

Copyright © 1983, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

DELIGHT: AN INTERACTIVE SYSTEM FOR

OPTIMIZATION-BASED ENGINEERING DESIGN

by

William T. Nye

Memorandum No. UCB/ERL M83/33

31 May 1983

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Research sponsored by the Joint Services Electronics Program
Contract F49620-79-C-0178.

^3/53

DELIGHT: AN INTERACTIVE SYSTEM FOR

OPTIMIZATION-BASED ENGINEERING DESIGN

by

William T. Nye

Memorandum No. UCB/ERL M83/33

31 May 1983

DELIGHT: An Interactive System
for

Optimization-Based Engineering Design

Ph-D- William. T. Nye EECS Dept

K$LA»<^l~4l&USignature: Vft
Committee Chairman

ABSTRACT

DELIGHT Is an interactive system for applying optimization techniques to

engineering dssign. With DELIGHT, designers can use optimization algorithms to

improve the performance of their designs by automatically adjusting design

parameters. DELIGHT offers the capability of optimizing arbitrary performance

criteria as well as of studying complex tradeoffs between multiple competing

objectives, while simultaneously satisfying multiple constraint specifications.

The use of optimization in engineering design was proposed in the sixties,

especially for discrete electrical circuits such as filters. However, its use has not

become as widespread as one would expect. We examine the shortcomings of

several applications of classical optimization techniques to engineering design

and develop design criteria for a computer-aided design system that should

overcome these difficulties. These criteria, and the intention of serving a wide

range of users from designers to optimization experts and system-support per

sonnel, are used in the design of DELIGHT.

The various aspects of the DELIGHT system—the RATTLE language, RATTLE

extensibility through defines and macros, the library of optimization algorithms,

the problem description facilities, a set of high-level matrix macros, and

terminal-independent color graphics — are introduced and described in detaiL

A novel feature of the DELIGHT system is a new multiple objective problem for

mulation that provides a means of effectively classifying and conveying the rela

tive importance of design specifications. A methodology for performing design

tradeoffs when using this formulation is introduced that uses a new graphical

display called the performance comb.

The DELIGHT system is intended to be used in many different areas of

engineering design. Hence, we introduce a simulation interface methodology

and other necessary features that facilitate the coupling of DELIGHT to existing

simulation programs. We then take a look at several application areas and

demonstrate the usefulness of the system by detailing the optimization of two

electronic integrated circuits. Successful optimization of several industrial cir

cuits and of systems in other engineering areas are reported that further show

the effectiveness of the system.

Acknowledgements

I would like to express my deepest gratitude to Professor A. Sangiovanni-

Vincentelli, my research advisor, and Professor L. Polak for introducing and giv

ing me the opportunity to work in optimization and computer-aided design.

They have supported me with enthusiasm and were available for numerous dis

cussions throughout the course of my graduate study at Berkeley. Also, it is a

pleasure to thank them, along with Professor K. Pister, for serving on my disser

tation committee.

The special contributions by A. Sangiovanni-Vincentelli to cultivating my abil

ity to make clear presentations, both verbally and in writing, will have lifelong

value. I will always remember those occasions when, after expressing my excite

ment over something I had just written, he would peer over the top of his glasses

and say, "let—me—see—it—first!"

The rewarding discussions I have had with fellow graduate students and oth

ers have contributed many useful ideas to this research. R. Balling. G. De

Micheli, N. English. T. Essebo, Andrew Heunis, M. Karandikar, K. Keller. J.

Kleckner, P. Labuhn, E. Lelarasmee. Sharad Nandgaonkar, P. Nicklin. R. Oliver, T.

Quarles. Dave Riley, P. Siegel, James Spoto. Andre Tits, V. Visvanathan, Y. Wardi,

and T. Wuu, are just a few of the names that come to mind. Andre Tits, in partic

ular, has had a major influence on this work. Special thanks to the brave stu

dents who took EECS 241 in the fall of 1982 and provided their feedback on the

results of this work.

My occasional acquaintances with W. Joy in Computer Science have inspired

me to try to provide just a fraction of the benefit that he has given to mankind

through his work with UNIX.

I take great pleasure in showing my appreciation of the friendship extended

by G. Brand, C. Courcoubetis, J. Dorfman, E. Eschen, L Guy, T. Hull, J. Jones, M.

Loo. L. Gast, A. Neirynck, I. Ratiu. T. Salcudean, S. Sastry, R Silva. D. Stimler, E.

Szeto, A. Viadimirescu, professors P. R. Gray, D. A. Hodges, A. R. Newton, and D.

0. Pederson, and many others, and also by the entire staff of the Electronics

Research Laboratory and the Department of Electrical Engineering and Com

puter Science at Berkeley. Many other friends at Harris Semiconductor too

numerous to mention are also appreciated. Special thanks to T. King for assist

ing with the figures.

My association with Professors A. Brodersen and S. Director during my early

years in Electrical Engineering at the University of Florida created important

foundations necessary for my doctoral work at Berkeley.

I would like to acknowledge research grants from Harris Corporation and

thank, in particular, J. Cornell and J. Spoto of Harris Semiconductor for provid

ing an ideal environment in which to demonstrate the industrial applicability of

my work. The support of the Air Force Office of Scientific Research, the Joint

Services Electronic Program, the National Science Foundation, and MICRO is also

recognized.

Finally, I wish to express my gratitude to my parents, Sylvia and Thomas.

Table of Contents

CHAPTER 1: Introduction 1

1.1. The Nature of Engineering Design 1

1.2. Examples of Design Problems Addressed 5

1.3. Dissertation Outline 7

CHAPTER 2: Overview of Optimization-Based Computer-Aided-Design 8

2.1. Early Efforts 8

2.2. Recent Design Systems 14

2.3. limitations of These Systems 19

CHAPTER3: Goals and Design Criteria of DELIGHT 25

3.1. Setting the Stage 25

3.2. Classes of Users Supported 26

3.3. Needs of the Various Users 27

3.4. Resulting Design Criteria 31

CHAPTER 4: DELIGHTSystem Features 32

4.1. Introduction and Overview 32

4.2. RATTLE Language 34

4*2.1. Functions of the Interactive Language in DELIGHT 35

4.2.2. Why a New Language is Needed 37

4.2.3. Why RATTLE is Similar to Ratfor 40

4.2.4. Preliminary Design Decisions 41

4.2.5. Basic Language Statements and Features 45

u

4.2.6. Interrupts and Run-Time Errors 55

4.2.7. Incremental Program Development 59

4.2.8. Extensibility: Defines and Macros 62

4.2.8.1. Character Stream View of I/O and Pushback 64

4.2.8.2. Defines and Extensions '. 67

4.2.8.3. Compile-rime Macros .*. 72

4.3. Matrix Macros 77

4.4. Problem Input Language 80

4.4.1. Mathematical Programming Formulations 80

4.4.1.1. Classical Single Cost vdth Constraints 81

4.4.1.2. Multiple Objectives wtth Constraints 83

4.4.2. DELIGHT Problem Description Facilities 98

4.4.2.1. Classical Problem Description 98

4.4.2.2. Multiple Objective, Engineering-Oriented Problem

Description 106

4.5. Optimization Algorithms and Problem/Algorithm Interfaces 115

4.5.1. Introduction to the RATTLE Optimization Algorithms library

118

4.5.1.1. Purpose and Structure 118

4.5.1.2. Structure of Optimization Algorithms 121

4.5.1.3. Basic Feasible Directions Algorithms 127

4.5.2. Enhanced Feasible Directions Algorithms for Engineering

Design 132

4.5.2.1. Why Feasible Directions Algorithms are Good for En

gineering Design 132

4.5.2.2. Enhanced Phase I-H-III Algorithm 135

4.5.3. Details of the RATTLE Optimization Algorithms library 142

4.5.3.1. Detailed Structure of Library Entries 142

4.5.3.2. Listing of Library Entries ••.. 146

4.5.3.3. Exploring and Substituting Sub-Block Choices! 149

4.5.4. Problem/Algorithm Interface .'. 151

4.5.4.1. The solve Command 151

4.5.4.2. Problem Interface: Normalizations and Stored Values

155

4.5.4.3. Problem Interface for Surrogate Cost 161

4.5.5. Running an Optimization 164

4.6. Graphics 165

4.6.1. General Graphics Features 186

4.6.2. Graphics for Observing Problem Performance 183

4.6.3. Graphics for Observing Algorithm Performance 189

4.7. Simulation Interface 194

4.7.1. Functions and Goals 195

4.7.2. Simulation-Dependent Part 199

4.7.3. Simulation-Independent Part 205

4.8. Miscellaneous DELIGHT Features 209

CHAPTER 5: DELIGHT Applications 215

5.1. Electronic Circuit Applications Featuring DELIGHT.SPICE 216

5.1.1. Nature of Electronic Circuit Design 218

5.1.2. Circuit Design Problem Formulations 223

IV

5.1.3. Additional DELIGHT.SPICE-Specific Features 230

5.1.4. Circuit Design Examples 242

5.2. Other Engineering Applications 284

5.2.1. Digital Filter Design 284

5.2.2. SISO and MIMO Control Systems 287

5.2.3. Earthquake-Resistant Structures 290

CHAPTER 6: Conclusions and Future Research 294

REFERENCES ~ 299

APPENDIX A: DELIGHT Implementation 309

A.1. RATTLE Language 309

A.1.1. RACC Compiler-Compiler 309

A.1.2. Dynamic Arrays 318

A.2. Parser and Parse/Execute Loop 321

A.3. Device-Independent Graphics 330

APPENDIX B: DELIGHT implication Package Development Features 335

B.l. Adding Built-in Routines '. 335

B.2. Accessing Fortran Variables 340

APPENDIX C: DEUGHT Machine-Dependent Primitives 343

APPENDIX D: DELIGHT: An Optimization-Based Computer-Aided Design

System 351

APPENDIX E: The Design of Digital filters Using Interactive Optimiza

tion 357

APPENDIX P. An Enhanced Methodology for Interactive Optimal

Design 360

APPENDIX G: DELIGHT.SPICE: An Optimization-Based System for the

V

Design of Integrated Circuits 363

iffPENDKH: DEUGHT for Beginners 370

APPENDDCI: DELIGHT.SPICE User's Guide 429

CHAPTER 1

Introduction

1.1. The Nature of Engineering Design

For our purposes, engineering design can be considered as a three-phase

iterative process. The designer must:

1. derive objectives and specifications from the requirements of the

system being designed,

2. select a structure or configuration which has the best chance of

meeting the specifications, and

3. determine values of system parameters that optimize the possibly

competing design objectives while satisfying the constraint

specifications.

For a particular design problem, the designer may go back and forth between

the three phases many times until a satisfactory design has been achieved.

It is natural to try to use the computer to aid designers in performing the

steps above. While there exist design procedures for limited classes of problems

in which system structure and parameter values are synthesized simultaneously

[149,153], generally the selection of system configuration is a very creative and

experience-based part of the design process and may not be very amenable to

computer assistance. Similarly the derivation and evaluation of objectives and

§1.1 2

specifications, in quantifying such questions as:

1. What quantities must be "specified"?

2. What criteria are used to define a "good design"?

3. What defines "acceptable performance"?

is also a very creative and subjective aspect of design which certainly requires

the experience and intuition of the designer. For large complex systems, how

ever, the selection of the values of a large number of system parameters is often

tune-consuming and is usually stopped short of the design's; best performance.

This is usually due to the difficulty of designers in predicting the effect of

parameter changes on system performance without simplifying engineering

approximations or numerous computer simulations.

That this parameter value determination phase can greatly benefit from com

puter assistance is the result of a declining cost of computing power and of

significant advances, in the past 15 years, in two relativel)' separate research

areas. The first of these advances is in the area of optimization algorithms for

nonlinear programming. Algorithms have emerged which have many desirable

properties that are particularly suited to engineering design. Many have

guaranteed convergence properties which depend on rather mild conditions

which are satisfied by many engineering design problems. There are several

algorithms which optimize an objective subject to constraints and even some

which solve problems involving functional constraints which must be satisfied

over an interval of an independent parameter such as time, temperature, or fre

quency. Recently algorithms have been developed which allow multiple objec

tives to be optimized while simultaneously satisfying constraints.

The second area of advance is in system simulation or analysis programs.

§1.1 3

Advances in accuracy, efficiency, and reliability of these programs lead, on the

t>ne hand, to the ability of engineers to simulate larger systems (or portions

thereof). On the other hand, these advances also make it economically feasible

to repeatedly simulate smaller portions of a system for the purpose of varying

parameters to improve its performance. Computer simulation has become a

popular and in many instances indispensable tool in engineering design.

This simulation power has lead many designers to believe that general

analysis programs are all that is required, for with them designers may continue

to use the popular cut-and-try methods as in the precomputer era—only faster,

cheaper, and with greater accuracy. In the design of electronic circuits, the

simulation program replaces the breadboard and the cut-and-try method is

similar to "pot-tweaking". While such design methods have worked in the past,

they are less likely to succeed in the future as system complexity and the

number of parameters increases or as more performance is expected.

In this dissertation, the DELIGHT system, designed and implemented to com

bine the two areas of optimization and simulation, is presented to provide

engineering designers with a powerful new computer-aided design (CAD) tool in

which engineer and computer are complementary as they work together to

optimize the performance of designs. In particular, DELIGHT uses parametric

optimization in the numeric parameter determination phase of design in which

the system configuration remains fixed. Used in this way, optimization algo

rithms may be viewed as a way of effectively managing the cut-and-try process

by taking advantage of the computer's ability to assimilate much information

about the current design from automatically performed simulations in order to

determine the best set of parameter modifications. Optimization thus frees the

designer from the difficult and tedious task of making these modifications and

§1.1 4

allows him to concentrate on the more creative aspects of the design process.

There are several additional benefits of applying parametric optimization to

engineering design. By freeing the designer from the highly repetitive aspects

of the parameter selection process, he may apply his creativity, intuition, and

experience in other ways:

1. He may devote more time to the derivation of objectives and constraint

specifications and the definition of acceptable performance measures. This

enhances the first phase of design by allowing a more rapid determination

of whether they are suitable for meeting the requirements of the design.

2. He may concentrate on the structural aspects of the design by considering

several alternate configurations without being bound by the usually prohibi

tive time required to compare the best performance of each.

3. He may provide a good initial guess for the design parameters. This may be

obtained by other computer techniques as well as by manual design pro

cedures.

4. Decisions about which constraints are most important to satisfy must be

made. An indication of the admissible severity in violating each constraint

must be given.

5. The designer may devote his time to evaluating and comparing the results

of trading off competing objectives in a particular configuration. This

exploration of tradeoffs is usually essential to any modern design methodol

ogy.

6. By monitoring the optimization process, the engineer can go through a

learning experience about his system's performance that otherwise might

be missing if manual design techniques were stopped short of the system's

§1.1 5

best capabilities.

Another benefit is that in formulating the objectives and specifications of his

design, the designer may address design problems more closely to their origin:

the limitations of classical design approximation techniques may be avoided.

Many design "tricks" which prior to the existence of an optimization-based

approach were necessary in order to perform the mathematical manipulations

of the design process, may no longer be considered a necessary part of the

designer's repertoire. Instead, the designer's grab-bag contains, for example,

his experience with the optimization process in knowing what type of problem

formulations lead to rapid convergence of the optimization algorithms used.

1.2. Examples of Design Problems Addressed

Examples of design problems which fall into the class of problems handled by

the DELIGHT system can be found in many areas of engineering. In the area of

analog electronic integrated circuit design, a common problem in amplifier

design is to maximize bandwidth subject to constraints on stability or on total

power consumption. The design parameters whose values must be determined

might be resistors, capacitors, or transistor device geometries. The structure

of the network would be determined a priori by the designer and would remain

fixed throughout the optimization process.

Another electronic circuit design problem involves digital cells of VLSI (very

large scale integration) systems. One common scenario is to minimize circuit

switching times subject to fan-in/fan-out requirements and again to constraints

on power consumption. For these types of problems, the design parameters are

usually device geometries only.

In the area of single input/single output (SISO) and multiple input/multiple

§1.2 . 6

output (MIMO) control systems there are many different types of design prob

lems which can benefit from optimization techniques. For example, one may

wish to minimize the energy fed into the plant of a feedback system, subject to

constraints. These constraints might be bounds on compensator parameters,

overshoot and settling time conslxaints on the time-domain step response of the

closed loop system, stability requirements that the poles of the closed loop sys

tem lie in certain regions in the complex plane, and requirements that the sys

tem be insensitive to output disturbances. Some of these requirements result in

constraints which require very special optimization algorithms.

A final design problem example is found in the area of structural design in

which braced frame buildings must withstand small earthquakes with no damage

and large ones without collapse [18]. A common objective is to reduce construc

tion cost by reducing the weight of the structure. This is done by niinimizing

the cross sectional area of the frame members subject to several groups of con

straints. The designer may formulate one group of constraints corresponding to

a static model subjected to gravity loads and another group corresponding to a

dynamic model whose goal is to limit the relative floor displacements over the

entire duration of a whole family of moderate and severe earthquake ground

motions. The system structure remains fixed throughout the optimization pro

cess in that the permissible design variables may only affect element properties;

thus, for example, the position of the frames and the distance between nodes

must remain constant with changes in the design parameters. An example of

element properties which may be design parameters are section area, strain

hardening ratio, or section moment of inertia, for the beam-column element.

§1.2 . 7

1.3. Dissertation Outline

The plan of this dissertation is as follows. We begin with an overview of

optimization-based computer-aided-design in chapter 2. This leads from early

efforts to recent design systems and ends with the limitations of both early and

recent efforts. By examining the heeds of various classes of users to be sup

ported by the DELIGHT system; chapter 3 results in a set of design criteria for

the system. Chapter 4 then surveys DELIGHT features which meet these design

criteria. This includes DELIGHTs RATTLE programming language, the way design

problems are specified to DELIGHT, a discussion of optimization algorithms and

libraries, and other features which enhance the design process while using

DELIGHT. In chapter 5 we present several applications of DELIGHT to engineer

ing design. The foremost of these is DELIGHT.SPICE for electronic circuit design.

We conclude in chapter 6 with a summary of the main contributions of this work

followed by directions for future research. Appendices are included which

explain several DELIGHT implementation issues and show the details of several

DELIGHT features for developing application packages.

CHAPTER 2

Overview of Optimization-Based Computer-Aided-Design

2.1. Early Efforts

Since it is difficult to survey the early use of optimization in all areas of

engineering design, we restrict ourselves for the most part to a few representa

tive areas. One of the earliest uses of optimization in engineering design was to

solve problems that had been formulated as matching or curve fitting problems

[11,26] in which the goal was to match a calculated and a desired system

response. This was probably due to the fact that, by following Aaron [ll] and

defining "best" as the minimum of the sum of the squares of the errors between

desired and calculated responses, matching problems could easily be formu

lated as linear or nonlinear least squares problems. These could then be solved

using either specialized techniques or available general purpose algorithms and

routines for simple unconstrained optimization, that were developed much ear

lier than ones for constrained or multiple objective optimization. Another error

criterion was "equal ripple" approximation in which the absolute magnitude of

the error was minimized.

The least squares matching problem was usually considered as follows.

Defining x as the vector of design parameters, /(x,Zt) as the calculated

response at the i'th value of an independent parameter z as %ranges from 1 to

n (where z may be i itself), and Ffa) as the desired response (or measured in

the case of model parameter determination), then the goal of having /(x.Zi)

§2.1

equal F(zi) for every i was formulated as the following least squares problem:

minimize £(/(xlzi)-F(zi))2
t=i

In the special case that the number of parameters in x exactly equaled n, the

number of z* data points, ordinary Newton iteration was sometimes used [26].

Otherwise, either generalized Gauss-Newton methods (previously called Taylor

Series Methods) [ll], Marquardt enhancements to these methods [96], or other

general unconstrained mininiization techniques such as steepest descent [35]

were used.

Early use of the above solution techniques is now illustrated. A typical com

puter program which combined the techniques above was SUPROX [48], an acro

nym for Successive apPROXimation program, developed at Bell Laboratories in

the middle sixties. As explained by Golembeski [53], the program determined

the unknown parameters via two "slope-following" techniques, the method of

steepest descent and a generalized Newton-Raphson technique, which were used

consecutively, although either technique could be used alone. The steepest des

cent method -v?as used initially since it converged rapidly when the parameters

were far from optimunL When the overall minimum was neared, i.e., there was

less than 5 percent reduction in the error function per iteration, the generalized

Newton-Raphson method was substituted because it had quadratic convergence

when started with good initial parameter values. This program was used in a

number of different applications of interest to designers.

Examples of engineering problems which were formulated as matching prob

lems include model parameter determination for modeling system performance

for computer simulation, black box techniques [102], and the design of elec

tronic filters and microwave integrated circuits. The goal of the first of these,

§2.1 10

modeling, is to represent physical structures or phenomena by idealized, but

mathematically tractable models. Modeling becomes a matching problem once

a fixed structure model is chosen and it is desired to minimize the error

difference between responses calculated by the model and measured responses.

The independent parameter in the least squares formulation (x above) are vari

ous external stimuli which bring into play the ways in which the model will be

used.

Black box techniques, which have now evolved into present-day macro model

ing, '/rere methods whioh were required to cope with the system size limitations

of egirly simulation programs [102]. In this approach, calculated or measured

discrete data from a complex part of a system were replaced by standard func

tions whose parameters were determined by a curve fitting process. The data

hopefully captured how external stimulus at input "ports" produced responses

at output ports. The particular functions used were either determined by the

application, for example hyperbolic functions for uniform transmission lines or

orthogonal polynomials for certain mechanical systems, or chosen by the

designer from several standard functions supplied by the curve fitting program.

For the latter, the choice was a compromise between availability of function sub

routines to do the fitting, system size, and efilciency and accuracy of the result

ing black box.

For the design of electronic filters, the filter response functions to be

matched against desired curves were usually the magnitude and phase of

transfer functions (including input and output impedances) discretized over the

independent parameter frequency. One interactive optimization program for

designing electrical filters was TRANSFIT [103]. It was written in Fortran for the

GE-605 time-shared computer system and was an adaptation of a program given

§2.1 11

by Calahan [27] for fitting ratios of polynomials to frequency-domain charac

teristics. The fit was accomplished through the use of a Fletcher-Powell optimi

zation method [49] with Fibonacci Search. The user could interact in the optim

ization process by changing the initial guess for the polynomial coefficients and

the weights at different frequencies.

A more recent filter (and microwave) design system is COMPACT [6], a

question/answer style interactive optimization program. It allows designers to

minimize a weighted scalar error function consisting of the sum of the squared

deviations between several frequency-domain properties of circuits. These pro

perties include two-port scattering parameters, noise figure, and input port

phase shift. Control of this fixed problem formulation is accomplished by adjust

ing the weights or simply setting them to zero to remove their respective terms

from the error function. If the designer cannot provide an initial guess, COM

PACT does a coarse search to find an approximate global imnimum followed by

the steepest descent method to find the actual minimum. This could be very

time-consuming for a large number of design parameters. However, typically

the circuits optimized are relatively small. Since COMPACT contains no DC or

time-domain analysis and handles only bipolar transistors, its use in general cir

cuit optimization is limited.

Another design program which emphasizes frequency-domain matching for

electronic filters is OPNODE [3]. It uses the following adaptive search technique.

The search begins in a purely random manner. Each error function evaluation

updates stored probabilities for that direction. Thus, the search algorithm

"learns" by trial and error how to vary parameters to minimize the error func

tion. An interesting feature of OPNODE is how a designer interacts with the pro

gram. OPNODE runs on an HP minicomputer and allows a user to flip panel

§2.1 12

switches to turn on or off performance plotting, parameter value display, and

other algorithm controls during each trial error function evaluation. Also, since

the program is written in Basic, it enjoys the interactive benefits of any inter

preted language. One of these is that execution may be interrupted at any time,

any program statements changed, and execution resumed from the same point.

The sheer number of references on the subject of computer-aided filter

design suggests that in the electrical engineering area, it was the heaviest user

of early optimization techniques.

An extension of the use of optimization in electronis circuit design to con

sider both DC biasing effects as well as frequency-domain matching was first

accomplished by Dowell [44] at Berkeley. Shortly thereafter, his colleague

McCalla [99] combined the automated DC biasing techniques of Dowell with the

previous work of Walsh [151] and Wooley [161] in optimizing small-signal fre

quency responses without bias point variation Thus, McCalla's optimization con

sidered the direct AC dependence of design parameters as well as the indirect

DC dependence through transistor biasing. The optimization performance func

tion was again the sum of the squared errors between actual and desired

responses summed over frequency. The Fletcher-Powell method [49] with cubic

interpolation line search was added to the circuit simulator SLIC [68] and pas

sive element values only were allowed as design parameters. An experiment

tried by McCalla was to minimize the temperature sensitivity of his circuits by

summing deviations at two different temperatures. After poor results, he con

cluded that optimization could not be effectively extended to optimizing tem

perature sensitivity due to the expense of computing the necessary second

order derivatives. Another startling conclusion he made was that all of his

optimization results could have been reached without the aid of the automated

§2.1 13

approach, just more slowly.

The next step in the evolution of optimization in engineering design was the

formulation of certain design problems as general nonlinear programming prob

lems. This approach required the formulation of a single performance function

(cost) to minimize subject to a set of inequality constraints, as in the following

standard form:

minimize \ / (x) | g(x)^0 J

There was little use, however, of what few constrained optimization algorithms

existed; in many cases [136,86] the constrained problem was transformed into

an unconstrained minimization problem using, for example, the penalty function

approach of Fiacco and McCormick [47]. Indeed, many researchers who

described algorithmic procedures did not even mention how this important

transformation might be carried out. An early review paper by Director [41]

simply states that the first step of an automated network design procedure

requires "a [scalar] performance function which embodies the design criterion."

For the time-domain design problem, the integral performance function

T

e = y^e(w,q,p,r) dt
o

and the Fletcher-Powell [49] or Fletcher-Reeves [50] optimization methods were

suggested.

In parallel with the increased use of nonlinear programming in design came

great improvements in the efficiency of calculating the gradients necessary for

the most useful optimization algorithms. For electronic circuits, Rohrer and

Hachtel [132,57] first showed how the computation of the gradient of a perfor

mance function at a single frequence point with respect to every design

§2.1 14

parameter could be accomplished in just two network analyses; previously it had

been thought that this computation required an additional analysis for each

design parameter. Shortly thereafter, Director and Rohrer showed a similar

result by introducing the adjoint network approach [39,40]. It used a derivation

that, although somewhat more general by not requiring a state variable formula

tion, was easily understood and the adjoint approach was used by many others

as a means of calculating gradients for a wide variety of applications as well as

for optimization

These highly efficient methods for gradient computation have not been used

as much as might be expected in other areas of engineering. Recently, however,

there has been an interest in adding these methods to the ANSR [101] general

purpose structural simulator [38].

2.2. Recent Design Systems

The maturation of simulation and optimization techniques have caused

several computer-aided design systems to appear over the past few years. The

first one to be discussed, ISPICE, provides only analysis functions whereas the

remainder, A20PT, INTEROPTDYN, and APLSTAP, are explicitly designed for

engineering optimization applications.

ISPICE (for Interactive SPICE [5,7]) is mentioned here because it was the

first interactive design system used extensively by this author and its elegant

interactive man-machine interface has had a significant influence on the design

of DELIGHT. ISPICE is a user-friendly design tool which was created by combin

ing the SPICE circuit analysis program [105] with the interactive and labor-

saving aspects of AEDCAP [l]. One particularly interesting feature of ISPICE

relevant to the design of DELIGHT is that it has no internal size limits. Rather

§2.2 15

than allocating fixed size arrays or storage regions, ISPICE adapts to the circuit

being simulated and obtains from the operating system whatever resources are

required; simulations have been performed on circuits containing thousands of

elements. An important novelty of ISPICE is the way circuit elements are

assigned values in the circuit description file. A general expression capability

allows almost any VALUE in the circuit file to be a constant, an arithmetic

expression, a function reference, a variable parameter, or any combination of

these. Another feature is the truly interactive way ISPICE communicates its

results to the designer. Instead of following batch SPICE and dumping out

reams of data on all the circuit elements, the program responds to user queries

for various subsets of the available output data. The human-engineering of

ISPICE interactive commands is seen in the following samples:

SWEEP VIN FROM -10V TO 10V BY IV AT 10MEGHZ

PLOT VM(1) VS FREQ FROM 1MEGHZ to 100MEGHZ DEC 15

DISPLAY ELEMENTS R* Q101 QPAIR1 QPAIR2

The SLICE interactive program [9] in use at Harris Semiconductor was originally

conceived by this author and was initially patterned after ISPICE. The capabili

ties have since then been considerably expanded and SLICE is currently used at

Harris by many designers.

A20PT [58] was an optimization-based CAD system for electronic circuits

which added constrained optimization features to the ASTAP [2] network

analysis program. It was probably the first system to allow designers to specify

easily a wide range of objectives and constraints as arbitrary expressions of cir

cuit outputs. While A20PT was for the most part a batch program (ASTAP was

strictly batch), an important feature was the limited interactive capability in

§2.2 16

which the designer could interrupt and influence the course of the optimization.

He could alter either (l) the optimization weights, (2) ASTAP run controls, or (3)

parameters which control the optimization routine itself. The program com

bined the weighted sum of several objective or constraint functions, the latter

using penalty functions, into a single scalar function which was minimized using

the variable metric rank-one update method due to Cullum [32]. The program

also included box constraints, i.e., upper and lower bounds, on the design

parameters. The choice of weights was somewhat haphazardous, being adjusted

experimentally by the designer after observing initial optimization performance.

Because A20PT constraints were actually the integral of the designer-specified

expression, instantaneous violations might occur but be averaged out so that

the constraint was actually satisfied; ways of circumventing this problem were

suggested in [58].

In the digital circuit design experiments performed by the authors of [58]

several points were made. One was the difficulty in initially adjusting the

weights; often several optimization reruns were required. This could be very

costly if the circuit size was large. Another point was their discovery that the

design parameters and the objective functions were somewhat decoupled. This,

they said, is inherent in the design of a mixed nonsaturating and saturating digi

tal circuit in which the design specifications are a function of a single node. This

point shows that designers must pay close attention to the specifications they

formulate. Although A20PT initially showed great promise, the lack of truly

interactive features as well as the authors' limited drive to recruit users caused

it to never be used extensively by practicing circuit designers.

Recently a research team at Berkeley put together the INTEROPTDYN design

package [21] to enhance the use of optimization algorithms for engineering

§2.2 17

design and to study the methodology needed for man-machine interaction and

graphical display. It combined a particularly powerful optimization code

OPTDYN [20], INTRAC-C, an extension of the INTRAC [155] language-interpreter

construction module developed at the Lund Institute of Technology, and various

application-dependent codes such as the CDP classical design package [33] from

Imperial College in London The INTEROPTDYN package allowed the user to write

his own color or black-and-white graphical display programs as macro files. By

inserting certain "call for interaction" INTRAC calls into the existing OPTDYN

subroutine, the creators of INT1CR0PTDYN allowed the user to control the flow of

computation by executing the optimization algorithm one step or one cycle of

steps at a time. Computation could be interrupted and a matrix "scratch pad"

used for diagnostic calculations in the middle of a run.

In the INTEROPTDYN-SISO version [124] for the design of single-input single-

output linear feedback systems, the objective and constraints of the design

problem formulation were fixsd, with the designer only providing numeric

parameter values for his performance goals. These parameters controlled: (l)

an envelope on the closed loop step response, (2) frequency-domain criteria, (3)

upper and lower bounds on the plant input and its derivative from a step input,

and (4) design parameter box constraints. The built-in objective function to

minimize was the integral squared error of the closed loop step response. The

design parameters were limited to coefficients of the numerator and denomina

tor polynomials of the compensator transfer function. INTEROPTDYN-SISO and

other versions of INTEROPTDYN were used successfully for several different

design applications but the difficulty in coding arbitrary objectives or con

straints limited their use to academic circles at Berkeley. Of importance, how

ever, is the fact that INTEROPTDYN helped to clarify ideas about what type of

§2.2 18

interactive language and man/machine communication through graphics is

necessary in such a design system.

The APLSTAP system [60] developed at IBM is an interactive design system

which can operate in conjunction with an arbitrary existing simulation package.

Presently APLSTAP algorithms written in APL exercise control over the ASTAP

[2] circuit analysis program. They attempt to mathematically mimic the com

mon practice by designers of trading off several performance objectives by

linear extrapolation of their expected performance. Through interactive itera

tions with a novel computationally inexpensive linear programming (LP) step,

key tradeoffs between multiple objective and constraint functions are revealed

to the user. He uses this assistance and his knowledge and experience about the

various functions to select a maximally effective LP step. Thus, the designer is

constantly making tradeoff decisions in a design process in which emphasis is

placed on getting the most from the first few optimization steps rather than on a

completely convergent sequence of steps; in many design situations particularly

involving large problems, convergence is computationally too expensive or not

justified on the basis of model accuracy.

The APLSTAP system may be used for both optimizing multiple objectives and

for improving the worst case performance of#multiple objectives over the varia

tions of a specified set of worst case statistically uncertain parameters. In each

of these design problems the LP step may be used in either of two modes. MIN-

JOAXmode attempts to find the smallest values of all the objective functions over

a user specified set of box constraints on the design parameters. These box con

straints are an estimate by the designer of the range of linearity of the objective

functions over each parameter. MINBOX mode attempts to find the smallest

change in the design parameters which will achieve a user specified desired

§2.2 19

improvement in each of the objective functions. The MINBOX LP step either pro

duces the smallest change which achieves those improvements or states that

they are not possible.

Since APLSTAP is a relatively recent system that has not yet been extensively

used by practicing designers, the success of its approach is not yet known.

2.3. limitations of These Systems

In some cases such as electronic filter design, early efforts were successfuL

But for more complex present-day design situations, both early as well as recent

optimization-based design systems have many weaknesses which limit their use

by practicing engineers. This section categorizes these weaknesses as those

stemming from:

1. difficulties encountered by designers,

2. shortcomings of existing algorithms,

3. shortcomings of programs implementing algorithms,

4. difficulties encountered by optimization experts, and

5. shortcomings of simulation programs.

Recognition of these weaknesses leads to a set of goals and design criteria for

DELIGHT in chapter 3.

Designers. The simplest reason why optimization was not used much for

design is that many designers were (and still are) reluctant to use even CAD

analysis tools. Those designers who did recognize the benefits a computer could

provide were usually not trained in the areas of optimization or computer pro

gramming and thus had to use others' computer programs. Many times it just

wasn't possible to access such programs, especially ones which contained the

§2.3 20

algorithms they needed. "When access was possible, it was often difficult for

designers to formulate their design problems as well-posed optimization prob

lems and to understand how to successfully use the algorithms which had been

implemented. Brayton and Spence [23] emphasize these difficulties in listing

the following objections design engineers might have to viewing their design

problems as nonlinear programming problems:

1. "Design problems are not this simple."

2. "There is more than one design objective to be [improved]."

3. "It is not possible to state the design objectives in terms of mathematical

functions."

Another point worth mentioning is that very often a "guru" of an institution

would be the first to try to use a particular optimization program and if it did

rot quickly and easily yield success, he might make an initial conclusion which

ether engineers would accept as doctrine. This point is brought out by Paul Weil

[152] about computer-aided design in general in an amusing article about his

Laments as a computer-aided design researcher.

Existing Algorithms. During the time period of most of the efforts described

in sections 2.1 and 2.2, the best known optimization algorithms were usually

inadequate to solve the complex design problems which faced many designers.

Often multiple performance objective functions were combined into a scalar

objective function to minimize using the weighted sum method. This was pre

cisely the approach used by COMPACT and many other programs [6]. As pointed

out by lightner and Director [94], this may yield a poor design no matter what

weights are chosen or what optimization technique is used for the minimization.

As mentioned in sections 2.1 and 2.2, inequality constraints were often handled

by penalty functions, an approach prone to have all kinds of problems. Penalty

§2.3 21

functions are also far too primitive to solve design problems involving functional

constraint specifications which must be satisfied for all values of an independent

parameter over an interval.

Other difficulties with existing algorithms were that they often converged

very slowly and sometimes not at all. It was not rare to find popular algorithms

without any guaranteed convergence behavior whatsoever. Also, in cases of slow

convergence, few algorithms were originally designed so that they had parame

ters which could be used to tune their performance to the particular class of

problems being solved. In A20PT[58] and others that did have such parameters,

it was probably next to impossible for practicing engineers to understand how to

adjust them.

Programs Implementing Algorithms. The main shortcoming of many early

optimization programs was that they offered a fixed problem formulation which

was inadequate to handle widely varying design requirements. Examples are the

TRANSFIT [103] and COMPACT programs [6] mentioned in section 2.1. Designers

could only supply desired curves to be matched by their filter or circuit transfer

functions; they could not introduce additional constraints on, say, the pole loca

tions of their desired filters. Another example is the fixed problem formulation

of the INTEROPTDYN-SISO package [124] discussed in section 2.2. Although the

formulation may have reflected the goals of many feedback system designs, the

rigidity of the package not only made it difficult to add new constraints, but

also, in early versions, forbid even a simple swap of a particular constraint and

the cost. Thus, a designer could not minimize the rise time of his system sub

ject to constraints on the integral square error of the closed loop step response.

Another deficiency of optimization programs was that they did not provide

§2.3 22

any feedback to the user (especially powerful graphical feedback) on how well

the algorithm was performing. Slow convergence can be caused by algorithm

parameter values which cause sub-steps of the algorithm to run very poorly on a

particular design problem. There are usually other values of these parameters

which can greatly enhance algorithm efficiency. However, a designer usually

had no way of knowing which ones to modify. Also, the algorithm might have

contained adjustable parameters but the program implementation did not make

them accessible to the user. Both of these shortcomings usually resulted in

many optimization iterations or, in the case of batch programs, many reruns,

costly both in computer resources and designer time.

Optimization Experts. Lack of emphasis by developers of optimization algo

rithms on certain aspects of real-world design problems may have caused their

algorithms or programs implementing them to have less practical value to

designers. For example, any program which did not put heavy emphasis on

parameter and constraint scaling would probably perform poorly on real-world

problems in which constraints or parameters sometimes take on values which

may be orders of magnitude apart. The algorithms or programs reported in

[21,39,136,20,58,103] do not appear to have given this emphasis. Other things

which algorithm developers may have lacked were (are) programming expertise

and the time or interest to write a complete, user-oriented optimization pack

age containing, for example, clear error messages and sufficient documentation.

Even with programming expertise, the time required to code, debug, and test an

algorithm was usually very long. Moreover, most optimization programs were

usually written in Fortran, with its well-known deficiencies.

A review of the literature reveals the curious and popular notion by early

optimization experts that optimization techniques were supposed to completely

§2.3 23

automate the design process. In other words, they did not perceive the needs or

the advantages of interactive computing, in which user and computer are com

plementary as they work together to carry out an optimization. This notion can

be seen in the following partial quotations:

(... will result in a) completely automated third (parameter adjust
ment) phase [28, page 242].

... methodology of "automated" or "hands-off" design, where "algo
rithm" replaces "insight" [27, page 139].

Work is now in progress with the hope of constructing a set of
optimize functions and weights so that the program may optimize
from 300ns to 107ns in a single optimization run without user
intervention [58, page 503].

Is it any wonder that early programs did not provide user feedback or a means

of tuning algorithm performance ... their developers did not even expect the

designer to be part of the optimization process!

One reason regarding "optimization experts" of why optimization has not

"caught on" sooner is that after a few of them tried it in the early seventies with

primitive algorithms that did not perform well, they consequently reached

unfavorable conclusions1.

Simulation Programs. The shortcomings of both past and present simulation

programs are not a limitation of optimization-based design systems but are a

reason why optimization has not been used more widely in design. The first

shortcoming is that coupling to simulation programs is usually very difficult to

achieve. Most simulators have not been designed to behave as function evalua

tion routines for an optimization process. Even when they have rerun capabili

ties for modified input parameter values, it is either through interaction as in

1See, for example, the conclusions of McCaUa's dissertation [99].

«2.3 24

ISPICE [5,7] or through additional input "cards" as in ASTAP [2] or a recent ver

sion of SPICE [105], and not from a capability of receiving new input parameter

values from a subroutine call by an algorithm. The already encountered

difficulties in coupling DELIGHT to the SPICE [105] and ANSR [101] simulators

bear out this point. Recently, however, work has begun on SPICE3 [129] with

precisely the goal of having all access to a central "kernel" of analysis routines

via a well-defined set of subroutines, including ones for parameter value update.

A further deficiency of most simulators is that they do not compute gradients

needed by widely used optimization algorithms. As a result, gradient calcula

tions are performed using finite differences, leading to a large increase in the

time needed to perform an optimization.

Finally, the large number of different design environments in engineering

means that there is a correspondingly large number of different simulation pro

grams. Since the coupling of a successful algorithm subroutine to any particu

lar simulator is usually very complex and interwoven, it can be difficult to

extract the successful algorithm code for the purpose of using it with another

simulator. Thus the spread of optimization to different areas is very slow.

In the next chapter, we shall consider the limitations discussed in this sec

tion in formulating a set of goals and design criteria for the DELIGHT system.

CHAPTER 3

Goals and Design Criteria of DELIGHT

3.1. Setting the Stage

In this chapter we discuss the goals of the DELIGHT system and the resulting

set of design criteria intended to meet these goals. In creating these design cri

teria, we try to avoid the various limitations and pitfalls pointed out in the previ

ous chapter.

The goals of DELIGHT fall generally into four broad categories. The first and

foremost desire is that the system be easy to use. This goal is essential to the

success of any large system intended to be used by many types of users. Com

puter operating systems such as UNK1 [131] and Interlisp [147] have long recog

nized the importance of a friendly user interface. Recently, many researchers

have also been stressing this importance [89]. Singer et al. [140], in describing

the design of a recent interactive environment for PASCAL programming,

emphasizes this point They recognized that human engineering must have top

priority in the design of a system from the outset: it cannot be grafted on later.

Our second goal is that DELIGHT be versatile. It must be useful in many

different areas of engineering design, particularly in industrial environments.

Third, the DELIGHT system must be relatively efficient, that is, make good use of

limited computer resources. Our last goal is that the entire system be portable

from one computer environment to another. The importance of this goal is

1 Unix is a Trademark of Bell Laboratories.

25

§3.1 26

recognized more and more today and was one of the major underlying motiva

tions for the design of the new programming language ADA [88,8] by the Depart

ment of Defense.

One of the original DELIGHT objectives was to create a system that would

facilitate its use by several different types of users. It is convenient to discuss

the goals of DELIGHT by considering the needs of three classes of users. Our

plan is to first describe the three classes in section 3.2. In section 3.3 we partic

ularize the needs of each of these classes while section 3.4 summarizes the

chapter by listing the resulting set of design criteria.

3.2. Classes of Users Supported

The DELIGHT system iss intended to provide congenial support to the following

three classes of users:

1. Optimization Experts

2. Engineering Designers

3. System Personnel and Application Program Developers

Optimization experts create or modify the optimization algorithms used by

designers. They usually work with the actual algorithm implementations and

peripheral user-interface routines which allow algorithm progress to be easily

observed and controlled by designers. When a special problem arises that can

not be handled by an existing algorithm, they are usually the ones who are

called upon to tailor it or create a new algorithm.

Engineering designers use the DELIGHT system to assist their day-to-day

design efforts. The types of designers to be supported by DELIGHT include those

who are not computer experts and want to use the system in the simplest

§3.2 27

manner, as well as advanced users. Advanced DELIGHT users, who usually have a

much greater understanding of system features and operation, often seek new

capabilities from the support personnel. During an optimization they also try to

insure that they are using the system in the most efficient manner.

There are several subclasses of system personnel. One class contains those

whose main task is to support the enhancement of non-algorithmic aspects of

the system. This includes meeting the requests of users and porting the system

to new computer environments. Another class includes those extending

DELIGHT into new areas of engineering by developing the required application-

specific versions of the system. The easier this development is to accomplish,

the greater the possibility of spreading the use of optimization to many areas.

3.3. Needs of the Various Users

In this section, we consider the needs of the three classes of DELIGHT users.

Our purpose is to lead to the set of design criteria presented in section 3.5.

Optimization Experts. The needs of optimization experts and algorithm

developers are many. The most important need is the ability to create new algo

rithms easily. This calls for an interactive high-level programming language that

can execute user-written code very soon after it has been written. To be

interactive, the language can either be interpreted or compiled into a machine-

independent intermediate form. A programming language environment brings

with it the need for test and debugging aids. There must be the ability to inter

rupt execution from the terminal, check the values of variables, etc., and

resume execution from the point interrupted. Also, the system must be very

forgiving to errors that will invariably occur during algorithm development.

These include floating point overflows, out-of-bounds array subscripting, and

§3.3 28

inversion of singular matrices. Many of these needs appear in general program

ming systems such as the Wilander [156] or the Carnegie Mellon GLIDE 2 [45]

PASCAL systems.

Another wish of algorithm developers to ease the implementation of new algo

rithms is to have their program code be compact and resemble as much as pos

sible the mathematical description of the algorithm being implemented. Conse

quently, most of the usual coding errors would be eliminated and the program

ming time shortened tremendously. This requires high-level readable access to

an arsenal of common mathematical manipulation and numerical analysis

software. Since the mathematics used in optimization algorithms is so diverse,

however, a language that is extensible [141], Le., can be extended to resemble

new mathematical syntax, is needed.

A final desire is to have practicing engineering designers use their algo

rithms. This leads to the requirement that all DELIGHT application packages be

able to use any general algorithms that may be developed.

Engineering Designers. The most pressing need of engineering designers is

to gain access to optimization in the many different design environments in

which they work. The resulting requirement that DELIGHT be able to interface

easily to many different simulators is discussed below.

Other wishes of designers include the following. It must be easy to convey

their design specifications to DELIGHT. There must be a way for them to

categorize design goals as either objectives to improve or as constraints that

must be satisfied. Also, it must be possible to indicate the relative importance

of the various specifications. Lightner and Director [94] emphasize this require

ment in one of their approaches to solving multiple criterion optimization

§3.3 29

problems. The system must allow arbitrary formulation of these specifications.

This calls for a general expression capability similar to that discussed in ISPICE

[5,7] and A20PT [58] in section 2.2. Also, the problem formulation must be

independent of any particular optimization algorithm selected. The need to be

able to easily input their design problem to DELIGHT calls for a powerful user-

oriented problem entry facility.

Engineering designers have several requirements that pertain to the optimi

zation algorithms that they will use. The first is that there must be a way of

selecting a "good" algorithm easily. This selection must be based on an interac

tive exploration of choices available in a library of algorithms. Moreover, these

algorithms must be able to solve complex design problems, have guaranteed

convergence behavior, and have parameters which can tune their performance

to the particular problem. In order to carry out the tuning of the algorithm,

designers must be given knowledge of how well the algorithm is performing. The

performance can be very sensitive to the initial values of the design parameters

and the conditioning of the problem formulation as well as to the values of the

internal tuning parameters. Due to the complex information that must be con

veyed, this necessitates graphical feedback on algorithm performance, most

effective in color. Myers [104] discusses the perception of symbols, the

avoidance of cluttering, character fonts, and other important considerations

needed in such graphics design. After a designer detects that the algorithm is

performing poorly he needs: (1) to be able to stop execution and adjust algo

rithm or design parameters, modify his problem formulation, or even select a

different algorithm, (2) to know how to make these modifications, and (3) to be

able to resume the optimization after any of these changes. These requirements

call for graphical output to show why the algorithm is not performing well and,

§3.3 30

as for algorithm developers, an ability to interrupt execution from the computer

terminal.

Another reason designers need interaction is that typically they cannot

specify a priori the relative importance of each of several design objectives until

the best capabilities of the design have been determined. This exploration of

tradeoffs, essential to any modern design methodology, is much more efficient

in an interactive environment.

System Personnel and Application Program Developers. The final class of

DELIGHT users consists of system personnel and application program develop

ers. Along with the extensibility needs of system personnel for molding such

things as problem entry facilities or application-specific commands of DELIGHT

into different design environments, are other needs which pertain to the porta

bility of DELIGHT. A logical requirement for the design of DELIGHT to follow is to

force all machine dependencies to occur .either in a small set of primitive rou

tines that can be easily implemented on many computers, or in preprocessor

substitution macros. These techniques have become quite popular recently.

For example, achieving portability through the use of macroprocessors is

reported by Brown [25], Hall et al. [61] list the primitive subroutines they used

for implementing their portable UNK-like shell in Ratfor2, while Stewart [143]

discusses both preprocessors and primitives. To be able to easily develop

DELIGHT applications packages, it must be easy to interface DELIGHT to any

existing simulation program. This requires a well-defined simulation interface

methodology which at the least consists of two features. One is the ability to

easily add existing routines to a set of DELIGHT built-in routines which are call

able from the interactive programming language. The second is the ability to

8 See appendix C for a list of DELIGHT primitives.

§3.3 31

access variables from the built-in routines so that they can be manipulated in

the same manner as ordinary variables of the interactive programming

language.

3.4. Resulting Design Criteria

In this section we summarize the previous sections of this chapter by listing

the set of design criteria for the DELIGHT system. These criteria are that an

optimization-based computer-aided design system must contain:

an interactive high-level programming language and associated test
and debug aids,

for easy extension, a language parser which is generated by an
automated parser generator (or compiler-compiler),

language extensibility which allows algorithms to resemble mathemati
cal descriptions and eases the entry of the system into new areas,

a built-in library of common mathematical software such as from UN
PACK [43] or the Harwell Subroutine Library [10].

a user-oriented problem entry facility allowing: (l) arbitrary problem
formulation through a general expression capability, and (2) a means
of conveying the relative importance of design specifications,

a methodology for performing tradeoff of problem specifications,

a library of optimization algorithms,

the ability to tune or substitute algorithms in the middle of an optimi
zation run,

color graphics features for displaying algorithm and problem perfor
mance that are independent of the particular graphical display device
used,

a simulation interface methodology that allows easy interfacing to
existing simulation programs, and

machine dependencies which have been grouped to allow easily porting
to other computer systems.

In the next chapter we survey various DELIGHT features which help it

meet the above criteria.

CHAPTER 4

DELIGHT System Features

4.1. Introduction and Overview

We have considered the benefits of applying optimization to engineering

design and identified many shortcomings of previous attempts to achieve this

goal. In this chapter we survey various DELIGHT features that help to meet the

design criteria given in section 3.4. In order to explain more easily other

features of the system, the chapter begins with a top-to-bottom description of

RATTLE, the built-in programming language of D1CLIGHT. This description begins

with such fundamental notions as what it is to be used for and why it was

created, followed by a description of the syntax of several statements that will

be used many times throughout this dissertation. Additions needed to make

RATTLE an interactive language include the ability to interrupt execution and to

catch certain run-time errors such as numeric overflows. The d&fine and macro

extensibility features of RATTLE are presented and used to create powerful

matrix operation macros. Such macros help achieve the goal that algorithm

RATTLE code resemble its mathematical description.

The primary purpose of the DELIGHT system—to apply optimization tech

niques to engineering design— is presented in two parts: the problem side in

section 4.4 and the algorithms side in section 4.5. The problem side is con

sidered first because the mathematical programming formulations and their

corresponding problem description facilities presented influence the algorithms

32

§4.1 33

and graphical displays needed to solve them. First, a single-cost problem for

mulation is presented, capable of handling a broad class of optimization prob

lems. However, to serve better our purpose in a design environment, a new mul

tiple objective formulation is proposed that attempts to capture the essence of

how a designer would like his design objectives to tradeoff. The crucial interac

tion between a designer and the optimization process as well as human-

engineered graphics to support this interaction are described later in the

chapter.

