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ABSTRACT

The classical swing equation for a power generator is shown to

undergo a Hopf bifurcation to periodic solutions if it is augumented

to include any of the following effects: variable net damping, frequency

dependence of the electrical torque, lossy transmission line, or excita

tion control. Oscillations are seen to occur for realistic parameter

values, and the stability of the oscillations is studied both analyti

cally and numerically.
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1. Introduction

An electric power system normally functions at a stable operating

point. However, the operating point can lose its stability due, say, to

a disturbance and the subsequent change in system parameters. When this

happens, it is not uncommon for the power system to exhibit oscillatory

behavior. We use the Hopf bifurcation theorem to study this phenomenon,

paying particular attention to the stability of the ensuing oscillations.

We show that the classical swing equation for a power generator under

goes a Hopf bifurcation to periodic solutions if it is augmented to

include any of a number of usually unmodeled effects.

Consider a system modeled by a vector differential equation x=f(x,p)

where p is a real parameter. Let xQ(p) be an equilibrium. Suppose that

for a critical parameter value p=pr the Jacobian Df(xn(pJ,pJ has a
c x u c c

pair of purely imaginary eigenvalues. Then the linear approximation

suggests the presence of small-amplitude oscillations for p near p . To

determine whether oscillations do in fact occur in the original nonlinear

model is the object of the Hopf bifurcation theorem [1,2,3]. To apply

the theorem requires some knowledge of the behavior of the Jacobian

Dxf(xQ(p),p) in aneighborhood of pc- The precise statements are given

in the next section.

In Section 3 these results are applied to four models of a synchron

ous generator. Each model extends the classical swing equation to

account for one of the following effects: variable damping, frequency

dependence of the electrical torque, lossy transmission line, or excita

tion control. In each case the results of Section 2 indicate the

presence of oscillations and enable us to study the stability of these

oscillations.
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2. Hopf Bifurcation

2.1 The Hopf Bifurcation Theorem

The Hopf bifurcation theorem describes the emergence of a peri die

solution from an equilibrium point of a vector differential equation

x = f(x,p) (2.1)

where xeiRn(n>2) and peiR. Existence of a family of bifurcating

periodic solutions is assured (under further technical assumptions) if

the linearization of (2.1) possesses a pair of complex conjugate eigen

values which cross the imaginary axis as the controlling parameter p is

varied through a critical value p=p . The theorem also gives informa-

tion on the range of parameter values for which the periodic solutions

arise, as well as their amplitude, frequency and stability. Hypotheses

(H1)-(H4) are in force in this section.

(HI) System (2.1) has an isolated equilibrium xQ =xQ(p).

(H2) f(x,p) is Cr(r>4) in aneighborhood of (x0(pc),Pc).
(H3) The Jacobian Dxf(xQ(p),p) possesses a pair of complex

conjugate, simple eigenvalues X(p) =: a(p) + ia>(p), X(p),

a'(pc)>0 and wc := w(pc)>0.

(H4) Besides +i^c, eigenvalues of the critical Jacobian

Dxf(x0(pc),pc) lie in the open left half complex plane.

For definiteness, we have required a'(p )>0 although clearly a'(p )^0

is sufficient. This so-called Hopf condition means that the eigenvalues

*(p)> Mp) cross the imaginary axis transversally at p=p_.

Linearized analysis now suggests the presence of small-amplitude

oscillations for p near p . Theorem 2.1 below (adapted from Theorem II

of [2]) asserts that this is indeed the case. For definitons
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of the terms in the theorem statement relating to the stability of the

periodic solutions, see Hale [4].

Theorem 2.1 (The Hopf Bifurcation Theorem)

r-1 2 3(a) (Existence) There is avQ>0 and aC function p(v) =pC +P2V +°(v )

such that for each ve(0,vQ] there is a nonconstant periodic solu

tion Yv(t) of (2.1) near xQ(p) for p=p(v). The period of Yv
V* 1 1 *? "\

is a C function T(v) =2™ [1+T«v ]+0(v ), and its amplitude

grows as 0(v).

