Copyright © 1983, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

DELIGHT: AN INTERACTIVE SYSTEM FOR
OPTIMIZATION-BASED ENGINEERING DESIGN

by
William T. Nye

Memorandum No. UCB/ERL M83/33
31 May 1983

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720 :

Research sponsored by the Joint Services Electronics Program
Contract F49620-79-C-0178. '

ME3/23

3?§ //}fr’éj
Vely Zind

DELIGHT: AN INTERACTIVE SYSTEM FOR

OPTIMIZATION-BASED ENGINEERING DESIGN

by

William T. Nye

Memorandum No. UCB/ERL M83/33

31 May 1983

DELIGHT: An Interactive System
for

Ph.D. William T. Nye EECS Dept.

Signature: QZM g)/—/ b é&

Committee Chairman

ABSTRACT

DELIGHT is an interactive system for applying optimization techniques to
engineering design. With DELIGHT, designers can use optimization algorithms to
improve the performance of their designs by automatically adjusting design
parameters. DELIGHT offers the capability of optimizing arbitrary performance
criteria as well as of studying complex tradeoffs between multiple competing

objectives, while simultaneously satisfying multiple constraint specifications.

The use of optimization in engineering design was proposed in the sixties,
especially for discrete electrical circuits such as filters. However, its use has not
become as widespread as one would expect. We examine the shortcomings of
several applications of classical optimizatibn techniques to engineering design
and develop design criteria for a computer-aided design system that should
overcome these difficulties. These criteria, and the intention of serving a wide
range of users from designers to optimization experts and system-support per-

sonnel, are used in the design of DELIGHT.

The various aspects of the DELIGHT system—the RATTLE language, RATTLE
extensibility through defines and macros, the library of optimization algorithms,

the problem description facilities, a set of high-level matrix macros, and

terminal-independent color graphics — are introduced and described in detail.
A novel feature of the DELIGHT system is a new multiple objective problem for-
mulation that provides a means of eflectively classifying and conveying the rela-
tive importance of design specifications. A methodology for performing design
tradeoffs when using this formulation is introduced that uses a new graphical

display called the performance comb.

The DELIGHT system is intended to be used in many different areas of
engineering design. Hence, we introduce a simulation interface methodology
and other necessary features that facilitate the coupling of DELIGHT to existing
simulation programs. We then take a look at several appﬁcation areas and
demonstrate the usefulness of the system by detailing the optimization of two
electronic integrated circuits. Successful optimization of several industrial cir-
cuits and of systems in other engineering areas are reported that further show

the effectiveness of the system.

Acknowledgements

1 would like to express my deepest gratitude to Professor A. Sangiovanni-
Vincentelli, my research advisor, and Professor L. Polak for introducirig and giv-
ing me the opportunity to work in optimization and computer-aided design.
They have supported me with enthusiasm and were available for numerous dis-
cussions throughout the course of my graduate study at Berkeley. Also, it is a
pleasure to thank them, along with Professor K. Pister, for serving on my disser-

tation committee.

The special contributions by A. Sangiovanni-Vincentelli to cultivating my abil-
ity to make clear presentations, both verbally and in writing, will have lifelong
value. I will always remember those occasions when, after expressing my excite-
ment over something I had just written, he would peer over the top of his glasses

and say, "let —me —see —it —first!"”

The rewarding discussions] have had with fellow graduate students and oth-
ers have contributed many useful ideas to this research. R. Balling, G. De
Micheli, N. English, T. Essebo, Andrew Heunis, M. Karandikar, K. Keller, J.
Kleckner, P. Labuhn, E. Lelarasmee, Sharad Nandgaonkar, P. Nicklin, R. Oliver, T.
Quarles, Dave Riley, P. Siegel, James Spoto, Andre Tits, V. Visvanathan, Y. Wardi,
and T. Wuu, .are just a few of the names that come to mind. Andre Tits, in partic-
ular, has had a major influence on this work. Special thanks to the brave stu-
dents who took EECS 241 in the fall of 1982 and provided their feedback on the

results of this work.

ii

My occasional acquaintances with W. Joy in Computer Science have inspired
me to try to provide just a fraction of the benefit that he has given to mankind
through his work with UNIX.

1 take great pleasure in showing my appreciation of the friendship extended
by G. Brand, C. Courcoub'etis. J. Dorfman, E. Eschen, L. Guy, T. Hull, J. Jones, M.
Loo, L. Gast, A. Neirynck, 1. Ratiu, T. Salcudean, S. Sastry, R. Silva, D. Stimler, E.
Szeto, A. Vladimirescu, professors P. R. Gray, D. A. Hodges, A. R. Newton, and D.
O. Pederson, and many others, and elso by the entire staff of the Electronics
Research Laboratory and the Department of Electrical Engineering and Com-
puter Science at Berkeley. Many other friends at Harris Semiconductor too
numerous to mention are also appreciated. Special thanks to T. King for assist-

ing with the figures.

My association with Professors A. Brodersen and S. Director during my early
years in Electrical Engineering at the University of Florida created important

foundations necessary for my doctoral work at Berkeley.

I would like to acknowledge research grants from Harris Corporation and
thank, in particular, J. Cornell and J. Spoto of Harris Semiconductor for provid-
ing an ideal environment in which to demonstrate the industrial applicability of
my work. The support of the Air Force Office of Scientific Research, the Joint
Services Electronic Program, the National Science Foundation, and MICRO is also

recognized.

Finally, 1 wish to express my gratitude to my parents, Sylvia and Thomas.

Table of Contents

CHAPTER 1: INWroduclioncccccceeeeieiieceeccnrnnensinnannsnsnnnsensnnssssssassiones
1.1. The Nature of Engineering Designcccccccvumuneeiiciiiiinnennenenccieenerannnanes
1.2. Examples of Design Problems Addressedcc.coeemmiverererrenreneennnneeens
1.3. Dissertation OQUtlinecccccoivvvueiiieeeniiiiininnnnneininieetieeenieieeeenceeneasneae.

CHAPTER 2: Overview of Optimization-Based Computer-Aided-Design
2.1. Barly EOrtS ...ccccceeriinsrnnsisscsnnniiiseneniisamisssssnsanesesssssssssssssssssessannssens
2.2. Recent Design Systemsccceeeireecnnnes teerresesserernsssnersnsnarananne errneenne
2.3. Limitations of These Systemsccccvivrninriiiiniinictiicenienienieenenesesnanee.

CHAPTER 3: Goals and Design Criteria of DELIGHTccccceevieiniicciiiinnnnne
3.1. Setting the Stagecccccevevvcereiriscneensienetienisntaiesetecscssssensasesnesssasenans
3.2. Classes of Users SUpportedc..ccccccieiemneiiieseineiaecsemeeenssne
3.3. Needs of the Various USErScccccieeriiiiscieniciiseinnnnnennenisiiinennmeeessisennsens
3.4. Resulting Design Criteriaccoeiiieereniinenirrnccieeeenninieiiisiinenennneneen.

CHAPTER 4: DELIGHT System Featuresccccceveenniiiiiiiiiecenennnn, verersesnense
4.1, Introduction and OVErVIEWcccreeieiivncieniieniennneneeiicniesneeecinnens
4.2. RATTLE Languageccccceeevennnnes Fesssesattttnntississseass s s e nasessnnasrnnenes

4.2.1. Functions of the Interactive Language in DELIGHT
4.2.2. Why a New Language is Neededc....ceereivniciierennnns eeseersnesasanaane
4.2.3. Why RATTLE is Similar to Ratforcccccceevceeiirminceiiinneccicinnncrnnnnnns
4.2.4. Preliminary Design Decisionscccccccvicceereeniennene rererenrenstsannnans

4.2.5. Basic Language Statements and Featurescccceveervrrernennenneenes

4.2.8. Interrupts and Run-Time EITorseieeeeeeeicieneeniciienes eesesnannnnness 55
4.2.7. Incremental Program Developmentcccccciiiiienenrennnenccicsnonees 59
4.2.8. Extensibility: Defines and Macroscccccuseerresssenes cessrerenesssennee 62
4.2.8.1. Character Stream View of I/0 and Pushbackcccceercunnes 84
4.2.8.2. Defines and EXtensionsc.cccccceeeeeeevienneenneeccnnnees revenerarnenes 67
4.2.8.3. Compile-Time Macroscccceermrennerernneneennneenee eeesessreanarasassrnns 72

4.3, Matrix Macrosc...cccciiiieiemniicccicesnnsennienienenns teesssessaresenanenrerasnsaaennes 77
4.4. Problem Input Languagecc.cccceeeeeeierccnninninnennnenenmiieneiitennieniieeinns 80
4.4.1. Mathematical Programming Formulationscccccceeereieiiiiineeenannns 80
4.4.1.1. Classical Single Cost with Constraints teesesennenersnonsanees 81
4.4.1.2. Multiple Objectives with Constra‘ints 83
4.4.2. DELIGHT Problem Descrip:ion Facilitiescccceevuecicinncicnnnnees 98
4.4.2.1. Classical Problem Descriptioncccccieeeeieenmiccieiinenecniiicneaanas 98

4.4.2.2, Multiple Objective, Engineering-Oriented Problem

Descriptioncciiciiccnnenienniisecnesssenenns cerremsertesnsestesstssssiisseerananne 106
4.5. Optimization Algorithms and Problem/Algorithm Interfaces 115

4.5.1. Introduction to the RATTLE Optimization Algorithms Library

............................... eireeeeeeerasessessssensanessessssssssartsensasesseanasrsssssesanssssanassnssss 118
4.5.1.1. Purpose and Structureeeeeeeeeeneneeeiecincineiiiinan. 118
4.5.1.2. Structure of Optimization Algorithmsccccceciiiiiinnnininannaee. 121
4.5.1.3. Basic Feasible Directions Algorithmsccceveecieivanrenannnanaes 127

4.5.2. Enhanced Feasible Directions Algorithms for Engineering

4.5.2.1. Why Feasible Directions Algorithms are Good for En-

gineering Design Sheeuseseneiesseeetettnstestisnsrrtsstassraessaatisesesessstsenanssrnasnestire 132

4.5.2.2. Enhanced Phase I-II-1II Algorithmcccccceeiiienicienns ressesaressens 135
4.5.3. Details of the RATTLE Optimization Algorithms Library 142
4.5.3.1. Detailed Structure of Library Entriesccccecciccicnicicsscnnannes 142
4.5.3.2. Listing of Library Entriesccccueeerinicvccnccecsssssssnnnnnnnees ... 148
4.5.3.3. Exploring and Substituting Sub-Block Choicescceeerunen. 149
4.5.4. Problem/Algorithm Interfacecccecevreerenerancens reeseesesessessnnenees 151
4.5.4.1. The solve Commandccceveemmeneniececiinnens evsusssssasaseensesseseseveey 151

4.5.4.2. Problem Interface: Normalizations and Stored Values

ereresesessessasiensisasasrnensosas retessernssnsentritttatstsstessastsantrrratatatateaeeesseane ceresennereeee 155
4.5.4.3. Problem Interface for Surrogate Costccccceeeveernanneciinean. 181
4.5.5. Running an Optimizationceceeune reetestestesessesreriaesnesseasensensnans 164
4.8, GraphiCs ...cccicieimemureeiiiiiiniiienieiieneiateieeieetenieneeneameneessesiesescsracesassassnanes 185
4.8.1. General Graphics Featuresc.ciiiniiiiiiiiennencaenioissiennee. 186
4.6.2. Graphics for Observing Problem Performance crrsesesasenes 183
4.8.3. Graphics for Observing Algorithm Performancecc..cccccnnaneens 189
4.7. Simulation INerfacecieciiicuiieniinniiemiiennnninnenensssisesssssssessaseees 194
4.7.1. Functions and GOalsc.ccveiemmerisieienniceiinnininnntoiiseesssiaiecsssceennes 185
4.7.2. Simulation-Dependent Partccccoieiieiiiieiiciiincnnninnienetiiaeeee. 199
4.7.3. Simulation-Independent Partccccveieiiiiininiiiniiincccniiciinnen, 205
4.8. Miscellaneous DELIGHT Featuresccccceeeiiiieiiiisicoisnncscsicnsenssnsenne. 209
CHAPTER S: DELIGHT Applicationscccccciiniiniiiinnniennienssnsnninnaucenians 215
5.1. Electronic Circuit Applications Featuring DELIGHT.SPICE 2186
6.1.1. Nature of Electronic Circuit Designccccecciiceiiiieiincannne cerrensasnne 218

5.1.2. Circuit Design Problem Formulationscccccccevieeencecnracencennnnns 223

iv

5.1.3. Additional DELIGHT.SPICE-Specific Featuresccccccceeeieniaannaes 230
5.1.4. Circuit Design Examplescccicceemmcieniinsernneinenierereeserancasenacaenees 242

5.2. Other Engineering AppPlicationsc.cccieiieieieimeinenecnneeensuesennsonees 284
5.2.1. Digital Filter Designcccccciciermnieenmmnennnencciniiceiieeseinecsrisnssssensacsens 284
5.2.2. SISO and MIMO Control Systemscoveeeecrearscsinnnnnenercsssssseaneens 287
5.2.3. Barthquake-Resistant Structuresccccccevieeenennieeiierescnnienienen. 290
CHAPTER 8: Conclusions and Future Researchcccccermiinincicensiiinnananan, 294
REFERENCES ...cccocicoimmeceamicetiiomseseresemsssessssssesssssssssssssstossasssnsossessvassmmansassssssss 299
APPENDIXA: DELIGHT Implementationccieeccreienecnceroanecrisecenanecses 309
A.1. RATTLE Languagec.ccccveeescsservenceccsssseccrnncseonnnsenssassscsseasasnassesces 309
A.1.1. RACC Compiler-Compiler ... 309
A.1.2. DYNAMUC AITAYS ...cccccccvessveeenererunneriirrisisssssssesassenasasensessesassessonsens 318

A.2. Parser and Parse/Execute LOODcccvceriniuerrenennenneniinnsescnenieeccsasans 321

A 3. Device-Independent GraphiCscccccieeeiessscssessarnnsennneneonenersncssseaniens 330
APPENDIX B: DELIGHT Application Package Development Features 335
B.1. Adding Built-in Routinescccvvmmneirenenrieniinnnieniciininiesisssinnsnsnisiiniene. 335
B.2. Accessing Fortran Variablescccvieeiiieniciniiiencnieniennnncisiicniiiinieninee. 340
APPENDIXC: DELIGHT Machine-Dependent Primitivesc.cccceeeeeeennnne. - 343

APPENDIX D: DELIGHT: An Optimization-Based Computer-Aided Design

35 £51 7 1 + SO PEO P TR IS PP 351
APPENDIX E: The Design of Digital Filters Using Interactive Optimiza-
BHOIL ceveernerrerrneeceienerenesesrenmnsnsssisssntsnessssmsassssssssossonssssssssassssasanassssssssseassasss 357

APPENDIX G: DELIGHT.SPICE: An Optimization-Based System for the

CHAPTER 1

Introduction

1.1. The Nature of Engineering Design

For our purposes, engineering design can be considered as a three-phase

iterative process. The designer must:

1. derive objectives and specifications from the requirements of the

system being designed,

2. select a structure or configuration which has the best chance of

meeting the specifications, and

3. determine values of system parameters that optimize the possibly
competing design objectives while satisfying the constraint

specifications.

For a particular design problem, the designer may go back and forth between

the three phases many times until a satisfactory design has been achieved.

It is natural to try to use the computer to aid designers in performing the
steps above. While there exist design procedures for limited classes of problems
in which system structure and parameter values are synthesized simultaneously
[148, 153], generally the selection of system configuration is a very creative and
experience-based part of the design process and may not be very amenable to

computer assistance. Similarly the derivation and evaluation of objectives and

§1.1 2
specifications, in quantifying such questions as:

1. What quantities must be "“specified"?
2. What criteria are used to define a "good design"?

3. What defines "acceptable performance’?

is also a very creative and subjective aspect of design which certainly requires
the experience and intuition of the designer. For large complex systems, how-
ever, the selection of the values of a large number of system parameters is often
time-consuming and is usually stopped short of the design's best performance.
This is usually due to the difficuity of designers in predicting the effect of
parameter changes on system performance without simplifying éngineering

approximations or numerous computer simulations.

That this parameter value determination phase can greatly benefit from com-
puter assistance is the result of a declining cost of computing power and of
significant advances, in the past 15 years, in two relatively separate research
areas. The first of these advances is in the area of optimization algorithms for
nonlinear programming. Algorithms have emerged which have many desirable
properties that are particularly suited to engineering design. Many have
guaranteed convergence properties which depend on rather mild conditions
which are satisfied by many engineering design problems. There are several
algorithms which optimize an objective subject to constraints and even some
which solve problems involving functional constraints which must be satisfied
over an interval of an independent parameter such as time, temperature, or fre-
quency. Recently algorithms have been developed which allow multiple objec-

tives to be optimized while simultaneously satisfying constraints.

The second area of advance is in system simulation or analysis programs.

§1.1 3

Advances in accuracy, efficiency, and reliability of these programs lead, on the
one hand, to the ability of engineers to simulate larger systems (or portions
thereof). On the other hand, these advances also make it economically feasible
to repeatedly simulate smaller portions of a system for the purpose of varying
parameters to improve its performance. Computer simulation has become a

popular and in many instances indispensable tool in engineering design.