Optimization algorithms capable of solving complex design problems and hav

ing guaranteed convergence properties form a cornerstone of the DELIGHT sys

tem. We first introduce a library of optimization algorithms. After giving the

structure of a typical algorithm found in the library, we demonstrate this struc

ture by presenting an important class of algorithms known as methods of feasi

ble directions. These methods are particularly good for engineering design

problems. In fact, the algorithm we describe in section 4.5.2.2 for solving prob

lems posed using our multiple objective formulation consists of several enhance

ments to the basic method of feasible directions. We conclude this part with

how the optimization problem set up and the optimization algorithm chosen are

coupled. This involves user aspects as well as a special software interface that

allows algorithms to be clearly written while maintaining efficiency.

Due to the complex information that must be conveyed about both problem

and algorithm performance during an optimization run, graphical displays are

needed. General graphics features in DELIGHT are first presented in section

4.6.1. We then introduce several graphical displays, constructed from the basic

graphics primitives, that are used to exhibit this performance. The perfor

mance comb display introduced is instrumental in allowing design problem

§4.1 34

tradeoffs to be made and their effects to be observed. Using this display, we

emphasize a tradeoff methodology that has been applied successfully to

significant practical problems such as those covered in chapter 5. Furthermore,

in engineering design it is usually far too costly to obtain a truly optimum solu

tion Whereas in the past, most uses of optimization in engineering design

stressed finding such a solution, we strive for performance improvement in the

first few optimization iterations. The methodology we introduce insures that a

designer's wishes are accurately reflected during each and every iteration of an

optimization run.

Since the DELIGHT system is intended for many different areas of engineering

design, we close the chapter by introducing a simulation interface methodology

and other necessary features that facilitate the coupling of DELIGHT to existing

simulation programs. Part of the simulation interface exploits the compile-time

macro feature mentioned above to carry out certain table lookup operations

just once thus ensuring greater efficiency during the actual optimization execu

tion.

4.2. RATTLE Language

In order to meet the various goals of DELIGHT, an interactive programming

language is needed with very particular features. The subsections under section

4.2 give an overall description of the design and features of the RATTLE

language. RATTLE is an acronym for "RATfor Terminal Language Environment".

The functions of RATTLE in the DELIGHT design system are discussed in subsec

tion 1. Subsection 2 explains why a new language is required by first considering

the need for a non-standard language compiler and then discussing why existing

languages are unsatisfactory. The question of execution efficiency is taken up at

§4.2 35

the end of the subsection. In subsection 3, we discuss why RATTLE was designed

to be similar to the existing language Ratfor [78]. Several preliminary decisions

in the design of RATTLE are discussed in subsection 4. In subsection 5 we illus

trate basic RATTLE language statements and other necessary and helpful

language features. Arrays whose sizes may vary at run-time is a feature that

facilitates the implementation of optimization algorithms. Interactively gen

erated interrupts for stopping RATTLE execution are presented in subsection 6.

Subsection 7 discusses the nature of RATTLE interactive execution and its

importance to incremental program development. Finally, subsection 8 delves

into the various aspects of DELIGHT extensibility, including Ratfor-like defines

with extensions and compile-time macros.

4.2.1. Functions of the Interactive Language in

DELIGHT

The interactive programming language must serve several functions in the

DELIGHT computer-aided design system. The first is for describing design prob

lem objectives and constraints. Since in engineering design these will often

depend upon outputs of a simulation program, we may view them as composite

functions—in which the "outer functions" are coded in the DELIGHT language

and the "inner functions" are provided by the simulator. Since the parts of a

design problem formulation to be coded in the DELIGHT language must be coded

by designers, the language must be fairly easy to learn. One way of accomplish

ing this is to make it similar to a popular existing language. Being easy to learn

is also a requirement of designers for the second function of the language —the

implementation of problem-dependent output procedures. These procedures

display on the terminal screen problem performance in whatever form desired

§4.2.1 36

by the particular designer. They are automatically invoked after each major

step in DELIGHT optimization algorithms. Finally, throughout an optimization

run, designers will use the language to perform scratch pad calculations. The

purpose of these may be to verify further the performance of their design or to

determine how well the optimization algorithm itself is performing.

An important function of the programming language in DELIGHT is to imple

ment optimization and other computer-aided design algorithms. This function

embodies both the development of algorithms as well as their execution by

designers. The requirements in this regard for both optimization experts as well

as designers have been covered previously in section 2.3. Related issues are also

discussed in the next section.

The final function of the interactive language is to create new user commands

and features from a few built-in system features. In fact, although DELIGHT has

a large number of commands and other user features, it has a relatively small

number of intrinsic, "built-in" primitives (language statements and functions);

most commands are simply composed of these basic primitives. This function of

the language allows the DELIGHT system to meet the goal of being extended

easily to any design environment with few or no modifications to DELIGHT (Rat

for) source code.

The following table summarizes the functions of the language:

§4.2.1

Functions of the DELIGHT Interactive Language

1 To describe the design problem.
2 To create problem-dependent output.
3 To perform side calculations.
4 To implement and run algorithms.
5 To create new features from old.

37

4.2.2. Wiy a New Language is Needed

This section shows why a new progi-arnming language is needed by consider

ing each of the language functions given in the preceding section. There are two

parts to this requirement. The first is the need for a new form of language com

piler that operates interactively. The second is why existing programming

languages, used without modification, are unacceptable and hence a new

language is needed.

We first address why the language of DELIGHT must operate interactively.

Consider the previous language functions of describing design problems, imple

menting algorithms, and running algorithms with the ability to exercise interac

tive control. Suppose we require that both problem description functions and

algorithm procedures be written in a standard, non-interactive language such as

Fortran1. This makes it very difficult and time-consuming to develop or modify

algorithms or to change a problem formulation due to the lengthy load/linkage

phase needed for a large program2 and the inability to execute statements or

groups of statements one step at a time. INTEROPTDYN used this approach,

1 In this discussion, we often use "Fortran" to indicate any language whose normal working cycle
consists of compile, link, and execute phases. In the context of DELIGHT, the language would prob
ably be Ratfor [76] (as explainedin section 4.2.3 below) although we, in particular, usually choose to
avoid using this name due to the possible confusion between "Ratfor" and "RATTLE".

8 This situation may soon change since Kleckner [81] has recently demonstrated a fast "an-the-
fly" load/linkage capability for C procedures on the Unk operating system.

§4.2.2 38

which resulted in several different INTEROPTDYN versions in existence at Berke

ley, each of which required a skillful and time-consuming Fortran programrning

effort. INTEROPTDYN demonstrated that this "all Fortran" approach does allow a

user to exercise control over algorithm execution. An existing Fortran optimiza

tion algorithm subroutine was modified to make "call-for-interaction" subroutine

calls at certain key points that separate major sub-blocks of the algorithm. The

user could make interactive requests that caused specific sub-blocks to execute

a certain number of times. Interactively generated interrupts could also be

handled in this way; upon detecting an interrupt, the call-for-interaction subrou-

tine would switch to an interactive command mode instead of returning; to the

optimization routine. Of course, modification of the interaction point!? would

require recompilation of the optimization routine followed by re-linkagcs of the

entire INTEROPTDYN program. These reasons, as well as the functions: of per

forming side calculations and easily creating problem-dependent output rou

tines, make it clear that the language in DELIGHT must operate interactively,

without a necessary lengthy load/linkage phase.

We now discuss why existing programming languages, used without

modification, are unacceptable for meeting the goals of DELIGHT. The foremost

reason is that most languages offer many features which are simply not needed

in the applications for which DELIGHT is intended. Hence, including these

features may result in a compiler that is too large and more difficult to main

tain Another reason is that many present language features are not conducive

to a language that is interactive. For example, shared variables such as in For

tran common blocks usually complicate the linkage of several routines into an

executable program. Similarly, Fortran, Pascal, or C goto statements are gen-

§4.2.2 39

erally difficult to handle in an interactive language processor3. Hence, these

and other features should either be avoided in our language or redefined to

maintain efficiency. We emphasize the idea once put forth by C. A. R. Hoare that

one thing a language designer should not do is to "include untried ideas of his

own" [79, page 318]. As shown in the next few sections, the RATTLE language

borrows most of its features from several existing languages, most notably, Rat

for, C, and Modula.

Another reason why existing languages are unacceptable pertains to the

language function of creating new features from old. This is related to the

DELIGHT goal that the language should provide a convenient means for express

ing algorithms in a manner which resembles mathematical descriptions, in that

both have to do with language extensibility. Although a few languages exist that

offer some extensibility, none offers it to the extent needed in DELIGHT. Thus,

powerful language extensibility alone can justify the need for our new program

ming language. The extensibility of RATTLE is taken up further in section 4.2.8.

The problem of execution efficiency of the new language needs to be

addressed. The word compiler has been used above rather loosely. As discussed

in section 3.3, an interactive high-level programming language that can execute

user-written code very soon after it has been written can either be interpreted

or compiled into a machine-independent intermediate form. Although compila

tion was chosen for the language in DELIGHT in order to gain increased execu

tion efficiency over interpretation, the language executes considerably slower

then a compiled language such as Fortran. However, as discussed in the last

section, in engineering design the problem description objectives and con-

3 If language statements are forced to be numbered in a rigid manner as in Basic, goto state
ments can be handled more efficiently.

§4.2.2 40

straints are often composite functions that depend upon outputs of a simulation

program, whose execution time requirements are usually far greater than that

needed to execute the "outer functions" coded in the interactive language.

Similarly, optimization algorithms make calls on Fortran matrix manipulation

and numerical analysis routines. Thus, the inefficiency of the language becomes

less significant since it can be viewed as a high-level "controller" language which

makes calls to more efficient (though time-consuming) Fortran routines.

4.2.3. TOiy RATTLE is Similar to Ratfor

The RATTLE interactive language of the DELIGHT system was designed to be

similar to the existing programming language Ratfor [78], a language which is

translated by a Ratfor preprocessor to Fortran and then compiled. There are

several reasons for this:

1. The RATTLE language must be easy to learn. Ratfor is a fairly simple

language and with a few extensions is adequate for the purposes of

DELIGHT. Also, presently many engineers are familiar with the characteris

tics of Fortran, for example, its syntax rules for expressions.

2. The language must provide structured programming constructs for reada

bility and to foster good programming style. The Ratfor control structures

are based on the C language [80] and the large amount of maintainable

code written in C under the UNIX operating system [131] demonstrates that

C has adequate control structures.

3. After a RATTLE procedure is working and fully debugged, it can be con

verted to Ratfor for efficiency. This conversion is usually undertaken only

for highly repetitive calculations without input or output which would run

much faster in Ratfor.

§4.2.3 41

4. DELIGHT itself is written in Ratfor. The Ratfor language was chosen for

implementing DELIGHT because Ratfor shares Fortran portability since it is

translated to standard Fortran. This, and the fact that a portable Ratfor

preprocessor is available, are essential to meeting the DELIGHT goal of por

tability. Another language translated to Fortran that could have been

chosen is the EFL language of Feldman [46]. It allows not only C-like control

structures but also powerful data structures. However, to our knowledge,

no portable EFL preprocessor written in Fortran exists; EFL itself is written

in C and runs under UNK.

4.2.4. Preliminary Design Decisions

The various DELIGHT design criteria which call for an interactive high-level

programming language as well as the considerations in the last few sections have

lead to the design and implementation of the RATTLE language. We first discuss

a few important design decisions that eliminate the need for some features of

Ratfor while adding a few others.

No Type Declarations. Probably the simplest usage of RATTLE is as an

interactive "calculator" for performing side calculations while debugging or dur

ing an optimization run. The values of arbitrary expressions can be printed and

variables and arrays can be created and assigned values simply by typing the

appropriate RATTLE statements directly into the terminal. Due to this "calcula

tor mode" usage, an early design decision made was to not require the type

declaration of any scalar variables or arrays. This is directly opposite to the

current trend for strong typing in programming languages such as Pascal [69].

However, strong typing is generally needed to catch programming errors in

large programs, while most optimization algorithms to be implemented in

§4.2.4 42

RATTLE consist of subprocedures that are small and contain very few variables.

Moreover, as Raskin states in a recent letter [130], there is no justification that

declaring all variables improves the reliability of computer programs; declara

tions separate the information about a variable from its use thus violating the

idea of "locality". (Though this comment applies to languages such as Pascal, it

does not seem to apply to nested block structure languages such as Algol [36] in

which items may be declared at the places where they are required; Algol pro

grams can thus display a high degree of locality.) In DELIGHT, variables created

in calculator mode exist in a pool of double-precision floating-point scalar vari

ables and arrays.

Import Statements. The next step in the design of the RATTLE language was

the introduction of a facility for breaking a program up into a number of self-

contained units that communicate with eacia other in a precisely defined way.

Procedures provide this facility and in essence make the programming of large

projects feasible. In DELIGHT. RATTLE procedures allow a group of RATTLE

statements, the procedure body, to be called for execution as a unit from

several places even though the procedure is compiled only once.

There is a requirement in optimization algorithms and other programs for

procedures to share variables. User-settabie algorithm parameters are an

example of variables that need to be shared. One way of accomplishing this is

simply to pass the shared variables as arguments to each procedure. But this

can lead to very long argument lists. Another technique is to make all variables

from the pool mentioned above global, that is, accessible to all procedures.

Thus, shared variables would first be created in the pool, and every procedure

would share them. This is similar to the scope rules in Pascal for two levels of

procedures, the outer level being a fictitious procedure containing all of the pool

§4.2.4 43

variables. However, this technique can lead to unsuspected variable name

clashes with variables outside the procedure body; all procedure variables would

have to be given unique names. This would make it very difficult to write pro

cedures in a modular fashion, i.e., without knowing the precise context in which

they were to be used. The approach adopted in RATTLE is borrowed from the

programming language Modula [158]. Shared variables are still created in the

pooL However, instead of having automatic access to all of the pool variables,

procedures list those variables that they intend to use with an import state

ment. Other variables which are created inside the procedure body are called

local variables and are not considered part of the pool. There is no possibility of

having name clashes with local variables from other procedures or from the pool

variables. RATTLE procedures and import statements are discussed further in

the next section.

TKnHing of LocalVariables. Another important consideration in the design of

RATTLE is the binding of local procedure variables to physical memory locations

as explained in chapter 4 of Barron [19]. How variables are bound is affected by

the following consideration. Recursive procedures have not been necessary for

the implementation of most reported optimization algorithms. Thus. RATTLE,

like Ratfor, does not allow recursion. In other words, no procedure or function

may call itself or any other procedure which calls itself. The absence of recur

sion allows static allocation to be used; local procedure variables are bound to

fixed memory locations. This has the effect that local variables retain their

values between procedure calls. This is particularly important in DELIGHT since

it allows the values of local variables to be displayed after execution has been

interrupted or during debugging without the need to add special debug print

statements to procedures.

§4.2.4 44

Variable Length Arrays. Optimization algorithms often involve many arrays,

including work arrays, whose dimensions are related to the dimension of the

problem being solved. The following possibilities exist for handling RATTLE work

arrays that are needed by algorithm procedures:

1. Force locally declared arrays to be of fixed dimension. This then requires

that the dimensions be large enough to handle the largest anticipated

optimization problem. An obvious disadvantage is the waste of storage if

many large arrays are declared in many procedures.

2. Declare space for work arrays outside of the procedures and pass these as

additional arguments to the procedures. This is the alternative used in the

Fortran Program library for Optimization of Gill et al [51]. However, this

has the disadvantage that it would take away some of the elegant simplicity

of short argument lists; the argument list of a given procedure would

include not only input/output variables, but also arrays whose sole purpose

would be for temporary intermediate results.

3. Provide arrays whose dimensions may vary dynamically at run-time. In

Algol [36], procedures may contain declarations of arrays whose dimensions

depend on local scalar variables of the procedure. Similarly, the Carnegie

Mellon GLIDE 2 engineering design system [45] allows variable length one-

dimensional arrays of components of the same type. The decision made for

RATTLE was to allow all arrays, both local and nonlocal pool arrays, to have

any number of dimensions that depend on arbitrary RATTLE expressions

(the syntax is shown in the next section). This avoids the disadvantages of

alternatives 1 and 2 above. In particular, procedure work arrays need

never be included in the procedure argument list.

§4.2.4 45

An additional advantage of handling algorithm work arrays in this way is the

flexibility it provides if new algorithm sub-block procedures are developed or

existing ones are modified. If the new algorithm requires additional work arrays

for temporary results, the argument list of the sub-block procedure is not

changed and any other procedures that call that sub-block procedure need not

be modified.

4.2.5. Basic Language Statements

The basic language statements and other features of RATTLE are displayed in

this section. We start with the simplest statement for printing the value of

numeric expressions, followed by more advanced features for controlling the

format of what is printed. We then take a look at various other language state

ments including assignment, if, and various types of loop statements. The sec

tion ends with a discussion of RATTLE procedures and functions and two new

statements for sharing variables between procedures or functions. Since RAT

TLE is an interactive language, the introduction to these statements is best

accomplished by showing what would actually appear on the terminal screen.

The boldface text in all of the examples shown here is what the user types or

places in a file using an interactive editor4. The DELIGHT prompt string is "1>";

when this is seen on the terminal, DELIGHT is waiting for the user to input either

a command or a RATTLE language statement.

Simple Unformatted Output. The simplest way. to get the value of arbitrary

numeric expressions is with the print statement. The print statement may be

followed by any number of expressions as in the following examples:

4 The text shown here in boldface can actually be typed directly into the terminal for "hands-on"
experience with RATTLE and DELIGHT.

§4.2.5 48

1> print 1.3
1.300
1> print 1/3 ain(3.1416/2) 2»*64
.3333 1.000 1.845e+19

In the second example, the operator "**" stands for exponentiation. Thus,

"2**64" means 2 to the power of 64.

Formatted Output Using printf. Whereas the print statement does not allow

any control of the format of the numbers printed, the printf statement does.

Patterned after the printf statement in the C programming language [80], it

requires a quoted format control string followed by from 0 to 6 arguments which

must be in one-to-one correspondence with conversion specifications in the con

trol string. Unlike Fortran write and format statements, this syntax has the

advantage of keeping both the format and the list of variables to print in the

same statement. The following two examples show the output of one and then

two real numbers:

1> printf 'Xr/n' 1/3
"1333

1>* printf *imn=%r wox=%r/n' -2*»8 2*»9
min=-2.560e+2 max= 5.120e+2

The quoted control string contains two types of objects: ordinary charac

ters, which are simply copied to the output, and conversion specifications, each

of which causes conversion and printing of the next successive argument on the

line. Each conversion specification is introduced by the character %and ended

by one of the conversion characters i, r, c, s, or p. The meanings of the conver

sion specifications is adapted from those given in the C programming language

manual [80]. For information on all the conversion characters, see the DELIGHT

Reference Manual [110]; only the r conversion specification is discussed here.

To output a real number, %r may be used as in the above examples and has a

§4.2.5 47

default of 4 significant figures. The number of significant figures printed may be

controlled by, e.g., using %.7r to get 7 significant figures printed to the right of

the decimal point. The /n means output a NEWLINE, Le., go to the next output

line, at that point in the output; notice the results of the first example below: an

extra blank line has been output due to the leading /n in the format control

string. The second example below shows that a / character is output by preced

ing it by another /; the / character is actually an escape character which

changes the meaning of any character it precedes.

1> printf '/n A=X.6r/n B=%.2r/n* 1.0 2000/2

A= 1.000000
B= 1.00+3

1> printf 'Answer is 3//4/n*
Answer is 3/4

Number Conventions for Post-attached Units. To facilitate its use in an

engineering environment, the RATTLE language follows SPICE [150] and ISPICE

[5,7] in supporting certain metric scale factor suffixes which may be attached to

any number. In RATTLE, a number may be an integer such as 12 or -44, a float

ing point number such as 3.14159, either an integer or floating point number fol

lowed by an integer exponent such as le-14 or 2.65e3, or either an integer or a

floating point number followed by one of the following scale factors:

p 110"12 n I 10"9 u £ 10"8 m I 10~3 k I 103 me k 108 g k 109

Letters immediately following a number that are not scale factors are ignored,

and letters immediately following a scale factor are ignored. Hence, 10, 10u,

1QV0LTS, and 10/iz all represent the same number, and M, mA, MSEC, and

mwatts all represent the same scale factor.

Assignment Statements and Continuation. Assignment statements in RAT

TLE are identical to those in Fortran. They obey the Ratfor continuation rule

§4.2.5 48

which allows them to be continued on the next line if they end with a character

which could not possibly legally end an assignment. In particular, they are con

tinued if they end in any of the characters:

+ -*/,(!&

The last two characters above are logical operators, discussed later.

Several RATTLE assignment statements are shown below. Note that the

prompt character changes to "J" after a partial statement has been typed in but

before the complete (executable) RATTLE statement has been typed. Wilander

[156], in the Pathcal program development system for Pascal, alsio relies on

different prompt characters to indicate the state of the system. However, in

Pathcal, the absence of a prompt string altogether indicates that trie system is

awaiting more input. In DELIGHT, the prompt "J" was chosen because in many

cases, the character "J" itself is expected to close a statement block (see below).

1> Nparam = 2
1> array grad(Mparan)
1> grad(l) = 2 + 3M0B
1> grad(2) = grad(l) -
1} 3 - 4/108
1> gradnoxm = aqrt(grad(l)*grad(l) + grad(2)*grad(2))
1> gradnaxO = mox (0 ,
1J grad(l). grad(2))

In the above examples, an array has been declared with the array statement and

the built-in RATTLE functions sqrt and max have been used.

If-statements. The purpose of an if-statement is to test the value of a logical

expression and execute a RATTLE statement if the logical expression is TRUE.

This statement is needed to allow conditional execution of parts of an optimiza

tion algorithm. The general form of an if-statement is:

§4,2.5 49

if logical-expression
RATTLE-statement

else
RATTLE-statement

Unlike Fortran or Ratfor, the logical expression need not be surrounded by

parenthesis. The else-clause, i.e., the word else and the associated RATTLE

statement are optional; if not there and the logical expression is FALSE, execu

tion just falls through to the next statement (or DELIGHT awaits further terminal

input). The following are several if-statements:

1> if (firadnorm= 0)
1] printf 'Gradient has become zero./n'
lj else
lj printf 'Continuing with nonzero gradient./n*
Continuing with nonzero gradient.
1> if NparanoO
lj print Nparan
l! go
2.000

Note that the second if-statement above does not execute immediately

since DELIGHT is waiting for a possible else-clause; typing go forces it to exe

cute. Of course, the else-clause may be given, as in the first example, and no go

will be needed.

The first if-statement above also shows the RATTLE relational operator, ==,

for checking for equality of two quantities. The logical expression A==B is true

if variable A equals variable B. Other RATTLE arithmetic, relational, and logical

operators along with their precedence are shown in the following table. The

upper entries have higher precedence than the lower: A+B*C is automatically

grouped as A+(B*C) since * has a higher precedence (lower numeric value) in

column one of the table than +. Operators with the same precedence value in

column one are grouped left to right: A*B/C is automatically grouped as

(A*B)/C. As a final example, a>=b|c/=d&e==/ is grouped as

§4.2.5

(a>=b)\((c!=d)&(e==f)).

RATTLE Expression Operators

Precedence Operator Meaning

1 ** Exponentiation
2 * Multiplication
2 / Division
3 + Addition
3 - Subtraction
4 <= Less than or equal to
4 < Less than
4 == Equal to
4 j= Not equal to
4 >= Greater than or equal to
4 > Greater than

5 ! Logical not
6 & Logical and
7 1 Logical or

50

Statement Hocks. To make a RATTLE statement such as if act on more than

one statement, the statements must be surrounded by curly brackets. This

allows one to program the idea: "if something is true, do this group of things".

The use of curly brackets for a statement block is shown in the following if-

statement:

1> if (gradnorm != 0) (
lj printf 'Gradient ia nonzero./n'
lj gradnormlnr = 1 / gradnorm.
11 i
11 go
Gradient is nonzero.

Barron [19] also points out that statement blocks encourage the production of

programs displaying a high degree of locality that is important in the context of

virtual memory computers: a program with good locality tends to have a small

§4.2.5 51

working set and therefore performs well in a paged environment.

Separation of Statements by Semicolons. Statements (or commands) may

be separated by semicolons on the same line as shown in the following examples:

1> print 1 ; print 3k/6 ; date
1.000
5.000e+2

Date: 11/04/82 Time: 03:13:12
1> if (gradnonn!=0) { printf 'Nonzero/n' ; gInT=l/gradnonn \
U go
Nonzero

Loop Statements: "While. Repeat-Until and For. These RATTLE statements,

like the if-statement, take exactly one RATTLE statement as their body, unless

several statements are surrounded in curly brackets. Their usage is seen by

considering the following four ways to add up the entries in a one-dimensional

array. Here, we use the DELIGHT comment convention: anything following a "#"

character up to the end of the line is considered a comment and is discarded by

the RATTLE compiler in DELIGHT*5.

1> array z(l0) # Create the array.
1> for i = 1 to 10 # Initialize the array: z(l)=l,
1) «(i) = i # z(2)=2, z(3)=3, etc.

1> rani =0 # METHOD 1
1> for i = 1 to 10

1) suml = suml + z(i)

1> sum2 = 0 # METHOD 2
1> for (i=l ; i<=10 ; i=i+l)
lj sun? = sine + z(i)

1> 8im3 = 0 # METHOD 3
1> i = 1
1> nhile (i <= 10) \
1] sun3 = sum3 + z(i)
1 i = i 4- 1

U)

5When typing in any of the examples shown here, comments need not be typed; they are there
for clarification and Indeed are not in boldface type.

§4.2.5 52

1> ran* = 0 # METHOD 4
1> i SB 0

1> repeat {
lj i - i + 1
lj ran* = rant + x(i)
1))
lj until (i = 10)

1> ## Now check the results.
J> printf "Xi Xi Xi Xi/n* suml sum? sumS ran*
55 55 55 55

Additional information about these loop statements is found in the DELIGHT

Reference Manual [110], especially the not-so-obvious Ratfor-like for-loop used

in METHOD 2.

Breaking Out of Loops with the break statement. The break statement

allows any RATTLE loop to be exited before the normal loop termination Execu

tion resumes with the statement following the last statement of the body of the

loop. In the example below, the inner j loop normally would execute 6 times but

due to the if...break statement it only executes 3 times, as seen in the output:

> for i = 1 to 2 {
j printf *i=Xi/n' i
j for j = 1 to 6 (
j printf • j=Xi/n* j
j if (j = 3) break

I , '
=1

j=l (Note, here, that j is never
j=2 printed greater than 3.)

i=2

j=2
3=3

Arrays. As mentioned in the previous section, arrays in RATTLE are all

dynamic, i.e., may change size at any time. The array statement is an execut

able statement and may appear anywhere in a RATTLE procedure, not just at the

top. Arrays may have any number of dimensions and the values given for the

sizes of the dimensions may be arbitrary expressions. The following are exam-

§4.2.5 53

pies of array statements:

1> array y(100)
1> array y2(3,3), y3(l0,20.30)
1> k = 4
1> array Yartk.Z'k.k*^)

The implementation of dynamic arrays with the DELIGHT dynamic memory

manager is discussed in appendix A. 1.2.

Procedures and Functions. Procedures in RATTLE are analogous to subrou

tines in Fortran or Ratfor. They allow one to execute as a unit a group of RATTLE

statements, the body of the procedure, which are compiled only once. A func

tion is identical in structure except that it contains one or more rerura state

ments to specify the value to be returned as the "function value". Also, the

function call or invocation appears in an expression as inprint 2+funval(5).

Procedures and functions can have zero or more arguments. If a function

has no arguments, it can still be called in any expression by following its name

with a set of empty parenthesis as in print 5+fval()/2.

The body of a procedure consists of one RATTLE statement. If more than one

statement is desired in the procedure body, such statements must be sur

rounded by curly brackets, similar to the body of loop statements. Exit from a

procedure body is automatic when "hitting the bottom", i.e., after the last state

ment in the body has been executed. To exit from any other place, a return

statement may be used. For a function, the function value to return is the

expression value following the keyword return.

Several function and procedure examples are shown below, each example

separated by a blank line:

§4.£5 54

1> function foo
1) return 5+3
1> print foo()
e. ooo

1> function foo (z)

WARNTNG(l) Number of arguments changed on an existing procedure
1j return (x + 4)
1> z = 1

1> print foo(l) foo(z) foo(-4) foo(-2*2*z)
5.000 5.000 0.000 0.000

1> procedure doit (a,b) f
1j if (a = 1 } print b
lj else print -b
lj printf 'Leaving doit/n*
l! 1
1> doit(1.5)
5.000

Leaving doit
1> doit(2,5)
-5.000

Leaving doit

Note that when function foo is defined a second time above, the new func

tion body completely supersedes the previous one. This is the way that optimi

zation algorithm sub-blocks are substituted by the designer; he gives a com

mand which causes a procedure of the same name but with a different body to

be compiled, and thus supersede the previous. More willbe said about sub-block

substitution later.

Imported and Global Variables. As mentioned in section 4.2.4, members of

the pool of variables that are not local to any procedure may be "imported" or

made known to a procedure by listing the variables or arrays in an import state

ment. The following procedure contains several import statements:

1> procedure demo j
iuport y, y2. y3
inport Tar
(Remainder of procedure body)

f

Outside of procedures, variables may be made global, i.e., known

automatically to all procedures without each having to import them, using the

§4.2.5 55

global statement. This statement has the same syntax as the import statement

above, as shown in the following example:

1> global y, y2. var

In the DELIGHT system, variables should be (and have been) made global

with care; this avoids unsuspecting name clashes with local procedure variables

created, for example, by designers.

4.2.6. Interrupts and Run-Time Errors

Interrupts and run-time errors are two mechanisms that cause an executing

RATTLE program to suspend execution. Interrupts are signals from the external

environment that are generated by the user depressing a special key on his ter

minal. Their ability to interrupt an execution or lengthy calculation is essential

in an interactive environment. A user might interrupt in order to examine the

progress of an algorithm by displaying the values of certain variables or plotting

computed curves. Based on these observations, he might then want to adjust

some algorithm parameters and resume execution or start another sub-

calculation (which might also need to be interrupted).

DELIGHT recognizes two kinds of interrupts generated at the terminal, hard

interrupts and soft interrupts. A hard interrupt is generated when a user

presses the special interrupt key on the terminal twice in succession A soft

interrupt results when the key is pressed just once. A hard interrupt causes

immediate suspension of RATTLE execution. A soft interrupt may be used to

suspend execution at a "major stopping point" instead of at some arbitrary

statement, or to alter program flow. This is done by testing in an if-statement

the special RATTLE keyword interrupt; it becomes TRUE after a soft interrupt

§4.2.6 56

has been generated. The body of the if-statement can be a suspend statement

to suspend execution immediately8 or simply any RATTLE statement. As we shall

see later, in each of the optimization algorithms used in DELIGHT, there is a

"major stopping point" where interrupt is tested that allows designers to press

the special interrupt key once and complete the current optimization iteration

before suspending.

In DELIGHT, there is a multi-level interrupt feature that allows execution

suspended by an interrupt or run-time error to be subsequently resumed for

execution levels up to five deep; the DELIGHT prompt string is the current exe

cution level followed by ">". When first entering DELIGHT, the system shows that

it is ready to accept commands by displaying on the terminal the prompt string

Ml>". After one (hard) interrupt or run-time error, execution suspends and

DELIGHT agiiin accepts commands by displaying the prompt string "2>". This

may occur up to five levels deep7. To resume execution, the user types resume;

when the current execution is finished, DELIGHT again accepts commands by

displaying the prompt string with the number in the prompt decremented by

one8.

The following terminal session demonstrates hard and soft interrupts and the

multi-level interrupt feature. First, two different loops are (hard) interrupted to

show three levels of interrupt and execution resumption.

8suspend is actually a mechanism for generating a hard interrupt through software.
7 Bthe suspension occurs while execution is in a procedure (as opposed to justa set of RATTLE

statements which have been typed in at the terminal), then a traceback of nested called procedure
names may be obtained by typing the command trace.

6There is also a command, reset, which maybe usedto immediately set the executionlevel back
to one. After a reset, execution cannot be resumed.

§4.2.6 57

1> for i = 1 to Sk
lj k = i (After 2 seconds the user)

(generates a hard interrupt.)
Interrupt...
2> print i
5.920e+2
2> for j ss l to Sk
2] k = j (After 2 seconds the user)

(generates another hard interrupt.)
Interrupt...
3> print j k
1.319e-t-3 1.319e+3

3> resooe (Resume j loop.)
2> print j k
5.001e+3 5.000e+3
2> resume (Resume i loop.)
1> print i
5.001e+3

In the following procedure, the if-statement in the for-loop tests for a soft inter

rupt. If one is detected, a message is printed and execution is suspended using

the suspend statement.

1> procedure catch {
lj for i = 1 to 20k
lj if interrupt (
lj printf 'Got the interrupt -when i= %i/n* i
1j suspend
1) I
U J

1> catch() (After 2 seconds, the user)
Got the interrupt when i = 2077 (generates a soft interrupt.)

Interrupt ...
2> reset

1>

After the execution of procedure catch is suspended, reset is typed to leave the

interrupted state.

Run-time errors is the second mechanism that affects RATTLE execution.

When certain errors which occur during execution are detected by DELIGHT,

execution is suspended immediately. This allows DELIGHT to be very forgiving to

errors that invariably occur during algorithm development or design problem

formulation. Run-time errors can originate either externally or internally. Hie-

§4.2.6 56

gal floating point operations such as numeric overflow are external run-time,

errors; through a machine-dependent Ratfor primitive, DELIGHT receives the

overflow signal from the actual computer hardware. Errors such as an attempt

to invert a singular matrix or to multiply two matrices that are not conformable

are internal run-time errors; these errors are discovered by software checks in

DELIGHT.

To be more specific, DELIGHT run-time errors include:

Floating-point exceptions such as division by zero, numeiical overfiow, or

illegal arguments to built-in Fortran-like functions such as the logarithm

of a negative number, etc.

Out-of-bounds array subscripting, i.e., if the "net" array subscript for an

array goes beyond the total array size or is less than one. For example,

array y(5);print y(6) would suspend along with array y(2,2);print y(3,3).

But array y(3,5); print y(4,2) would not suspend since tie net subscript

of 7 9 is still within the total array size of 3-5= 15.

Matrix manipulation errors such as noneonforEnable matrices being mul

tiplied, inversion of a singular matrix, unbounded solution in a linear or

quadratic program, or attempting to find the real eigenvalues of a sup

posedly symmetric matrix that is not in fact symmetric.

After a run-time error, DELIGHT awaits further command input by printing the

prompt string with the interrupt level increased by one, just as if a hard inter

rupt had occurred.

9 This is Fortran-like column major order array addressing: 4 +(2-1) *3 - 7. See, for example,
page 178 of Gries [56].

§4.2.6 59

4.2.7. Incremental Program Development

The RATTLE language supports incremental program development [156], that

is, the ability to test, by just typing it in, a single statement, procedure, or sec

tion of an algorithm, without having to write and load/link a whole program. It

is thus possible to construct and test pieces of a program one at a time and

later combine them into the whole system. It is possible to test procedures that

contain calls to other procedures that have been declared as "dummy", Le., do

not yet exist. This allows the system to be developed either "top down", "bottom

up", or the more critical portion first according to the preference of the pro

grammer.

The following annotated terminal session shows the development of a pro

gram to perform Newton-Raphson iteration for finding the roots of the two equa

tions in two unknowns y =xz and x = y2. The program is developed by creating

three procedures in succession We first create and test a procedure that

returns the function values:

1> procedure Func (x.funval) |
1} array z(2), funval(2)
lj funralfl) = x(l)*»2 - x(2)
lj fmvralfe) = x(2)"2 - x(l)
1) I

1> array x(2), f(2) (Create unknown and function)
1> x(l) = 3 (value test vectors (arrays).)
1> x(2) = 3
1> Func (x.f) (Check function value procedure.)
1> printv f
Column f(2):

6

6

As an example of incremental program development, a procedure that computes

the Jacobian is now created and various errors are detected and corrected.

Instead of typing this procedure directly into DELIGHT as we did above, we first

§4.2.7 60

place it into a file and then include it, that is, have its contents read by DELIGHT

as if they had been typed in directly. Here a text editor is used to place the

Jacobian procedure into the file Jfile. Instead of showing the editing session, we

simply list the file and then include it:

1> list Jfile
* Begin Jfile

procedure Jacobian (x,J) {
array x(2). J(2,2)
J(l,l) = 2 • x(l)
J(1.2) = -1
J(2.1) = 2 • x(l.l)
J(2,2) = -1

- - End Jfile -
1> include Jfile
J(2,2) = 2 • x(l,l)

ERROR(l) LINE(5) Wrong no. args to array, function or procedure

Now, we edit file Jfile, change x(l,l) on line 5 to x(l), and reinclude the file10.

Each time the file is included, the new procedure body completely supersedes

the old:

1> list Jfile
Begin Jfile

procedure Jacobian (x,Jj {
array x(2), J(2,2)
J(l,l) = 2 • x(l)
J(l,2) = -1
J(2,l) = 2 • x(l)
J(2,2) = -1

End Jfile
1> include Jfile
1>

Using the text editor, we now create file Nfile containing the Newton-Raphson

procedure and RATTLE compile the procedure by including the file. Usage ofthe

matop statements below should be clear from the comments; see section 4.3 for

more details:

10 Note that thisJacobian procedure has two other errors: x(l) on thefifth line of the file should
have been changed to z(2)and the J(2,1) and J(2,2) right-hand sides need to be swapped. These er
rors will be noticed later.

§4.2.7

1> list Nfile
Begin Nfile -

procedure Newton (x) {
array x(2). f(2), J(2,2)
repeat \

Func (x,f)
Jacobian (x,J)
printf "x = %-12.5r %-12.5r
matop Jinv = inv (J)
matop deltax = Jinv • f
matop x = x - deltax

until (||f || <= 1.0e-14)

1> include Nfile
End Nfile

§ Get function value.
Get Jacobian.
|f || = *r/n" x(l) x(2) ||f|
Get Jecobian inverse.
Compute Newton step.
Update unknown vector.

§ Repeat until small norm.

61

Since the file was included without errors, procedure Newton is ready to exe

cute:

1> Newton(x)
x= 3.00000 3.00000 ||f|| = 8.485

RUN-TIHE ERROR: Singular matrix in inv ... arg(s): J

Interrupt...
> trace

Interrupted IN procedure
errprocmess_

called by invproc—
called by Newton
2> enter Newton
e> display local arrays
4 arrays:

J
Jinv
deltax
f

e> print? J
Matrix J(2,2):

6 -1

6 -1

e> leave
2> reset

1>

(2,2
(2,2)
(2)
(2)

(Print function call traceback.)

line 33 of file <Herrmess>
line 26 of file <Uinvproc>
line 27 of file Nfile
(Enter procedure Newton so that)
(local variables may be accessed.)

(Print the Jacobian matrix.)

"We now decide totry a different initial guess:

1> x(l) = 4
1> printr x
Column x(2):

4

3

§4.2.7

1> Newton(x)
x= 4.00000 3.00000 ||f|| =

RUN-TIME ERROR: Singular matrix in inv

Interrupt...
2> enter Newton
e> printT J
Matrix J(2.2):

8 -1
8 -1

e> reset

1>

1.393e+l

.. arg(s): J

62

Since the Jacobian, array /, seems to be always singular, we examine file Jfile

and discover the errors in the Jacobian computation. After editing the file to

correct the error, the development continues:

1> include Jfile
1> x(l) = 3
1> x(2) = 3
1> Newton(x)
x = 3.00000 3 00000

x = 1.80000 1 80000

x = 1.24615 1 24615

x = 1.04060 1 04060

x = 1.00152 1 00152

x = 1.00000 1 00000

x = 1.00000 1 00000

x = 1.00000 1 00000

1>

8.485

2.036

.4338

5.975e-2

2.160e-3
3.278e-6

7.598e-12

0.000

The Newton-Raphson program now appears to be working as seen by the qua

dratic convergence in the rightmost column above.

4.2.8. Extensibility: Defines and Macros

A scientific programming language should provide a user with a convenient

means for expressing his algorithms in a manner which is similar to his

mathematical descriptions or matches his personal programming style. One

approach is the idea of a universal language—one that tries to provide all pro

gramming needs—with the language PL/I [31] providing an example of one of

the few practical implementations. For the language needed in DELIGHT to be

universal, features would have to be provided for many diverse areas, e.g.,

§4.2.8 63

numerical analysis, matrix manipulation, computer graphics, engineering prob

lem entry, etc. Hence, the compiler would be unavoidably large causing it to be

difficult to write and maintain

A more serious drawback of a universal language from the user's point of view

is its lack of "open-endedness". In other words, the syntax and "semantics" of

such a language implemented with a conventional compiler would be fixed at the

time of implementation, and all users would be bound by the decisions of the

language designer. Since it is impossible to foresee all the demands and appli

cations that the RATTLE language in DELIGHT might be required to meet, the

idea of a universal language for DELIGHTis abandoned.

Another approach to the design of the RATTLE language is to design an exten

sible language, which starts off with a few features, but which can be extended

by users or system personnel who can define necessary features as they arise.

Thus the compiler for such a language would have a built-in open-endedness

which would allow users to tailor the language to their specific needs. Another

advantage of an extensible language is that language features which are never

used in a particular version or at a particular installation site need never be

implemented, so the size of the compiler can be kept under control.

Solntseff and Yezerski present an excellent survey of extensible program

ming languages in [141]. They present a classification scheme for extensible

languages which is an extension of a macro classification facility proposed ear

lier. The extensibility mechanisms are grouped on the basis of the stage in the

language-translation process during which they are processed. The six clearly

defined stages they present are:

§4.2.8 64

1. lexical analysis,
2. syntactic analysis,
3. production of intermediate language,
4. analysis of intermediate language,
5. machine code generation, and
6. machine code conversion.

In DELIGHT, the extensibility mechanisms were chosen to be of the Type-A exten

sion class from [141] in which the conversions and substitutions occur strictly

during the lexical-analysis stage of the translation process. The reasons for this

choice are: (l) this type extensibility should be conceptually easier to under

stand by the potential users of DELIGHT, (2) it is adequate to meet the extensi

bility goals presented earlier, and (3) such a "preprocessor" scheme has a more

straight-forward implementation. A disadvantage of Type-A extensibility is that

substitutions are performed without checking the surrounding syntax, as would

be the case if the extension occurred during syntactic analysis.

The extensibility of DELIGHT has probably contributed the most to its success

among advanced DELIGHT users. This capability takes two forms, defines and

macros, both of which can be used to create new language constructs or new

commands from existing ones, to express an algorithm in a manner which looks

like a mathematical description, and to adapt DELIGHT to a particular user's

personal programming or design style. Defines and macros thus ease the entry

of DELIGHT into new design areas. Before discussing defines in section 4.2.8.2

and macros in section 4.2.8.3, section 4.2.8.1 presents the DELIGHTview of char

acter I/O (input/output) and the concept of pushback.

4.2.8.1. Character Stream View of I/O and Pushback

Before discussing RATTLE defines and macros, an understanding of how

DELIGHT views character I/O (input/output) and the associated pushback

§4.6.1

1> terminal hp
1> temnnal
Terminal is hp

1> window top
1> color white
1> DOX

1> world -100 -100 100 100

1> color .green
1> oval

1> color aky
1> vector -80 -B0 80 80

1> procedure demo

Set terminal type.
§ Check terminal type.

Enter top window.
Set color to white.
Draw box around viewport.

Set world coord, bounds.

Inscribe oval in window.

Draw vector in world coord's.

Procedure for simple graphics,
color vhite
cursor 0 0

text •Pis*-' PI
cursorel 100 100
text ,x=10'

cursorel 100 100
text '2'

I

Position cursor at window center.
Output text at present position.

-5 -1.5 # Position cursor near upper right.
Output label without power of 10.

-1 -1.0 # Position cursor for power of 10.
0 Output power of 10.

1> window middle
1> world -100 -100 100 100
1> DOX

1> dcmoO

Enter middle window.

§ Run the above procedure,

175

To demonstrate that through the use of the cwrsorel command the above pro

cedure and in particular the position of text output are independent of the

viewport, let us set a much smaller viewport and again call the procedure:

1> viewport .02 .4 .23 .8 # Set small viewport.
1> color yellow
1> box
1> demo() # Rerun the above procedure.

This viewport is on the left of and inside window middle in figure 4.6. Notice that

the 102 is still in the upper right corner. We might add here that the develop

ment of graphics procedures such as the one above is aided greatly by the incre

mental program development features of RATTLE one-pass compilation (see sec

tion 4.2.7). This is due to the invariable fine tuning required to make a graphics

display appear "just right".

We end our graphics examples by demonstrating the barplot command. For

§4.6.1

I •

i »
: _

II

2
Z-1B ,

PI- 3.142 I PI» 3.142

l

\

: 5

176

llll,.

figure 4.6. Graphics Output From a Sequence of Low-Level Graphics Commands.

§4.6.1 177

this purpose, we extend the Newton-Raphson example procedure of section 4.2.7

to produce a 3-bar bar chart each iteration. The bar chart contains the log base

10 of each of the two function values / 2and fz, and the norm of the vector func

tion | |/ | |. We repeat this procedure below with the added lines shown in bold

type:

procedure Newton (x) {
array x(2), f(2). J(2,2)
array oars(3)
shiftval = 0
repeat (

Func (x,f) # Get function value.
bars(l) = loglO(abs(f(l)))
bars(2) = loglOf abs(f(2)))
baraCs) = loglO(||f||)
barplot bars white aky ahift=ahiftval -3
shiftval = shiftval + .05
Jacobian (at, J) # Get Jacobian.
print* *x = %-12.5r %-12.5r ' x(l) x(2)
print! 'f = S-12.3r %-12.3r ||f|| = %.3r/n* f(l) f(2) ||f||
matop Jinv = inv (J) # Get Jacobian inverse.
matop deltax = Jinv • f # Compute Newton step.
matop x = x - deltax # Update unknown vector.

until (l|f|| <= 1.0e-14) # Repeat until small norm.

Local variable shiftval above is incremented by .05 after each iteration and used

as the shift argument on the barplot command to allow a maximum of l/.05=20

different parallel bars. The -3 threshold argument is the base of the bars drawn

and causes the bars to be color white when they are greater than -3 (i.e., flt fz*

or | |/ 11 greater than 10"3). color sky when below -3. We place the bar charts in

our bottom window and remember to set the world coordinate bounds. The ini

tial guess used was determined experimentally to produce somewhat "wildly"

varying function values:

1> window bottom ff Enter bottom window.
1> world 0 -14db 1 3db # Set world coordinate bounds.
1> x(l) = .1 # Set initial guess.
1> x(2) = -5
1> Newton (x)

§4.6.1 178

x = .100000 -5.00000 11 = 5.010 2.400e+l = 2.540e+l

x s 2.70B13e+l 5.40625 Jr = 7.280e+2 2.146 •= 7.2B0e+2

x = 1.36351e+l 5.11837 J' = 1.808e+2 1.256e+l = 1.812e+2

x = 6.97041 4.41363 j' = 4.430e+l 1.250e+l = 4.603e+l

x = 3.72504 3.28405 1' = 1.050e+l 7.066 s 1.273e+l

x = 2.14772 2.12480 j' = 2.48B 2.367 = 3.434

x = 1.30869 1.30050 i ' = .5505 .5502 s .7011

x = 1.08678 1.08878 j' = 0.867e-2 0.667e-2 si .1387

x = 1.00660 1.00660 i' = 6.730e-3 6.730e-3 2S 0.530e-3

x = 1.00004 1.00004 i' = 4.422e-5 4.422e-5 = 6.253e-5

X = 1.00000 1.00000 i' = 1.055e-0 1.955e-9 = 2.785e-0

x = 1.00000 1.00000 i' = 0.000 0.000 = 0.000

As mentioned above, the bar charts are shown in the bottom window in figure

4.6. The left group of bars are for / lt the middle for /2, and the right for 11 / 11.

For plotting graphs, DELIGHT provides the means of plotting arbitrary

expressions versus one or two parameters (variables). With the plot command

up to 9 "y-value" expressions versus a single parameter can be plotted on the

same labeled axis. The axis is scaled to the minimum and maximum automati

cally and nice, "whole-number" axis labels are printed. The syntax of the plot

command is:

plot Yl [Y2 ... Y0] vs X frcmF to T [(by } I]
'times)
joct j
[dec j
log j

where everything after to T is optional. One of the clauses introduced by by,

times, oct, dec, or log may be chosen andhave the same meaning as they did for

the formevery statement of section 4.4.2.2. If the optional increment keyword

and / are not given, by 1 is assumed. For times, oct, dec and log the x-axis of the

graph is logarithmic.

Plots generated by the plot command may be targeted for black and white or

color terminals. For black and white terminals, the curves drawn can have little

triangle and square identifiers placed on them to help identify which curve goes

t.6.1 179

with which y-variable expression. This feature is obtained by typing use <gpi-

dents>. (The triangular brackets surrounding the filename mean "look for this

file in a standard place in the file system"; see [110]. Also, recall that use is

defined to be include.) To have the curves drawn in color, use <gpcolors> is

typed. (As mentioned before, on some black and white terminals such as the

HP2648a, colors are simulated using various dashed line-types and intensities).

The following terminal session demonstrates the plot command:

1> Tiewport 0 0 11
1> use <gpidents>

B : sin(x)

j p A* .6»«in(?*x)

.60"

.6e

-i.e

e.ee .388 .688 .980) .28

Figure 4.7. Graphics Output From First plot Command Example.

) .58

§4.6.1

1> plot «in(x) ,5*sin(2«x) v» x from0 to TWDPI*2 by TVOPI/100
. Compiling plot loop -——
1> plot (l/sqrt(freq»*2 + 1)) ra freq from .01 to 100 dee 20

Compiling plot loop
1>

180

The output plots for these commands are shown in figures 4.7 and 4.8 for the

HP2648a black and white termimd (copies made on the HP2631G printer). Note

that the x-axis of the plot in figure 4.8 is logarithmic due to the dec increment

keyword above.

The scat has syntax identical to the plot command except that there must be

at least two y-variable expressions. The last expression given provides the x-

data that corresponds to the y-iiata provided by the other y-variable expres

sions. The scat produces a scatter plot of these sets of data-point pairs on a

1 .8
U/»qrt(fr»q*»2 ♦ 1))

.80

! MM
: I'll

|l
i :

II

ivl! 1
! : (

I!!
1 i 1

k! i i

i
! \ l ! i ! ! j i i ; :} \
1 i 1 j il I • I ! 1 I i 5| | j | j (| j j j • i j |
1 1 I i II \ \ 1 1 ! ! M
j i I i ; • } | { j • ! ' j

.68

! j ! !: j 1 j |
1!
i i
i !
! i
i t

! i

! ! {

i ! !
! \ !

Ml
i
i
i

IV

i \

i

i
i

MUii i ! i i M h

1 il !!! 1 1 II i iii
1 1 1 1 I 1 \ \ ! 1 ' I !
1 1 II li 1 j i 1 i 11;

.48

: 1 ! 1 T
: : j i

i MM
: MM

1 !

li

II

i i i
1 * !
1 11
\ 1 i

i \
i \

i \ >

i

Mill? I \ M ! 1 M
! i iiii } i i i i i i ;
! i S J i ! ! : i ! ! ! T !
i I ? > < i 1 i iiii;:

.28

Z i ! i i
: i i ; i

: III!
• i 1 j j

i |_ 1 S

i i
j \
i :

II
1 !
i :

' j '

1 1 1
i ! I

j
I

\] I 1 { j j(! 1 j Mi;;:
i \A 1 t 1 i i i ! ! 1 1 ! i i ;
i Villi;! ! i | i ! 1 i !

8.8

; ill!
" i i i 1
; i i i i
: • i • i

| 1 i |

l(
i i
! j

Mil
11 |
MM
i i i i

': t
! i

11
> :

; |

! i

1 1irWj 1 || | j | j|
j ! ! ! 11i1 ^^^t.^' i ! Mi;

f r»q

18
-1

18 18 16' 18'

Figure 4.8. Graphics Output From Second plot Command Example.

t.6.1 181

labeled axis, Le., the points are not connected as they are in plot output.