(b) (Uniqueness) If p2^0 then there is a v, € (0,vQ] such that for each

v£(0,v,] the periodic orbit y is the only periodic solution of

(2.1) for p=p(v) lying in a neighborhood of xQ(p(v)).

(c) (Stability) Exactly one of the characteristic exponenets of Yv(t)
r-1

approaches 0 as v4-0, and it is given by a real C function

2 36(v) =$2V +0(v ). The relationship

e2= -2a'(pc)p2 (2.2)

holds. Moreover, the periodic solution Yv(t) is orbitally

asymptotically stable with asymptotic phase if £(v)<0 but is

unstable if $(v) >0. £]

For a linear system of ordinary differential equations satisfying

the hypotheses of the Hopf bifurcation theorem, a little reflection

shows that the predicted family of periodic solutions occurs only for p= p_s

so that p(v) =pc. In fact, each of p2S T« and 82 m"st vanish in the linear

case. If p27£0, then the periodic solutions y (t), 0<v£v,, occur

either for p> p or for p<p . The bifurcation is said to be supercritical

in the former case and subcritical in the latter. If P2»$2 are *)0t*1 non"

zero, then the direction of bifurcation, i.e., p>p or p<p , and the
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stability of the oscillations are determined, for small v, by the

coefficients p2 and $2, respectively. In light of (2.2), therefore,

the oscillations are stable, resp. unstable, if they are supercritical,

resp. subcritical. For this reason, (2.2) is referred to as Hopf's

exchange of stability formula. Figure 1 depicts the two possibilities

for atwo-dimensional system with an equilibrium at the origin (xQ(p) =0)

Note that the amplitude of the oscillations grows as |p-p |^2, by
Theorem 2.1(a).

Ascertaining that a given system undergoes a Hopf bifurcation to

periodic solutions is a straightforward application of Theorem 2.1.

Indeed, such a bifurcation is certain if the easily checked conditions

(H1)-(H4) are valid.

Determining the stability of the bifurcated periodic solutions is

akin to evaluating 82 and requires more effort. In Hassard, Kazarinoff

and Wan [2] explicit formulae (called bifurcation formulae) are obtained

for the coefficients p2, T2 and 82 by

(i) finding the formulae for two-dimensional systems in the so-

called Poincare normal form

Y=A(p)Y+ I B.(p)Y|Y|2j +0(|Y||(Y,p-pjr1) (2.3)
j=l J L

(Re c.(p) -Im c.(p)
3 J

Im c.(p) Re Cj.(p)

(ii) determining a transformation reducing a general two-dimensional

system satisfying (H1)-(H3) to Poincare normal form, and
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(iii) using the center manifold theorem to reduce a general n-

dimensional system satisfying (H1)-(H4) to a two-dimensional "essential

model" for the study of the bifurcated periodic solutions.

For easy reference, we give the formula for 32 for two-dimensional

systems here. Suppose n=2 and (2.1) has been put in real canonical

form. That is, f(0,p ) = 0 and the critical Jacobian is

Dxf(0.pc) =
\ c

Let f=(f\f2), fjq := l^j- (0,pc) and fjqr := Jjj!jL_ (0,pc). Then
82 is given by the formula

8e2 "h "ll^ll >+f22(fL-f?2) +flVL

-f?if?o> + (f]n+fioo+f?io+fooo).

(2.4)

11'12' T v'nr,122"r,112T,222X

From this formula, 32 is seen to be twice the "curvature coefficient"

aQ of Marsden and McCracken [3].

The algorithm obtained in [2] for computing p2, T2 and B2 for general

n-dimensional system has been programmed by B. Hassard (SUNY at Buffalo),

and we make use of his program BIF0R2 in our study of oscillations in

power systems. We now go on to briefly discuss BIF0R2. A more detailed

discussion along with a listing of the program can be found in Hassard,

Kazaninoff and Wan [2].

2.2 The Program BIFQR2

The user of BIF0R2 must supply a calling program which identifies

the system x= f(x,p) of interest (and hence also the bifurcation

parameter p) and gives analytical expressions for the elements of the
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Jacobian matrix D f(x,p). The user also supplies estimates for the

critical parameter value p and the equilibrium xQ(p ), as well as the

values of certain machine-dependent and logical parameters.

