

Copyright © 1983, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

APPLICATION OF ABSTRACT DATA TYPES AND

ABSTRACT INDICES TO CAD DATA BASES

by

Michael Stonebraker, Brad Rubenstein and

Antonin Guttman

Memorandum No. UCB/ERL M83/3

14 January 1983

APPLICATION OF ABSTRACT DATA TYPES AND

ABSTRACT INDICES TO CAD DATA BASES

by

Michael Stonebraker, Brad Rubenstein and

Antonin Guttman

Memorandum No. UCB/ERL M83/3

14 January 1983

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

APPLICATION OF ABSTRACT DATA TYPES AND

ABSTRACT INDICES TO CAD DATA BASES

by

Michael Stonebraker

Brad Rubenstein

Antonin Guttman

DEPARTMENT OP ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

UNIVERSITY OF CALIFORNIA

BERKELEY, CA.

ABSTRACT

This paper explores the use of one form of abstract
data types in CAD data bases. Basically, new data types for
columns of a relation, such as boxes, wires and polygons,
become possible. Also explored is the possibility of
secondary indices for new data types that can support
existing and user-defined operators. The performance and
query complexity considerations of these features are
examined.

I. INTRODUCTION

It has been pointed out [HASK82, KATZ82] that Computer

Aided Design (CAD) applications are not particularly well

suited to current relational data base management systems.

Extensions or modifications appear desirable to deal with

the following issues:

a) Support for new data types such as polygons, rectagons,

text strings, etc.

This research was sponsored by the Naval Electronics Sys
tems Command Contract N00039-78-G-001 3 and by the National
Science Foundation Grant ECS-8007684-Wong-2/84

b) Support for efficient spatial searching.

c) Support for complex integrity constraints.

d) Support for design hierarchies and multiple

representations.

The first issue arises because CAD applications are not

well served by the integers, floating point numbers and

character strings prevalent in business data processing

applications. Moreover, spatial searching is needed for

design operations that involve objects that fall in a

specific area, such as the display of a portion of a VLSI

design on a CRT screen. Such spatial searching is not

effectively supported by existing general purpose DBMSs.

The third issue arises because CAD users often wish complex

integrity constraints, such as integrated circuit layout

rules, to be enforced for their data.

The last issue arises because many design environments

have hierarchical levels of detail. For example, a VLSI

integrated circuit might have several intermediate levels of

detail between one containing the whole chip as a single

black box and the one containing detailed spatial masks for

circuit cells at the lowest level. These intermediate

levels suppress details irrelevant to that particular level,

and a designer can use whatever level of detail fits his

particular needs. In addition, more than one view of the

design may exist simultaneously, giving multiple overlapping

-2-

representations for data base objects. An example would be

a bit-slice design for a CPUi For purposes of describing

its physical construction, the design is made up of several

parallel bit-slices, but a functional block diagram may

consist of separate boxes for the ALU, register file, etc.

In [KATZ82] several approaches are suggested for

various of the above issues. In this paper we report on the

success observed using one approach, abstract data types, as

a solution to issue a) and issue b) above.

The remainder of this paper is organized as follows.

In Section II we briefly review our use of abstract data

types. A more complete discussion appears in [ST0N82].

Then in Section III we describe extensions to secondary

index facilities to support abstract data types. Extended

secondary indices can provide efficient spatial searching as

well as other kinds of indexing. Next, in Section IV we

apply abstract data types to a data base of VLSI design

information used in [GUTT82]. Lastly, in Section V we

report on the performance implications of abstract data

types by redoing the performance comparison between a

relational data base system and a special purpose CAD system

reported in [GUTT82] and performing other experiments.

II. ABSTRACT DATA TYPES

Abstract data types (ADTs) [LISK74, GUTT77] have been

extensively investigated in a programming language context.

-3-

Basically, an ADT is an encapsulation of a data structure

(so that its implementation details are not visible to an

outside client procedure) along with a collection of related

operations on this encapsulated structure. The canonical

example of an ADT is a stack with related operations: new,

push, pop and empty.