Although a scatter plot is usually for random data such as from the two arrays in

the command scat ydataQc) xdata(k) vs k from 1 to 100, we can demonstrate the

scat command with the following:

1> «cat sin(z) .5*sin(2*x) cos(x) vs x fran 0 to T10PI by TKDPI/50
.—•- Compiling scat loop ------

The resulting scatter plot is shown in figure 4.9.

For graphing a single expression vs two parameters on a 3-dimensional set of

axes, the plot3d command is used89. Its syntax is:

11 sin(x)

1.8 2: .5*$in(2§x)

'
i 1 1"

. .

1
j i

I !

i i 1 •

1 i i l
1

i ! 1
.68 •

; : T"

: r
2

2 2 2
2

2
i

2
? \ 2 2 2 £

2
2 ? :

.28 •2 2

t r 2 2

3
|

j ?

• ; ;
2 2 i ?

.28 i
?

2

:t !

! 2
t

\ 2
2

: i
?
1 2 2 2 1 2

2 I 2
2

1 2 2
?

2 ?
.66 1 ' i jr, . .J .„

» i i j 1
i 1 1 1

i i j 1 |
. 1 J 1 ;

i .e , .i. . 11 j—i+a j -1+1-J Hi • .»« i L_J_1_ ,!...i-i..j_j 1 L, 1 1 l_

cos(x

1.8 -.68 -.28 .28 .68 1 .0

figure 4.9. Graphics Output From scat Command Example.

83 The original plot3d routinewas writtenbyL. Gelberg at Harris Semiconductor.

§4.6.1

plot3d z_£xpr vs X frcmX-START to X_STOP by X-JNCREHENT
vs Y fremY-START to Y.STOP by Y-INCREMENT

182

"where the command actually has to be typed on the same line unless an expres

sion argument is continued onto the next line by having an open parenthesis

character "(" end the line. (This is related to the statement continuation rules

for RATTLE presented in section 4.2.5.) The following is a simple example of the

plotSd command:

1> plot3d sin(x)*coa(y) vs x from 0 to 9 by .5 va y from 0 to 6 by .5
Size: 21 x 13

The output plot for this command is shown in figure 4.10 for the HP2648a black

and white terminal.

Both the plot and plot3d commands may be interrupted by pressing the spe

cial interrupt key on the terminal once, i.e., by generating a soft interrupt (see

section 4.2.6).

-.987S
6.888

5.888

4.888

Y-**i«

2 .008 —**...

2.888 ^-J_ ! j |
1.888 ~-l._ j

e.eee """^ 8.888

•'•' 9.888

> 6.880

3.888

X-*X1F

figure 4.10. Graphics Output From plot3d Command Example.

§4.6.1 183

4.6.2. Graphics for Observing Problem Performance

Commands such as curve, barplot, plot and plot3d presented in the previous

section can be used by a designer to display graphically his problem perfor

mance at any time. These could be, for example, the response of his system

versus time, frequency, loading, temperature, pressure, etc. In this section we

introduce a new graphical display that allows a designer using the multiobjective

problem formulation and the phase I-II-III optimization algorithm to grasp

quickly the performance tradeoffs of his design. We also include a subsection on

using this graphical display to perform tradeoffs.

During the progress of a multiple objective optimization computation, it is

very desirable to have a display of objective and constraint values at each itera

tion which facilitates subjective evaluation of the design associated with that

iteration. In DELIGHT this purpose is served by the Pcomb performance comb, a

graphical display which shows the designer how close each of his multiple objec

tives and soft constraints are to their corresponding good and bad values. Since

from our experience most designer interaction with DELIGHT is spent making

tradeoffs in phase II of the phase I-II-III algorithm, hard constraints are not

displayed. However, if any are violated in phase I, the message - A Hard Con

straint is Violated - is printed at the top of the Pcomb display.

Referring to figure 4.11, the display consists of a vertical good line to the left

and a vertical bad line to the right. On a color terminal, these are drawn in

green and red, respectively. For all terminals, G appears above the good line

while B appears above the bad line, as shown. Each objective or soft constraint

is easily identified by its name as given in the problem description files and is

displayed by two horizontal bars or teeth on the comb, one for the previous

§4.6.2

Pcoab

M RVOL

PRESENT 6000

1.66«+1

II Pes suing 1.32*+l
22 Noq swing -1.32»*1
13 ♦Slowrat* 3.46«*8
14 -Slswrat*
16 Poyor

Poaking

3.42»«-8
.613

7.64

2.58«+l

1.28o*l
-1.28#+l
3.S8*+8
3.68»«8
.Ma

*

BAD

:% 1.58e+l

:& 1.25*4 1
-i,2S»*l

» 2.58»*8
3bi 2.58*+8

.750

8.06

S3*«*7

figure 4.11. Example Pcomb Performance Comb.

184

§4.6.2 185

comb drawn and one for the current comb. The previous comb teeth are in a

lighter color or shade (and each slightly above the current teeth). The goal of

the optimization algorithm is to move the tips of all the comb teeth to the left

(in the direction of the good line). By niinimizing the maximum of the normal

ized objectives and constraints, the optimization algorithm in effect insures that

the rightmost tip after an optimization iteration is to the left of the rightmost

tip before the iteration, even if some tips move slightly to the right, i.e., the per

formance of their objectives or constraints becomes worse.

The tip of each tooth is on the opposite end from a small diameter circular

dot. The dot always is on the side of the smaller numeric value of the objective

or constraint Thus, if as for ordinary constraint 15 in figure 4.11, the dot is on

the left, the good value is smaller than the bad value as .for an objective being

minimized or a constraint which must be less than its good value; a comb tooth

which moves to the left toward the good line decreases its objective or con

straint value. If as for ordinary objective Ml in figure 4.11, the dot is on the

right, the good value is larger than the bad value as for an objective being max

imized or a constraint which must be greater than its good value. In this case, a

comb tooth which moves to the left toward the good line increases its objective

or constraint value, as desired.

If an objective or constraint value is such that the tip of its comb tooth

should be drawn off the Pcomb display, an arrow is drawn to show that the tooth

is out of the comb range. The present values of inequality constraints II and 12

in figure 4.11 are both better than values for which their corresponding comb

teeth can be plotted on the comb and thus they both have arrows. Note that II

large is good since it is a ">=" constraint while 12 small (actually large negative)

is good since it is a "<=" constraint.

§4.8.2 186

Also shown on the Pcomb display are the actual numeric values of the objec

tives and constraints (the worst value is printed for functional) and, for each

functional objective or constraint, a small plot of the actual objective or con

straint, its good curve, and its bad curve. Each of these plots is versus the

corresponding "W variable as it varies from the FROM_VAL to the TO_VAL

specified on the formevery line in the "FM" or "FT file (see section 4.4.2.2). Td

the right of each plot is shown the value of the "W" variable at which the

coiTesponding functional objective or constraint takes on its worst value. The

poisition of this value of the "W" variable is shown by a big circular dot on the

functional plot.

The performance comb may be output automatically during each optimiza

tion iteration (using e.g.f run 3 Pcomb) or manually after, say, adjusting the

good or bad values for a particular objective or soft constraint. Since the comb

display shows the previous comb teeth as well as the present ones, the designer

ca:i easily see the results of such an adjustment of good or bad values as well as

the improvement made by an optimization iteration.

It is important to realize that the comb shows the previous teeth from the

previous comb drawn and not from the preceding optimization iteration: if two

combs are drawn directly in succession, the corresponding previous and present

teeth on the second comb will be exactly the same. This is important since if an

entire comb on the graphics screen is accidentally erased, it cannot be redrawn

with the correct previous teeth.

The performance comb may be requested at any time simply by typing

Pcomb provided the user is working on one of the graphics terminals supported

by DELIGHT graphics. Additional information about Pcomb features may be

§4.6.2 187

found in the design examples of section 5.1.4.

Using the Pcomb to Perform Tradeoffs. Tradeoffs between competing objec

tives or constraints are explored by adjusting good and bad values after best (or

near best) performance of the system being designed has been achieved follow

ing several iterations of optimization. Basically, after several optimization itera

tions have been carried out with a set of good and bad values, the designer

displays a performance comb and decides whether he is happy with the present

values of his objectives and constraints. (In a tightly constrained design prob-

lem most of the algorithm execution will probably be spent in phase II. Recall

from section 4.5.2.2 that in phase II objectives and constraints are competing

equally to be improved by the algorithm and the meaning of the good and bad

values applies consistently to both.) If he is not happy with the present perfor

mance he adjusts good or bad values to reflect his feelings and resumes optimi

zation. Commands to make these adjustments are detailed later in this section.

For example, suppose in an electronic circuit design problem that DC power

is a performance objective and it has been given good and bad values of 30mw

and 50mw, respectively. Suppose that at the current iteration of the optimiza

tion, the power is 40mw. For these values, the associated comb tooth would end

exactly half way between the good and bad vertical lines. Suppose that the

designer is unhappy with the way several objectives (and/or constraints) have

traded off and he actually wants to reduce the power further, at the expense of

other objectives. This means that he now considers the value 40mw to be worst

than he did previously relative to other objectives. This means that the DC

power objective bad value should be closer to 40mw than it is presently. Thus,

setting the bad value to, say, 45mw or even 40mw is the proper action. He then

redisplays the comb by typing Pcomb and runs a few more optimization

§4.6.2 188

iterations by typing, for example, run 5. (An alternative approach would be to

decide that 40mw is not as good as thought previously and therefore the good

value of 30mw should be reduced to, say, 20mw or 25mw. Which approach to use

is up to the designer34.)

To modify good or bad values, the commands setgood or setbad are used and

have the following format:

setgood TYPEn = VALUE

setbad TYPEn = VALUE

setgood FTYPEn = EXPRESS ION_yS.JT

setbad FTYPEn = EXPRESS ION_yS.-W

where TYPE is:

FIYPE is:

M for ordinary objectives,
/ for ordinary inequality constraints,
Up for upper soft box constraints on design

parameters,
Lo for lower soft box constraints en design

parameters,

FU for functional objectives,
FI for functional inequality constraints,

n is the number, and EXPRESSIONVSJY is any expression containing the original

"W" variable for the particular functional objective or constraint. The given

expression becomes the new good or bad curve. For objectives or constraints, n

is the same number given after objective or constraint in the problem

84 That the two alternative approaches of either adjusting the bad value or the good value are
not exactly equivalent can be seen in the objective/constraint normalization formula given in equa
tion (4.1) of section 4.4.1.2. The approach to use should be based on the uniform
satisfaction/dissatisfaction rule of that section.

§4.6.2 189

description files. For design parameter soft box constraints, n is 1 for the first

design_parameter statement in the "S" file, 2 for the second, etc. The

correspondence between n and the design parameters may also be obtained

from the Pcomb display or from the output of the prvntdp command, which

prints each design parameter number, name, and present value. Examples of

setgood and setbad commands are:

1> setgood H3=35e-3
1> setbad UpB = dOvolts
1> setbad FID = (1 + FBBQ**2)

More on these and other optimization-related commands may be found in the

DELIGHT.SPICE User's Guide [114]. In particular, another important command

is setvariation. Using the format

setvariation PARNAME = VALUE

a user can set the nominal variation of a particular design parameter to the

value of an arbitrary expression. After an optimization has started, a designer

can use the setvariation command to update his idea about what change in a

parameter should influence the objectives and constraints to the same degree,

thus possibly enhancing the speed of convergence of the run.

4.6.3. Graphics for Observing Algorithm Performance

In this section we introduce several graphical displays that allow a user run

ning certain of the Library optimization algorithms to see quickly the current

behavior of the algorithm. Just as for graphics to observe problem performance

in the previous section, a user can easily construct his own (or modify existing)

displays using any of the high or low-level graphics commands of section 4.6.1.

Graphical displays to show algorithm behavior fall naturally into classes

§4.8.3 190

associated with each major sub-block of an algorithm. Since most algorithms

contain sub-blocks for direction and stepsize, graphics procedures have been

developed for them. For the former, the gradient clock display has proven to be

quite effective in showing the quality of the computed search direction and in

guiding the user to remedy a poor search direction.

The gradient clock is a circular display appearing like a clock that shows the

angles between the computed search direction h and the other gradients that

take part in the computation of h. For the Phase I - Phase II algorithms these

gradients are.of the cost and the active constraints; for the phase I-II-III algo

rithm these gradients are either of the hard constraints in phase I or of the

active objectives and constraints in phases II and III. Active objectives were

defined using equation (4.12) in section 4.5.2.2. Recall from the discussion of

basic feasible descent algorithms in section 4.5.1.3 that small movement along

direction h should decrease the cost while remaining in the feasible set. One

way mentioned to guarantee this is to have h "point away" from these gradients

by more than 90°. Usually, the greater the angles, the better the algorithm per

forms. Hence, these angles are an indicator of the quality of the search direc

tion.

Referring to figure 4.12 we see that the search direction h is always drawn

vertically "at twelve o-clock noon". Since the dimension of the vector space in

which the gradients lie is Nparam, the number of design parameters, the actual

locations of the gradients with respect to each other and h cannot be drawn

correctly for greater than two or three dimensions. Instead, the gradient clock

shows the correct angle individually between each gradient drawn and the verti

cally drawn search direction. Each gradient can be drawn on either the left or

the right of the clock and still show the same angle (always ^180°). To avoid

§4.6.3 191

Figure 4.12. Example Gradient Clock Display.

congestion, gradients of the cost or objectives are arbitrarily drawn on one side,

of the active constraints on the other. This is shown in figure 4.12.

How the gradient clock guides an advanced user in remedying a poor search

direction is as follows. "When the angles between the search direction h and the

other gradients shown are badly unbalanced due to poor problem scaling, the

user can restore a certain amount of balance by adjusting certain algorithm

push factors. Push factors usually affect h by weighting certain gradients

passed to the quadratic program for determining the closest point to the convex

hull of the gradients involved (see section 4.5.1.3). For example, when discuss

ing the phase I-II-III algorithm in section 4.5.2.2, we mentioned the existence of a

push factor by which the user can emphasize as a group the objectives and the

soft constraints in phase II. There is also a push factor parameter which pro

vides similar emphasis during phase I.

§4.6.3 192

For displaying the behavior of step-size procedures, which objectives or con

straints are limiting the step-size along the search direction can be displayed

with the Scomb "step-size comb" for the multiobjective phase I-II-HI algorithm.

For other Armijo-like step-size sub-blocks, a bar chart can be displayed that

shows the impeding constraints and also the precise action of the Armijo step-

size rule during the inner trial-step-size loop.

For designers working with the multiobjective phase I-II-III algorithm, the

Scomb step-size comb cart be displayed after each trial step-size in the inner

loop of the stepsize block. It appears identical to the Pcomb discussed earlier

except for the comb teeth. First, only one tooth is drawn for each objective or

constraint; there is no noti.on of present and previous teeth. Second, objectives

or constraints whose values are impeding the step-size along the search direc

tion, Le., that are failing a test that has to be satisfied such as the Armijo rule,

have bright (or red) comb teeth. Light (or green) comb teeth indicate that the

values of the corresponding objectives and constraints are acceptable, i.e., pass

the test. All Scomb teeth must be light or the trial step is rejected. If a particu

lar tooth remains bright until a very, very small trial step is tried, a user should

be suspicious of inaccuracies in the gradient calculation of its associated objec

tive or constraint since h is probably not a descent direction. For a demonstra

tion of the Scomb, see the DEUGHT.SPICE User's Guide [114].

For any optimization algorithm that contains an Armijo-like step-size sub-

block, there is a useful three part graphical display that can be output directly

after each trial step-size in the inner Armijo loop. An example of this Garmijo

display is shown in figure 4.13. The top of the screen shows a geometric

interpretation of the Armijo test given in equation (4.8) and used in procedure

stepsize for the simple unconstrained cost algorithm of section 4.5.3.1 The

§4.6.3 193

2 Armijo Stepsize Rule—Phase 1

Inequalities Max Functional Inequalities
eps Line

Functional Inequalities
_J^1eps Line^N^,,..

v .***

Figure 4.13. Example Armijo Step-size Rule Display.

horizontal axis shows the step-size along the present search direction while the

vertical axis shows the scalar quantity involved in the test Plotted on these

axes are the Armijo test line (with slope given by sub-block parameter

Mphn.—see algorithm segment (4.9)) and a vertical bar for each trial step. Each

bar is labeled with k in the step-size quantity Betak .and reveals, by being below

the test line, that the scalar quantity involved in the Armijo test indeed satisfies

the test. This display is helpful since it can be used (by advanced users) to

adjust parameters Alpha and Beta to avoid doing too much computation in pro

cedure stepsize. For example, Beta (default 0.5) can be decreased to cause

small steps to be tried more quickly, i.e., at smaller values of A:.

§4.6.3 194

The middle part of the Garmijo display shows two bar charts using the barplot

command presented in section 4.6.1. Referring again to figure 4.13, each group

of bars on the left is for one of the Nineq ordinary inequality constraints (in this

case there are six), within each group, the leftmost bar is for the first trial step,

the next bar to the right for the second trial step, and so on. Similarly, the

groups on the right are for each of the Nfineq functional inequality constraints;

they correspond to the Nfineq small functional plots shown at the bottom of the

screen and produced by the curve command presented in section 4.6.1. On the

right bar chart, each bar shows the maximum over its functional constraint

samples. The epsilon line, labeled eps Line, shows which constraints are con

sidered e-active. Both the barplot and the curve commands used here supply

their top and bottom color and their threshold arguments so that the color of

the bars and curves change to red when above the epsilon line. Thus, the user's

attention is drawn to c-active constraints. "Whereas the top part of the Garmijo

display shows if the cost is impeding the trial step, the middle and bottom parts

show which constraint violations act as impediments (if any).

4.7. Simulation Interface

We have already covered three of the four major interfaces alluded to in sec

tion 4.5 and shown in figure 4.5: the problem description facilities, the coupling

between an optimization problem and algorithm via the solve command and

problem interface, and the graphical and non-graphical means used by DELIGHT

to inform a user about about his problem or algorithm performance. This sec

tion addresses the final interface provided by DELIGHT—between a problem

description and a necessary computer simulation—for versions of DELIGHT that

are coupled to simulation programs.

§4.7 195

The basic idea of this interface is to allow problem description expressions to

depend on simulation results from an engineering system being designed

instead of just depending directly on design parameters as was the case up to

now. By viewing, as in section 4.4.1, a simulation program as a mapping from

the design parameter vector x to the simulation response functions v(x), we thus

allow the problem expressions to be indirectly a function of x by being a func

tion of the system response functions v(x) as well as directly a function of the

design parameter vector x. The bold ambitions of the interface thus emerge: to

allow an optimization process to easily send design parameter values to and

retrieve output responses from a simulation program.

We begin in section 4.7.1 by presenting the functions and goals of the simula

tion interface and give a general theme that runs throughout all implementa

tions. To meet the goals presented in section 4.7.1, part of the simulation inter

face implementation is independent of the particular simulator while part is

(very) dependent on it. These two parts are the subjects of sections 4.7.2 and

4.7.3.

4.7.1. Functions and Goals

The overall function of the DELIGHT simulation interface is to allow the

optimization of design problems whose objective and constraint values depend

on the results of a computer simulation. For the most part, simulation pro

grams usually have input parameters, outputs, simulation run controls such as

the final time-domain simulation time, and options such as those for controlling

integration method or accuracy, all of which can be chosen or set by the pro

gram user. Also, there is usually an initialization phase for describing the struc

ture of the system being simulated. To allow (a) some of the simulator input

§4.7.1 196

parameters to be design parameters, (b) others to be settable parameters, that

is, input parameters that can be set to bring about different system test condi

tions but are not adjusted automatically by the optimization, and (c) some of

the simulator outputs to be used in a problem description, requires that (l)

optimization algorithms and problem description procedures be able to set the

input parameters and (2) problem description expressions be able to retrieve

the output values from the simulator. Of course these two requirements must

be performed without user intervention (assuming the design parameters, sett

able parameters, and outputs have already been identified). The other three

features of most simulators—run controls, options, and initialization—need to

be interactively under control of the DELIGHT user.

All of the above requirements are handled by the simulation interface. Its

function is broken into six broad categories having to do with:

1. declaring design parameters and setting their values,

2. declaring settable parameters and setting their values,

3. declaring outputs (responses) and obtaining their values,

4. initializing the simulator,

5. setting simulator run controls and options, and

6. displaying user-requested simulator information.

In the next two sections, the various parts of the simulation interface are

presented by category using the six categories above.

One of the original goals of DELIGHT is to have the simulation interface facili

tate the use of DELIGHT in a variety of engineering design areas. To meet this

goal, the interface must provide a mechanism that allows:

§4.7.1 197

• DELIGHT optimization algorithms and other procedures to be com
pletely independent of the particular simulator used, and

• different application-specific versions of DELIGHT to be easily created.

Each of these aims is handled as follows. The simulation interface is divided into

a simulation-Independent and a simulation-dependent part. Optimization algo

rithms and, to some extent, user problem descriptions deal only with the

independent part and thus are themselves independent of the particular simula

tor. The independent part, consisting mainly of RATTLE defines, macros, and

procedures, then interacts with the dependent part of the interface, a set of

built-in Fortran routines, each one of which carries out a particular well-defined

task written for a particular simulation program. Moreover, the interaction

between the independent and dependent parts occurs only through arguments

passed to- and :runction values returned from- these Fortran routines. Finally,

the dependent routines interact directly with the simulator. For example, in the

case of a Fortran simulator, they write into or read directly from variables in its

common blocks. The information transfer through the different levels of the

simulation interface can be depicted as follows:

Optimization Algorithms or Problem Descriptions

1
Simulation-Independent Part

I
Simulation-Dependent Part

I
Simulator Internal Variables

The next section presents the dependent part of the interface while section 4.7.3

presents the independent part.

An overriding theme that pervades the implementation of the simulation

§4.7.1 198

interface is to avoid doing at execution time anything that.can be done at com

pile time. The foremost example of this idea occurs in the implementation of

the first three of the six interface requirements listed above. All of these have

to do with the declaration of simulator quantities by name, followed by the set

ting or getting of their values. Instead of passing the name of the quantity at

run time —an approach that would require the dependent interface routine to

perform a search for the name through a list each time the quantity was dealt

with—we break up each of the declaration/value-related tasks as explained

next.

Consider, for example, the tasks of declaring settable parameters and setting

their values. We first declare a settable parameter Pi in a manner whose details

need not concern us here. Its value can then be updated interactively using, for

example, set Pi = 37. The lengthy run-time search approach would be to have

the set macro simply push back something like Settable Update ('PI', 37}, the

Settable Update interface routine would first search for PI in the list of declared

parameters and then store the value 37. Our approach is to do the search only

once, at compile time, by providing an interface routine pair: the first routine

takes a settable parameter name and returns an item that we call a pointer, the

second routine takes a pointer and a value and makes the parameter update

rapidly. Thus, the set macro would execute the statement

ptr = SettablePointer ('Pi')

and, supposing that the value of ptr returned was 101, then push back

SettableUpdate (101,37)

which would perform the parameter update very rapidly. For this purpose, the

precise nature of pointers is undefined. Their only requirement can be seen in

§4.7.1 199

the following "conversation" between independent interface macros such as set

and dependent routines such as SettablePointer and Settable Update:

"Excuse me sir, I'm going to hand you a name and you kindly return to
me something we'll call a pointer. Now I'm not affected in the least by
what a pointer actually is as long as when I hand it back to you along with
a value, you can profit by it to make use of that value as quickly as possi
ble."

The dependent interface routines are typically set up so that a pointer points to

either the variable location used to store the value or to another data structure

which itself contains information that can be used to make the update rapidly.

4.7.2. Simulation-Dependent Part

The simulation-dependent part of the simulation interface consists of a set of

routines, each element of which carries out a well-defined task required to inter

face DELIGHT with a particular simulation program. These routines are

presented in the following tables, classified according to the six functions listed

in the previous section. Names below such as ClearParameters are fictitious

names that are used in this dissertation for clarity; under each such name, in

parentheses, is the actual Ratfor name. (The Ratfor names are very short due to

the Fortran six-character limit) Arguments and other details are not given

below; for more information, see [110].

First, routines that deal with design parameters:

§4.7.2 200

Declaring Design Parameters and Setting Their Values

DesignParameter
(despar)

Declare the given simulator input parameter
as a design parameter, returning a success
or failure status flag.

ParameterPointer
(parptr)

Return the pointer for the given design
parameter (its name is passed).

ParameterUpdate
(parupd)

Update the design parameter with given
pointer to the value passed.

ParameterName
(dpname)

Return the design parameter name associat
ed with the given pointer.

ParameterValue
(parval)

Return the present value of the design
parameter associated with the given pointer.

QearParameters
(clrpar)

Clear all design and settable parameters, Le,
make it such that none is declared.

Routines ParaimeterPointer and ParameterUpdate act as an interface pair for

run-time efficiency, similar to the example pair presented in the previous sec

tion.

For settable parameters, that is, simulator parameters that can be set to

bring about different system test conditions but are not adjusted automatically

by any optimization algorithms, we have the following routines:

§4.7.2 201

Declaring Settable Parameters and Setting Their Values

SettabieParameter
(stbpar)

Declare the given simulator input parameter
as a settable parameter, returning a success
or failure status flag.

SettablePointer
(stbptr)

Return the pointer for the given settable
parameter.

SettabieUpdate
(stbupd)

Update the settable parameter with given
pointer to the value passed.

For simulation outputs, there are a few considerations. The purpose of

declaring simulation outputs is to indicate to the simulator which data it needs

to store when the actual simulation takes place. Such declarations are neces

sary since it is usually inefficient if not impossible due to memory storage con

siderations to store all the data that a simulator is capable of producing.

Another consideration is how to name outputs. It is desired that designers refer

to simulation output quantities in their problem description expressions in as

much a problem-oriented manner as possible. This shields designers from hav

ing to get involved in the actual details of where the output quantities are stored

or how they are transmitted.

As an example of a fairly difficult simulation interface to work with, consider

Balling's [18] DEUGHT.STRUCT interface to the ANSR nonlinear structural

response simulator. Although involving DELIGHT, this interface was imple

mented before the general simulation interface being discussed here was con

ceived. In Balling's interface, all response data versus time is stored in a large

1-dimensional array called resp. A user setting up an optimization problem has

to be concerned with integer array subscripts that point to the start of where

§4.7.2 202

various output responses are stored in resp. Moreover, since resp is 1-

dimensional, these subscripts depend on how many time points are calculated in

the time-domain simulation. Details such as these cause confusion and can be a

source of error. Hence, the simulation interface should try to eliminate them

from the matters a user must concern himself with. The simulation output

aspects of DELIGHT have been designed with the above goals in mind.

Simulator output names accessible by any RATTLE expression are allowed to

consist of a keyword part followed by an arbitrary list of arguments surrounded

by parenthesis. For example, in the hypothetical output Pressure{valve1), Pres

sure is the keyword while valve 1 is the one argument. Other possible output

names are vm(20l) for the magnitude of the node voltage at node 201 of an elec

tronic circuit, vm(3,4) for the voltage across nodes 3 and 4,

displacement(level2,3) for the displacement of node 3 on floor level 2, or

truss(AxialForce, 16) for the axial force on truss member 16. It is the task of the

simulation-independent part of the interface to insure that all of the various out

put keywords for a particular simulator are set up as macros that gather their

parenthesized arguments and perform other tasks discussed in the next section.

In particular and most importantly, they must push back an appropriate func

tion call to an interface routine that returns the value of the output.

One additional comment needs to be made about simulation outputs that are

a function of some independent variable such as time or frequency. System per

sonnel who actually interface DELIGHT to a particular simulator can choose one

of two different routes. One is to include the independent variable such as time

in the output arguments as in voltage(101,time) for the time-domain voltage at

node 101. However, since this argument will always be the variable time, we can

give RATTLE access to a Fortran variable (see appendix B.2) used in the

§4.7.2 203

interface called, say, TIME and instead write voltage(101), the value returned is

understood to be at the present value of variable TIME. This is the approach

taken in the DELIGHT interface to the SPICE circuit analysis program, addressed

in section 5.1.

The interface routines that deal with simulation outputs are listed in the fol

lowing table:

Declaring Outputs and Obtaining Their Values

SimulationOutput
(simout)

Declare the given simulator output so that it
is accessible to any RATTLE expression, re
turning a success or failure status flag.

OutputPointer
(outptr)

Return the pointer for the given output (its
name is passed).

OutputValue
(outval)

Return IJie present value of the output asso
ciated with the pointer given.

ClearOutputs
(clrout)

Clear all outputs, i.e. make it such that none
is declared.

OutputKeywords
(okeywd)

Return the various output keywords for a
particular simulator so they can be set up as
macros (see section 4.7.3). The number of
keywords i§ returned as the function value.

Routines OutputPointer and OutputValue also act as an interface pair for run

time efficiency except that a value is returned rather than a parameter value

updated as for ParameterUpdate.

Routine OutputValue plays a special role in allowing RATTLE expressions to

freely access simulation output values: if any design or settable parameters has

§4.7.2 204

been updated since the last simulation. OutputValue must automatically run the

required simulation before returning the output value. Since often a simulator

can perform different kinds of simulations such as time-domain, frequency-

domain, etc., the interface keeps a flag for each kind of simulation, indicating

whether a new run is required or not. Each flag is set by ParameterUpdate or

Settable Update if the parameter it is updating affects the corresponding kind of

simulation. OutputValue then first checks these flags to determine if it must run

another simulation.

The last three of the six function classes consist of the interface routines in

the following tables:

Simulationlnit
(sminit)

Initialising the Simulator

Run the initialization (setup) phase of the
simulator on the given logical unit number.
It has already been opened to the file that
describes the structure of the system being
simulated.

Setting Simulator Run Controls and Options

SimulationRunControl

(simrct)

SimulationOption
(simopt)

For a given simulator run control, record the
analysis information passed. This informa
tion can be either a scalar, or a vector as in
the parameters Tstart Tstop, and Tstep that
might be needed by the run control for Time
in a time-domain simulation program.

Store the given value into the specified simu
lator option variable.

§4.7.2 205

Displaying User-Requested Simulator Information

SimulationDisplay
(smdisp)

Display the user-requested simulator output
from the command and optional arguments
passed. For example, the independent part
of the simulation interface converts the user
command display nodes 201 202 into the call
SimulationDisplay ("nodes', '201', '202').

4.7.3. Simulation-Independent Part

The simulation-independent part of the simulation interface consists mainly

of RATTLE defines, macros and procedures that are intended to simplify user

control of and references to a simulator. As in the previous section, they are

presented in the order of the six functions listed in section 4.7.1.

Declaring Design Parameters and Setting Their Values. The

design^parameter declaration statement has already been shown for the classi

cal and multiobjective problem formulations in sections 4.4.2.1 and 4.4.2.2. To

declare design parameters that in particular are simulator input parameters,

the simjtesign^arameter statement is used and has exactly the same syntax.

In an optimization problem involving a simulator, however, ordinary design

parameters can still be declared using designjparameter. Thus, design prob

lems can be formulated using both types of design parameters. Besides storing

away the parameter variation, min and max bounds, etc., sim_design_parameter

also calls simulation-dependent routine DesignParameter to declare the param

eter and prints an error message if the status flag returned indicates an error.

The set command, already mentioned in regard to the "P" multiobjective

problem description file in section 4.4.2.1, is used to set the value of simulation

§4.7.3 206

design parameters, ordinary design parameters, and settable parameters and

has the following format:

set NAME = VALUE

It takes the parameter name and passes it in succession to (l) a RATTLE routine

for ordinary, design parameters, (2) dependent routine ParameterPointer, and

(3) dependent routine SettablePointer. If any of these returns a valid pointer,

say 101, then set pushes back the appropriate entry in the following list:

(1) X(k) = VALUE
(2) { X(k) = VALUE ; ParemeterUpdate (101,VALUE) j
(3) SettableUpdate (101.VALUE)

where k is the X index of the design parameter. Obviously for set to work prop

erly, all the various parameter names must be unique.

From the discussion so far, it would seem that the only way to update simula

tion design parameters is using set. Hence, one may ask, "How are these param

eters updated automatically during the course of an optimization run, consider

ing that set statements need not be placed in any of the problem description

functions?" The answer to this question concerns an additional task performed

by the prob^functixm statement used throughout section 4.4.2.235. Hidden from

the user, prob^function loops over all simulation design parameters calling

ParameterUpdate for each. In this way neither the user nor optimization algo

rithms need be concerned with keeping the simulator input parameters up to

date.

Declaring Settable Parameters and Setting Their Values. Settable parame-

35 To usethe classical problem formulation with simulation design parameters requires the word
function appearing throughout section 4.4.2.1 to be replaced by the word
sim-Junction in order to carry out this task.

§4.7.3 207

ters are declared by including the statement

settable-parameter PAHNAME

for each in the "S" file and are set using the set command as explained above.

Declaring Outputs and Obtaining Their Values. Simulation outputs are

declared by including for each the statement

similation-output OUTPUT-NAME

in the "S" file. After such a declaration, OUTPUTJJAME can be used in any RAT

TLE expression, in particular in those that describe the problem to be optim

ized.

The simulation output mechanism works only if OUTPUTJtAME begins with

one of the simulator output keywords, e.g., Pressure or vm from the examples in

the last section. These keywords have been returned (during a setup process by

systems personnel) by a one-time call to the dependent routine OutputKey-

words. At that time, each of the keywords was defined to be a macro which

gathers its following arguments and performs other tasks. For example, if

vm(3,4) appeared in an expression, macro vm would do the following:

1. gather the arguments 3,4,

2. pass ,vm(3.4)* to OutputPointer to get back the pointer, say 101, and

3. push back OutputValue(101).

If the arguments 3,4 were invalid, Le., not of a previously declared output, an

error message would be printed on the screen by vm.

Initialising the Simulator. The simulation program is initialized using the

statement

§4.7.3 208

sim FILENAME

in the "S" file where FILENAME is the name of the file containing the structural

description of the system to be simulated, sim opens the file to a Fortran logi

cal unit number and passes that number to the dependent interface routine

Simulation/nit. If any errors occur during the initialization, sim prints an error

message on the screen.

Setting Simulator Run Controls and Options. A simple way of controlling the

run controls necessary for simulations that range over an independent variable

is using the sweep command. It normally is included in the "S" file and has the

following format:

sweep VARNAME from FROM-STAL to TOJfAL jby j INCJ/AL
jt imes j
oct j

jdec
(log !

Usually, VARNAME is the name of an independent variable such as time, fre

quence, temperature, etc. The sweep command gathers the numeric arguments

and the increment keyword and passes them all to dependent routine Simula-

HonRunCantrol. As usual, any errors encountered are printed on the screen.

Simulator option variables may be interactively set at any time with the

option command, having format:

option NAME = VALUE

This command simply passes the name and value to interface routine Simula-

tionOption. No interface pair is needed in this case since option changes occur

rarely.

§4.7.3 209

Displaying User-Requested Simulator Information. Important output gen

erated by a simulator (and perhaps normally sent to a line printer) can be

displayed on the terminal screen at any time by using the display command. It

has format:

display ITEM [ARG1 AB&2 . .. ARG8]

The item to display is followed by from one to six specific items. Each of the six

arguments can be made to describe classes of items through the use of the

magic characters •'*" and "?". "*" represents a match of zero or more of any

character, e.g„ appearing alone it matches any entry. Thus, in electronic cir

cuit design, the command display element R2* might display all circuit resistors

whose names started with R2. "?" matches any single character in a name.

Thus, for example, display model ??J5T ??7 might display all system models

whose names contained three characters and ended with either of the letters X

or Y. Of course, arguments to display need not contain any magic characters.

Other dependent routines shown in the tables of the previous section that

were not discussed here have to do with other less interesting functions of the

interface. See the DELIGHT Reference Manual [110] for additional information.

4.8. Miscellaneous DELIGHT Features

This section covers various additional commands and features of DELIGHT.

First of all, there are several features for meeting the DELIGHT goal of providing

test and debug aids for the RATTLE interactive programming language. These

include (l) the ability to display DELIGHT entities such as variables, arrays,

defines, etc., and procedure execution times and call counts, (2) the ability to

enter procedures and display or work with local entities, and (3) the ability to

§4.8 210

turn on and off the echo of lines from a file being included.

The display command for displaying various DELIGHT entities has the follow

ing format38:

display [local 1 \ arrays J [ITEM]
[system j j defines j

| functions j
! macros j

procedures j
\ variables j

The keywords local and system are optional, local entities are arrays, defines,

or variables that were created inside a procedure body, local can only be given

after the user has enfered a function or procedure (see the discussion of enter

below). Any type of DELIGHT entity is considered to be a system entity if its

name ends in an underscore ("_!'). This convention has been adopted by

DELIGHT irystems personnel in order to avoid name conflicts between user and

system airays, defines, macros, procedures, or variables. Conflicts will never

exist if users follow the general rule of never creating any name that ends in an

underscore. Just as for the display of simulation output in the previous section,

the requested item above can use the "magic" characters "*" and "?" to request

only items that match a certain pattern.

The following terminal session demonstrates the display command. When

starting DELIGHT, several global optimization-related variables already exist in

the variable pool. Other variables, created at any time during the course of a

session, are also listed:

86 This is only part of the format. See [110] for additional options.

§4.8

1> vl = 1

1> v2 = 2

1> display variables •

9 variables:

Iter = 0.00000 GLOBAL

Neq = 0.00000 GLOBAL

Nfineq = 0.00000 GLOBAL

Nfmulticost = 0.00000 GLOBAL

Nineq = 0.00000 GLOBAL

Knilticost = 0.00000 GLOBAL

Nparam = 0.00000 GLOBAL

vl s 1.00000

v2 = 2.00000

211

Similarly, the other DELIGHT entities, arrays, defines, functions, macros, and

procedures, can also be displayed. The local option is demonstrated below after

introducing the enter command.

Another feature to aid program development is the enter command, already

used in debugging the Newton-Raphson development example in section 4.7.2. It

allows the local entities of a procedure—variables, arrays, and defines—to be

displayed, used in RATTLE expressions e.g. for debugging purposes, or even

assigned values. Arrays or variables that have been imported, are also available

while entered. These features are seen in the following simple example:

1 j a = 1 ; b = 2
1> procedure demo {
1} inport a, b
lj c = 3 ; d = 4
2} print abed
u f
1> denx>()
1.000 2.000 3.000 4.000

After executing this procedure as above, we may enter it and display its local

variables. To leave the entered state, leave is typed:

§4.B 212

1> enter demo
e> display local variables *

4 variables:

a = 1.00000 (IMPORTED)
b = 2.00000 (IMPORTED)
c = 3.00000

d = 4.00000

e> leave

1>

Note that after entering a procedure with the enter command, the prompt

string changes to "e>", a reminder that any variables created or used are actu

ally local to the entered procedure. As mentioned earlier, this is similar to

other systems such as Pathcal [156] that rely on different prompt characters to

indicate the state of the system.

Another useful command for debugging or analyzing run-time behavior is

displayjime. It displays a list of procedure names, total cpu time, direct cpu

time, and number of times called for RATTLE procedures and built-in routines,

sorted by total cpu time (largest first). Direct cpu time is the total amount of

time actually spent in a procedure but not in any procedure called by it. The

clear_tvme command resets all the call-counts and the cpu time values to zero,

Le., the display_time quantities are since the last clear_time. One of the uses of

these commands is for pin-pointing major cpu time bottlenecks in a program so

that these sections of code can be made more* efficient. These commands are

shown in the following continuation of the above terminal session:

1> clear time
1> for i = 1 to 5

1> dcn»()
1.000 2.000 3.000 4.000
1.000 2.000 3.000 4.000
1.000 2.000 3.000 4.000
1.000 2.000 3.000 4.000
1.000 2.000 3.000 4.000

§4.8 213

1> display—lime
TOTAL DIRECT NUMBER

SECONDS SECONDS OF CALLS PROCEDURE/MACRO NAME
1.27 — Cpu-time sinoe last "clear-lime"
.167 .100 5 demo
6.67e-2 6.67e-2 5 prinfB

The built-in DELIGHT routine prinf6 listed above is called by the printf state

ment in procedure demo. Notice that the total time in prvnf6 plus the direct

time in demo add up to the total time in demo. These computer times are on a

VAX 11/780 running "the greatest operating system of all time," Berkeley UNDC!

For resuming an optimization or a software development at a later time the

store and restore commands allow the entire state of DELIGHT to be written to

and read from files called memfiles. A memfile is a large binary file which con

tains all user and DELIGHT program internal arrays, variables, etc., and all of

the precompiled and user-written RATTLE procedures which a user has access

to. This feature is similar to saving a workspace in an APL environment [52].

Both commands may be followed by the filename of the memfile to use; if no

name is given, file memfile is used by default.

Other user-friendly DELIGHT features include the history mechanism of the

UNDC csh [72] and a built-in editor. The simplest use of the history command is

to just look at the history list, the most recent commands typed at the terminal:
•

1> History 13
37 procedure demo [
38 import a, b
39 c = 3 ; d = 4
40 print abed
41 1
42 demo()
43 enter demo
44 display local variables •
45 leave
46 clear_time
47 for i = 1 to 5
46 demo()
49 display-time

§4.8 214

The real purpose of the history list, however, is to be able to re-issue previous

commands easily. One may re-issue a command by typing, for example, "!dis" if

the command had started with the letters "dis" or "!49" if the command had

been number 49 in the history command output. If "idis" is typed, DELIGHT

looks up the history list, starting from the bottom (most recently typed line),

and reuses the first command line it finds which begins with the letters "dis".

The command to be reused is first printed on the terminal. We continue with the

above terminal session:

l> lde
demo()

1.000 2.000 3.000 4.000
1> !42
demo()

1.000 2.000 3.000 4.000

DELIGHT features a built-in, UNDC-like editor (without any vi screen

mode)37. For a comprehensive document giving a complete list of all editor

commands, see the DELIGHT Reference Manual [110].

37 Th™ editor is not needed on Umxsince there it is so easy to temporarily suspend an interac
tive program such as DELIGHT (viathe ctrl-Z mechanism of csh [72]) and later reactivate it by bring
ing it back into the foreground. However, on systems where this is not possible, it is necessary to
edit from within DELIGHT.

CHAPTER 5

DELIGHT Applications

In this chapter we present several applications of the DELIGHT system to

various areas of engineering design. One of the foremost application areas to

date, the design of electronic integrated circuits using DELIGHT.SPICE, is

presented first in section 5.1. This includes an introduction to the types of

design problems that occur in the electronic circuit area followed by examples

of several problem formulations found to be useful for these types of design

problems. After presenting a few specific features of DEUGHT.SPICE, we present

the design of several circuits using the methodology introduced in chapter 4.

The second part of the chapter, section 5.2, deals with several other engineering

design applications. These are the design of digital filters, feedback control sys

tems, and earthquake-resistant buildings. Other DELIGHT applications not dis

cussed further include the MINLP system [85] which implements in RATTLE the

MINMAX/MINBOX LP design approach of APLSTAP [60] (see section 2.2), and the

recent DELIGHT.ARBSIM system [115] which allows DELIGHT to be easily used

with an aroitrary simulator without requiring the normal load/linkage of the

simulation program and its simulation interface routines with DELIGHT. Instead,

the simulator runs as a completely separate program with all communication to

and from DELIGHT through input and output files.

215

216

5.1. Electronic Circuit Applications Featuring

DEUGHT.SPICE

DELIGHT.SPICE is the union of the DELIGHT system and the SPICE [105] cir

cuit analysis program, for the purpose of applying optimization-based

computer-aided design techniques to electronic circuit design. With

DELIGHT.SPICE, circuit designers can take advantage of all the optimization and

other features of DELIGHT presented in the previous chapter. They may

automatically adjust circuit parameters such as resistor and capacitor values

and device geometries such as bipolar transistor (BJT) areas and MOSFET

lengths and widths. The problem description expressions can be a function of

the node voltage across any two circuit nodes or the branch current through

any voltage source as well as directly a function of the design parameters1.

Moreover, these voltages and currents can be output results from any of the

three SPICE analysis modes: DC (bias-point solution), AC (frequency-domain), or

transient (time-domain).

As an example of a circuit design problem whose performance objectives and

constraints are indirectly a function of the design parameters by being a func

tion of circuit responses only, consider the following wide-band amplifier exam

ple. The design of the wide-band amplifier could have as a performance objec

tive that the bandwidth of the amplifier be increased and as an ordinary inequal

ity constraint specification that the DC power be less than some value. The

design parameters could be a capacitor value and a BJT area. Neither the per

formance objective nor the constraint specification are explicit functions of the

design parameters; this dependence is implicit through the solution of the

1 Future enhancements mentioned in chapter 6 include other circuit response outputs such as
noise or distortion and output currents through any element.

§5.1 217

circuit equations by the simulator. In particular, the bandwidth can be

evaluated by finding the -3dB point of the frequency response from an AC

analysis, while the DC power can be computed as the product of the DC current

through the power supply times the supply voltage. This DC current would be

computed by a DC analysis. The DELIGHT.SPICE system computes these circuit

responses using the simulation program SPICE.

Since the enhanced multiobjective problem formulation of sections 4.4.1.2

and 4.4.2.2 and the phase I-II-III method of feasible directions first introduced in

section 4.5.2.2 were actually conceived by working in the electronic circuit

design area, users of DELIGHT.SPICE will probably restrict themselves to those

tools. However, they still retain the possibilities of selecting a different algo

rithm from the RATTLE Algorithms library or of modifying or creating their own.

The remainder of this section is organized as follows. We first survey various

aspects of the design of electronic circuits in section 5.1.1. Sections 5.1.2 and

5.1.3 then discuss several useful problem formulations and additional system

features. Finally, section 5.1.4 presents the circuit design examples.

The simulation interface of DELIGHT to SPICE implements each of the inter

face routines covered in section 4.7.2. It needs no further discussion other than

points discussed in section 5.1.3 such as the various SPICE options available with

the option command. However, we take this opportunity to note that the inter

face of DELIGHT to SPICE would not have been possible without the help of E.

Cohen's carefully created program reference manual for SPICE [30].

§5.1 218

5.1.1. Nature of Electronic Circuit Design

In this section we present a brief survey of various aspects of the design of

electronic circuits. We place particular emphasis on the design of monolithic

integrated circuits (IC's). (Indeed, the last three letters in "SPICE" stand for

"integrated circuit emphasis".) We first take a look at several classes of design

problems and then review many of their properties. A list of typical perfor

mance objectives or constraints is then given for various kinds of IC's. The sec

tion closes with a discussion of performance tradeoffs and one of their particu

larly important roles in an IC industrial environment. We remark that many of

these ideas originated while applying DELIGHT.SPICE and interacting with circuit

designers in such an environment.

In the design of electronic circuits there are many classes of design prob

lems that face designers. Probably the largest problem class is that of coming

up with a circuit topology and meeting or optimizing a set of design

specifications. During this process, circuit designers continually try to better

their designs by improving a set of performance objectives subject to constraint

specifications. Other classes of problems include comparing various circuit

configurations to find the "best", and paying close attention to the models that

they use in their simulations. The latter, referred to as model parameter

extraction, involves determining the parameters of the models so that the

mathematical equations of the models represent physical behavior of the electr

ical components which is significant to the way the components will be used. It

also involves model simplification, that is, replacing complex models by simpler

models for computational efficiency. Other very important concerns to most

circuit designers not directly considered in this research stem from component

statistical variation inherent in most manufacturing processes. (See, for

§5.1.1 219

example, chapter 12 of Brayton and Spence [23] or [24].) These types of prob

lems include design centering, tolerance assignment, yield estimation, and yield

maximization. Also important are chip layout and packaging, reliability, and

testing considerations.

In the following we review various properties typically found in modern

integrated circuit design problems. To begin, the design parameters in these

problems are usually those that can be controlled by mask creation or

modification: circuit designers usually have little control over processing steps

or parameters. Thus allowable design parameters include resistor and capacitor

values and device geometries such as diode and BJT areas and JFET and MOSFET

lengths and widths. For precise applications, BJT geometries, for example, can

be addressed by many additional design parameters, e.g., the lengths, widths,

and spacings of all the various mask stripes and apertures. Similarly, in some

cases geometric properties of actual resistors can be design parameters. This is

the case, for example, when the resistance does not follow the idealized L/W for

mula such as for odd shaped geometries or under high-frequency excitation

where distributed and parasitic effects start to dominate.

An important property of integrated circuits is the fact that the values of

many circuit parameters can be made to match to a fairly high degree. The

accuracy with which two identical transistors or resistors can be matched has a

first-order effect on the attainable performance in monolithic operational

amplifiers as well as other types of analog integrated circuits such as voltage

regulators, analog multipliers, analog-digital converters, voltage comparators,

and others [55]. Thus a designer need only consider one out of such a matched

set of parameters as a design parameter; the others in the set simply track the

one. There are also parameters whose values track one another by being the

§5.1.1 220

same function of e.g., a processing parameter. The foremost example is the

tracking of resistor values that all depend on the sheet resistivity. For these

reasons, as explained in section 5.1.3, such parameter matching and tracking

has been considered in the DELIGHT.SPICE problem formulation.

Integrated circuit design parameters typically have box constraints. These

can be due to minimum IC mask tolerances, circuit realizability or stability con

straints, or the inability of the circuit simulator to function properly (or at all)

under the circumstance in which a parameter lies outside of its box. For exam

ple, many element values such as resistor and capacitor values are required to

be nonnegative for many of the reasons just listed. The goal to minimize chip

area also leads to maximum box constraints on parameters such as device

areas —though these are usually soft constraints that can be traded off against

other performance factors.

Another property of IC design problems concerns the performance objectives

and constraints that circuit designers face. Not only are they of varying impor

tance to the designer, but often they are defined over a continuous interval of an

independent variable such as time, frequency, temperature, sheet resistivity,

power supply voltage, radiation level, manufacturing tolerance, etc. Several of

these functional specifications can be seen in the examples of the next para

graph.

We now give typical objectives or constraints for various types of IC design

problems. We emphasize (and it can be seen below) that these factors involve

DC, AC, and transient circuit performance. Total DC power in a circuit is usually

a concern of all circuit design problems. For integrated circuits, individual

component areas are another concern because they affect total IC chip area and

§5.1.1 221

hence cost. In analog IC's such as operational amplifiers, additional perfor

mance factors include bandwidth and open or closed-loop gain, gain and phase

margins, slew rate or the maximum rate of change of the output voltage, max

imum output voltage swing, various voltage drifts over temperature, linearity,

input and output impedances, and various rejection ratios. These ratios

represent the ability of the circuit to reject certain undesirable signals. For

example, common mode input signals on a differential input amplifier are

represented by the common mode rejection ratio (CMMR) while spurious noise

on the power supply line is represented by the power supply rejection ratio

(PSRR). Other factors include DC input bias and offset currents, input offset vol

tage, and how all of these drift over temperature, sometimes referred to as their

temperature coefficients. Designers of high-frequency amplifiers are usually

concerned with the above as well as noise figure, total output noise, equivalent

input noise, and the presence of distortion components in the output. For digi

tal circuits and many analog circuits with switching functions, there are many

other performance factors. These include transient properties of waveforms

such as switching time, rise time, settling time, percent overshoot, delay or

access time, and input capacitance, which affects these other properties of pre

vious stage waveforms. Static DC factors that affect digital circuit performance

include switching threshold, fanout and the related maximum output drive

current, logic output levels, and their resulting noise margins. Finally, in some

cases there are such esoteric considerations as immunity from external radia

tion such as gamma radiation or high energy electromagnetic pulses.

Performance factors such as the ones just presented are very often in close

competition. Thus, circuit designers are faced with many tradeoff decisions. To

show the potential of the tradeoff methodology and features presented in the

§5.1.1 222

previous chapter, we now consider a scenario of a typical IC design process in an

industrial environment. A typical design process consists of the following over

lapping steps:

1. circuit specification
2. process selection
3. topology synthesis
4. parameter selection
5. simulation

After marketing has derived a set of specifications and a production process has

been selected, the circuit designer chooses an initial configuration to realize the

desired function. Once this has been done, circuit paremeter values (resistor,

capacitor values, device geometries, etc.) are repeateilly varied until perfor

mance, evaluated by circuit simulation, meet the specifications. There are

many feedback paths since the specifications often cannot be met and an alter

native topology, process, or set of specifications itself must be considered.