This simulation power has lead many designers to believe that general
analysis programs are all that is required, for with them designers may continue
to use the popular cut-and-try methods as in the precomputer era—only faster,
cheaper, and with greater accuracy. In the design of electronic circuits, the
simulation program replaces the.breadboard and the cut-and-try method is
similar to "pot-tweaking. While such design methods have worked in the past,
they are less likely to succeed in the future as system complexity and the

number of parameters increases or as more performance is expected.

In this dissertation, the DELIGHT system, designed and implemented to com-
bine the two areas of optimization and simulation, is presented to provide
engineering designers with a powerful new computer-aided design (CAD) tool in
which engineer and computer are complementary as they work together to
optimize the performance of designs. In particular, DELIGHT uses parametric
optimization in the numeric parameter determination phase of design in which
the system conflguration remains fixed. Used in this way, optimization algo-
rithms may be viewed as a way of effectively managing the cut-and-try process
by taking advantage of the computer’s ability to assimilate much information
about the current design from automatically performed simulations in order to
determine the best set of parameter modiﬁcal;ions. Optimization thus frees the

designer from the difficult and tedious task of making these modifications and

§1.1 4

allows him to concentrate on the more creative aspects of the design process.

There are several additional benefits of applying parametric optimization to
engineering design. By freeing the designer from the highly repetitive aspects
of the parameter selection process, he may apply his creativity, intuition, and

experience in other ways:

1. He may devote more time to the derivation of objectives and constraint
specifications and the definition of acceptable performance measures. This
enhances the first phase of design by allowing a more rapid determination

of whether they are suitable for meeting the requirements of the design.

2. He may concentrate on the structural aspects of the design by considering
several alternate configurations without being bound by the usually prohibi-

tive time required to compare the best performance of each.

3. He may provide a good initial guess for the design parameters. This may be
obtained by other computer techniques as well as by manual design pro-

cedures.

4. Decisions about which constraints are most important to satisfy must be
made. An indication of the admissible severity in violating each constraint

must be given.

5. The designer may devote his time to evaluating and comparing the results
of trading off competing objectives in a particular configuration. This
exploration of tradeoffs is usually essential to any modern design methodol-
ogy.

8. By monitoring the optimization process, the engineer can go through a
learning experience about his system's performance that otherwise might

be missing if manual design techniques were stopped short of the system’s

§1.1 5

best capabilities.

Another benefit is that in formulating the objectives and specifications of his
design, the designer may address design problems more closely to their origin;
the limitations of classical design approximation techniques may be avoided.
Many design "tricks" which prior to the existence of an optimization-based
approach were necessary in order to perform the mathematical manipulations
of the design process, may no longer be considered a necessary part of the
designer's repertoire. Instead, the designer's grab-bag contains, for example,
his experience with the optimization process in knowing what type of problem

formulations lead to rapid convergence of the optimization algorithms used.
1.2. Examples of Design Problems Addressed

Examples of design problems which fall into the class of problems handled by
the DELIGHT system can be found in many areas of engineering. In the area of
analog electronic integrated circuit design, a common problem in amplifier
design is to maximize bandwidth subject to constraints on stability or on total
power consumption. The design parameters whose values must be determined
might be resistors, capacitors, or transistor device geometries. The structure
of the network would be determined a priori by the designer and would remain

fixed throughout the optimization process.

Another electronic circuit design problem involves digital cells of VLSI (very
large scale integration) systems. One common scenario is to minimize circuit
switching times subject to fan-in/fan-out requirements and again to constraints
on power consumption. For these types of problems, the design parameters are

usually device geometries only.

In the area of single input/single output (SISO) and mult,‘iple input/multiple

§1.2 8

output (MIMO) control systems there are many different types of design prob-
lems which can benefit from optimization techniques. For example, one may
wish to minimize the energy fed into the plant of a feedback system, subject to
constraints. These constraints might be bounds on compensator parameters,
overshoot and settling time consfraints on the time-domain step response of the
closed loop system, stability requirements that the poles of the closed loop sys-
tem lie in certain regions in th.e complex plane, and requireménts that the sys-
tem be insensitive to output disturbances. Some of these requirements result in

constraints which require very special optimization algorithms.

A final design problem example is found in the area of structural design in
which braced frame buildings must withstand small earthquakes with no damage
and large ones without collapse [18]. A common objective is to reduce construc-
tion cost by reducing the weight of the structure. This is done by minimizing
the cross sectional area of the frame members subject to several groups of con-
straints. The designer may formulate one group of constraints corresponding to
a static model subjected to gravity loads and another group corresponding to a
dynamic model whose goal is to limit the relative floor displacements over the
entire duration of a whole family of moderate and severe earthquake ground
motions. The system structure remains fixed throughout the optimization pro-
cess in that the permissible design variables may only affect element properties;
thus, for example, the position of the frames and the distance between nodes
must remain constant with changes in the design parameters. An example of
element properties which may be design parameters are section area, strain

bardening ratio, or section moment of inertia, for the beam-column element.

§1.2 _ 7
1.3. Dissertation Outline-

The plan of this dissertation is as follows. We begin with an overview of
optimization-based computer-aided-design in chapter 2. This leads from early
efforts to recent design systems and ends with the limitations of both early and
recent efforts. By examining the needs of various classes of users to be sup-
ported by the DELIGHT system; chapter 3 results in a set of design criteria for
the system. Chapter 4 then surveys DELIGHT features which meet these design
criteria. This includes DELIGHT's RATTLE programming language, the way design
problems are specified to DELIGHT, a discussion of optimization algorithms and
libraries, and other features which enhance the design process while using
DELIGHT. In chapter 5 we present several applications of DELIGHT to engineer-
ing design. The foremost of these is DELIGHT.SPICE for electronic circuit design.
We conclude in chapter 6 with a summary of the main contributions of this work
followed by directions for future research. Appendices are included which
explain several DELIGHT implementation issues and show the details of several

DELIGHT features for developing application packages.

CHAPTER 2

Overview of Optimization-Based Computer-Aided-Design

2.1. Early Efforts

Since it is difficult to survey the early use of optimization in all areas of
engineering design, we restrict ourselves for the most part to a few representa-
tive areas. One of the earliest uses of optimization in engineering design was to
solve problems that had been formulated as matching or curve ﬁtt.iné problems
[11,26] in which the goal was to match a calculated and a desired system
response. This was probably due to the fact that, by following Aaron [11] and
defining "best” as the minimurn of the sum of the squares of the errors between
desired and calculated responses, matching problems could easily be formu-
lated as linear or nonlinear least squares problems. These could then be solved
using either specialized techniques or available general purpose algorithms and
routines for sifnple unconstrained optimization, that were developed much ear-
lier than ones for constrained or multiple objective optimization. Another error
criterion was "equal ripple” approximation in- which the absolute magnitude of

the error was minimized.

The least squares matching problem was usually considered as follows.
Defining x as the vector of design parameters, f (xz;) as the calculated
response at the i'th value of an independent parameter z as i ranges from 1 to
n (where z may be 1 itself), and F(2;) as the desired response (or measured in

the case of model parameter determination), then the goal of having f(x.2;)

§2.1 , 9
egual F(z;) for every i was formulated as the following least squares problem:

minimize 31 (f (x2:) - F(z:))?

=1

In the special case that the number of parameters in x exactly equaled n, the
number of z; data points, ordinary Newton iteration was sometimes used [28].
Otherwise, either generalized Gauss-Newton methods (previously called Taylor
Series Methods) [11], Marquardt enhancements to these methods [96], or other
general unconstrained minimization techniques such as steepest descent [35]

were used.

Early use of the above solution techniques is now illustrated. A typical com-
puter program which combined the techniques above was SUPROX [48], an acro-
nym for SUccessive apPROXimation program, developed at Bell Laboratories in
the middle sixties. As explained by Golembeski [53], the program determined
the unknown parameters via two "slope-following” techniques, the method of
steepest descent and a generalized Newton-Raphson technique, which were used
consecutively, although either technique could be used alone. The steepest des-
cent method was used initially since it converged rapidly when the parameters
were far from optimum. When the overall minimum was neared, i.e., there was
less than 5 percent reduction in the error function per iteration, the generalized
Newton-Raphson method was substituted beca.kuse it had quadratic convkrgence
when started with good initial parameter values. This program was used in a

number of different applications of interest to designers.

Examples of engineering problems which were formulated as matching prob-
lems include model parameter determination for modeling system performance
for computer simulation, black box techniques [102], and the design of elec-

tronic fliters and microwave integrated circuits. The goal of the first of these,

§2.1 10

modeling, is to represent physical structures or phenomena by idealized, but
mathematically tractable models. Modeling becomes a matching problem once
a fixed structure model is chosen and it is desired to minimize the error
difference between responses calculated by the model and measured responses.
The independent parameter in the least squares formulation (x above) are vari-
ous external stimuli which bring into play the ways in which the model will be

used.

Black box techniques, which have now evolved into present-day macro model-
ing, ‘vere methods which were required to cope with the system size limitations
of early simulation programs [102]. In this approach, caiculated or measured
discrete data from a complex part of a system were replaced by standard func-
tions whose parameters were determined by a curve fitting process. The data
hopefully captured how external stimulus at input "ports” produced responses
at output ports. The particular functions used were either determined by the
application, for example hyperbolic functions for uniform transmission lines or
orthogonal polynomials for certain mechanical systems, or chosen by the
designer from several standard functions supplied by the curve fitting program.
For the latter, the choice was a compromise between availability of function sub-
routines to do the fitting, system size, and efficiency and accuracy of the result-

ing black box.

For the design of electronic filters, the filter response functions to be
matched against desired curves were usually the magnitude and phase of
transfer functions (including input and output impédances) discretized over the
independent parameter frequency. One interactive optimization program for
designing electrical fllters was TRANSFIT [103]. It was written in Fortran for the

GE-805 time-shared computer system and was an adaptation of a program given

§2.1 11

by Calahan [27] for fitting ratios of polynomials to frequency-domain charac-
teristics. The fit was accomplished through the use of a Fletcher-Powell optimi-
zation method [49] with Fibonacci Search. The user could interact in the optim-
ization process by changing the initial guess for the polynomial coefficients and
the weights at different frequencies.

A more recent filter (and microwave) design system is COMPACT [6], a
question/answer style interactive optimization program. 1t allows designers to
minimize a weighted scalar error function consisting of the sum of the squared
deviations between several frequency-domain properties of circuits. These pro-
perties include two-port scattering parameters, noise figure, and input port
phase shift. Control of this fixed problem formulation is accomplished by adjust-
ing the weights or simply setting them to zero to remove their respective terms
from the error function. If the designer cannot provide an initial guess, COM-
PACT does a coarse search to find an approximate global minimum followed by
the stecpest descent method to find the actual minimum. This could be very
time-consuming for a large number of design parameters. However, typically
the circuits optimized are relatively small. Since COMPACT contains no DC or
time-domain analysis and handles only bipolar transistors, its use in general cir-

cuit optimization is limited.

Another design program which emphasizes frequency-domain matching for
electronic filters is OPNODE [3]. It uses the following adaptive search technique.
The search begins in a purely random manner. Each error function evaluation
updates stored probabilities for that direction. Thus, the search algorithm
“learns” by trial and error how to vary parameters to minimize the error func-
tion. An interssting feature of OPNODE is how a designer interacts with the pro-

gram. OPNODE runs on an HP minicomputer and allows a user to flip panel

§2.1 12

switches to turn on or off performance plotting, parameter value display, and
other algorithm controls during each trial error function evaluation. Also, since
the program is written in Basic, it enjoys the interactive benefits of any inter-
preted language. One of these is that execution may be interrupted at any time,

any program statements changed, and execution resumed from the same point.

The sheer number of references on the subject of computer-aided filter
design suggests that in the electrical engineering area, it was the heaviest user

of early optimization techniques.

An extension of the use of optimization in electroniz circuit design to con-
sider both DC biasing effects as well as frequency-doriain matching was first
accomplished by Dowell [44] at Berkeley. Shortly thereafter, his colleague
McCalla [99] combined the automated DC biasing techniques of Dowell with the
previous work of Walsh [151] and Wooley [161] in optimizing small-signal fre-
quency responses without bias point variation. Thus, McTalla's optimization con-
sidered the direct AC dependence of design parameters as well as the indirect
DC dependence through transistor biasing. The optimization performance func-
tion was again the sum of the squared errors between actual and desired
responses summed over frequency. The Fletcher-Powell method [49] with cubic
interpolation line search was added to the circuit simulator SLIC [68] and pas-
sive element values only were allowed as design parameters. An experiment
tried by McCalla was to minimize the temperatﬁre sensitivity of his circuits by
summing deviations at two different temperatures. After poor results, he con-
cluded that optimization could not be effectively extended to optimizing tem-
perature sensitivity due to the expense of computing the necessary second
order derivatives. Another startling conclusion he made was that all of his

optimization results could have been reached without the aid of the automated

§2.1 13
approach, just more slowly.

The next step in the evolution of optimization in engineering design was the
formulation of certain design problems as general nonlinear programming prob-
lems. This approach required the formulation of a single performance function
(cost) to minimize subject to a set of inequality constraints, as in the following

standard form:

minimize { f (x) | g(x)=0}

There was little use, however, of what few constrained optimization algorithms
existed; in many cases [136, 86] the constrained problem was transformed into
an unconstrained minimization problem usi.ng.A for example, the penalty function
approach of Fiacco and McCormick [47]. Indeed, many researchers who
described algorithmic procedures did not even mention how this important
transformation might be carried out. An early review paper by Director [41]
simply states that the first step of an automated network design procedure
requires "a [écalar] performance function which embodies the design criterion.”

For the time-domain design problem, the integral performance function
T
e = [e(wgpt)dt
()
and the Fletcher-Powell [49] or Fletcher-Reeves [50] optimization methods were

suggested.

In parallel with the increased use of nonlinear programming in design came
great improvements in the efficiency of calculating the gradients necessary for
the most useful optimization algorithms. For electronic circuits, Rohrer and
Hachtel [132, 57] first showed how the computation of the gradient of a perfor-

mance function at a single frequence point with respeét to every design

§2.1 14

parameter could be accomplished in just two network analyses; previously it had
been thought that this computation required an additional analysis for each
design parameter. Shortly thereafter, Director and Rohrer showed a similar
result by introducing the adjoint network approach [39,40]. It used a derivation
that, although somewhat more general by not requiring a state variable formula-
tion, was easily understood and the adjoint approach was used by many others
as a means of calculating gradients for a wide variety of applications as well as

for optimization.

These highly efficient methods for gradient computation have not been used -
as much as might be expected in other areas of engineering. Recently, however,
there has been an interest in adding these methods to the ANSR [101] general

purpose structural simulator [38].

2.2. Recent Design Systems

The maturation of simulation and optimization techniques have caused
several computer-aided design systems to appear over the past few years. The
first one to be discussed, ISPICE, provides only analysis functions whereas the
remainder, A20PT, INTEROPTDYN, and APLSTAP, are explicitly designed for

engineering optimization applications.

ISPICE (for Interactive SPICE [5,7]) is mentioned here because it was the
first interactive design system used extensively by this author and its elegant
interactive man-machine interface has had a significant influence on the design
of DELIGHT. ISPICE is a user-friendly design tool which was created by combin-
ing the SPICE circuit analysis program [105] with the interactive and labor-
saving aspects of AEDCAP [1]. One particularly interesting feature of ISPICE

relevant to the design of DELIGHT is that it has no internal size limits. Rather

§2.2 15

than allocating fixed size arrays or storage regions, ISPICE adapts to the circuit
being simulated and obtains from the operating system whatever resources are
required; simulations have been performed on circuits containing thousands of
elements. An important novelty of ISPICE is the way circuit elements are
assigned values in the circuit description file. A general expression capability
allows almost any VALUE in the circuit file to be a constant, an arithmetic
expression, a function reference, a variable parameter, or any combination of
these. Another feature is the truly interactive way ISPICE communicates its
results to the designer. Instead of following batch SPICE and dumping out
reams of data on all the circuit elements, the program responds to user queries
for various subsets of the available output data. The human-engineering of

ISPICE interactive commands is seen in the following samples:

SWEEP VIN FROM -10V TO 10V BY 1V AT 10MEGHZ
PLOT VM(1) VS FREQ FROM IMEGHZ to 100MEGHZ DEC 15
DISPLAY ELEMENTS R* Q101 QPAIR1 QPAIR2

The SLICE interactive program [9] in use at Harris Semiconductor was originalily
conceived by this author and was initially patterned after ISPICE. The capabili-
ties have since then been considerably expanded and SLICE is currently used at

Harris by many designers.

A20PT [58] was an optimization-based CAD system for electronic circuits
which added constrained optimization features to the ASTAP [2] network
analysis program. It was probably the first system to allow designers to specify
easily a wide range of objectives and constraints as arbitrary expressions of cir-
cuit outputs. While A20PT was for the most part a batch program (ASTAP was

strictly batch), an important feature was the limited interactive capability in

§2.2 16

which the designer could interrupt and influence the course of the optimization.
He could alter either (1) the optimization weights, (2) ASTAP run controls, or (3)
parameters which control the optimization routine itself. The program com-
bined the weighted sum of several objective or constraint functions, the latter
using pgnalty functions, into a single scalar function which was minimized using
the variable metric rank-one update method due to Cullum [32]. The program
alsc; included box constrairts, i.e., upper and lower bounds, on the design
parameters. The choice of weights was somewhat haphazardous, being adjusted
experimentally by the designer after observing initial optimization performance.
Because A20PT constraints were actually the integral of the designer-specified
expression, instantaneous violations might occur but be averaged out so that
the constraint was actually satisfied; ways of circumventing this problem were

suggested in [58].