ADTs have been considered extensively in the context of

semantic data modeling and as a central theme in data base

system implementation [L0CK79]. Moreover, the use of ADTs

in a relational data base context has been discussed in

[R0WE79, SCHM78, WASS79]. In these proposals a relation is

an abstract data type whose implementation details are

hidden from application level software. Then, allowable

operations are defined by procedures written in a

programming language that supports both data base access and

ADTs. One use of this kind of abstract data type is

suggested in [R0WE79] and involves an EMPLOYEE abstract data

type with related operations hire-employee, fire-employee

and change-salary. This use of ADTs can also limit access

to a relation in prespecified ways, thereby guaranteeing a

higher level of data security and data integrity. Also, a

view [STON75] can be defined as an ADT. Consequently, the

algorithm that transforms updates on views into updates on

relations actually stored in the data base can be

encapsulated in the ADT, thereby providing a high degree of

data independence.

-4-

This section presents a different use of ADTs, in

particular for individual columns of a relation. The goal is

to extend the semantic power of a relational data base

system by providing for the definition of new data types and

related operators on these data types by means of user

defined procedures obeying a specialized protocol. This use

of ADTs is a generalization of data base experts [ST0N80].

We explain our use of ADTs with an extended example

concerning geometric objects.

In computer aided design of integrated circuits,

objects are often made up of small rectangular pieces called

"boxes". For a VLSI data base one would like to be able to

define a column of a relation of type "box". For example,

one might define a boxes relation as follows:

create boxes (owner = i4,
layer = c15,
box-desc = box-ADT)

Here, the boxes relation has three fields: the identifier of

the circuit of which each box is a part, the processing

layer for the box (polysilicon, diffusion, etc.) and a

description of the box's geometry. All fields are

represented by standard built-in types except box-desc which

is a data type added by some user.

Tuples can be added to this relation using QUEL

[ST0N76] as follows:

-5-

append to boxes (owner = 99,
layer = "polysilicon",
box-desc = "0,0,2,3")

Clearly, all fields can be correctly converted to an

internal representation and stored in a data base system

with the exception of the string "0,0,2,3", which represents

the box bounded by x=0, y=0, x=2, y=3- In order to be

interpreted as the description of a box, special recognition

code is required. Basically a user supplied input procedure

must be available to the DBMS to perform the conversion of

the character string "0,0,2,3" to an object with data type

box-ADT. Such a routine is analogous to the procedure

ascii-to-float which converts a character string to a

floating point number. A DBMS has a collection of built-in

conversion routines for standard types, and our proposal

entails allowing additional user defined conversion

routines.

One would also like to use standard DBMS operators on

the box-ADT domain, e.g.

range of b is boxes
replace b (box-desc = b.box-desc * "0,0,4,1")

where b.owner = 99

The intended effect of this command is to replace the box by

its intersection with another box. The intended semantics

of * are those of intersection; consequently, the data

manager must be instructed how to interpret the

multiplication of two objects of type box-ADT. In this case

"0,0,4,1" will be converted to an object of type box-ADT to

-6-

match the type of b.box-desc, and a user defined procedure

must be available to perform the appropriate multiplication.

Next one would like to define new functions on the

box-ADT column. Numerical columns have sin, cos, log, etc.

defined as built-in functions. Each of these accepts an

integer or floating point number as input and returns a

floating point number. Similarly, one might want to define

a function that calculates the area of a box and use it in

data manipulation commands, e.g.

retrieve (b.owner)
where area(b.box-desc) > 100

One must define for the data base manager the function

"area" which accepts a box-ADT as input and returns an

integer.

In addition, one might want to define new comparison

operations. For example, one might wish to define the

concept "overlaps" for boxes, and to have a corresponding

operator, "!!", defined for this purpose. The overlap

operator could then be used to ask if there were any box

overlapping the unit square based at the origin as follows:

range of b is boxes
retrieve (b.box-desc)

where b.box-desc || "0,0,1,1"

Not surprisingly, a user defined procedure for the

operator is required.

-7-

i i
i i

Lastly, one would like to be able to define aggregate

functions for the new type. For example, one would like to

be able to find the owner of the box with the largest

vertical dimension on the polysilicon layer:

retrieve (b.owner) where b.box-desc =
tallest(b.box-desc where b.layer = "polysilicon")

Again, a user defined routine is required to define the

"tallest" function for the new data type.