Experience has shown that circuit designers are very good at making the com

plex decisions involved in the first three steps above. However, an optimization-

based system such as DELIGHT can greatly assists the designer in the time-

consuming and repetitive parameter adjustment step of the design process.

Also, the ability to perform tradeoffs by giving emphasis to particular objectives

and constraints through adjustment of the good and bad values has an impor

tant advantage. It can result in a variety of attractive solutions, all of which can

be realized with only minor changes in a few IC masks. Thus the designer can

offer the marketing department several product options, each of which

represents the circuits best performance for the particular emphasis given.

In conclusion, many circuit design problems are well suited to the multiob

jective problem formulation of the previous chapter. This conclusion is further

§5.1.1 223

warranted by the fact that circuit designers are often interested in performance

improvement rather than finding a true optimum, due to the computational

costs of circuit simulation. Hence they should be (and have been) interested in

the approaches and algorithms presented in the previous chapter.

5.1.2. Circuit Design Problem Formulations

In this section we present several examples of problem descriptions that

have been successfully used for some of the circuit design objectives and con

straints given in the previous section. These pertain to the multiobjective prob

lem formulation of sections 4.4.1.2 and 4.4.2.2. We proceed from the simplest DC

objectives to more complex formulations such as one that uses an objective and

a constraint in combination to maximize bandwidth or minimize switching delay.

We stress that formulations other than the ones presented here may also be

used in setting up circuit specifications.

An example of the simplest possible objective is to minimize the total DC

power in a circuit. Suppose a small series resistor has been placed in series

with the power supply for sensing its current. If this resistor has value .5 ohms

and its two nodes are 101 and 102 then we might have the following in the indi

cated problem description files:

In"S* File:

simulation output vdc(l01,102)

fnuM' FOe:

objective 3 'DC Power' minimize VDD#(vdc(101,102)/.5ohms) good=1.5w bad=1.8w

where VDD is the voltage of the DC power supply voltage source.

Another simple objective involves a simulation output versus a fixed value of

§5.1.2 224

an independent variable. Consider maximizing the gain-bandwidth product of an

operational amplifier which has been set up with a unity AC input source so that

its voltage gain is identical to the magnitude of the voltage at node 101. After

plotting the voltage gain versus frequency (using, for example, plot db(vm(10l))

vs FREQfrom 100Hz to lOmegHz dec 10), we find a frequency in the middle of

the dominant-pole, 20db/decade range, say, 100kHz, and we simply maximize

the voltage magnitude at this fixed value of variable FREQ. (In the next section

we show how variable FREQ is used for frequency-domain outputs, similar to the

way Fortran variable TIME was used for time-domain simulation outputs in sec

tion 4.7.2.) This would require:

In "S" File:

simulation-output vm(101)

In"FIT FOe:

objective 5 'GB Product" maximize vm(101)M00kHz good=10megHz bad=ftnegHz using
FREQ = 100kHz

In the above "S" file, the simulatixm_gutput statement declares the magnitude of

the voltage at node 101 as an output; vm is a DELIGHT.SPICE output keyword

(see section 4.7.2).

A slightly more complex performance objective is to have a particular node

voltage as close to a given voltage level as possible. Suppose we want the voltage

on node 101 close to 5 volts. One way to achieve this is to minimize the squared

deviation from the desired, requiring the following in the indicated files:

In "&' File:

simulation-output vdc(lOl)

§5.1.2 225

In "M' File:

objective 3 'Node 101' minimize (vdc(101)-5)**2 good=0 bad=(.5)**2

The good and bad values of this formulation are somewhat awkward in that they

do not clearly represent how far the node voltage is from 5 volts. Another

approach is to make two soft constraints: one to stay below, say, 5.2 volts and

the other to stay above, say, 4.8 volts. In this case we would require:

In'T File:

constraint 4 'Upper 101* vdc(lOl) <= good=5.2v bad=5.4v soft

constraint 5 'Lower 101' vdc(lOl) >= good=4.8v bad=4.8v soft

However, when both good values are nearly equal, this approach faces the

danger of the two constraints having equal and opposite gradient vectors. This

may cause some optimization algorithms to believe prematurely that necessary

optimality conditions have been satisfied.

The two-constraint case just presented can also be applied to keep a node

voltage between two curves over the range of an independent variable, i.e., for

functional constraints. The simplest situation is when the two bounding curves

are constant. This would be the case if the output voltage of a voltage reference

was constrained to lie within a band over temperature. To keep node voltage 101

lying within a .05 volt band around 1.2 volts we might have:

In"Fr FiLe:

constraint 4 'Upper Band' vdc(101) <= good=1.25 bad=1.3 soft
for-every TEMPDC from -55 to 125 initially by 10

constraint 5 'Lower Band' vdc(101) >= good=l.15 bad=l.1 soft
for_every TEHPDC from -55 to 125 initially by 10

§5.1.2 226

where TEMPDCIs the SPICE simulation temperatures in degrees centigrade2.

The general situation is when the two bounding curves are functions of the

functional "W" variable. Suppose we want to place upper and lower bounds on a

transfer function. versus frequency. Such constraints often occur in filter

specifications. This may be viewed as placing upper and lower bounding curves

on a Bode plot of the transfer function versus frequency. First we need the

expressions versus the variable FREQ that describe the bounding curves. One

approach is to give the expressions explicitly. For a lowpass transfer function,

these might be

db
IVl 4 (FREQ/ lOOmegHz)* t

for the upper bound and

1
db

Vl + (FREQ/lOOmegHz)*

for the lower bound, where :he function db gives its argument in units of deci-

bels, i.e, it is just 201og10(). However, to demonstrate a more general approach

that allows an arbitrary piecewise linear specification of the curves, we use the

interpolated_array statement (explained more fully in [110]). The first three

lines below declare a piecewise linear entity called UplOl; when UplOl is used in

any expression, it represents the interpolated value of the piecewise linear func

tion obtained by connecting the 6 x,y points lmegHz.1.0, 2megHz,.9, etc., from

the second and third lines, versus the present value of independent variable

FREQ. The "FT file lines then use the two interpolated arrays to achieve the

desired bounds:

+ 3db

- 3db

aThe use of TEMPDC here is not entirely correct; see the next section.

§5.1.2 227

In"S* FUe:

interpolated-array UplOl(8) over FREQ
lmegHz 2megHz SmegHz lOmegHz 20megHz lOQmegHz
1.0 .9 .9 .7 .3 .05

simulation—output vm(l01)

interpolated-array Lol01(6) over FREQ
lmegHz 2megHz 5megHz lOmegHz 2GmegHz lOGmegHz
0.7 0.6 .6 .4 .2 .01

In"FT' FUe:

constraint 4 "Upper 101* wn(l01) <= good=Upl01 bad=1.2*Upl01 soft
for_cvery FREQ from. Imeghz to lOQmeghz initially dec 10

constraint 5 'Lower 101' vm(l0l) >= good=Lol01 bad=0.B*Lol01 soft
for_Kvery FREQ from Imeghz to lOQmeghz initially dec 10

As before it is assumed that the magnitude of the voltage at node 101 is identical

to the transfer function value. The above two functional inequality constraints

force this magnitude to lie between two piecewise linear curves on a Bode plot.

Another important use for frequency-domain functional constraints is to

place bounds on the closed-loop peaking of a feedback amplifier in order to

mee': stability or settling time specifications. The use of such "equivalent"

'frequency-domain criteria for time-domain specifications usually results in a

great computational savings.

Let us now address constraints on the phase margin (PM) of an amplifier

such as PM^45°. Phase margin is defined as 180° -tpx where tpi is the amplifier

phase at the frequency where the open loop gain crosses unity. By substitution

we can convert the PM constraint to the phase constraint <p ^135°. (This con

straint simply keeps the phase at unity gain away from 180° where closed-loop

instability occurs.) The problem is to find the value of FREQ where the gain is

unity. Once found we simply obtain tp^ from, eg., vp(10l) (phase at node 101)

assuming the amplifier output is at node 101. To find where the open loop gain is

unity we can use the findroot statement (explained more fully in [110]) to find

§5.1.2 228

the root (zero) of an arbitrary expression, given lower and upper values which

bracket the root. Thus we first obtain suitable values which bracket the root

versus variable FREQ, say 500kHz and lOmegHz, and then use

findroot wn(101)-l vs FREQ frem 500kHz to lOmegHz

After this statement executes, variable FREQ equals the frequency value where

expression vm(10l)-l equals zero, Le., the unity gain frequency. We then use

the phase value vp(101) as our constraint as shown below:

simulation—output vm(101)
simulation—output vp(101)

In"5* File:

In'T File:

constraint 4 'Phase* vp(101) <= good=135 bad=155 soft using
findroot vm(101)-l vs FREQ from 500kHz to lOmegHz

In regard to frequency-domain transfer functions, one much tougher

objective to formulate is to maximize the 3db bandwidth of an amplifier. Sup

pose a circuit has been set up with a unity AC input source so that the magni

tude of the voltage at node 101 is equal to the amplifier voltage gain. A simple

approach is to use the findroot statement as above to find the frequency where

the gain falls to 3db (.707) of its low-frequency value, and then return this fre

quency as the objective value as in:

Jh'WFUe:

objective 4 'Bandwidth' maximize FREQ good=4megHz bad=3megHz using
findroot vm(101)-. 707»GAINDC vs FREQ fran 2megHz to OmegHz

where GAINDC is the known low-frequency gain of the amplifier. A problem with

this approach is that instead of the amplifier gain staying constant out to the

3db point as desired, a large peak might develop that gives an artificially high

§5.1.2 229

3db rollofl frequency. To prevent such a peak, functional constraint bounds as

shown earlier in this section can be used to constrain the transfer function to lie

within a band. However to maximize bandwidth, in some sense we want the

upper bound of these functional constraints to increase instead of remaining

fixed. What we desire is to solve the following mathematical problem:

maximize \B \ Fineq(x.nB)^Uual and FmeqfaiiB^hual V/ie[0,l] \
(5)

where Uval and Lual are the values of the upper and lower transfer function

bands and B is the approximate bandwidth, i.e., the value at the upper end of

the frequency range for both band constraints. Note that the "W" value actually

passed as the second argument to Funeq ranges from 0 to the present value of

the bandwidth being maximized, B. This formulation, reminiscent of the idea of

"designable desired" in [58], can be achieved in the multiobjective problem for

mulation using the objective /constraint combination technique of introducing a

non-simulation design parameter B to use in a maximize objective and also in

the calculation of the two banding functional constraints. For a low-frequency

gain of unity (Odb), the following might be in the indicated files:

simulation-output vm(101)
design-parameter B

In "S" File:

In"IT File:

objective 1 'Bandwidth' maximize B good=lCtaegHz bad=5megHz

In "FT FUe:

constraint 1 'Upper Band" db(vm(101)) <= good=3db bad=4db using
FREQ = mi * B

for-every mu from. .1 to 1 initially dec 15

constraint 2 'Lower Band" db(vm(101)) >= good=-3db bad=-4db using
FREQ = mu ♦ B

for_every mu from .1 to 1 initially dec 15

§5.1.2 230

Note that the two functional constraints are hard (due to the absence of the key

word soft) and do not take part in any design tradeoffs with the bandwidth objec

tive. The for_every lines above use the dec keyword to cause the variation of mu

to be logarithmic over its interval range.

The above objective/constraint combination technique can also be applied to

time-domain objectives such as minimizing the settling or delay times of an out

put pulse. Without further discussion we show what might be required in the

various files to minimize the time required for an output pulse to settle to within

.131 percent of 5 volts.

aimulation-output vtr(lOl)
design-parameter T

In"ST FUe:

In"M'FUe:

cbjective 1 'Settling Time' minimize T good=2us bad=3us

In "FF FUe:

constraint 1 'Upper Band' vtr(lOl) <= good=1.01*5v bad=1.015«5v using
TIME = (l-mu)*T + mu*Tstop

for_every mu from. 0 to 1 initially by 40

constraint 2 'Lower Band' vtr(lOl) >= good=.99»5v bad=.985»5v using
TIME = (l-mu)«T + mu'Tstop

for_every mu frem. 0 to 1 initially by 40

In the above, the variation of mu from 0 to 1 causes TIME to vary from T to

Tstop, the final time of the time-domain simulation by SPICE.

5.1.3. Additional DELIGHT.SPICE-Specific Features

This section introduces several features required for using DELIGHT optimiza

tion in a circuit design environment; most of these features are specific to

DELIGHT.SPICE. These include the allowable design parameters and simulation

outputs, sweep commands for controlling SPICE simulation, settable

§5.1.3 231

parameters, matched parameters and parameter tracking, the options that can

be controlled in SPICE, various display commands for viewing circuit data and

properties, and other important features. But first, we discuss the circuit

description file.

Circuit description file. As introduced in section 4.7.3, the simulation pro

gram is initialized using the sim FILENAME statement in the "S" file where

FILENAME is the name of the file containing the structural description of the

system to be simulated. For DELIGHT.SPICE and circuit design, this file is the

normal SPICE input circuit file that describes the circuit interconnections, ele

ment values, and other input requirements. DELIGHT.SPICE does not make any

requirement on the name of the circuit description file (since this name is only

used with the sim, command). Areasonable possibility (which may be dependent

on the particular computer being used) is to use the optimization problem name

followed by the characters .CKT, e.g., pbname.CKT for problem pbname of the

previous chapter. The circuit description file is set up in almost exactly the

same way as for the SPICE batch program. This input format will not be dis

cussed here; see a SPICE user's guide such as [150] for more information.

There are, however, a few important differences between a batch SPICE circuit

file and a DELIGHT.SPICE circuit file. One technical difference is that a .TRAN

line must be in the circuit file if any performance objectives or constraints

depend on SPICE transient (time-domain) outputs. See the DELIGHT.SPICE

User's Guide [114] (included as appendix I of this dissertation) for more details.

Another difference involves not technical rules as above but the actual nature

of the circuit being simulated. The circuit described in both types of circuit

files consist of elements belonging to the circuit being optimized, and external

sources, loads, and/or feedback elements that are needed to test the circuit. In

§5.1.3 232

SPICE, the user changes the test conditions manually (by editing the circuit file)

and reruns SPICE for each of the design specifications. In DELIGHT.SPICE, the

optimization must be able to change the test conditions automatically during

execution, and it can only do so by changing element values. Thus, the circuit

file must describe a single test circuit such that all the configurations required

for the various test conditions may be obtained by setting element values only.

These elements are examples of settable parameters that must each be

declared using the settable^parameter statement of section 4.7.3. Settable

parameters are discussed further below.

Design parameters. As indicated in the previous chapter, all SPICE design

parameters must be declared by using a sim_design_parameter statement in

the "S" file for each. For resistors, capacitors, and inductors, the parameter

name of the design parameter for this declaration is simply the element name

as in R101, CBYPASS or LSHUNT. For bipolar transistor areas the name is the

element name followed by _j4as in Q9Jl For MOSFET lengths or widths the name

is the element name followed by Jj or Jf as in MX37J, or MFEEDJf. The follow

ing table summarizes the allowable design parameters, with XXX representing

the actual circuit file element name (excluding the first character):

§5.1.3

DELIGHT.SPICE Allowable Design Parameters

Parameter Parameter Name

Resistor Value RXXX

Capacitor Value CXXX

Inductor Value LXXX

BJT Area QXXXA

MOSFET Length MXXXJi

MOSFET Width MXXXW

233

Other SPICE parameters that have not yet been implemented as design parame

ters include mutual inductors, transmission lines, controlled source gains, diode

areas, and JFET parameters.

Simulation outputs. The output keywords returned from DELIGHT.SPICE

simulation interface routine OutputKeywords (see sections 4.7.2 and 4.7.3) for

accessing the output results of the various SPICE analysis types are for DC, AC,

and transient node voltages3 and are shown in the following table:

8 At the time of this writing, output branch currents had not yet been implemented; they must
currently be obtained as the voltage across a small series resistor.

§5.1.3

DELIGHT.SPICE Allowable Simulation Outputs

Output
Keyword Syntax Description

vdc vdc (N0DE1 [. N0DE2]) DC node voltage.

vm vm (N0DE1 [, N0DE2]) Magnitude of AC node vol
tage at the present value
of variable FREQ.

vp vp (N0DE1 [, N0DE2]) Phase of AC node voltage
in radians at the present
value of variable FREQ.

vtr vtr (N0DE1 [. N0DE2]) Time-domain node voltage
at the present value of
variable TIME.

234

Anything shown in square brackets in this table is optional: giving one node

means the output voltage is with respect to the ground node (node 0) while giv

ing two means that the output voltage is across the two.

A small digression on the use of these SPICE outputs is in order, vdc can be

used in any RATTLE expression and returns the DC node voltage from the last

SPICE DC analysis. As explained in section 4.7.2, if any SPICE circuit parameters

have changed since the last analysis, vdc, through simulation interface routine

OutputValue, automatically performs a new DC analysis; this rule applies to the

AC and transient SPICE simulation modes as well, vm and vp return the AC mag

nitude and phase of the specified node at the value of global variable FREQ.

Thus, to print the magnitude at a particular frequency one could type:

FREQ = 15megHz
print vm(101)

§5.1.3 235

while to plot the complete frequency response of several nodes one could type:

plot vm(101) wn(305) vs FREQ frcm lmegHz to 70megHz dec 20

Similarly, vtr returns the transient output voltage of the specified node at the

value of global variable TIME. Thus, as for AC magnitudes and phases, one could

print the transient output waveform at a particular time using:

TIME = 75ns
print vtr(101)

while a plot of the transient response versus time could be obtained using:

plot vtr(lOl) vs TIME frem 0 to 100ns by Ins

The plot limits and increment need not be identical to those on the sweep com

mand which is discussed next.

Sweep commands. If there are one or more AC simulation outputs (vm or vp)

declared, the "S" file must contain a sweep FREQ command to set the values of

the SPICE AC run controls. Similarly, if there are one or more transient simula

tion outputs (vtr) declared, the "S" file must contain a sweep TIME command to

set the values of the SPICE transient run controls. The general forms for these

sweep commands are:

sweep FREQ from FROMJfAL to TOJ/AL jby j INC_yAL
I times)
[oct
{dec j
(log j

sweep TIME frcm FROiLYAL to TO-VAL by INC-VAL

In these commands, the arguments FR0M_VAL, TGLVAL, and INQVAL are arbi

trary numeric values except that the sweep TIME limits must be identical to the

ones on the . TRAN line in the SPICE circuit file mentioned earlier in this section.

§5.1.3 236

The keywords by, times, etc., have exacUy the same meaning as for the

for_every statement of section 4.4.2.2 and thepZor statement of section 4.6.1.

Settable parameters. As explained in section 4.7.1, a SPICE circuit parame

ter may be declared as a settable parameter so that it may be set, but without it

being an optimization tlesign parameter. One reason for declaring such a

parameter is for simply exercising interactive control over a circuit element or

device geometry without having to modify the circuit description file and

without having DELIGHT.SPICE automatically adjust it in an optimization. Two

other uses are for setting up test conditions and for parameter tracking.

Test conditions. The second use of settable parameters is for establishing the

different test conditions for a circuit. For example, two different constraints

might each involve a particular output voltage but under different load resis

tances. In this case, the load resistor would be a settable parameter. As

another example, a calculation such as operational amplifier common mode

rejection ratio (CMRR) usually involves the ratio of common mode gain to

differential mode gain. One could use three voltage sources, one that would sup

ply a one volt common mode signal, and two others that would each supply a

one-half volt signal to the differential inputs. These three voltage sources would

be declared as settable parameters and all three values would be set in the

CMRR calculation. In the above two examples, the test configuration remains

fixed. A change in the test configuration (circuit topology) may be approxi

mated by declaring resistors as settable parameters and setting them to negligi

bly small values to achieve a short or very large values to achieve an open cir

cuit4. The use of such "switch" resistors is shown in the first optimization exam-

4 To avoid numerical problems, these two resistor values should not differ by more than about
eight to ten orders of magnitude.

§5.1.3 237

pie of the next section.

The circuit parameters that may be declared using the settable_parameter

statement of section 4.7.3 include any of the allowable design parameters listed

in the design parameter table above in addition to those shown in the following

table:

DELIGHT.SPICE Allowable Settable Parameters

Parameter Parameter Name

(AnyDesignable Parameter) (Same)

Voltage Source DC Value VXXX

Voltage Source Magnitude VXXXM

Voltage Source Phase VXXXP

Mosfet Drain Area MXXXAD

Mosfet Source Area MXXXAS

Mosfet Drain Perimeter MXXXPD

Mosfet Source Perimeter MXXX_PS

Temperature in Degrees Centigrade TEMPDC

Note in particular that the analysis temperature in SPICE may be set by first

declaring settable parameter TEMPDC and then setting it with the set command.

For more on this parameter, see [114].

When declared, settable parameters take their initial values from the values

in the circuit description file. These values remain until changed by a set com

mand. Care should be taken by the user to insure that all settable parameters

§5.1.3 238

have the appropriate value for each test condition. This can be done by either

setting all related settable parameters before each circuit analysis as in the

pseudo-code:

set SPl = 1
set SP2 = 0
set SP3 = 0
Perform test which needs only SPl set.

set SPl = 0
set SP2 = 1
set SP3 = 0
Perform test which needs only SP2 set.

or by reseting each settable parameter that was set after the circuit analysis; as

in:

set SPl = 1
Perform test which needs only SPl set.
set SPl = 0

set SP2 = 1
Perform test which needs only SP2 set.
set SP2 = 0

The first approach is probably clearer and safer if there are not top many sstt-

able parameters.

Parameter tracking. The third use of settable parameters is for handling

matched parameters and parameter tracking. Recall from the discussion in

section 5.1.1 that in many circuits, two or more parameters must match, i.e.,

naturally take on the same values, or track, Le., be proportional to another sin

gle parameter. For example, BJT areas in a differential pair are usually

matched. To allow such parameters to be considered as a single design parame

ter, certain procedures must be followed in DELIGHT.SPICE. First, just one of

the parameters is declared as a sim_design_parameter. Second, all of the other

parameters which must match or track the first are declared as

settablejparameters. Third, the DELIGHT.SPICE keyword trackjparamjupdate is

§5.1.3 239

followed by set commands which set each of the settable parameters to the one

declared as a design parameter, optionally multiplied by the tracking propor

tionality constant. These set commands are then followed by the word end. For

example, if a circuit had one differential pair whose BJT areas were to be design-

able, the following might be used in the "S" file:

sim-design-parameter Ql-A
settable-parameter Q2_A

track-param_updat e
set Q2-A = Ql-A
end

If there were a differential pair which had to be matched and several current

mirror bias transistors whose areas had to proportionally track the area of a

particular transistor, the "S" file might contain the following:

sim_jdesign-parameter Ql-A
settable-parameter Q2-A
sim-design-parameter QBIASO-A
settable-parameter QBIASl-A
settable-parameter QBIAS2-A
settable-parameter QBIAS3-A

track-Darsm-ixpdate
set*Q2-A = Ql_A
set QBIASl-A = 4♦QBIASO-A

set QBIAS2-A = 2•QBIASO-A
set QBIAS3-A = 6.4•QBIASO-A
end

Simulator options. Various SPICE options can be set with the option com

mand of section 4.7.3. These along with their default values are shown in the fol

lowing table:

§5.1.3

SPICE Settable Options for the option Command

Option Name Default Value

abstol 1.0e-8

gmin 1.0e-12

itll 100

itl2 20

itl3 2

itl4 10

itl5 5000

reltol 1.0e-3

trtol 7

vntol 1.0e-5

240

See a SPICE user's guide such as [150] for the meanings of the options listed

above.

DELIGHT.SPICE provides a few but growing number of commands which are

directly related to SPICE and the circuit being simulated. As shown in the exam

ples of the next section, these commands are indispensable for verifying a cir

cuits performance and structure. The commands all call the interface routine

SimulationDisplay (see section 4.7.2) for displaying user-requested simulator

output. The following table shows the command formats and their descriptions:

§5.1.3 241

DELIGHT.SPICE Circuit-Related Commands

Command Format

probe

display

reset stat

Jnvj

top!

(acnvj

(deviceJ
(element)
(modelJ
!nodeJ
stat]

[P.ARG]

[P_ARG]

[P.ARG]

ARG
ARG
ARG

ARG

Description

Print the requested SPICE DC node vol
tages.
Print the requested SPICE DC element
operating points.
Print the requested SPICE AC node vol
tage magnitudes and phases.

Display the specified property of the cir
cuit being simulated.

Reset the display stat output (counts and
cpu times).

The probe nv command prints the node voltages of the most recent DC or

transient analysis time-point. (Internally, it simply prints the values in the

SPICE table LVNIMl; this table contains the most recent Newton iteration circuit

solution.) Optional argument P_£RG may be a list of from one to six specific

items desired; if not given then all available are printed. The probe op com

mand prints the element operating points from the most recent SPICE DC

analysis. The probe acnv command prints the node voltages from the most

recent SPICE AC analysis, done at the present value of variable FREQ. (Inter

nally, it simply prints the magnitude and phase of the values in the SPICE table

LCVN; this table contains the complex node voltages of the most recent AC simu

lation.)

For the display command, optional argument ARG also is from one to six

specific items. The use of the magic characters "*" and "?" in these arguments

§5.1.3 242

has already been discussed in section 4.7.3. display stat is used to print the

SPICE statistics, i.e., the cpu times and Newton iteration counts, where applica

ble, for the various SPICE execution phases. The result is similar to the output

produced by a .OPTION ACCT line in batch SPICE. To reset all the cpu times and

iteration counts, resetjstat is typed.

Most of the DELIGHT.SPICE features introduced in this section are shown in

the example files and terminal dialogue of the next section.

5.1.4. Circuit Design Examples

In this section, the application of DELIGHT.SPICE to the design of two particu

lar circuits is described. The first is a bipolar operational amplifier ("opamp")

and the second is a CMOS chain of inverters for driving a large capacitive load.

Design of a Bipolar Operational Amplifier

In the first example, an operational amplifier is designed using bipolar tech

nology with a given set of fabrication process parameters (SPICE .MODEL

parameters). The amplifier is to operate with 15 volt power supplies, drive a

load capacitance of 5pF, and meet the following constraints:

1. The phase margin with unity feedback must be greater than 45
degrees.

2. The gain-bandwidth product must be greater than 3 megHz.

3. The slew rate must be greater than 5 volts/us.

4. The settling time to within .1% of final value, using the test circuit
of figure 5.2-c and a 5 volt step input, must be less than 1.5/zs.

§5.1.4 243.

The following objectives are also of interest:

5. The quiescent DC power with zero nominal output voltage should be
minimized.

6. The input offset voltage due to device mismatches should be
minimized.

The DC and some of the other specifications above, while important, are not of

primary concern and can be relaxed to achieve better performance of others.

For example, if a small increase in power or decrease in slew rate is needed to

achieve the gain-bandwidth produce specification, the results are more desir

able.

In "real-world" circuit design, only a set of specifications such as the above

would be given. The designer would begin the design by searching for a circuit

topology having the potential to satisfy the constraints and yield acceptable

values of the objectives. For the purposes of this example, since DELIGHT.SPICE

does not aid in the synthesis of topologies, a particular configuration is assumed

to be given, namely that inside the dotted lines of figure 5.1. (Note that the lack

of a power output stage in this simple amplifier is consistent with the absence of

specifications on available output power above.)

The setup of the problem description files for this particular example is

shown in the first subsection that follows. The next subsection shows how to

check the files and, in particular, the validity of the measurement techniques

used in setting them up. An investigation of the initial circuit performance leads

to a modification of several of the problem description files. Finally, the last

subsection presents the actual optimization session.

§5.1.4

|—

RF
£AAr

IvjQCSI |J

[P* ©VSPOS
(D-J-Y-

©

OCS2 QCS3

RSWIR©

RElJ(fT iRE2
J®. @
•Toil QI2

(D ©.-((-^

<D

7p>L

244

RSW2

J-v,

Figure 5.1. Bipolar Opamp Circuit Configuration For First Design Example.

§5.1.4 245

Setting Up the Problem Description Files

Test configurations. The first file to set up is the SPICE circuit description

file. Before it can be created, however, several preliminary tasks are done.

From the problem specifications, the designer determines what test

configurations are needed. For this example, the set of four separate test

configurations shown in figure 5.2 suffice to obtain all of the circuit performance

data needed to compute all of the objectives and constraints. Extensive use is

made offeedback, even when measuring characteristics that are, strictly speak

ing, open-loop characteristics. RP in configuration (a) is a low-value current-

sensing resistor. The unity-gain VCVS in configuration (b) insures that the

(a)

-I5v = 1-I5v VI-v:

(c) (d) (*

-I5v

Figure 5.2. Test Configurations For the Bipolar Opamp.

§5.1.4 248

voltage offset measured between the input terminals of the amplifier is not con

taminated by a contribution which is the product of the input offset current and

the amplifieroutput resistance. Suitablevalues of RI and RF in configuration (d)

are determined at this time. The rationale for this determination and the basis

for its validity will be discussed in the next subsection.

By appropriately changing the values of some of the test circuit elements

shown outside the dotted lines in figure 5.1, an approximation to each of the

configurations of figure 5.2 can be realized. One of the "switch" resistors RSW1

and RSW2 will have the value 1 ohm. and the other 1 megohm. The designer can

have DELIGHT.SPICE interchange the two values as needed during execution,

thereby realizing an approximation to a single-pole double-throw switch. RSW1,

RSW2. RI. RF, VNINV. and the magnitude of VINV must be declared as settable

parameters. In order to reduce the chance that confusion about the values of

these parameters causes their values to be incorrectly set and invalid measure

ments to be made, a set of base values for these parameters is established. The

base values are those in the circuit file listed below. (They could also be set with

the set command, as discussed earlier.)

Selection of design parameters. The designer must select which circuit

parameters are to be design parameters. Ideally, to explore the potential of a

design, all (16, here) circuit parameters which the designer has control of

should be included. However, since the cpu time spent by the system is roughly

proportional to the number of design parameters5, this strategy would be

unpractical. Thus, only circuit parameters that have considerable effect on the

design specifications should be considered as design parameters. Also, the

number of possible design parameters is reduced by using track^param^pdate

6Presently gradients are computed using finite differences.

§5.1.4 247

to force the values of normally matched parameters to be equal. In this exam

ple, these are the areas of the QI, QAL, and QD transistor pairs and the values of

the RE and RD resistor pairs. This should not affect the optimization since the

optimum design of the circuit is probably one in which these matchings hold

anyway. For simplicity, and because there are excess degrees of freedom in

determining the bias currents, the number of possible design parameters is

further reduced by letting the values of RB and the area of QCSl remain fixed,

with a QCSl bias current of .5mA. Finally, preliminary optimization iterations

not shown here with the remaining possible design parameters reveals that

several others have little or no effect on the specifications. Thus, there are five

remaining design parameters:

1. areaofQCS2
2. capacitance of CC
3. resistance of RE1/RE2 matched pair
4. areas of QI1/Q12 matched pair
5. areas of QAL1/QAL2 matched pair

Having determined values for all circuit parameters which are not in fact

design parameters, a favorable initial guess of the values for all the design

parameters is made. Making the values in the circuit file be the desired initial

values probably reduces the opportunities for errors; the values in the circuit

file listed below are the desired initial values.

Setup for transient analysis. Since constraints 3 and 4 above require SPICE

transient analyses, it is necessary to estimate a suitable value for the Tstop

(final time) parameter on the . THAN line [150] in the circuit file. If Tstop is too

small, the validity of any time-domain measurements can be destroyed. If it is

too large, cpu and user time is wasted. But it is not necessary that its value

remain fixed throughout the optimization. The considerations which govern its

§5.1.4 248

adjustment are explained in the next subsection. On the basis of the design

specifications for this example, a value for Tstop of 2/xs is initially used in the

circuit file.

The .MODEL lines in the circuit file are set up, using the given device

process-dependent parameters, in exactly the. same way as are the .MODEL

cards in batch SPICE.

Circuit description file. The steps presented above lead to the circuit file for

this example, filexamp. CKT (the problem is named xamp), that is shown below:

BIPOLAR OPAHP EXAMPLE

• FIRST, THE AMPLIFIER ITSELF:

RB 6 8 58.6K
QCSl 8 8 5 6 MODPNP
QCS2 9 8 5 6 MODPNP
QCS3 3 8 5 8 MODPNP
QIl 13 1 11 6 MODPNP
QI2 14 2 12 6 MODPNP
.MODEL MODPNP PNP BF=50 IS=2E-15A CJE=.3PF VJE=.55V HJE=.5
+ VBF=50V JLC=2E-16A CJC= 1PF VJ0.55V MJC=.5
+ RB=300 TF=30NS CJS= 3PF VJS=.52V HJS=.5
RE1 11 0 IK
RE2 12 9 IK
RDl 10 6 50K
RD2 15 6 50K
QALl 13 10 6 6 HODNPN
QAL2 14 10 6 6 MODNPN
QDl 5 13 10 6 MODNPN
QD2 5 14 15 6 MODNPN
QO 3 15 6 6 MODNPN
.MODEL MODNPN NPN BF=200 IS=5E-15A CJE= 1PF VJE=.70V
+ VBF=120V JLC=5E-16 CJC=.3PF VJC=.55V MJC=.5
+ RB=200 TF=.35NS CJS= 3PF VJS=.52V HJS=.5
CC 3 14 25PF

• THE TEST CIRCUITRY:

VSPOS 4 0 DC 15V
VSNEG 8 0 DC -15V
VINV 16 0 AC 1
VNINV 2 0 PULSE OVl 5V2 ODELAY .02USRISE
CL 3 0 5PF
RP 4 5 1
RI 1 16 1MEG
RF 1 17 1

§5.1.4 249

RSWl 17 3 1
RSW2 17 IB 1MEG

EO 18 0 3 0 1
.TRAN .05US 2US
.END

Problem "S' File. listed below is the "S" file for this example, file xampS. It

runs the SPICE setup on the circuit file, declares the design and settable param

eters, takes care of matched parameters, declares simulation outputs, sets up

the SPICE analysis run controls, and sets the DELIGHT global optimization vari

ables.

aim. xemp.CKT
INITIAL
GUESSES:

sim_design-parameter QCS2-A variations5 min=.05 # 1
sim-design-parameter CC variation=20p min=lp # 25pF

sim_design_parameter REl variation=100 min=l # Ik
aettable-parameter RE2
sim_design_parameter QIl-A variations 2 min=.05 # 1
aettable-parameter QI2-A
aim-design-parameter QALl_A variation=.2 min=.05 0 1
settable-parameter QAL2-A

track_parem_update
set RE2 = REl
set QI2-A = QIl-A
set QAL2-A = QALl-A
end

aettable-parameter VINV-M
aettable-parameter VNINV
settable-parameter RI
aettable-parameter RF
set table-parameter RSWl
aettable-parameter RSW2

simulation—output vdc(4,5) # Power supply current-sensing
simulation-output vdc(2,l) § Input pin voltage - for offset
simulation-output vm(3) # Magnitude of output voltage
simulation-output vp(3) # Phase of output voltage
simulation-output vtr(3) # Transient output voltage

Tstop = 2us; global Tstop
sweep TIME f rem 0 to Tstop by .05us
sweep FREQ from. 100 to lOOmegHz dec 10

Nparam = 5
Nmulticost = 2
Nineq = 3
Nfineq = 2

Note that a small but positive lower bound (a one-sided hard box constraint) is

§5.1.4 250

placed on all the design parameters in their declaration statements. This is to

keep DELIGHT.SPICE from trying zero or negative values of them in the course of

the optimization, a circumstance which can produce numerical difficulties or

invalid results in SPICE.

No MP" file is needed in this example because the initial guesses for all the

design parameters are the corresponding values in the circuit file.

Problem "IT* file. In file xampMwe formulate the objectives to niinimize the

total DC power and the input offset voltage due to device mismatches. The latter

is estimated using techniques given by Gray and Meyer [55]. These techniques

appear below as a rather lengthy procedure that adds up the worst case contri

butions from a one standard deviation mismatch of each of the three input

differential amplifier matched parameter pairs listed under trackjpararrijupdsite

in the "S" file8. The direction in which to make each perturbation below is deter

mined from a consideration of the circuit.

prob—function milticost

objective 1 'power' minimize 30v#vdc(4,5) good=100mw bad=150rrar

objective 2 'o.a. volt.' minimize vos good=5mv bad=7mv using \

aet RSWl = Imeg # Set switch for test configuration.
set RSW2 = 1
vosO = vdc(2,1)

RElsave = REl # Offset with unbalanced emitter
RE2save = RE2 # resistors.
set REl = .99 • REl
aet RE2 = 1.01 • REl
vos = vdc(2,1)
set REl = RElsave
set RE2 = RE2save

t Another more sophisticated technique is to calculate the offsetvoltage variance uaing the pro
pagation of variance technique of Spoto [142].

§5.1.4 251

QIl-Aaave = QIl-A # Offaet with unbalanced input
QI2_Asave = QI2-A # transistors.
set QIl-A = 1.04 ♦ QIl-A
set QI2-A = .96 ♦ QI2-A
vos = vos + vdc(2,l)
set QIl-A = QIl-Asave
set QI2-A = QI2-Asave

QALl-Aaave = QALl-A # Offset with unbalanced current
QAL2_Asave = QAL2-A # source transistors.
set QALl-A = 1.Q4 • QALl-A
set QAL2-A = .98 • QAL2-A
vos = vos+vdc(2,l)
set QALl-A = QALl-Asave
set QAL2-A = QAL2_Asave

vos = vos - S.O^vosO # Subtract 3 systematic contributions.

set RSWl = 1 # Return switch to starting position.
set RSW2 = lmeg
!

end-multicost

In each case above, as with the other specifications in other problem description

files, the good and bad values are chosen according to the uniform

satisfaction/dissatisfaction rule of section 4.4.1.2. Note for example, in objec

tive 2 above that when any design parameter is changed from its present value

to a value required for the test setup for a particular "measurement", it is

changed back to its old value once the simulation result is obtained. This is the

purpose of the temporary variables that end in save above. These variables are

local RATTLE variables and are thus assigned to without using the set command.

Problem T file. Me xampl contains the formulations of the phase margin,

gain-bandwidth product, and slew rate constraints. The phase margin constraint

has been (trivially) converted into a phase constraint as shown in section 5.1.2.

All the constraints are made soft using the keyword soft so that all of them

along with objectives take part in design tradeoffs.

§5.1.4 252

function straighten (mu) | # This makes the expression to findroot
FREQ = 10#«mu # as straight as possible, i.e., vm(3)
return (db(vm(3))) # vs FREQ is straight on log-log paper
] # so straighten(mu) vs mu is straight

on linear paper.

prob_function ineq

constraint 1 'phase' ah >= good=-135 bad=-160 soft using |
set RI = 10k
set RF = 2oneg
findroot straighten(mu) vs mu "rem loglO(lmegHz) to logl0(20me)
ph » vp(3) - 180
set RI = lOmeg
set RF = 1

1

constraint 2 'g-b prod.' gbp >= good=3megHz bad=lmegHz soft using {
set RI = 10k
set RF = 2meg
FREQ = 10kHz
gbp = FREQ ♦ vm(3)
set RI = lOmeg
set RF = 1

J

constraint 3 'slew rate' slewrate >= good=5 bad=3 soft using {
TIME = .5us
slewrate = vtr(3)/.5
1

end—ineq

The findroot command in the using statement block of constraint 1, along

with the function straighten at the top of the file, serve to search for the unity-

gain (Odb) frequency of the circuit, so that the phase margin can be evaluated

as the phase at this frequency. This technique was shown in section 5.1.2.

The file contains several numerical values whose determination will be

explained in the next subsection: the two end point frequencies (ImegHz and

20megHz) of the findroot call, the 10kHz value of FREQ in constraint 2, and the

.bfjis TIME value in constraint 3.

Problem "FT file. File xarnpFI contains the formulation of the settling time

constraint; it contains upper and lower bounds that keep the transient output

waveform within .1% of its final value of 5 volts over the range from the required

settling time to the final simulation time:

§5.1.4 253

prob—function fineq

constraint 1 'setlng top' vtr(3)-5 <= good=.005v bad=.01v soft
for_every TIME from 1.5us to Tstop initially by .02us

constraint 2 'setlng botm' vtr(3)-5 >= good=-.005v bad=-.01v soft
for-every TIME from 1.5us to Tstop initially by .02us

end—fineq

One consideration above is the choice of 2/zs for the value of Tstop (see the "S"

file); this consideration is explained in the next subsection. Indeed, the final

transient analysis time was made a variable just so it would be easy to modify

without having to edit any problem description files. Note that we do not use the

objective/constraint combination technique from section 5.1.2 since we are not

trying to minimize the settling time but only constrain it to be less than 1.5/xs.

Starting DELIGHT.SPICE. With the problem description files complete,

DELIGHT.SPICE may be started:

DELIGHT.SPICE '<taEmspice>*
DELIGHT: Restoring from <3nemspice> ...
Identifier: SFICE Basic Memfile with Precompiled Algorithm "Afdmlfd"

♦•♦'• Welcome to DELIGHT •••••
A General Purpose Interactive Computing System with Graphics

for

Optimization-Based Computer-Aided-Design of Engineering Systems.
Developed by the

Optimization-Based Computer-Aided-Design Group
university of California
Berkeley, Ca. 04720.

The solve command may be executed immediately:

1> solve xaap
including xampS (3sec)
Unknowns are in X(5), 20 past values stored.

including zampM (52sec)
including xampI (74sec)
including xempFI (94sec)

This display represents a successful execution of solve. If instead this command

produced one or more error messages, the designer would have to resolve all of

§5.1.4 254

them by analyzing them and making appropriate corrections in the problem

description files. The solve command would then have to be repeated until it

completed without errors.

Checking the Problem Description files

Parameters. Before starting the optimization, several checks of the problem

setup are done. One easy check is to verify that the design parameters and

settable parameters have the correct initial values:

1> printdp
No Name Value Variation
1 QCS2-A 1.00000 .5000
2 CC 2.50000e-ll 2.000e-ll
3 REl 1.00000e+3 1.000e+2
4 QI1—A. 1.00000 .2000
5 QALl_A 1.00000 .2000
1> printsp
Name Value
RE2 1.00000e+3
QI2-A 1.00000
QAL2.A 1.00000
VINV_M 1.00000
VNINV 0.00000
RI 1.00000e+6
RF 1.00000
RSWl 1.00000
RSW2 1.00000e+6

The identify command of section 4.5.4.1 is now demonstrated. It shows

the problem name being solved, the number of each type of constraint, and the

algorithm and its sub-procedure names: this algorithm is the preselected

enhanced feasible directions algorithm which has already been RATTLE compiled

for DELIGHT.SPICE and stored in the starting memfile, "<memspice>" (see sec

tion 4.8 for more on memfiles.)

§5.1.4 255

1> identify
PROBLEM: xamp

5 Parameter(s)
2 Hulticost Objective(s)
3 Inequality Constraint(s)
2 Functional Inequality Constraint(s)

ALGO: Afdmlfd
main—loop: Mfdirrrhs
direction: Dfdmlfd
stepsize: Sfdirmhs
output: Opha s123
graphics: GPScomb

Circuit functionality. Clearly, in the preliminary design of the circuit or in

the preparation of the circuit file, errors can be made which result in gross mal

functioning of the circuit. In general, DELIGHT.SPICE cannot be expected to

correct such conditions. It behooves the designer to check that with the initial

design parameter values, the circuit is functioning properly. This is done by

executing commands that request appropriate specific circuit analyses, and

evaluating the results. But this is not the only reason to "manually" request cir

cuit analyses. Another reason is that there are almost always assumptions made

concerning the behavior of the specified circuit that are essential to the validity

of the "measurement techniques" implicit in the problem description files.

These assumptions must be checked by the designer, not only at the outset, but

in general, throughout the optimization. The "measurement" assumptions of

this example and their verification are discussed shortly, after showing how the

DC node voltages are checked.

An examination of the DC bias solution node voltages is the first step in

checking if the circuit is functioning properly. This can be done by first printing

any DC sirnvJ^ition_putput which forces a SPICE DC solution:7

7 If no DC simulation-output has been declared, the variable FREQ may be set and an AC
simulation-output may be printed since an ACanalysis in DELIGHT.SPICE first triggers a DC bias solu
tion.

§5.1.4 258

1> print vdc(2.1)
Dc-5.379e-5

The characters "Dc" that are seen on the screen indicate that SPICE is presently

performing a DC analysis. Similarly, "A" is printed during an AC analysis at a

particular frequency (the present value of variable FREQ), while 'Tr" is printed

during a transient analysis. A display of the resultant DC node voltages is

requested using the probe command from section 5.1.3:

1> probe jit
Node Voltage Node Voltage Node Voltage Node Voltage

0) 0.00000 1) 5.3790?e-5 2) 0.00000 3) 4.45617e-5
4) 1.50000e41 5) 1.49983e+l 6)-1.50000e+l 8) 1.43181e+l
9) .959258 10)-1.43584e+l 11) .660234 12) .660191
13)-1.37984e+l 14)-1.37818e+l 15)-1.43421e+1 16) 0.00000
17) 4.91782e-5 18) 4.45817e-5

These values appear to represent normal quiescent behavior of the operational

amplifier. Note that it was not necessary to precede the print vdc(2, l) command

above by any commands to set test circuit settable parameters because their

base values (from the circuit file) were appropriate for the DC measurement

that was desired.

Validity of the slew rate measurement technique. The "measurement tech

nique" assumptions of this example relate principally to the "I" file. First note

that for the slew rate constraint (constraint 13), it is assumed that the initial

part of the output response consists of an ideal ramp, and that its slope can be

calculated by sampling the waveform at TIME=.2fjs. To check these assump

tions, a plot of the transient response of the output is requested. No settable

parameters have to be modified; what is required is simply:

1> plot vtr(3) vs TIME f ran 0 to 2us by .05us
Compiling plot loop

This produces the plot shown in figure 5.3. The waveform obtained is clearly not

§5.1.4 257

wtr(3)

A.A
:

**

' ,
* \

t

6.8 * «. _ ^^^^

-
*

*
» ••"

»

.'

4.ft

3.0
m~

*

*
*

2.e ,*
"

>

* •

i.e
.

*

. ^*—

e.e id-t-i. i i • • ,

T1HE

-6
xie

e.e .40 .80 1.2 1.6 2.8

figure 5.3. Response to 5 Volt Step Input, Measured Using Config. of Figure 5.2-d.

?.exib1
db(v« 13))

4.8
... .,

• ' .
• ..

i.e

•

•<•.

v ,

•2.8

^

i"

»

*'

6.8

-

,

"X
«„

•• .

.

t

e.e

FRCO

ie' 18' ie' ie' ie' ie< 18'

figure 5.4. Bode Plot ofVoltage Gain, Measured Using Config. of Figure 5.2-d.

§5.1.4 258

a perfect ramp, but this is not cause to doubt the circuit operation. Instead it is

recognized that the ideal ramp assumption is implicit in the definition of slew

rate, and in this case the definition seems to be unrealistic, at least for the ini

tial design parameter values. The underestimate of slew rate due to the sagging

ramp can be tolerated, but what is essential is that the sample time be irithin

the slewing portion of the waveform. This is the case here for the .5/zs sample

time in the "I" file, but as the design parameters are automatically adjusted, the

transient response should improve and this assumption may become violated.

The assumption can always be checked after each optimization iteration., but

just to be conservative, the .5/zs sample time is reduced to .2pts. Thus, the "I"

file lines,

constraint 3 'slew rate' slewrate >= good=5 bad=3 soft using {
TIME = .5us
slewrate = rtr(3)/.5
I

are replaced by

constraint 3 'slew rate* slewrate >= good=5 bad=3 soft using {
TIME = .2u3
slewrate = vtr(3)/.2
i

It is also assumed that the variable Tstop, set in the "S" file and used in the

"FI" file, is sufficiently large that the maximum excursion of the waveform from

its final value, after 1.5/zs, occurs before the time Tstop. With a Tstop of 2/lis,

this appears to be satisfied, and will probably remain satisfied as the optimiza

tion progresses.

Validity of the AC measurement techniques. There are two assumptions

about the AC constraints in file xampl. In the computation of gain-bandwidth

product (constraint 2), one assumption is that the frequency at which the gain is

§5.1.4 259

calculated is above the first corner frequency of the closed-loop configuration,

so that the closed-loop and open-loop gains are very nearly the same, but below

the first non-dominant pole frequency. The ratio RF/RI (=200) was chosen to

give a large frequency range in which both these conditions are satisfied, and

the absolute values of their resistance were chosen to be large values to prevent

significant output loading.

In the phase margin constraint (constraint 1), since the from, and to values of

the findroot command must bracket the desired root, a second assumption is

that the unity-gain frequency lies between ImegHz and 20megHz.

In order to check these two assumptions the AC response is plotted:

1> set RI=10k
1> set RF=2taeg
1> plot db(im(3)) vs FRBQ from 100 to lOttaegHz dec 8

Compiling plot loop

From figure 5.4, the first assumption, that the frequency at which the gain is cal

culated for the gain-bandwidth product be above the first corner frequency, is

not satisfied. Thus, the "I" file line,

FREQ=10kHz

is replaced by,

FREQ=100kHz

For the second assumption, the unity-gain frequency is about 1.5 megHz,

which is inside the 1 megHz to 20 megHz bracket of the findroot command. How

ever, in case DELIGHT chooses at some point to improve other performance

functions and in so doing temporarily degrades the frequency response, the

lower bracket value is decreased as follows. The "I" file line,

§5.1.4 260

findroot straighten(zni) vs mu from logl0(ImegHz) to loglO(2CmegHz)

is replaced by,

findroot straighten (mu) vs mu from loglO(.SmegHz) to loglO(2GmegHz)

Settable parameters RI and RF must be now restored to their base values. But

first, we demonstrate how to display all (or selected) AC node voltages. These

are from the most recent SPICE AC analysis and value of FREQ and in this case

would be FREQ^lOOmegHz from the plot command above:

1> probe acnv
Node Magnitude Phase Node Magnitude Phase

0) 1.00000e-20 0.00000 1) .113553 -8.06453
2) 1.00000e-20 0.00000 "3) 2.04024e-4 7.40084e+l
4) 1.00000e-20 0.00000 =5) 1.09B70e-6 -1.78920e+2
6) 1.00000e-20 0.00000 <8) 1.93069e-7 9.90045e+l
9) 2.81721e-3 -9.72725e+l 10) 5.15565e-4 4.62364

11) 8.7304Be-2 -1.05806e+l 12) 6.45852e-4 -9.80959e+l
13) 2.75535e-3 7.87632 14) 3.56210e-4 6.58757e+l
15) 8.46824e-5 7.474B3e+l 16) 1.00000 0,00000
17) 2.0403le-4 7.39926e+l 18) 2.04024e-4 7.40084e+l

1> set RI=lmeg
1> set RP=1

Note that the four (near) zero AC magnitudes above are all of nodes connected

to voltage sources. After performing another solve command (so that

DELIGHT.SPICE considers all the changes made to the problem description files),

optimization is ready to begin.

Ruining the Optimization

We first give the command Pcomb to display the initial performance comb,

shown in figure 5.5-a. This shows that the offset voltage objective is very "bad"

since its comb tooth ends with an arrow and is thus out of the comb range. Also,

the gain-bandwidth constraint has an arrow pointing in the opposite direction

since it is well satisfied. On a color terminal, the good and bad vertical lines

would be green and red respectively. However, this output was produced on the

§5.1.4

Ca)

Cb)

Pcoftb PRESfcNT GOOD

HI power 5.21e-2 .108 »
H2 o.s. volt. 1.88e-£ S.88e-3 a.

