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ABSTRACT

It is known that the problem of minimizing a convex function f(x) over a

compact subset X of B can be expressed as minimizing max {g(x, y) |y e x}

where g is a"support"function for f (f(x) > g(x, y) for all y e X and

f(x) = g(x, x)) . Standard outer approximation theory can then be employed

to obtain outer approximation algorithms with procedures for dropping

previous cuts. It is shown here how this methodology can be extended to non-

convex non-differentiable functions.
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1. INTRODUCTION

Consider the problem of minimizing f(x) over a compact subset X of 3Rn. If f is

non-differentiable but locally Lipschitz continuous, a necessary con

dition of optimality is that 0 e 3f(x)r where 3f is the generalized gradient

of f. The point-to-set map xN 3f(x) is upper-semi-continuous but the

obvious extension of the classical steepest descent algorithm, using

s(x) = -g(x), g(x) A arg min {||g|| g e 3f(x)}, as the search direction

(g(x) = Vf(x) if f is differentiable at x), does not work since local uniform

upper-semi-continuity is required for convergence. In order to achieve con

vergence, using analogs of conventional algorithms, 3f(x) in the above

expression for g(x) is usually replaced by a suitably chosen set G which

includes 3f(x) as a subset. Thus if f is convex G is constructed as a

bundle of current and previous subgradients [1]. If f is merely locally

Lipschitz continuous 3f is replaced by 3 f(x), a bundle of generalized

gradients obtained by exploring completely an £-neighbourhood of x,together

with a procedure for reducing e to zero [2,3,4]. This is computationally

prohibitive so implementable algorithms require that f be semi-smooth

C5,6] in which case a suitable approximation to 3 f can be obtained by

exploration of a finite number of points on a finite'set of search directions.

Hence, from a practical point of view, current algorithms for non-

differentiable optimization are restricted to the case where f is convex

or f is semi-smooth. It is the main purpose of this paper to extend the

range of problems for which implementable algorithms are available. Speci

fically, we present in this paper an algorithm for minimizing f(x) over

X when f is globally Lipschitz continuous (but not necessarily convex or

semi-smooth) .
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The approach adopted in this paper can best be appreciated by considering

the case when f is convex. In this case, existing algorithms exploit the

fact that, by duality, the minimization problem can be expressed as a

min-max problem, which requires, at each x, the solution of

max {f(x) + <g, x - y>|y € X, g e 3f(y)} where 3f is .the subgradient of f.

The cutting plane or outer approximation [7,8] algorithms replace X at

iteration i by X which is equal tooris a subset of the set {x , x.,..., x, ,}

of previously generated points. Constraint dropping schemes, such as those

described in [9], can be employed to reduce X. to a small subset of

{xQ, x^,..., Xj.i} thus substantially reducing the complexity of the maxi

mization stage, without destroying the convergence properties of the algorithm.

In this paper we exploit an extension [10] of the concept of duality to

non-convex functions. If we assume that f is globally Lipschitz.

continuous with Lipschitz constant K, then there exists a"support? function

gfc/ parametrized by k, such that f(x) is identical to max {g.(x, y) |y e x} ,

provided that k ^ K. Hence the minimization problem may again be expressed

as a min-max problem which can be solved using a standard outer approximation

algorithm [8] with constraint dropping [9].

The paper is organized as follows. In Section 2 we define a suitable"support"

function g, so that the minimization problem may be redefined as a min-max

problem and present an outer-approximationalgorithm which solves the global minimiz -

atioh problem. InSection 3 we show how previous elements of X , may be discarded

(thus reducing the complexity of the maximization stage) without damaging

the convergence properties of the algorithm. In Section 4 we show how the
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algorithm may be modified to compute a local rather than a global

minimum, thus reducing computational effort. In all the above we assume

that the global Lipschitz constant K is known. In Section 5 we consider

briefly the problem of selecting a suitable approximation to K when it is

not known.

