp. 113-116.

[Eichelterger 77] E. B. Eichelberger and T. W. Williams, "A Logic Design Struc-
ture for 1SI Testability,” Proceedings 14th Design Automation Confer-
ence, New Orleans, June 1977, pp. 462-468.

{Fong 82a] J.Y. 0. Fong, “A Generalized Testability Analysis Algorithm for Digi-
tal Logic Circuits,” Proceedinés IEEE International Symposium on
Circuits and Systems, Rome, May 1982, pp. 1160-1183.

[Fong 82b] J. Y. O. Fong, “On Functional Controllability and Observability
Analysis,” Proceedings IEEE International Test Conference, Philadel-
phia, Nov. 1982, pp. 170-175.

[Frobwerk 77] R A. Frohwerk, "Signature Analysis: A New Digital Field Service
Method,” Hewlett-Packard Journal, May 1977, pp. 2-8.

[Fujiwara 82] H. Fujiwara and S. Toida, "The Complexity of Fault Detection
Problems for Combinational Logic Circuits,” IEEE Transactions on

Computers, Vol. C-31, June 1982, pp. 555-560.

[Funatsu 75] S. Funatsu, N. Wakatsuki, and T. Arima, "Test Generation Sys-
tems in Japan,” Proceedings 12th Design Automation Symposium,
June 1975, pp. 114-122.

R.6

[Fung 82] H. S. Fung and J. Y. O. Fong, "An Information Flow Approach to
Functional Testability Measures,"” Proceedings /EEE International
Conference on Circuits and Computers, New York, Sept. 1982, pp.
480-463.

[Goel 81] P. Goel and B. C. Rosales, "PODEM-X: An Automatic Test Generation
System for VLS] Logic Structures,” Proceedings 18th lesign Automa-
tion Conference, Nashville, June 1982, pp. 260-268.

[Goel 82a] D. K. Goel and R. M. McDermott, “An Interactive Testability Analysis
Program — ITTAP.” Proceedings 19th Design Automation Conference,
Las Vegas, June 1982, pp. 581-5886.

[Goel 82b] P. Goel and M. T. McMa_hon; "Electronic Chip-in-Place Test,”
Proceedings IEEE Internctional Test Conference, Philadelphia, Nov.
1982, pp. 83-580.

[Goldstein 79] L. H. Goldstein, "Controllability /Observability Analysis of Digital
Circuits,” /EEE Transactions on Circuits and Systems, Vol. CAS-26,
Sept. 1978, pp. 685-691.

[Goldstein 80] L. H. Goldstein and E. L Thigpen, "SCOAP: SANDIA
Controllability /Observability Analysis Program,” Proceedings 17th
Design Automation Conference, Minneapolis, June 1980, pp. 180-196.

[Grason 79] J. Grason, "TMEAS, a Testability Measurement Program,” Proceed-
ings 16th Design Autornation Conference, San Diego, June 1979, pp.
156-161.

[Hayes 71] J. P. Hayes, "A NAND Model for Fault Diagnosis in Combinatorial

R7

Logic Networks," IEEE Transactions on Computers, Vol. C-20, Dec.
1971, pp. 1496-15086.

[Hayes 78] J. P. Hayes, Computer Architecture and Organization, McGraw-Hill,
1978.

[Hayes 82] J. P. Hayes, "A Fault Simulation Methodology for VLSL" Proceed-
ings 19th Design Automation Conference, Las Vegas, June 1982, pp.
393-399.

[Hess 82] R D. Hess, "Testability Analysis: An Alternative to Structured
Design for Testability,” VLS! Design, March/April 1982, pp. 22-27.

[lbarra 75] O. H. Ibarra and S. K. Sahni, "Polynomially Complete Fault Detec-
tion Problems," JEEE Transactions on Compulers, Vol. C-24, March
1975, pp. 242-249.

(IEEE 77) IEEE Standard Dictionary of Electrical & Electronics Terms, The

Institute of Electrical and Electronics Engineers, Inc., 1977.

[Jensen 82] L. Jensen, fnvestigation of Commercially Available Programs and
Algorithms for Automatic Test Pattern Generation, Christian Rovsing
A/S Technical Report, Copenhagen, September 1982.

[Keiner 77] W. Keiner and R. West, "Testability Measures," Proceedings AUTO-
TESTCON 1977, pp. 49-55.

[Kirkland 83] T. Kirkland and V. Flores, "Software Checks Testability and Gen-
erates Tests of VLS] Design,” Electronics, Vol. 58, No. 5, March 10,
1983, pp. 120-124.