As a result an ADT is the following abstraction:

a) a registration procedure whereby a DBMS is informed of

the existence of the new type and given the length of its

internal representation.

b) a collection of user defined routines which define the

semantics of operators for this type and perform conversions

to other types. These routines must obey a prespecified

protocol for accepting arguments and returning results.

c) small changes to the parser and query execution engine to

correctly parse commands with new operators and call the

user defined routines when appropriate during execution.

This abstraction has been implemented in the INGRES

relational data base system [F0GG82, 0NG82] and is about

2500 lines of code. It appears to execute with modest

performance degradation [F0GG82]. It should be noted that

the implementation also allows definition of new operators

and functions for ordinary data types.

-8-

III. EXTENDED SECONDARY INDICES

The preceding section has indicated a mechanism for

adding new data types and new operators to a relational data

base system. This section explores the possibility of

supporting secondary indices in this more general

environment.

Traditionally, secondary indices provide a fast access

path to required data items when a query specifies an exact

match with a user specified value or a comparison operator

applied with a specified value. For example, if secondary

indices exist for the name and salary fields of an employee

relation, then the queries

range of e is employee
retrieve (e.salary) where e.name = "Jones"
retrieve (e.name) where e.salary > 1000

can be answered by using indices.

Since new operators can be defined for normal data

types and for new ADT data types, one would want the

following capabilities:

1) Indices on ADT columns with existing operators.

For example, consider the situation where salaries of

employees are stored as packed decimal numbers. Since this

is not one of the built-in data types in many systems, an

ADT is required. One would want to index salary so that the

above query could be answered effectively. In this case

extending an indexed sequential access method to support the

-9-

new data type will be adequate.

2) Indices on normal columns using new operators.

For example, consider the query:

range of e is employee
retrieve (e.name) where e.name !! 7

which requests the names of employees whose names are

exactly 7 characters long. The new operator !! counts the

number of non-blank characters in a name and compares the

result to an integer operand. One would want a secondary

index for the !! operator so. that this query could be

efficiently answered. Clearly, an index which provided a

bin for each possible length would be appropriate.

3) Indices on ADT columns with new operators.

Consider the query from Section II to find all the boxes

that intersect the unit square at the origin:

range of b is boxes
retrieve (b.box-desc)

where b.box-desc || "0,0,1,1"

We need an index that will allow retrieval of only the boxes

that qualify, or will at least restrict the search to a

small subset of the boxes relation.

The objective of this section is to propose a scheme

which supports all three capabilities above. It has always

been our position that an appropriate collection of access

methods should be provided by any DBMS and that it should be

easy to add new ones [ST'0N76]. Hence, our goal is to allow

-10-

any access method to operate in the more general context of

ADTs. Hashing and indexed-sequential (ISAM) are the access

methods currently supported by INGRES, and we focus the

discussion on extending these. -As a running example, we use

the boxes relation defined above.

An index can be created using the INGRES index command:

index on boxes is b-index (box-desc)

This will create a relation of the following form which will

be used as a secondary index:

b-index (box-desc, pointer-to-tuple)

A row exists in b-index for each row in the boxes relation

and contains the box-desc field along with a pointer to the

given tuple in boxes. The index b-index is initially stored

as a heap and must be modified to hash or ISAM to be useful.

For example:

modify b-index to hash on box-desc using my-function

The only change to the current modify command is the

inclusion of a "using" clause. INGRES normally builds

hashed secondary indices by allocating a number of buckets,

then reading the tuples one by one, calling its internal

hash function to obtain a bucket number and storing the

tuple in the correct bucket. In this context INGRES calls

my-function instead of its built-in hashing function to

obtain bucket numbers. My-function must be a valid function

registered through the ADT registration facility •which

-11-

expects a box-ADT as an argument and returns an integer. No

other modifications are required to the code if my-function

returns a single integer.

However, suppose we have a grid in the x-y plane as

shown in Figure 1, and we want my-function, when passed a

box, to return the numbers of all the grid cells that it

intersects. Grid cell zero is reserved for boxes which

extend outside the boundary of the above structure. In this

situation my-function returns a list of buckets instead of a

single bucket number and INGRES must insert a row in the

appropriate bucket in b-index for each value in the list.

The modify command for this structure is

modify b-index to hash on box-desc
using my-function (param-list)

Here param-list is a character string containing necessary

information such as the number and size of the grid squares

and the location of the grid in the plane. These values

y

i
i
i
i

I 1
I 1

! 11 !

