

Copyright © 1983, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

USING A RELATIONAL DATA BASE SYSTEM

TO STORE TEXT

by

Gordana M. Pavlovic

Memorandum No. UCB/ERL M83/44

21 July 1983

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Using a relational data base system to store text

by

Gordana M. Pavlovic

Abstract

One way of handling texts in relational data base sys

tems is a lexical- based text storing. Lexical processing

of texts stored in such a way is described. Experiments in

automatic indexing, abstracting and text search as well as

some editing facilities are described.

J_. Introduction

It was proposed [WONG 82] that relational data base

system should be enhanced to support text processing by sup

porting lexical data types to be used in domains.

The main characteristics of this approach to handling

documents is that a token (word), as a lexical and semantic

unit, is a basic unit of a text, as opposed to an arbitrary

segmentation as strings or lines [ST0N 82] are. Neverthe

less, all basic concepts investigated in the context of

string based handling of texts, especially variable width

and ordered relations, are also useful in this approach.

Word-based fragmentation of texts makes it easy to apply the

whole group of lexical operations on texts (ex. automatic

indexing, abstracting, bibliographic retrieval, fact

retrieval).

This paper is an attempt to use existing capabilities

of relational data base systems, INGRES [INGR 81] in partic

ular, to handle lexical data types, and to add lexical pro

cessing capabilities to such systems. This was to be done

in two ways: by defining and implementing as many operations

as possible that concern texts, and by investigating dif

ferent storage structures for storing lexical data types.

We have concentrated on lexical operations -automatic

indexing, abstracting, retrieval - for which this approach

is especially suitable, as well as INGRES itself becaus.e of

its aggregation functions like count and its storage struc

tures, both primary and secondary; we also treat, in some

extent, editing operations, in order to examine whether they

are compatible with this approach.

The global chart of text flow directed by the opera

tions that are presented in this paper is depicted in Figure

1.

-\ RETRIEVED]
TEXT

2, Text scan program

Program for text scanning takes, as an input, a source

text and produces, as an output, a file containing tokens

(sequence of characters that has a meaning) and two kinds of

informations about each token in the text: lexical type of

informations concerning paragraph, sentence and sequence in

which the token is found, and source text format informa

tions concerning the line in which the token is found. Out

put records that are load into the data base are of the form

t, type, len, 1#, tl#, p#, s#, sq#, tsq#

where the meaning of individual fields are as follows:

t - token,

type - type of the token (word, numeral, etc.),

len - length of the token in characters,

1# - line number,

tl# - token number inside a line,

p# - paragraph number,

s# - sentence number,

sq# - sequence number,

tsq# - token number inside a sequence.

It is obvious that some information is duplicated.

Since lexical informations can be always deduced from the

source text and the source text can be completely regen

erated from the source text format informations, lexical

informations can be deduced from source text format informa

tions. We choose this model because it is easier to perform

different kinds of operations if we want to execute them on

the same file (i.e. relation).

If we are interested only in one special kind of opera

tions (only lexical or only editing operations), less infor

mation (and fewer fields) is sufficient.

Our text scan program, as an example of such programs,

assumes that source text uses NR0FF for formating and, con

sequently, that type of a token can be as follows (notation

is a regular_expression-like notation):

word: l(l|d)* j 1.

1 and d stand for letter and digit;

numeral: (+j-je)(d+|d*.d+)

e is a symbol for empty string;

command: .w+

where w stands for "whatever", provided a dot is the first

character in a line and this is not a numeral; all charac

ters in a line constitute a command, except for section

heading commands for which a command is a sequence of char

acters until the name of a section is reached;

punctuation: p+

where p is a punctuation character;

heading: a word or a numeral in a line beginning with a sec

tion command;

footnote: a word or a numeral between commands for opening

and closing a footnote;

bibliographic: a word or a numeral after the command for the

bibliographic portion of a text.

Also, paragraph number, starting with 1 (except for

title and author that are assigned paragraph number 0) , is

incremented whenever any of new paragraph commands is

reached. Sentence (sequence) number, starting with 1 in

each paragraph (sentence), is incremented whenever sentence

(sequence) terminator is reached, where sentence (sequence)

terminator is any of the symbols

,j?i! (,j;|:) - maybe followed by right parenthesis.

Other fields have the obvious meanings.

For example, for an input text beginning with the lines

in Figure 2, a portion of the output is depicted in Figure

3.