The first step taken by the program is to find the critical value

p . This is done by solving the equation a(p) = 0 by means of the secant

method. Here a(p)= Re A,(p) where A,(p) denotes the eigenvalue of the

Jacobian matrix A(p)= D f(xQ(p),p) given by

Re X1 := max{Re A|AGa(A)}

Im A, := max{Im A|A£a(A), Re A= Re A,}.

Here a(A) is the set of eigenvalues of A.

The secant iteration is given by

where

Yk =a(Pk)/(ot(Pk)-a(pki-1)) .

At each iterate p. in the location of p by the secant method, Newton's

method is used to compute xQ(pk) and the eigenvalues of A(pk) are com

puted by the double-step QR algorithm (cf. [2]).

Once p , xn(p ) and co =a)(p ) have been determined, BIF0R2 evaluates
cue c »»

the coefficent c-.(0) of the Poincare normal form (2.3). Numerical

differencing is used to evaluate the second and third partial derivatives

needed in this computation (cf. the algorithm in [2, Ch. 2]. To evaluate

the coefficients p2, T2, 62, one needs a'(pc) and oj'(pc), in addition

to c-j(O). The derivative

^(Pc) =a,(pc) +io)'(pc)

is approximated by the symmetric difference quotient
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Xl(pc) = (Xl(Pc+Ap) ' VPc~Ap))/2Ap>

where the choice of Ap depends on the machine precision and the initial

guess for p .

3. Application to Power Systems

3.1 Oscillations Due to Nonlinear Damping

The classical swing equation model for a synchronous machine

connected to an infinite bus by a lossy transmission line is

M6 + Di = P- B sin 5+ G cos 6, (3.1)

where M,D>0 are the machine's moment of inertia and damping coefficient,

respectively, G+ iB is the transmission line admittance, P>0 is the

(adjusted) mechanical power intput to the machine, and 6 is the rotor

angle measured with respect to a synchronously rotating reference. An

infinite bus is defined as a source of constant frequency and voltage.

The system is depicted in Figure 2. For a derivation and detailed

discussion of (3.1), see Anderson and Fouad [14].

Equation (3.1) admits no periodic solutions, as can be checked by

multiplying through by 6 and integrating over the period of a hypothesized

oscillation. To explain the occurrence of oscillations one must resort

to more complex models. Our first modification of (3.1) stems from the

observation that the damping D is in reality a function of the state of

the system, and may take on both positive and negative values during

normal operation. It is easy to check that (3.1) admits no periodic

solutions if the damping does not change sign. Concordia and Carter

[8] and Liwschitz [7] have proposed models to take into account this

variable nature of damping in real machines. We use the model
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D(6) =[a sin2<5 +bcos2S] -r[c(l-tan2<5) +d(l-sin 26)] (3.2)

derived by Liwschitz since it captures the essential nonlinear!ties

present and is tractable. In this equation, a, b, c and d are positive

constants and r>0 is the armature resistance of the machine. Setting

a=b and r=0 gives a constant positive damping as in (3.1). For

appreciable values of the armature resistance, however, (3.2) can give

rise to a negative overall damping. This qualitative dependence of

damping on armature resistance was also noted by Kimbark [10]. Liwschitz

refers to the first (bracketed) component of D(6) in (3.2) as the rotor

damping and the remaining term as the stator damping.

We now proceed to show that the model (3.2) can give rise to

oscillations in (3.1) using the Hopf bifurcation theorem. Equation (3.1)

with the modified damping (3.2) can be expressed in the form (2.1) by

defining u := <S and writing

6=to =: ^(6,0),p)

(L=P-DP(6)o) - B sin 6 + G cos6=: f (6,u>,p) (3.3)

where p := -r is the bifurcation parameter, M has been set to 1 and

Dp(5) =[a sin26 +bcos26] +p[c(l-tan25) +d(l-sin 25)]. Let
x := (6=5 io=0) be an equilibrium of (3.3). Note that hypothesis