In the digital circuit design experiments performed by the authors of [58]
several points were made. One was the difficulty in initially adjusting the
weights; often several optimization reruns were required. This could be very
costly if the circuit size was large. Another point was their discovery that the
design parameters and the objective functions were somewhat decoupled. This,
they said, is inherent in the design of a mixed nonsaturating and saturating digi-
tal circuit in which the design specifications are a function of a single node. This
point shows that designers must pay close attention to the specifications they
formulate. Although A20PT initially showed great promise, the lack of truly
interactive features as well as the authors’ limited drive to recruit users caused

it to never be used extensively by practicing circuit designers.

Recently a research team at Berkeley put together the INTEROPTDYN design

package [21] to enhance the use of optimization algorithms for engineering

§2.2 17

design and to study the methodology needed for man-machine interaction and
graphical display. It combined a particularly powerful optimization code
OPTDYN [20], INTRAC-C, an extension of the INTRAC [155] language-interpreter
construction module developed at the Lund Institute of Technolegy, and various
applicaﬁtion-dependent codes such as the CDP classical design package [33] from
Imperial College in London. The INTEROPTDYN package allowed the user to write
his' own color or black-and-white graphical display programs as macro files. By
inserting certain “call for interaction” INTRAC calls into the existing OPTDYN
subroutine, the creators of INTEROPTDYN allowed the user to control the flow of
computation by executing the optimization algorithm one step or one cycle of
steps at a time. Computation could be interrupted and a matrix “scratch pad"

used for diagnostic calculations in the middle of a run.

In the INTEROPTDYN-SISO version [124] for the design of single-input single-
oﬁtput linear feedback systems, the objective and constraints of the design
problem formulation were fixed, with the designer only providing numeric
parameter values for his performance goals. These parameters controlled: (1)
an envelope on the closed loop step response, (2) frequency-domain criteria, (3)
upper and lower bounds on the plant input and its derivative from a step input,
and (4) design parameter box constraints. The built-in objective function to
minimize was the integral squared error of the closed loop step response. The
design parameters were limited to coeflicients of the numerator and denomina-
tor polynomials of the compensator transfer function. INTEROPTDYN-SISO and
other versions of INTEROPTDYN were used successfully for several different
design applications but the difficulty in coding arbitrary objectives or con-
straints limited their use to academic circles at Berkeley. Of importance, how-

ever, is the fact that INTEROPTDYN helped to clarify ideas about what type of

§2.2 . 18

interactive language and man/machine communication through graphics is

necessary in such a design system.

The APLSTAP system [60] developed at IBM is an interactive design system
which can operate in conjunction with an arbitrary existing simulation package.
Presently APLSTAP algorithms written in APL exercise control over the ASTAP
[2] circuit analysis program. They attempt to mathematically mimic the com-
mon practice by designers of trading off several performance objectives by
linear extrapolation of their expected performance. Through interactive itera-
tions with a novel computationally inexpensive linear programming (LP) step,
key tradecffs between multiple objective and constraint functions are revealed
to the user. He uses this assistance and his knowledge and experience about the
various functions to select a maximally effective LP step. Thus, the designer is
constantly making tradeoff decisions in a design process in which emphasis is
placed on getting the most from the first few optimization steps rather than on a
completely convergent sequence of steps; in many design situations particularly
involving large problems, convergence is computationally too expensive or not

justified on the basis of model accuracy.

The APLSTAP system may be used for both optimizing multiple objectives and
for improving the worst case performance of multiple objectives over the varia-
tions of a specified set of worst case statistically uncertain parameters. In each
of these design problems the LP step may be used in either of two modes. M/N-
MAX mode attempts to find the smallest values of all the objective functions over
a user specified set of box constraints on the design parameters. These box con-
straints are an estimate by the designer of the range of linearity of the objective
functions over each parameter. MI/NBOX mode attempts to find the smallest

change in the design parameters which will achieve a user specified desired

§2.2 . 19

improvement in each of the objective functions. The MINBOX LP step either pro-
duces the smallest change which achieves those improvements or states that

they are not possible.

Since APLSTAP is a relatively recent system that has not yet been extensively

used by practicing designers, the success of its approach is not yet known.

2.3. Limitations of These Systems

In some cases such as electronic filter design, early efforts were successful.
But for more complex present-day design situations, both early as well as recent
optimization-based design systems have many weaknesses which limit their use

by practicing engineers. This section categorizes these weaknesses as those

sternming from:

1. difficulties encountered by designers,

2. shortcomings of existing algorithms,

3. shortcomings of programs implementing algorithms,
4. difficulties encountered by optimization experts, and

5. shortcomings of simulation programs.

Recognition of these weaknesses leads to a set of goals and design criteria for

DELIGHT in chapter 3.

Designers. The simplest reason why optimization was not used much for
design is that many designers were (and still are) reluctant to use even CAD
analysis tools. Those designers who did recognize the benefits a computer could
provide were usually not trained in the areas of optimization or computer pro-
gramming and thus had to use others’ computer programs. Many times it just

wasn't possible to access such programs, especially ones which contained the

§2.3 20

algorithms they needed. When access was possible, it was often difficult for
designers to formulate their design problems as well-posed optimization prob-
lems and to understand how to successfully use the algorithms which had been
implemented. Brayton and Spence [23] emphasize these difficuities in listing
the following objections design engineers might have to viewin_g their design
problems as nonlinear programming problems:

1. 'Design problems are not this simple.”
2. "There is more than one design objective to be [improved].”

3. "It is not possible to state the design objectives in terms of mathematical

functions."

Another point worth mentioning is that very often a "guru” of an institution
would be the first to trj' to use a particular optimization program and if it did
rot quickly and easily yield success, he might make an initial conclusion which
cther engineers would accept as doctrine. This point is brought out l?y Paul Weil
[152] about computer-aided design in general in an amusing article about his

laments as a computer-aided design researcher.

Existing Algorithms. During the time period of most of the efforts described
in sections 2.1 and 2.2, the best known optimization algorithms were usually
inadequate to solve the complex design problems which faced many designers.
Often muiltiple performance objective functions were combined into a scalar
objective function to minimize using the weighted sum method. This was pre-
cisely the approach used by COMPACT and many other programs [6]. As pointed
out by Lightner and Director [94], this may yield a poor design no matter what
weights are chosen or what optimization technique is used for the minimization.
As mentioned in sections 2.1 and 2.2, inequality constraints were often handled

by penalty functions, an approach prone to have all kinds of problems. Penalty

§2.3 21

functions are also far too primitive to solve design problems involving functional
constraint specifications which must be satisfied for all values of an independent

parameter over an interval.

Other difficulties with existing algorithms were that they often converged
very slowly and sometimes not at all. It was not rare to find pépular algorithms
witbout any guaranteed convergence behavior whatsoever. Also, in cases of slow
convergence, few algorithms were originally designed so that they had parame-
ters which could be used to tune their performance to the particular class of
problems being solved. In A20PT [58] and others that did have such parameters,
it was probably next to impossible for practicing engineers to understand how to

adjust them.

Programs Implemeﬁti.ng Algorithms. The main shortcoming of many early
optimization programs was that they offered a fixed problem formulation which
was inadequate to handle widely varying design requirements. Examples are the
TRANSFIT [103] and COMPACT programs [6] mentioned in section 2.1. Designers
could only supply desired curves to be matched by their filter or circuit transfer
functions; they could not introduce additional constraints on, say, the pole loca-
tions of their desired filters. Another example is the fixed problem formulation
of the INTEROPTDYN-SISO package [124] discussed in section 2.2. Although the
formulation may have reflected the goals of many feedback system designs, the
rigidity of the package not only made it difficult to add new constraints, but
also, in early versions, forbid even a simple swap of a particular constraint and
the cost. Thus, a designer could not minimize the rise time of his system sub-

ject to constraints on the integral square error of the closed loop step response.

Another deficiency of optimization programs was that they did not provide

§2.3 22

any feedback to the user (especially powerful graphical feedback) on how well
the algorithm was performing. Slow convergence can be caused by algorithm
parameter values which cause sub-steps of the algorithm to run very poorly on a
particular design problem. There are usually other values of these parameters
which can greatly enhance algorithm efficiency. Fowever, a designer usually
had no way of knowing which ones to modify. Also, the algorithm might have
contained adjustable parameters but the program implementation did not meke
them accessible to the user. Both of these shortcomings usually resulted in
many optimization iterations or, in the case of bat:ch programs, many reruns,

costly both in computer resources and designer time.

Optimization Experts. Lack of emphasis by developers of optimization algo-
rithms on certain aspects of real-world design problems may have caused their
algorithms or programs implementing them to have less practical value to
designers. For example, any program which did not put heavy emphasis on
parameter and constraint scaling would probably perform poorly on real-world
problems in which constraints or parameters sometimes take on values which
may be orders of magnitude apart. The algorithms or programs reported in
[21, 39, 136, 20, 58, 103] do not appear to have given this emphasis. Other things
which algorithm developers may have lacked were (are) programming expertise
and the time or interest to write a complete, user-oriented optimization pack-
age containing, for example, clear error messages and sufficient documentation.
Even with programming expertise, the time required to code, debug, and test an
algorithm was usually very long. Moreover, most optimization programs were

usually written in Fortran, with its well-known deficiencies.

A review of the literature reveals the curious and popular notion by early

optimization experts that optimization techniques were supposed to completely

§2.3 23

automate the design process. In other words, they did not perceive the needs or
the advantages of interactive computing, in which user and computer are com-
plementary as they work together to carry out an optimization. This notion can
be seen in the following partial quotations:
(... will result in a) completely automated third (parameter adjust-
ment) phase [28, page 242].

... methodology of "automated" or "hands-off"' design, where "algo-
rithm" replaces "insight” [27, page 139].

Work is now in progress with the hope of constructing a set of
optimize functions and weights so that the program may optimize
from 300ns to 107ns in a single optimization run without user
intervention [58, page 503].

Is it any wonder that early programs did not provide user feedback or a means

of tuning algorithm performance ... their developers did not even expect the
designer to be part of the optimization process!

One reason regarding '"optimization experts" of why optimization has not
"caught on" sooner is that after a few of them tried it in the early seventies with
primitive algorithms that did not perform well, they consequently reached

unfavorable conclusions!.

Simulation Programs. The shortcomings of both past and present simulation
programs are not a limitation of optimization-based design systems but are a
reason why optimization has not been used more widely in design. The first
shortcoming is that coupling to simulation programs is usually very difficult to
achieve. Most simulators have not been designed to behave as function evalua-
tion routines for an optimization process. Even when they bave rerun capabili-

ties for modified input parameter values, it is either through interaction as in

1 See, for example, the conclusions of McCalla's dissertation [89].

§2.3 24

ISPICE [5, 7] or through additional input "cards"” as in ASTAP [2] or a recent ver-
sion of SPICE [105], and not from a capability of receiving new input parameter
values from a subroutine call by an algorithm. The already encountered
difficulties in coupling DELIGHT to the SPICE [105] and ANSR [101] simulators
bear out this point. Recently, however, work has begun on SPICE3 [129] with
precisely the goal of having all access to a central "kernel” of analysis routines

via a well-defined set of subroutines, including ones for parameter value update.

A further deficiency of most simulators is that they do not compute gradients
needed by widely used optimization algorithms. As a result, gradient calcula-
tions are performed using finite differences, leading to a large increase in the

time needed to perform an optimization.

Finally, the large number of different design environments in engineering
means that there is a correspondingly large number of different simulation pro-
grams. Since the coupling of a successful algorithm subroutine to any particu-
lar simulator is usually very complex and interwoven, it can be difficult to
extract the successful algorithm code for the purpose of using it with another

simulator. Thus the spread of optimization to different areas is very slow.

In the next chapter, we shall consider the limitations discussed in this sec-

tion in formulating a set of goals and design criteria for the DELIGHT system.

CHAPTER 3

Goals and Design Criteria of DELIGHT

3.1. Setting the Stage

In this chapter we discuss the goals of the DELIGHT system and the resulting
set of design criteria intended to meet these goals. In creating these design cri-
teria, we try to avoid the various limitations and pitfalls pointed out in the previ-

ous chapter.

The goals of DELIGHT fall generally into four broad categories. The first and
foremost desire is that the system be easy to use. This goal is essential to the

success of any large system intended to be used by many types of users. Com-

puter operating systems such as UNKX! [131] and Interlisp [147] have long recog-
nized the importance of a friendly user interface. Recently, many researchers
have also been stressing this imﬁortance [89]. Singer et al. [140], in describing
the design of a recent interactive environment for PASCAL programming,
emphasizes this point. They recognized that human engineering must have top
priority in the design of a system from the outset; it cannot be grafted on later.
Our second goal is that DELIGHT be wversatile. It must be useful in many
different areas of engineering design, particularly in industrial environments.
Third, the DELIGHT system must be relatively effficient, that is, make good use of
limited computer resources. Our last goal is that the entire system be portable

from one computer environment to another. The importance of this goal is

1 Unx is @ Trademark of Bell Laboratories.

25

§3.1 26

recognized more and more today and was one of the major underlying motiva-
tions for the design of the new programming language ADA [88, 8] by the Depart-

ment of Defense.

One of the original DELIGHT objectives was to create a system that would
facilitate its use by several different types of users. It is convenient to discuss
the goals of DELIGHT by considering the needs of three classes of users. Our
plan is to first describe the three classes in section 3.2. In section 3.3 we partic-
ularize the needs of each of these classes while section 3.4 summarizes the

chapter by listing the resulting set of design criteria.
3.2. Classes of Users Supported

The DELIGHT system is intended to provide congenial support to the following

three classes of users:

1. Optimization Experts
2. Engineering Designers

3. System Personnel and Application Program Developers

Optimization experts create or modify the optimization algorithms used by
designers. They usually work with the actual algorithm implementations and
peripheral user-interface routines which allow algorithm progress to be easily
observed and controlled by designers. When a special problem arises that can-
not be handled by an existing algorithm, they are usually the ones who are

called upon to tailor it or create a new algorithm.

Engineering designers use the DELIGHT system to assist their day-to-day
design efforts. The types of designers to be supported by DELIGHT include those

who are not computer experts and want to use the system in the simplest

§3.2 27

manner, as well as advanced users. Advanced DELIGHT users, who usually have a
much greater understanding of system features and operation, often seek new
capabilities from the support personnel. During an .optimization they also try to

insure that they are using the system in the most efficient manner.

There are several subclasses of system personnel. One class contains those
whose main task is to support the enhancement of non-algorithmic aspects of
the system. This includes rneeting the requests of users and porting the system
to new computer environments. Another class includes those extending
DELIGHT into new areas of engineering by developing the required application-
specific versions of the system. The easier this development is to accomplish,

the greater the possibility of spreading the use of optimization to many areas.

3.3. Needs of the Various Users

In this section, we consider the needs of the three classes of DELIGHT users.

Our purpose is to lead to the set of design criteria presented in section 3.5.

Optimization Experts. The needs of optimization experts and algorithm
developers are many. The most important need is the ability to create new algo-
rithms easily. This calls for an interactive high-level prograrmnming language that
can execute user-written code wery soon after it has been written. To be
interactive, the language can either be interpreted or compiled into a machine-
independent intermediate form. A programming language environment brings
with it the need for test and debugging aids. There must be the ability to inter-
rupt execution from the terminal, check the values of variables, etc.,, and
resume execution from the point interrupted. Also, the system must be very
forgiving to errors that will invariably occur during algorithm development.

These include floating point overflows, out-of-bounds array subscripting, and

§3.3 28

inversion of singular matrices. Many of these needs appear in general program-
ming systems such as the Wilander [156] or the Carnegie Mellon GLIDE 2 [45]
PASCAL systems.

Another wish of algorithm developers to ease the implementation of new algo-
rithms is to have their program code be compact and resemble as much as pos-
sible the mathematical description of the algcrithm being implemented. Conse-
quently, most of the usual coding errors would be eliminated and the program-
ming time shortened tremendously. This requires high-level readable access to
an arsenal of common mathematical manipulation and numerical analysis
software. Since the mathematics used in optimization algorithms is so diverse,
however, a language that is extensible [141], i.e., can be extended to resemble

new mathematical syntax, is needed.

A final desire is to have practicing engineering designers use their algo-
rithms. This leads to the requirement that all DELIGHT application packages be

able to use any general algorithms that may be developed.

Engineering Designers. The most pressing need of engineering designers is
to gain access to optimization in the many different design environments in
which they work. The resulting requirement that DELIGHT be able to interface

easily to many different simulators is discussed below.