.tp

.sp 2i

.(1C
DEPENDENCIES AND NORMAL FORMS

IN THE RELATIONAL MODEL OF DATA
WITH TWO TYPES OF NULL VALUES
•sp

by
Gordana M. Pavlovic

.)1

.bp

.he »»%»•

.Is 2

.in 0

.sh 1 "Introduction"

.pp

In this paper we first briefly describe the extended rela
tional. ..

Figure 2

type len 1# tl# p# s# sq# tsq# t

c, 3, 1, 1, o,. o, o, o, .tp
c, 6, 2, 1, o, o, o, o, .sp 2i
c, 4, 3, 1, o, o, o, o, .(IC
w, 12, 4, 1, o, o, o, 1, DEPENDENCIES
w, 3, **, 2, o, o, o, 2, AND
w, 6, 4, 3, o, o, o, 3, NORMAL

w, 2, 8, 1, oi o, 0, 17, by
c, 3, 9, 1, o, o, 0, o, •sp

w, 7, 10, 1, o, o, o, 18, Gordana

w, 2, 10, 2, o, o, o, 19, M.

c, 9, 13, 1, o] o, o, o, .he "V

c, 5, 16, 1, oj o, o, 0, .sh 1

p, 1, 16, 2, 1, o, o, 1, it

h, 12, 16, 3, 1, o, o, 2, Introduction

P, 1, 16, 4, 1, o, o, 3, it

C| 3, 17, 1, o, o, o, o, •PP

w, 2, 18, 1, 1, 1, 1, 1, In

w, 4, 18, 2, 1,

Figi

1,

ire 3

1, 2, this

This output is a load into a data base.

More general text scanner can be written, that takes as

an input not only source text, but also the following items:

-possible types of tokens that should be considered,

defined by regular expressions along with additional condi

tions that should be tested;

-actions implied by each found token (setting condi

tions) ,

-the order in which different types of tokens should be

examined.

8

Policy of setting paragraph, sentence, sequence and

token numbers can be included in actions implied by some

token types, and thus contained in input definitions rather

then in scan program itself. Scan program is, then, an

extension of finite automaton that recognizes tokens and

produces actions defined in input by corresponding token

types; program also keeps track of line and token numbers.

In this way the same scan program would work for dif

ferent users environments -independently on formatting tool

used in a source text (e.g. NROFF) or on characteristics of

the source text itself, as far as the source text has the

predefined syntax structure (paragraph, sentence, sequence,

token).

Our example of scan program that assumes NROFF as for

matting tool of source text, would be, then, just an

instance of such a general scanner, whose input, except the

source text, can be some form of the description of token

types (types in boxes), conditions, actions, paragraphs,

sentences and sequences (Figure 4).

condition indicators: indsh /*section header*/,
indft /*footnote*/,
indbb /*beginning bibliographic*/
/*all set to zero*/

token_type condition token

number

sign
nh

nn

lpn

indsh=1

indft=1

indbb=1

tl#=1

digitj!
digit .digit
+1 - i e

digit!«!space
letter!digit!punct!space
letter!punct

Iheading! word!numeral

ifootnote! word!numeral

Jbibliogr! word!numeral

icommand i .pp!.lp!

{wordi

{numerali

punctuation!

(.sh!.uh!.$p!.$0) nh !
.(f!

*)fS,
.lpn nn ! #
.digit letter"1" nn

letter (letter{digit)*!
letter

sign number

ioii i (• 9 • M \i
. i : i I i \ • \ : \ i)) \

i.i.i / i . i . \ \ i
,i,i*i \,i,i*J) \

punct+

action

indsh=0,
p#sp#+1,
s#=q#=1,
tsq#=0;

indsh=1;
indft=1;
indft=0;
indbb=1;

s#=a#+1,
sq#=1,tsq#=0;
sq#=sq#+1,
tsq#=0;

Letter, digit and punct are single characters with their

usual meaning; space is blank or tab.

Figure 4

10

3>. Lexical processing

First group of operations that we wanted to implement

were

-automatic indexing

-keywords extracting

-automatic abstracting

-retrieval

These operations are the most common operations found

in references concerning text processing, and they are based

just on words as text units, so that our approach in han

dling texts is especially suitable for their implementation.

Automatic indexing consists of extracting from (or

assigning to) the text significant words, whatever it means,

in an automated process.

Keywords extracting consists of deriving from the text

the most relevant terms, ones that can be descriptors of a

text, whatever the notion of "relevancy" means.