R8

[Ktano 80] Y. Kitano, S. Kohda, H. Kikuchi, and S. Sakai, "A 4Mb Full Wafer
ROM," Digest of Technical Papers, 1980 International Solid-State Cir-
cuits Conference, San Francisco, Feb. 1980, pp. 150-151.

{Knuth 73] D. E. Knuth, The Art of Computer Programming, Volume 1/Funda-
mental Algorithms, Addison-Wesley, 1973.

[Koenemann 79] B. Koenemann, J. Mucha, G. Zwiehoff, “Built-In Logic Block
Observation Techniques,” Proceedings 1879 IEEE Test Conference,
Cherry Hill, Oct. 1979, pp. 37-41.

[Kovijanic 79] P. G. Kovijanic, "Testability Analysis," Proceedings 1979 IEEE
Test Conference, Cherry Hill, Oct. 1979, pp. 310-316.

{Kovijanic 81] P. G. Kovijanic, “Single Téstability Figure of Merit," Proceedings
IEEE Test Conference, Philadelphia, Oct. 1981, pp. 521-529.

[Kuck 78] D. J. Kuck, The Structure of Computers and Computations, John
Viley & Sons, 1978.

[Lee 74] H.-P. S. Lee and E. S. Davidson, "Redundancy Testing in Combina-
tional Networks," [EEE Transactions on Computers, Vol. C-23, Sep.
1874, pp. 1029-1047.

[Levi 81] M. W. Levi, "CMOS is Most Testable,” Proceedings 1981 International
Test Conference, Philadelphia, Oct. 1981, pp. 217-220.

[Lineback 82] J. R. lineback, "CAD Program Evaluates Circuits, Generates
Tests Automatically,” Electronics, Vol. 55, No. 22, Nov. 3, 1982, pp.
45-46.

RS9

[Longendorfer 78] B. Longendorfer, “A Testability Measure for Hybrid Cir-
cuits," Proceedings 1979 IEEE Test Conference, Cherry Hill, Oct.
1979, pp. 288-305.

[Longendorfer 81] B. Longendorfer, “Computer-Aided Testability Analysis of
Analog Circuitry,” Proceedings IEEE AUTOTESTCON, Nov. 1981, pp.
122-127.

[Lowden 79] R. P. Lowden, "Testing a High Density Logic Masterslice,” Digest
of Technical Papers, 1979 International Solid-State Circuits Conier-
ence, New York, Feb. 1979, pp. 250-251.

[Mano 80] T. Mano, K. Takeya, Y. Watanabe, K. Kiuchi, T. Ogawa and K. Hirata,
A 256k RAM Fabricated with Mdlybdenum—Polysilicon Tecknology.”
Digest of Technical Papers, 1980 International Solid-State Circuits
Conference, San Francisco, Feb. 1980, pp. 234-235.

[McKenny 80] V. G. McKenny, "A 5V 64k EPROM Utilizing Redundant Circuitry,”
Digest of Technical Papers, 1980 International Solid-State Circuits
Conference, San Francisco, Feb. 1980, pp. 146-147.

[Menzel 82] S. P. Menzel, Testability Analysis Considerations of Digital Cir-
cuits, M.S. thesis, Department of Electronics, Carleton University,
Ottawa, Canada, Aug. 1982.

{Mercer B1] M. R Mercer, V. D. Agrawal, and C. M. Roman, "“Test Generation for
Highly Sequential Scan-Testable Circuits Through Logic Transforma-
tion," Proceedings 1981 IEEE Test Conference, Philadelphia, Oct.
1981, pp. 561-565.

R.10

[Muehldorf 81] E. 1. Muehldorf and A. D. Savkar, "LS] Logic Testing —An Over-
view," JEEE Transactions on Computers, Vol. C-30, Jan. 1981, pp. 1-17.

[Newton 81] R. A. Newton, "A Blue Collar Language for CAD,” Digest of Papers
Compcon 81, San Francisco, Feb. 1981, pp. 81-82.

[Parker 75a] K. P. Parker and E. J. McCluskey, "Analysis of Logic Circuits with
Faults Using Input Signal Probabilities,” JEEE Transactions on Com-
puters, Vol. C-24, May 1975, pp. 573-578.

[Parker 75b] K. P. Parker and E. J. McCluskey, "Probabilistic Treatment of
General Combinational Networks," JEEE Transactions on Computers,
Vol. C-24, June 1975, pp. 668-670.

[Ratiu 81) I. M. Ratiu, "Macromodels for Testability Analysis,” presentation at
the 4th IEEE Workshop on Design for Testability, Vail, April 1981.