Other wishes of designers include the following. It must be easy to convey
their design specifications to DELIGHT. There must be a way for them to
categorize design goals as either objectives to improve or as constraints that
must be satisfied. Also, it must be possible to indicate the relative importance
of the various specifications. Lightner and Director [94] emphasize this require-

ment in one of their approaches to solving multiple criterion optimization

§3.3 . 29

problems. The system must allow arbitrary formulation of these specifications.
'i'his calls for a general expression capability similar to that discussed in ISPICE
[5,7] and AROPT [58] in section 2.2. Also, the problem formulation must be
independent of any particular optimization algorithm selected. The need to be

able to easily input their design problem to DELIGHT calls for a powerful user-
oriented problem entry facility.

Engineering designers have several requirements that pertain to the optimi-
zation algorithms that they will use. The first is that there must be a way of
selecting a "good” algorithm easily. This selection must be based on an interac-
tive exploration of choices available in a library of algorithms. Moreover, these
algorithms must be able to solve complex design problems, have guaranteed
convergence behavior, and ‘have parameters which can tune their performance
to the particular problem. In order to carry out the tuning of the algorithm,
designers must be given knowledge of how well the algorithm is performing. The
performance can be very sensitive to the initial values of the design parameters
and the conditioning of the problem formulation as well as to the values of the
internal tuning parameters. Due to the complex information that must be con-
veyed, this necessitates graphical feedback on algorithm performance, most
effective in color. Myers [104] discusses the perception of symbols, the
avoidance of cluttering, character fonts, and other important considerations
needed in such graphics design. After a designer detects that the algorithm is
performing poorly he needs: (1) to be able to stop execution and adjust algo-
rithm or design parameters, modify his problem formulation, or even select a
different algorithm, (2) to know how to make these modifications, and (3) to be
able to resume the optimization after any of these changes. These requirements

call for graphical output to show why the algorithm is not performing well and,

§3.3 30

as for algorithm developers, an ability to interrupt execution from the computer

terminal.

Another reason designers need interaction is that typically they cannot
specify a priori the relative importance of each of several design objectives until
the best capabilities of the design have been determined. This exploration of
tradeoffs, essential to any modern design methodology, is much more efficient

in an interactive environment.

System Personnel and Application Program Developers. The final class of
DELIGHT users consists of system personnel and application program develop-
ers. Along with the extensibility needs of system personnel for molding such
things as problem entry facilities or application-specific commands of DELIGHT
into different design environments, are other needs which pertain to the porta-
bility of DELIGHT. A logical requirement for the design of DELIGHT to follow is to
force all machine dependencies to occur either in a small set of primitive rou-
tines that can be easily implemented on many computers, or in preprocessor
substitution macros. These technigques have become quite popular recently.
For example, achieving portability through the use of macroprocessors is
reported by Brown [25], Hall et al. [81] list the primitive subroutines they used
for implementing their portable UNKX-like shell in Ratfor?, while Stewart [143]
discusses both preprocessors and primitives. To be able to easily develop
DELIGHT applications packages, it must be easy to interface DELIGHT to any
existing simulation program. This requires a well-defined simulation interface
methodology which at the least consists of two features. One is the ability to
easily add existing routines to a set of DELIGHT built-in routines which are call-

able from the interactive programming language. The second is the ability to

2 See appendix C for a list of DELIGHT primitives.

§3.3 31

access variables from the built-in routines so that they can be manipulated in

the same manner as ordinary variables of the interactive programming

language.

3.4. Resulting Design Criteria
In this section we summarize the previous sections of this chapter by listing
the set of design criteria for the DELIGHT system. These criteria are that an
optimization-based computer-aided design system must contain:
* an .interactive high-level programming language and associated test
and debug aids,

s for easy extension, a language parser which is generated by an
automated parser generator {or compiler-compiler),

* language extensibility which allows algorithms to resemble mathemati-
cal descriptions and eases the entry of the system into new areas,

* a built-in library of common mathematical software such as from LIN-
PACK [43] or the Harwell Subroutine Library [10].

¢ a user-oriented problem entry facility allowing: (1) arbitrary problem
formulation through a general expression capability, and (2) a means
of conveying the relative importance of design specifications,

e a methodology for performing tradeoff of problem specifications,

e alibrary of optimization algorithms,

* the ability to tune or substitute algorithms in the middle of an optimi-
zation run,

« color graphics features for displaying algorithm and problem perfor-
mance that are independent of the particular graphical display device
used,

* a simulation interface methodology that allows easy interfacing to
existing simulation programs, and

« machine dependencies which have been grouped to allow easily porting
to other computer systems.
In the next chapter we survey various DELIGHT features which help it

meet the above criteria.

- CHAPTER 4

DELIGHT System Features

4.1. Introduction and Overview

We have considered the benefits of applyirg optimization to engineering
design and identified many shortcomings of previous attempts to achieve this
goal. In this chapter we survey various DELIGHT features that help to meet the
design criteria given in section 3.4. In order to explain more easily other
features of the system, the chapter begins with a top-to-bottom description of
RATTLE, the built-in programming language of DELIGHT. This description begins
with such fundamental notions as what it is to be used for and why it was
created, followed by a description of the syntax of several statements that will
be used many times throughout this dissertation. Additions needed to make
RATTLE an interactive langﬁage include the ability to interrupt execution and to
catch certain run-time errors such as numeric overflows. The define and macro
extensibility features of RATTLE are presented and used to create powerful
matrix operation macros. Such macros help achieve the goal that algorithm

RATTLE code resemble its mathematical description.

The primary purpose of the DELIGHT system—to apply optimization tech-
niques to engineering design— is presented in two parts: the problem side in
section 4.4 and the algorithms side in section 4.5. The problem side is con-
gidered first because the mathematical programming formulations and their

corresponding problem description facilities presented influence the algorithms

32

§4.1 33

and graphical displays needed to solve them. First, a single-cost problem for-
mulation is presented, capable of handling a broad class of optimization prob-
lems. However, to serve better our purpose in a design environment, a new mul-
tiple objective formulation is proposed that attempts to capture the essence of
how a designer would like his design objectives to tradeoff. The crucial interac-
tion between a désigner and the optimization process as well as human-
engineered graphics to support this interaction are described later in the

chapter.

Optimization algorithms capableg of solving complex design problems and hav-
ing guaranteed convergence properties form a cornerstone of the DELIGHT sys-
tem. We first introduce a library of optimization algorithms. After giving the
structure of a typical algorithm found in the library, we demonstrate this strue-
ture by presenting an important class of algorithm:.s known as methods of feasi-
ble directions. These methods are particularly good for engineering design
problems. In fact, the algorithm we describe in section 4.5.2.2 for solving prob-
lems posed using our multiple objective formulation consists of several enhance-
ments to the basic method of feasible directions. We conclude this part with
how the optimization problem set up and the optimization algorithm chosen are
coupled. This involves user aspects as well as a special software interface that

allows algorithms to be clearly written while maintaining efficiency.

Due to the complex information that must be conveyed about both problem
and algorithm performance during an optimization run, graphical displays are
needed. General graphics features in DELIGHT are first presented in section
4.6.1. We then introduce several graphical displays, constructed from the basic
graphics primitives, that are used tc; exhibit this performeance. The perjfor-

mance comb display introduced is instrumental in allowihg design problem

§4.1 34

tradeoffs to be made and their effects to be observed. Using this display, we
emphasize a tradeoff methodology that has been applied successfully to
significant practical problems such as those covered in chapter 5. Furthermore,
in engineering design it is usually far too costly to obtain a truly optimum solu-
tion. Whereas in the past, most uses of optimization in engineering design
stressed finding such a solution, we strive for performance improvement in the
first few optimization iterations. The methodology we introduce insures that a
designer’'s wishes are accurately reflected during each and every iteration of an

optimization run.

Since the DELIGHT system is intended for many different areas of engineering
design, we close the chapter by introducing a simulation interface methodology
and other necessary features that facilitate the coupling of DELIGHT to existing
simulation programs. Part of the simulation interface exploits the compile-time
macro feature mentioned above to carry out certain table lookup operations
just once thus ensuring greater efficiency during the actual optimization execu-

tion.

4.2. RATTLE Language

In order to meet the various goals of DELIGHT, an interactive programming
language is needed with very particular features. The subsections under section
4.2 give an overall description of the design and features of the RATTLE
language. RATTLE is an acronym for "RATfor Terminal Language Environment".
The functions of RATTLE in the DELIGHT design system are discussed in subsec-
tion 1. Subsection 2 explains why a new language is required by first considering
the need for a non-standard language compiler and then discussing why existing

languages are unsatisfactory. The question of execution efficiency is taken up at

§4.2 35

the end of the subsection. In subsection 3, we discuss why RATTLE was designed
to be similar to the existing language Ratfor [78]. Several preliminary decisions
in the design of RATTLE are discussed in subsection 4. In subsection 5 we illus-
trate basic RATTLE language statements and other necessary and helpful
language features. Arrays whose sizes may vary at run-time is a feature that
facilitates the implementation of optimization algorithms. Interactiveiy gen-
erated interrupts for stopping RATTLE execution are presented in subsection 6.
Subsection 7 discusses the nature of RATTLE interactive execution and its
importance to incremental program development. Finally, subsection 8 delves
into the various aspects of DELIGHT extensibility, including Ratfor-like defines

with extensions and compile-time macros.

4.2.1. Functions of the Interactive Language in
DELIGHT

The interactive programming language must serve several functions in the
DELIGHT computer-aided design system. The first is for describing design prob-
lem objectives and constraints. Since in engineering design these will often
depend upon outputs of a simulation program, we may view them as composite
functions —in which the "outer functions" are coded in the DELIGHT language
and the "inner functions" are provided by the simulator. Since the parts of a
design problem formulation to be coded in the DELIGHT language must be coded
by designers, the language must be fairly easy to learn. One way of accomplish-
ing this is to make it similar to a popular existing language. Being easy to learn
is also a requirement of designers for the second function of the language —the
implementation of problem-dependent output procedures. These procedures

display on the terminal screen problem performance in whatever form desired

§4.2.1 36

by the particular designer. They are automatically invoked after each major
step in DELIGHT optimization algorithms. Finally, throughout an optimization
run, designers will use the language to perform scratch pad calculations. The
purpose of these may be to verify further the performance of their design or to

determine how well the optimization algorithm itself is performing.

An important function of the programming language in DELIGHT is to imple-
ment optimization and other computer-aided design algorithms. This function
embodies both the :development of algorithms as well as their execution by
designers. The requirements in this regard for both optimization experts as well
as designers have been covered previously in section 2.3. Related issues are also

discussed in the next section.

The final function of the interactive language is to create new user commands
and features from a few built-in system features. In fact, although DELIGHT has
a large number of commands and other user features, it has a relatively small
number of i.ntrinsic, "built-in" primitives (language statements and functions);
most commands are simply composed of these basic primitives. This function of
the language allows the DELIGHT system to meet the goal of being extended
easily to any design environment with few or no modifications to DELIGHT (Rat-

for) source code.

The following table summarizes the functions of the language:

g§4.2.1 37

Functions of the DELIGHT Interactive Language

To describe the design problem.

To create problem-dependent output.
To perform side calculations.

To implement and run algorithms.

To create new features from old.

(3, R

4.2.2. Why a New Language is Needed

This section shows why a new programming language is needed by consider-
ing each of the language functions given in the preceding section. There are two
parts to this requirement. The first is the need for a new form of language com-
piler that operates interactively. The second is why existing programming
languages, used without modification, are unacceptable and hence a new

language is needed.

We first address why the language of DELIGHT must operate interactively.
Consider the previous language functions of describing design problems, imple-
menting algorithms, and running algorithms with the ability to exercise interac-
tive control. Suppose we require that both problem description functions and

algorithm procedures be written in a standard, non-interactive language such as
Fortran!. This makes it very difficult and time-consuming to develop or modify
algorithms or to change a problem formulation due to the lengthy load/linkage
phase needed for a large program? and the inability to execute statements or

groups of statements one step at a time. INTEROPTDYN used this approach,

1 In this discussion, we often use "Fortran” to indicate any language whose normal working cycle
consists of compile, link, and execute phases. In the context of DELIGHT, the language would prob-
ably be Ratfor [p78] (as explained in section 4.2.3 below) although we, in particular, usually choose to
avoid using this name due to the possible confusion between "Ratfor” and “RATTLE".

2 This situation may soon change since Kleckner [81] has recently demonstrated a fast "on-the-
fiy” load/linkage capability for C procedures on the UNKX operating system.

§4.2.2 38

which resulted in several different INTEROPTDYN versions in existence at Berke-
ley, each of which required a skillful and time-consuming Fortran programming
effort. INTEROPTDYN demonstrated that this "all Fortran"” approach does allow a
user to exercise control over algorithm execution. An existing Fortran optimiza-
tion algorithm subroutine was modified to make "call-for-interaction” subroutine
calls at certain key points that separate major sub-blocks of the algorithm. The
user could make interactive requests that caused specific sub-blocks to execute
a certain number of times. Interactively generated interrupts could also be
handled in this way; upon detecting an interrupt, the call-for-interaction subrou-
tine would switch to an interactive command mode instead of returning to the
optimization routine. Of course, modification of the interaction points would
require recompilation of the optimization routine followed by re-linkage: of the
entire INTEROPTDYN program. These reasons, as well as the functions of per-
forming side calculations and easily creating problem-dependent output rou-
tines, make it clear that the language in DELIGHT must operate interactively,

without a necessary lengthy load/linkage phase.

We now discuss why existing programming languages, used without
modification, are unacceptable for meeting the goals of DELIGHT. The foremost
reason is that most languages offer many features which are simply not needed
in the applications for which DELIGHT is intended. Hence, including these
features may result in a compiler that is too large and more difficult to main-
tain. Another reason is that many present language features are not conducive
to a language that is interactive. For example, shared variables such as in For-
tran common blocks usually complicate the linkage of several routines into an

executable program. Similarly, Fortran, Pascal, or C goto statements are gen-

§4.2.2 39

erally difficult to bandle in an interactive language processor®. Hence, these
and other features should either be avoided in our language or redefined to
maintain efficiency. We emphasize the idea once put forth by C. A R. Hoare that
one thing a language designer should not do is to "include untried ideas of his
own" [79, page 318]. As shown in the next few sections, the RATTLE language
borrows most of its features from several existing languages, most notably, Rat-

for, C, and Modula.

Another reason why existing languages are unacceptable pertains to the
language function of creating new features from old. This is related to the
DELIGHT goal that the language should provide a convenient means for express-
ing algorithms in a manner which resembles mathematical descriptions, in that
both have to do with language eztensibility. Although a few languages exist that
offer some extensibility, none offers it to the extent needed in DELIGHT. Thus,
powerful language extensibility alone can justify the need for our new program-

ming language. The extensibility of RATTLE is taken up further in section 4.2.8.

The problem of execution efficiency of the new language needs to be
addressed. The word compiler has been used above rather loosely. As discussed
in section 3.3, an interactive high-level programming language that can execute
user-written code wery soon after it has been written can either be interpreted
or compiled into a machine-independent intermediate form. Although compila-
tion was chosen for the language in DELIGHT in order to gain increased execu-
tion efficiency over interpretation, the language executes considerably slower
then a compiled language such as Fortran. However, as discussed in the last

section, in engineering design the problem description objectives and con-

3 If languege statements are forced to be numbered in & rigid manner es in Basic, goto state-
ments can be handled more efficiently.

§4.2.2 40

straints are often composite functions that depend upon outputs of a simulation
program, whose execution time requirements are usually far greater than that
needed to execute the "outer functions” coded in the interactive language.
Similarly, optimization algorithms make calls on Fortran matrix manipulation
and numerical analysis routines. Thus, the inefficiency of the language becomes
less signiﬁcaﬁt since it can be viewed as a high-level ""controller” language which

makes calls to more efficient (though time-consuming) Fortran routines.

4.2.3. Why RATTLE is Similar to Ratfor

The RATTLE interactive language of the DELIGHT system was designed to be
similar to the existing programming language Ratfor [78], a language which is
translated by a Ratfor preprocessor to Fortran and then compiled. There are

several reasons for this:

‘1. The RATTLE language must be easy to learn. Ratfor is a fairly simple
language and with a few extensions is adequate for the purposes of
DELIGHT. Also, presently many engineers are familiar with the characteris-

tics of Fortran, for example, its syntax rules for expressions.

2. The language must provide structured programming constructs for reada-
bility and to foster good programming style. The Ratfor control structures
are based on the C language [80] and the large amount of maintainable
code written in C under the UNIX operating system [131] demonstrates that

C has adequate control structures.

3. After a RATTLE procedure is working and fully debugged, it can be con-
verted to Ratfor for efficiency. This conversion is usually undertaken only
for highly repetitive calculations without input or output which would run

much faster in Ratfor.

§4.2.3 41

4. DELIGHT itself is written in Ratfor. The Ratfor language was chosen for
implementing DELIGHT because Ratfor shares Fortran portability sihce it is
translated to standard Fortran. This, and the fact that a portable Ratfor
preprocessor is available, are essential to meeting the DELIGHT goal of por-
tability. Another language translated to Fortran that could have been

" chosen is the EFL language of Feldman [48]. It allows not only C-like control
structures but also powerful data structures. However, to our knowledge,
no portable EFL preprocessor written in Fortran exists; EFL itself is written

in C and runs under UNIX.

4.2.4. Preliminary Design Decisions

The various DELIGHT design criteria which call for an interactive high-level
programming language as well as the considerations in the last few sections have
lead to the design and implementation of the RATTLE language. We first discuss
a few important design decisions that eliminate the need for some features of

Ratfor while adding a few others.