Automatic abstracting is an automated process of

extracting the most significant sentences from a given text,

where significance of a sentence is a function of signifi

cance of words in it.

Retrieval has more than one meaning. Bibliographic

retrieval is a process in which, for a given request

describing a topic, system responds by a list of references

(maybe ordered by a level of significance). Text search is

11

a search for particular paragraphs or sentences from a given

text, that satisfy given request.

There are many different techniques and methods for

automatic keywords extracting, indexing, abstracting and

retrieval, based on how one defines notions of significant

words, the most relevant terms, the most significant sen

tences, significance of a text [STEV 70, SPAR 76, LUHN 63,

SALT 81, SWAN 631. Research in that field has been being

carried for last twenty years. Main objective of those

investigations, (since indexing and abstracting influence

retrieval) is to increase the so-called recall and precision

of the documents retrieved. These notions are defined as

follows:

number of relevant documents retrieved

recall =

number of relevant documents in a collection

number of relevant documents retrieved

precision =
number of documents retrieved

We will briefly review some of the techniques and

approaches for indexing, abstracting and retrieval.

In automatic indexing there are two basically different

methods [STEV 70]:

-derived indices

-assigned indices

Derived indices are words from the text. They can

include all words from a text except for "stop" words (arti

cles, prepositions, auxiliary verbs, pronouns), or words

12

from titles, or cited references, each accompanied by a list

of source documents which cite it.

Derivative indices can also be modified in a sense that

not all of non-stop words from a text (even from title) are

indices. In modified derivative indexing there are two

basic approaches: syntactic and semantic indexing. As syn

tactic indices usually some special syntactic word groups

are chosen -ex. nouns, or adjective-noun combinations [BAXE

62]. Semantic approach attempts to determine significance

of a term on the basis of how meaningful for a given text

that term is. The measure of "meaningfulness" is chiefly

based on statistical informations like frequency of a term

in a given text, or relative frequency with respect to the

whole collection [BARH 59], or frequency of a term rela

tively to the size of a text [SPAR 74], or position of the

first occurrence of a term in a text [LESK 62], or the fre

quency in "relevant" texts [SALT 81], etc.

There is a special method - classification - devoted to

expanding the index with terms that tend to co-occur with

index terms in a given collection [SPAR 76].

On the basis of all the above mentioned criteria, terms

may be included in the index with different "weights". In

retrieval, weights of index terms that appear in a request

will be used to determine the overall "weight" (significance

) of a text.

13

Assigned indices are words assigned to a text in the

following way: collection of documents is investigated in

order to obtain index terms for special categories of texts

(by statistical methods as correlation matrix, for instance

[B0RK 64]), than a new text is appended to some of those

categories if it contains more than some number of its index

terms, and all of the index terms for the specific collec

tion become the index terms for that text (ex. [MAR0 61]).

Both assigned and derivative indices can be weighted on

the basis of the criteria mentioned for derivative indices.

In automatic abstracting, sentences from a given text

are extracted that contain the highest concentration of the

most important words, where importance of a word is its

weight, whichever criterion of those mentioned before is

chosen for terms weighing [LUHN 58, CARR 81].

Text search is defined by a given request; only those

paragraphs (or sentences) might be chosen that contain given

terms, or paragraphs and sentences might be weighted on the

basis of previous criteria and a given request.

In bibliographic retrieval, texts can be chosen by

boolean search - query terms matching with indices of texts

- whichever method for indexing has been chosen, or by

weighing texts on the basis of weights of index terms

appearing in the request or in the request extended by terms

that tend to co-occur, in a given collection, with request

terms (ex. [STIL 62]).

14

Bibliographic retrieval can be expanded to complex

search where not only texts retrieved by previous methods

are chosen, but also texts containing some significant

amount of index terms of previously retrieved texts [ROBE

81], or to interactive on-line retrieval where some of the

previously mentioned methods is applied first, then user is

consulted; if he is not satisfied, some other weighing

scheme is applied and the list of texts retrieved is given;

if the user is not satisfied with any of them, he should be

asked to reformulate his request, maybe using terms assigned

to different categories of texts (if assigned indices are

applied) [SPAR 74].

Our goal was to implement the simplest techniques for

lexical processing as examples of how efficiently relational

system can be used for doing the whole class of techniques.

All other techniques can be implemented using the same tools

of the relational system and lexical-based approach to text

storing; the two we wanted to validate instead of validating

techniques themselves. All programs are written in EQUEL

[INGR 81].