I

i 12 |

I

13 !

i

14 i
1

15 !

I I
1 1

1 D |

i i
i i

i (i

I
I

8 I

1
1

9 !

1
1

! 10 !

1 1
1 1

1 1 '

i i
I I
i o I
l ^ i

1
1

3 :

1
1

4 !

i i
i i

i 5 :
>x

A grid structure for my-function
Figure 1

-12-

could be hard-wired into my-function, but it is preferable

that they be setable for each index.

We now illustrate how to use an ISAM structure with new

columns and operators. Again, we could run the following

modify command:

modify b-index to isam (box-desc) using <+

Normally, an ISAM structure is built by sorting the values

for box-desc using the built-in operator < to define the

sort order. In this case the index can be built in an

analogous way by substituting the operator <+ to define some

ordering on boxes, for example by comparing their areas. <+

would be expected to compare two box descriptions and return

true or false if one was "less than" the other. The ISAM

structure would then support the ordering determined by <+.

Once a hashed or ISAM secondary index is created for

the boxes relation, one must specify to INGRES how the index

can be used in processing queries. INGRES has a built-in

function, FIND, for hashed structures which will return the

hash buckets which must be inspected for tuples which

satisfy a particular query. In the current implementation a

hash bucket is identical to a UNIX page, so FIND returns a

collection of pages. An analogous FIND function returns a

collection of pages for an ISAM structure. These functions

are called by specifying the value used in a qualification

and the operator involved. For example, for the

qualification

-13-

where e.salary > 1000

FIND is called with parameters > and 1000. In our extended

environment, a user must provide a FIND function for each

possible operator for which the index can be used. We

propose a new INGRES command for the purpose, i.e.

use b-index with find-function

for (!! box-ADT, box-ADT ||)

This indicates that when INGRES encounters the intersection

operator || connecting a variable and a value of type box-

ADT in the qualification it should call find-function

instead of its built-in functions to obtain the required

collection of pages to search. The two expressions in

parentheses reflect the fact that |! is symmetric. For

example, suppose one submitted the query:

range of b is boxes
retrieve (b.all)
where b.box-desc || "0,0,1,1"

The string on the right is converted automatically to an

object of type box-ADT because || is defined to take box-ADT

arguments. After the conversion, the qualification is of

the form

where b.box-desc i| box-ADT

and therefore b-index can be used to process the query. The

ADT function find-function is called to return a list of

pages which must be examined. Then, INGRES simply iterates

over the list examining each index entry, following the

-14-

appropriate pointer, obtaining a tuple from boxes and

finally evaluating the user's qualification to ascertain if

it is satisfied for the tuple in question.

Notice in this particular case that find-function can

be identical to my-function. However, in general this will

not be possible as illustrated below. Suppose one defines a

new operator "#!" which compares a box and a line and

returns true if the box is "to the left of" the line. The

index b-index can be used to process queries involving the

#! operator; however, a new FIND function must be used:

use b-index with second-fn for (#! line-ADT)

A user can submit a query such as

retrieve (b.all)
where b.box-desc #! "0,0,1,3"

whereby he wants to see all boxes which are to the left of

the line from (0,0) to (1,3). If the grid structure for b-

index from Figure 1 is one unit long on each side, then the

boxes which qualify must lie in grid cells 1, 6, 11 or 0 and

the others can be excluded. The user function second-fn can

provide the needed semantics.

When more than one index can be used to process an

INGRES query, e.g.

where b.box.desc !' "0,0,1,1"
and b.box.desc #! "0,0,1,3"

then INGRES must choose which index to use in processing the

query. This is currently done by a hard-wired strategy

-15-

routine. To be able to choose in the above context, this

routine must be generalized to call both find functions to

obtain list of pages and then compare the sizes of the

results, choosing the smaller list for iteration.

IV. APPLICATION OF ABSTRACT DATA TYPES

In [GUTT82] we described a CAD data base consisting of

integrated circuit descriptions as stored by a special

purpose graphics editor, KIC [KELL81]. A KIC data base

consists of a collection of circuit "cells". Each cell can

contain mask geometry and subcell references. Circuit

designs are hierarchical; a complete design expands into a

tree, with a single cell at the root and instances of other

cells, used as subcells, for the non-root nodes. Cells are

the building blocks used to construct a circuit and include

such objects as buffers, NOR gates and at a higher level,

PLAs and arithmetic logic units.