[Ratiu 82] 1. M. Ratiu, A. Sangiovanni-Vincentelli, and D. O. Pederson, "VICTOR:
A Fast Testability Analysis Program,” Proceedings IEEE International
Test Conference, Philadelphia, Nov. 1962, pp. 397-401.

[Roth 66] J. P. Roth, "Diagnosis of Automata Failures: A Calculus and a
Method," JBM Journal of Research and Development, Vol. 10, July
1966, pp. 278-293.

[Rutman 72] R. A. Rutman, Foult-Detection Test Generation for Sequential
Logic by Heuristic Tree Search, IEEE Computer Repository Paper No.
R-72-187.

[Savir 82] J. Savir, Good Controlability and Observability Do Not Guaraniee
Good Testability, IBM Research Report, RC 9432 (#41597), June 1982.

R11

[Schertz 72] D. R. Schertz and G. Metze, "A New Representation for Faults in
Combinational Circuits," IEEE Trensactions on Computers, Vol. C-21,
Aug. 1972, pp. 856-866.

[Schneider 67] P. R. Schneider, "On the Necessity to Examine D-chains in
Diagnostic Test Generation — An Example,” IBM Journal of Research
and Development, Vol. 11, Jan. 1867, pp. 114.

[Si 78] S.-C. Si, “Dynamic Testing of Redundant Logic Networks,"” JEEE Tran-
sactions on Computers, Vol. C-27, Sep. 1978, pp. 828-832.

[Smith 78] J. E. Smith, "On the Existence of Combinational Circuits Exhibiting
Multiple Redundancy,” IEEE Transactions on Computers, Vol. C-27,
Dec. 1978, pp. 1221-1225.

[Smith 79] J. E. Smith, "Comments on 'Redundancy Testing in in Combina-
tional Networks,"' JEEE Transactions on Computers, Vol. C-28, March
1979, pp. 261-262.

[Stephenson 74] J. E. Stephenson, A Testability Measure for Register Transfer
Level Digital Circuits, Ph.D. dissertation, Department of Electrical
Engineering, Carnegie-Mellon University, Pittsburgh, Pennsylvania,

Nov. 1974,

[Stephenson 76] J. E. Stephenson and J. Grason, "A Testability Measure for
Register Transfer Level Digital Circuits,” Proceedings 6th Interna-
tional Symposium on Fault Toleront Computing, Pittsburgh, June
1976, pp. 101-107.

[Susskind 81] A Susskind, Testability and Reliability of LS/, RADC Report,

R.12

RADC-TR-80-384, Jan. 1981, pp. 99-122.

[Tekesaki 81] S. Takasaki, M. Kawai, S. Funatsu, and A. Yamada, "A Calculus of
Testability Measure at the Functional Level,” Proceedings 1981 Inter-
national Test Conference, Philadelphia, Oct. 1981, pp. 95-101.

[Timoc 82] C. C. Timoc, private communication, April 1982.

[To 73] X. To, "Fault Folding for Irredundant and Redundant Combinational
Circuits,” JEEE Transactions on Computers, Vol. C-22, Nov. 1973, pp.
1008-1015.

[Trischler 81] E. Triscialer, private communication, Sept. 1981.

[Van Egmond 82] K Van Egmond, L/ TE: Automatic Transformation of Logic
Egquations in'o Testability Equations,” M.S. report, Department of
Electrical Engineering and Computer Sciences, University of Califor-

nia, Berkeley, Dec. 1982.

{Wadsack 82] R. L. Wadsack, "Fault Modeling and Logic Simulation of CMOS and
MOS Integrated Circuits,” Bell Systems Technical Journal, May-June
1978, pp. 1449-1474.

[Williams 73] M. J. Y. Williams and J. B. Angell, "Enhancing Testability of Large
Scale Integrated Circuits via Test Points and Additional Logic,"” JEEE
Transactions on Computers, Vol. C-22, Jan. 1973, pp. 46-60.

[Williams 81] W. C. Williams, "#6: Lessons from NASA,” Special Report: Reliabil-
ity, JEEE Spectrum, Vol. 18, Oct. 1981, pp. 79-84.

[Williams 82) T. W. Williams and K. P. Parker, "Design for Testability — A Sur-

R.13

vey,” IEEE Transactions on Computers, Vol. C-31, Jan. 1982, pp. 2-15.

[Yau 71] S. S. Yau and Y. S. Tang, "On the ldentification of Redundancy and
Symmetry of Switching Functions," /[EEE Transactions on Computers,
Vol. C-20), Dec. 1971, pp. 1808-1613.

	Copyright notice 1983
	ERL-83-27 (1 of 2)
	ERL-83-27 (2 of 2)