As index terms our program for indexing accepts all

words except STOP-words, ignoring the difference between

upper and lower case letters (STOP-word relation is expli

citly created). Index term relation also contains fre

quences of those terms.

15

Our program for abstracting then chooses keywords -

terms from the index term relation - as index terms, in

dependence on users input, in some special range of fre

quences (the least, the most frequent words, or in the mid

dle -range of frequences), and extracts sentences that con

tain any of the chosen terms.

Since it is obvious that some different index terms are

the same in their meaning (one might be in singular, another

in plural), and that it affects the decision of which word

is more frequent, we create another relation containing

truncated (up to 5 characters) index terms and their fre

quences, and that relation (instead of index term relation)

is actually used in the program for abstracting. The pro

gram also takes as an input the maximum number of sentences

(or words) that the user wants to have in an abstract, and

sentences are then selected (if there are more than

required) as those contained more than one (or two, or

three) truncated keywords or their occurrences.

Since we did not have a text collection, nothing con

cerning bibliographic retrieval has been done. However,

some text search operations can be easily implemented in

QUEL.

We give two examples of such operations and their

QUEL-formulations.

Example J_.

Find all sentences that contain word-phrase "null
values"

16

range of e is text
range of s is text
range of t is text
retrieve (e.all) where e.p#=s.p# and e.s#=s.s# and

s.p#=t.p# and s.s#=t.s# and s.sq#=t.sq# and
t.tl#=s.tl#+1 and s.t="null" and t.l="values"

Example 2.

Find all sentences that contain a word with a root

"val" (root"1(val))
range of e is text
range of s is text
retrieve (e.all) where

e.p#=s.p# and e.s#=s.s# and s.t="val*"

Conclusion that we have come up with, doing experiments

on lexical processing, is that relational systems, INGRES in

particular, and our lexical-based approach to handling

texts, are very suitable for lexical processing.

4. Editing

Implementing efficient editing operations on texts

stored in a described way was not our primary goal.

Nevertheless, one may wish to have that possibility on the

same structure. Hence, we have run examples that cover

nearly all operations of a standard editor. Our intention

is not to show the superiority of this approach for editing

operations, but only that they are possible.

The conclusion is still that this approach is not suit

able for editing operations; a lot of resorting should be

done, although most of it can be postponed until the end of

an editing session (done off-line). Editing would be better

done before source text scanning.

17

In editing operations we can address either line number

and token number inside a line, (illustrated by examples 3

and 4) or we can address lexical unit numbers - token,

sequence, sentence, paragraph numbers (example 5).

Example 3,.

Substitute first occurrences of the word "values" by
the word "value" in lines 5 to 40.

In editor "ed" it is expressed as: 5,40 s/values/value/

In QUEL it is expressed as:

range of e is text
replace e(t="value") where e.l#>=5 and e.l#<=40 and

e.tl#smin(e.tl# by e.l# where e.t="values")

Example Jl.

Move lines 33 to 35 after the line 47.

In "ed" it is expresses as: 33,35 m 47.

In order to formulate this operation in QUEL efficiently,
first some restructuring of the corresponding relation is
required (multiplying all line numbers by some factor, ex.
100). Now, query in QUEL has a form:

range of e is text
replace l(l#=e.l#/100+4700-32) where

e.l#>=3300 and e.l#<=3500.

Then, we need some kind of reordering of line numbers so
that the distance of 100 is preserved between the adjacent
lines, and, even more, lexical units resorting - paragraph,
sentence sequence and token numbers. Both can be done after
the editing session because all informations about texts are
contained in the source text that is reflected on the order
of lines, tokens inside lines and tokens themselves. So,
after the editing session, we can again scan the text that
is now stored in a relation, and, according to the informa
tions found there (new paragraph commands, sentence and
sequence terminators), to resort paragraph, sentence,
sequence and token_in_sequence numbers.

Example 5_.

Move third sentence from the first paragraph into third
paragraph after its second sentence.

18

Similar multiplication as in the example 4 has to be done,
but on paragraph and sentence numbers. In QUEL, query has
the form:

range of e is text
replace e(p#=300, s#=201) where

e.p#=100 and e.s#=300

Again, after the editing session we have to reorder p#, s#
(instead of 1#, tl# as in example 4), as well as to resort
1# and tl# (instead of resorting lexical informations in
example 4).

j5. Storage structures

It is obvious that the efficiency of all operations

mentioned above is highly influenced by the storage struc

ture.