11 phe.se -1.?4e*2 -1.36e+2
12 ej-b prod. 5.26e+6 3.88e+£ *
13 slew r»tc 8.21 5.86

FIl setlrtQ top 9.88e-3 5.88e-3 »

^ i

i/ \ i

/ \ i
1/ \ / ^^v - '

I \ f \

Pcooh PRESIN1 COOK

HI power 4.8&o-2 .188 &«
H2 O.K. volt. 6.319-3 5.88e-3 sr

11 phase -J,5?e+2 -1.35*42
12 g-b prod. 3.27e+6 3.88e+6 •"*
13 slew rate 3.83 5.89

FIl setlng top 8.49e-3 5.88e-3 «£

FI2 setlng bot-S.76«-3 -S.88e-3

A TJWE« 1

Bpn

.158
». 7.88«-3

-•-1 .69e+2
-e 1 .B8e+6
-a 3.88

i.eee-2

4-i .eee-2

66e-6

B&Ii

.158
*• 7.88e-3

:« -1 .68^+2
^ i .aee+6
=a 3.88

i.eee-2

58*-6

T a -1 .80e-2
S8e-6

figure 5.5. Graphical Output for the Bipolar Opamp Optimization.

261

§5.1.4 262

HP2648a black and white graphics terminal in which colors are simulated using

various dashed line types. Nevertheless, the line types for the good and bad

curves on the functional plots correspond to those of the vertical good and bad

lines. This distinguishes the good curve from the bad curve for each functional

objective or constraint6.

Optimization is started by typing the command run 5 to request five optimi

zation iterations. The following standard algorithm output appears on the

screen. To save space, we only show here the first two design parameters for the

last four iterations since the others undergo little or no change:

Iter=0 Phase2 Hri!+SC= (J.476
Parameter Value %?rrt 0 Prev
1 QCS2-A 1.000 0% 0%
2 CC 2.500e-ll 0% 0%
3 REl 1.000e+3 0% 0%
4 QIl-A 1.000 0% 0%
5 QALl-A 1.000 0% 0%

Iter=l Phase2 MxM+SC= 11.040 k=0
Parameter Value %?rrt 0 Prev
1 QCS2-A .5000 -50% -50%
2 CC 2.500e-ll 0% 0%
Iter=2 Phase2 HxH+SC= .9562 k=l
Parameter Value %wrt 0 Prev
1 QCS2-A .3749 -63% -25%
2 CC 3.366e-ll 35% 35%
Iter=3 Phase2 MxHfSC= .9208 k=3
Parameter Value %wrt 0 Prev
1 QCS2-A .3172 -68% -15%
2 CC 3.270e-ll 31% -3%
Iter=4 Phase2 MxH*SC= .8900 k=2
Parameter Value %wrt 0 Prev
1 QCS2-A .3479 -65% 10%
2 CC 3.444e-ll 38% 5%
Iter=5 Phase2 HxM+SC= .8678 k=3
Parameter Value %wrt 0 Prev
1 QCS2-A .3367 -66% -3%
2 CC 3.487e-ll 39% 1%

For all iterations, phase II is indicated and the initial maximum of all objectives

and soft constraints, normalized as shown in section 4.4.1.2, is 6.476 (shown by

MMxM+SC" above). Since the normalization causes 0 to correspond to good

8 The bad curves in figure 5.5-a are difficult to see since they coincide with the top or "bottom
edges of the box drawn.

§5.1.4 263

values and 1 to bad, the value of 6.476 is very bad. During the five requested

iterations, the normalized maximum continually decreases (as .guaranteed by

the algorithm) reaching a value of .8678 as seen above. This implies that the

rightmost comb tooth be just to the left of the vertical bad line, which is seen by

the dark comb teeth on the requested performance comb in figure 5.5-b. By

comparing adjacent light and dark (previous and present) teeth, this comb also

reveals that the offset voltage has improved by coming considerably down and

the phase margin improved by coming up but at the expense predominately of a

decrease in gain-bandwidth product and slew rate. (In fact, without even looking

at the numeric values, we know the slew rate, for example, has gotten worse

since its dark tooth is further to the right than its light tooth. Also, we know its

value has decreased since the dark tooth is closer to the small circular dot.)

These changes are in accord [55] with the changes in the design parameters

shown above: the area of bias transistor QCS2 and hence the current to the input

differential pair has been more than cut in half while compensation capacitor

has almost doubled. Also shown for each iteration in the standard algorithm

output is the trial k in the step-size computation Beta!6.

After requesting five more optimization iterations, we notice right after the

first that the algorithm has taken a very small step. This is seen in the right

column of the algorithm output which shows the percentage change in the

design parameter values with respect to the previous iteration. Thus we

immediately press the special interrupt key once to generate a soft interrupt

(see section 4.2.6), thereby allowing the algorithm to complete the current

iteration and stop at the "major stopping point". We now issue the commands

setgood M2 = Trruo and setbad M2 = lOmv to relax the offset voltage objective

since, as mentioned earlier, the DC specifications are not of primary concern.

§5.1.4 264

The performance comb is then redisplayed, as shown in figure 5.5-c. After

requesting one iteration, we get the following algorithm output:

Iter=7 Phase2 HxilfSC= .7202 k=l
Parameter Value %wrt 0 Prev
1 QCS2-A ,4480 -55% 33%
2 CC 4.333e-ll 73% 24%
3 REl 1.101e+3 10% 1%
4 QIl-A .9910 -1% 0%
5 QALl-A .8908 -1% 0%

The relaxation of the offset voltage has caused the algorithm to emphasize the

constraints of the two rightmost dark comb teeth in figure 5.5-c, the phase mar

gin and upper settling time constraints. Coincidentally, both of these circuit

properties are improved by the increase in the input pair current (through the

increase in the area of bias transistor QCS2) and the increase of the compensa

tion capacitor CC shown above. After running two more iterations and observing

negligible change in the design parameters, our optimization session is tem

porarily suspendeddue to lunch0!

After restarting DELIGHT, reissuing the solve command, and restoring all pre

vious design parameter and good and bad values, we decide that the last two

parameters shown above should have more effect than they do on the circuit

performance. To recall what their variations were, we issue the prvntdp com

mand. We then increase their variations as shown:

9Before leaving DELIGHT, the command sauedp into sauejlle is issued to save allpresent design
parameter and good and bad values into a file that can simply be included after restarting DELIGHT
to restore the state of the optimization.

§5.1.4

Cc)

Cd)

Pco»b

ni
H2

11
12
13

power
o.s. volt

g-b proo.
slew rate

PRESFNT COOH

4,0bc-2
6.31e-3

.186
7.88e-3

-1.57e*2 -1.35e+2
3.27e+6 3.e©»»©

3.83 5.88

FI2 setlng bot-5.78* 3 -S.88e-3

Pco»h

ni

PRESENT COOD

II
12
13

power 4.22c-2
o.s. volt. 8.94e-3

.189
7.89e-3

phtse -l.S2e+2 -1.3Se+£
g-b prod. 2.53**6 3.88e-»-6
slew rate 3.88 5.80

setlng top 9.13e-3

a§R

Ban

.158
1.08e-2

=J6 -1 .68e+2
s^D 1 .eee*&

3.88

1.08e-2

X. -1 .80e-2

]at TJf1E= 1iS8e-£

«afc

BGJi

.158
1 .88e—if

1 .C8e+2
1.88e*6
3.88

l.BOe-2

«-1.06e-2

figure 5.5. (continued)

265

§5.1.4 266

2> printdp
No Name Value Variation

1 QCS2_A .436859 .5000

2 CC 4.38018e-ll 2.000e-ll

3 REl 1.10137e+3 1.000e+2

4 QI1_A .990922 .2000

5 QALl-A .891777 .2000

2> setvariation QIl_A= .8
2> setvariation QALl-A = .6

After a few more iterations, the design parameters do not change and we display

the performance comb shown in figure 5.5-d It appears that the offset voltage

objective is again "holding up progress" so we again relax it via setgood M2 =

lOmv and setbad M2 = 15mu10. A request for another iteration results in good

progress. The normalized maximum has fallen to .5357, resulting in the right

most comb tooth in figure 5.5-e being almost halfway between good and bad

lines. The fourth ;ind fifth design parameters have also started changing as seen

below. This shows the success of our previous adjustment of their variations:

Iter=ll Phaae2 HxM+SC= .5357 k=0
Parameter Value %wrt 0 Prev
1 QCS2-A .6509 -45% 26%
2 CC 5.201e-ll 108% 19%
3 REl l.l96e+3 20% 1%
4 QIl-A .8692 -13% -11%
5 QALl-A .8569 -4% -3%

After several more iterations of optimization, it continues to appear that

the simultaneous achievement of all the specifications is impossible. Thus we

make a major emphasis on improving the gain-bandwidth product by doubling

its constraint good value and also increasing its bad value—but without any

further relaxation of the offset voltage objective:

2> setgood 12 = ftnegHz
2> setbad 12 = ISmegBz

Two optimization iterations later, the gain-bandwidth product has improved

10 If lOmv seems large for an operational amplifier, recall that this is the worst case offset vol
tage; the rms value of the offset will be significantly less.

§5.1.4

(e)

Cf)

Pcoeb

ni
H2

PRESFNT COOD

power 4.43C-2
o.s. volt. 1.19e-2

.180
1.88e-?

11
12
13

phase -1.46e+2 -1.36e+2
g-b prod. 2.89e*6 3.80e*6
slew rate 4.8! 5.80

TI2 setlng bot-2.0?e-3 -5.88*-3

Pcoah

HI
H2

PRESENT COOD

II
12
13

FIl setlng top 5.94e-4 5.88«-3 at"

power 4.27e-2
o.s. volt. 1.83e-2

phase -1.51e+2
Q-b prod. 2.42e*6
slew rate 4.18

L^fL

.180
1.88e-2

•1.36e-»-2
6.00*^6
5.80

at T|HE= 1

] at T}ME= 1

detz.

at HME« 1

TI2 siting bot-3.71e-3 -S.80e-3
at TJHE= 1

figure 5.J5. (continued)

BPJi

.158
1.58e-2

:=« -1 .60e+2
"5b 1.80e+6

a 3.88

1,88e-2

S8o-£

Ut, -1 .009-2

P8e-f

BflU

.158
1 .58e-2

=« -1 ,68e+2
h» 1.80e+6

:5a 3.00

1.80e-2

72©-6

267

-i -1 .00e-2

S4«»-6

§5.1.4 266

slightly as shown in the performance comb in figure 5.5-f. We also have the fol

lowing output:

Iter=18 Phase2 HxM*SC= .7160 k=l
Parameter Value %wrt 0 Prev
1 QCS2-A .4647 -54% -19%
2 CC 4.306e-ll 72% -8%

3 REl 1.226e+3 23% 0%
4 QIl-A .6852 -31% 0%
5 QALl-A .9676 -3% 0%

Our opamp session ends with the conclusion that although the circuit perfor

mance shown above does not satisfy the specifications, we fiave demonstrated

both performance tradeoffs by adjusting good and bad values and the successful

effect of parameter variations, and we have obtained significant performance

improvement.

Design of a CMOS Inverter Chain

In our second design example we optimize the performance of a chain of

CMOS inverters used to drive a relatively large capacitive load. For this we con

sider the following three objectives:

1. Minimize the overall delay,

2. Minimize the integral of the supply current during
switching (which effectively minimizes the average
power used by the circuit), and

3. Minimize the total area of the gates of all the MOS
transistors.

By adjusting good and bad values, we emphasize each of these objectives indivi

dually. The geometries of the first inverter are held fixed while all other gate

geometries are design parameters. (If the first inverter gates were also design-

able, the delay could be reduced to an arbitrarily small value by simply increas

ing all geometries without bound.) The purpose of this first optimization run is to

§5.1.4 269

verify the theoretical results for delay minimization explained in the next para

graph. The purpose of emphasizing the other two objectives is to see how the

results differ from those of the first optimization. This optimization problem

and the various tradeoffs involved were pointed out by R. Newton and D. Hodges

at the University of California, Berkeley.

For a chain of MOS inverters, an analysis of the number of stages that minim

izes the overall delay for a given ratio C^io of l°a(l capacitance to total gate

capacitance on the first inverter is given by Mead and Conway in [100]. By

assuming that the size of each successive MOS gate pair is a factor of / larger

than the previous, they show that the minimum delay is achieved when / =e, the

base of natural logarithms, and that the optimum number of stages is

N^lniCntio). For our problem we first choose 7V=3 inverters and then calculate

the ratio that would require this N as C^o = e3 ra 20. Using parameter values

from our SPICE .MODEL lines shown below and techniques from [65], we derive a

gate capacitance value of 4-lQ^pF/ jaz. Using this value and and the dimensions

of the first CMOS pair in=4/,t, FPn=6>f Zp=4/x, and Wp=16jjL, the load capacitance

corresponding to this C^,, is calculated as

Good = Cntio(AreanJrAreap)±lG-A = .76BpF. For CMOS inverters, our SPICE

.MODEL lines below indicate the well known property that the mobility of P-type

material is about half that of N-type material. Thus, for the same channel

length, the channel width of the P-type devices should be twice that of the N-

type devices to give equal rise and fall delays. In our problem description "S"

file, N-type device widths are design parameters while P-type widths are settable

parameters that track twice their corresponding N-type width using the

trackmj>aram_update feature of section 5.1.3.

The circuit description file set up for SPICE is:

§5.1.4 270

♦ CHDS :inverte\t chain example.
Vdd 8 0 5volts
Rseries 8 9 lohm
Gbuffer 0 10 8 9 lp
Cinteg 10 0 IP
Rpath 10 0 le9

Cload 4 0 .788pF
Mlp 2 1 9 9 p l=04u •w=18u

Mln 2 1 0 0 n l=04u w=08u

H2p 3 2 9 9 p l=08u w=32u

M2n 3 2 0 0 n l=08u w=18u

H3p 4 3 9 9 p 1=16u •w=64u

H3n 4 3 0 0 n 1=16u w=32u

.model n isz»s vto=.9 nsub=2El5 tox= . lu uo=800

+ 1eve1=1 vmax=le5 eg so:=245p cgdo=245p
.model p pmos vto=-. 9 nsub=2El5 tox==. lu uo=400

+ 1eve1=1 vmax=le5 Cg SO==245p cgdo=245p
vin 1 0 pulse 0 5 SnsDelay
. tran .4ns 20ns
.-end

The corresponding circuit diagram for the three cascaded inverters is shown in

figure 5.6. The elements at the top of figure 5.6 are for the integral of the supply

current as explained shortly. The initial values of the device geometries are

chosen so that each succeeding stage doubles the gate areas of the previous

stage, i.e., initially / =2 instead of the optimal / =e. The values are shown in the

following table:

MOS Device Length Width

Mln 4/i 8/4
Mlp 4/Z 16/t
M2n &> 16/x
M2p &> 32/^
M3n 16/A 32/i
M3p 16/i 64/a

•The three objectives are formulated as follows. Delay minimization is accom

plished using the objective/constraint combination technique of section 5.1.2:

we declare a non-simulation design parameter called Tdelay and minimize it

subject to the functional constraint that the (falling) final inverter output

response to a step input remain below 2.5 volts (half of Vdd) for every time from

Tdelay to the final analysis time. Thus we are defining delay using the popular

§5.1.4

Vin

©
I 1° -V6.9+

IpF T 1 ^ 8-9

(D R series
-wv—

Ift

0

Mip H[_M2p Hlm3d

271

©
^Vdd
^ 5 volts

j—ur
HrMIn H LM3n ±1 Cioad

Figure 5.6. CMOS Inverter Chain Circuit Diagram for the Second Design Example.

§5.1.4 272

"50-percent point" notion. The integral of the supply current is calculated dur

ing the circuit simulation by using the auxiliary controlled source and capacitor

Cinteg shown in figure 5.6. The integral is equal to the voltage at the top node of

the capacitor (node 10) at the final transient analysis time and is in units of

coulombs, e.g., we would write "2pC" for 210~12 coulombs. (The purpose of the

109 ohm resistor in parallel with Cimeg is to avoid the SPICE circuit error mes

sage "NO DC PATH TO GROUND"; it does not affect the integration since its time

constant of one millisecond is much gregiter than the final integration time of

20ns.) The total gate area simply sums the product of the length and widths of

all MOS transistors. The following lists our. "M" file for this problem description:

prob_function mil ti cost

objective 1 'Delay' minimize Tdelay go3d=3ns+3ns bad=10ns

objective 2 ' Int Current' minimize vtr(10)-vdc(10) good=10pC bad=15pC using
TIME = 20ns

objective 3 'Area' minimize Area good=10k»(lu"2) bad=15k*(lu»*2) using [
Area = 0000 + 4u ♦ HlP-F + 4u • HlN_ff
Area = Area + 8u • H2P-ST + ' 3u • M2N-JT
Area = Area + 16u ♦ H3P-W + 13u • H3N-W

!

end-xmlticost

The good and bad values would normally be obtained using the uniform

satisfaction/dissatisfaction rule of section 4.4.1.2. For some objectives, as in the

bipolar amplifier example, this would be done after investigating the initial per

formance of the circuit. However, the good and bad values for the second and

third objectives above are simply set to values much larger than the

corresponding initial circuit performance. This is to allow the delay in objective

number one to be given the greatest emphasis during the first optimization run.

After setting up the problem description files and verifying that the cir

cuit is operational, we first plot the input and all inverter output waveforms

§5.1.4 273

using the command plot vtr(l) vtr(2) vtr(3) vtr(4) vs TIME from 0 to Tstop by

,4ns. The result is shown in figure 5.7-a in which the waveforms are identified

using the circuit node numbers from figure 5.6. This plot shows that the initial

50-percent time delay to the chain output on node 4 is approximately 10.2ns11.

We next give the command Pcomb to display the initial performance comb,

shown in figure 5.7-b. This shows that the initial guess for design parameter Tde

lay of 5ns has caused a hard constraint, namely, the functional constraint used

for time delay, to be violated. Objectives M2 and M3 are also clearly seen to be

well "satisfied", as desired. The initial value of the integral of power supply

current is .391pCwhile the initial total area is 2020/x2. Optimization is now ready

to begin.

The command run 1 is given to run one optimization iteration. The following

standard algorithm output appears on the screen:

1> run 1

TrDc
lter=0 Phase 1 MxHard= 4.616
Parameter Value %wrt 0 Prev

1 M2N_W 1.600e-5 0% 0%
2 H3NJT 3.200e-5 0% 0%
3 Tdelay 5.000e-8 0% 0%

LFD<TrTrTr>(k=0)Tr(k=-l)Tr(k=-2)TrTrDc
Iter=l Phase2 HxttfSC= 1.745 k=-l
Parameter Value %wrt 0 Prev

1 H2RJ? 1.747e-5 8% 9%
2 H3N_W 3.1B4e-5 -1% -1%
3 Tdelay 1.298e-8 160% 160%

Interrupt...
2>

For iteration 0, phase I is indicated and the maximum hard constraint value,

normalized as shown in section 4.4.1.2, is 4.618. Since this normalization causes

0 to correspond to good values and 1 to bad, the value of 4.618 is very bad. After

one iteration, phase II is entered since all hard constraints become satisfied.

11 For simplicity, in this section we do not subtract off the 50-percent time of the input
waveform, which from the figure is approximately 3.02ns.

§5.1.4

7.0

5.e-

Ca)i
3.0

1: vtr(l)

3: vtrO)

* '^i ^. -j -w

J i;
(•

2: vtr(2)

4t vtr(4)

! CD—A i-^D
1 .0

-i.e

e,

Cb)

Cc)

Cd)

n
h--

.%
. i

J ' ' ' ' ' I-.1—1. I .1 ,.|

.48 ,ee 1.2

Pcoab PRESENT COOP

- ft Hard Constraint is Violated -

Ml Delay S.88e-9 6.88e-9 <
H2 Int Currcn 3.91e-13 1.08e-ll<
H3 Area 2.92e~9 1.88e-8 <

Pconb PRESENT COOD

fll Delay 1.38e-8
M2 Int turr*n 4.8?e-K
H3 Area 2.84e-9

Pcoab

Ml Delay
H2 Int Curren 1.19e-i? 1.88e-114^r--
A3 Qrea 5.92©-9 1.88«-8 &•

PRESl NI

6.8?e-9

6.88e-9 <K=

i.eee-e at-

COOP

6.88e-9 6Z
5--P

1 .6

»RII

i.eee-8
1.56e-ll
l.S8e-9

SfiH

1 ,88e-8
1 .589-11
l.&8e-8

BOD

1.88e-8
1.88e-l)
l.C8e-8

figure 5.7. Graphical Output for the CMOS Inverter Chain Optimization.

274

i

_~ 3

.14

Tine

xie

i.e

§5.1.4 275

ehe trial k in the step-size computation Beta!1 is shown in parenthesis, inter

mixed with the "Tr" and "Dc" characters that indicate when SPICE is performing

transient and DC analyses. The value of k that satisfied the step-size test is

shown to be -1. The obvious reason why the one hard functional constraint has

become satisfied in just one iteration is that it is over the range from Tdelay to

Tstop and Tdelay as seen above has greatly increased. The new maximum of all

normalized objectives and soft constraints ("MxM+SC" above) is 1.745. This is

also seen by the position of the first comb tooth on the corresponding perfor

mance comb in figure 5.7-c.

After giving the command run 5, observing significant progress, iind hence

giving three more run 1 commands, the maximum of the normalized objectives

and soft constraints falls to .3684, as seen in the following output:

Iter=9 Phase2 HxH+SC= .3684 k=2
Parameter Value %wrt 0 Prev
1 M2N-W 2.554e-5 60% 0%
2 M3H_W 6.998e-5 119% 0%

3 Tdelay 7.473e-9 49% -3%

After a few more iterations and performance combs, we reach a point at which

our maximum normalized objective has fallen to .2165 and the design parame

ters are changing very slowly. The latter fact is seen in the right column below

that shows the percentage change with respect to the previous iteration:

Iter=15 Phase2 KrH+SC= .2165 k=3
Parameter Value %wrt 0 Prev

1 M2N.JV 3.98le-5 149% 0%
2 M3N_W 1.014e-4 217% 0%
3 Tdelay 8.B66e-9 37% -1%

Therefore, we end this part of the optimization run. The performance comb in

figure 5.7-d shows that the delay 6.87ns is fairly close to the good value of 6.0ns.

This compares with 10.2ns initially. Also shown are the present values for the

§5.1.4 276

other objectives. The integral of current is 1.19pC (compared to .391pC initially)

while the total area is 5920/z2 (compared to 2020/z2 initially). Of course, these

tradeoffs are to be expected: to reduce delay, one has to "beef up" the transis

tors, which increases the transient power supply current spike. Figure 5.7-e

shows aplot:of the input and all inverter output waveforms.

Let us now compare the resulting device geometries with the theoretical

optimal ones given earlier. Using the widths given above and the formula

Area = Ln'Wn + LpWp, we calculate the ^ areas of each stage as

Areai -AaQfi + 4^-16> = 96>3. Area2 =8/x-39.81/x + Qfi79.62u = 955/i2, and

Areas = 16>10lAu + 16>-202.6> =4B67/42. The ratios of succeeding stage

areas are then Areaz/ Area± = 955/96 = 9.95 and

Area^/Area2 = 4867/955 = 5.1, which are both considerable larger than the

theoretical optimum ratio of e =2.71. The difference can partly be attributed to

the effect of source and drain capacitances and other MOSFET model parasitics

not considered in the idealized analysis of Mead and Conway. More importantly,

however, their analysis assumes that the gate capacitance is constant whereas

in reality, gate capacitance is a strong function of the amount of charge under

the gate and hence of the gate-to-source voltage.

We now turn our attention to emphasizing the integral of the supply current

during switching. We first plot the supply current spike and its integral; these

are shown in figures 5.7-f and 5.7-g. The present integral value of 1.19pC from

the comb in figure 5.7-d is seen at the (TIME=20ns) right side of the latter plot.

To achieve our desired emphasis, we set the good and bad values for objective 2

to a fraction of the present value using the commands setgood M2 = ,4pC and

setbad M2 = .BpC. The good and bad values for the delay objective are not

changed so that these two objectives may compete.

§5.1.4 277

r*i

J~ 3

7.0

It

3:

wtr(l)

vtrl3)

2: vtr(2)

4t vtr(4)

s.e

1
! ;

j !

s.e

ii:i

* i *' \
1
1

i !
\ 1

i.e ;., \i' _.

\
i

\ 1

i

I

i.e

1

I

i I
i "
! !

; ;
--* ' ' ! ' 1 1 1 1 1 l-J .1 •' I 1 l_L__l_L_I I J

e.e .48

Ce)

5.0 xI9~4
vtrCSl)-vtr(9)

4.8

• i / »
! I
} !
{ !

j j

3.8

3

4 i

I : I
• |

2.e

~

' | •

j

i .e
1 l J

e.e

; j
*.

r-r »-

TIME

xie"e
e

TIME

xie
e.e .48 .88

.CO
1.2 1.6 2.8

Figure 5.7. (continued)

§5.1.4 278

We first display the performance comb shown in figure 5.7-h to see the initial

objective competition12. After running three iterations, we observe the expected

decrease in both device widths and the increase in delay, as shown in the follow

ing output:

Iter=18 Phase2 HxMfSC= .7371 k=-2
Parameter Value %wrt 0 Prev

1 M2N-ff l.025e-5 -38% -43%
8 H3N-W 7.472e-5 134% -8%
3 Tdelay 8.139e-9 63% 8%

The corresponding performance comb is shown in figure 5.7-i. j^nother run 3

command ends with an iteration in which a very small step is taken. The perfor

mance comb in figure 5.7-j reveals that the two objectives are in close competi

tion. In general, at the optimal solution one would expect to eithesr be in a local

(or global) minimum of one of the objectives or have two or more normalized

objective values equal, meaning one cannot improve without another becoming

worse (see the discussion of nonunferior points in section 4.4.1.2). The comb

teeth in figure 5.7-j do not have precisely the same length but are very

close—certainly both are £-active and thus take part in the search direction

computation. Thus, we end this second part of the optimization. In reducing the

integral of the current from 1.19pC to .675pC, the delay has increased from

6.87ns to 7.92ns. Figures 5.7-k 5.7-1 show the present supply current spike and

its integral. Notice that the peak spike current has decreased from .5mA in

figure (f) to .2mA in figure (k).

For our third optimization run, we completely remove the emphasis from the

integral objective M2 as well as give emphasis to the area objective M3, so that

delay and area alone may compete. After suitably adjusting the good and bad

18 On this comb, the name of objective M2 as mysteriously changed from "Int Curren" to "In
tegral C" !

§5.1.4 279

C

1.48
_12 vtr(ie>-vdc(18)

1.18

g)
.888

i
: i

{ . ''

;•»—••- 1
i

i
i

.see

i 1 '
\ t

: ; i

_ _. I / j

!

.288

•— "r—t—

i '

: i •

- i»

i

1

!

-.188

: /!
- * 1
* *

'.i.i i.i i i „i .i i .' i i i i i i i i i • •••''•

i
!
i

i
'•'''•'•• ••''••• i,ii I I I

TIME

-fcs
xie

8.8 .48 .88 1 .2 1.6 ?.8

Ch)

CO

Cj)

Fcoab PREStHT GOOD

Ml Delay 6.87e-9 6.88e-9 £:
M? Integra) C 1.19e-l? 4.88e-13«£i
H3 Qrea 5.92c-9 1.88c-8 i±

Pconh

Ml
H2
M3

Delay
Integral
Grea

Pcoah

HI Delay
f12 Integral
H3 Qrea

PRESEN1 COOD

8.14C-9 6.88e-9 £-
C 6.9Se-13 4.88e-13<S

3.93»-9 l.88e-8 ~a-

PREShNl

7.92e-9
C 6.75e-J3 4.88e-13<s:

3.74e-9 1.88»-8 *^

COOS

6.89e-9

Figure 5.7. (continued)

^

^

BOD

1 .88e-fa'
P.88e-1?.
1 ,C8©-8

BOD

1,88e-8
8.68e-13
1 .E8»-6

BPJi

1.88e-8
8.88e-13
1.58»-6

§5.1.4 280

values, we obtain the initial comb shown in figure 5.7-m. We then proceed with a

sequence of optimization steps, including several adjustments of good and bad

values. The optimization is ended when a step is encountered that produces a

very small change in the design parameters:

Iter=27 Phase2 Hxttt-SO 1.079 k=3
Parameter Value %wrt 0 Prev

1 M2N-W 8.226e-8 -42% 0%
Z MSN_ff 2.6l2e-5 -18% 1%
3 Tdelay 1.032e-8 106% 0%

The corresponding performance comb in figure 5.7-n shows that the delay and

area objectives are in precise competition (their comb teeth have the same

length). Comparing these results to those of minimizing the delay alone shows

that the delay has increased from 6.87ns to 10.3ns while the area has been

reduced from 5920/i2 to 1570/j,2. These tradeoffs are also to be expected.

The following table summarizes the results of the three optimization runs:

§5.1.4
3.e*le

-4 vtr(8)-vtr(9)
281

2.8

1.8

-

i i

j |
1 i
: • i

! 1
i
i

1

j CIO
' i * J
• * * !
' ! * 1

j \ 1
• i i

i
i

t

j

•

1 \ 1 i
!
1
i

i T "• - -
i i

{
!

i ii . . 'i.-.r.'i *^» i.^.

TIME

,-8
e.e xl6

8.8 .48

..-13 vrriioi-woctioi

.88 1.2 1 .6 ?.e

^.8

j j

j
,1' 1

-'
i !

3.8

; Cl)
!

/

/

/
!

1

i
1

1

J l
j
i
i

|

1.8

1.8

1;:•iiii:i•iii•i11

: 4

L
» :

i J S _1_ 1 ' • ' _!__!._l_

\
|

i
l

1
i
i

|

• ••••••'' i—i I i i » • ' • ! ' ' ' '—i i i—i—i—

TIHE

xl*

8.8 .48 .88 1.2 1.6 ?.e

•Cm)

Cn)

f'coah

fll Delay
M? Integra)
H3 «r#»

t'coab

fll

PRESENT COOD

7.92c-9 6.86e-9 «=:
C 6.7Se-J3 1.88e-n<S*^

3.74c-9 1.88e-9 &*r.

PRESENT GOOD G

1 .B3C-8 8.88e-9 aT. T"Delay
n? Integra] C 2.75e-13 1.88»-n *&=:
H3 Area 1 ,S7c-9 5.80e-l8*=:

Jlgure 5.7. (continued)

BfiH

1,88e-6
1,S8e-ll
3.88»-9

1.88e-8
1 .P8*-il
1 .E8e-9

§5.1.4 282

CMOS Inverter Chain Optimization Results

Initial Run 1: Run 2: Run 3:

Performance Delay
alone

Delay
and

Delay
and

emphasized Integral
Current

emphasized

Area

emphasized

Delay 10.2ns 8.87ns 7.92ns 10.3ns

Integral Current .391pC 1.19pC .675pC .275pC

Area 2020m2 5920m2 3740/i2 1570m2

M2NW 16> 39.8m 11.9/* 9.23ju

M3N.W 32fi 101.4m 70.04/2 26.1m

In conclusion, although this example contains only a few design parameters

and concerns a relatively small circuit, it does demonstrate the design metho

dology introduced in chapter 4 in action. By adjusting the good and bad values

as shown in the above optimization runs, any point on the tradeoff curve for

these three competing objectives could be obtained. Another comment worth

mentioning is that it appears to be quite reasonable to not show hard con

straints on the Pcomb display. Instead, as shown in figure 5.7-b, an appropriate

message is simply printed.

Other Circuit Design Examples

Other recent examples of circuit optimization are reported by Nye, et al.

[116] (included as appendix G of this dissertation), for both product develop

ment and redesign of several industrial analog and digital circuits that resulted

in substantial improvement in their performance. The results of these

§5.1.4 283

optimizations are presently being incorporated into several of the products they

discuss. Since the values of the design parameters with which the optimizations

started were from final designs considered almost optimal by experienced

designers, the improvements in performance reported are quite significant.

The first circuit they optimized was a high-speed operational amplifier, imple

mented with a complementary bipolar, dielectrically-isolated gigahertz process.

This amplifier was to offer maximum bandwidth, the single objective, subject to

constraints on stability, minimum settling time, output voltage swing, slew rate,

DC power dissipation, and DC offset voltage. The DClimits, while important, were

not of primary concern and could be relaxed to achieve better AC performance

since the relative marketability of these specifications was very subjective. For

example, if significant bandwidth could be obtained at the cost of a small

increase in power, the amplifier would be more desirable.

The authors of [116] reported an efficient technique for handling the stability

constraint. Using a functional constraint, they limited the peaking in the

amplifier closed-loop frequency response over all frequencies in a certain inter

val, chosen so that it would surely contain the peak. This technique is in con

trast to the much more computationally expensive approach of measuring sta

bility using the settling time or overshoot of a transient simulation output

waveform. They mention that in general, care must be used in choosing how to

compute the quantities involved in the problem specifications.

The optimization results for the operational amplifier reported in [116] are as

follows. After five optimization iterations using the enhanced phase I-II-III algo

rithm, the bandwidth was substantially improved at the cost of stability (greater

peak in the closed-loop frequency response). After the bad value for the stabil-

§5.1.4 284

ity constraint was changed, a few more iterations resulted in a high bandwidth

amplifier with good stability but at the cost of a little more DC power. Next, the

emphasis was shifted to obtaining an amplifier with low power consumption. The

good and bad values for the DC power constraint were lowered and after a few

more optimization iterations, a low power version of the amplifier was obtained.

This example demonstrates the important role discussed in section 5.1.1 that

performance tradeoffs play in an industrial environment: the various amplifier

versions obtained by trading off particular objectives and constraints (through

adjustment of their good and bad values) can be realized with only minor

changes in a few IC masks and can be offered by the; marketing department as

several different product options.

Other applications of DELIGHT.SPICE mentioned in [116] include the design of

a digital to analog converter, an A/D comparator, a digital bus precharge cir

cuit, and a switched capacitor 10'th-order modem filter where tight phase

linearity specifications were met without using costly equalization circuitry. The

performance of each of these circuits was significantly improved, as shown in

table 2 of [116].

5.2. Other Engineering Applications

In this section we present several other engineering design applications.

These include the design of digital filters in section 5.2.1, feedback control sys

tems in section 5.2.2, and earthquake-resistant buildings in section 5.2.3.

5.2.1. Digital Filter Design

The application of DELIGHT to the design of digital filters was a recent under

taken at Berkeley by a small team of researchers. The results have been pub-

§5.2.1 285

lished in [91,90] ([90] is included as appendix E of this dissertation). The aspect

of the design of digital filters considered was the problem of determining a set of

coefficients for a rational transfer function so as to best approximate some

desired response (typically magnitude and phase frequency responses) while

meeting other specifications such as special stability requirements.

The optimization approach of DELIGHT offered much greater flexibility than

the rigid design specifications allowed by classical techniques, which construct

digital filter transfer functions by conversion from classical analog filter transfer

functions such as Butterworth, Chebyshev, elliptic, or BesseL Such classical

techniques have been automated in the filter design program FILSYN [145]. The

DELIGHT approach is to transcribe the design problem directly into the classical

mathematical programming formulation of section 4.4.2.1. This allows the

specification of practical constraints, for example, on the polynomial degree, on

the magnitude of the coefficients, or even for special stability requirements.

After formulating the design problem in this way, it was solved using the Phase I

- Phase II feasible directions algorithm with functional constraints, described

earlier in section 4.5.1.3. This work benefited greatly from the already men

tioned feature of this algorithm that the discretization of the functional con

straint frequency range is automatic and refined dynamically as an optimal solu

tion is approached.

An example of the special stability constraints that were included in the

problem formulation is to keep the roots of the denominator quadratics (see

below) inside a circle of radius p less than one. After having selected the degree

of the filter, both the numerator and denominator of the transfer function were

expressed as products of quadratics of the form

§5.2.1 286

zz -+ bz + c .

This formulation, besides leading to a filter structure with low quantization noise

[144], simplified the expression of the required conditions for stability, which

were written as the following constraints on the coefficients of the denominator

quadratics:

1+— + -%-* 0. i-4-+o *(), 1-4-fcO
P p2 P p2 Pz

These constraints were trivially implemented as ordinary inequality constraints

in procedure ineq.

The results reported by Lee et al in [91] for the design of a lowpass digital

filter show that the problem formulation and optimization algorithm used were

quite successful in achieving good filter designs. Moreover, designs from FILSYN

[145]. which does not allow phase constraints for the lowpass filter considered,

were taken and used as initial guesses to the optimization with phase con

straints. Significant improvements in phase responses were obtained along with

stronger stability properties.

Throughout the work, the interactive nature of DELIGHT optimization was

indispensable. Several times observation of the optimization progress led to

slight reformulation of the problem and to modification of some critical algo

rithm parameters. For example, an algorithm parameter was modified when it

was noticed that the X iterates were bouncing on and off certain constraint

boundaries. These observations were facilitated by several graphical displays

that were output after each optimization iteration. For example, a RATTLE pro

cedure easily constructed from the basic graphics commands of DELIGHT was

used to draw plots of the locations of the complex filter poles in the s-plane.

§5.2.1 287

5.2.2. SISO and MIHO Control Systems

An application of DELIGHT in the area of control system design is to

multiple-input/multipie-output (M1M0) feedback control systems. The

DELIGHT-MIMO package is the result of interfacing the basic DELIGHT system to

various multivariable simulation and design aids. It is currently under develop

ment at the University of California, Berkeley, Imperial College. London, Kings

ton Polytechnic, London, and Lawrence livermore National Laboratory, Liver-

more, California.

DELIGHT-MIMO is intended both as a practical design tool and as a test bed

for concepts to be used in interactive control system design. The first version of

the system was constructed by incorporating a number of subroutines from the

Imperial College Multivariable Design System (MDS) [138] into DELIGHT using the

application package development features of appendix B. These subroutines

allow designers to define system components and interconnections, to evaluate

time and frequency responses, and to use classical design techniques to produce

an initial design for the optimization. Optimization is carried out by a RATTLE

implementation of the Polak-Wardi algorithm [125] which permits constraints on

both time responses and on singular values over a frequency range. Presently,

DELIGHT-MIMO is being substantially revised by (l) the introduction a graphical,

menu-driven, system component interconnection capability, (2) the replace

ment of the MDS routines by numerically more robust ones from the SLICE

library [34], and (3) the addition of a number of utility programs. These utilities

implement various modern design techniques which designers will be allowed to

use either independently or as a means for obtaining an initial design for

DELIGHT optimization.

§5.2.2 288

Typical MIMO control system design problems were briefly mentioned in

chapter 1.Tie now review several common requirements of these problems. Typ

ical ordinary inequality constraints are those for stability that restrict the

eigenvalues of the closed loop system to a specified region in the s-plane. Thus,

if A;(x), j =l,2. • • • JVx are the complex eigenvalues of the closed loop system, it

may be required that thsy all lie in a parabolic region in the complex X-plane

defined by Re[\] +a-Im[>.]2 ^b for a given a>0 and o^O. This results in the Nx

inequality constraints

ineq(j,x) = Re[Xj(x)] + a-Im[Xj(x)]2 - 6 (<0) for j=l, • • • JVA

in which, given x, the set of X^xJ's is calculated using built-in DELIGHT-MIMO

utility routines.

Typical functional inequality constraints arise from converting rise time,

overshoot, and settling time constraints on the time-domain step responses of

the closed loop system yfat), ;=1,2, • • • ,Ny to those confining these step

responses to lie within the specified envelopes:

Lowers(t) s£ yj(x.t) £ Upperj(t) V£ e [0,Tstop], j =l,2, • • • ,Ny .

These then result in the 2Ny functional constraints

fineq(j.x.t) = yfat) - Upper^t) (ssO) j =l,2. • • • ,Ny

and

fimeq(j,x,t) = Lowery(r) - y;(x,0 (*s0) j=Ny+l, Ny+2, • • • . 2Ny

in which, given x, the set of yj(x,t)'s is again calculated using built-in routines.

As mentioned in section 4.4.1.2, the functions Lowerj(t) and Upperj(t) must be

piecewise Lipschitz continuous in their t argument, with discontinuities only of

the first kind.

§5.2.2 289

Another important example of functional constraints is for establishing

bounds on the smallest singular value o(x,tS) of the return difference matrix

F(x,w), the purpose of which is to reduce the sensitivity to parameter variations.

These have the form

a(x,o) as Bound(tS) Vy e [u',o"]

which results in the functional constraint

fineq(j,x,6) = Bound(o) - <t(x.«) (^0) .

Again the function Bound(u) must be piecewise Lipschitz continuous in w. Other

similar constraints place bounds on the largest singular value of another

transfer function matrix to insure that the system is insensitive to output dis

turbances. These kinds of constraints can be handled by, for example, the

Polak-Wardi algorithm for nondifferentiable optimization problems.

One possible role for the single cost function —single because this work was

performed prior to the existence of the multiple objective problem

formulation—is to express the desire to minimize the energy being input into

the plant during a specified operation. The cost would then take the form of the

following integral:

Tstop

cost(x) = / u(x,t)zdt
o

where u{x,t) is the input to the plant. Another possibility is to minimize the

integral squared feedback error of the system giving

Titop

costfr) = f e(x,t)2dt

The integrations above could be performed using either standard numerical

analysis techniques or during the time-domain solution of differential equations.

§5.2.2 290

Finally, there are often design parameter box constraints such as positivity

and bounds on the compensator design parameters.

Another related use of DELIGHT for optimization of control systems that did

not, however, involve DELIGHT-MIMO is the work of Meena Karandikar [75] at

Berkeley on the design of SISO control systems. Using the RATTLE language and

the Phase I - Phase II optimization algorithm from the RATTLE Algorittims

library, she implemented the algebraic design methodology of Chen et al. [29]

for SISO control systems. The closed loop disturbance transmission was minim

ized. In order to get low disturbance transmission, the closed loop feedback

compensator gain should increase. Since this increases the magnitude of the

signal at the input to the plant, a functional constraint on the compensator g;ain

was introduced to avoid the practical problem of plant saturation. Similar to

the MIMO case above, the complex zeros of the closed loop characteristic poly

nomial were constrained to lie in a certain region of the s-plane. In her conclu

sions. Meena notes that these design objectives could not have been hanclled

easily by classical, non-optimization techniques. She also identifies a tradeoff

situation between the bandwidth over which the disturbance transmission is

reduced and the step response.

5.2.3. Earthquake-Resistant Structures

An important design problem in civil engineering is found in the area of

structural design of multistory, steel-framed buildings. Current design philoso

phy requires that buildings must withstand small earthquakes with no damage

and large ones with repairable damage, avoiding collapse. In a typical braced

frame design, the design parameter vector x can include the section moment of

inertia or cross sectional area of the frame or bracing members. The different

§5.2.3 291

horizontal floors are assumed to be rigid and to concentrate the mass of the

•structure. Horizontal displacements of the floors and roof form the components

of a displacement vector. This lumped parameter model then obeys a set of

differential equations in the displacement vector which are driven by a forcing

function that represents the ground motion. It is common to consider a whole

family of excitations, both large and small, in carrying out a design. A common

objective is to reduce initial cost by reducing the weight of the structure. This is

done by minimizing the volume of the frame members subject to several groups

of constraints. The designer may formulate one group of constraints

corresponding to a static model subjected to gravity loads and another

corresponding to the dynamic model given by the set of differential equations.

The use of these constraints is to limit displacements and internal forces in the

structure over the entire duration of a family of earthquake excitations.

The DEUGHT.STRUCT [18] version of DELIGHT interfaces to the ANSR [101]

nonlinear structural response simulator. The associated library of software for

different classes of structural design problems currently contains software for

the -seismic-resistant design of steel frames discussed above. However, Balling

indicates in [18] that the system could easily be extended to handle optimiza

tion problems involving the design of steel bridge decks, concrete dams, storage

tanks, offshore platforms, energy-absorbing restrainers for nuclear power

plants, spatial piping systems, etc.

In his doctoral work, Balling handled the following specific steel frame design

problem. Earthquake records used as a forcing function to drive the simulation

were actual ground motion accelerograms selected and scaled to levels

representing moderate and severe ground motions. The design variables

§5.2.3 292

included column moments of inertia, brace cross-sectional areas, and a dummy

story drift variable to handle functional costs. The cost to minimize was a linear

combination of the following six terms:

1. the volume of the design elements,

2. the sum of the squares of the maximum story drifts during a

moderate earthquake,

3. the severe earthquake input energy,

4. the severe earthquake inelastically dissipated energy,

5. this energy dissipated by shear link and dissipator elements, and

6. this energy dissipated by the columns.

The shear link and dissipator elements in number 4 act as "fuses" which can dis

sipate large amounts of energy without causing significant damage to the struc

ture. Since this work was carried out before the multiobjective problem formu

lation had been conceived, the weighted-sum approach was necessary. Ordinary

inequalities included constraints on the axial gravity force, gravity end

moments, and severe earthquake energy dissipation for column elements of the

frame. "The latter two were also constraints for brace elements. Functional ine

quality constraints were categorized into those for moderate and those for

severe earthquake excitations. For the former the constraints were over time

and on the column end moments, the brace axial forces, the story drifts, and

the floor accelerations. The latter class included a constraint on the structure

sway, i.e., the horizontal displacement at the top of the frame divided by the

total frame height, based on the observation that the collapse of a frame may be

detected by large displacements at the top of the frame. In total there were 141

ordinary inequality constraints and 69 functional constraints in the four story

example presented.

§5.2.3 293

The optimization runs reported by Balling indicated that six iterations were

required to satisfy all 200 of the constraints using the Phase 1 - Phase II algo

rithm. He also noted that the volume of the structure remained nearly constant

for all iterations and thus the feasible design was not constructed by simply

increasing the strengths of all the frame members, but rather by re-distributing

the strength of the structure among the members. "Without optimization tech

niques, he adds, often an engineer faced with an infeasibie design is tempted to

resolve the problem by simply increasing the sizes of the relevant frame

members. After obtaining the initial feasible design, the weights in the cost

functions were adjusted to obtain final designs in which several of the terms in

the cost function were emphasized individually.

CHAPTER 6

Conclusions and Future Research

We have considered the benefits of applying optimization to engineering

design, identified shortcomings of other attempts to achieve similar application,

and designed and implemented the DELIGHT system both to meet a resulting set

of design criteria and as part of a broad project dedicated to optimization-based

computer-aided design. DELIGHT, for "DEsign Laboratory with Interaction and

Graphics for a Happier Tomorrow", contains man}' features that help meet these

criteria. Features were explored that, in particular, both provide engineering

designers with a powerful new design tool with which to optimize the perfor

mance of their designs as well as facilitate the development of optimization algo

rithms. For the "non-optimization" designer DELIGHT provides simple command

and algorithm execution. For the advanced designer it provides features which

make it easy to rescale or modify either the design problem being solved or the

optimization algorithm being used, without losing any previous optimization pro

gress. A new engineering-oriented multiple objective problem formulation was

introduced that allows arbitrary problem formulation through a general expres

sion capability, and a means of classifying and conveying the relative impor

tance of design specifications. Powerful, highly flexible color graphics can be

used to display both properties and performance of the system being designed

as well as information which facilitates optimization algorithm tuning. In partic

ular, a methodology and commands for performing design tradeoffs were intro

duced that use a new graphical display called the Pcomb performance comb.

294

295

The optimization algorithm expert is given a high-level language which permits

him to easily access common mathematical numerical analysis software in writ

ing compact procedures that bear a close resemblance to the mathematical

description of the algorithms being implemented. This extensible nature of the

language and the associated test and debug aids cause most of the usual coding

errors to be eliminated and the programming time to be shortened greatly. A

library of both classical and recent optimization subprocedures gives designers

the ability to access complete and proven algorithms or create a large number

of different algorithms from the relatively few basic building blocks in the

library. Finally, since the DELIGHT system is intended to be used in many

different design areas, there is a simulation interface methodology and other

necessary features that facilitate the coupling of DELIGHT to existing simulation

programs. We then took a look at several application areas and demonstrated

the usefulness of the system by showing the optimization of several electronic

integrated circuits and reporting successful results in the other areas exam

ined.

There are a number of enhancements or areas of future research that can

help the DELIGHT system better meet its goals. One is simply to add to the

library of optimization algorithms. In particular, more emphasis should be

placed on the superlinearly convergent Lagrangian-based algorithms for con

strained optimization since recently several of their shortcomings have been

eliminated (see, for example, Tits [148]). A related enhancement is that algo

rithm choices and sub-block substitution need to be multi-level and hierarchical

instead of just single-level as at present. In other words, there needs to be sub-

sub-block choices under various sub-blocks. Another important area deserving

additional attention concerns how to effectively convey information that assists

296

a user in adjusting algorithm parameters. The gradient clock and the Armijo

graphics display presented in this dissertation consider just a small subset of

the existing parameters. Future work in this area should also emphasize graphi

cal displays that convey information easily.

A useful enhancement to DELIGHT .graphics is an automatic viewport

manager. This would automatically set up and place viewports on the terminal

screen so users could easily add or remove graphical displays without having to

shrink or expand viewports already on the screen. Similar results have recently

appeared in regard to data base screen generators (see, for example, the work

of Shoens [133]). A related area with great potential concerns a menu-driven

user interface for DELIGHT. One approach is to take advantage of the uniform

user/program environment available through the Berkeley hawk graphics editor

[76] and Squid data base system [77]. Hawk provides a friendly user "front end"

for several VLSI design tools that facilitates their usage by beginners as well as

by experienced designers. A menu-driven input to DELIGHT could reduce the

apparent complexity of the many possible actions from which a designer can

choose, at different states in an optimization process.

There are several specific enhancements that can improve the effectiveness

of DELIGHT.SPICE as a CAD tool. One is to allow additional output types (key

words) such as ones for noise or distortion output at circuit nodes. Another is

for output currents through any element. This might require much effort since

presently SPICE computes directly the currents through only certain elements,

eg., voltage sources. However, SP1CE3 [129] may alleviate this problem in the

near future. A very important addition to DELIGHT.SPICE that will save a large

amount of cpu time and make circuit optimization much more practical is to

have SPICE compute directly the sensitivities necessary for optimization

297

gradients, instead of the present finite-difference approach. For output vector

•, SPICE would compute 9v/ dx in the chain rule formula

c£x Qx dv dx

where / is multwost, ineq, etc. The other partials on the right-hand side above

would either be user supplied (ok), computed using finite differences (better), or

computed using symbolic differentiation of the RATTLE problem description

expressions (best). Preliminary work on the latter has been started [109]. Also,

work is already underway to allow SPICE to compute both DC, AC, and transient

sensitivities [ill]. For the chain rule expression above, design parameter track

ing and matching need to be carefully considered.

Other CAD tools that could be implemented in RATTLE and thus take advan

tage of the existing SPICE simulation interface include design centering,

tolerancing, tuning, and yield improvement. In fact, multiobjective optimization

involving yield as a tradeoff has been recently studied by Lightner and Director

[93].

The conceptually simple simulation interface methodology provided by

DELIGHT, makes it easy to interface to simulation programs in various engineer

ing areas. These might be other circuit simulators at Berkeley such as SPICE3

[129], SPLICE2 [107,135], or RELAX [92], or simulation programs in other

engineering areas, as suggested by the recent interest in using DELIGHT optimi

zation in optics.

In conclusion, at the simplest conceptual level, the "kernel" program of the

DELIGHT system does little more than provide a simple interactive programming

language along with powerful extensibility and the ability to add existing (For-

298

tran) routines. The greatest contributions of the DELIGHT system are not so

much in creating these three features but in what has evolved using them. To

quote an author of the Interlisp programming environment, "Interlisp was not

designed, it evolved—but this was the right approach" [147]. Similarly, many

important features of DELIGHT were not planned at the outset but instead ori

ginated during an evolutionary design process.

Our feelings about the need for such a design system can best be stated by

paraphrasing the introduction of Strunk and White [74]:

We felt that the designer trying to use optimization as a tool was in seri
ous trouble most of the time, a man floundering in a swamp, and that it
was the duty of anyone attempting to help him in this task, to drain this
swamp quickly ar.d get his man up on dry ground, or at least throw him a
rope. In creating DELIGHT, we have tried to hold steadily in mind this be
lief and concern j'or the troubled state of optimization use in engineering
design.

