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1. Introduction

The problem of module placement is central to automatic layout designer

in microelectronics. A good placement is essential to a good layout design. The

force-directed method introduced by Breuer and Quinn is a good constructive

placement method which leads to initial placement[l]. In their formulation,

point modules are assumed, and a force-model is used to determine the state of

equilibrium. Hook's Lawgives the forces of attraction for modules connected by

signal nets, and repulsive forces are used to keep modules apart for those which

are not connected. The algorithm amounts to solving a large set of nonlinear

equations, which is time consuming. An improvement has been proposed by

Antreich, Johnnes and Kirsch using the same force-directed method but with a

more systematic formulation of equations[2].

In this paper we propose a more efficient method based on resistive net

work analogy of the placement problem. The problem can be formulated as an

optimization problem with nonlinear constraints. However, if only the linear con

straints are considered, the problem amounts to solving a linear sparse resistive

network. Thus sparse matrix techniques can be used. Because of its computa

tional efficiency, the procedure is repeated in the overall algorithm of

* Research sponsored by the National Science Foundation grant ECS-8201580 and the Hi ghes
Aircraft Company, Newport Beach, California.
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partitioning for the purpose of placing modules on slots. In the formulation, a

key idea is that we allow some modules to be fixed in position. Fixed modules

could represent 1-0 pads, but they also play an important role in solving each

optimization problem in the overall algorithm.

In section 2 we give a detailed formulation of our approach to the problem.

Section 3 is divided into subsections of optimization, scaling, relaxation, and

partitioning and assignment. We conclude the paper with a brief discussion of

multi-module nets, computation complexity and experimental results.

2. Formulation of the approach

Consider the module placement problem in chip layout. With reference to

Fig. 1 where movable modules together with fixed modules represent 1-0 pads

are shown. The movable modules are to be placed on slots where horizontal and

vertical lines intersect. The net interconnection specification is given by a net

list. We assume that all nets are 2-module nets and multi-module nets have

been preprocessed and replaced with 2-module nets[3]. Furthermore, all

modules are assumed to have zero dimension, thus their shape, size and pin

locations are ignored.

2.1. Objective function

Let the two dimensions on the chip be specified by the x and y coordinates.

Let there be a total of n modules located at (zt.yi), i=1.2 n. Let c=- denote the

connectivity between module i and module j, i.e., the number of wires between

them. Thus c-=0. We choose an objective function which is a measure of the sum

of square of wire lengths:

•<*.v> =h-t <*$ *rfi ^[h-^r+h^f] w

t 7b



-3-

where L. is the Euclidean distance between module i and module j. It is straight

forward to show that Eq. (1) can be written as follows[4]:

where

B = D-C (3)

is an nxn symmetric matrix, C= [cy] is the connectivity matrix and I) is a diago

nal matrix whose i-th element d- is equal to £ c<j-

With the symmetry between x and y in Eq. (l), we need to consider only the

one-dimension problem insofar as optimization is concerned. Thus we dispense

with the y coordinate until the end of Sec. 3 where we discuss partitioning and

assignment.

2.2. Network analogy

For those who are familiar with circuit theory, B in Eq. (3) is seen to be of

the same form as the indefinite admittance matrix of an n-terminal linear pas

sive resistive network. We will model the coordinate of module i, x^, with a node

voltage v. at node i. The reference coordinate x=0 is thus the datum voltage. The

term -c-. in Eq. (3) is then the mutual admittance between node i and node j, and

cLjS —2 cy is t^ie se^ admittance at node i.

The power dissipation in the resistive network is

p=^Tyny to
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where v is an n-vector representing the node voltage vector and Y is the

indefinite admittance matrix which is symmetric. Thus the objective function of

the placement problem becomes the power dissipation in the linear passive

resistive network. It is well-known that in a passive resistive network the

current distributes itself in such a way that the power is minimum. That is, any

other current distribution which are not the solution of the network would have

a larger power dissipation. In other words the problem of solving network equa

tions is equivalent to that of minimizing a well-selected function which

represents power.