(HI) of the Hopf bifurcation theorem is satisfied since x0(p)=xQ. The

Jacobian of (3.3) at xQ is

( * \Df(x0,p) - (3-4)
\-B cos 60-G sin <$Q -DP(60)/

and its eigenvalues are
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X±(p) =\ (-DP(60) ±/(Dp(6Q))2-e(B cos 6Q+Gsin 6Q) ). (3.5)
Pr

Now suppose there is a p such that D (6Q) =0 and assume that
2

Bcos 6Q +G sin 6Q =: a)c is positive. Then hypotheses (H1)-(H4) of

Theorem 2.1 are satisfied at xQ for the critical value p=p ,and we

are assured of the existence of oscillations. To investigate their

stability, we bring (3.3) to real canonical form by letting y-, := 6-6Q9
y2 := -o)/oj . This gives

yl ="V2 =: p1^'p)
y2 =-DP(y1+60)y2-o)*1[P-B sinCy^J +Gcos(y1+6Q)] (3.6)

=: F2(y,p)

Equation (2.4) now gives

862 "-"c1f?1F?2 +F?12 (3-7)
where all partial derivatives are evaluated at y=0, p=p . This gives

862= ^(BsinfiQ-Gcos 5Q) ^ Dc{6)|6 -±^=(6)1 .(3.8)

Now (taking r := -p )

and

d Pr 9d6 D (6)l6 =(a-b)sin 26Q+2rc(c tan 60secT60 +dcos 26Q) (3.9a)

^2 Dc(5)|6 =2(a-b)cos 26Q+2rc[c sec460(l+2 sin26Q)-2d sin 26Q]
(3.9b)

In a specific example, the stability of the bifurcated oscillations is

determined by the sign of 02 (if e2?*0). However, we have the following

general result.
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1 p

Theorem 3.1. Suppose a=b, 2d<c and tan" (-g) <6Q <j . Then (3.3) has

a stable periodic solution for each r<r sufficiently close to r . The

-1 -1/2period is near 2ircoc =2tt(B cos <$q +G sin 6Q) ' ,and each such solution

is unique in a neighborhood of (6Q,0).

Proof. The assumed conditions imply B sin 6Q -G cos <5Q>0,

~DC(6)L >0 and ^-5-Dc(6)L >0. Hence 69 <0, by (3.8).
00 °0 d6 °0
Theorem 2.1 now applies, guaranteeing that the oscillations are stable,

locally unique at (<SQ,0) and occur for p>p,i.e., r<r. £]

The oscillations we have studied in this section have been observed

in practice and are an example of the so-called "hunting" oscillations.

See Wagner [9] for an early study of the appearance of hunting oscilla

tions in synchronous machines having significant armature resistance.

3.2 Frequency Dependence of the Electrical Torque

Equation (3.1) is derived from the torque balance equation

M6 + D6 = T -T (3.10)
m e

where T (T ) is the mechanical driving (electrical retarding) torque on
me

the generator shaft. The delivered electrical power P=B sin 6
«

+ G(l-cos 6) is related to the electrical torque by Pe= (^o+<s^Te wnere

(Dn vis the synchronous frequency and 6 is the instantanteous deviation

from o)Q. Take p=-D as the bifurcation parameter and rewrite (3.10) as

(M has been normalized to 1):

6 = u)

n . T B sin 6+ G(l-cos 6) f* mu, = pco + Tm jppjj- (3.11)
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At the equilibrium (6Q,u)=0) we find that hypotheses (H1)-(H4) are

satisfied for Pc =-Tm/Wn and wc =(B cos 6n +G sin ^O^O' wnicn we assume

to be positive. The system is transformed into real canonical form by

again defining Yi^-Sh* y2 =-w/w . Equation (2.4) of Theorem 2.2 will

then yield

h -"cV^ (3J2)
giving

Theorem 3.2. Suppose B cos 6Q +G sin 6Q>0 and Tm>0. Then (3.11)

has an unstable periodic solution for each D>Tm/u)0 sufficiently near

T /o)q. The oscillations are unique in a neighborhood of (6Q,0), and

their period is near 2tt/(jo0/(B cos <5q +G sin 6Q).