In [GUTT82] we also described a relational schema which

models this data base consisting of five main relations:

cell-master (name, author, master-id)

box (owner, layer, x1 , x2, y1 , y_2)

wire (owner, layer, wire-id, width, x1 , y1 , x2, v_2)

polygon (owner, layer, polygon-id, vertnum, x, Z)

cell-ref (parent, child, cell-ref-id, t11-t32)

-16-

In the cell-master relation, name is the textual name

given to the cell and author is the name of the person who

designed it. Master-id is a unique identification number

assigned to each cell. It- is used for unambiguous

references to the cell within the data base.

The box relation describes mask rectangles. Owner is

the identifier of the cell of which the box is a part.

Layer specifies the processing layer, e.g. "polysilicon" or

"diffusion". X1_ and x2 are the x-coordinates of the left

and right sides of the box while yj_ and y_2 are the y-

coordinates of the top and bottom.

A "wire" is a set of lines that serves to make an

electrical connection between different parts of a circuit.

Each tuple in the wire relation describes one line segment,

giving the coordinates of its centerline (x1_, y_1_, x2, y2)

and its width. Wire-id is a unique identifier for a

particular wire. Owner and layer mean the same as in the

box relation.

A polygon is a closed figure with any number of

vertices. One vertex is stored in each tuple of the polygon

relation. X and y_ are the coordinates of the vertex, and

vertnum orders the vertices (tuples) within one polygon.

Each cell-ref tuple describes the use of one cell as a

part of another, i.e. as a subcell. For example, suppose

that the cell REGISTER contained several LATCH subcells.

Then, there would be several cell-ref tuples, each

-17-

containing the identifier of the REGISTER cell in the parent

field, and the identifier of the LATCH cell in the child

field. T11 through t32 are a 3 X 2 matrix of floating point

numbers specifying the location, orientation and scale of

each subcell with respect to its parent. This

representation of a spatial transform is the one generally

used in computer graphics [NEWM79]-

To apply abstract data types to this application, we

suggest the following:

a) A data type "box-ADT".

The internal representation of a box can be four integers

representing the locations of the top, bottom and side

boundaries. The external representation can be a character

string consisting of numbers separated by commas, e.g.

"0,0,1 ,1".

b) A data type "polygon-ADT".

The internal representation can be a fixed length string of

integers if a maximum number of vertices is specifiable.

For example, if 25 vertices are allowable, then 50 integers

can represent any polygon. If no upper bound is possible,

then ADTs can still be used. One can allocate a polygon

file external to the data base system which will be used to

store polygon descriptions. When a new polygon is inserted,

it will be physically placed in the external file (say using

a first fit or best fit placement algorithm). The input

-18-

conversion routine will then return a byte offset and length

which will be stored as a fixed length object in the data

base.

c) A data type "wire-ADT".

If all segments of a wire are the same width, then the

internal representation can be one integer for the width and

four integers for each segment giving the coordinates of the

endpoints.

d) a data type "array of floats"

The internal representation is the obvious one for the

required 3x2 matrix, t11, .. t32.

With these new data types we can simplify the schema above

to:

cell-master (name, author, master-id, defined)

box (owner, layer, box-desc)

wire (owner, layer, wire-desc)

polygon (owner, layer, polygon-desc)

cell-ref (parent, child, cell-ref-id, orientation)

Notice that box-desc, wire-desc, polygon-desc and

orientation are all user defined types.

The performance experiments in [GUTT82] involved three

common operations on VLSI data, namely retrieval of the top

level geometry for a given circuit cell, full expansion of a

-19-

design tree and retrieval of the top level geometry which

falls in a particular geographic area. We express the first

and third queries for the original INGRES schema below.

Then, we introduce new operators-for our abstract data types

which will simplify the description of these queries.

In the following set of queries which retrieve the top

level geometry, CELLID identifies the cell to be displayed.

