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ABSTRACT

We present analytic solutions for asymmetric double layers which satisfy
the time stationary Vlasov-Poisson system and which require the double-
valuedness of Sagdeev potential as a function of physical potential: it is pointed
out that any distribution function having an analytic density representation as a
polynomial power series of potential can never satisfy the asymmetric double
layer boundary conditions. Considering K-dV like equation, it is found that
there is some relationship between the speed of asymmetric double layer and
the degree of asymmetry.

A monotonic double layer is simply an isolated pair of oppositely charged sheets which
result in a narrow region of abrupt potential jump of some amplitude A<£ - i/r, well outside of
this localized jump, the potential is effectively uniform1"20. An asymmetric double layer refers
actually to a localized region of three sheets of alternating charge sign, having an asymmetric
potential jump profile and thus including sub regions of oppositely directed asymmetric electric
fields. Asymmetric double layers were first reported in recent numerical simulations and in
space observations on auroral field lines9"11; subsequent theoretical studies have numerically
examined the time stationary Vlasov-Poisson system7-8-12. It has been suggested that small
amplitude double layers may account for a large portion of the total potential along auroral field
lines and may also explain the fine structure of auroral kilometric radiation: recent satellite
measurements11 are especially consistent with the asymmetric double layer, its potential depres
sion (or the potential hump) at the low potential side (or high potential side). Recent studies of
the thermal barrier in tandem mirror devices have also found that there exist states with abrupt
potential depressions as a result of forced changes in the distribution functions7. The negative
potential depression is thought to play a crucial role in the formation of double layers and to be
responsible both for current disruptions (by reflecting the electrons) and also for high fre
quency noise excitation behind the double layer (by a two stream instability involving electrons
that pass the negative potential peak8"11).

Although there have been many theoretical and experimental investigations of double
layers, recent theoretical work has been limited to only numerical evaluations of the Vlasov-
Poisson system (or of the fluid system) mainly because of the highly nonlinear properties of
asymmetric double layers. One such recent numerical calculation12 suggested that there may be
a low amplitude limit for the monotonic double layer. In a previous paper20, we gave analytic
evidence for the existence of small amplitude monotonic double layers, which are the analytic
extensions of the well known electron solitary hole and ion acoustic solitary hole21-22. In this
report, we present the self-consistent analytic solution for asymmetric double layers, which
satisfy the time stationary Vlasov-Poisson system. We present a derivation of a K-dV like equa
tion describing a moving asymmetric double layer. It is shown that asymmetric double layer has
a some relationship between the asymmetry parameter and the speed of double layer.

To describe propagation of an electrostatic double layer, we use a Vlasov-Poisson system
that has been Galilean-transformed to the wave frame (where the wave is time stationary). In
this frame, we can express the time stationary solution of Vlasov equation as any function of
the constants of motion: (i) particle total energy and (ii) the sign of the velocity of the
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untrapped particles23. Besides the above usual constants of motion, it is important to realized
that a third constant of motion exists for the reflected particles: sgn ( x —xm ) where x„
represents the position of potential minimum (or maximum) for the negatively charged parti
cles (or the positively charged particles). It turns out that this final constant of motion plays an
important role in order to construct the asymmetric double layers. With the above distribution
function (any function of the three constantsof motion) , we can develop a general theory of
double layers by expanding the corresponding density in half-integer powers of ±0. However,
in this paper we would like to give a physically more transparent description of our double layer
problem, so we will proceed by using specific distribution functions.

In order to describe the asymmetric double layer accompanying a potential depression at
the low potential side, we assume a Maxwell-Boltzmann ion distribution,

/7,Vt - f <V2 +26) .
/• L e L , and we consider the following electron distribution function .

fe - (2ir)-'/: (expMCstfi v€l/: - vd )2} 0(e)
+(1+/ sgn(x-xm ))expMGfc2+)S e) }©(-«) ) (1)

where t —TJT, and € —v2 —20 for 0 <<£<«/». Here the electron velocity, the wave
potential and the spatial coordinates are normalized to the electron thermal velocity (Te/me)l/:,
the electron temperature Te/e and the electron Debye length \e —(Te/47rn0e2)'/:t respectively;
vd represents the electrons drift velocity. The ion velocity has been normalized by the ion
acoustic velocity. Here n-, and / are constants and /3 represents an inverse temperature. Here
-1 ^ / ^ 1 in order to obtain positive trapped particle distribution function.