Note that bifurcation to stable orbits would occur in the set up above

if T <0 (so the machine is a motor), but the critical damping would be

negative.

3.3 Lossy Transmission Line

Next we consider the case of two generators connected by a lossy

transmission line. If the generators each have constant damping, the

swing equations governing their dynamics take the form

61 +D.j6.| = io0(P.|-B sin(6.j-62) +G cos(6-|-62))

(3.13)

62 +D2<$2 =o)q(P2+B sin(61-62) +Gcos^-^))

upon dividing each equation by the corresponding machine's inertia

(o)q is a scaling factor of order MT, i=l,2,; a)Q =2irfQ). It has been

shown in Arapostathis, Sastry, and Varaiya [11] that if the line is

lossless, i.e., G= 0, then (3.13) has no periodic solutions. The

direct state-space formulation of (3.13) as a set of four first-order
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differential equations has a zero eigenvalue in its spectrum, precluding

use of the Hopf bifurcation theorem as stated. Instead, let x-j := 6-,-62,

x« := x, and x~ := 62, yielding the equivalent three-dimensional system

xl =x2

x2 =a)0^Pl'P2^ "D1X2+^D2"Dl^X3"2Ba)0 Sin Xl (3.14)

x3 = aJ0P2 "D2X3+a)0^B S™ Xl +G C0S Xl^ •

The Jacobian of (3.14) at the equilibrium (x.j,x2,x3) is

0 1 C

J=I -2Ba)Qcos xfj* -D-j Dg-D^
AB cos x,-G sin x, 0 -D2

and its characteristic equation is

A3+(D-,+D2)A2+(D-|D2+2Boj0cos x^AH-Bw0(D.j+D2)cos x^+Gu^D^D-, )sin x-, =0,

Hence J will have eigenvalues ±io) if and only if

9 0
ur = DtD0 + 2Bo)ncos Xt
c '2 ° ] (3.15)
=[Bu)0(D.,+D2)cos x^ +GcaQfDg-D^sin x^]/(D-|+D2)

The third eigenvalue of Jwould then be A3 =-(D-j+D2). Clearly, for

(3.15) to hold with G=0 it is necessary that cos x^ <0. In normal

operation, however, we should have |^-62| <?r so that cos x^ >0.

Therefore, require G>0, i.e., assume the transmission line is lossy.

G,

B'

-i r
Now, letting 9 := tan" (-k-), (3.15) implies

DtD^Dt+DJ n n
121 2 - =-D2 cos(x°+e) - D] cos(xf-e). (3.16)

Go)0/l+(B/G)2

For (3.16) to hold with x^<|- , it is necessary that D2 >D-j and
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xl +Q>J' ^or tne realistic choice B=10G, we must require x, >1.47

radians (84.3°).

The calculations involved in determining the stability of the

bifurcated oscillations of (3.14) are prohibitively tedious to carry out

by hand. Instead, we analyze specific cases numerically using the com

puter program BIF0R2. For the realistic values D, =0.01, D2 =0.25,

P-j =0.6416, P2=-0.653, B=0.65, o)Q= 2irf0= 2tt(60)= 377.0, and letting

p := \/G be the bifurcation parameter, BIF0R2 gives

u}c = 6.638, p2 = -0.638, T2 = 3.850, $2 = 0.987,

pr = 0.252 (so Gr = 0.064), a'(pj = 0.774,
WW w

(using the notation of Theorem 2.1) at the equilibrium (x, =1.481,

x2 =0, x~ =0.142). Recall that p2 is the first coefficient in the

expansion of p(v), and is not to be confused with the mechanical power

P2. Since 32>0 and a'(p )>0, the oscillations are in this case unstable

and occur for p<p , i.e., for G< 0.064. In fact, we have been unable

to find an instance in which $2<0 except in the unrealistic situation

G > B. We therefore conjecture that any Hopf bifurcation for the system

(3.14) with |x, |<j ,D-|,D2<1 and G<B is a bifurcation to unstable

periodic orbits. Similar results have been obtained in the numerical

study of a network of three generators connected by lossy transmission

1ines.