No Type Declarations. Probably the simplest usage of RATTLE is as an
interactive "calculator” for performing side calculations while debugging or dur-
ing an optimization run. The values of arbitrary expressions can be printed and
variables and arrays can be created and assigned values simply by typing the
appropriate RATTLE statements directly into the terminal. Due to this “calcula-
tor mode" usage, an early design decision made was to not require the type
declaration of any scalar variables or arrays. This is directly opposite to the
current trend for strong typing in programming languages such as Pascal [69].
However, strong typing is generally needed to catch programming errors in

large programs, while most optimization algorithms to be implemented in

§4.2.4 42

RATTLE consist of subprocedures that are small and contain very few variables.
Moreover, as Raskin states in a recent letter [130], there is no justification that
declaring all variables improves the reliability of computer programs; declara-
ticns separate the information about a variable from its use thus violating the
idea of "locality”. (Though this comment applies to languages such as Pascal, it
does not seem to apply to nested block structure languages such as Algol [36] in
which items may be declared at the places where they are required; Algol pro-
grams can thus display a high degree of locality.) In DELIGHT, variables created
in calculator mode exist in a pool of double-precision floating-point scalar vari-

ables and arrays.

Import Statements. The next step in the design of the RATTLE language was
the introduction of a facility for breeking a program up into a number of self-
contained units that communicate with eaca cther in a precisely defined way.
Procedures provide this facility and in essence make the programming of large
projects feasible. In DELIGHT, RATTLE procedures allow a group of RATTLE
statements, the procedure body, to be called for execution as a unit from

several places even though the procedure is compiled only once.

There is a requirement in optimization algorithms and other programs for
procedures to share variables. User-settable algorithm parameters are an
example of variables that need to be shared. One way of accomplishing this is
simply to pass the shared variables as arguments to each procedure. But this
can lead to very long argument lists. Another technique is to make all variables
from the pool mentioned above global, that is, accessible to all procedures.
Thus, shared variables would first be created in the pool, and every procedure
would share them. This is similar to the scope rules in Pascal for two levels of

procedures, the outer level being a fictitious procedure containing all of the pool

§4.2.4 43

variables. However, this technique can lead to unsuspected variable name
clashes with variables outside the procedure body; all procedure variables would
have to be given unique names. This would make it very difficult to write pro-
cedures in a modular fashion, i.e., without knowing the precise context in which
they were to be used. The approach adopted in RATTLE is borrowed from the
programming language Modula [158]. Shared variables are still created in the
pool. However, instead of having automatic access to all of the pool variables,
procedures list those variables that they intend to use with an import state-
ment. Other variables which are created inside the procedure body are called
local variables and are not considered part of the pool. There is no possibility of
having name clashes with local variables from cther procedures or from the pool
variables. RATTLE procedures and import statements are discussed further in

the next section.

Binding of Local Variables. Another important consideration in the design of
RATTLE is the binding of local procedure variables to physical memory locations
as explained in chapter 4 of Barron [19]. How variables are bound is affected by
the following consideration. Recursive procedures have not been necessary for
the implementation of most reported optimization algorithms. Thus, RATTLE,
like Ratfor, does not allow recursion. In other words, no procedure or function
may call itself or any other procedure which calls itself. The absence of recur-
sion allows static allocation to be used; local procedure variables are bound to
fixed memory locations. This has the effect that local variables retain their
values between procedure calls. This is particularly important in DELIGHT since
it allows the values of local variables to be displayed after execution has been
interrupted or during debugging without the need to add special debug print

statements to procedures.

§4.2.4 44

Variable Length Arrays. Optimization algorithms often involve many arrays,
including work arrays, whose dimensions are related to the dimension of the
problem being solved. The following possibilities exist for handling RATTLE work

arrays that are needed by algorithm procedures:

1. Force locally declared arrays to be of fixed dimension. This then requires
that the dimensions be large enough to ﬁandle the largest anticipated
optimization problem. An obvious disadvantage is the waste of storage if

many large arrays are declared in many procedures.

2. Declare space fc;r work arrays outside of the procedures and pass these as
additional arguments to the procedures. This is the alternative used in the
Fortran Program Library for Optimization of Gill et al [51]. However, this
has the disadvantage that it would take away some of the elegant simplicity
of short argument lists; the argument list of a given procedure would
include not only input/output variables, but also arrays whose sole purpose

would be for temporary intermediate results.

3. Provide arrays whose dimensions may vary dynamically at run-time. In
Algol [36], procedures may contain declarations of arrays whose dimensions
depend on local scalar variables of the procedure. Similarly, the Carnegie
Mellon GLIDE 2 engineering design system [45] allows variable length one-
dimensional arrays of components of the same type. The decision made for
RATTLE was to allow all arrays, both local and nonlocal pool arrays, to have
any number of dimensions that depend on arbiirary RATTLE expressions
(the syntax is shown in the next section). This avoids the disadvantages of
alternatives 1 and 2 above. In particular, procedure work arrays need

never be included in the procedure argument list.

§4.2.4 45

An additional advantage of handling algorithm work arrays in this way is the
flexibility it provides if new algorithm sub-block procedures are developed or
existing ones are modified. If the new algorithm requires additional work arrays
for temporary results, the argument list of the sub-block procedure is not
changed and any other procedures that call that sub-block procedure need not
be modified.

4.2.5. Basic Language Statements

The basic language statements and other features of RATTLE are displayed in
this section. We start with the simplest statement for printing the value of
numeric expressions, followed by more advanced features for controlling the
format of what is printed. We then take a look at various other language state-
ments including assignment, if, and various types of loop statements. The sec-
tion ends with a discussion of RATTLE procedures and functions and two new
statements for sharing variables between procedures or functions. Since RAT-
TLE is an interactive language, the introduction to these statements is best
accomplished by showing what would actually appear on the terminal screen.
The boldface text in all of the examples shown here is what the user types or
places in a file using an interactive editor®. The DELIGHT prompt string is "“1>";
when this is seen on the terminal, DELIGHT is waiting for the user to input either

a command or a RATTLE language statement.

Simple Unformatted Output. The simplest way. to get the value of arbitrary
numeric expressions is with the print statement. The print statement may be

followed by any number of expressions as in the following examples:

4 The text shown here in boldface can actually be typed directly into the terminal for “hands-on”
experience with RATTLE and DELIGHT.

§4.2.5 48

1> print 1.3

1.300

1> print 1/3 3in(3.1416/2) 2¢*64
.3333 1.000 1.845e+12

In the second example, the operator '**' stands for exponentiation. Thus,

"2%*84" means 2 to the power of 64.

Formatted Output Using printf. Whereas the print statement does not allow
any control of the format of the numbers printed, the prini{f statement does.
Patterned after the printf statement in the C programming language [80], it
requires a quoted format control string followed by from 0 to 6 arguments which
must be in one-to-one correspondence with conversion specifications in the con-
trol string. Unlike Fortran write and format statements, this syntax has the
advantage of keeping both the format and the list of variables to print in the
same statement. The following two examples show the output of one and then

tﬁo real numbers:

1> printf 'Zr/n* 1/3 -

1&333?111;1' ‘min=%r max=Xr/n’ -2°°8 2°°9

min=-2.580e+2 max= 5.120e+2

The quoted control string contains two types of objects: ordinary charac-

ters, which are simply copied to the output, and conversion specifications, each
of which causes conversion and printing of the next successive argument on the
line. Each conversion specification is introduced by the character % and ended
by one of the conversion characters %, 7, ¢, s, or p. The meanings of the conver-
sion specifications is adapted from those given in the C programming language

manual [80]. For information on all the conversion characters, see the DEL/GHT

Reference Manual [110]; only the 7 conversion specification is discussed here.

To output a real number, %Zr may be used as in the above examples and has a

§4.2.5 7

default of 4 significant figures. The number of significant figures printed may be
controlled by, e.g., using Z. 7r to get 7 significant figures printed to the right of
the decimal point. The /n means output a NEWLINE, ie., go to the next output
line, at that point in the output; notice the results of the first example below: an
extra blank line has been output due to the leading /n in the format control
string. The second example below shows that a / character is output by preced-
ing it by another / the / character is actually an escape character which

changes the meaning of any character it precedes.

1> printf ‘/n A=%X.6r/n B=X.2r/n’ 1.0 2000/2

A= 1.000000

B= 1.00+3
1> print? 'Answer is 3//4/n’
Answer is 3/4

Number Conventions for Post-attached Units. To facilitate its use in an
engineering enviroament, the RATTLE language follows SPICE [150] and ISPICE
[5. 7] in supporting certain metric scale factor suffixes which may be attached to
any number. In RATTLE, a number may be an integer such as 12 or -44, a float-
ing point number such as 3.14159, either an integer or floating point number fol-
lowed by an integer exponent such as le-14 or 2.65e3, or either an integer or a

floating point number followed by one of the following scale factors:
p21072 n810° w210° mAa10° k210° med108 giio®

Letters immediately following a number that are not scale factors are ignored,
and letters immediately following a scale factor are ignored. Hence, 10, 10v,
10VOLTS, and 10kz all represent the same number, and M, mA4, MSEC, and

mawalts all represent the same scale factor.

Assignment Statements and Continuation. Assignment statements in RAT-
TLE are identical to those in Fortran. They obey the Ratfor continuation rule

§4.2.5 48

which allows them to be continued on the next line if they end with a character
which could not possibly legally end an assignment. In particular, they are con-

tinued if they end in any of the characters:

+ -~/ o (| &

The last two characters above are logical operators, discussed later.

Several RATTLE assignment statements are shown below. Nofe that the
prompt character changes to "}" after a partial statement has been lyped in but
before the complete (executable) RATTLE statement has been typel. Wilander
[156], in the Pathcal program development system for Pascal, als:t; relies on
different prompt characters to indicate the state of the system. However, in
Pathcal, the absence of a prompt string altogether indicates that the system is
awaiting more input. In DELIGHT, the prompt "}" was chosen because in many

cases, the character "}" itself is expected to close a statement black {see below).
1> Nparam = 2
1> array grad(Nparam)
1> grad(1) = 2 + 3°108
1> gread(2) = grad(1) -
1} S - 47108
1> gradnomm = aqrt(grad(1)°grad(1) + grad(2)°grad(2))
1> gradmax0 =max (0 ,
1) grad(1), grad(2))
In the above examples, an array has been declared with the array statement and

the built-in RATTLE functions sgrt and maz have been used.

If-statements. The purpose of an if-statement is to test the value of a logical
expression and execute a RATTLE statement if the logical expression is TRUE.
This statement is needed to allow conditional execution of parts of an optimiza-

tion algorithm. The general form of an if-statement is:

§4.2.5 49

if logical-expression
RATTLE-statement

else .
RATTLE-statement

Unlike Fortran or Ratfor, the logical expression need not be surrounded by
parenthesis. The else-clause, i.e., the word else and the associated RATTLE
statement are optional; if not there and the logical expression is FALSE, execu-
tion just falls through to the next statement (or DELIGHT awaits further terminal

input). The following are several if-statements:

1> it (gradnorm =10)
1} printf °Gradient has becare zero./n’
11 else :
1) printf "Contimuing with nonzero gradient./n’
Continuing with nonzero gradient.
1> if Nparam0
1 print Nparam
1{ go
2.000
Note that the second if-statement above does not execute immediately
since DELIGHT is waiting for a possible else-clause; typing go forces it to exe-
cute. Of course, the else-clause may be given, as in the first example, and no go

will be needed.

The first if-statement above also shows the RATTLE relational operator, ==,
for checking for equality of two quantities. The logical expression A==5 is true
if variable A equals variable B. Other RATTLE arithmetic, relational, and logical
operators along with their precedence are shown in the following table. The
upper entries have higher precedence than the lower: A+B*C is automatically
grouped as A+(B*C) since * has a higher precedence (lower numeric value) in
column one of the table than +. Operators with the same precedence value in
column one are grouped left to right: A*B/C is automatically grouped as

(A*B)/C. As a final example, a>=blc/=d&e== is grouped as

§4.2.5

(@>=b)|((c!=d)&(e==F)).

RATTLE Expression Operators

Precedence

Operator

Meaning

OO R AR DD NN -

+ N »

V=l A A
R=VingAy:

Exponentiation
Multiplication
Division

Addition

Subtraction

Less than or equal to
Less than

Equal to

Not equal to

Greater than or equal to
Greater than

Logical not

Logical and

Logical or

50

Statement Blocks. To make a RATTLE statement such as if act on more than

one statement, the statements must be surrounded by curly brackets. This

allows one to program the idea: "if something is true, do this group of things".

The use of curly brackets for a statement block is shown in the following if-

statement:

1> if (gradnorm !=0)
1 printf 'Gradient is naonzero./n’

1
1} go

Gradient is nonzero.

1 fradnonnlnv = 1 / gradnormm

Barron [19] also points out that statement blocks encourage the production of

programs displaying a high degree of locality that is important in the context of

virtual memory computers: a program with good locality tends to have a small

§4.2.5 51
working set and therefore performs well in a paged environment.

Separation of Statements by Semicolons. Statements (or commands) may
be separated by semicolons on the same line as shown in the following examples:
1> print 1 ; print 3k/8 ; date
1.000
5.000e+2

Date: 11/04/82 Time: 03:13:12
1> if (gradnorm!=0) { printf 'Nonzero/n’' ; glnv=1/gradnomm]}

1] go
Nonzero

Loop Statements: While, Repeat-Until and For. These RATTLE statements,
like the if-statement, take exactly one RATTLE statement as their body, unless
several statements are surrounded in curly brackets. Their usage is seen by
considering the following four ways to add up the entries in a one-dimensional
array. Here, we use the DELIGHT comment convention: anything following a “#"

character up to the end of the line is considered a comment and is discarded by

the RATTLE compiler in DELIGHTS.

1> array =z(10) # Create the arrey.
1> for i = 1 to 10 # Initialize the array: z{1)=1,
1} (i) =i # 2(2)=2, z(3)=3, etec.

1> suml = 0 # METHOD 1
1> for i =1 to 10
1} sunl = suml + (i)

1> s = 0 # METHOD 2
1> for (i=1 ; i<=10 ; i=i+1)

13} sun2 = s + z(i)

1> sumS = 0 # METHOD 38
1>i=1

1> while (i <=10) |

1} sl = sumS + 2(i)

1} =i+1

i
Y

5 When typing in any of the examples shown here, comments need not be typed; they are there
for clarification and indeed are not in boldface type.

§4.2.5 52

1> sumd = 0 # METHOD 4

1> ## Now check the results.

1> print? "X Xi Xi Xi/n' suml s sunS sumd

65 55 858 55
Additional information about these loop statements is found in the DELIGHT
Reference Manual [110], especially the not-so-obvious Ratfor-like for-loop used

in METHOD 2.

Breaking Out of Loops with the break statement. The break statement
allows any RATTLE loop to be exited before the normal loop termination. Execu-
tion resumes with the statement followiag the last statement of the body of the
loop. In the example below, the inner j loop normally would execute 6 times but

due to the if...break statement it only executes 3 times, as seen in the output:

1> fori =1t 2 |

1 printf *"i=%i/n' i
1 for j =1 to 6 §
19 printf °* j=xXi/a' j

I
1
I
i=1

f{(j=23) break

j=1 (Note, here, that Lui,s never
j=2 printed greater t 3.)
ji=3

i=2
j=1
=2

Arrays. As mentioned in the previous section, arrays in RATTLE are all
dynamic, i.e., may change size at any time. The array statement is an ezecut-
able statement and may appear anywhere in a RATTLE procedure, not just at the
top. Arrays may have any number of dimensions and the values given for the

sizes of the dimensions may be arbitrary expressions. The following are exam-

§4.2.5 53

ples of array statements:

1> array y(100)
1> array y2(3,3), y3(10,20,30)
1>k=4
1> array var(k,2°%, k**2)
The implementation of dynamic arrays with the DELIGHT dynamic memory

manager is discussed in appendix A.1.2.

Procedures and Functions. Procedures in RATTLE are analogous to subrou-
tines in Fortran or Ratfor. They allow one to execute as a unit a group of RATTLE
statements, the body of the procedure, which are compiled only once. A func-
tion is identical in structure except that it contains onie or more refurn state-
ments to specify the value to be returned as the "function value”. Also, the

function call or invocation appears in an expression as in print 2+ funval(5).

Procedures and functions can have zero or more arguments. If a function
has no arguments, it can still be called in any expression by following its name

with a set of empty parenthesis as in print 5+fval()/2.

The body of a procedure consists of one RATTLE statement. If more than one
statement is desired in the procedure body, such statements must be sur-
rounded by curly brackets, similar to the body of loop statements. Exit from a
procedure body is automatic when "hitting the bottom", i.e., after the last state-
ment in the body has been executed. To exit from any other place, a return
statement may be used. For a function, the function value to return is the

expression value following the keyword refurn.