It is hoped that DELIGHT and this dissertation will provide a workable system

and methodology for using optimization in engineering design. In this way,

perhaps the barriers may be breeched that have thus far prevented the

widespread use of such a powerful computer-aided design technique.

References

I] "AEDCAP User's Guide," Report A-CIR-000-4, SofTech, Inc., Waltham, Mass.
(1973).

2] "ASTAP Advanced Statistical Analysis Program," IBM Program Product
Document SH20-1118-0, IBM Data Processing Division, White Plains, N.Y.
(1973).

3] OPNODE User's Manual, Automatic Measurement Division, Hewlett-Packard
Company, Sunnyvale, California (1975).

4] "VP/CSS Executive Language (EXEC)," NCSS Technical Note Form 109-4.
National CSS, Inc.. Norwalk, Connecticut (March 1975).

5] "ISPICE Part 1: Circuit Description and Modeling." IEEE Circuit and Sys
tems Magazine vol. 11, no. 6, pp. 3-7 (December 1977).

8] COMPACT Version 4.8, United Computing Systems, Compact Engineering,
Inc., Los Altos, California (October 1978).

7] "ISPICE Part 2: Simulation and Analysis of Results," IEEE Circuit and Sys
tems Magazine vol. 12, no. 1, pp. 2-8 (February 1978).

8] Reference Manual for the Programming Language Ada—Proposed Stan
dard Document, US Department of Defense (July 1980).

9] SLICE User's Guide, Harris Semiconductor. Melbourne, Florida (1982).
10] "Harwell Subroutine Library,1' Library Reference Manual, Harwell, Eng

land (1982).
II] M. R. Aaron, "The Use of Least Squares in System Design," IRE Transac

tions on Circuit Theory vol. CT-3, pp. 224-231 (December 1956).
12] D. Agnew, "Improved Minimax Optimization for Circuit Design," IEEE

Transactions on Circuits and Systems vol. CAS-28, no. 8, pp. 791-803
(August 1981).

13] A. V. Aho and J. D. Ullman, Theory of Parsing, Translation, and Compiling
Volume 1, Prentice-Hall, Englewood Cliffs, New Jersey (1972).

14] A. V. Aho and J. D. Ullman, Theory of Parsing, Translation, and Compiling
Volume 2, Prentice-Hall, Englewood Cliffs, New Jersey (1973).

15] A. V. Aho and J. D. Ullman, Principles of Compiler Design, Addison-Wesley,
Reading, Mass. (1977).

16] L. Armijo, "Minimization of Functions Having Continuous Partial Deriva
tives," Pacific Journal of Mathematics vol. 16, pp. 1-3 (1966).

17] M. Bales, "Csubst," Cadman Manual Page, Electronics Research Labora
tory, University of California, Berkeley, California (November 1980).

18] R. J. Balling, K. S. Pister, and E. Polak, "DELIGHT. STRUCT: A Computer-
Aided Design Environment for Structural Engineering," Memo No.
UCB/EERC-81/19, Earthquake Engineering Research Center, University of
California, Berkeley, California (December 1981).

299

300

[19] D. W. Barron. An Introduction to the Study of Programming Languages,
Cambridge University Press, Cambridge, London, U. K. (1977).

[20] M. A. Bhatti, K. S. Pister. and E. Polak, "OPTDYN - A General Purpose
Optimization Program for Problems With or Without Dynamic Constraints,"
Report No. UCB/EERC-79/16, Earthquake Engineering Research Center,
University of California, Berkeley, California (July 1979).

[21] M. A. Bhatti. T. Essebo, W. T. Nye, K. S. Pister, E. Polak, A. Sangiovanni-
Vincentelli, and A. L Tits, "A Software System for Optimization-Based
Interactive Computer-Aided Design," Memo No. UCB/ERL M80/14, Electron
ics Research Laboratory, University of California, Berkeley, California (April
1980).

[22] G. Billingsly, K. Keller, and M. Bales, MFB Reference Manual, University of
California. Berkeley, California (July 1982).

[23] R K Brayton and R Spence, Sensitivity and Optimization, Elsevier
Scientific Publishing Company. Amsterdam, Netherlands (1980).

[24] R K. Brayton, G. D. Hachtel, and A. L Sangiovanni-Vincentelli, "A Survey
of Optimization Techniques for Integrated Circuit Design," Proc. IEEE vol.
69, no. 10, pp. 1334-1362 (1981).

[25] P. J. Brown, Macroprocessors and Techniques for Portable Software, John
Wiley & Sons, Inc., New York, N.Y. (1974).

[28] D. A. Calahan, "Computer Design of Linear Frequency Selective Net
works," Proc. IEEE, no. 53, pp. 1701-1706 (1965).

[27] D. A. Calahan, Compniter-Mded Network Design, McGraw-Hill Book Com
pany, New York (1972).

[28] W. C. Cave, "An Automated Design Formulation for Integrated Circuits,"
pp. 241-279 in Computer-Aided Integrated Circuit Design, ed. G. J. Her-
akowitz, McGraw-Hill Book Company, New York (1968).

[29] M. J. Chen, C. A. Desoer, and G. F. Franklin, "Algorithmic Design for
Single-Input Single-Output Systems With a Two-Input One-Output Controller,"
Memo No. UCB/ERL M81/12, Electronics Research Laboratory, University of
California, Berkeley, California (1981).

[30] E. Cohen, "Program Reference for SPICE2," Memo No. ERL-M592, Elec
tronics Research Laboratory, University of California, Berkeley, California
(June 1976).

[31] IBM Corporation, "IBM System/360 Operating System: PL/I Reference
Manual," Form C28-8202, IBM Data Processing Division, White Plains. New
York (1967).

[32] J. Cullum, "An Algorithm for Minimizing a Differentiable Function That
Uses Only Function Values," pp. 117-127 in Techniques of Optimization, ed.
A. V. Baiakrishnan, Academic Press, New York (1972).

[33] K. C. Daly and P. Katzberg. "C0SDIC Documentation: The Classical Design
Suite," Publication No. 73/18, Department of Computing and Control,
Imperial College, London SW7 2BT, U.K. (June 1973).

[34] M. J. Denham and C. J. Benson, "SLICE: A Subroutine Library for Control
System Design." Internal Report 01/82, School of Electronic Engineering
and Computer Science, Kingston Polytechnic, Kingston upon Thames KT1
2EE. U.K. (1982).

[35] C. A. Desoer and S. K. Mitra. "Design of Lossy Ladder Filters by Digital

301

Computer," IRE Transactions on Circuit Theory vol. CT-8, pp. 192-201 (Sep
tember 1961).

136] E. W. Dijkstra, A Primer of Algol 60 Programming, Academic Press. New
York, N.Y. (1962).

[37] E. W. Dijkstra. "Notes on Structured Programming," pp. 1-81 in Struc
tured Programming, ed. C. A. R Hoare. Academic Press. New York, N.Y.
(1972).

[38] G. Dilley, private communication, Earthquake Engineering Research
Center, University of California, Berkeley, California (September 1982).

[39] S. W. Director and R A. Rohrer, "Automated Network Design—The
Frequency-Domain Case," IEEE Transactions Circuit Theory vol CT-16. pp.
330-337 (1969).

[40] S. W. Director and R A. Rohrer, "The Generalized Adjoint Network and Net
work Sensitivities," IEEE Transactions Circuit Theory vol. CT-16, pp. 318-
323 (1969).

[41] S. W. Director, A Survey of Decomposition Techniques for Analysis and
Design of Electrical Networks, presentedat the University of Florida (1974).

[42] S. W. Director and G. D. Hachtel, "The Simplicial Approximation Approach
to Design Centering," IEEE Transactions on Circuits and Systems vol. CAS-
24, (July 1977).

[43] J. J. Dongarra, C. B. Moler, J. R Bunch, and G. W. Stewart, UNPACK Users'
Guide, SIAM, Philadelphia, Pa. (1979).

[44] R I. Dowell, Automated Biasing of Integrated Circuits, Ph.D. Dissertation,
Department of Electrical Engineering and Computer Science, University of
California, Berkeley, California (April 1972).

[45] C. Eastman and R Thornton, A Report on the GLIDE 2 Language
Definition, Computer Aided Design Group. Institute for Physical Planning,
Carnegie-Mellon University, Pittsburgh, Pennsylvania (preliminary draft,
March 1979).

[46] S. 1. Feldman, "The Programming Language EFL," Comp. Sci. Tech. Rep.
No. 78, Bell Laboratories, Murray Hill, NewJersey (June 1979).

[47] A. V. Fiacco and G. P. McCormick, "The Sequential Unconstrained Minimi
zation Technique for Nonlinear Programming. Algorithm II, Optimum Gra
dients by Fibonacci Search," Technical Paper RAC-TP-123. Research
Analysis Corporation, McLean, Virginia (June 1964).

[48] P. E. Fleischer, "Optimization Techniques," pp. 175-217 in System
Analysis by Digital Computer, ed. J. F. Kaiser, John Wiley & Sons, Inc., New
York (1966).

[49] R Fletcher and M. J. D. Powell, "A Rapidly Convergent Descent Method for
Minimization," The Computer Journal vol. 8, pp. 163-168 (1963).

[50] R. Fletcher and C. M. Reeves, "Function Minimization by Conjugate Gra
dients," Computer Journal vol. 6, pp. 149-154(1984).

[51] P. E. GUI, W. Murray, S. M. Picken, and M. H. Wright. "The Design and
Structure of a Fortran Program Library for Optimization," ACM Transactions
on Mathematical Software vol. 5, no. 3. pp. 259-283 (September 1979).

[52] L. Gilman and A. J. Rose. APL - AnInteractive Approach, JohnWiley &Sons,
Inc., New York, N.Y. (1970).

302

[53] J. J. Golembeski, "Computer-Optimized Model Determination." pp. 76-112
in Oomputer-Addjed Integrated Circuit Design, ed. G. J. Herskowitz, McGraw-
Hill Book Company. New York (1968).

[54] C. Gonzaga. E. Polak, and R Trahan, "An Improved Algorithm for Optimiza
tion Problems with Functional Inequality Constraints," IEEE Transactions on
Automatic Control vol. AC-25, no. 1. pp. 49-54 (1980).

[55] P. R Gray and R. G. Meyer, Analysis and Design of Analog Integrated Cir
cuits, John Wiley &Sons. Inc., New York, N.Y. (1977).

[56] D. Gries, Compiler Construction for Digital Computers, John Wiley & Sons,
Inc., New York. N.Y. (1971).

[57] G. D. Hachtel and R A. Rohrer, "Techniques for the Optimal Design and
Synthesis of Switching Circuits," Proc. IEEE, no. 55, pp. 1864-1877 (1967).

[58] G. D. Hachtel, M. R Lightner, and H. J. Kelly, "Application of the Optimiza
tion Program AOP to the Design of Memory Circuits," IEEE Transactions on
Circuits and Systems vol. CAS-22, no. 6, pp. 496-503 (June 1975).

[59] G. D. Hachtel, T. R Scott, and R P. Zug, "An Interactive Linear Program
ming Approach to Model Parameter Fitting and Worst Case Circuit Design,"
IEEE Transactions on Circuits and Systems vol. CAS-27, no. 10, pp. 871-881
(October 1980).

[60] G. D. Hachtel and P. Zug, APLSTAP - Circuit Design and Optimization Sys
tem - User's Guide, IBM Yorktown Research Facility, Yorktown. N.Y. (1981).

[61] D. E. Hall, D. K. Scherrer, and J. S. Sventek, "A Virtual Operating System"
Communications of the ACM vol 23, no. 9, pp. 495-502 (September 1980).

[62] M. R Hestenes, "Multiplier and Gradient Methods," Journal of Optimiza
tion Theory andApplications vol. 4, pp. 303-320 (November 1969).

[63] R Hettich, "Semi-Infinite Prograinming." Lecture Notes in Control and
Information Sciences, Springer Verlag (1979).

[64] D. M. Himmelblau. Applied Nonlinear Programming, McGraw-Hill, New
York. N.Y. (1972).

[65] D. A. Hodges and H. Jackson. Analysis and Design of Digital Integrated
Circuits, John Wiley 8c Sons, Inc.. New York. N.Y. (1982).

[66] F. R A. Hopgood. Compiling Techniques, Elsevier Scientific Publishing
Company, Amsterdam, Netherlands (1969).

[67] E. Horowitz and S. Sahni, Fundamentals of Data Structures, Computer
Science Press, Woodland Hills, California (1976).

[68] T. E. Idelman. F. S. Jenkins, W. J. McCalla. and D. 0. Pederson. "SUC - A
Simulator for linear Integrated Circuits," IEEE Journal of Solid State Cir
cuits vol. SC-6, pp. 188-203(August 1971).

[69] K. Jensen and N. Wirth. "Pascal User Manual and Report," Lecture Notes
in Computer Science (18), Springer Verlag (1977).

[70] S. C. Johnson, "Yacc — Yet Another Compiler-Compiler," Computer Sci
ence Technical Report No. 32, Bell Laboratories. Murray Hill, New Jersey
(July 1975).

[71] W. Joy, The vi Editor, seminar presented at the Department of Electrical
Engineering and Computer Science, University of California, Berkeley, Cali
fornia (1979).

[72] W. Joy, "Csh(l)," in UNIX Programmer's Manual, Seventh Edition, Virtual

303

VAX-11 Version, Department of Electrical Engineering and Computer Sci
ence, University of California, Berkeley, California (June 1981).

[73] W. Joy. "Vi(l)," in UNIX Programmer's Manual, Seventh Edition, Virtual
VAX-11 Version, Department of Electrical Engineering and Computer Sci
ence, University of California, Berkeley, California (June 1981).

[74] W. Strunk Jr. and E. B. White, The Elements of Style, third edition. MacMil-
lan Publishing Co., Inc., New York, N.Y. (1979).

[75] M. Karandikar. Implementation of Chen et al. 's Design Methodology for
SISO Control Systems (titled by Bill Nye), Master's Report, Department of
Electrical Engineering and Computer Science, University of California,
Berkeley, California (December 1982).

[76] K. Keller, "A SymboUc Layout Design System," Proceedings of the 1962
IEEE International Symposium on Circuits and Systems, (1982).

[77] K Keller. "A Symbolic Design System for Integrated Circuits." Proceed
ings of the 1982 Design Automation Conference, (1982).

[78] B. W. Kernighan. "RATFOR—A Preprocessor for a Rational Fortran,"
Software—Practice and Experience, (October 1975).

[79] B. W. Kernighan and P. Plauger, Software Tools,, Addison-Wesley, Reading.
Mass. (1976).

[80] B. W. Kernighan and D. M. Ritchie, The C Programming language,
Prentice-Hall, Englewood Cliffs, New Jersey (1978).

[81] J. Kleckner, private communication, Electronics Research Laboratory,
University of California, Berkeley, California (November 1982).

[82] R. Klessig and E. Polak (edited by R. Trahan). Notes for Optimization and
Optimal Control, Electronics Research Laboratory, University of California,
Berkeley, California (Spring 1980).

[83] D. E. Knuth, The Art of Computer Programming, Volume 1: fundamental
Algorithms, Addison-Wesley, Reading, Mass. (1968).

[84] H. W. Kuhn and A. W. Tucker, "Nonlinear Programming," Proceedings of
the Second Berkeley Symposium on Mathematical Statistics and Probabil
ity, pp. 481-493 (1951).

[85] P. Labuhn, MINLP System Report, Master's Report, Department of Electri
cal Engineering and Computer Science, University of California, Berkeley,
California (December 1982).

[86] L. S. Lasdon and A. D. Waren, "Optimal Design of Filters with Bounded,
Lossy Elements," IEEE Transactions Circuit Theory vol. CT-13, pp. 175-187
(1966).

[87] B. M. Leavenworth, "Syntax Macros and Extended Translations," Commun-
icatinns of the ACM vol. 9, no. 11, pp. 790-793 (November 1968).

[88] R J. LeBlanc and J. J. Goda, "Ada and Software Development Support: A
New Concept in Language Design," IEEE Computer vol. 15, no. 5, pp. 75-82
(May 1982).

[89] H. Ledgard, J. A. Whiteside, and A- Singer, "The Natural Language of
Interactive Systems," Communications of the ACM voL 23, no. 10, pp. 556-
563 (October 1980).

[90] T. P. Lee, W. T. Nye, and A. L Tits, "The Design of Digital Filters Using
Interactive Optimization," Proceedings of the The 20'th IEEE Conference on

304

Decision and Control, (December 1981).
[91] T. P. Lee, W. T. Nye. and A. L Tits. "The Design of Digital Filters Using

Interactive Optimization," IEEE Transactions on Circuits and Systems vol.
CAS-30, no. 11, (1983).

[92] E. Lelarasmee, The Waveform Relaxation Method for Time Domain
Analysis of Large Scale Integrated Circuits: Theory and Applications, Ph.D.
Dissertation, Department of Electrical Engineering and Computer Science,
University of California, Berkeley, California (May 1982).

[93] M. R. Ughtner and S. W. Director, "Multiple Criterion Optimization with
Yield Maximization," IEEE Transactions on Circuits and Systems vol. CAS-
28. no. 8, pp. 781-791 (August 1981).

[94] M. R. Lightner and S. W. Director, "Multiple Criterion Optimization for the
Design of Electronic Circuits," IEEE Transactions on Circuits- and Systems
vol. CAS-28. no. 3, pp. 169-179 (March 1981).

[95] D. G. Luenberger, Introduction to linear and Nonlinear Programming,
Addison-Wesley, Reading, Mass. (1973).

[96] D. W. Marquardt, "An Algorithm for Least-Squares Estimation of Nonlinear
Parameters," Journal of the Society of Industrial and Applied Mathematics
vol. 11. no. 2. pp. 431-441 (June 1963).

[97] D. G. Mayne, W. T. Nye, E. Polak, F. Siegel. and T. Wuu. "DELIGHT-MIMO: An
Interactive, Optimization-Based Multivariable Control System Design Pack
age," Memo No. UCB/ERL M82/53, Electronics Research Laboratory, Univer
sity of California, Berkeley, California (July 1982).

[98] D.Q. Mayne, E. Polak, and A. Sangiovanni-Vincentelli, "Computer-Aided
Design via Optimization: A Review," Automatica, vol. 18, no. 2, pp. 147-154
(1982).

[99] W. J. McCalla, Computer-Aided Design of Integrated Bandpass Amplifiers,
Ph.D. Dissertation, Department of Electrical Engineering and Computer Sci
ence, University of California, Berkeley, California (June 1972).

[100] C. Mead and L. Conway, Introduction to VLSI Systems, Addison-Wesley.
Reading, Mass. (1980).

[101] D. P. Mondkar and G. H. Powell, "ANSR-I General Purpose Program for
Analysis of Nonlinear Structural Response," Report No. EERC 75-37, Earth
quake Engineering Research Center, University of California. Berkeley, Cali
fornia (December 1975).

[102] M. A. Murray-Lasso, "Analysis of Linear Integrated Circuits by Digital
Computer Using Black-Box Techniques," pp. 113-159 in Qomputer-Aided
Integrated Circuit Design, ed. G. J. Herskowitz, McGraw-Hill Book Company,
New York (1968).

[103] M. A. Murray-Lasso, "An Interactive Optimization Program for Use on a
Time-Shared Computer," Internal Memorandum, Bell Telephone Labora
tories (April 1968).

[104] W. Myers. "Computer Graphics: The Need for Graphics Design." IEEE
Computer vol. 14, no. 6, pp. 86-92 (June 1981).

[105] L. W. Nagel, "SPICE2: A Computer Program to Simulate Semiconductor
Circuits." Memo No. ERL-M520, Electronics Research Laboratory, University
of California. Berkeley, California (May 1975).

[106] W. M. Newman and R F. Sprouil, Principles of Interactive Computer

305

Graphics, second edition, McGraw-Hill. New York. N.Y. (1979).
[107] A. R. Newton. "The Simulation of Large Scale Integrated Circuits." IEEE

Transactions on Circuits and Systems vol. CAS-26, pp. 741-749 (September
1979).

[108] W. T. Nye, "Dynamic Arrays Via a Modified Ratfor Preprocessor," Memo
No. UCB/ERL M80/23, Electronics Research Laboratory, University of Cali
fornia, Berkeley, California (June 1980).

[109] W. T. Nye, unpublished research, Electronics Research Laboratory,
University of California, Berkeley, California (1981).

[110] W. T. Nye, DELIGHT Reference Manual, Electronics Research Laboratory,
University of California, Berkeley, California (September 1981).

[Ill] W. T. Nye and D. C. Riley, "Transient Sensitivity in SPICE," EECS 290H
course project report. Department of Electrical Engineering and Computer
Science, University of California, Berkeley, California(June 1982).

[112] W. T. Nye and A.' L. Tits, "An Enhanced Methodology for Interactive
Optimal Design—The Phase I-II-III Method of Feasible Directions," in
preparation (1983).

[113] W. T. Nye, A. L. Tits, and A. Sangiovanni-Vincentelli, "Enhanced Methods
of Feasible Directions for Engineering Design Problems," in preparation
(1983).

[114] W. T. Nye, D. C. Riley, and A. Sangiovanni-Vincentelli, DELIGHT SPICE
User's Guide, Department of Electrical Engineering and Computer Science,
University of California, Berkeley, California (February 1983).

[115] W. T. Nye, DELIGHTARBSIM User's Guide, Department of Electrical
Engineering and Computer Science, University of California, Berkeley, Cali
fornia (1983).

[116] W. T. Nye, A. Sangiovanni-Vincentelli, J. P. Spoto, and A. L. Tits,
"DEUGHT.SPICE: An Optimization-Based System for the Design of Integrated
Circuits," Proceedings of the 1983 Custom Integrated Circuits Conference,
(May, 1983).

[117] W. T. Nye and A. L. Tits. "An Enhanced Methodology for Interactive
Optimal Design," Proceedings of the 1983 IEEE International Symposium on
Circuits and Systems, (May 1983).

[118] R. G. Oliver, GENGRAF: A General Purpose Subroutine Package for Com
puter Graphics, Division of Structural Engineering and Structural Mechanics,
University of California, Berkeley, California(1983).

[119] D. A. Pierre and M. J. Lowe, Mathematical Programming Via Augmented
Lagrangians, Addison-Wesley, Reading, Mass. (1975).

[120] 0. Pironneau and E. Polak, "Rate of Convergence of a Class of Methods of
Feasible Directions," SIAM Journal of Numerical Analysis vol. 10, pp. 161-
274 (1968).

[121] E. Polak, Computational Methods in Optimization, Academic Press, New
York, N.Y. (1971).

[122] E. Polak, "Algorithms for a Class of Computer-Aided Design Problems: A
Review," Automatica, vol. 15, pp. 795-813 (September 1979).

[123] E. Polak, R. Trahan, and D. Q. Mayne, "Combined Phase I - Phase II
Methods of Feasible Directions," Mathematical Programming vol. 17, no. 1,

306

pp. 32-61 (1979).
[124] E. Polak, K. J. Astrom. and D. G. Mayne. "INTEROPTDYN-SISO: A Tutorial."

Memo No. UCB/ERL M81/99, Electronics Research Laboratory, University of
California, Berkeley, California (December 1981).

[125] E. Polak and Y. Wardi, "A Nondifferentiable Optimization Algorithm for
the Design of Control Systems Subject to Singular Value Inequalities Over a
Frequency Range," Automatica, voL 18. no. 3. pp. 267-283 (1982).

[126] E. Polak, "Semi-Infinite Optimization in Engineering Design," unpub
lished memo, Electronics Research Laboratory, University of California,
Berkeley, California (19B2).

[127] M. J. D. Powell, "A Method for Nonlinear Constraints in Minimization Prob
lems," in Optimisation, ed. R. Fletcher, Academic Press, New York (1969).

[128] M. J. D. Powell, "Problems Related to Unconstrained Optimization," pp.
29-55 in Numerical Methods for Unconstrained Optimization, ed. W. Murray,
Academic Press, NewYork, N.Y. (1972).

[129] T. Quarles, SPICE3 Preliminary Report, in progress at the Electronics
Research Laboratory, University of California, Berkeley, California (1982).

[130] J. Raskin, "A Plea for Experiments in Language Design," Communica
tions of the ACM vol. 24, no. 1, p. 41 (January 1981).

[131] D. M. Ritchie and K. Thompsoa "The UNDC Time-Sharing System," Bell
System Technical Journal voL 57. no. 6, pp. 1905-1929 (1978).

[132] R. A. Rohrer, "Fully Automated Network Design by Digital Computer:
Preliminary Considerations," Proc. IEEE, no. 55, pp. 1929-1939 (1967).

[133] L. A. Rowe and K. A. Shoens, "Programming Language Constructs for
Screen Definition," IEEE Transactions on Software Engineering vol. SE-9,
no. 1, pp. 31-39 (January 1983).

[134] W. Rudin, Principles of Mathematical Analysis, third edition, McGraw-Hill,
New York, N.Y. (1976).

[135] R. A. Saleh, A. R Newton, and J. E. Kleckner, SPLICE Version 1.4 User's
Guide, Department of Electrical Engineering and Computer Science, Univer
sity of California, Berkeley, California (1983).

[136] P. 0. Scheibe and E. A. Huber. "The Application of Carroll's Optimization
Technique to Network Synthesis," Proceedings of the Third Annual Atterton
Conference on Circuits and Systems, pp. 182-191 (1965).

[137] A. C. Shaw, The Logical Design of Operating Systems, Prentice-Hall,
Englewood Cliffs, New Jersey (1974).

[138] B. R. Shearer and A. D. Field, "Multivariable Design System (MDS): An
Interactive Package for the Design of Multivariable Control Systems," Publi
cation No. 75/29, Department of Computing and Control, Imperial College,
London SW7 2BT, U.K. (1975).

[139] P. Siegei, A Graphical Front End for DEUGHT-MIMO, Master's Report,
Department of Electrical Engineering and Computer Science, University of
California, Berkeley, California (August 1982).

[140] A. Singer, H. Ledgard, and Jon F. Hueras, "The Annotated Assistant: A
Step Towards Human Engineering," IEEE Transactions on Software
Engineering vol. SE-7, no. 4, pp. 353-374 (July 1981).

[141] N. Solntseff and A. A. Yezerski, "A Survey of Extensible Programming

307

Languages." Annual Review in Automatic Programming vol. 7, no. 5, pp.
267-307 (1974).

[142] J. P. Spoto, Cbmputer-Aided Evaluation of Operational Amplifier Perfor
mance, Master's Thesis, Department of Electrical Engineering, University of
Florida, Gainesville. Florida (October, 1974).

[143] J. M. Stewart, "Portable Software with Emphasis on Crystallography,"
Proceedings of the Conference on Software Standards in Chemistry, Univer
sity of Utah, (July 1979).

[144] J. Szczupak and S. K. Mitra, "Recursive Digital Filters with Low Roundoff
Noise," Circuit Theory and Applications vol. 5, pp. 275-286 (1977).

[145] G. Szentirmai, "FILSYN - A General Purpose Filter Synthesis Program,"
Proc. IEEEvol. 65. pp. 1443-1458 (October 1977).

[146] Y. Tang, Optimization of Wideband Amplifier Using Feasible Directions
Method, Master's Thesis, Department of Electrical Engineering and Computer
Science, University of California, Berkeley, California (June 1979).

[147] W. Teitelman and L. Masinter, "The Interlisp Programming Environ
ment," IEEE Computer vol. 14, no. 4, pp. 25-32 (April 1981).

[148] A. L. Tits, Lagrangian Based Superlinearly Convergent Algorithms for
Ordinary and Semi-Infinite Optimization Problems, Ph.D. Dissertation,
Department of Electrical Engineering and Computer Science, University of
California, Berkeley, California (December 1980).

[149] M. E. Van Valkenburg, Introduction to Modern Network Synthesis,
McGraw-Hill Book Company. NewYork. N.Y. (1962).

[150] A. Vladimirescu. A. R. Newton, and D. 0. Pederson. SPICE Version 2F. 0
User's Guide, Electronics Research Laboratory, University of California,
Berkeley, California (1980).

[151] W. J. Walsh, Computer Design of Temperature Desensitized Integrated
Selective Amplifiers, Ph.D. Dissertation, Department of Electrical Engineer
ing and Computer Science, University of California, Berkeley, California
(June 1968).

[152] P. B. Weil, "Mom Told Me To Be A Dentist—Laments of a CAD
Researcher," IEEE Circuits and Systems Magazine vol. 7, no. 7, pp. 3-5
(June 1975).

[153] L. Weinberg, Network Analysis and Synthesis, John Wiley & Sons, Inc.,
New York, N.Y. (1960).

[154] C. Weissman, LISP 1.5 Primer, Dickenson Publishing Company, Belmont,
California (1967).

[155] J. Wieslander and H. Elmquist, "INTRAC: A Communication Module for
Interactive Programs: Language Manual," C0DEN LUTFD2/(TFRT-3149)/1-.
060/(1978), Dept. of Automatic Control Lund Institute of Technology, Lund,
Sweden (August 1978).

[156] J. Wilander, "An Interactive Programming System for Pascal," BIT, no.
20:2, pp. 163-174 (1980).

[157] N. Wirth, "Program Development by Stepwise Refinement," Communica
tions of the ACM vol. 14. no. 4, pp. 221-227 (April 1971).

[158] N. Wirth, "Modula—A Language for Modular Multiprogramming,"
Software - Practice and Experience vol. 7, (1977).

308

[159] P. Wolfe, "On the Convergence of Gradient Methods Under Constraints,"
IBM Research Report RC 1752, IBM Yorktown Research Facility, Yorktown
Heights, N.Y. (1967).

[160] P. Woodward and S. G. Bond, Algol 6Q-R Users Handbook, HMSO, London
(1974).

[161] B. A. Wooley, "The Design Optimization of Integrated Broadband
Amplifiers," Memo No. ERL M284, Electronics Research Laboratory, Univer
sity of California, Berkeley, California (September 1970).

[162] G. Zoutendijk, Methods of Feasible Directions, Elsevier Scientific Publish
ing Company, Amsterdam, Netherlands (1960).

APPENDIX A

DELIGHT Implementation

In this appendix we consider the implementations of various aspects of the

DELIGHT system. In section A.1 we discuss the implementation of the RATTLE

language. This includes a discussion of the compiler-compiler approach used to

generate parse tables for the RATTLE parser and how we achieved arrays whose

dimensions may vary at run time. Section A.3 takes a look at the RATTLE parser

and how complete statements execute when typed. Finally, section A.4 discusses

how terminal-independent graphics is achieved.

A.1. RATTLE Language

A. 1.1. RACC Compiler-Compiler

RACC, for "RAtfor Compiler-Compiler", is a general tool for recognizing the

syntax structure of programming languages. It is called a compiler-compiler

since it compiles statements used to describe a language compiler. RACC was

written in late 1979 by this author, based on the discussion in Aho and Ullman

[15] of the implementation of the UNK compiler-compiler Yacc [70] and has pri

marily been used for the RATTLE language of DELIGHT1. The class of

specifications accepted is a very general one, called LALR(l) grammars. The

theory behind RACC is not covered here since it has been described elsewhere

[15.13.14].

1This discussion is adapted in part from [70].

309

«A.1.1 310

The RACC user prepares a specification of the input language. Tliis includes

rules which describe the syntax, Ratfor code to be executed when the syntax

structures are recognized, and a low-level routine to do the basic input. RACC

then produces a file containing tables that are used by a subroutine called a

parser driver routine. A driver routine together with its perse table is called a

parser and the driver is usually the same for all parsers. To parse (recognize)

the input language, the driverroutine calls the low-level input routine, calledthe

lexical analyzer, to pick up basic items called tokens from the input. These

tokens are organized by the parser according to the given syntax structure

rules, called grammar rules. When one of these rules has been recognized, the

Ratfor code supplied with this rule, called the semantic action, is executed.

Semantic actions have the ability to return values and make use of the values of

other actions.

Note that RACC simply reads a file containing the grammar rules and their

associated actions and outputs a file containing the parse table and a file with a

subroutine containing all the gathered up actions. This subroutine is then com

piled andload/linked with the driver routine, the lexical analyzer, and any other

routines to form the language recognizer or compiler. At that point, RACC no

longer plays any role. This process is shown in figure A.1.

A grammar rule describes an allowable syntax structure and gives it a name.

For example, the rule associated with a (simplied) RATTLE for statement might

be

<for-stmt> = for <name> = <mnker> to <mimber> <statement>

Here, <for-stmt> is the name of the rule. The first equal sign has no other

significance other than serving as punctuation. All of the items to the right of

fiA.1.1

Grammar Rules
and Actions

Input
(Symbols)

(a) Generating the Parser

Parse Tables

Semantic Action
Subroutine

Compiler

Parser

Parse Tables

Semantic Action
Subroutine

Lexical
Analyzer

Other
Routines

(b) Structure of the Compiler

Figure A.1. Generating a Language Compiler Using RACC.

311

§A.1.1 312

the first equal sign represent the structure of interest—in this case, the for

statement. Items that are NOT surrounded by the triangular brackets "<" and

">" are called terminal symbols [15] and must appear literally in the input to a

RACC parser. These are for, the equal sign, and to in the above example. Termi

nal symbols are usually items which are more conveniently or efficiently recog

nized directly by the lexical analyzer. For example, it is easy to write a program

that can recognize the next input word such as for and return it as one item to

the parser instead of returning the three letters/, o, and r separately.

The items surrounded by triangular brackets above, <name>, <number>,

and <statement>, are called nonterminal symbols. This name arises because

they do net "terminate" or act as leaves of a parse tree diagraming the struc

ture. Instead, they act as inner nodes of the tree which must have "son"

branches coming from them that ultimately end in terminal symbols, i.e., non

terminals must themselves be the names of other grammar rules. Before giving

these rules? for our example, we need to consider the following.

The standard lexical analyzer used with the parser associated with RACC has

built in several terminal symbols that it recognizes automatically. The built-in

symbols are shown in the following table:

§A.1.1

Symbol

xname

xrealnum

xinteger

xnewline

xexpr

xassmt

xstring

313

Built-in Lexical Analyzer Terminal Symbols

Description

Any sequence of letters, digits, or underscores, beginning
with a letter or underscore.

Any real floating-point number using the same rules for ex
ponents and scale factors presented in section 4.2.5 for RAT
TLE numbers.

Any integer. A number is an integer if it consists of a
sequence of digits and nothing else, Le., no decimal point,
scale factors, or exponent.

The (fictitious) NEWLINE character at the end of every input
line.

A complete RATTLE expression, using the balanced
parenthesis rule: an expression ends at the first blank or tab
following balanced parenthesis.

A complete RATTLE assignment statement.

Any quoted string, quoted by either single or double quotes.

Naturally these symbols can appear on the right-hand side of any grammar rule.

We can now give the complete grammar for the (simplified) for statement.

For simplicity, we allow the body of the for loop to only be a RATTLE assignment

statement:

<for-stni> =

<name> =

<mxriber> =

<xnsxiber> =

<statement> =

for <neme> = <niai3jer> to <n"uniber> <statement>

xname

zinteger

xrealnum.

xassmt

In the grammar rules input to RACC there are often rules with the same name

§A.1.1 314

(to the left of the equal sign) such as the third and fourth rules above. These

give alternate syntax structures to a nonterminal such as <number> above and

may be written more compactly using the vertical bar ("|") to mean "or":

<maai»er> = xinteger | xrealnum

In general, the grammar rules input to RACC can be in any order. How

ever, the name of the first grammar rule has special importance; it is taken to

be the controlling nonterminal symbol for the entire progrjimming language.

Using the definition in [15], it is called the start symbol. In effect, the parser is

designed to recognize the start symbol. Thus, this symbol generally represents

the largest, most general structure described by the grammar rules. In the

grammar for RATTLE, the start symbol is called <executable-stmts>, as shown in

the first two rules for this grammar:

<executable-stmts> - <statement-l ist>

<9tatement-liBt> = <statement> |
<statement-list> ; <statement>

The second grammar rule above says that a statement list is either a single

statement or a list of statements separated by semicolons. The rule is recursive

since the name of the rule, <statement-list>, also appears on the right-hand

side. This is perfectly legal since a single statement would be recognized first,

possibly followed by a semicolon and another statement.

The end of the input to the parser is signaled by a special token called the

end-of-input symbol. If all tokens read up to, but not including, the end-of-input

symbol form a structure which matches the start symbol (i.e., matches its

right-hand side), the parser subroutine returns to its caller if the end-of-input

symbol is seen next. We say that the parser accepts the input. Thus, the end-

8A.1.1 315

of-input symbol implicitly appears in the start symbol grammar rule to the far

right, as shown in the following rewrite of the first rule above:

<exeouta"ble-9tmts> = statement-list> end-of-input

It is the job of the lexical analyzer to return the end-of-input symbol when

appropriate. In the RATTLE lexical analyzer, it is returned directly after every

input line, i.e., directly after returning terminal xnewline. In this way if the

symbol is expected, the right-hand side of the above rule is recognized and the

parser returns, ready to execute what has just been typed. If the end-of-input

symbol is not expected, i.e., it is grammatically incorrect according to the

grammar rules, the parser detects an error, which in this particular case is

quietly ignored.

If all the parser did was to recognize correct language syntax, it would serve

little purpose. What it must do is create some intermediate list containing

instructions codes that can be used to rapidly execute the statement(s) just

typed. The lines of code that create this list and do other things are called

semantic actions. To each grammar rule a semantic action may be associated

that is performed each time the rule is used to recognize parser input. This is

called syntax-directed translation [15, chapter 7] and allows the parser designer

to express the generation of instruction codes directly in terms of the syntactic

structure of the source language. In RACC input, a semantic action is one or

more Ratfor statements enclosed in curly braces "(" and "J" directly following

the right-hand side of a grammar rule. For example, the two rules

<number> = xinteger { flag = INTEGER \
<miniber> = xrealnum | flag = REALNUHBER j

each have associated a semantic action consisting of a single Ratfor assignment

§A.1.1 316

to a flag variable that might be used by the for loop semantic action to deter

mine whether an integer or real was recognized for the <number> nonterminal.

Here, we assume that REALNUMBERand INTEGER are Ratfor defines.

But the for loop grammar rule

<for-stnit> = for <name> = <number> to <mmiber> <statement>

contains two occurrences of <number>. If one were integer and the other real,

the single variable flag would retain the value based on the second number. For

this reason, there is a dollar sign convention similar to the "$$" convention in

Yacc that allows a semantic action to return several values (that may be

accessed in other actions) by setting one of the pseudo-variables Si, $j, or Sk to

any integer value. For example, an action which does nothing but set Si to one

is

\ Si = 1 1

To obtain the values set by previous actions, a semantic action may use the

integer pseudo-variables Sil, $i£, Si3, S3I, Sj2, %}3, and Ski, Sk2. Sc3, ...

where the numbers refer to distinct items on the right-hand side of a rule, read

ing from left to right. For the for loop rule above the two <number> nontermi

nals are the 4'th and 6'th items on the right-hand side. Thus, M.4 has the value

Si was set to by the action for the first <number> while Si6 has the value Si was

set to by the action for the second <number>. The problem above with the sin

gle flag variable can now be handled with the following grammar rules:

§A.1.1 317

<for-stmt> = for <name> = <number> to <number> <3tatement>

i
nimflagl = Si4
mmflag2 = $i8

<mniber> = xinteger j Si = INTEGER J
<nucber> = xrealnim $i = REALNUMBER]

If the statement for k = 2 to 5.0 y - ... was parsed by this grammar, after

recognizing (and stacking) the for, k, and =, the 2 would next be recognized

causing execution of $l=INTEGER and then the 50 causing execution of

M= REALNUMBER. Thus, after the whole statement was parsed, numfiagl would

be INTEGER while numflagSyToula be REALNUMBER.

Two other dollar sign convention pseudo-variables are Sr and Ss. Sri, Sr2,

etc. always contain the real value of any number terminals read. Ssl, Ss2, etc.

always contain the character string (in the sense used in [79]) of the actual

token read for any type of terminal symbol. Thus, the semantic action for the

for loop grammar rule above could obtain the real values of both <number>

items by including the lines

value 1 = $r4
value2 = $r6

in the action

A special terminal symbol recognized by RACC is xempty which signifies

an empty input token. See [70] for more on the use of grammar rules whose

right-hand sides are empty.

Not unfrequently, the input statements being read do not conform to the syn

tax structure of the language due to errors. The parsers produced by RACC have

the very desirable property that they can detect these input errors at the earli

est place at which this can be done with a left-to-right scan [15]. Thus, input

§A.1.1 318

errors can be detected and reported quickly and efficiently.

All of the features discussed in this section (plus a few more) have been used

to create a set of grammar rules plus semantic actions for the RATTLE language.

Intermediate list instructions codes are generated for RATTLE statements using

the back-patching technique expUdned in [15]. In the DELIGHT source directory,

the grammar rules and actions reside in a file called grlang (for "GRammar for

LANGuage"). After running RACC on this file with the command race grlang, Rat

for file rruser.r contains all of the actions gathered from file grlang. It is com

piled and load/linked with the other DELIGHT routines. RACC also outputs the

parse tables in file rrdata. This file is automatically read by DELIGHT during a

-force option startup for creating generally usedmemfiles (see section B.2).

Incidentally, RACC has been successfully used to implement a grammar for

SPICE input that allows an arbitrary expression anywhere in the circuit descrip

tion file that a numeric value would normally be placed. This input parser gives

DEUGHT.SPICE the same expressions capabilities of SLICE [9] and will soon be

coupled to DELIGHT optimization in a way that will allow any SPICE input param

eter to be an optimization design parameter. Presently, only those circuit

parameters shownin the first table in section 5.1.3 may be design parameters.

A-1.2. Dynamic Arrays

This section presents a brief discussion of how the dimensions of RATTLE

arrays may be expressions that vary at run time. This is accomplished by allo

cating the storage space for RATTLE arrays in one large array, using a dynamic

memory manager that allows the allocated dynamic arrays to expand or shrink

at any time. The implementation of such a memory manager may be tackled in

many ways.

§A.1.2 319

One approach is to start with one large program array and then allocate new

dynamic arrays on the "top" of (at one end of) the large array—a stack alloca

tion technique. This permits only the array on the top to expand or shrink

dynamically. If expansion of the allocated array below the top is desired, then

the top array must first be eliminated; the arrays must be eliminated in the

reverse of the order in which they were allocated.

In order to handle the more general case of several dynamic arrays being

created or expanded at the same time and in an arbitrary order, a more sophis

ticated memory allocation strategy is needed. The Boundary Tag Method

[67,83] is a heap allocation technique which starts out with the one large array

being considered as one big free block. When a dynamic array is requested, it

becomes an allocated block in this large free block. When arrays are cleared,

free blocks are left behind. These free blocks are added to a doubly linked list

of such blocks, used to facilitate the location of a free block for subsequent

dynamic array allocations. Following [67], a first-fit strategy is used when

searching down the list of free blocks for one whose size is greater than or equal

to the requested size. In fact, the internal routines of the memory manager are

closely patterned after procedures allocate and free in [67]. When no free block

can be found large enough to meet the size of the requested dynamic array,

internal subroutine crunch is called to compress all the allocated blocks

together leaving one large free block. If this block is still not large enough, the

program using the memory manager has run out of memory.

To expand the size of existing dynamic arrays, the slightly more complicated

procedure used is as follows:

(l) Try to allocate a new dynamic array of size equal to the new total size, i.e.,

the old size plus the expansion size. If successful, copy the old array into

§A.1.2 320

the new, remove the old, and return.

(2) If the new array cannot be allocated, no existing free block is large enough.

Therefore, call subroutine crunch to compress all the allocated blocks

together leaving one large free block the size of remaining memory. Then,

try to allocate an array with the new total size again.

(3) If not successful, perform a "double-swap-flop" [71] to move the dynamic

array being expanded right below the one free block left after a crunch.

Then, it may be expanded into this free block even though there is not

enough room for the new total size. It this space is not enough, again the

program using the memory manager has run out of memory.

Under any conditions, the least amount of work to expand an array is to copy

the entire array one time. This implies that expanding a large array can be

costly and thus the number of expansions should be minimized. This can be

achieved by expanding by an amount greater than the new amount actually

needed. To give an example of this technique in RATTLE, suppose we are reading

into an array an unknown number of numbers. The inefficient approach uses

something like

k = 0
repeat {

k = k + 1
array data(k)
read data(k)
if (end-of-data)

break

1
forever

while the more efficient technique might use

§A.1.2 321

array data(O)
k = 0

repeat {
k = k + 1
if (k > arydim(data))

array data(k+50)
read data(k)
if (end_of_data)

break

I
forever

In the above, arydim is a DELIGHT built-in function that returns the array

dimension of its argument. Also note that although the second approach

requires array data to be expanded in chunks of 50, for a large number of data

points it requires 50 times fewer expansions of the array. The second approach

thus exhibits much greater run-time efficiency at the small cost of possibly 49

wasted (unused) array elements.

One final note is that dynamic arrays using this same memory manager are

also used throughout most of the actual DELIGHT Ratfor source routines. How

Ratfor (Fortran) is given such "unheard-of power is by using the modified Ratfor

preprocessor explained fully by this author in [108].

A.2. Parser and Parse/Execute Loop

The RATTLE language is compiled using an efficient bottom-up parser called

an LALR(l) parser [15], named because it scans the input using LookAhead from

Left to right and constructs a Rightmost derivation in reverse. The LALR method

will work on most programming-language grammars. Although possible, the

LALR parser is not used to parse RATTLE expressions or assignments but only for

"higher level" RATTLE syntax such as for loops, while statements, etc. This was

seen in the table of section A. 1.1 where terminal symbols xexpr for expressions

and xassmt for assignments were considered built-in by the standard lexical

analyzer. The lexical analyzer parses expressions and assignments using an

§A.2 322

operator precedence technique [15,56] in which the precedence table has been

compacted into two precedence functions [66] which represent the in-stack

versus the incoming precedences of the various arithmetic operators. For more

on implementing such an parser, see Gries [56]; the expression parser is dis

cussed here only in the context of how and when it is called by the LALR RATTLE

parser. For the following, we assume the reader has already read appendix sec

tion A. 1.

An LALR parser has an input, a stack, and a parsing table. The input terminal

symbols, ax a2, • • • .a* are read from left to right, one symbol at a time. For

example, for the RATTLE input

Tihile (k <= 5) {
y(k) = k»*2
k s k + 1

J

the peirserwould read c^ input symbols with the following correspondences:

°1 while

&a xexpr (expression)
oia f
a4 xnewline

a5 xassmt (y(k) assignment)
Ctg xnewline

a7 xassmt (k assignment)
ae xnewline

Ctg t
a10 xnewline

where xexpr, xassmt, and xnewline are built-in lexical analyzer terminal sym

bols defined in section A.1.1. The stack contains a string of the form

SoXiSiXjiSz • • • Xmsm, where sm is on top of the stack. Each Xi is a grammar

symbol, either terminal such as for or nonterminal such as <far-stmt>, and

each st is a symbol called a state. Each state symbol summarizes the informa-

§A.2 323

tion contained in the stack below it and plays a central role in the action of the

parser. The parsing table consists of two parts, a parsing action function ACTION

and a goto function GOTO.

The action of the parser driver routine is as follows. It first determines sm,

the state currently on top of the stack, and picks up a^, the current input sym

bol. It then consults ACTION^,^), the parsing action table entry for state sm

and input a*, to determine the next move of the parser. The entry ACTrON(sm,cti)

can have one of four values given below. Also needed is the function GOTO, which

takes a state and a grammar symbol as arguments and returns a state. It is

essentially the transition table of the finite-state machine implemented by the

driver routine. The four possible values of entry ACTION^,^^) then are:

1. shift s, indicating that the parser is to execute a shift move, pushing

current input symbol a* and next state s onto the stack, where

ssGOTOfan.Oi).

2. reduce on grammar rule C4> = right-hand-side, indicating that the parser

is to execute a reduce move by popping the top grammar symbols (and

their accompanying state symbols) off of the stack that match the right-

hand-side symbols of the grammar rule. The parser then pushes <A>, the

name of the grammar rule, and s onto the stack, where

s~(j010{s1WU)top,<A>). The current input symbol is not changed in a reduce

move. Below we see that this requires a repeat loop to reuse the same input

symbol.

3. accept, meaning that parsing is completed and the parser driver routine

returns.

4. error, indicating that the parser has discovered a syntax error in the input

and either calls an error recovery routine or prints an error message.

§A.2 324

The LALR parsing algorithm is very simple. Initially the parser has just the

initial state s0 on the stack and input alta2t • • • .a* waiting to be parsed. Then,

in the major parse loop (see below), the parser executes shift or reduce moves

according to the ACTION and GOTO tables until an accept or error action is encoun

tered. In DELIGHT, the parser driver routine is subroutine RattleParser2.

Before presenting it we discuss how this parser is used to execute RATTLE state

ments as they are typed.

In the discussion of incremental program development in 4.2.7 we saw that in
0

DELIGHT complete RATTLE statements execute when typed. This is accom

plished by setting up the RATTLE grammar rules input to RACC so that the

parser encounters an accept action and returns when a complete RATTLE state

ment is typed. (For this purpose, all of the statements of a procedure and its

body are considered as one complete statement; however, procedures are han

dled in a special way as shown below.) A conceptual version of the DELIGHT main

program thus appears:

call Delightlnitialization

repeat { # PARSE/EXECUTE LOOP.

call RattleParser to parse one ccrqplete statement.

if (no ERROR and statement is not a procedure)
call RattleExecute

1
forever

Subroutine RattleParser, by executing the semantic actions associated with the

RATTLE language grammar rules (from file grlang—see section A.1.1), creates

an intermediate list of codes that are used by subroutine RattleExecute to exe

cute the RATTLE statements parsed.

8Throughout this section, long, self-explanatory subroutine names are used. Atable at the end
of the section gives the corresponding actual Ratfor subroutine names.

§A.2 325

We now show conceptually what subroutine DelightInitialization, called first

inthemain program above, contains:

subroutine Delightlnitialization

call SetupHemory to set up dynamic memory manager
call SetupInterrupts to set up to catch hard interrupts
call SetupOverflows to catch overflows and other floating

point exceptions

if (a memfile name is given in the "DELIGHT" command arguments) j
call RestoreStore to restore fran the memf i1e
return

\

if ("-force" option is given in the ccnmand arguments) {

Begin forced startup:

call ExpressionParserInit to read expression operators and
precedences from file <exops> and
to read built-in sin, cos, etc.
functions from file <exfuns>.

call ParserInit to allocate dynamic array for the parse stack
and to read the parse tables from file <rrdata>.

call ReadFunctions to read built-in routine names and nisiber
of arguments from file <rrfuns>. Also, if
file tutll-nan exists, read name/arg-count
pairs for built-in routines in subroutine abuilt.

Declare many Fortran (Ratfor) variables for RATTLE access using the
deci, decial, deer, etc. routines from appendix section B.2.

Push back "include <standefs>" to include all the standard defines
and macros.

!

return to the main program to the parse/execute loop,
end

Before presenting the LALR parser subroutine, there is a consideration of

how it interfaces to the expression parser. At the top of the major parse loop

the parser driver subroutine calls lexical analyzer subroutine LexicalToken to

get the next input symbol and it is this subroutine which directly calls expres

sion parser subroutine ExpressionParser. The latter call is made when three

conditions are met:

§A.2 326

(1) the mcoming input symbol can possibly start a RATTLE expression. This

excludes NEWLINE. quoted strings, and RATTLE keyword terminal symbols

such as while, array, etc. and is determined in LexicalToken.

(2) the expression symbol xexpr is a valid input symbol in the present parse

state (the state on top of the stack). This is tested by insuring that, of the

four possible values of an ACTION table entry, the entry ACTlOS(st1)p,xexpr) is

not an error entry. (See section A. 1.1 concerning symbol xexpr.) This test

is performed in RattleParser at the top of the major parse loop, where flag

gexpr is set to indicate that an expression is expected, gexpr is communi

cated to LexicalToken through a Fortran common block.

