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Abstract

This paper concerns nonlinear systems, defines a new concept of

stability, the ^-stability, and extends to unity-feedback systems the

technique of Q-parametrization introduced for linear system by Zames and

developed by Desoer, Chen and Gustafson. We specify 1) a global para-

metrization of all controllers that A-stabilize a given xci-stable

nonlinear plant; 2) a parametrization of a class of controllers that

stabilize an unstable nonlinear plant, 3) necessary and sufficient con

ditions for a nonlinear controller to simultaneously stabilize two

nonlinear plants.
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I. Introduction

The purpose of this paper is to obtain the broadest generalization

within the context of nonlinear systems of a number of recent results

pertaining to 1inear feedback systems.

In the context of linear systems, recent development in the field

can be sketched as follows: Youla et al. studied the linear lumped case

and obtained the first global parametrization of all compensators that

stabilize a given plant [You. 1]. The same problem as well as the track

ing problem was solved for linear distributed systems by Callier et al.

[Cal. 1], Then Desoer, Liu, Murray, and Saeks gave a general algebraic

treatment of the global parametrization problem [Des. 1]. Later

Vidyasagar, Schneider, and Francis introduced a slightly different factori

zation of transfer functions which leads them to a very natural topology

of stable and unstable transfer functions [Vid. 1]. Zames studied, in

particular, the case of stable plants and derived fundamental limitations

on the performance of the feedback system [Zam. 1]. Pernebo obtained a

parametrization of the I/O map and of the disturbance-to-output map for

the two-input-one-output configuration [Per. 1]. The same configuration

was treated in complete algebraic generality by Desoer and Gustafson

[Des. 2].+

For the unity feedback configuration and for a stable plant, Zames

proposed a parametrization of the controller in terms of a stable proper

transfer function Q [Zam. 1]. This idea was further developed as a

design procedure by Desoer and Chen and was used for computer aided

design by Gustafson and Desoer [Des. 3, Gus. 1]. In this paper we use

t
This review is admittedly \/ery sktechy; for a more complete list of
references see [[Des. 2], [Sae. 1], [Vid. 1], [Vid. 2] etc.].
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also a Q-parametrization but in a nonlinear context. We first generalize

the concept of finite-gain stability (incremental stability) to that of

^[-stability (incremental ^-stability, resp.). In Thoerem 1, we estab

lish for the nonlinear case, a global parametrization of all I/O maps

and of all compensators that result in an jO-stable configuration. This

theorem generalizes to the nonlinear case, the original results of Zames.

As a consequence of the more general stability concept, Theorem 1 is a

generalization of a previous result of Desoer and Liu [Des. 4].

In Section IV we consider the case where the plant is unstable.

For the linear case, Zames established his "decomposition principle,"

i.e., stabilize the given linear plant P with a stable linear compensator

F, and then proceed with the Q-parametrization as above. Anantharam

et al. established a nonlinear version of this result [Ana. 1]. In

Theorem 2 we establish a similar result in the more general concept of

a-stability and we weaken the requirement on the stabilizing feedback F:

it need not be itself stable but need only lead to a stable feedback con

figuration of P and F. Note that Theorem 2 generalizes our previous work,

first it uses the more general stability concept and, second, the method

of proof is greatly improved [Des. 5].

The problem of simultaneous stabilization has been formulated and

solved in the linear case by Saeks and Murray [Sae. 1]. Vidyasagar et al.

also have interesting results along this line [Vid. 2]. In Section V we

consider the nonlinear case: we are given two (possibly unstable) non

linear plants "P-, and *P2 and we derive necessary and sufficient conditions

for the existence of a fixed compensator that stabilizes both plants.

Theorem 4 is a generalization for nonlinear plants and within the
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-stability concept of the linear results of Vidyasagar et al., and of

our previous work [Des. 6].

This paper starts by generalizing the concept of nonlinear I/O

stability and then showing that a number of global parametrization results

valid for linear feedback systems can be suitably generalized for non

linear feedback systems. This paper is reasonably self-contained and

the proofs are basically simple: the key tool being that the composition

of ^-stable maps is a-stable.

II. Definitions and Notations

Let; (oC »|| •||) be a normed space of "time functions": CT -^ Vwhere 3

is the time set (typically ]R+ or!N),7/is a normed space (typically ]R,

R , % , ...) and ||«|| is the chosen norm in £. Let ^ be the correspond

ing extended space [Wil. 1], [Des. 7], [Vid. 3].