With these distribution functions /, and fe% the Poisson equation may be written in the
small amplitude limit by introducing a Sagdeev potential K(0) :

dVU) m
0 d<f>
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+ ( higher order terms

where Ed is the electron drift energy and Z'r(x) represents the real part of the derivative of the
complex plasma dispersion function (see Fig. 1. (a)). The double layer solution may be found
by considering the following nonlinear eigenvalue conditions:

Charge neutrality at x — ±oo requires that the rhs of Eq.(3) should vanish at the boun
daries <t> "• l//i , l/>2-

Existence of the asymmetric double layer requires that the Sagdeev potential be identically
zero at 0 —0 , i/f i , !//2, so that the electric field equals zero at those values of potential.

An additional condition on the Sagdeev potential{see Fig. 2. (a)} requires that K(0) < 0
for 0 < 0 < i//, , 0 < 0 < «/r2.

Here it is important to note that the Sagdeev potential should be a double valued function
of 0 for 0 < 0 < min(i//i , i//2) in order to yield the asymmetric double layer solution, while
the existence of the monotonic double layer and the solitary hole does not require the double
valuedness of Sagdeev potential. Furthermore, it should be noted that from the double valued-
ness of Sagdeev potential (as a function of d>) for the existence of the asymmetric double layer.



we can make a following statement: any distribution function having analytic density represen-
+»

tation as any polynomial power series of potential (n «- J / rfv - £ ^« ( ±0 )" with
—«o /I

C„ - constant) can never satisfy the asymmetric double layer boundary conditions. In our
case, double-valuedness of Sagdeev potential is guaranted by the use of the constant of motion
for reflected particles.
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FIG. 1. (a) The real part of derivative of the complex plasma dispersion function: T"Z'r (x). (b) The Sagdeev poten

tial for the asymmetric double layer.

By solving Eqs.(2) and (3) subject to these conditions, we get the following double layer
solution:

0-<£{fls + tanh ±\k,\ x}2
where for convenience consider only ^r2 > 0i and we have defined

7 (V^ +Vfo)2 >/02->/0i 2 ui
* 4 • "'-JX +Jf,' "< "S

Here 4t, aSi k, are related to our system parameters as follows:
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For example if we set */r, - 0 (a, •» 0) in Eq.(4), then we would obtain our previous
monotonic electron double layer solution20, which is the nonlinear version of slow electron
acoustic wave in the limit t—0, \\i2 —0. Similarly, the condition \\ix - «/»2 (<*$ - 0) corresponds
to the solitary ion hole solution. More generally the condition |a|<l, the above solution
Eq.(4) describes an asymmetric double layer, with a potential depression at the low potential
side. Therefore, we may consider as to be the asymmetry parameter. From Eq.(6), we see that
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the existence of the asymmetric double layer, with a potential depression at the low potential
side, requires h, < 1 in order to have a positive curvature at 0 —0.

Having considered the asymmetric double layer with a potential depression at the low
potential side, we now turn to the problem of an asymmetric double layer having a potential
hump at the high potential side. In order to describe this class of double layer, we assume a

-y-<2rv2-2c6)
Maxwell-Boltzmann electron distribution fe =» ne (2it) :e 2r and we consider the fol
lowing ion distribution24:

/, - (2tt)-*[ exp{-(*( sgn ve/ +v0 )2} 0(6,)
+(1 +hsgn (x -xm )) opt-ftM/] ©(-e,) ] (11)

where €, —v2 + 2t(j> with —0 ^ 0 ^ 0 , r —TJT, and ion velocity has been normalized
to the ion thermal velocity {Tjmj)'/:. Here v0 and £0 represent the ion drift velocity and the
ion drift energy, respectively. Here ne and h are constants and a represents an inverse tem
perature. Here —1 ^ h < 1 in order to have positive trapped particle distribution function.
With the above distribution functions, the small amplitude limit Poisson equation becomes

0« - (V- 1>+ 2^£ hsgnix - xm )(-<f>)l/2 4- {he - f Z'r(JT0 ) }0

3V-TT
4r e~E°[2E0+ ( \+h sgnix - xj ) a -l}(-0)3/2
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+ r2{ -p-r - e °('/$ + 4^t) W + Ihigher order terms }
2t1 8£o"

Charge neutrality at x - ±oo requires that K'(<£) - 0 at 0 ——0i , —02- The conditions for
zero electric field lead to V(4>) - 0 at 0 - 0 , —0j , —02. Again solving Eq.(12) and the
above nonlinear dispersion relations together with the requirement K(<£) < 0 (see Fig. 2. (b)}
for —0i < (f> < 0 , —02 < 0 < 0, we obtain the following asymmetric double layer solution
with a potential hump at the high potential side(|as| < 1):