2.3. Boundary constraints

Consider the n-terminal resistive network shown in Fig. 2. The first m nodes

are floating and their voltages are denoted by an m-vector v«. The remaining n-

m nodes -are connected to voltage sources denoted by an (n-m)-vector v& Thus

the coordinates of th« n modules are represented by an n-vector v-
P>2

where

the coordinates of the fixed modules are specified by Vg and the coordinates of

the movable modules, which are to be determined are represented by v1#

The network equations are:

0 = 1/11^1+ 1/12V2 (5a)

i2 = 2/21^1 +2/Z2v2 (5b)

where yn, y\z=y%\ and i/22 are the familiar short-circuit admittance sub-

matrices of the indefinite admittance matrix, Y . From (4b), we obtain

Vi = -VTiV\#>z (6)

2 / 3
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which gives the solution of the movable modules in terms of the fixed modules

and the admittance submatrices.

Remarks

(1) yn is the short circuit driving-point admittance submatrix of a passive

resistive network and is thus positive definite.

(2) The solution of Eq. (B) must fall inside the region defined by the smallest

and largest voltages of the voltage sources. This is because in a passive

resistive network, no node voltage can lie outside the range of voltage

source.

(3) The dissipated power obtained from the solution in Eq. (6) is the minimum

among all possible v1# Any deviation from the solution will result in an

increase in power.

2.4. Slot constraints

Up to now we have not imposed the constraint that the movable modules

must be located on slots. This means that that voltage vector v1 when finally

determined must represent a set of prescribed discrete voltages called the legal

values. Let us designate the prescribed slots in terms of the permutation vector

P=[Pi'P2 Pm]^ where p< is the i-th legal value and mis the total number of the
movable modules. Thus the permutation of the m legal values must be assigned

to the m components of v2. To express this in terms of our optimization prob

lem, let v1=[ar1,x2,...,scm]T, i.e., x± denotes the coordinate of module i or the vol

tage at node i, we claim that the following equations represent the constraints

on the modules or voltages which are required to be on slots:

2*. =2r
<«1 i«l
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i=l i=l

. : {7)

2^m =2*r
<=1 i=l

The first equation can be written as

lri/i = lrpsd (8)

where 1 is a unit vector and d is a constant equed to the sum of the m legal

values.

Proof:

=> Let [x^.Xg xm] equal to any permutation of [P],*P2**"tPm]i Eq. (7) is

automatically satisfied.

<= Let us define

/(*)=ft (*+*<)

Then the coefficients of xl are multi-variable polynomials of [x^.Xp "KrIi}'

Through simple algebraic operations[5] and by using Eq. (7), we can show

that

/(x)=ft[c+p4)

which implies that all modules are on slots.

Q.E.D.
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3. Proposed Method

The proposed method can be divided into subproblems of optimization, scal

ing, relaxation, and partitioning and assignment. The main idea is to solve a

simple optimization problem using linear resistive network analogy repeatedly,

and in the process the movable modules are assigned to slots. We shall use node

voltges and module coordinates interchangeably in the ensuing discussion for

sometimes it is more intuitive to make statements in terms of voltages, while in

dealing with the actual placement problem it is more convenient to use the

coordinates.

3.1. Optimization

From Eqs. (4) and (5), we wish to minimize the power dissipation

I J I i

(9)

subject to the complete set of constraint equations in Eq. (7). This is clearly not

feasible. Therefore, we propose to use only the first equation in Eq. (7), which is

a linear constraint expressed by Eq. (8).

The solution to the optimization problem of minimizing P in Eq. (9) subject

to the linear constraint in Eq. (8) is given by the well-known Kuhn-Tucker condi

tions:

Vi=yn1[-1/22V2+iij (10a)

where

7-.-1,

11 ° iTrfi *
(10b)
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It is seen that that first term in Eq. (10a) is precisely that given by Eq. (6)

for which there is no constraint on slots. The second term of Eq. (10a) can be

viewe.d as a correction term which attempts to put the solution on slots. In

terms of electric network, we may use current sources to interpret the effect as

shown in Fig. 3. Thus we have a linear resistive network with both voltage and

current sources. In addition, we know that the network is sparse because of the

inherent nature of the placement problem. Using well-known sparse matrix algo

rithm, we can greatly reduce the computation time in comparison with those

that use attraction and repulsion forces[l,2].

As mentioned, because only the linear constraint equation is used, the solu

tion will not put modules on slots. As a matter of fact the result will lead to

modules more or less confined to the center of the region. Therefore we must

introduce ways to bring the modules so obtained to the legal positions. Thus the

next step in our overall method is scaling which distributes the solution more

evenly over the entire region. However, let us first present the effect of the

movement of modules to changes in power dissipation. Let us assume that we

deviate away from the solution vx of Eq. (10) by 6vi under the constraint of Eq.