The first two queries simply retrieve all the boxes and wire

segments belonging directly to the designated cell in any

order. The third query, which retrieves polygon vertices,

is more complicated because the vertices must be produced in

the correct order and grouped by polygon-id and layer in

order to simulate the operation of KIC. All polygon data

belonging to the given cell is first gathered into a

temporary relation, which is then sorted, and finally the

data is retrieved from the temporary and passed to the user.

In the actual performance tests data was retrieved

separately for each layer to accurately emulate the

operation of KIC.

-20-

range of b is box /* repeated for each layer */
retrieve (b.xl, b.yl, b.x2, b.y2)
where b.owner = CELLID

range of w is wire /* repeated for each layer */
retrieve (w.layer, w.xl, w.yl, w.x2, w.y2)
where w.owner = CELLID

range of p is polygon
retrieve into ptemp (p.layer, p.polygon-id, p.vertnum, p.x, p.y)
where p.owner = CELLID

modify ptemp to heapsort on layer, polygon-id, vertnum

range of pt is ptemp /* repeated for each layer */
retrieve (pt.layer, pt.polygon-id, pt.x, pt.y)

The query below retrieves polygons from the top level

geometry which fall in a specific geographic window. LEFT,

RIGHT, BOTTOM and TOP are numbers giving the boundaries of

the window. Again, the modify command is required to

correctly order polygon vertices.

range of p is polygon
retrieve into ptemp (p.layer, p.polygon-id, p.vertnum, p.x, p.y)
where p.owner = CELLID

modify ptemp to heapsort on layer, polygon-id, vertnum

range of pt is ptemp
retrieve (pt.layer, pt.polygon-id, pt.x, pt.y)
where max(pt.x by pt.polygon-id) > LEFT
and min(pt.x by pt.polygon-id) < RIGHT
and max(pt.y by pt.polygon-id) > BOTTOM
and min(pt.y by pt.polygon-id) < TOP

With our abstract data types, we can rewrite the

queries for top-level geometry as

-21-

range of b is box
retrieve (b.layer, b.box-desc)
where b.owner = CELLID

range of w is wire
retrieve (w.layer, w.wire-desc)
where w.owner = CELLID

range of p is polygon
retrieve (p.layer, p.poly-desc)
where p.owner = CELLID

This version will run faster because the detailed

representation of each kind of geometric object will be

handled by special routines instead of the general purpose

query interpreter. Polygon retrieval will be much faster,

since it is no longer necessary for the data base system to

put the vertices in the correct order.

If we also use a polygon overlap operator <> similar to

the box overlap operator defined above, then we can rewrite

the query for polygons in a specific window as

range of p is polygon
retrieve (p.layer, p.polygon-id, p.poly-desc)
where p.owner = CELLID
and p.polygon-desc <> make-poly(LEFT,RIGHT,BOTTOM,TOP)

The new query has several advantages over the original one.

First, it is much clearer once the meaning of <> is

understood, because We avoid the awkward collection of

clauses in the qualification. Moreover, it will be faster

because the test for overlap with the window can be done

more efficiently in a special routine. Also, if an index

using the <> operator exists for polygon-desc then INGRES

can use it automatically to limit t-he number of polygons

-22-

inspected. Since the original form of the qualification

contained aggregates, no index could be effectively used and

a search of all polygons was required.

V. PERFORMANCE COMPARISON

As noted in Section IV, performance improvement from

the use of ADTs can be realized from four sources:

1) Manipulation of a smaller number of columns. For

example, a box can be retrieved as a single column rather

than as four constituent parts.

2) Manipulation of fewer tuples, for example when polygons

are represented by single fixed-size tuples with vertex

lists stored externally.

3) Simplification of queries due to the introduction of new

operators. This is especially noticeable in spatial

windowing.

4) Use of abstract indices.

In this section we report on three different

experiments. First, we redo the performance comparison

between KIC and INGRES noted in [GUTT82]. This shows the

effect of sources 1, 2 and 3» Since abstract indices are

not yet operational, our second experiment simulates

abstract indices in INGRES in order to predict the

performance improvement which we expect from source 4 with a

full implementation. Our last experiment consists of

retrieval of VLSI data represented as polygons instead of

-23-

boxes. This shows the improvement from sources 2 and 3 and

puts our current implementation in its best light.

In [GUTT82] a performance comparison was reported

between KIC and INGRES for the operations mentioned in

Section IV. This comparison was performed for data bases

corresponding to two VLSI circuits under development at

Berkeley.