<t> - -0{ as + tanh ± |kp| x }2 (13)

where for convenience we have defined

r (V0i + V02*)2 V^-V^i 2 M. run
*•—4—• "•" v*+v*; •K*" 6 • (14)

Here 0i, 02 and Ke are related to our system parameters as follows:

8e —1- y0i02M , (15)

-^*~£° - ±V^MV^m - V02V , (16)
{/7e - j-rZV Gn/£o) 1- -y(0i +02 - 4V0iV^)^ . G7>
—527-«~*,*« - ? t^VIJm - V^lv , (is)

JV7T 0

"' ' -£" (4 +*&) J• (19)-0
— r~e

^ l 2 2 8£02

For example if we set 0, —0 (as —1) in Eq.(10), then we would recover our previous
/on acoustic monotonic double layer solution20, which is the nonlinear version of the slow ion
acoustic wave. Similarly the condition 0i —02 (as =• 0) would return the electron solitary hole



solution. From Eq.(lO), we note that the existence of the asymmetric double layer with a
potential hump at the high potential side, requires ne < 1 in order to have a negative curvature
at <f> - 0.

Having obtained the analytic solutions for the time stationary double layers, we can now
present a derivation of the K-dV like equation, which describes the one dimensional asymptotic
behavior of the asymmetric double layers, having a potential depression at the low potential
side, of small but finite amplitude.

To describe a collisionless plasma of cold ions and warm electrons, we consider the fol
lowing set of equations:

n, + (nv)x - 0 , vr + vvx + <f>x -0 , ^ - ne - n , (20)

where the density, velocity, potential and spatial coordinate are normalized to the unperturbed
density /i0, ion acoustic velocity (r,//w,)l/2, the electron temperature Te/e and the electron
Debye length, respectively. Assuming the electrons to be in a quasi-equilibrium with the low-
frequency ion acoustic wave, we may expand the electron density as before
ne - 1 + c0 sgn ( x - x„ ) (0)I/2 + erf + c2sgn (x-xm) (0)3/2 + c3<f>2 + By intro
ducing the Gardner-Morikawa coordinate transformation £ = 81/2 Cx-f) and r - d2/2t , then
expanding /i,v,<£ in powers of small parameter23 8, and then assuming c0 and c2 to be order of
83/2 and 81/2, respectively, we obtain the following K-dV like equation by using the boundary
conditions for an asymmetric double layer with a potential depression at the low potential side
as before:

0KZ 20K
1/2

0-^0,+ -f^ (21)

- I ± 6as(l-as2) sgn(x - ^)(4)

+(4(3*,2-l) - ^4- =P 10*5 sgnix - xm)(4-)V2 +3(4)2 L
KX 0 0 0 J

where M represents the velocity of the double layer, k2 — ———=—-r- and 0 > 0. It should
4(3a/ - 1)

be noted that we have used our boundary condition for a moving asymmetric double layer so
that we can extract some useful physics. Here we have the same definition of 0 and as as in
Eq.(5). The evolution equation for the asymmetric moving double layer with a potential hump
at the high potential side can also be obtained similarly by using the corresponding asymmetric
double layer boundary conditions; it is given by simply letting 0 — -0 < 0 in Eq.(21), using
the definition of 0 as in Eq.(14). The corresponding moving asymmetric double layer solution,
with a potential depression at the low potential side, of Eq.(21) is given by

0(x,/) - 0{ as +tanh ± / A^~l ,Ax-Mt) } (22)
V 4(3a/ - 1)

where x„ is given by the equation 0 ( xm - x - Aft, 0 ) •• 0. Here it should be noted that
M > 1 for 3a,2 -1 > 0 and that M < 1 for 3as2 -1 < 0 .

In conclusion, we have obtained two different asymmetric double layer analytic solutions:
one has a potential hump at the high potential side, the other has a potential depression at the
low potential side. By considering the double-valuedness properties of the Sagdeev potential
(required for the existence of an asymmetric double layer), we have proven the following fact:
any distribution function having analytic density representation as any polynomial power series

+rof potential (for example «-J /rfv-JC(I(±^)'1 with Cn = constant) can never
—«o n

satisfy the asymmetric double layer boundary conditions. This shows the importance of using
the third constant of motion for reflected particles, in order to satisfy the double-valuedness of
Sagdeev potential for the asymmetric double layers. We have also given a derivation of the K-



dV like equation, which describes the asymmetric moving double layer with a potential depres
sion at the low potential side26. Thus we have found that there is some relationship between the
speed of asymmetric double layer and the degree of asymmetry(as).
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