(8), i.e.

l'df/jsO (11)

Then we claim that the power dissipation is increased by

Tgtivjynfoi.

Proof:

From equation (9), we have

D • 3



-9-

LP =Pfr^dvJ-Pivi) =^(JvJVijVj +6v\yn6vl +26v'(yizv^

From equation (10),

3/12^2= -ynVi +ii

and using Eq. (11), we obtain

Q.£.D.

Furthermore, it is possible to derive an upper bound on the increase in

power dissipation in terms of y#, the largest self-admittance in yn. From the

Theorem of Gerschgorin[6], we know that the eigenvalues of yn are not larger

than 2yjj, then

ap= yvtyn6vi* 7rkyJ\6vil2*yii¥:8v? (12)

Therefore the increase in power dissipation has an upper bound which is propor

tional to the norm of the deviation 6vi.

&2. Scaling

The result of the optimization with linear constraint leads to solutions which

have modules concentrated at the center of gravity of all movable modules. The

linear constraint dictates the mean position of the modules. The forces of

attraction as modelled with linear resistors pull the modules torward the center.

The only forces which attempt to scatter the modules are the fixed modules at

the boundary. Therefore, in order to be able to partition the modules we will

l z •;
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introduce scaling to redistribute the modules at the expense of increasing the

power dissipation. The method used here is to minimize the increase of power

AP under the constraints which include both the first order and second order

equations in Eq. (7). Fortunately, by using the norm of 6vt in Eq. (12), we again

can resort to the well-known Kuhn-Tucker conditions.

Let us assume that in the region or a subregion where there are k modules

with legal values given by [pi,p2....,Pk]- Let [ar0it*o2«—»a?0fc] denote the solution

obtained from optimization and let [xnltxn2,...,xnie] denote the new solution after

scaling. Thus our problem is to minimize

under the constraints

and

2 fad - *<*)'

S^i = 2jPi
i=l i=l

£*£ =tp?
is I i=l

(13)

(14)

(15)

The solution is given by the Kuhn-Tucker conditions, namely: For i=l,2,...,k

*nL = Z °n + cn (16)

where

=» =ftpi
*Ai

(17)

On = £&h" c")' (IB)
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-hi*oi
i=l

(19)

•and

0,,= i£rW (20)

where c is the mean position of the computed module positions and aQ is the

root mean square amplitude from cQ. If aQ turns out to be very small approach

ing zero, so is xtti-cQ in Eq. (16), then Eq. (16) must be replaced by

Xjd = c, (21)

The result of scaling gives an improvement from the result of optimization

as for as module location is concerned but at the expense of increasing power

dissipation.

3.3. Relaxation

Before partitioning and assigning of modules to slots, we need to perform

relaxation to be described below. The method calls for repeated use of scaling

and optimization over subregions to be specified by designers. This tends to

spread the modules out over the entire region. When a pertinent subregion is

considered, modules outside are always kept fixed.

We propose to choose subregions in the following way: First we start from

one end of the region, then the other end and, finally, the middle. After the ini

tial optimization over the entire region, three such steps of scaling and optimi

zation over subregions are carried out. The result tends to settle down and is

ready for partitioning. Thus we have as
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Input: A one-dimensional region with coordinates of movable modules X+,

i=l,2f...,m obtained from initial optimization in the entire region with

specified fixed modules Xj, i=m+l,m+2,...,n on the boundary. A parameter /?

is to be chosen by the designer with 0</?<50%.

Relaxation:

(1) Order the modules left to right according to coordinates with the smallest

first.

(2) Choose tffmlt modules from the left, setting other modules fixed and do scal

ing in the left /3 region.

(3) Fixed the modules so determined in the left § region and release the

modules in the right (1-/?) region. Do optimization.

(4) Choose [/3m] modules from the right, set other modules fixed and do scaling

in the right /? region.

(5) Fixed the modules in the right /3 region and release the modules in the left

(1-/3) region. Do optimization.

(6) Choose (9m] modules from the left, set other modules fixed and do scaling in

the left /S region.

(7) Set modules in both the left § region and the right 0 region fixed and

release the modules in the center subregion. Do optimization.