3.4 The Effect of Excitation Control

Van Ness, et al. [13] and many others (cf. [12,14,15]) have consi

dered the effect of excitation system parameters on power system stability

using a combination of simulation and linear analysis. In [13] it was

observed that the stability of a power system was sensitive to changes
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in the amplifier gain K. of the exciter. Oscillations were also

observed to take place, but no rigorous analysis was given. We now

proceed to study this situation in the framework of Hopf bifurcation

theory.

Given a synchronous machine connected to an infinite bus of fixed

voltage E<0, if the transmission line has impedance R^+ jX^ and we

neglect amortisseur effects, armature resistance, armature ty terms and

saturation, we have (see de Mello and Concordia [12])

2 2 2

Vt = Vd + Vq

-V*qB-Vq

V2 =*d ' Eq *Wd (3J7d)
En » E' + (X -X')i .
q q q d d

e q q

i.= x(E -E cos 6) - r E sin <5
d q

i = r(E -E cos 6) + x E sin 6
q q

2H6 +D6 =o>0(Pm-Pe),

where

x:= (X£+Xq)/[R2+(X^+Xq)2], and
r:= R£/[R2 +(X^+Xq)2] .

The notation used here is standard [14] and so it will not be elaborated;

d and q refer to the direct and quadrature axes. The equations above

describe the behavior of the synchronous machine if it is not equipped

with an exciter, i.e., if the field voltage EpD is fixed. Suppose that
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a continuously acting exciter is present, however. Then EFD will no

longer be constant, but will be governed by the dynamics of the exciter.

Following Van Ness, et al. [13], suppose the exciter has the block dia

gram representation in Figure 3 (the IEEE Type 1 excitation system). The

input signal to the exciter is then the machine terminal voltage Vt and

its output is Epp. Neglecting the limiter, the block diagram translates

into the system

TEEFD " "KEEFD + VR -WW

TF*3 ""V3 +̂ (-KEEFD+VEFDSE(EFD» <3-17b>
Vr =-Vka<vref-VV-

The saturation function SE(EFD) is usually approximated as SE(EFD)

= ApXexp(BE„EpD) where the coefficients AEX,BE„ are computed from

saturation data.

To study oscillations in the system (3.17a-b) we assign the values

quoted in Table 1 to the corresponding parameters in the model, and let

p := /K^ be the bifurcation parameter (this ensures that the critical

KA will be positive). The program BIF0R2 then searches for a critical

value p and an equilibrium point of (3.17a-b) for which the hypotheses
w

(H1-H4) of Theorem 2.1 are satisfied. (Of course, (3.17a-b) must first

be expressed explicitly in the form (2.1), but this is an elementary

exercise in algebra.) Since the stability of the bifurcating oscilla

tions is of crucial importance, we study numerically a large number of

cases enabling us to draw some general conclusions on this issue. Each

case is determined by specifying an initial guess for an equilibrium

point of (3.17a-b) and a parameter A which has the effect of changing the

length of the transmission line: R£+jX£ =MR^+JX^) where R^, X^ are
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the nominal values given in Table 1. The mechanical power P and the
m

terminal reference voltage VR£F are adjusted to ensure that the estimate

for an equilibirum is accurate.

We will now give four sets of results which show the qualitatively

distinct possibilities that may arise. The first two cases correspond

to generator action (Pm>0) and the last two to motor action (P <0).

We give an example with e2 >0 and one with 82<0 for each case. Denote

by x° := ($%^E^E°D,V°,V°) an equilibrium point of (3.17a-b).

Example 1. (Pm>0, 32>0) Set Pm=0.937, VR£F=1.130, A=2and consider

the equilibrium x°= (1.351,0,1.105,2.316,0,0.548) of (3.17a-b). BIF0R2
computes the values

u)c = 7.569, p2 = -4.710, T2 = 0.164, 32 = 0.359,

pr = 13.919 (so KA = 193.74), a'(pj = 0.038,
u ac c

using the notation of Theorem 2.1. Hence a bifurcation to periodic

orbits occurs at the critical value K- =193.74, and (3.17a-b) has a

locally unique unstable periodic solution in the vicinity of x for

each KA<193.74 with (193.74-KA) sufficiently small, by Theorem 2.1.