KIC stored the layout in virtual memory on a VAX 11/780

computer system using its own specially designed data

structures. The test machine had enough main memory so that

the layout could be entirely resident in primary memory. On

the other hand INGRES stored the design as disk resident

relations with only small portions in a main memory buffer

pool. Hence, the performance comparison was between a

system using special data structures mostly in main memory

and a system using general purpose data structures mostly on

disk. The two systems also differed in that KIC clipped

geometries to fit an appropriate window on a graphics

terminal while INGRES did not simulate this operation.

Figure 2 summarizes the results of the first

experiment. The first two columns show the performance

difference between KIC and INGRES. KIC is assigned unit

response time and unit CPU usage while the performance of

INGRES is indicated relative to the KIC time. Note that

INGRES performs about a factor of 3 worse in CPU time and 5

worse in response time for the top level geometry and the

-24-

tree expansion queries. For the spatial retrieval it is a

factor of 20 worse in CPU time and 45 slower overall.

The reason for the poor performance on spatial

windowing is that KIC contains a geographic bin structure

for spatial indexing similar to that in Figure 1. No such

indexing is present in INGRES. Consequently KIC does a

restricted search while INGRES must perform an exhaustive

one.

Figure 2 also shows the performance of ADT-INGRES, a

version of INGRES with the addition of the abstract data

types mentioned in Section IV and an overlap operator.

KIC INGRES ADT-INGRES

Top level geometry
-CPU 3.2 3.6
-response time 5-5 5.8

Tree expansion
-CPU •3-5 3-9
-response time 5.1 5.6

Spatial window
-CPU 20 24
-response time 45 51

Relative INGRES Performance

Figure 2

Notice that ADT-INGRES is about 10 percent slower than

regular INGRES on the top level and tree expansion tests.

This represents about half of the 20 percent extra overhead

needed to run the more general environment according to the

results reported in [F0GG82]. Source number 1 apparently

-25-

accounts for the 10 percent difference. We anticipated that

the addition of an overlap operator would improve

performance considerably on the spatial windowing test.

However the results show no improvement, probably because

the extra overhead incurred by loading the overlap routine

dynamically at run time cancels out the time saved during

the actual processing of tuples. Source 2, the processing

of fewer tuples for ADTs, has almost no effect because the

design data consists mostly of boxes, where the number of

tuples is the same. Unfortunately, the test data included

only one polygon in the top level geometry, and the polygon

portion of the benchmark consumed almost no time. The

designers of the circuit in question chose to rely primarily

on boxes as a representation vehicle and not on polygons.

All complex shapes in the circuit except one are made up of

overlapping boxes.

The second experiment is intended to predict the

improvement we can expect from abstract indices. We

preprocessed the box, wire and polygon data to compute a

spatial bin for each object. This bin was stored explicitly

in the data base and used as a key for a normal INGRES

secondary index. The spatial windowing benchmark was redone

with this simulated bucketing and the results are presented

in Figure 3. Simulated bucketing should closely mimic an

actual implementation of abstract indices and a performance

improvement of nearly a factor of 2 should be realisable.

-26-

KIC INGRES INGRES

with bins

Spatial window
-CPU 1 20 15
-response time 1 • 45 25

Performance of Simulated Spatial Index
Figure 3

The third experiment illustrates the performance

improvement that can be realized with ADTs when the data is

in the form of polygons instead of boxes. Polygons offer an

important advantage over boxes for representation of complex

geometric objects, namely that each object can be stored

explicitly as a single unit instead of being made up of many

apparently separate boxes which may overlap. This advantage

is clearly illustrated in design rule checking. When large

shapes are composed of many boxes, an overlap may or may not

be an error, but with single polygons an overlap is a clear

error.