2. AN OUTER.APPROXIMATION ALGORITHM

We consider initially the problem

P : min {f(x) |x € X> (2.1)

where X is a compact subset of ]R and f : X •*• JR is assumed to be globally

Lipschitz continuous with Lipschitz constant K, so that

|f(x) - f(y)| * K||x - y|l (2.2)

for all x, y € X. For all k e 3R let g : X x X -*• 3R be defined by:

gk(x, y) Af(y) - k|| x -y^ . (2.3)

It follows from (2.3) that gk(x, y) £ f(y) and that gk(x, x) = f(x) for all

x, y in X and all k > K. Hence we have

Proposition 1

For all k £ K, for all x € X

f(x) « max {g.(x, y) |y e x} . (2.4)
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Moreover

arg max {gk(x, y)|y € x} = x. (2.5)
D

Hence, provided that k is greater than or equal to K, problem P is equiv

alent to problem

P = min max {g (x, y)} (2.6)
xeX yex

We can now state our first algorithm for solving min {f (x) |x € x}.

Algorithm 1

Data: x e X; X , a discrete subset of X; k ^ K.

Step 0: Set i = 0.

Step 1: Compute x., a solution of

min max {g, (x, y)|x € X, y € X.}.
x y

Step 2: Set X = X. U {x.}.

Step 3: Set i = i +1. Go to Step 1. 0

CSL
The convergen/f properties of this algorithm are easily established. Let

f denote min {f(x)|x e X>.
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Theorem 1

Suppose f is globally Lipschitz continuous with Lipschitz constant K

and that k >_ K. Then any accumulation point x* of an infinite

sequence {x^ generated by Algorithm 1 is a global solution of

min {f(x)|x €X> so that f(x*) = f°. Moreover max {g (x., y) |y £X }? f(
y k L 1

as i -*• oo. q

Proof

For all Y cX let \\) :X -»• 3R and ij£ e ]R be defined by:

and

lp (x) A max {g (x, y) |y c Y>, (2.7)
Y K

* A min {i|i (x) |x «?. X>. (2.8)

Clearly f(x±) >f for all iand f(x±) i*. f(x*) £ f°'for some subsequence
I of {o, 1, 2... }. Since X <=X it follows that i|; (x.) = \\)° <

^" ItJ. X. 1 X. ""—

0 1 x
^x (xi+i) = -x for a11 i so that K (x^ ^ w*' say> wi + ".i+l i+1 Ai *

Also ^ (x±) =^x < f° for all i so that w* £ f0-. But ty (x.) >f (x.)
i i Xi i "" 3

- kj| x± - x ||w for all i, j 6 I, i > j so that w* j> f(x*) _> f°.
Hence w* = f(x*) = f°. n

If X is defined by affine inequalities (i.e. X A {x|cx + d < o})
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then the optimization problem in Step 1 may be expressed (for some

A, b, c) in the form:

min {w|gk(x, y) £ w for all ye X ;Cx• +d£ o}
x,w

= min {w|ax + bw + c£ 0, Cx + d£ o}, (2.9)
x,w

i.e. as a linear program.

Since in Algorithm 1 the cardinality of the set X. increases mono-

tonically, thus increasing the complexity of the optimization problem

in Step 1, we examine next the possibility of discarding element from

X..
1

3. REDUCING X.̂

In this section we show how the growth of the set X. may be moderated
• i

by discarding at each iteration those elements which are estimated to be

irrelevant. At iteration i only those elements x. in X. for which

f(x.) - ty (x.) is 'sufficiently large' are retained. To quantify
3 X. 3

'sufficiently large' we introduce a double indexed sequence {e. .} having

the following properties:

i) e. . = 0 and e. . > 0 for all i, j, i > j,
1,1 i,^ -" J'

ii) e. .7* £., uniformly in j, as i -»• » f

iii) £ A O as j + «.
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1,3 =

case £. = 6^. At iteration i, the element x. of X. is retained in X. . if

An example of such a sequence is £. . A 6"' - 6 where 6 € (0, 1) ; in this

'j i i+1

f(x.) - 1{>V (x.) > £, .. (3.1)

Hence we obtain

Algorithm 2

Data: x € X; X , a discrete subset of X;

k > K; {£. .}.

Step 0: Set i = 0.