Example 2. (Pm>0, $2<0) Set Pm=2.272, VREF=1.244, A=0.8 and consi

der the equilibrium x = (1.363, 0, 1.420, 4.525, 0, 3.686). We have

0). = 11.474, p2 = 2.612, T2 = 0.129, $2 = -0.206

pr = 18.975 (so K. = 360.05), a"(pj = 0.039.c mc c

Hence (3.17a-b) has a stable periodic solution, locally unique at x ,

for each KA>360.05 with (KA- 360.05) sufficiently small.
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Example 3. (Pm<0, S2>0) Set Pm= -0.891, VREF= 1.098, A=2. At the

equilibrium x°= (-1.353, 0, 1.103, 2.359, 0, 0.573), BIF0R2 yields

a) = 6.895, p2 = -3.120, T2 = 0.211, $2 = 0.601,

pc = 11.319 (so KA = 128.12), a'(pc) =0.096.
c

Hence (3.17a-b) has an unstable periodic solution, locally unique at

x ,for each KA< 128.12 with (128.12-KA) sufficiently small.

Example 4. (Pm<0, B2<0) Set Pm=-1.939, VRE[r= 1.230, A=0.8. At the

equilibrium x°= (-1.229, 0, 1.436, 4.292, 0, 3.088), BIF0R2 gives

U) = 11.457, p2 = 1.765, T2 = 0.121, $2 = -0.103,

pr = 19.561 (so Kfl = 382.63), a'(pr) = 0.0292.
C M _ C

c

Hence (3.17a-b) has a stable periodic solution, locally unique at x ,

for each KA>382.63 with (KA-382.63) sufficiently small.

The examples above show that bifurcation to either stable or unstable

oscillations can occur in each of the cases P >0 and P <0. However,
m m

a very large number of numerical tests has indicated the following

general tendency: if the system (3.17a-b) undergoes a Hopf bifurcation

as KA is varied, then e2>0. That is, Examples 1 and 3 above are indica

tive of the vast majority of numerical results we have obtained for this

system using BIF0R2. Bifurcation to stable oscillations ($2<0) was also

observed frequently in the motor case (P^OK but the values of VR were

unacceptably large; see Examples 2 and 4. It should also be noted that

imaginary axis eigenvalue crossings were obtained only for large values

of the equilibrium angle magnitude |<5Q|. This agrees with the results

of Van Ness, et al. [13] and is indicated in Examples 1-4.
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4. Conclusions

The prediction of nonlinear oscillations in power systems has

invariably been based on linearized models with subsequent validation by

simulation of the nonlinear model. The Hopf bifurcation theorem confirms

that such a prediction will usually be true. However, to get a more

detailed account of the amplitude and stability of the oscillations,

linearized analysis is insufficient. Such an account is available using

more recent elaborations of the Hopf Theorem. Most important for

engineering is the development of computer packages that claculate the

various coefficients which determine the properties of the oscillations.

In this paper we have demonstrated the usefulness of the theory and the

BIF0R2 program through a study of oscillations in models that are more

detailed than the classical swing equation. We have confirmed the existence

of oscillations that have been observed by others and determined their

hitherto unknown stability properties. We hope that the paper will

stimulate others to use the Hopf theory and associated computer packages.
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Figure Captions

1. Illustration of Theorem 2.1.

2. Machine connected to infinite bus

3. IEEE Type 1 excitation system.
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Synchronous Machine Exciter Transrrtission Line

H = 2.37 sec KE =-0.05 V - 0.02

D = 1 p.u. KF = 0.02 x$ = 0.40

Xd = 1.7 rE = 0.50 sec R^ = XRJ

X'd = 0.245 *> = 0.60 sec *JL~- \X%

Xq = 1.64 TA = 0.10 sec

aio = 377.0 rod/sec AEx= 0.09

Td'0 = 5.9 sec bex = 0.50

Table 1
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