A function <f> :IR+ -*-3R+ is said to belong to class Kiff <J> is continu-

ous and increasing. <J> is said to belong to class K iff <j> € K and

<j>(0) =0. If (J>1 and <j>2 6 KQ, then ^ +<j>2 and a»+ <i>-| (<j>2(a)) € K. A
n. n .

nonlinear causal map H: jij + £ u is said to be ^-stable iff 3 $ € K

s.t. Vx € X.e\ VT € J,

l|Hx||T < ♦(||x||T)

His said to be incrementally &-stable (incr. J-stable) if (i) His

^-stable, (ii) 3 <j> € K s.t. V x, x' € I J, V T € J,

IIHx-Hx1 ||T <*(||x-x'|lT)

It can be shown that if the nonlinear causal maps H, and H2 are -J-stable,
(incr. -O-stable), then H, +H2 and H, °H2 are ^-stable, (incr. J!-stable,
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resp.). (For simplicity, we drop in the following the symbol "o"

denoting the composition of maps).

A feedback system is said to be well-posed iff the relation between

the inputs of interest and the outputs of interest is a well-defined

causal map between suitable extended spaces. More precisely, the system
•j n. n n n.
S(P,C) of Fig. 1, where P: £ nh- Xp°> C: £° •> ^_1 are causal maps,

is said to be well-posed iff H: (u, ,ua) ^ (e-. je^sy-j syo) is well-defined

and causal. Note that S(P,C) is well-posed implies that7 (I+PC)~ and

(I+CP)~ are well-defined and causal. We say that a well-posed non

linear feedback system is J-stable (incr. >o-stable) iff its I/O map

is ^-stable (incr. ^-stable, resp.). For the system S(P,C), since

el =ul " y2' e2 =u2 +yT we see that Hyu : (ui»u2'̂ ^yl ,y2^ is ^~
stable iff Heu : (u-,,u2)^ (e.j,e2) is eJ-stable iff "^(P.C) is ^-stable.
The same equivalence holds for incr. J-stability. These concepts of

^-stability and incr. <& -stability are generalizations of finite-gain

stability and incremental stability [Des. 7]; they are in spirit closer

to Safonov's work [Saf. 1], We use "s.t." to abbreviate such that.

III. Global Parametrization of Nonlinear xif-stable I/O Maps

Consider the well-posed nonlinear unity feedback system S(P,C)
n. n n n.

shown in Fig. 1, where P: £ -> i °, C: £° •*• £ are nonlinear causal

maps, and (u-,,u2), (yi»y2) and (e-i»e2) are the "input", "outpyt", and
"error" respectively. Theorem 1 is a generalization of a result of

Desoer and Liu [Des. 4], it gives a global parametrization of all achiev

able input-output maps, and of all stabilizing compensators, under the

TThe meaning of (I+PC) deserves clarification: the map C is composed
with P then the identity is added, and the resulting map is inverted.
Although this formula has the same form as the linear case, it has a
completely different interpretation.
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assumption that P is incr. /S-stable. This theorem is an extension to

the nonlinear case, the well-known linear Q-parametrization result,

proved by Zames in a very general algebraic context [Zam. 1].

Theorem 1. (Global parametrization of stable S(P,C)).
n. n n n.

Let P: d"1 •> i°, C: sC ° -»• i 1 be nonlinear causal maps. Assume
e e e e

that (i) the system S(P,C) is well-posed, and

(ii) P is incr. Jj -stable.

Under these conditions (U.t.c),
n n. .

(a) H is *5-stable «3Q: £Q° + £^ i-stable s.t.

C=Q(I-PQ)"1 (3.1)

(b) C=Q(I-PQ)"1 • Q=Cd+PC)"1 (3.2)

(c) With u2 =0and with C=Q(I-PQ)"1,

Vi= PQ (3-3)

Comments

(i) Equivalence (b) above requires only that S(P,C) be well-posed,

(ii) Equivalence (a) gives a global parametrization of C(p)> the

family of all compensators that result in an J-stable system S(P,C); more

precisely:

C(P) =(C|C =Q(I-PQ)*1, Qis i-stable}.

(iii) From (c), 7/ >the class of achievalbe ^-stable I/O maps is
y2ul
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given by

fly u(P) =(PQIQ is 1-stable}.

(iv) Practical design considerations such as robustness of stability,

disturbance rejection, plant saturation, etc. impose additional restric

tions on Q. (See e.g., [Des. 3], [Gus. 1]).