Step 1: Compute x., the solution of

min max {g, (x, y)|x e x, y e X.}.
x y

Step 2: Set X. . = {x,} u {x. £ X.|f(x.) - ipv (x.) > £. .}.
1+1 i 3 i 3 X. 3 1,3

Step 3: Set i = i+1. Go to Step 1. Q

To establish that the algorithm generates convergent subsequences we

require the following results.

Proposition 1

If {x.} is a sequence of discrete subsets of X and {x.} a sequence of
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points in X satisfying

(i) x. •+• x*,

(ii) ^x (x±) -»• \\)x(x*) = f(x*),

(iii) ^(x^ -*£

as i -*• oof then

f(x*) = f°.

Proof

From (ii) and (iii), i|> •+ f(x*) as i * », since ^ < f° for all
i Q Xi "

i it follows that f(x*) £ f . Because f° Amin {f(x) |x £ x} £ f(x*) ,

it follows that f(x*) = f°. n

Our main result is

Theorem 2

Suppose f is globally Lipschitz continuous with Lipschitz constant K and

that k ^ K. Then any accumulation point x* of an infinite sequence {x.}

generated by Algorithm 2 is a global solution of min {f(x) Ix ex} .
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Proof

Since {x. } is compact so is {ty (x.) }. Consider therefore a subsequence
i a. i

1 I II of {b, 1, 2,... } such that x. —*• x* and ij; (x.) —*• w*. From Step 2,
1 A • 1

- 1

i|j (x.) = i|> for all i. If we can show that w* = f(x*) , it follows from
A . 1 A.
1 1

Proposition 1 that f = f(x*).

Assume, therefore, contrary to what is to be proven, that w* < ty (x*) = f(x*)
A

It follows that there exists a j^e I such that ^„(x.) -ill. (xj > e?> £. .
0 X 3 TX j 1,3

for all i, j se I such that i > j > j^. Hence x. « X. so that
— 0 3 i

*x Cx.) > £(x ) - k|| x -x \\a
i J J

for all i, j 6 I, i > j j> jQ. Consequently w* j> f(x*) , contradicting our

assumption that w* < f(x*). Hence w* = f(x*), i.e. ip (x.) -^s- f(x*) .
A a 1

By Proposition 1, f(x*) = f . g

*

Hence Algorithm 2 solves the global minimization problem min {f(x) |x e x}.

Of course, considerable computational expense is involved. In effect ^
A ,

1

must become an increasingly good approximation to f so that the cardinality

of Xi eventually becomes very high. Hence we investigate next an algorithm

for determining a local rather than a global minimum.

4. DETERMINATION OF A LOCAL MINIMUM

We wish to compute an x* such that x* minimizes f over a 6-neighbourhood

of x*. Thus now we merely require that if; becomes an increasingly good
Xi
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approximation to f over this neighbourhood, a much less stringent

condition than that required for global minimization. We assume

again that k > K.

For all x eX, 5 > 0, Y cX let Ng(x) denote the set {x* £ X

and let ffi : X -*• 3R and ^ ~ : X -»• H be defined by

x' - x|L< 6}

f°(x) Amin {f(x')|x'.e N6(x)} (4.1)
x'

i|£ 6(x) Amin {^y(x')|x' eN^tx)} (4.2)

A point x* in X is a local minimizer for min{f(x)\x € x} if f*(x*) = f(x*)
x

and is local minimizer for min{i[> (x) |x e x} If ip *(**) = ^v(x*) .
v Y Y,0 Y

We can now state our algorithm for determining local minima of f(x).

Algorithm 3

Data: x « X; X , a discrete subset of X;

5 > 0; k > K; {£. .}.

Step 0: Set i = 0.

Step 1: Compute x. £ X such that

*X.,6(xi> =V(xi>-
1 1

Step 2: Set X. . = {x.} u {x. € X.If(x.) - ij/v (x.) > £. .}
i+l i 3 ID j3 x'3



-11 -

Step 3: Set i » i + 1. Go to Step 1. Q

To an.al.yse this algorithm we require an extension of Proposition 1.