Several function and procedure examples are shown below, each example

separated by a blank line:

§4.2.5

1> functian foo
1] return 5+3
1> print foo()
8.000

1> functian foo (x)

WARNING(1) Mumber of arguments changed on an existing procedure
1i return (x + 4)

1>=1

1> print foo(1) foo(z) foo(-4) foo(-2'2%)

6.000 5 000 0.0060 0.000

1> procednre doit (a,b) |

1} if (a=1) printb
1 else print -b
1 rintf ‘Leaving doit/n’
1

1> doit(1,5)

5.000

Leaving doit

1> doit(2,5)

-5.000

Leaving doit

Note that when function foo is defined a second time above, the new func-

tion body completely supersedes the previous one. This is the way that optimi-

zation algorithm sub-blocks are substituted by the designer; he gives a com-

mand which causes a procedure of the same name but with a different body to

be compiled, and thus supersede the previous. More will be said about sub-block

substitution later.

Imported and Global Variables. As mentioned in section 4.2.4, members of

the pool of variables that are not local to any procedure may be "imported” or

made known to a procedure by listing the variables or arrays in an import state-

ment. The following procedure contains several impor? statements:

1> procedure dam |

1 import y, y2. y3

1 import var

1; 1 (Remainder of procedure body)
1

Outside of procedures, variables may be made global, i.e., known

automatically to all procedures without each having to import them, using the

§4.2.5 55

global statement. This statement has the same syntax as the import statement

above, as shown in the following example:
1> global y, y2, var

In the DELIGHT system, variables should be (and have been) made global
with care; this avoids unsuspecting name clashes with local procedure variables

created, for example, by designers.
4.2.6. Interrupts and Run-Time Errors

Interrupts and run-time errors are two mechanisms that cause an executing
RATTLE program to suspend execution. nierrupts are signals from the external
environment that are generated by the user depressing a special key on his ter-
minal. Their ability to interrupt an execution or lengthy calculation is essential
in an interactive environment. A user might interrupt in order to examine the
progress of an algorithm by displaying the values of certain variables or plotting
computed curves. Based on these observations, he might then want to adjust
some algorithm parameters and resume execution or start another sub-

calculation (which might also need to be interrupted).

DELIGHT recognizes two kinds of interrupts generated at the terminal, hard
interrupts and soft interrupts. A hard interrupt is generated when a user
presses the special interrupt key on the terminal twice in succession. A soft
interrupt results when the key is pressed just once. A hard interrupt causes
immediate suspension of RATTLE execution. A soft interrupt may be used to

suspend execution at a "major stopping point” instead of at some arbitrary
statement, or to alter program flow. This is done by testing in an if-statement

the special RATTLE keyword interrupt; it becomes TRUE after a soft interrupt

§4.2.6 56

has been generated. The body of the if-statement can be a suspend statement
to suspend execution immediately“ or simply any RATTLE statement. As we shall
see later, in each of the optimization algorithms used in DELIGHT, there is a
"major stopping point" where interrupt is tested that allows designers to press
the special interrupt key once and complete the current optimization iteration

before suspending.

In DELIGHT, there is a multi-level interrupt feature that allows execution
suspended by an interrupt or run-time error to be subsequently resumed for
execution levels up to five deep; the DELIGHT prompt string is the current exe-
cution level followed by ">". When first entering DELIGHT, the system shows that
it is ready to accept commands by displaying on the terminal the prompt string
"1>". After one (hard) interrupt or run-time error, execution suspends and
DELIGHT again accepts commands by displaying the prompt string "2>". This
may occur up to five levels deep’. To resume execution, the user types resume;
when the current execution is finished, DELIGHT again accepts commands by
displaying the prompt string with the number in the prompt decremented by

oneb.

The following terminal session demonstrates hard and soft interrupts and the
multi-level interrupt feature. First, two different loops are (hard) interrupted to

show three levels of interrupt and execution resumption.

8 suspend is actually a mechanism for generating a hard interrupt through software.

7 If the suspension occurs while execution is in a procedure (as opposed to just a set of RATTLE
statements which have been typed in at the terminal), then a traceback of nested called procedure
names may be obtained by typing the command frace.

8 There is also a command, reset, which may be used to immediately set the execution level back
to one. After a resef, execution cannot be resumed.

§4.2.8

57

1> for i = 1 to 5k

1] k=i (After 2 seconds the user)
(generates a hard interrupt.)

Interrupt...

2> print i

5.920e+2

2> for j =1 to 5k

2] k=3j (After 2 seconds the user)
(generates another hard interrupt.)

Interrupt...

8> print j k :

1.318e+3 1.319e+8

3> resume (Resure j loop.)

2> print j k

5.001e+3 5.000e+3

2> resume (Resume i loop.)

1> print i

5.001e+3

In the following procedure, the if-statement in the for-loop tests for a soft inter-

rupt. If one is detected, a message is printed and execution is suspended using

the suspend statement.

1> procedure catch |

1} for i =1 to 20k

1 if interrupt

1 printf ‘'Got the interrupt whem i = Ri/n" i
1 suspend

14

13

1> catch() fAfter 2 seconds, the user)
Got the interrupt when i = 2077 (generates a soft interrupt.)

Interrupt ..
2> reset
1>

After the execution of procedure catch is suspended, reset is typed to leave the

interrupted state.

Run-time errors is the second mechanism that affects RATTLE execution.

Yhen certain errors which occur during execution are detected by DELIGHT,

execution is suspended immediately. This allows DELIGHT to be very forgiving to

errors that invariably occur during algorithm development or design problem

formulation. Run-time errors can originate either externally or internally. Ille-

§4.2.6 58

gal floating point operations such as numeric overflow are ezternal run-time.
errors; through a machine-dependent Ratfor primitive, DELIGHT receives the
overflow signal from the actual computer hardware. Errors such as an attempt
to invert a singular matrix or to multiply two matrices that are not conformable

are infernal run-time errors; these errors are discovered by software checks in

DELIGHT.
To be more specific, DELIGHT run-time errors include:

Floating-point exceptions such as division by zero, numerical overflow, or
illegal arguments to built-in Fortran-like functions such as the logarithm

of a negative number, etc.

Out-of-bounds array subscripting, i.e., if the "net" array subsecript for an
array goes beyond the total array size or is less than one. For example,
array y(5); print y(6) would suspend along with array y(£.2); print y(3,3).
But array y(3.5); print y(4,2) would not suspend since tae net subscript

of 7 9 is still within the total array size of 3-5=15.

Matrix manipulation errors such as nonconformable matrices being mul-
tiplied, inversion of a singular matrix, unbounded solution in a linear or
quadratic program, or attempting to find the real eigenvalues of a sup-

posedly symmetric matrix that is not in fact symmetric.

After a run-time error, DELIGHT awaits further command input by printing the
prompt string with the interrupt level increased by one, just as if a hard inter-

rupt had occurred.

9 This is Fortran-like column major order array addressing: 4 + (2-1)*3 = 7. See, for example,
page 178 of Gries [56].

§4.2.6 . . 59
4.2.7. Incremental Program Development

The RATTLE language supports incremental program development [156], that
is, the ability to test, by just typing it in, a single statement, procedure, or sec-
tion of an algorithm, without having to write and load/link a whole program. It
is thus possible to construct and test pieces of a program one at a time and
later combine them into the whole system. 1t is possible to test procedures that
contain calls to other procedures that have been declared as “dummy”, i.e., do
not yet exist. This allows the system to be developed either "top down", "bottom
up’, or the more critical portion first according to the preference of the pro-

gramimer.,

The following annotated terminal session shows the development of a pro-
gram to perform Newton-Raphson iteration for finding the roots of the two equa-
tions in two unknowns y = z2 and z = y% The program is developed by creating
three procedures in succession. We first create and test a procedure that

returns the function values:

1> procedure Func (x,funval) §

1} array x(2), funval(2)
1} funval (1) = x{;;::g - :g;

1} funval (2) = x
14 }

1> array x(2), f(2) (Create unknown and function)

1> x(1) =3 (value test vectors (arrays).)
1> x(2) =3
1> Fanc (x,f) (Check function value procedure.)
1> printv ¢
Colum £(2):
8
6

As an example of incremental program development, a procedure that computes
the Jacobian is now created and various errors are detected and corrected.

Instead of typing this procedure directly into DELIGHT as we did above, we first

§4.2.7 80

place it into a file and then include it, that is, have its contents read by DELIGHT
as if they had been typed in directly. Here a text editor is used to place the
Jacobian procedure into the file Jfile. Instead of showing the editing session, we

simply list the file and then include it:

1> list Jtile
-------------------- Begin Jfile =+-==ccee--conocnc--
procedure Jacobian (x.J% {

array x(2). J(2,2)

J(3,1) =2 * x(1)
J(1,2) = -1
J(2.1) =2 ¢ x(1,1)
J(2,2) = -1
}
--------------------- End Jfile =mmme=-ccccccocomnnnan

1> include Jfile
J(2,2) =2 * x(1,1)

ERROR(1) LINE(5) Wrong no. args to array, function or procedure

Now, we edit file Jfile, change z(1,1) on line 5 to z(1), and reinclude the file!O,
Each time the file is included, the new procedure body completely supersedes
the old:

1> list Jfile

-------------------- Begin{inle sveeemammccco--canes

procedure Jacobian (x,J
array x(2), J(2,2)
2 *x

J(1,1) = (1)
1{1.2 = -1
J(2,1) =2 * x(1)
.{(2.2 = -1
--------------------- End Jfile --------mececc-ccccnn-

1> include Itile
1>

Using the text editor, we now create file Nfile containing the Newton-Raphson
procedure and RATTLE compile the procedure by including the file. Usage of the
matop statements below should be clear from the comments; see section 4.3 for

more detalils:

10 Note that this Jacobian procedure has two other errors: z(1) on the fitth line of the file should
have been changed to z(2) and the J(2,1) and J(2,2) right-hend sides need to be swapped. These er-
rors will be noticed later.

§4.2.7 61

------------------- Begin Ntile «-vrc--cccccccecccnn-

procedure Newton (x) |
array x(2), (2), 7(2.2)
repeat

Func (x,f) # Get function value.

Jacobian (x,7) # Get Jacobian.

print? 'x = %-12.5r %-12.5r ||{f|| = %r/n’ x(1) x(2) ||?]]

matop Jinv = inv (J) # Get Jecobian inverse.

matop deltax = Jinv * § # Carpute Newton step.

Tntop X = x - deltax # Update unknown vector.
until ({|f|] <= 1.0e-14) # Repeat until small norm.

--------------------- End Nfile -----cccccccnccacena-
1> include Nfile

Since the file was included without errors, procedure Newton is ready to exe-

cute:

1> Newton(x)
z = 3.00000 3.00000 [1£]] = B.485

RUN-TIME ERROR: Singular matrix in inv ... arg(s): J

Interrupt...
> trace (Print function call traceback.)
Interrupted IN procedure
errprocmess— line 33 of file <Merrmess>
called by invproc— line 28 of tile <Minvproc>
called by Newton line 27 of file Nfile
2> enter Newton éEnter procedure Newton so that 3
e> display local arrays. local variables mey be accessed.

4 arrays:
J (2.2;

Jinv (2,2
deltax (2)
b4 (2)
e> printv J (Print the Jacobian matrix.)
Matrix J(2,2):
8 -1
6 -1
e> leave
2> reset
1>

We now decide to try a different initial guess:

1> x(1) =4

1> printv x

Colum x(2):
4

3

§4.2.7

62

1> Newton(x)
x = 4.00000 3.00000 [1£]] = 1.388e+1

RUN-TIME ERROR: Singular matrix in inv ... arg(s): J

Interrupt...
2> enter Newton
e> printv J
Metrix J(2,2):
8 -1
8 -1
e> reset
1>

Since the Jacobian, array J, seems to be always singular, we examine file Jfils

and discover the errors in the Jacubian computation. After editing the file to

correct the error, the development continues:

1> ineclude Jfile

1> x(1) =38

1> x(2) =3

1> Newton(x)

x = 3.00000 3.00000 b = 8.485

x = 1.80000 1.80000 b = 2.038

x = 1.24615 1.24815 t]| = .4338

x = 1.04080 1.04080 t|] = 65.975e-2
x = 1.00152 1.00152 b4 = 2.160e-3
x = 1.00000 1.00000 b4 = 3.278e-8
x = 1.00000 1.00000]| = 7.588e-12
x = 1.00000 1.00000 { = 0.000

1>

The Newton-Raphson program now appears to be working as seen by the qua-

dratic convergence in the rightmost column above.

4.2.8. Extensibility: Defines and Macros

A scientific programming language should provide a user with a convenient

means for expressing his algorithms in a manner which is similar to his

mathematical descriptions or matches his personal programming style. One

approach is the idea of a universal language —one that tries to provide all pro-

gramming needs —with the language PL/I [31] providing an example of one of

the few practical implementations. For the language needed in DELIGHT to be

universal, features would have to be provided for many diverse areas, e.g.

§4.2.8 63

numerical analysis, matrix manipulation, computer graphics, engineering prob-
lem entry, etc. Hence, the compiler would be unavoidably large causing it to be

difficult to write and maintain.

A more serious drawback of a universal language from the user's point of view
is its lack of "open-endedness”. In other words, the syntax and "semantics” of
such a language implemented with a conventional compiler would be fixed at the
time of implementation, and all users would be bound by the decisions of the
language designer. Since it is impossible to foresee all the demands and appli-
cations that the RATTLE language in DELIGHT might be required to meet, the

idea of a universal language for DELIGHT is abandoned.

Another approach to the design of the RATTLE language is to design an ezten-
sible language, which starts off with a few features, but which can be extended
by users or system personnel who can define necessary features as they arise.
Thus the compiler for such a language would have a built-in open-endedness
which would allow users to tailor the language to their specific needs. Another
advantage of an extensible language is that language features which are never
used in a particular version or at a particular installation site need never be

implemented, so the size of the compiler can be kept under control.

Solntseff and Yezerski present an excellent survey of extensible program-
ming languages in [141]. They present a classification scheme for extensible
languages which is an extension of a macro classification facility proposed ear-
lier. The extensibility mechanisms are grouped on the basis of the stage in the
language-translation process during which they are processed. The six clearly

defined stages they present are:

§4.2.8 84

lexical analysis,

syntactic analysis,)
production of intermediate language,
analysis of intermediate language,
machine code generation, and
machine code conversion.

1Rl Sl L

In DELIGHT, the extensibility mechanisms were chosen to be of the Tipe-A exten-
' sion class from [141] in which the conversions and substitutions occur strictly
during the lexical-analysis stage of the translation process. The reasons for this
choice are: (1) this type extensibility should be conceptually easier to under-
stand by the potential users of DELIGHT, (2) it is adequate to meet the extensi-
bility goals presented earlier, and (3) such a "preprocessor’ scheme has a more
straight-forward implementation. A disadvantage of Type-A extensibility is that
substitutions are performed without checking the surrounding syntax, as would

be the case if the extension occurred during syntactic analysis.

The extensibility of DELIGHT has probably contributed the most to its success
_among advanced DELIGHT users. This capability takes two forms, defines and
macros, both of which can be used to create new language constructs or new
commands from existing ones, to express an algorithm in a manner which looks
like a mathematical description, and to adapt DELIGHT to a particular user's
personal programming or design style. Defines and macros thus ease the entry
of DELIGHT into new design areas. Before discussing defines in section 4.2.8.2
and macros in section 4.2.8.3, section 4.2.8.1 presents the DELIGHT view of char-

acter 1/0 (input/output) and the concept of pushback.

4.2.8.1. Character Stream View of 1/0 and Pushback

Before discussing RATTLE defines and macros, an understanding of how

DELIGHT views character 1/0 (input/output) and the associated pushback

§4.2.8.1 85

mechanism is necessary. Both concepts are used in DELIGHT internally to
implement defines and macros. However, these concepts are also important to
designers or other DELIGHT users who want to take advantage of the extensibil-

ity features offered.

In DELIGHT, 1/0 is considered as a stream of characters that are read or writ-
ten one character at a time in sequence; there is no concept ;>f reading the next
input line as in languages such as Fortran. Similar to the complementary
getc /putc functions in the C programming language [80], DELIGHT provides the
functions getcpb!! and outchr for reading the next input character and writing
the next output character. At the end of an input line, a NEWLINE character is
returned by getcpb. Similarly, a NEWLINE character must be output using

outchr to cause output being written to start on the next line.

The pushback mechanism, following that of Kernighan and Plauger [79],
allows the RATTLE compiler in DELIGHT to receive input that was not actually
‘typed into the terminal and does not come from a file being included. This is
accomplished by pushing back characters or strings “onto the input” (internally
they are simply stored in a stack implemented as a fixed length array). When
any DELIGHT routine tries to read an input character (using the built-in function
getcpb), any characters that have been pushed back are read first. Commands
that a user may place in RATTLE macros to push back arbitrary text are shown

later in section 4.2.8.3.

The VP/CSS Executive Language [4] contains a similar means of providing
responses to a program or command, that would normally be given in response

to interactive questions, but instead are known and provided in advance. These

11 The "pb” stands for “pushback”, as explained shortly.

§4.2.8.1 86

responses are placed by the user into a special area called the Css stack. This
stack is checked for content before every keyboard release. If the stack is not
empty, the first line is taken out and interpreted by whatever environment the
system is in, ie., as a command, program input, editor input, etc. Lines are

removed until the stack is empty. Then input is read from the terminal.

Pushback in DELIGHT is similar to the CSS stack in that the pushback stack
is checkzd for content before going to the terminal keyboard or to a file being
included. However, in DELIGHT, what is pushed back is considered on a charac-
ter by character basis, instead of on a line by line basis. This allows more types

of substitutions to be performed by DELIGHT macros.