(v) The equation (3.3), H = PQ, raises a number of new problems:
y2ul

given a nonlinear map P, how can one describe the constraints imposed by

P on the achievable I/O map H ? If we have a desired I/O map H
y2ul y2ul

and a given P, how does one find a Q. such that in some appropriate
a

sense, PQa = H „ ? Then having such a (L how does one synthesize C?a y2u-| a

Proof:

(I) Proof of (b).

(=>) By assumption,

C=Q(I-PQ)'1.

Composing with P and adding identity we obtain successively,

I+ PC =I+ PQ(I-PQ)"1 = (I-PQ)'1

By taking the inverse, and composing with C, we obtain

Cfl+PC)"1 =Qd-PQT^I-PQ) =Q

Hence, Q= Cd+PC)"1.

(<=) By assumption,
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q = cd+pcr1.

Composing with P and adding identity we obtain successively,

I- PQ =I-PCd+PC)"1 =(I+PC)"1

By taking the inverse, and composing with Q, we obtain

Q(I-PQ)"1 =Cd+PO'^I+PC) =C

Hence, C=Q(I-PQ)"1.

(II) Proof of (a).

(=*) Set u« = 0, the map H „ :u, *+ y, is given by H M = C(I+PC)
L c ylul l ' /lul .

which by assumption is ^0-stable. Let Q := C(I+PC) , then Q is A-

stable and from (b), we have C = Q(I-PQ) .

(*=) Refer to Fig. 1, write the summing node equations

e-j = u1 - Pe2 (3.4)

e2 = u2 + Ce-j (3.5)

Define

u1 := PC e1 - P(u2+Ce.|) (3.6)

Using (3.5) and (3.6), rewrite (3.4) as

e1 = u1 + u1 - PCe1 (3.7)

From equation (3.7)

e1 =(I+PCrV^) (3.8)

y, =Ce1 =Cd+PCr^^+u,) =Q^+u,) (3.9)
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Now, since P is incr. J-stable, 3 S € K s.t.
p o

V (uru2) € £e° x iQ\ VT €7,

H^lly =||P(Ce1 )-P(u2+Ce1 )||T <Jp(||u2||T) <^(llu^+llu^) (3.10)

Hence the map tt :(u-,,u2)»-»- u, is ^(-stable. Define the projection map

ttj :(UpUg) -»• u.., i= 1,2. From (3.9), the map H u: (u-j ,u2)*-* y-j is

given by

Hy u=Q(7rl+S) (3-11}

Since tt, and tt are J-stable, and by assumption Qis 4-stable, the map

Hw „ is ^-stable.

From Fig. 1, we have
ylu

y2=P(u2+y]) (3.12)

Hence the map H : (Un,u2)*^- y2 is given by

Hy2u " PW+HylU) <3'13>

Now tt2 and H are J-stable, and by assumption Pis 2 -stable, it
follows that H is ^-stable. Therefore H is ^-stable.

(III) Proof of (c).

Since C=Q(I-PQ)"1, from (b) we have Q=Cd+PC)"1. With u2 =0,
Hv u =He u =Cd+PC)"1 - Q.
ylul e2ul

Hence, Hv = PQ.
y2ul
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IV. Two-Step Stabilization of Nonlinear Plants

The equivalence (a) of Theorem 1 above requires that the plant be

incr. ii-stable. In practice, unstable plants do occur (e.g., chemical

reactors, high performance airplanes, etc.), it is important to extend

this method to include unstable plants.

Theorem 2. (Two-step stabilization of nonlinear plants).
n. n n n.

Let P: / 1 -»• sf °, F:2L0 -»• ^J be nonlinear causal maps such
^e e e e

that

(A.l) the system S(P,F) of Fig. 2 is well-posed,

(A.2) S(P,F) is incr. J-stable, and
3

(A,3) for all the C's under consideration, the system S(P,F,C-F) of

Fig. 3 is well-posed.

Let P] := P[I-F(-P)]"1.

U.t.c., if

1 9 n n.
C:= F+Qd-P^)-' for some w3-stable Q: *( ° +£ \ (4.1)

then

(a) ]S(P,C) is i-stable, and
(b) 3S(P,F,C-F) is i-stable.

Comments.

(i) None of the maps P, C. F, C-F are required to be stable,

(ii) The key assumptions are (a) well-posedness, (b) S(P,F) is incr.