Output: A one-dimensional region with m modules and new coordinates x*,

i=l,2 m.

t fid means the smallest integer which is larger than k.
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3.4. Partitioning and Assignment

We next partition the region into two. The ratio of the left subregion to the

right subregion is |m/3/fm/2| where |kj denotes the largest integer which is

smaller than k. We do scaling once more for the left subregion and for the right

subregion. As before, in scaling for a subregion we keep those modules outside

fixed. The result of this gives two partitioned subregions together with their

associated modules.

We next start over again on each subregion, Le., perform optimization,

relaxation, partitioning and scaling independenUy. However, all modules outside

the pertinent subregion under consideration are considered as fixed modules in

the ensuing computation.

In the following we will reinstate the y coordinate to consider the 2-

dimensional partitioning and assignment problem.

Input: A2-dimensional region to be partitioned into rectangles each containing

a module, a set ofm movable modules together with their coordinates anda

set of n-m fixed modules.

Assignment:

(1) Do optimization on both the x coordinate and the y coordinate of the mov

able modules.

(2) While eachregion contains more than one module

Do

Choose the direction of the outline.

Cut the longer side of region,

list all current regions.
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For each region do partitioning.

(3) For each region, assign the module to the legal value.

4. Discussion

4.1. Multi-module nets

As mentioned in the introduction section, we assume that all nets are 2-

module nets in our present treatment. Since multi-module nets are always

present, we use the following two models to deal with them:

(1) At the beginning we use a clique to simulate a multi-module net. If there

are r modules in a net, the weight of each edge on the clique is 2/r.

(2) After the relative module position is determined, we use a chain to connect

the modules. Consider the x direction, we order the modules according to

their coordinates; we then link the modules by a chain in this order.

4.2. Computation complexity

The optimization algorithm amounts to a linear resistive network computa

tion. Using sparse matrix technique, we have the computation complexity

0(m ) where m is the number of movable modules. The scaling operation is

linear with k where k is the number of modules in a subregion.

As to partitioning and assignment, in each iteration, all current regions are

divided into two subregions. It takes loggn iterations to make all the necessary

divisions. Thus the total complexity is no more than 0(n *^og2n).
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4.3. Experimental results

The 25 module example from [2] is applied to illustrate the procedure of

our algorithm. Five external pads are fixed on bottom of the chip and 25 mov

able modules are to be assigned on the five by five slots.

Figs. 4~7 demonstrate how the module locations evolve from relative posi

tions to slots. On the graph, module positions are indicated by points with

module numbers. The connectivity among modules is represented by linking

lines.

Fig. 4 is the result of optimization. The module positions are optimal under

the constraint that the center of gravity of the modules is at the center of the

chip. Relaxation is next carried out and the modules spread over the entire

region in the vertical direction. Next partitioning and scaling are used to relo

cate the modules into two subregions (Fig. 5). Because there are five rows of

slots on the chip, the ratio of the sizes of the two subregions is two to three. Fig.

6 is the result of second level relaxation, partitioning and scaling using vertical

outline. Hence module positions are spread out in the horizontal direction. Fig.

7 is the solution of assignment. All modules are located at the centers of grids.

The sum of squared length is 324 in comparison with 363 obtained by the force

model[l,2].

5. Conclusion

The partitioning and placement problem has been formulated in terms of

linear resistive network optimization. The objective function used is the sum of

squared wire length which corresponds to power dissipation in the network.

Fixed modules become nodes with constant voltage sources. Movable modules

then correspond to nodes whose voltages are to be determined. Since modules

must be put on slots, a set of constraint equations are imposed on the modules.
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We consider only the first order constraint which, in essence, fixes the center of

gravity of the movable modules. The optimization calculation can thus take

advantage of the sparse matrix technique.

To assign modules to slots, we introduced scaling, relaxation, partitioning

and assignment. Experiment results indicate that our method not only is com

putationally efficient but also leads to excellent placement in terms of our

objective function. It appears the method can be extended to modules of irregu

lar shape and size. Thus potentially it will be useful for gate-array and building-

block placement.
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Fig. 4 Result of assignment step (l) on 25 module example. The module posi
tions are optimal under the constraint that the center of gravity of the
modules is at the center of the chip.



Fig. 5 Result of first level partitioning and scaling. The ratio of the sizes of the
two subregions is two to three.



Fig. 6 Result of second level partitioning and scaling.



Fig. 7 Solution of assignment.
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