To understand conceptually how pushback works, consider the following table
in which the left column contains RATTLE code executed, the middle column
contains a comment concerning the effects of the execution, and the right
column shows characters remaining to be read by the RATTLE compiler, that
were eitaer typed in by the user or previously pushed back. Here, as for the
printf statement in section 4.2.5, /n indicates a NEWLINE character, the charac-
ter at the end of an input line. DELIGHT built-in routine gtoken, used below,
returns the character string of the next token or item read from the input in its
first argument!?, If the input token is a number, the second argument of gtoken

contains the numeric value.

12 A foken is either an integer, a real number, a name (sequence of letters, digits, or under-
scores starting with a letter or underscore), a quoted string (quoted by either * or '), or a single char-
acter that is none of the preceding such as (", "#", NEWLINE, etc.

§4.2.8.1 87

RATTLE Pushback Mechanism
Remaining
Input
RATTLE Code Executed Effect of Execution Characters
w
1+Pl/n
gtoken(TokenString,Value) | TokenString now con-
tains "1" and Value
equals 1.
+Pl/n
gtoken(TokenString,Value) | TokenString now con-
tains "+".
Pl/n
gtoken(TokenString,Value) | TokenString now con-
tains "PI".
/n
PushBack(’3.1416') Push back the charac-
ter string "3.1416".
3.1416/n
gtoken(TokenString,Value) | TokenString now con-
tains "3.1418" and Value
equals 3.1416.
/n
gtoken(TokenString,Value) | TokenString now con-
tains "/n".
Now, the next line of in-
put would be read in.

This example shows how the word "PI" can be substituted by the characters
3.14168" and is quite similar to define substitution of the next section. The
determination that a substitution should be made for P/ is not shown above, but

would occur just before the call to (fictitious) routine PushBack.

4.2.8.2. Defines and Extensions

RATTLE defines, patterned after those in Ratfor [78], allow users, in the sim-
plest usage, to substitute one piece of text for another. For example,

define (TWOPI,6.283185307) allows users to use the value of the mathematical

§4.2.8.2 | 68

constant 27 in any RATTLE expression without actually writing the whole number
out. Another important use of defines is to create DELIGHT commands. Indeed,
most commands in DELIGHT are actually defines. Examples of such defines are
user-oriented commands for invoking RATTLE procedures for graphics. For
example, define(erase,greras()) allows erase to be typed to call built-in routine
greras to erase the graphics screen. Similarly, windsw.is a define which allows
users to type window wname to specify a particu]:ar set cf world coordinates
and corresponding viewport coordinates [108], the latter in the (0,0)-(1,1) coor-
dinate system of the terminal screen (see section 4.8), which have been previ-
ously associated with the window wname. Defines used in this way create com-
mands that are easy to use and that make RATTLE code morz readable by hiding

unimportant details or complex constructs.
Several extensions to the simple Ratfor define include:

arguments,

literal strings, which must appear when using the define,
optional arguments,

default values for optional arguments,

automatic argument quoting, and

multi-line defines.

GOk ON

The following terminal dialogue and discussion introduces each of these features
individually by showing the creation and use of simple example defines. Also
shown are several invalid uses of some of the defines and the error messages

that result.

1> define (a.4 ## Simple defines.
1> define (b,9) define (c,8)

1> print a b c**2

4.000 5.000 3.800e+1

§4.2.8.2 89

1> define (p x,print x**2) ## 1. Arguments.
>pS)

2.500e+1

:> de;ine (p x "over' y,print x/y) ## 2. Literal strings.
>p

ERROR: expecting "over " for define “p”

1> p 5 over

ERROR: missing arguments after "p”

1> p 5 over 2
2.500

Next we show the extensions which allow optional arguments and defauit

values for optional arguments. Consider the following examples:
1> define (debug ; x , print k x) ## 3. Optional arguments.

1>k =3

1> debug
3.000

1> debug ke**2
3.000 9.000

1> define (debug ;x=4 ,print k x) ## 4. Default values for
1> ## optional arguments.
1> debug

3.000 4.000

1> debug k°*°*2

3.000 8.000

In the first example, the argument z comes after the semicolon and is thus an
optional argument. If no argument is typed after debug, any occurrences of zin
the definition are substituted by a null string, i.e., the z's are eliminated. In the
second example, if no argument is typed after debug, any occurrences of z in
the definition are substituted by the default value of 4. The rule for default
values, explained more fully in the Argument Conventions subsection of section
DEFINES(4b) of the DELIGHT Reference Manual [110], is that in a define declara-
tion, any optional argument may be followed by "=" and the default substitution

string, which is all characters up to the next blank.

In a define declaration, any argument which is preceded by two consecutive

single quotes as arg in define(p '‘erg.printf arg). during definition substitution,

§4.2.8.2 70 .

is surrounded by quotes before substituting the argument into the definition.
This means that for the define just given, typing p zyz is the same as typing
printf 'Tyz' the argument value zyz is surrounded by quotes before substituting
it into the definition printf arg. This Double Quote Convention (see section
DEFINES(4b) of [110]) is similar to the QUOTE form in the LISP programming
language [154] which receives and transmits (as an S-expression value) its argu-
ment unevaluated; here, the argument string being quoted is prevented frofn

being evaluated as a RATTLE expression.

In the following example of the Double Quote Conventio;'x. assume [istProc is
a procedure that lists the contents of any file whose name is passed to it as a
quoted string. Then the following define allows one to list the file fmpfile by typ-
ing list tmpfile instead of the more awkward List Proc ('‘tmpfile’):

1> define (list *'*in , ListProc(in)) ## 5. Autamtic
1> ## argument quoting.

Whereas the syntax of an ordinary define is:
define (DefineNeme [arguments] , DefineDefinition)
a multi-line define has the following syntax:

define DefineName [arguments]
Definition Line 1
Detinition Line 2

end
The purpose of multi-line defines is to allow defines to have an arbitrary length

definition. In the next piece of terminal dialogue, a multi-line define is shown. It
does not have a leading left parenthesis and it ends with the keyword end.

§4.2.8.2 71

1> define p x ## 6. Multi-line defines.
print x
print -x
end

1>p5

5.000

-5.000

1>

Note that each time p above is redefined, the new definition completely super-

sedes the previous definition.

A define which uses several of these extensions is shown below:
define (vector x1 y1 x2 y2 ; 'in' '‘'C='white’ .grcolp(C);gr@ect(xl,yl.xz.yZ))

. This define, vector, has four required arguments, z1, y1, z2 and y2 (which
appear before the first semicolon), and one optional argument, C. In the above
define, in is quoted and thus has to be typed explicitly when using the define.
The definition, appearing after the comma, contains two calls to built-in DELIGHT
routines, grcolp and grvect. The color name that is typed for argument Cwill be
surrounded by quotes before being substituted into the definition since C on the
left is preceded by two quotes. However, since Cis optional, not typing any color

will cause Cto default to white.

This define could be used in any of the following ways:

vector 0 0 1 1
vector 0 0 .5 .5 in red
vector sin(a) 1+sin(x) cos(x) 14+cos(x) in orange

If the second example above had been placed in a procedure, it would be, using

the definition above, as if the following had been placed there:

greolp('red’) ; grvect(0,0,.5,.5)

§4.2.8.2 72

4.2.8.3. Compile-Time Macros

DELIGHT has extensibility needs that cannot be handled by the simple define
substitution mechanism discussed in the previous section. These have to do
with making conditional substitutions, that is, substitutions that are based on
the arguments that are used with the define. For example, there is no way to
make a define called MafrizFunc which will allow the statement MatrizFunc
A=inv(B) to substitute the procedure call Inverse(A.B) but the statement
MatrizFunc A=adj(B) to substitute Adjugate(4, B). The definition substituted
when e define is encountered is fixed in structure; only arbitrary argument

velues can be "dropped” into the appropriate places in the definition.

One approach to conditiona. substitution was suggested in 1966 by Leaven-
worth [87], who was one of the frst to apply extensibility to high level languages.
Leavenworth described a scheme in which different substitutions could occur
based on which one of several keyword-introduced clauses appeared in the
input; "the substitutions could be qualified by block number.” As an example, let
us use Leavenworth's scheme to provide the Fortran language with a new and
powerful for statement. We wish to perform the three text substitutions shown

in the table below:

§4.2.8.3

Source Text Substituted Text
forvi=FtoTbyl vi=F
BODY 100 if (v1.gt. T) go to 101
BODY
vi=vi+]
go to 100

101 continue

for vl =F to T times 1
BODY

vi=F ‘
100 if (v1.gt. T) goto 101
BODY
vi=vi*]
go to 100
101 continue

forvi=FtoTlogl
BODY

vi=F

100 if (v1.gt. T) goto 101
BODY
vl = vl * (T/F)**(I-1)
go to 100

101 continue

73

The first substitution is for a linear variation of a variable from F to T by adding

the increment I each pass through the loop, the second multiplies by I during

each pass, while the third is for a logarithmic variation from Fto T with the total

number of points specified as /. The substitution for the third case computes a

multiplier that will give I total points.

Using Leavenworth's scheme we could implement the above substitutions

with the for declaration:

§4.2.8.3 74

for vi=F toT | byl | times [| log I | B1
vi=F
100 éf (vl .gt. T) go to 101
1
f1 vi =vl + 1
2vi=vl*]
Svl=vw1l2¢* (T/F)**(I-1) }
go to 100

101 continue

in which {n ...} is substituted if clause n appeared in the input. For the above
declaration, the clauses by /, times I, and log [are numbered, respectively, 1, 2,
and 3.

A second approach to conditional substitution, given by Brown [25] while
reporting on achieving portability through the use of macroprocessors, shows an
#if construction for making tﬁe substitution performed dependent on the con-
text or the arguments given. In this approach, metakeywords, that usually
begin with a special character such as the "#" in #if, #while, #elseif, etc., would
be used in a define definition to control the substitution performed. This form of
conditional substitution is widely used, notably the "&if" syntax of the VP/CSS
Executive Language [4] and the "*if" 'syntax of Mark Bales' csubst text prepro-

cessor [17].

But, as emphasized by Wilander in the Pathcal program development system
for Pascal [156], a one-language system, in which the substitution control syntax
and the original programming language have exactly the same syntax, has the
advantage that one can write conditional substitutions or loops over commands

without having to learn an additional syntax.

Since the two above approaches are unsatisfactory, a third approach to con-
ditional substitution emerges. In this approach, used in DELIGHT, RATTLE

compile-time macros are written in the RATTLE language in exactly the same

§4.2.8.3 75

way as procedures, except the keyword procedure is replaced by macro (see the
example below). This idea is not entirely new. Teitelman [147], in describing the
Interlisp programming environment, mentions two kinds of macros. Substitu-
tion macros associate a template (composed of existing commands) with a new
command; this is analogous to RATTLE defines. Computed macros are basically
LISP expressions, evaluated to produce a new list of
operators/commands/expressions; this is analogous to RATTLE macros pushing

back a new RATTLE statement.

As mentioned above, macros are written as ordinary RATTLE procedures.
However, they are not executed at run time, but rather when their name is
encountered during the compilation of RATTLE statements such as procedures
or statements read from the terminal keyboard. They can act as fliters in the
stream of input characters being received by the RATTLE compiler. For exam-
éle, one can write a macro to scan the next few input tokens, which need not be
valid RATTLE code (they are never parsed by the RATTLE compiler), make deci-
sions based on what is found, and then push back valid RATTLE code to be sent

to the compiler.

As an example, let us implement the MatrizFunc statement discussed in the
first paragraph of this section. The comments (after a "#") in the following
macro describe the operation of the macro in converting Matrizfunc A=inv(B)
to Inverse(A,B). All error checking has been excluded for simplicity:

macro MatrizFunc

f
array OutputMatrix(80), InputMatrix(80),
Function(80), Dunmy(80)

§4.2.8.3 78

gtoken (QutputMatriz,Value) # Read "A".

gtoken EDmmy.Value) # Discard "=".
gtoken (Function,Value) # Read function.
gtoken (Dummy,Value) # Discard “(".
gtoken (InputMatrix,Value) # Read "B".
gtoken (Durmy,Value) ¢ Discard ")".
it (Function == 'inv’

PushBackF °'Inverse(%s,%s)’' Outputmatrix InputMatrix
else i? (Function = ‘adj’ g
. PushBackF 'Adjugate(%s,%s)' Outputmatrix InputMatrix
else

print? 'ERROR: illegal function for MatrixFumc/n’

The various arrays declared above are each for holding a character string con-
tairing the next input item (token) returned in the first argument of built-in
routine gtoken. PushBackF is a (fictitious) command for pushing back the out-
put of a printf-like formatted control string (see section 4.2.5). The "%s" fields

above are for the character strings returned by gioken.

1f MatrizFunc were to be used, when the macro name Matrizfunc was read
by DELIGHT, the macro would execute immediately and use gtoken to read the
next few items from the input; these items would be the arguments following
MatrizFunc. Then, the macro would push back one of the two procedure calls,
Inverse or Adjugate, based on which of the functions, inv or adj, was read by the

macro.

To clarify the difference between a macro and a procedure, consider the fol-

lowing procedure, where p2 is the name of a precompiled procedure:

procedure p1 (C,D) |
p2 (C.D§
l’latrixFunc C=inv(D)

When p1 is being compiled, the detection of MatrixFunc causes the macro of the
same name to be executed, substituting /nverse(C,D) for the second line in p1.

Of course, procedure p2is not called at compile time but instead when p1 is exe-

§4.2.8.3 77

cuted (after it is finished compiling) via the occurrence of the statement
Pl(Arg1.Arg2).

As shown in the following section, DELIGHT compile-time macros have been
used to provide the RATTLE language with a rich set of easy to use matrix mani-

pulation statements.
4.3. Matrix Macros

Probably the most commonly occurring operations in optimization algo-
rithms are linear algebraic matrix manipulations. To meet the goal of express-
ing algorithms in a manner which resembles mathematical descriptions as
closely as possible, high-level statements for matrix manipulation are needed.
Besides enhancing readability, these high-level statements can also hide details
of their implementation from a programmer so that his coding task is greatly

simplified.

This idea is not new; simple matrix operations exist in other programming
languages in which the name of an array stands for the entire aggregate of
values [19]. For example, in PL/], APL, and Algol 68, arrays can be assigned,
respectively, using A=5, A< B, and A:=8. These make A a copy of B, i.e., there
is an element-by-element assignment. PL/] also has a more general facility
since it will accept array names as members of the right-hand side of an array
assignment. Thus, if A B, and C are arrays of the same size and shape, 4 = 2* kB
+ Cis a legal PL/1 assignment. Assignments such as B = ABS(4), defined on an
element-by-element basis, are also allowed. However, operations such as matrix
inversion or singular value decomposition are not allowed since they cannot be
substituted by simple nested loops of a scalar operation. In Algol 68 [160], how-

ever, the value of a function can be an array and thus a matrix inversion

§4.3. ‘ 78

function could be implemented that allowed the statement B = inu(4). In APL
[52], all elementary operators are defined to operate element-by-element on
arrays. However, the lack of operator precedence in APL expressions is so
different from the precedence rules of RATTLE scalar expressions that APL syn-

tax is excluded from being a model for DELIGHT matrix operations.

The DELIGHT compile-time macro feature of the previous section has been
used to enable DELIGHT users to carry out very complex matrix
computations —far beyond those of the languages of the previous
paragraph—by means of very simple statements. For example, using the
macro linprog, one can solve a linear programming problem with the following

statement:
linprog z = argmin | ¢'*x | x>=0 , 2<=d., A*x<=b |

where the array z is assigned the minimizing value of z. The macro linprog
scans ahead, determines what is being requested, ard pushes back onto the
push-back stack a normal RATTLE procedure call, similar to the macro Matriz-
Func of section 4.2.8.3. In addition, the linprog macro sets up all the necessary
input arguments and work arrays for a call to a built-in Harwell Library [10]
linear programming Fortran routine. Thus, this macro not only enhances reada-
bility but also relieves the programmer of the need to create work arrays and to

master the other usually complicated requirements of program library routines.

Presently, there is an arsenal of matrix operation software available to the
user through macros. The following table shows examples of a sample of these

macros!3:

18 Many of the RATTLE macros in this table were initially written by Tommy Essebo from the
Lund Institute of Technology while visiting Berkeley one summer.

§4.3 79

DELIGHT Matrix Macros

Computation Example Macro Usage
Create Identity Matrix matop 15 = identity(5)
Create Constant Matrix matop B = array(3,5) of 0.0
Transpose a Matrix matopA =B’
Add Matrices A=B+C
Multiply Matrices | A=B*C
Scalar Times a Matrix matop A= (3.4)*C
Fill a Submatrix fill A(3:4,2:8) = B
Clip Out a Submatrix clip A = B(3:4,2:8)
Determinant of Matrix det(A) in any expression)
Condition Number of Matrix | rcond(A) (in any expression)
L2-norm of Vector vl In any expression
Inner Product <<x,y>> (Inany expression
Matrix Inversion matop Ainv = inv(A)
Soive Linear Equations lineq A*x =B
Eigenvalues/Vectors matop Lambda,Ev = eigern(A)
QR Decomposition matop QR = gr(A)
Singular Values/Vectors matop S,U,V = svd(A)
Linear Programming linprog Z = argmin § C'*x | x>=0, A*x=0 }
Quadratic Programming guadprog Z = argmin { x'*Q*x + B*x | A*x<=C}

Most of the nontrivial macros above use LINPACK routines [43]. For the linprog
and guadprog macros, arbitrary linear equality and inequality constraints may
be given to the right of the vertical bar, and they may appear in any order.
Several of the above macros, including simple binary matrix operations,
eigenvalues/eigenvectors, and singular value decomposition, have been imple-
mented for the complex matrices needed in the DELIGHT-MIMO version of

DELIGHT [97] for multivariable control system design. They have the same syn-

tax as above except that the word matop becomes cmatap'®.