Proposition 2

If (xi) is a sequence of discrete subsets of X and {x.} a sequence of points

in X satisfying

(i) x. —• x*,
i '

(ii) i|ix (XjL) -*. ip (x*) = f(x*),
i

(iii) ifi (x ) - \\P (X.) -* oxi 1 xi,o 1

as i -*• », then

f°(x*) = f (x*).

Proof

From .(ii) and (iii), \\P Ax) +'f{x*) as i -»• «. Since \\P .(x.) < f?(x*)
A. ,Q 1 X.,ol — 0
0 *• o

for all i, and since f~ is continuous, it follows that.f(x*) < f?(x*) .
0 — o .

Because f^(x*) £ f(x*) (by definition) it follows that f*(x*) = f(x*),

i.e. x* is a local minimizer of f. q

We can now establish the convergence.properties of Algorithm 3
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Theorem 3

Suppose f is globally Lipschitz continuous with Lipschitz constant K

and that k ^ K. Then any accumulation point x* of an infinite sequence

{x^} generated by Algorithm 3 is a local minimizer of min {f(x) |x € X>

(in the sense that f?(x*) = f(x*))#

Proof

Consider a subsequence I of {o, 1, 2,... } such that x ^- x* and

^X- ^i* "*"*" w** Prom Step 2of the algorithm \£ .(x,) = \\i (x.)
i A, , Q 1 A, 1

for all i, so that (from Proposition 2) f*(x*) = f(x*) provided

that w* = f(x*). But this is established in the proof of Theorem 2.

Hence f°(x*) = f(x*). •

To conclude we need to provide a subalgorithm, required in Step 1, for

determining a local- minimum of to . This problem is no longer equivalent
A..

1

to a linear program. A suitable subalgorithm is

Subalgorithm for Step 1

Data: X^ e X, 5 > 0, k, x .

Step 0: Set j = 0. Set xrt = x, ,
0 i-1

Step 1: Compute x., a solution of

min {to (x).|x € Nx(x. ,)}.
X. ' 0 1—1

XI
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Step 2: If \\P Ax ) = ip (x )
x±,0 J x± D

set x.= x. and stop. Else

set j » j + 1 and go to Step 1. D

The minimization in Step 1 can be recast as a linear program. The

program terminates in a finite number of iterations. In practice it may be

desirable to vary 5, starting with a high value and reducing it finitely often

to a suitable small value.

5. CHOOSING k .

Until now we have assumed that K is known, or, more precisely, that

k > K. We investigate here a heuristic for choosing k when K is not

known. At iteration i for all x let K. (x) (our current estimate of K at

x) be defined by:

K(x) Amax {|f(x) -f(y) |/ || x-y^|y eX±} (5.1)
y

Let y > 1 be given. Our modified algorithm replaces Step 1 in Algorithms

1 and 2 by

r -2 !
Step 1': Choose x. and k. e Ik. ,, yk. ., y k. .,...j

* ii' i-l i-l i-l

such that k. > yk.(x.) and x. is a solution of
i — ' i i i

min max {g (x, y)|x e X, y e X.}.
x y i

It is relatively simple to construct an algorithm to determine such an

x., k. in a finite number of iterations. Because k is increased to
11 i

at least yk. , if it is increased at all, k. can only be increased a finite
' i-l i
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number of times so that k. = k for all i sufficiently large. However

it is not necessarily true that k ^ K. We conjecture that the algorithm

approximates the solution to the original problem in the sense that it

may overlook steep valleys. This latter possibility may be reduced by

choosing (in Step l1) k± to satisfy k. £ y£.(x) for aset of points in a

small neighbourhood of x..

A similar updating rule may be employed in Algorithm 3.

6. CONCLUSIONS

The algorithm is simple to describe and implement. Its main disadvantage is,

of course, the amount of computation required. This is particularly severe

if Algorithm 1 is employed. It is possible, however, that Algorithm 3 together

with the procedure, described in Section 5, for choosing k., may be acceptable

for problems which do not possess the semi-smooth property required by other

algorithms for non-differentiable optimization.
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