J-stable, (c) C=F+Qd-P^)"1 where P] =P[I-F(-P)]-1 and Qis bi
stable.
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(iii) By definition, S(P,F,C-F) is ^-stable iff the map (u-j ,u2,u3) n-
(y-j^^) is 4-stable.

(iv) If P is incr. J-stable, then by choosing Fthe zero map,

we have P^ = P, C=Q(I-PQ)~ ,and Theorem 2 reduces to Theorem 1.

(v) In the proof we show that (b) implies (a), a simple example

shows that (a) does not imply (b). However, if F is incr. J-stable,

then (a) and (b) are equivalent [Ana. 1, Thm. 3].

Proof:

(I) Proof of (b): 3S(P,F,C-F) is i-stable

Consider the system ^(P.F) if Fig. 2, let ip =(i|>2,i/>3) :(e£,u3) »+
(yz>y3) be the I/O map. Note that P^.) := P[I-F(-P)]"1(-) =i|>2(/,0).
By (A.2), ty is incr. J-stable, hence P1 is incr. J-stable; further from
assumption (4.1), Qis i-stable and C-F =Qd-P-jQ) ;hence, by
Theorem 1, these three conclusions imply that the system ^(P,,C-F)

shown in Fig. 4 is ,i-stable.

Next consider Fig. 3which shows the system 3S(P,F,C-F) with input

(u-|,u2,u3) and output (y1 ,y2,e£,y3). We claim that the map

H: (u19u2,u3)^ (y-|»y29e2,y3^ is ^-stable. Let

Ay2 := V^'1^ " ^2(e2'0)* (4-2)

Drive the system S(P,F,C-F) with input (u.|-Ay2,u2,0), call the corres

ponding output (y19y2,e^,y3), and note that y2 =P[I-F(-P)]"1e^ =P^^;
thus if we ignore y3, the system reduces to S(P-|,C-F), (which has just

been shown to be 4-stable), with input (u,-Ay2,u2) and output (y-.,y2,e2)

Hence, for S(P,F,C-F), the partial map (with respect to
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3 2~ ~ ~* ~ " 9H), H: (u,-Ay2,u2,0) «• (y-|»y2»e2) is j6-stable. Since 4»2 is incr.

i-stable, 3J2 €KQ s.t. Veg, Vu3, VT,

(4.3)

Hence the map (u-j ,u2,u3)»-*- Ay2 is %-stable. Therefore, the map
it: (u-.,u2,u3) »-*• (u,-Ay2,u2,0) is i-stable. Considering the composition

2~ 2 3 -H tt we see that, for S(P,F,C-F), the map (u-. ,u2,u3) h- (y-.,y2,e2) is

J-stable.

Now, we claim that y, = y-i, y2 = y2 + Ay?> e? = ®2' anc* nence tne

map (u,,u2,u3)^ (y^yose?) 1S i~stable. To prove this, write the
3

equations for S(P,F,C-F) with input (u1,u2,u3) and with input

(u-|-Ay2,u2,0), respectively:

y^ = (C-F)(ury2) (4.4a)

y2 = i|;2(eg,u3) (4.4b)

e2 = yl + u; (4.4c)

y} = (C-F)(urAy2-y2) (4.5a)

y2 =ip2(e^,0)

e« = y, + u,!2=yl

(4.5b)

(4.5c)

Using (4.2), rewrite the equations (4.4) as

y1 = (C-F)[urAy2-(y2-Ay2)]

y2 - Ay2 =ijigteg.O)

e2 = yl + u2

(4.6a)

(4.6b)

(4.6c)

From Eqs. (4.5) and (4.6), we see that (y-, ,y2-Ay2,eg) and (y^^e^)

satisfy the same equations, by the well-posedness assumption (A.3),
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Eqs. (4.5) and (4.6) both have a unique solution, hence y, = y-.,

Y2 =^2 +Ay2' e2 =®2' Since ^3 =^3(^2^2) and ty^ is ^-stable, the
map (u^,u2»u3)»-»- y3 is i-stable. Consequently, the map

H: (u.j,u2,u3)h- (y-j»y2>e2'y3) 1S i-stable and (b) is established.
(II) Proof of (a): ]S(P,C) is i-stable.