34 This syntax is not yet firm.

§4.3 _ 80
4.4. Problem Input Language

The use of DELIGHT for optimization requires a designer to formulate his
design problem as a certain standard mathematical programming problem.
There are optimization algorithms in DELIGHT that support both a classical
problem formulation as well as a recent multiobjective formulation, particularly
well suited to engineering design. These are discussed, respectively, in sections
4.4.1.1 and 4.4.1.2 . Corresponding to these two problein formulations are user-
oriented problem description facilities that meet the DELIGHT design goal of
allowing full freedom!® in describ.ing a design problem through the general
expression capability of RATTLE. We discuss these problem description facilities
in sections 4.4.2.1 and 4.4.2.2 .

4.4.1. Mathematical Programming Formulations

Once early optimization efforts escaped from the quagmire of formulating
optimization problems as unconstrained, least squares, matching problems as
discussed earlier in section 2.1, much more useful problem formulations
emerged. The pfoblem formulations presented in the next two sections are dis-
cussed from the following simple mathematical point of view. The engineering
system being designed consists of design parameters (or unknowns) to be
automatically varied by an optimization ‘algorithm. These parameéters are
referred to as a point x= (z,, - - - 2,)7 in Euclidean n-space, denoted by R*
{throughout this thesis, “T» is used to indicate matrix transpose). Each different
point in IR® represents a different system but with the same structure. The idea
of fixed structure was emphasized in the discussion of parametric optimization

in section 1.1 . The responses of the engineering system, be they from whatever

15 Subject to certain requirements on continuity and differentiability, discussed later.

§4.4.1 81

type of computer simulation, depend on this design parameter vector x Thus, if

v, i=1,---,m representlm response functions, we may consider the vector
v={v, -+, vn)T as a mapping from the parameter space to the response
space:

v. R* - R™.

Viewed in this way, the simulation program is simply a means of evaluating the
vector function v(x) given a design parameter vector x € R®. The objective and
constraint functions presentsd in the next problem formulations may be
directly a function of the design parameter vector x or indirectly a function of x
by being a function of the systzm response functions v(x). In engineering design

problems such as electronic circuit design, the latter is more common.

4.4.1.1. Classical Single Cost with Constraints

The simplest optimization problem we will consider is the unconstrained non-
linear programming problem:
minimize: cost(x)
x
in which the minimum value of some scalar function of the design parameters is
sought. In engineering design, however, it is much more likely that there are
additional constraints that must be met. An example is a constraint on the

power dissipated in an electronic circuit. We then have the constrained non-

linear programming problem:
minimize: cost(x)
x
subject to: eq{x)=0 and ineq(x)<0

in which eq and ineq are, in general, nonlinear vector-valued functions of the

§4.4.1.1 82

design parameter vector x, ie. we have the Neg equality constraints
eq(x) 4 (eq,(x). - - - .eqN,,(x))T and the Nineq inequality constraints
ineq(x) & (ineg (X), - - - .inegpineg(¥))7. Since in general, engineering design
problems do not involve equality constraints that cannot be handled in a simple

manner, we will ignore themn in most of this dissertaticn.

Unfortunately. many engineering design problems cannot be formulated as
the standard mathematical programming problem gi\én above. For example,
many commonly occurring constraints require that some specification be met
over a range of an independent parameter such as time, temperature, or fre-
quency. For example, one common temperature constraint is that a system
behave in a certain way for every temperature from —-55°C to 125°C. These con-
straints are called functional inequality constraints and must be handled in &
special way by optimization algorithms [122, 98]. By adding functional inequality
constraints to the above problem formulation {and excluding equality con-
straints), we arrive at the following semi-infinite'® nonlinear programming prob-

lem:
minimize: cost (%)
subject to: ineq(x)<0 and fineq(xw)<0 Vw €[Wo.#.].

As illustrated in several engineering design examples by Polak [126], many com-
monly occurring parametric optimization problems are usually expressed as

semi-infinite programming problems.

18 This name stems from the fact that the second variable of fineq in the formulation may be
vie;id 3.5 leading to an infinite mumber of constraints. See, for example, Gonzaga et al. [54] or Het-
tich [83]. :

§4.4.1.1 B3

4.4.1.2. Multiple Objectives with Constraints

In engineering design, the mathematical problem solved by an optimization
algorithm may be remote from the real world problem a designer is facing. This
is due to the rigidity of the classical nonlinear programming problem given in
the previous section. While that problem formulation does encompass the gen-
eral idea of optimizing some design objective (cost) while meeting various con-

straints specifications, it fails to take into account several important charac-

teristics of a large class of engineering design problems!”.

First, it is rarely the case that a single objective {(cost) has to be optimized.
In most applications, various cost functions, hereinafter called perjformance
objectives, compete against each other and a compromise has to be reached.
The literature in several diverse areas abounds with results on multiobjective (or
multicriteria) optimization. One simple technique used quite often for handling
such problems is known as the weighted sum approach—the weighted sum of
the performance objectives is formed in order to achieve a single cost function
to minimize. However, this has the disadvantage, particularly acute in an
interactive environment, of hiding the physical significance of these objectives
when viewing the value of the cost during an optimization. Also, adjusting the
weights to vary the emphasis given to each objective is usually cumbersome.
Furthermore, Lightner et al. in [94] point out the well-known problem with the
weighted sum approach that certain possibly desirable optimization solution

points are not achievable no matter what choice of weights is used.

Second, a solution to a problem formulated using the previous mathematical

formulation does not allow any violations of the constraints ineq or fineq In

1? Ag mentioned below, these characteristics were indeed observed during several months of
close interaction with circuit designers in an industrial environment.

§4.4.1.2 84

design applications, constraint specifications are often relatively flexible and do
not have to meet any precise numeric values. Hence, moderate violation of a
constraint should be allowed in the solution of an optimization problem; often
this will permit an optimization algorithm to achieve a better value of the per-
formance objectives. Put in another way, the constraints may often be traded
off against the objective functions in much the same way tradeoffs occur in all
engineering design. Of course, there may be constraints that cannof be
violated; both types should be handled. (Obviously, it should be more important
to an optimization algorithm to satisfy the constraints that cannot be violated.
Thus, we are led to designers classifying their constraints into two levels of
importance.) Another shortcoming is that the formulations M(x)sO and
fineq(x,)<0 give no way of estimating the importance to the designer of a given

constraint violation.

In the fall of 1981, when DELIGHT was first applied in an industrial environ-
ment, we were made painfully aware of these first two difficulties. At that time,
using an algorithm that handled the previous single-cost problém formulation,
we were forced to formulate all but one of a set of multiple objectives as con-
straints and to keep interactively modifying their desired values as the optimi-
zation algorithm satisfied them. The way tradeoffs were performed was also
difficult. To indicate the relative importance of our constraints, they were
weighted with multiplicative scale factors. Constraints whose scale factors were
large would be "considered first” by the algorithm and would become less
violated after a few iterations. Constraints whose scale factors were small had
less relative importance and might become more violated. However, the trial-

and-error procedure required to adjust the scale factors caused this to be a

§4.4.1.2 85

painful way of performing tradeoffs!t,

A third and more general deficiency of the previous formulation is that it
expresses only partially the knowledge a designer has about his problem. Some
of this knowledge, built on experience and physical intuition, is often impossible
to express numerically. However, this formulation does not allow the designer
to express some easily quantified intuitive knowledge such as the degree of
confidence he has in the initial guess provided for eéch design parameter or
what change in each parameter value he considers reasonable to use in an
attempt to improve the performance of the design. Such knowledge can be used
by optimization algorithms to aid in parameter scaling and thus enhance speed

of convergence.

Last, this formulation does not allow design paramster boz constraints such
as -2 <z, <2 to be easily given, i.e., without considering them part of the gen-

eral nonlinear constraints in ineq.

The following list summaries the requirements of a new problem formulation.

A new problem formulation must allow:

1. multiple objectives,

2. two types of constraints and the
ability to specify constraint viola-
tion importance,

3. a designer to provide his intuitive
knowledge, and

4. design parameter box con-
straints to be easily expressed.

18 Thig author and Ekachai Lelarasmee, Giovanni De Micheli, and Alberto Sangiovanni-Vincentelli
spent three manths during the fall of 1881 at Harris Semiconductor in Pelm Bay, Florida. In spite of
the difficulties mentioned above, all was not painful that fell. The four of us stayed in a beautiful 2-
story townhouse directly on ths beach: right out our back door was the Atlantic Ocean.

§4.4.1.2 88

Obviously, there is no unique way to meet the requirements mentioned above.
The problem formulation described next makes use of some ideas and concepts
which seem particularly well suited to designer intuition. The four requirements

are handled one at a time.

Multiple Objectives. We address the first difficulty by defining a new problem
formulation that allows multiple objectives and 5y extending the Combined
Phase I - Phase II Method of Feasible Directions algc»ritﬁm of Polak et al. [123] to
include the capability of handling multiple objectives (instead of just a single

cost function). This algorithm is described later in section 4.5.2.2 .

Two Types of Constraints and Violation Importance. The second enhance-
ment is to define the new formulation in such a way that at a problem solution,
violations of certain of the ineq or fineq constraints can occur if this allows some
particularly good performance to be achieved by the objectives. As shall be
seen in section 4.5.2.2, another extension of Polak’s Feasible Directiéns algo-
rithm handles this feature by allowing performance objectives and certain
unsatisfied constraints to compete equally for improvement. The new problem
formulation must also allow a way for a designer to estimate the importance of a
given constraint violation. A novel way of capturing the intents of a designer,
that is, of having him specify which constraints allow violation and the impor-
tance of these violations, is presented next. However, it is important to note
that sometimes these intents cannot be completely specified at the beginning of
the design process; adjustments in the specifications may appear to be neces-
sary only after the problem has been solved and has yielded an inadequate
design. Furthermore, a designer may wish to adjust the specifications quite
often during an optimization run to insure that they are continually being

traded off in a satisfactory manner or to obtain designs for which various

§4.4.1.2 87

performance objectives have been emphasized. Thus, the DELIGHT system must
provide ways of changing these specifications while an optimization is being per-

formed.

How the new problem formulation allows two types of constraints to be
specified is as follows. While we were at Harris Semiconductor, it was observed
that not all constraints are perceived by designers in the same way. Therefore,
the constraints of an optimization problem are broken into two categories, hard
and soft. Hard constraints consist of those which the designer gives the utmost
priority in having the algorithm satisfy and which, once satisfied, the designer
wishes to remain satisfied and not take part in any subsequent design tradeofis.
Obviously, any constraint whose satisfaction is necessary for physical realizabil-
ity, such as a certain quantity being non-negative, should be treated as a hard
constraint. Soft constraints, on the other hand, are those which the designer is
interested in conveniently trading off against one another and against the per-
formance objectives during intermediate iterations cf an optimization run. Of
course, the satisfaction of soft constraints should not be required for the system
being designed to be feasible. Otherwise, design tradeoffs involving these con-
straints would be meaningless. As shall be seen later, when entering a con-
straint, the user has to specify if the constraint is considered hard or soft, the

default being hard.

Since objectives and soft constraints may be traded off by the designer, it is
important to specify their relative importance to an optimization algorithm. For
example, in integrated circuit design, a constraint on power dissipation in a cir-
cuit such as power<1.5watts might be very important to prevent chip overheat-
ing whereas the constraint Zin>10megohm for high input impedance may be

less important since often a considerably lower input impedance is acceptable.

§4.4.1.2 . 88

The literature abounds with techniques for specifying the relative importance
of objectives in a multiple objective optimization. Our approach, being targeted
at "practicality” in the sense that we are interested in having designers use it, is
not the result of a comprehensive survey of this entire fleld of literature. How-

ever, we do consider a few relevant approaches below.

Lightner and Director [94] handle the relative importance of multiple objec-
tives by choosing the weights in a weighted co-norm minimax optimization in
various ways!®. They define the canonic weight for the maz norm asscciated

with a particular noninferior solution f° of the problem
min max fw; f(2)}

as W 2 diag(wy) where w8 1/f; Vi. Briefly, a noninferior point or Pareto
point for a multiple objective optimization problem is one for which there is no
p.ossible change in the unknown vector x which will cause at least one of the
objective functions to decrease and none of these functions to increase. Then,

given a canonic weight vector w’, f° solves mex.% max fw/f(x)] with
x
max fw.f:(x)}=1. Of course, since the solution f’ is not generally known, the

weights w;” to use in an optimization cannot be determined. However, the con-
cept of a canonic weight for the eo-norm allows these authors to develop various
heuristics for weight selection. One heuristic is to ask the designer to specify a
desired solution, say f2. Then a minimization can be performed with the weight
W3 =diag(wf®) where w@=1/f8 This approach can be used to explore the tra-
deoff surface of a multiobjective problem by having a designer adjust the
desired solution and hence the weights, possibly using the weight selection stra-

tegy of these authors.

19 The techniques discussed here are also presented in [23] and [24].

(3

§4.4.1.2 , ' 89

A weakness of these approaches is that only near the ‘end of a complete
optimization for a particular weight vector does the optimization emphasize the
various objectives in a way that corresponds to the designer’s desired tradeofl.
To see this point, consider the graph in figure 4.1, which plots a hypothetical
designer’s satisfaction versus the objective function values for f,, f2. and fg.
This plot indicates that it is desired to decrease all three objectives. In general,
these curves might be arbitrary monotonically decreasin.g (or increasing) curves

but for simplicity, let us assume that they are straight lines as shown.

Figure 4.2 shows the three desired objective values f§, 7%, and f§ that
correspond to a level of satisfaction marked by D. In figure 4.3, the weighted
functions ﬁa‘{f 1» WS 2, and wif 5, whose maximum is to be minimized, are shown
(the weights are defined above as w#8 1/ f&). Suppose that at some point, dur-
ing the initial part of the optimization suggested by Lightner and Director, the
three objectives have values indicated by the dotted line at point P. Then the

Designer
Satisfaction

— f, f2.f3

Figure 4.1. Designer Satisfaction Versus Objective Function Values.

§4.4.1.2 80

Designer
Satisfaction

> i, faf3

Figure 4.2. Objective Function Values at Particular Level of Designer Satisfaction

effect of the minimax optimization is to move that dotted line to the left. But
here lies the culprit: th: optimization is trying to decrease the three weighted
functions equally even though, as shown, the designer is less satisfied with the
value of wifs than with the value of w{f,; if the desired values cannot be
reached, the resulting design is obviously not very satisfactory. As just stated,
the optimization is not emphasizing the various objectives in a way that
corresponds to the way the designer would like them to trade off. (Near the
desired point f3, however, the optimization does emphasize according to the
desired tradeoff.) The problem is that the functions have been normalized with

only a single desired function value.

An alternative and quite natural way of indicating the relative importance of
performance objectives and soft constraints is by having the designer specify
two values for each: a good value and a bad value. The meaning of these values is

limited to the following understanding, referred to as the wuniform

§4.4.1.2 91

Designer
Satisfaction

n

o) ..d d d
wifiwafwifs

Figure 4.3. Designer Satisfaction Versus Weighted Objective Function Values.

satisfaction /dissatisfaction rule: having all of the various objectives and soft
constraints achieve their corresponding good values should provide the same
level of “satisfaction” to the designer for each, while achieving the bad values
should provide the same level of "dissatisfaction”. Furthermore, the good value
of a soft constraint must be the value considered by the designer to be satisfac-
tory, in the sense that an algorithm need not try to improve the constraint any
further. The use of good and bad values in this way provides a very simple way
to do tradeoff analyses: if a designer is unsatisfied with the performance level
achieved by a particular objective or constraint, he simply changes what he con-
siders to be satisfactory or unsatisfactory by adjusting the good or bad values
and then resumes execution of the optimization. DELIGHT commands to modify

these values are discussed later.

The good and bad values are used to produce the normalized objectives and

constraints that are 'seen” by the optimizatibn algorithnm. They generally have

§4.4.1.2 92

values between 0 and 1 or nearby, where 0 and 1 correspond respectively to the

designer’'s good and bad values, as seen in the transformation:

S — good

bad, — good, " (4.1)

T 8

In this formula, f is either an objective or a constraint function. A minimax
related optimization, as described later in-section 4.5.2.2, is then performed on
the normalized function values. The above formula is similar to the normeliza-
tion

. 4 Ji = Tseeg

fo 8 4.2)

I8¢ = fspre,

given by Hachtel et al. [59] in describing the methods used in the APLSTAP.[80]

design system. In their formula S spec,, the function value desired at the end of a

completed sequence of LP steps, is analogous to the good value in equation (4.1).
However, f, the objective function value prior to an LP optimization step, is
used in place of our fixed (at least until manually c