•For the third experiment we converted the boxes of the

design data into appropriate polygons, and compared the

performance of normal INGRES with ADT-INGRES when retrieving

top level polygons for a single cell. Without ADTs the

query is

range of p is polygons
retrieve into ptemp (p. all.) where p.owner = CELLID
range of pt is ptemp
modify ptemp to heapsort

on pt.layer, pt.polygon-id, pt.vertnum
retrieve (pt.x, pt.y)

-27-

With ADTs the query becomes

range of p is polygons
retrieve into ptemp (p.all) where p.owner = CELLID
range of pt is ptemp
modify ptemp to hash on pt.layer
retrieve (pt.x, pt.y)

The results of the test are shown in Figure 4-

INGRES ADT-INGRES

Top level geometry
-CPU 1 .57
-response time 1 .64

Polygon Retrieval
Figure 4

These latter two tests suggest that our tactics can

save nearly half of the INGRES overhead for CAD data that is

polygon-rich. It is entirely possible that a more efficient

version of ADT-INGRES coupled with abstract indices could be

made attractive for CAD data from a performance viewpoint.

VI CONCLUSIONS

We have identified several issues that are important in

the the ongoing effort to improve the usefulness and

performance of data base systems for use in CAD

applications, and have shown how ADT columns in relations

and abstract secondary .indices can solve some of these

problems. We have described an implementation of ADT

columns in INGRES and have presented measurements of

-28-

performance improvement. Further work is in progress in the

area of access methods to support multi-dimensional spatial

searching and the implementation of abstract data type

secondary indices.

ACKNOWLEDGEMENT

This Research was supported by the Advanced Research

Projects Agency under Contract #N00039-C-0235.

REFERENCES

[F0GG82]

[GUTT77

[GUTT82

[HASK82

[KATZ82

[KELL81

[LISK74

[L0CK79

[NEWM79

[0NG82]

Fogg, D., "Implementation of Domain Abstraction in
the Relational- Database System, INGRES", Masters
Report, EECS DeDt, University of California,
Berkeley, CA Sept. 1982.

Guttag, J., "Abstract Data Types and the
Development of Data Structures," CACM, June 1977-

Guttman, A. and Stonebraker, M., "Using a
Relational Database Management System for Computer
Aided Design Data", Data Base Engineering, June
1982.

Haskings, R. and Lorie, R., "On Extending the
Functions of a Relational Database System," Proc.
1982 ACM-SIGMOD Conference on Management of Data,
Orlando, FL, June 1982.

Katz, R. (editor) Special Issue on CAD Data Bases,
Data Base Engineering, June 1982

Keller, K., "KIC, A Graphics Editor for Integrated
Circuits" Masters Report, University of
California, EECS Dept, June 1981.

Liskov, B. and Zilles, S., "Programming With
Abstract Data TyDes," ACM-SIGPLAN Notices, April
1974.

Lockmann, P. et al. "Data Abstractions for Data
Base Systems," TODS, 4, 1, March 1979-

Newman, W. and Sproul, R., "Principles of
Interactive Computer Graphics" McGraw-Hill, N.W.
1979.

Ong, J., "The Design and Implementation of
Abstract Data Types in the Relational Database
System, INGRES," Masters Report, EECS Dept,

-29-

University of California, Berkeley, CA Sept. 1980.

[R0WE79] Rowe, L. and Schoeris, K., "Data Abstraction, Views
and Updates in RIGEL," Proc. 1979 ACM-SIGMOD
Conference on Management of Data, Boston, Mass.
May 1979-

[SCHM78] Schmidt, J., "Type* Concepts for Database
Definition," Proc. International Conference on
Data Bases, Haifa, Israel, August 1978.

[ST0N75] Stonebraker, M., "Implementation of Integrity
Constraints and Views by Query Modification,"
Proc. 1975 ACM-SIGMOD Conference on Management of
Data, San Jose, Ca., June 1975.

[STON76] Stonebraker, M. et al., "The Design and
Implementation of INGRES," TODS 2, 3, September
1976.

[ST0N80] Stonebraker, M. and Keller, K., "Embedding
Hypothetical Data Bases and Expert Knowledge in a
Data Manager," Proc. 1980 ACM-SIGMOD Conference on
Management of Data, Santa Monica, Ca., May 1980.

[ST0N82] Stonebraker, M., "Adding Semantic Knowledge to a
Relational Database System," Proc NSF Workshop on
Semantic Modeling, Intervale, N.H. June 1982 (to
appear as Springer-Verlag book edited by M.
Brodie).

[WASS79] Wasserman, A.I., "The Data Management Facilities
of PLAIN," Proc. 1979 ACM-SIGMOD Conference on
Management of Data, Boston, Mass., May 1979.

-30-

	Copyright notice 1983
	ERL-83-3