(3) an expression is expected as a shift entry, Le., kcn.0$(stop,xexpr) is a shift

entry. This is required so that the intermediate list from the expression

parser is generated at the right place in the overall list. The test is in

RattleParser right under the one above and sets flag getnow to tell lexical-

Token to "get it now", Le., parse the expression immediately. If getnow is

not set, LexicalToken will still return the xexpr symbol but will not call

ExpressionParser to actually parse the expression. This goes on until

RattleParser performs enough reduce moves to get into a state in which an

expression is expected as a shift entry.

Another incidental function performed by subroutine LexicalToken is to make

historysubstitutions oninputlines that begin with "!" (see section 4.8)

We are now ready to show conceptually what subroutine RattleParser con

tains:

§A.2

subroutine RattleParser

repeat { # MAJOR PARSE LOOP.

if (hard interrupt generated) {
Set flag that what was just parsed contains an error so this

code will not be executed by RattleExecute.
call AllFlush to close all input files being included and flush

all input buffers and pushed back characters,
return

I

if (expression is a valid input symbol) { # Condition' (2)
gexpr = YES
if (expression is expected as a shift entry) # Condition (3)

getnow = YES

3 ,
call LexicalToken to get the next input granmar symool into

variable InputSymbol.
repeat { # Loop for reusing the same input symbol.

Get TopState from top of parse stack

action = ACTION(TopState. InputSymbol)

if (action is accept)
return

if (action is shift) [
Push InputSymbol onto parse stack.
TopState = action # action positive indicates a shift and

action is coded with the value of
Goro(TopState, InputSymbol))

next 2 # Go to top of MAJOR PARSE LOOP.

327

3 LexicalToken converts "raw" input tokens such as names, newlines, or special characters into
grammar symbols by looking up allnames in the DELIGHT symbol table to see if they are a RATTLE
keyword or keysymbol such as if, whale, {, =, etc. LexicalToken may return any of the following
grammar symbols:

xinteger
xrealnum
xname

xnewline
end-of-input
a grammar terminal symbol that is a
RATTLE keyword or keysymbol
xstring
xexpr
xassmt

§A.2 328

if (action is reduce) [
Reduce via grammar rule number -action # action negative indicates a

reduce and -action is coded
with the number of the
grsxxmar rule to reduce by.

call ExecuteAction to execute the semantic action code
associated with granmar rule number -action,

next | Repeat loop with the same input symbol.
I

if (action is error)
Perform error recovery.

forever

forever # End of MAJOR PARSE LOOP.

return

end

The above subroutine RattleParser implements the LALR parsing algorithm;

after called it executes until an ace ept or error action is encountered, as shown

above.

One final subroutine to consider is RattleExecute. It is called in the DELIGHT

main program parse/execute loop. A very brief conceptual view of this routine

follows:

subroutine RattleExecute

repeat j

Get next instruction opcode from intermediate list.

Branch on the opcode with a large Fortran computed goto:

go to (if, print, assigrumnt, etc., end-of-list) , opcode

i/:

uhile:

print:

Go to ExpressionEvaluation

Go to ExpressionEvaluation

Go to ExpressionEvaluation

Other statement types.

§A.2

end-of-list: if (stack not empty) f
Pop execution state from stack.
next # Execute next statement.

I
else

return # Finished with execution.

ExpressionEvaluation:

call ExpressionEvaluate

if (return code is end-of-expression)
next # Execute next statement.

if (return code is function-call) \

if (function is ordinary built-in)
call builtn

if (function is application built-in)
call abuilt # (See section B.l)

if (function is RATTLE) {
Stack execution state.
Set intermediate list pointer to

point to function's list.
next

329

forever

Subroutine abuilt, called above, contains application-specific built-in routines

that were added to DELIGHT using the procedures explained in section B.l.

The following list gives the Ratfor subroutine names in the right column for

the various routines of this section.

Name Used in This Section Ratfor Name

Parserlnit - rrinit
RattleParser - rrpars
ExecuteAction - rruser

LexicalToken - rrtok

ExpressionParserlnit - exinit
ExpressionParser - expars

RattleExecute - excute
ExpressionEvaluate - exevas

§A.2

Delightlnitialization dlinit

SetupMemory setmem

Setuplnterrupts setint

SetupOverflows setovf

RestoreStore rrstor

ReadFunctions rrrfun

330

AllFlush - aflush

A.3. Device-Independent Graphics

This section first gives an overview of why the graphics features in DELIGHT

should be independent of the particular graphics display device4 used- It then

explains just what happens when the graphics terminal type is set using the ter

minal command. In doing so, it explains exactly how the graphics features are

independent of the particular device used.

There is a strong case for writing application programs that output graphics

by using a set of low-level graphics primitives that are independent of the partic

ular graphics display device used. Aspointedout by Oliver in [118], such a set of

routines would be useful for a number of reasons:

(1) To have a standard (known) set of graphics routines which any application

can use.

(2) To separate the graphics generation and control in an application program

from the rest of the code.

-(3) To allow the graphical displays produced by a program to be output on a

number of different display devices, i.e., to achieve a high degree of device-

independence both for existing terminals and future additions.

4 Throughout this section, display device and terminal areused interchangeably and have the
same meaning.

§A.3 331

(4) To have the ability to produce hardcopy (printed graphical output) without

any additional programming.

Such a library of low-level, device-independent graphics primitives has been

written and included as built-in routines in DELIGHT. A list of these routines will

not be given here; such a list can be found in [110]. Instead, we give a general

description of the library and then concentrate on subroutine grterm, called by

the DELIGHT terminal command to set the graphics terminal type.

The graphics library allows graphical displays to be output on an ever

expanding number of graphics terminals and devices, library routines perform

the task of sending the different terminal-dependent, "funny" character strings

required to control the various modes of each graphics device. Thus, such char

acter strings need never appear in any graphics application code. This is a radi

cal departure from the past when many graphics programs explicitly contained

the control strings for such popular terminals as the Tektronix 4010 directly in

their output statements. Thus, these programs were intimately tied to one par

ticular graphics terminal.

The terminal-dependent control strings for the various display devices han

dled by the graphics library are all contained in a file called <grtdefs>, for

"GRaphics Terminal DEFlnitionS"5. This file also contains descriptions of the

capabilities and special features of each individual device. If a new display dev

ice is acquired, it can be used with the library routines (and hence with all

graphics applications based on them) after the appropriate device descriptions

have been added to file <grtdefs>. This means that no new routines have to be

written to deal with a particular display device—unless of course an operation

5 Prom inside DELIGHT, this file can be printed on the screen "by typing list <grtdefs>. (The tri
angular brackets surrounding the filename mean the file resides in a standard place (directory) in
stead of "withthe current user's files.)

§A.3 332

must be performed which is not supported by the library routines.

The idea for such a file came from the TERMCAP feature of the UMX vi screen

editor [73]. Also, another device-independent graphics package that appeared

after our library and that uses a teniiinal capabilities file is the MFB (Model

Frame Buffer) package of Keller et al. [22].

When the terminal command is given in DELIGHT, built-in subroutine grterm

is passe d the specified terminal name argument, grterm opens file <grtdefs>,

locates the part containing the description for the specified terminal, and reads

the control strings and capabilities for that terminal. To locate the desired

description, grterm looks for a match on lines that contain terminal names;

these lties DO NOT begin with a blank. All lines that DO begin with a blank con

tain the actual terminal descriptions. Terminal capabilities are recognized by

the occurrence of certain keywords in this description while terminal control

strings follow certain other keywords- A portion of file <grtdefs> might appear:

hp
h?2646
hp264Ba

binary vechead '\e#pa' vectail 'Z' abshead 'i' relhead 'j*
hidev 32 mask 31 hiyor 32 loyor 32 hixor 32 loxor 32 relmax 15 relmin -16
delator 32 delyor 32 reladd 32 texthead '\e»l' texttail '\n' chardelx 7
chardely 10 syntax 359 sxmax 719 sysqr 359 sxsqr 359 colorhead '\e*m2a'
colortail 'B' erase '\e*dA* colors 10 white 1 black 'lal* red 9 orange 5
yellow 6 green 4 blue 8 sky 7 light 7 bright 1 werasehead 'Xe^mlalb'
werasetail 'EVetESaE* werasediagc poscurhead '\e*dk\e*d' poscurtail '0'
tsizehead Ae^m' tdirtail N textsizes 1234587886 tsizetail M
tdirhead '\e*m' tdircalc 90 1 init ,\e^nlm\e«mlN' werasedelays 1.0 1.7 1.7

4027
tek4027

ascii coorsep ' ' abshead '!vec' relhead *!rve0 0 ' nbeforerel 2
textsub 1 chardelx 8 chardely 10 erase '!era g* werasehead *!pol' end *\n'
8ymax 349 sxmax 639 sysqr 349 sxsqr 349 colorhead 'Icol C colors 10 white 0
black 7 red 1 orange 6 yellow 4 green 2 blue 3 sky 5 light 4 bright 0
init ' !wor30!gral,29!mix c6 100,60,0!mix c5 0,100,100\nV
'Ilea fl 31/wor0/13NnPRESS fl FOR TOP OF SCREEN.\n' werasedelays 1 4 4
textsizes 1 23456789 10 texthead Mstr/* tsizehead " texttail '/'

The above portion describes the HP2648a and Tektronix 4027 terminals. Termi-

§A.3 333

nal names such as hp, hp2648, and hp2648a above that are on adjacent lines are

synonyms for the same terminal. Capability keywords such as binary and ascii

stand alone whereas most other keywords above are followed by control strings.

There is a simple rule which tells how many of the characters following such a

keyword are considered the associated control string. After a keyword is read

by grterm, a special routine is called which returns exactly one token—an

integer, real number, name, quoted string, or a single non-letter, non-digit char

acter. Thus, the rule is that the characters following a keyword that make up

exactly one token are considered the control string or value of that keyword.

The backslash character ("\") in a token is an escape character that changes

the meaning of the succeeding character according to the following correspon

dences:

Meaning ASCII Value (decimal)

\e ASCII escape 27
\n NEWUNE 10
\r carriage return 13
\\ the character \ itself 92
\nnn character whose ASCII value is nnn nnn
\C C itself for any other character

For example, to erase the screen on an HP2648a, the control string following the

erase keyword is sent to the terminal. From the above this is "\e*dA", which

indicates the ASCII escape character followed by the three characters "*dA".

One additional feature of the backslash character is to continue a quoted string

onto the next line. Thus, if

init *!wor 0 V
' Imix c6 100,50,30'

§A.3 334

appeared in file <grtdefs>, it would be the same as if

init 'Iwor 0 !mix c8 100,50,30'

had appeared there. This feature of the backslash character is used above in

the control string following the init keyword for terminal tek-4027.

A list of all keywords recognized by the graphics library along with a descrip

tion and default value for each is given in file <keywords>.

APPENDIX B

DELIGHT Application Package Development Features

This appendix shows the details of several DELIGHT features for applications

package development and also useful for other purposes. Recall that to be able

to easily develop such packages, it must be easy to interface to existing simula

tion programs. This requires at the least the following two features. Section B.l

shows how to easily add existing routines to a set of DELIGHT built-in routines

which are callable from RATTLE. Section B.2 shows how Fortran variables are

accessed from built-in routines so that they can be manipulated in the same

manner as ordinary RATTLE variables and arrays.

B.l. Adding Built-in Routines

This section describes how to add existing Fortran routines to DELIGHT so

that they are callable from RATTLE procedures with exactly the same syntax as

the RATTLE procedures themselves. These routines might be simulation inter

face routines for a particular simulation program, utility routines, library rou

tines, or routines containing any computation which needs the greater run-time

efficiency of Fortran (equivalently Ratfor) over RATTLE. Note that another

option is to translate the Fortran routines into RATTLE. This translation could

be computationally more costly since programs written in RATTLE usually run

slower than their Fortran equivalents. In addition, translating a subroutine into

RATTLE could be costly in terms of programmer time since Fortran routines are

often structureless and may be next to impossible to translate into the struc-

335

§B.l 338

tured, "goto-less" RATTLE language. Thus, such translation should be avoided.

The addition of a new built-in routine to DELIGHTrequires three operations:

1. make DELIGHT aware of the routine,

2. allow DELIGHT to call the routine, and

3. load/link the routine with DELIGHT.

To make DELIGHT aware of a new routine, a one line entry is added to file built

nam, which should reside in the directory where the general user memfile (see

section 4.8) is to be created. (See [110] for more details on making memfiles

and the -force option for starting DELIGHT.) This entry associates a RATTLE

name with the routine and consists of the name by which the new routine is

going to be known to RATTLE and the number of arguments to the routine. The

RATTLE name need not be the same as the actual Fortran name. However in

general, a good idea is to use either the Fortran name (perhaps ending in an

underscore, to make it a "system entity" to avoid name clashes with user

names —see section 4.8) or a more explanatory name. To allow DELIGHT to call

a new routine, a call to it is added to Ratfor subroutine abuilt ("Application

BUILT-in's"). All the calls in abuilt must be in one-to-one correspondence with

the entries in file builtnam. Finally, the procedure for load/linking a new rou

tine with DELIGHT is highly system-dependent and will not be covered here. For

the UNK system, however, see [139].

As an example of the first two operations, suppose we wish to build in to

DELIGHT the two Fortran subroutines clrnum and clrden, each having no argu

ments. The names by which these are known to RATTLE can be arbitrary but in

our case, we let them be known by the self-explanatory names dearNumerator

and ClearDenominator. Thus, in file builtnam we would have:

§B.l 337

ClearNumerator 0
ClearDencminator 0

while Ratfor subroutine abuilt simply requires a computed goto entry (based on

argument funcno, the entry number) and a call statement for each. A concep

tual version of this subroutine would appear:

subroutine abuilt (funcno)
go to (1,2), funcno

1 call clrnum.

return

2 call clrden

return

end

After this subroutine had been load/linked with DELIGHT, a memflle created,

and DELIGHT started from this memfile, a user could type ClearNumerator() to

have subroutine clrnum execute and ClearDenominatorO to have clrden exe

cute.

In reality, subroutine abuilt would be a bit more complex than this. Other

considerations it must handle include passing arguments to the built-in rou

tines, returning a function value from a built-in routine that is to act like a func

tion in RATTLE expressions, and special considerations for passing and receiving

back integer arguments. Integer arguments are a consideration because all

variables in RATTLE are presently double-precision floating-point numbers (see

section 4.2.4). Thus to pass integer arguments, the RATTLE double-precisions

arguments must either be copied into temporary integers, copied back to dou

ble from temporary integers, or both. For these purposes, there is a large work

array called iwork (see below) that can be used for this temporary copying.

Subroutine rcopyi (D, I, N) can be used to copy N items from double-precision

array D to integer array /. Similarly, subroutine icopyr (I, D, N) can be used to

copy integers back into double-precision arrays. When assigning to scalar

§B.l 338

integer temporaries from double-precision arguments, DELIGHT function iround

should be used to round the doubles and avoid roundoff errors. These tech

niques are shown in the example below.

Inside subroutine abuilt, RATTLE arguments are received via the Fortran

double-precision array rarray, ^th the first argument in rarray(el), the second

in rarray(e2), etc. For double-precision arguments of a built-in routine, rarray

can be used to simply "pass the RATTLE arguments through", as shown in the

example below. For integer arguments, as mentioned in the previous paragraph,

rarray entries must be copied into or out of integer temporaries. To have a

built-in routine return a function value, rarray(retp) is assigned the value to be

returned.

To give a brief example of the other features of subroutine abuilt and the

above argument techniques, we now consider an example with again two built-in

routines. The first is to be known as FuncExamp to RATTLE, have Fortran name

funcex, and return a double-precision function value with one double-precision

argument. The second is to be known as ProcExamp to RATTLE, have Fortran

name procex, and have the twelve arguments shown below. These arguments

consider all the various combinations of argument types: input only (read from

but never written onto), output only (only written onto), andinput/output (both

read from and written onto), as well as scalars and arrays, both integer and

double-pre cision:

§B.l 339

1 - double-precision scalar input
2 - double-precision scalar input/output
3 - double-precision scalar output
4 - double-precision array input (size N4)
5 - double-precision array input/output (size Ns)
6 - double-precision array output (size Ng)
7 - integer scalar input
8 - integer scalar input/output
9 - integer scalar output
10 - integer array input (size N10)

(si11 - integer array input/output (size
12 - integer array output (size N12)

For this example, file builtnam would contain

FuncExamp 1
ProcEzanp 12

while, with " • • • " indicating other Ratfor code not shown here for clarity, sub

routine abuilt would contain

subroutine abuilt (funcno, ..., retp, iwork, ...)

go to (1,2), funcno

1 rarre.y(retp) = funcex (rarray (el))
return

2 i7 = iround (rarray(e7)) # Copy inputs.
i8 = iround (rarray(eB); # (i7, i8, i9, and iwork are tenporaries.)
call rcopyi (rarray(elO), iwork(l), N10)
call rcopyi (rarray(ell), iwork(l+N10). Nu)

call procex (rarray(el), rarray(e2), rarray(e3), #12 3
rarray(e4), rarray(e5), rarray(e6), #456
17, 18, 19, #789
iwork(l). iwork(l+N10), iwork(1+N10+NU)) # 10 11 12

rarray(e8) = i8 # Copy outputs,
rarray(e9) = i9
call icopyr (iwork(l+N10), rarray(ell), Nu)
call icopyr (iwork(l+Ni0+Nn). rarray(el2), N12)
return

end

Because arguments to built-in subroutines and functions can only be double-

precision or integer, modifications to the built-in routines themselves may have

§B.l 340

to be made. Any Fortran arguments that are real must be converted to double-

precision, to conform to the double-precision arguments which are passed from

abuilt. This is easily done in some cases by putting an implicit double precision

(a-h,o-z) statement at the beginning of each built-in Fortran routine, which will

change the implicit typing for all real variables to double-precision. Any explicit

real declarations such as real v(l0) (as opposed to dimension v(10)) must be

changed to double-precision as doubleprecision v(10).

For additional and more complete details about ail matters in this section

and the next, see appendix B of Polly SiegeTs Master's Report [139].

B.2. Accessing Fortran Variables

When using existing subroutines which have been incorporated into DELIGHT,

it may be necessary to access some of the variables of the routines. For exam

ple, many Fortran programs use common blocks as a means of passing or

receiving information. To avoid having to make extensive modifications to these

routines when they are made built-in in DELIGHT (in order to set or get the value

of these common block variables), one needs to be able to directly access the

variables in RATTLE statements. This can be done by creating a special built-in

Fortran subroutine which contains calls to DELIGHT variable-declaration rou

tines which associate each Fortran variable with a RATTLE variable name. For

example, variables FREQand TIME from DELIGHT.SPICE are declared in this way

(see section 5.1.3). The RATTLE and Fortran names need not be the same. How

ever, as for built-in routine names in the previous section, it is a good idea to

use either the Fortran name (perhaps ending in an underscore, to make it a sys

tem entity) or a more explanatory name. Also, the RATTLE names could end in

'IF', for example, to act as a reminder that they are Fortran declared variables.

§B.2 341

The declaration subroutines are described in the following table. For each

case, the name in quotes, which must end in a dollar sign ("$") string termina

tor, is the RATTLE variable name. Scalar variables and arrays declared with

these routines become members of the pool of nonlocal RATTLE variables (see

section 4.2.4).

DELIGHT Subroutines for Fortran Variable Declaration

Subroutine Call Action

call deci ('NAME$\ivar) Declares Fortran integer variable war.

call decial ('NAME$\iary,Nl) Declares Fortran integer array iary,
having the one dimension Nl.

call decia2 (,NAME$,,iary.Nl,N2) Declares Fortran integer array inry,
having the two dimensions Nl and N2.

call deer ('NAMES*.rvar) Declares Fortran real (double-precision)
variable rvar.

call decral ('NAMES',rary.Nl) Declares Fortran real (double-precision)
array rary, having the one dimension
Nl.

call decra2 (,NAME$,,rary,Nl,N2) Declares Fortran real (double-precision)
array rary, having the two dimensions
Nl and N2.

In the array declarations above, the dimensions should be identical to those of

the actual Fortran array. Not shown above are subroutines decia3 and decra3

for declaring three-dimensional Fortran arrays.

§B.2 342

The following example of the special built-in Fortran subroutine needed to

make calls to the above declaration routines contains examples of those rou

tines:

subroutine Vinit
cannon /cname/ ivar, iarray(200), xvar, xarray(l0,20)
double precision xvar, xarray
call deci ('ivar-F-S', ivar)
call decial (' iarray_F-JS', iarray, 200)
call deer (*xvar_F_S', xvar)
call decia2 (*xarray_F_S', xarray, 10, 20)
return

end

Since declared Fortran variables exist in the pool, they are accessed in

RATTLE procedures by importing them (see section 4.2.5). For example, the fol

lowing RATTLE procedure uses the variables declared above:

procedure SetFortranVars {
inport ivar_F_ iarray_F_ xvar_F_, xarray_F_
i var_F— = ...
for k = 1 to 200

iarray-F-j(k) = . ..

If it is desired to make a declared variable global (see section 4.2.5) so that it

does not need to be imported, the Fortran subroutine such as Vinit above can

have a call decglo (NAMES') statement after the normal declaration call. In the

above example, to make RATTLE variable iuarj^lobal, we would have:

call deci ('ivar_F_S', ivar)
call decglo ('ivar_F_$')

See [110] for an important restriction on how declared Fortranvariables can be

used in RATTLE.

APPENDIX C

DELIGHT Machine-Dependent Primitives

In this appendix section we simply list the Ratfor names and descriptions of

the various machine-dependent primitives used to achieve portability of the

DELIGHT system. By implementing each of these primitives on a particular com

puter, DELIGHT should operate correctly without having to modify any other of

its source routines; at the time of this writing, DELIGHT has already been ported

successfully using this strategy to the following computer systems:

VAX 11/780 running Berkeley UNIX

VAX 11/780 running DEC VMS

Harris H800 running Vulcan

The primitives are broken up into the following categories:

1. Machine-dependent defines
2. Character input and output
3. Character conversions
4. Moving character bytes
5. Bit operations on integers
6. Assigning and reading variables by address
7. File opening, closing, and manipulation
8. Random access file input and output
9. Standard system calls

10. Catching hardware traps
11. Numerical analysis related
12. Miscellaneous primitives

The Ratfor routines listed have been carefully named to avoid certain machine-

dependent name "conflicts". For example we would never be so foolish as to

343

§c 344

name a routine any of the common names close, open, read, rewind, date, time,

and, delay, etc. In the following descriptions, the meaning of each acronym rou

tine name is given in square brackets.

File chrdefs

File iodefs

File machdep

Machine-Dependent Demies

[CHaRacter DEFineS] Ratfor character defines for the
computer character set (e.g., iVSCII) and other sym
bols. For example for ASCII, it contains
define (BLANK, 32), define (COLON, 53), define(DIG0.48),
define(DIGl,49), define(LETA if7), define(LETS, 98),
define (NEWLINE, 10), etc.

[I/O DEFineS] Ratfor defines related to input/output
such as ones for the standard Fortran logical unit
numbers, an efficient record siz'3 for direct access I/O,
and the maximum number of characters in a filename.

[MACHine DEPendencies] Ratfor defines for hardware
related machine-dependencies. This file includes, in
particular, the following (sho^m here for the VAX
11/780 computer):

define (NUMBYTPERI.4)

define (NUMBITPERI.32)

define (NUMBITPERR.32)

define (NUMBITPERD.64)

define (NUMBITPERC.32)

define (NUMIPERI.l)

define (NUMIPERR.1)

define (NUMIPERD.2)

define (NUMIPERC.2)

define (MAXREAL.1.7e38)

define (MINREAL.l.Oe-37)

Number of character bytes per
Fortran integer variable.
Number of bits per Fortran in
teger variable.
Number of bits per Fortran real
variable.
Number of bits per Fortran
double-precision variable.
Number of bits per Fortran com
plex variable.
Number of integers per Fortran
integer variable.
Number of integers per Fortran
real variable.

Number of integers per Fortran
double-precision variable.
Number of integers per Fortran
complex variable.
Maximum representable real
number (approximate).
Minimum representable real
number (approximate).

§c 345

define (MAXINTEGER.2147483647)

define (MachinePrecision,6.002e-8)

Maximum representable
integer.
Smallest single-
precision number than
when added to 1.0

creates a different
number (approximate).

Function getchr

Subroutine grflus

Function gtilin

Subroutine ofiush

Subroutine outchr

Subroutine outraw

Function altoc

Character Input and Output

[GET CHaRacter] Get character from present input, re
turning it simultaneously in the argument and as the
function value. This function calls primitive routine
gtilin to place the next input line into a character ar
ray.

[GRaphics FLUSh] Flush any characters in the graphics
library buffer out in raw mode, i.e„ without any NEW-
LINES.

[GeT Input LINe] Return in the given character string
array the next input line from the present logical unit
number, ending it with a NEWLINE character. Return
as function value the position of the NEWLINE or else
one of the following "irregular" codes: EOF (end-of-file);
INTERRUPT (user interrupt during read-in); READER-
ROR (error during read-in). This function may make a
machine-dependent system call to avoid (time-
consuming) Fortran I/O.

[Output FLUSH] Flush any characters in the output
buffer by writing them out in raw mode without a ter
minating NEWLINE. This is used for example, to output
the DELIGHT terminal prompt "1> ".

[OUTput a CHaRacter] Output a character to the
present output logical unit number (set and reset with
Ratfor routines sochan and rochan).

[OUTput RAW] Output characters from a given charac
ter array to the terminal in raw mode, Le., right away
without there being a NEWLINE sent later to flush any
output buffers which may exist.

Character Conversions

[Al TO Character] Convert a character in Fortran "Al"
format to a character value in the Software Tools [79]
sense (usually between 1 and 128).

§c

Function chrtyp

Function ctoal

Function dtoi

Function Hod

Function lotoup

Function uptolo

Function byttoc

Function ctobyt

Function bwand

Function bwnot

Function bwor

346

[CHaRacter TYPe] Determine the type of the character
argument, returning either LETTER, DIGIT, SPECCHAR,
or ILLEGAL.

[Character TO Al
Software Tools [79

[Digit TO Integer] Return the integer value of the given
digit character.

[Integer TO Digit] Return the character digit of the
given (single digit) integer.

[LOwer TO UPper] Perform lower case to upper case
conversion.

[UPper TO LOwer] Perform upper case to lower case
conversion.

Convert a character value in the
sense to Fortran "Al" format.

Having Character Bytes

[BYTe TO Character] Return as a character variable
the specified byte of the argument array. This routine
is used to convert in-coming quoted character string
arguments in subroutines to character variables. The
number of bytes per integer word does not affect this
routine in any way! In the Ratfor program:

call ss ('abc$')
end
subroutine ss (str)
integer byttoc
integer c
c = byttoc(str, 1)
return
end

c should have the integer value for the character a,
i.e., 97 for ASCII.

[Character TO BYTe] Store the given character into the
specified byte position of an array. This is the inverse
of subroutine byttoc.

Bit Operations on Integers

[Bit-Wise AND] Return the bit-wise and of two integers.

[Bit-Wise NOT] Return the bit-wise not (complement) of
an integer.

[Bit-Wise OR] Return the bit-wise or of two integers.

§c 347

Function gtbita

Subroutine stbita

[GeT BIT from Array] Get value of specified bit of a
given bit-array, returning 1 if bit is set, 0 if bit is not
set

[SeT BIT in Array] Set value of specified bit in a given
bit-array to zero if argument is 0, one if argument is
notO.

Assigning and Reading Variables by Address

[ADd ADdRess Integer] Add an integer to a machine
address and return the new address. This primitive is
required on certain computers where addresses are
not "purely" increasing integers, i.e., they may have
certain high order bits turned on which might even
make the address a negative integer and incapable of
being dealt with using Fortran integer arithmetic.

[GET ADdRess] Return the machine address of the
given argument with the stipulation that adjacent in
tegers, i.e., in an array, must be one apart in address
value. Thus on the VAX 11/780, for example, which has
byte addressing, the byte address is divided by 4 to
make it an integer boundary address that meets this
stipulation.

Function adadri

Function getadr

Subroutine setadr

Function getvad

Function subadr

[SET ADdRess] Set the integer at the given address to
the value given.

[GET Value at ADdress] Return the value of the integer
at the given address.

[SUBtract ADdResses] Subtract two given addresses
returning the integer difference. See the discussion of
adadri above for why this is needed.

Subroutine cloze

Functionfilprm

Rle Opening, Closing, and Manipulation

Close the given logical unit number and return it to the
stack of available unit numbers, originally set in a data
statement in subroutine openp.

[FILe Packed string ReMove] Remove the file with the
given packed string filename. As the function value re
turn OK if the file was removed ok. NOTTHERE if the file
is not there or cannot be accessed, or ERROR if the file
is there but cannot be removed.

§c

File apenhdtl

Function openp

Function opuniq

Subroutine stooff

Subroutine stoon

Subroutine rdrec

Subroutine turrec

348

[OPEN HeaD TaiL] File which contains the head and tail
strings which are appended before and after a filename
that is surrounded by triangular brackets such as
"Kgrtdefsy.

[OPEN Packed] Open the file in the given packed string
for reading or writing, returning a logical unit number
or ERROR if it couldn't be opened. If the filename is
surrounded by triangular brackets such as
"<g.rtdefs>" then the brackets are removed and the
head and tail strings from file apenhdtl are put succes
sively before and after the filename until the file is
found. This opens the file to reside in "standard"
places in the file system. Moreover, the standard
places can be defined by a user in his own openhdtl file.
For more information, see [110].

[OPsn UNIQue] Open a temporary file whose filename is
unique from any others already opened with this func
tion and that starts with the given character string, re
turning both the logical unit number as the function
value and the actual filename used in another packed
string argument.

[STimdard Output OFF] Turn off output from standard
output logical unit number STANDOUT (defined in file
iodvfs), possibly by assigning it to a dummy file. This
is used to stop normal output from a simulation pro
gram such as SPICE from coming to the terminal
sensen.

[STandard Output ON] This is the inverse of stooff: turn
back on output from STANDOUT by re-assigning it to
the terminal.

Random Access File Input and Output

[ReaD RECord] Read from the given logical unit
number, opened in direct access mode by openp, the
specified record into an array.

[Write RECord] Write to the given logical unit number,
opened in direct access mode by openp, the specified
record number from the record in a given array. If the
record number is given as APPENDTOEND, write the
new record after the last record written, and return its
record number in the same argument.

§c

Function exqtbm

Subroutinegdatep

Function getarg

Subroutine gtimep

Subroutine sdelay

Subroutine syscmd

Subroutine syswap

Subroutine setint

Subroutine setovf

Function randm

349

Standard System Calls

[Execution TIMe] Return as function value and in the
real variable argument the current cpu time in
seconds. The time returned can be either for the
current executing program only or for the current
user since he logged in (signed on) to the
computer—it does not matter: only differences in the
returned time are used.

[Get DATE Packed] Return in the argument a packed
string containing the present date.

[GETARGument] Get the next command line argument
and return it in the character string argument. The
function value returns the argument length or EOF
when there are no more arguments.

[Get TIME Packed] Return in the argument a packed
string containing the present time of day.

[Seconds DELay] Cause program execution to delay or
pause for the specified number of seconds.

[SYStem CoMmanD] Execute an arbitrary operating
system command contained in the packed string argu
ment. This is called from a Fortran program and must
return to the program right after the call.

[SYstem SWAP] "Swap to the operating system from an
executing Fortran program, with the ability to return
to Fortran execution right after some sort of operating
system "exit" command is given.

Catching Hardware Traps

[SETup INTerrupt] Do whatever is necessary so that a
certain common variable gets set to YES when a termi
nal user generates an interrupt by pressing the special
interrupt key.

[SETup OVerFlows] Do whatever is necessary so that a
certain common variable gets set to YES when a float
ing point overflow or other numerical exception oc
curs.

Numerical Analysis Related

Return a random number between 0.0 and 1.0 given
the previous random number as argument.

§C 350

Miscellaneous Primitives

Subroutine afiush [All FLUSH] Flush the DELIGHT internal arrays or
stacks indicated by the coded argument variable. This
routine most-likely does not contain any machine-
dependencies.

Subroutine pabort [Print and ABORT] Print the given fatal error message
and query the user as to the type of program abort
desired. Then, abort or return to program execution.

Subroutine qtstop [QuieT STOP] Stop execution of a program without
printing anything. This is necessary because some
times a Fortran stop statement causes the word "stop"
to print on the terminal and this is not wanted here.

i a

APPENDIX D

DELIGHT: An Optimization-Based Computer-Aided Design System

Presented at the 1981 IEEE International Symposium on Circuits and Systems,

Chicago, Illinois, April 1981.

351

DELIGHT: AN OPTIMIZATION-BASED COMPUTER-AIDED DESIGN SYSTEM
" Nye. E. Polak, A. Sangiovanni-Vincantalli and A. Tits
Department of Electrical Engineering and Computer Science,

University of California. Berkeley, CA 94720
ABSTRACT H *"

This paper daaeribas tht dasign cri
teria and tht main faaturts of DELIGHT, a
new intaractiva. optimization-based,
conputar-aidad dasign system.

1. INTRODUCTION

Optimisation parvadaa anginaaring
system da«ign: it it carriad out ovar can-
didata configurations and ovar paramatar
values. Givan a particular sustain confi
guration, optimization is usad to deter
mine paramatar valuas which satisfg a sat
of spacifications or optimize a perfor
mance function. Commonly, dasignars rasort
to heuristic, cut-and-try mtthods based on
repeated system simulation. Unfortunate
ly, such methods are woefully inadequate
when the number of design parameters is
large, the design specifications are com
plex, or the system is nonlinear. It then
becomes necessary to utilize proper optim
ization algorithms for parameter computa
tion and thus allow the designer to con
centrate on the conceptual aspects of a
design.

Despite considerable research activi
ty on computer optimization of electronic
circuits (see CI.23 for a review), optimi
zation algorithm* have not been used in
design as widely as might be expected,
mainly because (i) the best known simple
algorithms war* inadequate and designers
lacked mathematical sophistication to use
the more complex ones, and (ii) coupling
optimization packages to simulation pro
grams was difficult. For example, common
ly used penalty*functions, with the vari
able metric method as a subroutine. were
too primitive to solve design problems in
volving yield maximization or complex per
formance specifications, expressed as ine
qualities, which must be satisfied for all
values of a parameter, such as frequency,
temperature, or time ranging continuously
over an interval. Similarly, since exist
ing circuit simulators do not compute time
domain sensitivitie*, they cannot be used
efficiently in conjunction with most op
timization algorithms.

New semi-infinite and nondifferenti
able optimization algorithms solve prob
lems involving yield maximization or a
continuum of inequalities C33. However,
these algorithms are sensitive to the
choice of internal parameters, to initial
values of the design parameters and to the
conditioning of the mathematical program
ming problem into which the design problem
was transcribed.

Reprinted from 1981 IEEE INTERNATIONAL SYMPOSIUM
ON CIRCUITS ANDSYSTEMS. April 1981

851

Recently, a new design methodology
based on interactive comoutmg has em
erged. It permit* one to observe. inter
rupt, diagnose, modify and restart a com
putation as it p-r^gresses. resulting ln
very substantial wvings not only in com
puting time, but aiio in the overall time
needed to carry ou* «. design Fct- example,
the fact that an initial design cannot be
adjusted to meet specification* can b-
identified in an interact-.^ CAD syst«m by
observing the output The designer may
therefore stop the computation and either
modify the structure of his desior or ?»-
periment with rela>ation cf the specifica
tions. Next, making use of the heuristic
information displayed on the screen. he
could reduce i]1-conditionin3 ey charcing
th!,f!*CriPti0n 0f **• de$,3r' Prcblem into
a different mathematical programming prob
lem. Finally, he would t>e m an ideal si
tuation to perform trade-offi The circuit
design system APLSTAP T43 developed at IBM
and the optimization-based computer-aided
dasign system INTEROPTDYN C53 developed at
Berkeley. art two examples of such
software systems APLSTAP is intended
mainly for circuit designers with little
" "° background in optimization, IN
TEROPTDYN is for sophisticated de»i<jners
with an optimization background

The DELIGHT system represents a con
siderable advance over these earlier sys
tems tn terms of flexibility and ease of
use in a variety of contexts Thus, it
serves both the sophisticated and the un
sophisticated designer. In addition, it
provides a "guru" with an ideal environ
ment for developing and testing new optim
ization algorithms and for extending the
capabilities of the system software

2 THE DELIGHT SYSTEM
The DELIGHT system was conceived for

multi-disciplinary as well as multipurpose
use and aims to provide a congenial, effi
cient and portable environment for the
following potential users:

• An unsophisticated designer re
quiring only command and algorithm
execution

b. An advanced designer who wishes to
adjust his optimization algorithms,
for e»ample. by modifying algorithm
parameters or by substituting new
(tepsize or direction-finding sub-
procedures for the ones he finds
unsatisfactory.

c. An optimization algorithm expert
who requires his computer programs

CH1635.2/81/00(XW85I $00.75 © 1981 IEEE

the

lp

to resemble as much as possible the
mathematical description of the al
gorithm he is implementing or
creating so as to minimize the ef
fort involved in testing alterna
tives.

A systems expert who needs to add
new built-in functions, utilities,
or other system features.

Since it is impossible to foresee all
features a CAD system will eventually

need, we made sure that extensions and
modifications of the system will be easy
to carry out Ue shall now describe the
DELIGHT system with some detail.

2. 1 RATTLE The Interactive Language.
Our system uses the interactive pro

gramming language RATTLE (an acronym for
RATfor Terminal Language Environment)
which we have evolved from the structured
language RATFOR. The similarity to RATFOR
allows DELIGHT system users to learn RAT
TLE easily. RATTLE encourages good pro
gramming practice by providing structured
constructs such as "while". "repeat-
until". "if-then-else". etc.. and hence
results in highly readable programs. RAT
TLE, executes rapidly because it is com
piled into an intermediate form, with only
one pass over the source code. it is not
interpreted.

RATTLE has powerful extension capa
bilities, that is. the ability to create
new language constructs or new commands
from existing ones This facilitates its
use in many different design environments.
In particular, RATTLE has defines, similar
to those in RATFOR but with several exten
sions, as well as a new, powerful feature,
the macro. Macros are written as ordinary
RATTLE procedures However, they are not
executed at run time, but rather when
their name is encountered during the com
pilation of other procedures. They can act
as filters in the stream of input charac
ters being received by the RATTLE com
piler For example, one can write a macro
to scan the ne»t few tokens. which need
not be valid RATTLE code <thcy are never
parsed by it>.- compiler). make decisions
t>as*.J on woo*. is found. and then send •
valid RATTLE code to the compiler This
is aicontf- iisned using the push-back stack
mech*nis.r, of C73 We have used macros to
enatie u* to carry out very complex compu
tation* ty mear.s of very simple commands.
For errfmple. using the macro 'lp'. we can
solve a iineai program with the follow
ing RATTLE code

a r 5 inin x:-«»o, x C*»d. A* x(>o >

where ffie art-ay i is assigned the minimiz
ing \alu* of » The macro lp scans
ahead, determines >,ihat is being requested,
and push** back onto the push-back stack a
normal BATTLE procedure call. In addition,
the macvo creates all the necessary work

arrays 'and inputs for th
built-in Harwell Library I
ming FORTRAN routine. Thus,
the programmer of such b
creation of work arrays for
tines and the use of compli
syntax, as well as provide e
bility. Presently,-there is
numerical analysis software
the user through macros. Th
a sample of these macros:

e call to a

inear program-
macros relieve

urdens as the
library rou-

cated language
nhanced reada-

an arsana-1 of

available to

e following is

Computation

eigenvalues
inverse of matrix
solve linear eqns.
quadratic program

12-norm of vector
inner product

Macro Syntax

matop lambda - eigen(A)
matop Ainv = lnv(A>
llneq A*x = b
qp z - argmin < x'»Q*x
♦ b«x ! x>-d, A*xOc >
!Sv!I (in any
«x,y» expression)

Most of the above macros use LINPACK rou
tines C113.

One important use of defines is in
the creation of user oriented commands for
invoking RATTLE procedures for complex
graphics. These procedure use high and low
level, terminal independent graphical rou
tines which »v incorporated in the sys
tem. For example, one can define a "win
dow" by name, so that the command "window
name" is a substitute for specifying the
particular set of world coordinates CS3.
and corresponding viewport coordinates (in
the (O.O)-(l.l) coordinate system oJ the
terminal screen). which are associated
with the window.

The RATTLE language supports incre
mental program development C63. that is.
the ability to test, by just typing it in.
a single statement, procedure, or section
of an algorithm, without having to write
and load/link a whole program. The fol
lowing is a complete RATTLE statement
which would execute when typed in:

while (f(x) > eps) <
x - x * f(x) / df(x)
print x
>

In this example, the while-loop body con
sists of two statements.- the closing '>'
is needed before starting execution.

An important RATTLE feature, from the
programmer's or algorithm developer's
point of view, is the fact that execution
can be interrupted by the user or by the
program and later resumed after modifying
variable values. or even re-compiling an
entire sub-procedure

2.2. FORTRAN Functions and Routines and
the RATTLE Algorithmic Library.

The built-in FORTRAN functions and
routines fall into the following
categories:

a. Standard FORTRAN functions such as

852

sin. cos, exp, log. etc.
b. General purpose numerical analysis

software such as that found in LIN-

PACK til] or the Harwell Subroutine

Library C123.
The algorithmic library consists of

an integrated set of RATTLE routines im
plementing algorithms for unconstrained
and constrained, both ordinary and semi-
infinite, optimization problems. This li
brary is organized to exploit to the ut
most the natural modularity of modern op
timization algorithms which, in the sim
plest case, can be assembled from such
olocks as search-direction, step-size and
update subalgoritoms. In turn, search-
direction subalgorithms can be constructed
from subprocedures which determine the
gradients to be used for direction con
struction and fron linear or quadratic
programs. Similarly, step-size subalgo-
rithcns can be built up from constrained
and unconstrained step-size blocks. More
complex blocks include outer approxima
tions subprocedures and adaptive parameter
adjustment subprocedures. For example, to
construct an unconstrained optimization
algorithm. one may combine a search-
direction obtained through a quasl-Newton
update formula, or through a conjugate
gradient scheme, with a step-size rule
based on cubic interpolation, or the gol
den section rule. The features of RATTLE

make the use of such a modular library ex
tremely easy and effective, so that a
large number of algorithms can be generat
ed from a relatively small number of pro
cedures. It is easiest to explain how this
modularity is used by means of a simple
example.

A large class of unconstrained
minimization algorithms have a structure
which is incorporated in the RATTLE pro
cedure ucmin below:

|«,slinniUDnon

ucmin
)iunuionon

procedure ucmin <
repeat <

interaction

evaluate h *> dir(XCIter3>

lambda • step (XCIter3< h)
update XCIter+13 » XCIter3 + lambda *
Iter o Iter + 1

>

forever

>

This procedure calls two subprocedures:
dir (search-direction computation) and
step (step-size computation). In order to
construct a particular unconstrained
minimization algorithm, one creates a file
containing instructions .combining a file
containing ucmin with files containing the
appropriate search-direction and step-size
subprocedures (or functions), as in the
following program for the armijo gradient

method C143:

• armgrad

include step.arm
include dir.gradient
include ucmin

The files step arm and dir.gradient con
tain the following specific subprocedures
step and dir:

step.arm
#SBBB8BBBBa

parameter Alpha = .S
parameter Beta = .9

.function step <x, h) <
import Alpha. Beta
array «(), h()
evaluate gc*ost *> gradcost (x)
k - 0

repeat <
update xnew «* x ♦ Beta**k • h
breakpt
del • cost(xnew) - cost(x)

if (del <» Alpha*Bete**k * «h.gcost»>
return Beta**k

k - k ♦ 1

>

forever

>
|t..».....«..o

dir.gradient
«BBBBB.B»BB.-B

procedure dir (x. h) <
array x(). h(>
evaluate h « gradcost (x)
matop h b (-D * h

>

The above code is mostly self-explanatory
However. the following features are worth
pointing out First, we note that in pro
cedure ucmin. the vector XCk3 is an ele

ment of a sequence which has been de
clared using "array_sequence" (for an ex
ample see Section 3). Since part of this
sequence is frequently needed for display
or analysis purposes, the user can save

its last n elements. Second, the concept

of imported variable. as exemplified by
h Alpha and Beta in the function step, is

borrowed from C133. Alpha and Beta. de
clared outside the procedure, are given a
default value at compile time This al
lows the user to modify them before start
ing execution; their value is known to the
function step at run time. Since different
problems require different values of Alpha
and Beta for efficient solution, it i*

crucial to be able to modify them (or oth
er algorithm parameters). Third. RATTLE
permits interruption of a process and
resumption of execution after checks or
modifications have been carried out. The

u*9r relies on information displayed at
•each iteration, preferably in graphical

853

form, in deciding whan an optimization
computation should be interrupted. The
define "interaction" enables a user sup
plied procedure "output", to be executed
at every passage through "interaction".
When the "break" key it depressed. execu
tion is suspended right after the pro
cedure "output" has been eseeuted
(depressing the "break" key generates an
interrupt).

Besides using the "break" key, the
user can control execution of an optimiza
tion process through the define "run".
Typing "run 9". causes 9 iterations of the
process to be carried outi computation
stops at the "interaction" point. Typing
simply "run" causes the process to execute
until the "break" key is depressed.

2.3 Interfaces to Problems and Simulation

Routines.

The DELIGHT system includes an
algorithm-problem interface which simpli
fies the coupling of RATTLE algorithmic
library routines with design problems. An
important feature of this Interface is the
way in which design problems *v formulat
ed. In a design,' the cost and many con
straint functions are frequently compo
sites, consisting of simple functions
which are evaluated on results of simula
tion, for example, the overshoot con
straint y<t,x> < 1. 1 for all t > 0. where
x is the design parameter and y(t.x) is
the corresponding step response. Conse
quently, in DELIGHT, the formulation of a
design problem "prob" consists of a set of
files whose names are "prob.descr"
(simulation structure and design parame
ters of the problem), "prob.data" (initial
values of design parameters), "prob.cost"
(cost function), "prob. gradcost" (gradient
of the cost). and, possibly,
"prob. hesscost" (Hessian of the cost) to
gether with corresponding files for the
various types of constraints (equality,
inequality and functional inequality).
When an algorithm needs a "surrogate" cost
(as in the case of augmented Lagrangian
methods or exact penalty function
methods), the interface constructs it au

tomatically. In addition, the interface
makes sure that unnecessary duplication of
evaluations is avoided. As we have seen in
the proceeding section, in the DELIGHT
system, a program for an optimization al
gorithm is a file containing a list of all
the algorithmic procedures to be used and
of the information needed (gradients. Hes
sians). The coupling of a problem with an
algorithm is carried out by means of the
define "solve" which checks to make sure

that the problem and algorithm are compa
tible (e.g.., a constrained problem cannot
be solved using mn unconstrained optimiza
tion algorithm). For example, "solve prob
using armgrad" couples the problem "prob"
with the algorithm "armgrad".

The second interface facilitates the

use of a variety of simulation programs
for engineering design (e.g., of electron
ic circuits, control systems, structures).
Usually, a simulation program has input
parameters* options, outputs, as well as
simulation run controls, all of which can
be chosen by the designer. An optimiza
tion algorithm program calls RATTLE func
tion and gradient evaluation procedures
which, in turn, may have to call a simula
tion program and hence must be able to set
input parameters and retrieve output
values. To allow.the required choices to
be made interactively by the designer and
automatically by optimization algorithms,
it is necessary to have an interface to
the simulation program. Our interface is
readily usable by any RATTLE procedure and
consists of two parts: one part which is
written in RATTLE and is used for all
simulation programs and a second one which
is written for each simulation program.
For example, the simulation dependent in
terface routine "output_keywords" allows a
RATTLE translation macro to be independent
of any special syntax for specifying simu
lation outputs. In circuit design, sup
pose that SPICE C103 is to be used as the
simulation program. The system first calls
the routine "output_keywords" which re
turns the special node voltage keywords of
SPICE, "vn", "vp", «vr". etc.. It then
creates a define for each output keyword,
which invokes the translation macro to
gather the keyword and its arguments, con
sidered to be the source tokens following
the key word which mr9 enclosed in a set
of balanced parentheses. This string, for
example, "vm(3.55>", is then passed to
another interface routine so that it can
parse the arguments in any way needed.

3. EXAMPLE
He shall now present an elementary

illustration of the use of the DELIGHT
system in solving a very simple uncon
strained optimization problem. The specif
ication of this problem, pbl, is contained
in the following files, whieh »v in the
format discussed in Section 2.3. Note
that the file pbl.descr contains only the
specification that 25. 2-component past
design parameter values be stored.
^mmmmmmmmmmm

• pbl. descr

array.sequence XC253(2)
#«B.....B..

« pbl. data

XC03(1) - 1

XC0K2) - 1

• pbl.cost
Inuium

function cost (x) <
array x(2)
return (x(l)**2 ♦ 2*x(2)**2)
)

854

• pbl.gradcost-
fnunmnnm

procedure gradcost (x.g) <
array x(2), g(2)
g(l> - 2 • x(l>
g(2) - 4 • x(2)
>

Ue shall show what appears on the
screen when a designer solves this problem
by means of the Armljo gradient method
discussed in Section 2.2. Ue have under
lined the user input to distinguish it
from computer output. The basic RATTLE
prompt is "1>", while "2>" indicates that
the process has been interrupted once. In
this example, the user first specifies the
design problem and the algorithm to be
used for its solution by means of the
"solve" define. Then (i) he assigns to Al
pha the value .9i (it) he includes the
procedure "output" contained in the file
"printstate", and (ill) requests that the
process run for 2 iterations. Unhappy with
the way the computation is progressing, he
ehanges the parameter Alpha to .6 and
resumes execution. When he is satisfied
with the values displayed, he stops the
process by depressing the "break" key.

1> solve pj^l. usina armarad
array_sequence XC293(2)
data: XC03(1) - 1.000
data: XC03(2) - 1.000
parameter: Alpha - .5
parameter: Beta • . 9
please specify an output action
type run to execute

1> Aloha b .j

i> incMt grintixttt
1> run 2,

lter«0 eost-3.000 IIgradcostit-4. 472
Iter-1 cost»2.410 IIgradcostJ!«3. 971
Iter-2 cost-1.949 IIgradcosti1-3.931

Interrupt...
2> Aloha b .£
2> run,

Iter»3 cost*.6063 11gradcostI»«1.S23
Iter«4 cost-9. 948e-2 IIgradcostiI-. 6180
Iter«9 cost«2. 387e-2 IIgradcostiI-. 3090

(here, the user depresses "break")
Interrupt...
2> reset

l>

4. CONCLUSION

Ue have briefly described the design
criteria, the structure and the main
features of the optimization-based
computer-aided design system DELIGHT. Two
important features were not discussed in
in the paper, but should nevertheless be
mentioned. The first is that the system
incorporates an editor (a subset of the
UNIX editor). The second feature is a
"store-restore" command permitting to
store a computation in its full state,
from which it can be restarted at later
time. To evaluate DELIGHT we have tested
it in the solution of a few complex design
problems such as the design of a digital
filter and the design of control systems
subject to constraints on singular values

over a range of frequencies. At present,
simulation programs for structural
design of braced frames under seismic
loading *v being interfaced. Integrated
circuit design will be attempted as soon
as the time-domain sensitivity computation
is implemented in SPICE and the simulation
interfaces discussed are completed.

ACKNOWLEDGEMENTS
This research was supported by the Nation
al Science Foundation Grants ENV-7<>-04264
and ECS-79-13148, by AFOSR Contred: No.
F49620-79- C-0178, and by a grant from
Harris Semiconductors.

REFERENCES

C13 R.K.Brayton and R. Spence, Sensitivitu
iOi Optimization. Elsevier. 19H0

C23 J.U. Bandler and M. R. Rizk. "Optimi
zation of Electrical Circuits".
Mathematical Proarammine Studu , vol.
11. pp 1-64, i979.

C33 c. Polak. ''Algorithms for a Class of
Computer-Aided Design Problems: A Re
view". Automatic*, vol. .19. pp. 795-
813, Sept. 1979.