We have run examples of editing operations on all

existing INGRES storage structures. Although we do not have

yet reliable timing results, ordered relations seem to be

superior, at least in formulating queries. Multi

dimensional ordered relations seem to be the most suitable

structure.

Also, both primary and secondary structures (secondary

indices) of INGRES are very useful in dealing with lexical

processing.

6^. Conclusion

This paper presents some initial results on performing

lexical text processing in INGRES. Two main areas covered

are lexical-based text storing and lexical operations on

texts - automatic indexing, abstracting and text search.

Experiments are carried out on editing facilities on text

19

stored in such a way, as well as on storage structures, and

results show that, while this approach is especially suit

able for lexical operations, editing operations can be done

but in less efficient way. Future plans include:

- efficiency investigations in a sense of looking

for the most appropriate, new storage structure

and some data compression methods;

-bibliographic retrieval;

- design of a structured dictionary containing

linguistic informations about words and providing

for fact retrieval from the textual database.

References

[BARH 59] Y.Bar-Hillel,The mechanization of literature

searching, in National Physical Laboratory,"Mechanization of

thought processes", Symposium No.10,vol11,1959,p.791-807.

[BAXE 62] P.B.Baxedale,An empirical model for computer

indexing, in Machine indexing, American U., 1962, p.207-218

[BORK 64] H.Borko,M.D.Bernick,Toward the establishment of a

computer based classification system for scientific documen

tation, Rept.no.TM-1763,System development corp.,Santa Mon

ica, Cal, Feb 1964, 47.p

[CARR 81] J.M.Carroll, Content analysis as a word-processing

option, in Proc. of the fourth intern, conf. on information

storage and retrieval, Oakland, Cal, 1981, ACMSIGIR,

vol.XVI, no1, 1981, p.126-131

[INGR 81] INGRES - VERSION 7 Reference Manual, Electronic

20

Research Lab, University of California, Berkeley, Memorandum

No. UCB/ERL M81/61, 1981

[LESK 62] M.Lesk,E.Storm, A computer experiment for sentence

extraction, Section I, in G.Salton, Information Storage and

Retrieval, Rept.no.ISR-2, Sept 1962, p.1-1 to 1-31

[LUHN 58] H.P.Luhn, The automatic creation of literature

abstracts (Auto-abstracts), IBM J. Research and Development

2, 1958, p.129-165

[LUHN 60] H.P.Luhn, Keyword_in__context index for technical

literature (KWIC Index), In American Documentation 11, 1960,

p.288-295

[LUHN 63] H.P.Luhn, ed. Automation and scientific communica

tion, Short papers, Pt.1, American Documentation Institute,

Washington, D.C, 1963, p.1-128; also -Pt.2, p.129-384

[MAR0 61] M.E.Maron, Automatic indexing: an experimental

inquiry, in J. ACM 8, 1961, p.404-417

[ROBE 81] S.E.Robertson, Term frequency and term value, In

Proc. of the fourth intern, conf. on information storage and

retrieval, Oakland, Cal, 1981, ACMSIGIR, vol.XVI, no1, 1981,

p.22-29

[SALT 81] G.Salton, H.Wu, The measurement of term importance

in automatic indexing, in Journal of the American Society

for Information Science, May 1981, 175-186

[SPAR 74] J.K.Sparck, Automatic indexing, in Journal of

Documentation, 30, 1974, p.393-432

[SPAR 76] J.K.Sparck, R.G.Bates, Research on automatic

indexing 1974-1976, Computer Lab. University of Cambridge,

21

England, 1976

[STEV 70] M.E.Stevens, Automatic indexing: A

state__of__the_art report, National Bureau of Standards Mono

graph 91, Washington,D.C, 1970

[STIL 62] H.E.Stiles, Machine retrieval using the associa

tion factor, in Machine indexing, American U., 1962, p.192-

206

[STON 82] M.Stonebraker, et.al., Document processing in a

relational data base system, Electronic Research Lab,

University of California, Berkeley, Memorandum No. M82/32,

1982

[SWAN 63] D.R.Swanson, Automatic indexing and classifica

tion, NATO Advanced Study Institute on Automatic Document

Analysis, Venice, 1963, 4p

[WONG 82] E.Wong, EXQUEL: A semantic extension to QUEL,

Electronic Research Lab, University of California, Berkeley,

Memorandum No. M82/44, 1982

	Copyright notice 1983
	ERL-83-44