C43 0.D. Hacfttel. T. R. Scott and R.P.
Zug. "An interactive Linear Program
ming Approach to Model Parameter Fit
ting and Worst-Case Circuit Design".
IEEE. Trans, oji Circuits »£d. Susterns.
vol. 27, pp. 371-882, Oct. 1980.

CS3 H. A. Bhatti, T. Essebo. W. Nye. K. S.
Pister, E. Polak. A. L. Sangiovanni-
Vincentelli and A. L. Tits, "A
Software System for Optimization-
Based Interactive Computer-Aided
Design", Memorandum N. UCB/ERL
M80/14. University of California,
Berkeley, April 1980.

C63 J. Wilander, "An Interactive Program
ming System For Pascal", BIT vol.20,
n.2, pp. 163-174. I960.

C73 3.U. Kernighan, P. Plauger, Software
Tools. Addison-Wesley. Mass., 1?76.

C83 W.M. Newman. R.F. Sproul, Principles
g_f_ Interactive Computer Oraahies,
2'nd Edition. Mcgraw-Hill. N. Y. .
1979.

C93 W.T. Nye. RATTLE/DELIGHT Proar.immina
MjuuiaJ.. University of California,
Berkeley. I960.

C103 L. W. Nagel. "SPICE2: A Computer Pro
gram to Simulate Semiconductor Cir
cuits", ERL memo no. ERL-M920,
University of California, Berkeley,
Mau. 1979.

C113 J.J. Dongarra, et.al. , LINPACK Users '
Qui^o. SIAM. Philadelphia, Pa.. 1979.

C123 Harwell Subroutine Library, Harwell,
England.

C133 N. Wirth, "Module — A Language for
Modular Multiprogramming", Software -
PTiCt.Ct *M Experience, vol. 7, 1977.

C143 L. Armijo, "Minimization of Functions
Having Continuous Partial Deriva
tives" ' E*ti£ii 2- OmJUl- • vol. 16,

855

APPENDIX E

The Design of IXgital filters Using Interactive Optimization

Presented at The 20'th IEEE Conference on Decision and Control, San Diego, Cali

fornia, December 1981.

357

TP4 • 4:15
THE DESIGN OF OIGITAL FILTERS USING INTERACTIVE OPTIMIZATION

T.P. Lee, W.T. Nye and A.L. Tits

Department of Electrical Engineering and Computer Sciences
and the Electronics Research Laboratory

University of California, Berkeley, California 94720

Stannary

It 1s shown how modern optimization techniques
can be used to design digital filters. The high
flexibility of this approach makes tractable a
large class of specifications, such as special sta
bility requirements. Efficient use of optimization
requires a highly Interactive environment, such as
the Berkeley DELIGHT System. As an example, the
design of a low-pass filter is considered.

Introduction

The design of digital filters consists of the
approximation of desired magnitude and phase re
quirements with a suitable ratio of polynomials
corresponding to a stable transfer function, and
the realization of this transfer function with a
filter structure which may be implemented 1n hard
ware or software. Traditionally, designers use
classical design techniques to approximate their
desired filter responses. These are usually in
direct, in the sense that to design a general in
finite Impulse response digital filter one designs
an analog filter transfer function using classical
techniques and then converts it into a digital
transfer function. This conversion can be done by
any one of the most commonly used methods such as
impulse response invariant, matched, or bilinear
z-transformation [1]. These design techniques have
been automated 1n the filter design program FILSYN
[2].

Here, we take the direct approach of tran
scribing the design problem Into a mathematical
programming problem. This allows one to specify
practical constraints, for example, on the poly
nomial degree, on the magnitude of the coefficients,
or even for special stability requirements. These
features may not be possible with the classical
design approach. The mathematical programming
problem can be solved using recent semi-infinite
optimization algorithms [3J. Since these algo
rithms are sometimes sensitive to the choice of
internal parameters, to Initial values of the de
sign parameters, or to the conditioning of the
mathematical programming problem, our design
T

This research was supported by National Science
Foundation grants No. ECS-79-13148 and PFR-79-08261
(RANN) and the Air Force Office of Scientific Re
search (AFSC) United States Air Force under Contract
No. F44620-76-C-0100, and by a grant from the Semi
conductor Products Division ofthe Harris Corporation.

methodology requires a highly interactive comput
ing environment. Such an environment 1s available
to us in the computer-aided design system DELIGHT
[4]. This system permits the designer to inter
rupt, observe, diagnose, modify, and restart a
computation as It progresses, resulting in not
only savings in computer time, but also in the
overall time needed to carry out the filter design.

In the DELIGHT system, all algorithms and
problem formulations are coded in the interactive
structured programming lanquaqe RATTLE, described
<n [4,5]. An important RATTLE feature is that
execution can be interrupted and resumed even after
modifying the mathematical problem formulation by
recompiling any of the cost or constraint proce
dures. There 1s an algorithmic library consisting
of an integrated set of RATTLE procedures imple
menting algorithms for unconstrained and constrain
ed, both ordinary and semi-Infinite, optimization
problems. The semi-Infinite constrained algorithm
proposed by Gonzaga, Polak and Trahan [6] is par
ticularly suited to our design problem.

Example: design of a low-pass filter

Our mathematical programming formulation in
cludes the following functional (or semi-infinite)
constraints (u € [0,n] 1s the frequency):

amplitude constraints (fig. 1):

1-e d ^ampHtude(u) O+e-d Vwe [0,j»]'
0 < amplltude(u) < l+c_d Vu>€(w,u>)

— — p pa

0 £amplitude(u) <c d Vwe [<ja,l.]

Amplitude
r/f**JfM*l2/,jfSt,

M,*'

M- fW//fff{{({t

0

Amp11
F

tud

Iqure 1
e Constraints

Reprinted from THE 20th IEEE CONFERENCE ON
DECISION AND CONTROL. December 1981

819

0191-2216/81/0000-0819 $00.75 © 1981 IEEE

phase constraints (fig. 2):

(m-c .d)*u> < phase(u) < (m+e d)*o> Vw6 [0,w„]
© •— — e p

Figure 2
Phase Constraints (unspecified average slope)

where m, the slopeof the phase function, 1sunspeci
fied and d, a measure of the allowable deviation in
both magnitude and phase from ideal responses, 1s
to be chosen as small as possible. After having
selected the degree of the filter, we express both
numerator and denominator of the transfer function
as products of quadratics (with a linear factor if
the degree is odd) of the form

z2 + bz +c

This formulation, besides leadinq to a filter
structure with low quantization noise [7], simpli
fies the expression of conditions for stability,
which can be written as the following constraints
on the coefficients of the denominator quadratics
(see, e.g., Arapostathls and Jury [8]):

l+b + c>0, 1-b + c>0, l-c>0

Stronger stability requirements (roots inside circle
of radius o < 1) can be expressed as

These are ordinary inequality constraints.

As implicitly suggested, the design parameter
vector X has as components

1. the coefficients of the numerator and de
nominator quadratics and an overall multiplicative
factor,

2. m, the unspecified slope of the desired
phase response, and

3. d, the measure of the allowable deviations
of magnitude and phase from the ideal response,
which is desired to be as small as possible.

Hence, the cost function to minimize is simply
f(X) » d.

Interacting with the optimization process

During each optimization iteration, various
parameters and graphical output are displayed on
the terminal screen. Plots include filter ampli
tude and phase response together with the current
constraint bounds (which depend on X through d) as
well as the position of the poles of the denomina
tor polynomial. With this information, d and m,

for example, can be adapted interactively to speed
up the computation. Information is also displayed
concerning the Internal behavior of the algorithm.
If one notices poor computational progress, one
can Interrupt execution, use the information dis
played to modify algorithm parameters or choose a
different algorithm subprocedure, and then resume
execution without any loss of the optimization
progress already achieved.

Conclusion

Although a shortage of space prevents us from
showing numerical results for the low-pass filter
example, the mathematical programming formulation
and optimization algorithm mentioned above were
quite successful in achieving good filter designs.
We even took desiqns from FILSYN[2], which does not
allow phase constraints for our particular type of
filter, and used then as initial guesses to our op
timization with phase constraints. We obtained
significant improvements in the phase responses and
we could also achieve stronger stability properties.

Throuqhout this work, the Interactive nature of
the optimization was indispensable. Several times,
observation of the progress led to reformulation of
the problem and to modification of some critical
algorithm parameters. For example, we modified an
algorithm parameter when we noticed that the iter
ates we bound no on and off certain constraint
boundaries.

Acknowledgements

The authors thank P. Dodd and Y. Wardi for tneir in
valuable help and Professors E.I. Jury and J.C.
Walrand and Dr. B. Gopinathfor fruitful discussions.

References

[1] L.R. Rabiner and B. Gold, Theory and Appl ication
of Digital Signal Processing. Prentice Hall, N.J.,
T975T
[2] G. Szentirmal, "FILSYN - A General Purpose Fil
ter Synthesis Program," Proc. IEEE, vol. 65, pp.
1443-1458, Oct. 1977.
[3] E. Polak, "Algorithms for a Class of Comcuter-
Aided Design Problems: A Review," Automatica, vol.
15, pp. 795-813, Sept. 1979.
[4] W.T. Nye, E. Polak, A.L. Sangiovanni-Vincentelli
and A.L. Tits, "DELIGHT: An Optimization-Based Com
puter-Aided Design System," Proceedings of tre IEEE
International Symposium on Circuits and Systems
(ISCA5J, Chicago. Illinois, 1981. pp. BBI-Bb:.
[5] W.T. Nye. RATTLE/DELIGHT User's Manual. imiver-
sity of California, Berkeley, 1980.
[6] C. Gonzaga, E. Polak and R. Trahan, "An improved
Algorithm for Optimization Problems with Functional
Inequality Constraints," IEEE Transactions op Auto
matic Control, vol. 25, pp. 49-54, 1980.
L7J J. Szczupak and S.K. Mitra, "Recursive Digital
Filters with Low Roundoff Noise," Circuit Theory
and Applications, vol. 5, pp. 275-286, 1977.
18J A. Arapostathls and E.I. Jury, "Renarks on Re
dundancies in Stability Criteria and a Counterex
ample to Fuller's Conjecture," Int. J. on Control,
vol. 29, no. 6, pp. 1027-1034, WT.

820

APPENDIX F

An Enhanced Methodology for Interactive Optimal Design

Presented at the 1983 IEEE International Symposium on Circuits and Systems,

Nevrport Beach, California, May 1983.

360

An Enhanced Methodology for Interactive Optimal Daaiga

W.T.Ny*
University of California. Berkeley

A£.71te
University of Maryland.CoUeg* Park

Istrvdnctton.

Optimization technique* have been applied suc
cessfully to numerous design problems in various
branches of engineering- (For an excellent survey in
the area of integrated circuit design, see [1].) How
ever, in many oases, the mathematical problem
solved by the optimizat-on algorithm may be ramota
from the real world problem the designer is facing.
This is due to the rigidity of the classical nonlinear
programming problem vnich can be stated aa

mtni/(s)lc(s)<0| (•)
where /(x) is a cost or objective function to be
minimized and g(z) represents several inequality con
straints and where x Is the vector of dasign parame
ters. While this formulation does encompass the gen
eral Idea of optimising some design objective while
meeting various design specifications, it fails to take
into account several important characteristics of a
large class of design problems.

First. It is rarely tht- case that a single objective
has to be optimized ta most applications, various
objectives compete aiainst each other and a
compromise has to be reached. Amalgaming several
objectives into a single cost function has the disad
vantage, particularly acute in an interactive environ
ment, of biding the physical significance of these
objectives.

Second, the above mathematical formulation (")
does not accept any violations of the constraints g. In
design applications, constraints specifications are
often relatively flexible and thus batter put in words
than in numbers. Hence, moderate violation of a con
straint should be acceptable by the optimization
algorithm: often, this will permit it to achieve a
better value of the objective function^). Notice that
the formulation

f(*)*0

is particularly Inadequate since It gives no way of
estimating the importance of a given constraint
violation.

Third and more generally, formulation (*)
expresses only partially the knowledge a designer has
about his problem. On the one hand, some of this
knowledge, built on experience and physical intuition.
Is often impossible to express numerically. Also,
corresponding specifications may appear to be neces
sary only after (*) has been solved and has yielded an
inadequate design. On the other hand, (*) does not
allow the designer to express some of his intuitive

CH1846-7/83/0000-1060 $1.00 © 1983 IEEE

knowledgesucn as the degree of confidence he has in
the initial guess provided for each design parameter.

Obviously, there Is no unique way to get around
some of the difficulties mentioned above. The metho
dology described in this paper makes use of some
ideas and concepts which seem particularly well
suited to the designer's intuition. It has been imple
mented on the DELIGHT [3] Interactive system and
applied successfully to the design of "real world"
Integrated circuits by "real Ufa" designers.

A new methodology.

The various design specifications are first put into
one of the following categories:

1. An objective Is a quantity that the designer
would like to sea as small (large) as possible;
example:the gainof an operationalamplifier.

2. A soft constraint is a quantity that the designer
would like to see smaller (larger) than some
threshold, or. If this cannot be achieved, as close
as possible to this threshold: example: the stabil
ity margin of a control system

3. A hard constraint Is a quantity that the designer
requiresto be below (above) somethreshold, any
violation being unacceptable: example: a resis
tance value must be nonnegative.

Obviously the various specifications or. at least,
the objectives and soft constraints are competing
against eachother. It Is thannecessary to be able to
meaningfully compare the values of various
specifications for a given x-vector value. Le.. to
define the normalized value of a specification. This is
done through the introduction of the concepts of
moot and bad values of the various specifications.
These values must be chosen according to the follow
ing rule: having allthe objective and soft constraints
achieve their respective good values should provide
the same level of satisfaction to the designer for
each, while achieving the bad values should provide
the same level of dissatisfaction. Furthermore, the
good value of a soft constraint must be the threshold
value aimed at Technically, these good and bad
values are then used to produce a normalized
specification withvalue between 0 and1.where 0 and
1 correspond respectively to the designer's good and
bad values. A !»«m™»« related optimization, as
described In the next section. Is than performed on
those normalized values. The use of two values to
perform our multiobjeetlva normalization may be
viewedaa an extension of Ughtner and Director's [21
suggested use of the reciprocal of user supplied
desired objective values Ina weighted maxnormsolu
tion.

1050

Inengineeringdesign,manyspecificationsare
bestrepresentedasfunctionaltjmeifteationa,Le..
specificationsonacompleteresponsecurve(e.g..a
frequencyortimeresponse).Thesespecificationsare
representedasfunctionalobjactlveeandfunctional
softconstraintsforwhichmodandbad*curvesmust
bedefinedbythedesigner.

ItmuttbestressedherethatInteractionbetween
t-edesignerandtheoptimizationprocessaswellas
humanengineeredgraphicstosupportthisInterac
tionarecrucialforanefficientuseofthemethodol
ogydescribedhere.Suitableinformationmustbe
displayedtoallowthedesignertoInteractively
modifygoodandbedvaluesorcurves.Suchaman-
machineinterfacehatbeenimplementedIsthe
DELIGHTsystem.Animportantpartofthegraphics
Interfaceistheperformancecomb.

Theperformancecomeisagraphicaldisplay
whichshowshewcloseeachobjectiveandsoftcon
straintistoItsgoodandbadvalues.Thedisplaycon-
cistsofaverticalgoodlineentheleftandavertical
bodlineontherightEachobjectiveorsoftcon
straintIsdisplayedasahorizontalbarortoothofthe
comb.Thegoaloftheoptimizationalgorithmisto
movethetipsofallthecombteethtotheleftThis
performancecomb,displayedwheneverneeded,
allowsthedesignertograspquicklythecurrentper
formanceofbisdesign.

Anoptimisationalgorithm.

Weproposeanalgorithmfromthefeasibledirec
tionsfamily[4]forperformingthedesignoutlinedin
theprevioussection(italsoefficientlyhandlessoft
andhardbo*constraints.Le..boundsonthedesign
parameters).Thisalgorithmconsistsofthreecon
secutivephases.

Inphase1.theworsthardconstraintviolationis
progressivelydecreaseduntilallthenamconstraints
aresatisfied.Inphase2.objectivevaluesandsoft
constraintvaluesaresimultaneouslyImproved
(throughamtnim—optimizationofthenormalized
specifications),whilehardconstraintsareforcedto
remainsatisfied.Ifphase2succeeds.Inthesense
thatalltheobjectivesendsoftconstraintsreach
theirtargetfloodvalues,phase3Isentered.Inphase
3.theobjectivesarefurtherimprovedwhilekeeping
bothhardandsoftconstraintssatisfied.

Theproposedalgorithmisconvergentlathesense
thatanyaccumulationpointofthesequenceof
x-vectorsitconstructssatisfiesaaoptimalitycondi
tion.ItsspeedofconvergenceisImprovedbyprop
ertyscalingthedesignparameters,usinganaddi
tionalpieceofinformationprovidedbythedesigner.
BasedonhisIntuitiveknowledgeofthedesignprob
lem,heprovidesthenominalvariationofeach
designparameter,whichcanbethoughtofasthedis
tancetothenextparametervaluehewouldtryif
optimizingtheparametervaluemanually.

Ibaf.

[1]RK.Brayton.G.D.HachtelandAL.
Sangiovannl-VlncentallL"ASurveyofOptimiza
tionTechniquesforIntegratedCircuitDesign."
Pne.IEEE89(10)pp.1334-1382(1981).

[2]If.RUghtnerandS.W.Director."MultipleCri
terionOptimizationfortheDesignofElectronic
Circuits."IEEETrans,onCtrcuxttandSystems
CASCBp)pp.169-179(March1981).

CM

13]V.T.Nye.B.Polak.A.Sangiovannl-Vlnceatelll,
tadA,L>Tits."DELIGHT:AnOptimization-Based
Computer-AidedDesignSystem."/¥oc.o/ZEES
fnttmaMortalSymposiumonOmdUandSuw
feme.(April1981).^^

[4]E.Polak."AlgorithmsforaClassofComputer-
AidedDesignProblems:AReview."Attamatica,
18pp.798-813(September1979).

ThisworkwassupportedbytheNationalScience
FoundationundergrantsECS-A2-04462.CEE-81-
06790.andBCS-79-131481bytheAirForceOfficeof
ScientificResearch(AFOSR)UnitedStatesAirForce
ContractNo.F4962O-79-C-0178.andbyagrantfrom
theSemiconductorProductsDivisioneftheHarris
Corporation.

APPENDIX G

DEUGHT.SPICE: Ad.Optimization-Based System for Design of Integrated Circuits

Presented at the 1983 Custom Integrated Circuits Conference, Rochester, N.Y.,

May, 1983.

363

DELIGHT.SPICE: AN OPTIMIZATION-BASED SYSTEM FOR
TOE DESIGN OF INTEGRATED UKUU1TS

BUlJfyt
JMirto SangiavimKi-HncmUm.

Dapartmsot of EBCS. University of California Berkeley. Co.

munn Spoto
Karris Semiconductors, Melbourne. Flo.

_ sttdreflf*
BectricalEnginaering Department. University ofMaryland. CeUege Park. Ma,

DELIGHT.SPICE • the tmkm of the DELIGHT InterasUve
eptimixaUeB-besed atmpiiter-eided-deBign system end the SPICE
circuit analysis program, both developed at the University cJ.Cali-
fornia, Berkeley. Wits the DELIGHT.SPICE tool, circuit desjgocra
oaatake advantage orreoast powerful epUmhstioa algorithms to
satomatlcally adjust jieremeten of electronic ctrcutta m order to
improve their perforneooe. They mayepUmise arbttrery perfor
mance criteria es well ea study oampxtx tradeafli between multi
plecempstisf objecUtee. while ataxuttaneoaely eauefytng multiple
OBBStratat epeci&catiwa. industrial analog and digital drcctta
have been redaaigBad using thai too] yleldi&s substantial improve-
ment ht circuit p"»fti"*»n**t

L xmzSBOCBBN

For our purposes, circuit design oaa be ruioliliml es a two-
phase iterative proceas.The dcagner first aeleetaaa initial circuit
configuration end than determtBea vatoaa of ctreatt parametera
(a.g. resistor andcepooitor vahiea. anddevice geometries suchea
bipolar tranststor arte* end HOSFET lesfthf end widths) that
aatisfy a set of specifeaUoos andoptimise a aet of poasibiy eom-
peUag designobjecUvr*. Thia procoea ta repeateduntila satisfac
tory desicn baa beet achieved. The most creative part of the
design process is. in | snareJ. the aelectloo of the circuit topology.
For large nonlinear circuits, theaalectino ofvenae ofthedasign
paremaieia laoften tine consuming, end lausually ateppad abort
?T!??!f-clrt^nrfttadrt«ooe>cU»,*» Thia kidue tothefact that the apecificetioae end objectives maydepend enAC. DC
and transient reapomea. whichin turn depend en many desicn
parameters. Thus. It Is usually difficult fordaelgursto predict
the eflect of paramcLtr changes on circuit performance without
numerous circuit simulations.

DELIGHT.SPICE le the result of the oaten of the DELIGHT
interact*. opUnuuUtarbeced computer-aided assign system [1)
endthe SPICE circuit enalysia program [2) both developed at the
%25Z£lJLetiiaeniM' ••*•»•»• Opumtsauoo parfarmed byDELIGHT.SPICE. Intend* to freethe dmajgomr tram n^ dny?K task
ofaelectiag vaJuaa ofthe design parameters thusmating it poeti-
Me for him toconcentrate eamere creative aapecta ofthedasign

Theideeof using optimlxaUon to design ctrcutta datesbackto
the late atstieo (e.g. [a]). However, there baa beenlittle use of
parametric opttmixeucnta the circuit designersemmunity. Thia
has probably been due to the often primitive oplimiseUcn alao-
n^r^uxe^.tothelackofadec^UlnteTa«u«mmthBaonwmrefor
JSfSKjESS?110*-"^ to hMdecuaU oomputing factntlee M.
HEUGHT.SPICE oseenew powerful optimisation algerithms andla
heavily baaed on Interaction. It la hopedthat it willand awideuser
"—-Bunlty.

Af pointed out previously, circuit performance and
speHflcaticns are. in general, function* ef the design parametera
through circuit responses. For example, thedesign ofe wide-band
amplifier couldhaveeae per/brvnence objective(Le..hnproie it aa
much aa possible) the bandwidth of the amplifier and aa a am-
f**"* xpeeVlcarton (Le.. justmeetthespec) thattheDC power be
laea leaneemevehie. Thedesignparameters couldbe e capacitor
—lueanda BJT area. Neither the performance objective northe
constraint ipecUVrstton areexplicitfunctions ef the design perem-

eters; thia dependence la implicit throughanalyses of the circuit
equations. Inparticular, the bandwidth can be evaluated by f*<Hne
the -3dB pointof the frequency response from anAC analysis, while
the DC power can be computed es the productof the DC current
"rough the power supply times the supply voltage. This DC
current would be computed by e DC analysis. Thus the perfor
manceandspecification evaluations requiredto performoptimise-
tJen of a etresit often Involve expensive circuit f^nruliWftrf The
DEUGHT.SPICE system computesthese circuitresponse* using the
amxsktke program SPICE.

^ The organisation ofthispaper laaafollows. Section Zprovides e
briefoverview of the problem formulation andof the basic optimi
sation algortthmerf DEUGHT.SPICE. Section 3 presents a detailed
exampleof the designof a wide-band operational amplifiercarried
out with the help of DELIGHT.SPICE. The concluding remarks ere
ghea In Section 4.

t. PBOOZB na&TCLATION AND
tmt basic ALGcemoi

The oaaof DEUGHT5P1CE for optimisation requires the formu
lation of the design problem aa a certain standard mathematical
programming problem. Fortunately, formulating circuit design
problems in this wayis almost alwayspassible.

Thestmptcst rumnnocr mathematical programming problem is
the MirsMhvfMd •—""«« programming problem:

minimise: Ml(X)

la whichthe minimum (or maximum) value of some scalar function
of the design parametera viewed as elements ef a vector X is
sought. la engineering design, however. It is much morelikelyto
haweeddltiottellnequaUtyoBnstrainU that must be mat. An exam
pleis thatthe power dissipated ina circuit belessthan 1.5 watts,
we then have the ceeetrwnedncnllne

such that:

t nonlinear programming problem:

ITttiujnise; Ml(X)

ss SpeeValuel
a; SpecValueZ

toflO ss SpecValuen

., ''K?" '''. Inare. In general, nonlinear vector-valued tunc-
b2Hv.i.1, "*« d^i*a Vmm*fr vector X endopecvaluel. • • • .SpecValuenere scalara repreeeetlng the limit*
en theepocmoatloes thatthecircuit mustsatisfy.

MM DgUGBT.3rT.CE Design ftvMem Formulation

Unfortunately, aome meaningful integrated drcult design prcb-
•Hn* oinnot be formulated as the standard mathematical pro-
gramtnmg problem gives above. For example, many commonly
occurring constratste requirethat aomeapeciflcatiocbe met over
• venge0/ on widrprndrn* parameter, suches time, temperature,
frequency, or even the voltage of an Independent voltage source.
Iseea eonstreintsare calledfunctional inequality constraintsand
mast he handled tn a special wayby optimization algorithms 17.81.
an example of e functional constraint is "Maintain the common

nodo tv^pctioD ratio wiun proefpooseas<9 u<t for ovny frewtjUmTseCj
la the tstcreel IfMxHs to lOmegHx". DELIGHT.SPICE cBowa
deslgnera to specify these functional constraints in addition to the
ordinary ccastrsinte and objective function Introduced above. By
adding functional Inequality constraint* to the problem formula
tion wa arrive at the following iiwi xn/ntte1 nonlinear prcgram-
toJag problem:

tmnimtxe: M1(X)

U(X) st SpecValuel

mOO ss SpecValuen

Rl(X.Vl) as SpeeCurveOri) Vtl c [WlcWlJ

PIpOCYp) at SpecCurve(Wp) Vfp c pfpo>"Pel

where FI1. • • •. FIp ere functional Inequality oeastnunts and the
SpecCurve'a are the specification* for the functional constraints
that are in general given in the form of e function (possibly a con
stant) of the Uo^penoant parameters Wl. •••,Wp.

Than we applied DELIGHT.SP1CE In an Industrial environment.
we observed that for circuit dasign problems, formulating a design
problem as a mathematical programming problem and capturing
the intent of circuit designers are net easy tasks, bomsthaea
thee* intents cannot be completely specified at the ^g*^"1^ of
the design process. Thus, the system was """*'**** to provide way*
of specifying or changing design requirements while performing an
optimization. Moreover, entering these requirement* had ta be
made easy and intuitive for e circuit designer.

The way DELIGHT.SPICEdeals with these aspect* is the result of
this dose tnterecUon with circuit designers at Karri*
Semiconductor. We observed first that designers meetly went to
choose value* of the design parameters so that a est o/etyecrews
rather than a single objective ere "optimised'' subject to a set of
ordinary and functional constraints. Consequently the most gen
eral problem formulation allowed tn DEUGHT.SPICE replaces the
previous single objective formulation with

nnnfenixe fMlfX).- .Mr(X)J.

where the mmhaisatlen Is interpreted in the—<«*•••» cense. Le.,
IkamutmamaitbmTobtKXtntattctiea^tivmiaatiatiaixai.

In addition, we observed that not all constraints are perceived
by designers tn the eame way. Some constraints are treated es
Aord and aome aa so/l Hard constraints are constraint* the
designer considers most estentlnl to have satisfied and which, once
aatisfiad, the designer wishes to remain aalisfled and not take part
In any aubsequeet design tradeoCs. Obviously, any constraint
wheat satisfaction Is necessary for physical raaiixeMIity. such aa a
rasistar value being positive, ere treated ese hard constraint. Soft
constraints, on the ether hand, are those which the designer is
Interested in trading off against one another and against the per
formance objectives during intermediate iterations of an optimisa
tion run. DELIGHT.SPICE allows the user to specify whether a con-
atralnt entered is hard or aoft. the default being hard.

Since objectives end eeft csnstrainxa may be traded off by the
designer. It is important to specify their relative importance to the
optimisation algorithm of DELIGHT.SPICE. For example, a con
straint en power cUestpetkm tn a circuit such es powr*400mu»
might be very important to prevent cup overheating whereea the
constraint ItMtlOmmgahm tat high input impedance may be lass
Important since often a considerably lower Input impedance Is
acceptable.

A natural way of tadkatteg the relative Importance of objective*
end aoft constraints la by having the designer specify two value*
for each; a good value and a tad value. The "»—"'^g of these
vetoes belimited to the following tw«t»w«i»««ttt»y having all of **"»
various ebjecttves and aoft constraints achieve their corresponding
good values should provide the aame level ef "satisfaction" to the

1Tbl* namestem* fctxcthe fsct tact the eeeeodargument to ninth*
sarmulsuonmay b«wml a***-^-^ to aa mantle number at oaoaumlsta,

designer for each, while acmovtng the bed value* should provide
the eeme level of "dxeaatisfaction". This provides e very simple way
to do tradeoff analyses: tf a designer is unhappy with the perfor
mance level achieved by a particular objective or constraint, he
simply changes what be considers to be satisfactory or unsatisfac
tory by adjusting the good and bad value* with interactive com-
stands, end then reesmee execution of the cpumlxaticc.

The hard end eeft orensramt feature* mentioned ebove apply es
well to dasign parameter box otmstramta These are minimum and

aaThoslgsrttriSi

DELIGHT has a large library of optimisation algorithms [S].
However, this paper concentrate* en one particular algorithm that
has been developed for circuit design. The user does nave the pos
sibility ef selecting a different algorithm but tn that case the
problem formulation end interactive features of the system would
be dlnercst from what is explained tn this paper.

The optimisation algorithm tn D£LtCHT.SPtCEla an enhanced
version of the Phase I • Phase D Method of Feasible Directions with
Functional Ccnstreinta [7,8]. The enhancements Include the capa
bility ef handling multiple objectives (Instead of just e single cost
function), the notion of good and bad values to facilitate scaling
and tradeoff exploration by designers, and an efficient way of han
dling both hard and aoft bos constraints on design parameters,
/eosetts INrectwn* Uttnodt were chosen for UMfollowu^ reasons:

L Feasible DireoUone Methods, unlike other methods, have some
guaranteed convergence properties;

2. Feasible Direction* algorithms have been developed to solve
optimisation problems In which constraints are specified over
Interval* of an mdepeadest parameter auch as time, temperature
or frequency. These algorithms have been tested en a variety ef
engineering design problems;

& 0 a set cf parameter value* that satisfies the constraints is
found during the optimisation process, the constraint* remain
aatisfiad during the remainder ef the optimisation run This is
tmpertant etnee it gives the designer more freedom to choose the
point et which he considers the optimisation piocas* to be com
plete: stopping the optimisation proceas at an early point still pro
vides a feasible design. Le.. one that satisfies the constraints.

The algorithm described in full detail in [S] may be viewed as
consisting of three distinct phase* (and in fact may be called The
Phase I-n-m Method of Feasible Directions"). In phsse 1. the algo
rithm foe usee ell of K* attention ea satisfying the constraints to
which the designer has given highest priority - the hard con
straint*. After ell the hard constraints are satisfied, phase Q is
entered and the algorithm shifts its attention to improving all per
formance ebjectivoe and aoft constraint* simultaneously, while
keeping all hard constraints satisfied. In the normal operation of
phase II, the algorithm does not dhrttngrtsh between objectives end
soft constraints In coaxing to Improve the design* In order to
compare the various objectives and soft constraints, each such
function to scaled (normalised) by the difference between its good
end bed values. Thus, the meaning of the good and bad values, as
stated previously, applies consistently to both objectives and soft
constraints: having any objective at it* good value and any soft
constraint at Its good value should provide the eerae satisfaction to
the designer, and analogously for the bed value*. Finally, phase III
fct entered when eD the aoft constraints and ell the performance
obJecUvea take en vetoes equal to or better than their correspond-
lag good values, fa phase DX the algorithm concentrates only on
Improving the performance objective* while keeping both the hard
and aoft constraint* esttsnod.

ft>4 TheAorneCewnhieelDxapiey

In the progress cf a multiple objective optimisation campula-
ttea. It la very desirable to have e display of objective and con
straint values st each iteration which facilitates subjective eralua-
tion ef the design associated with that iteration. In DELIGHT.SPICE
this purpose is served by the /tome performance comb, a graphi
cal display which shoes the designer bow close each of his multiple

^ • There le, neeem. «a opttena! peek /tarter ajgor.tax para.iv.cr.
•veVacUW. by w&cbthe uetr canemphssse aae group ether the objec-
ttva* or the aoft eeestralsl* la phe** 2.

objactlvee end aoft constraints are to their ouiieapuudmg good and
bad values. Since most designer interaction with DELIGHT.SPICEla
spent la phase E of the algorithm, hard constraints are not
displayed. However. If any are violated la phase L the message "• A
Hard Constraint is Violated ♦" la printed at the top of the Asm*
display.

Referring to figure 1, the display consists of a vertical good line
to the k«ft end e vertical bed iix» to the right On a color terminal.
tbeee are drawn in green and red, respectively. For all terminals.
Geppaara above the good Has while <7appears above the bed Una,
as shewn. Each objective or aoft constraint is displayed by two
horizontal bars or fees* on the oomb. one for the previous comb
drawn and one for the current comb. The previous comb teeth ere
tn a tighter eater or abode (and each slightly above the current
one). The goal of the optimlzatloa algorithm to to move the tips of
all the comb teeth to the toft (In the direction of the good line). By

rlthm tn effect trie* to move the rightmost Up to the left, even if
other Up* move slightly to the right, Le., their performance
becomes worse.

The tip of each tooth to on the opposite end from e small diame
ter circular dot. The dot always to en the aide of the smaller
numeric value of the objective or constraint. Thus, If as for ordi
nary constraint IS in figure 1. the dot to on the left, the good value
is smaller than the bed value es for en objective being minimised
or e constraint which must be less than its good value; a comb
tooth which moves to the left toward the good has decreases Its
objective or constraint value. If aa for ordinary objective Ml in
figure 1. the dot to on the right, the good value la larger than the
bad value as for an objective being m—«««»—d or a constraint
which must be greater than ita good value. In this case, a comb
tooth which moves to the left toward the good bee i™-*—— its
objective or constraint value, as desired.

If en objective or constraint value to such that the Up of Its
comb tooth should be drawn off the Pumb display, an arrow is
drawn to show that the tooth to out of the comb range. The
present values of inequality constraints II and 12 in figure 1 are
both better than values for which their corresponding comb teeth
can be plotted on the comb end thus they both have arrow*. Note
that U large to good since it to e greater Mart constraint while IS
email (actually large negative) to good since it to a lass than con
straint.

Also shewn en the rcomb display ere the actual numeric values
of the objectives and constraints and, for each functional objective
or constraint, a email plot of the actualobjectiveor constraint,its
good curve, and its bed curve. Each of these plots is verses the
corresponding T variable as It varies la the range specified by
the user. To the right ef each plot to shown the value of the "W"
variableat which the corresponding functional objective or con
straint takes on ita wont value. The pcsttlon of this value ef the
"*•• variable toahown by a bigcircular dot onthe functional plot

The performance comb may be output automatically during
eech optimization Iteration or manually after, sey. adjusting the
good or bed values for a particular objective or soft constraint.
Since the comb display shows the previouscomb teeth as welles
the present one. Use designercan easilysee the results cf such en
adjustmentof goodor bedvaluesas well eathe improvement made
by en optimisation rteraUoa.

&o InBnoxsnxng Txveseons

Tradeoffs between competing objectives or constraints are
explored by adjusting good and bad valuca after several Iteration*
of optimisation Basically, after several eptlmixatiea Iterations
have been carried cut with a set ef good and bad values, the
designer displays e performance comb end decides whether
he/she is happy withthe presentvalues of his/her objectives and
constraints. (In a UghUy constrained design problem most ef the
algorithm executionwOl probably be spent in phasett\ Recall mat
la phase Dobjectives and constraints are competing equally ta be
Improved by the algorithm and the meaning of the good end bed
values applies consistently to both) If he to net happywith the
present performance be edjusts good or bed values to reflect hto
feelingsand resumes the optimisation.

For example, suppose DC power toa performance objective faan
optlmttauon design problem, and it has been givengoodend bad

value* ef SOmw and SOmw. raspeetively. Suppose that at the
current Iteration of the optimisation, the power is 40mw. For
tbeee values, the associated comb tooth would end exactly half way
between the good end bad vertical Unas. Suppose that the
designer to unhappy with the way several objectives (and/or con-
straiata) have traded off and he actually wants to reduce the power
farther, et the expense of other objectives This means that he
now consider* the value 40mw to be worst than he did previously
relative to ether objectives. This means that the DCpower objec
tive bad value should be closer to 40mw than It is presently. Thus,
•jetting the bed value to. say. 48mw or even 40mw a*Use proper
action. He then re-displays the comb end runsi a few mare optimi
sation iterations.

S OgaCM EXAMPLES

AD ef the example* Introduced la this paper are derived from
actual product development or redesign activities at Harris Sem
iconductor; the results of our efforts ere pnawntly being Incor
porated into several of the products discussed. The values of the
design parametera with which the optimisation sessions started
were the end-products ef manual design pneedurcs by experi
enced designers. Thus, the Improvements in performance that we
report are even more significant.

gtl Hegb-fxoaad OpsTwHooeiAmplifier nj™*w<—*»»»

The circuit shown ta figure 2 is aa opcratiiinal amplifier being
produced et Herns Semiconductors. This circuit is implemented
with e complementary bipolar, £elcctrfcall:'belated gijahertt
proceas. This technology offers diffused resist >rs. MOS capacitors
and vertical KPN and PNP transistors with It's of l.SGHZ and
1.0GHZ respectively This amplifier wea lo offer "••""'•"
bandwidth and stability at a reasonable closed loop gain (S). along
vritb a minimum settling time. The followingwt re the initial design

Gain-Bandwidth Product * 300megKi
Output Voltage Swing * 12.5v
scSlew Rate k 300v/us
DCPower Dtosipatian s> TOOir.w
Onset Voltage ss smv
"Stable" et e dosed Loop Gain of 5

The DCnmns, while important, were net of piimary concern and
ootid be relaxed to achieve better AC performicee since the rela
tive merketabUity cf these specifications wss vsry subjective For
example, If significant gain-bandwidth product i.-ouldbe maintained
and stability Increased at the cost of a email latsrease in power, the
product might be more desirable.

&SOpenp ProEsem Flonxmlaxion.

The first step m using DEUGHT.SPICE to the choice ef design
parametera end their initial values. Ideally, to explore the poten
tial of a design, one should Include all th* parameters of a circuit
However,sine* the cpu time epent by the system is proportional to
the number ef design parameters*, this strategy would be imprac
tical. Thus, only circuit parameters that have considerable effect
on the design objective* sad spedficaUons should be considered
For this example, the parameters chosen are the ones labeled in
figure 2.

After the selection of a eet of dasign parameters. It was neces
sary to translate the goals listed sbove into the mathematical pro
gramming formulation of DEUGHT.SPICE. In general, this consists
of four steps. The first step to to express the objective* and con
straints aa explicit functions of the design parameters or ef quanti
ties that can be computed by SPICE. For example, consider the
unity gain bandwidth product GBW. GBW can be determined by
measuring the gain at a relatively low frequency (en the dominant
pole portion ef the Bode plot) and extrapolating. Thus

CBWoFREQI^-l
where FREQto the frequency et which the open lock gain is meas
ured.

• Preeiuuy gradients arecomputed byhaste diScresees.

Second, the designer mast decide whether each performance
goal to to be considered ae an objective or a constraint. Both ef
these require the specification ef desired values. However, objec
tive* continue to Improve throughout the optimisation while con
straint* tup being poshed" after they achieve their desired
values. For our opsmp —"T1* we decided to consider the gate-
bendwidth product as the only objective; all other goals ware oon-
aidered ae constraints.

The third step to to decide whether each constraint is to be con
sidered Aavd or so/I. For the present example we deckled that we
wanted all of toe constraints to take part tn tradeoff* end hence we
Bleated (wtto the keyword so/tea shown in Table 1) that all were
aoft.

The last step In setting up the problem fermulatlon to ta Indi
cate the relative Importance of the objectives and constraints by
providing a goed and a sod value for each. The precise values
specified need only be "bail-perk" values since DEUGHT-SPICE con
tains ""'I'li'flTvfr far modifying them during *r**optimisation ses
sion, For our opsmp example, the single objective galn-bendwtcth
product was calculated es the product of the gain at frequency
EOmegHx times SOmagHx; this frequency was tn toe middle of the
low frequency single pole relloff range. The goal to be greater than
SOOmegHx re&sctt cur objective to improve the gein-bendwidtb
product es much es possible but et toast have it as large ea that of
the initial design. This goal translates into having the gain greater
than SOCmegHz/SOmegHx « 6 at this frequency. Thus the bed
value for the corresponding objective was set to approximately 6 in
decibels or 15db. The good value was initially set at 28db,
corresponding to a gain-bandwidth product of about flOOmegHx.
Good and bad values were determined for the various soft con
straints tn a similar manner, keeping In "»<«<< toe uniform
saUsfactkm/itiseet txfaction rule.

MMOpamp Problem OrwrrljaitTi FUoo,

A teste ef the problem-oriented input language m
DELIGHT.SPICE can be obtained by examining portions of our prob
lem description files in Table 1. File epoinp/shows that the output
voltage swing was formulated as e separate inequality constraint
for positive and negative awing. Similarly, the slew rate
specification also resulted in two constraints. The slew rets was
computed la an approximate way to avoid expensive transient
sira .iaticcs. Is particular. DCcharging currents end the compen
sation (plus parasitic) capacitance CHwere used to eppreximate
the atow rote by the expressions:

♦ SLEWRATEai +ISLEW/CH

-SLEWRATEo. -ISLEW/CH

♦BLEW= (!«+!.)
VIN=+1

-ISLEW=(I«+1.)
|VTN»-1

where L> end I. are defined to figure 2. The onset voltage
specification does not appear as a constraint V., to made up of e
preferential term and a statistical term. Since Vm was not of vital
importance to this product, ws avoided Monte Carlo analysis by
considering only the preferential term. To tnsure that **„ waa can
tered et sere, we simply forced certain nominally matched opamp
parameters to track one another. To quantify the stability goal at
a gain ef five, w* constrained the desed-Ioop frequency response to
be less than 8.5 for every frequency la en Interval. The Interval
range end-point* were frequency valuee that we decided would
surely contain the peak. Thus, stability was handled as a func
tional inequality constraint over frequency. Another approach
that to much mere computationally expensive would be to measure
stability using the settling time or overshoot ef e transient simula-
Uon output waveform. In general, care must be used in choosing
how to compute the quantities Involved In the epecificatiena. Note
that a similar problem arises when a designer simply wants to
examine the performance ef hta/her design using circuit snaula-
Uon. e.g.. with batch SPICE.

The problem description files ere shown in Table 1.

A4 Opssap C^simlietlttu Seeaxcsxa,

After completing the problem description files, entering the
DELIGHT.SPICE environment, and issuing the command salt*
oponp to process those files, optimization was ready to begin. The
command run 4 feomb requested that five Iterations be per
formed, each followed by output of the Psomb performance comb
[6].. After toe five iterations, the gain-bandwidthproduct was sub
stantially Improved at the coat at stability (greater peak in the
closed-loop gain). We then changed our Idee about what peaking
tw "bed'' by reducing the corresponding bed value from B to 7.5.
ii few mora Iterations resulted tn e high gain-bandwidth product
tod good stability but at the cost ef a Utile higher DCpower level.
Ji view of the before end after result* are shown in figure 3 with the
latter representing e significant improvement ever the initial ctr-
txtlt performance.

we next decided to change our major Thetis for the product
to one of tow power consumption. The good end bed values for the
DC power constraint were towered and after a few more optimisa
tion Iterations, e low power version of the opamp waa obtained with
the following characteristics:

Gain-Bandwidth Product « 460megHz
Peaking « 19*
DC Power « 4S0mw
Slewreto • 2S0v/us

As demonstrated above, the ebility to give different emphasis to
cbjeeUvee and constraints can result In e variety of attractive solu
tions, ail of which can be realized wtth only minor changes in a few
\Z masks. Thus the designer can offer toe marketing department
several product options, each ef which represents the circuits best
tertormancc far toe particular emphasis given,

Other applications cf DEUGHT-SPICE Include the design of e
I/AC and an A/D comparator that show the variety of constraint
specif)net tons that can be handled In the system. Then, we epiim-
tssd toe design of e digital bus precharge circuit la our last appli
cation we optimised a switched capacitor lO'th-order modem filter
where tight phase linearity specifications were met without using
costly equalization circuitry.

Lack ef spec* tn this paper prevents a similar discussicr. about
tie other design examples. The performance of each of them was
BignlflcanUy improved, aa summarised in Table 2.

4C»aznttGHEMARKS

DELIGHT.SPICE to e powerful tool for toe design of analog cir-
eotta and of digital cells. Industrial ICs have been considerably
Improved with toe use of the system. Presently, the system can be
used by experts In optimisation algorithms for devslopicg new
algorithms and by circuit designers with seme background in
optimisation methods We ere working to make the system usable
by designers with very little or no background in optimisation
techniques and to make the problem description easier to enter.
Both of these goals can be achieved using a menu-driven user
Interface for DELIGHT. To build such an interface, we car. take
advantage of the uniform user/program environment evailable
through toe hatukcolor graphics editor, under development et the
University of California. Berkeley, by Ken Keller. A menu-driven
Input to DELIGHT could reduce the apparent complexity of the
many possible actions from which s designer can choose, at
different atataa to an optimization process. In addition, work is in
progress to make the interface between DELIGHT and SPICE
simpler and more efficient, by coupling DELIGHT with SPICE3. also
being developed et the University of Californiaat Berkeley by Tom
Queries.

t

a^fXNOwlOGEMENTS

We thank Harris CorperaUen and in particular .'or. Cornell.
Vice-President, for providing aa ideal environment in which to per
form our experiment*. We ere grateful to Paul Hernandez. John
Lexer. Gerry Cotreau. Graham Flower. Ales de le Plaza. Tom Guy.
Jim Sutton and Bob Webb, all experienced designers, for working
closely with us. We also thank Paul Gray and Bob Meyer of the
University ef California. Berkeley, for discussing with us the use ef
DELIGHT.SPICE in integrated circuit design. Special thanks to the
brave student* who took EECS 241 in the fall cf 1932 at the Univer
sity of California. Berkeley, and provided us with their feedback on
the DEUGHT.SPICEsystem.

This work waa aupperted by the Air Force Office of Scssctme
Research (AFOSR) United Statea Air Faroe Contract No. F49820-7e-
C-0178. by a grant from the Semiconductor^Products Drnxtan of
the HarrtoCorporation, and by a great from MICRO.

gfjfjgJtUfl

[1] W.T. Nye. E. Polak. A Sangiovannl-VlneectelU. and AL Tits.
"DELIGHT: An OptiauzaUcn-Based Computer-Aided Design System."
/toceeetnox of me 1981 OSS /nternesienal ^aaeswsn en Or-
ctxUs and Syttamt. April 1891.

[2] LW. KsgeL "SPICES A Computer Program to Simulate Sem
iconductor Clrcuns." ESL Memo No. EHL-H820. University ef Call-
tenia, Berkeley. May. 1975.

[3] R A rtebrer.a7uU> Automated NetworkDesign by Digital Com
puter: Prcliininary Considerations,"free. IEEE. 66, pp. 1929-1838.
1967.

[4] R Brayton. G. Hachtel and A Sangicesnni-Vlncentetli. "A Sur
vey of Optimization Techniques for Integrated Circuit Design,"
free. IEEE.voL 68. no. 10. pp. 1338-1381.October 1961.

[8] W.T. Nye. AL Tits. "An Enhanced xtotr^dology for Interactive
OptimalDesign." fVoceeoknge e/tte 1983IEEE InttrnaUonalSymr
pestum on Cw-cvtf*and ^sterns. Hoy 1989.

[6] W.T. Nye, DELIGHT A/srsnce Afanuai, University of Csftfornta.
Berkeley. September, 1981.

[7] E. Polak. "Algertthma for a Class cf Computer-Aided Design
Problems: A Review," Automatic*. voL 18. pp. 788-613. Sept 1878.

[6] D.Q. Mayne. E. Polak. and A SangkrnmnrVlncentoia
"Computer-Aided Design vie Optimization: a Review." Automatic*.
voL IB. no, 2. pp. 147-154.1982.

~o

Figure 1. Kxa^apleof tzteAovnAgTaafaceJo^lsplay.

v-O

protiJuncttoo multicast
objective 1 "AVOL" maximize (dbgaln)goodx28dbbad«15dbusing I

FREQ • oCmeghz
>db(v8^24)/vm(B8B))

I

eenstraint 1 "Pes Swing' vdc(13) >« goodwl2.6v b*d»12.Sv soft
constraint 2 'Nag Swing' vdc(16) <» good»i2Jv bed«-12.5v soft
constraint 3 •♦STewrate' ...
constraint 4 '-Sewrete' ...
constraint 8 'Power' power <• goodwfiOCmw bed^TSOmw soft using

>(vdc(222£)*lSv t- vdc(ll !.!)•(•16v))

PBe ijimaj/T

constraint 1 'Peaking' vm(24) <» good*8 bad«8 soft
for-every FREQfrom 70meghx to ISOmeghz initially dec 70

Table 1. Opamp Problem Description Files.

.. a

i
St.

eis

¥ 1

—a.

ek

«*«•

„Li

.„

.. s

tats t?
irii CPt

*s

""7
kcan

sxtse:

D

ait
rtate

•«

a* air

Figure 8, Ugh Speed Opamp cireult diagram. All labeled resistor, capacitor,
and transistor gross are design parameters.

e.esifii

o.o

Figure 3. Resulta of DELIGHT.SPICE optimisation of the High Speed Opamp.
Gein-bendwidth product more than doubled (Odb) aad traaxteat
unit-step cettliag time le noticeably better.

PIOSJCT
rtVTXvwMCC
FACTOR KFOtt A7TDI

t
DVinOCaT rrounoB CPU

taw van ftala asjxsrltfth CM US gSOBJC u«

OPaey Stability (Nakfag) tu E8 . •4S ss 1 nr.

•oxer eVOaw asOae -151

Slav Kate JSOv/ss XOv/ss •3S

tawflkta ta1a-ve»arldt» 2MWZ 4C0BXZ ISt
7 11 Bin.

RISK-SPEED Stability (Nssing) m in us

Or aw v^aWetT «Xxe> 4IOxe xn

Slaw Kate XtOv/BS aov/s* •ess

QA£-CQnTK0L Settllag Ttaa aalns mm SB 12 10 Bin.

AVPUFin Pawtr lOOsv - tzee IS

A/SfO«aMTrjt Delay Ttaa J7*at lCSns 1271
g Tain.

POwXefT Uav 20o» •SS

gala 1000 IIS •IS

iffnosxn •reap Delay .1171ft .82S7K2 HOS
ss • 1 br.

aflODt fTLTDt rauaaad X.M) .aedb -JOS

Snvsaaad -47* 4eos -US

Uf*fflMBZ
CIXC0I7

leal Delay

tat Delay

Jens

Bk

lies

lens

ss

ss
< JO aln.

Area UD 3SS -At

Table 2. DOJGHT.SP1CZ
Harris Semi

optimixation raculta obtained oa iadusxrlBl deaignx at

APPENDIX H

DELIGHT for Beginners

Memo Number UCB/ERL M82/55, Electronics Research Laboratory, University of

California, Berkeley, California, July 1982.

370

1

APPENDIX I

< DEUGHT.SPICE User's Guide

Department of Electrical Engineering and Computer Science, University of Cali

fornia, Berkeley, California, February 1983.

429

	Copyright notice 1983
	ERL-83-33 (1 of 5)
	ERL-83-33 (2 of 5)
	ERL-83-33 (3 of 5)
	ERL-83-33 (4 of 5)
	ERL-83-33 (5 of 5)