Write the summing node equations for S(P,F,C-F) in terms of e-j, e2,

e3, and e£: (see Fig. 3),

e-j = u1 - Pe2 (4.7a)

e^ =u2 + (C-F)e] (4.7b)

e2 =e£ + Fe3 (4.7c)

e3 = u3 - Pe2 (4.7d)

Let u-j =u3, then, by (4.7a) and (4.7d),e, =e3; thus by adding (4.7c)

and (4.7b) we have

e1 = u-j - Pe2 (4.8a)

e2 = u2 + Ce-j. (4.8b)

The equations (4.8) describe S(P,C). Since S(P,F,C-F) is i-stable,

the map (u.|,u2,u-|) h- (else2) defined by (4.8) is i-stable. Hence
]S(P,C) is i-stable.

V. Simultaneous Stabilization of Nonlinear Plants

In this section we study the problem of simultaneous stabilization

of nonlinear plants. The main result is Theorem 4: a necessary and

sufficient condition for given two nonlinear plants be simultaneously
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stabilized by a compensator. We assume, throughout this section, that

all the systems under consideration are well-posed.

Theorem 3.

- ni no no niLet P: <sT -*• it and C, F: sf ° "*"jfa be nonlinear causal maps,
c s s e

Let P:=P[i-F(-P);r1.

U.t.c, if F is incr. ^-stable, then

^(P.C+F) is i-stable <• ]S(P,C) is i-stable.

Comments.

(i) None of the maps "P, P, and C are required to be stable,

(ii) The Theorem is false if F is not incr. i-stable. Consider the

following example: let "P = (s-l)/(s+3) =: "n/d, F = 3/(s-l), and

C= 3/1 =: nc/dc. By calculation, C+ F= 3s/(s-l)=: nc+f/dc+f, and

P=P[I-F(-P)3_1 =(s-l)/(s+6)=: n/d. The system ^(P.C) is i-stable,
since its characteristic polynomial is nn + dd = 4s + 3. However, the

system S(k\C+F) is unstable, since its characteristic polynomial is

"nc+f +Idc+f =(s-D(4s+3).
(iii) Traditionally the loop transformation theorem [Des. 7] requires

that F be linear, so Theorem 3 is a generalization of the usual stability

results obtainable from the loop transformation theorem.

Lemma:

Let P:^1 ~^e° and F:rfe°H-/e1. If P:= P[I-F(-P)]_1, then
P= P[I+F(-P)]"1.

Proof:

By assumption,
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P=P[I-F(-P)]'1.

Composing -P with F and then adding identity, we have

I+ F(-P) =I+ F(-P)[I-F(-P)]_1 =[I-F(-P)]"1

By taking the inverse, and composing with P, we obtain

P[I+F(-P)]_1 =P[I-F(-P)]"1[I-F(-P)] =P

Hence, P= P[I+F(-P)]"1.

Comments

(i) By using the relation P=Kl-Ff-P)]"1, (^[I+Ff-P)]"1), the

system S(P,C) of Fig. 1 ( SfP,C+F) of Fig. 5, resp.) can be redrawn as

the system of Fig. 6 (Fig 7, resp.).

(ii) Note that the system in Fig. 6 (Fig. 7) and the system

S(P,C) (S(P,C+F), resp.) have the same I/O map iju: (u-j,u2)h- (e-j,e2)

^C+F: (ul»u2)M* (el'e2^ resP-).

Proof:

[=>) We show that for the system S(P,C) map ^: (u-,,u2)+(e, ,e2)

is JUstable. For the system shown in Fig. 6, write the equations defin

ing e, and e«:

e-j = u1 -"Pe2 (5.1a)

e£ = u2 + Ce1 + F(-Pe£)
(5.1b)

= u2 + Ce1 + F(e,-u,)

Rewrite (5.1b) as
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e£ =u2 + (C+F)e1 + [F(e1-u1)-Fe]] (5.2)

Let

u-j :=u1 (5.3a)

u2:=u2 + [F(e1-u1)-Fe1] (5.3b)

Then, Eqs. (5.1) read

e1 = u1 - Pe£ (5.4a)

e£ =u2 + (C+F)e1 (5.4b)

Note that equations (5.4) describe S(~P,C+F) with input (u,,u2); by

assumption S("P,C+F) is i-stable. Hence the map ijic+p : (UpU2)^ (e-,,e£),
specified by (5.4), is i-stable.

Since Fis incr. i-stable, 3Jp €KQ, s.t. Vu^Ve^VT,

||F(e1-u1)-Fe1||T <^(Hu^) <$F(||u1 ||T+||u2HT) (5.5)

Hence the map ff: (u.,,u2) ^(G^Qg) defined by (5.1) and (5.3) is J-
stable. Define ijiji =$C+Fir, since both Ijic+p and tt are i-stable, so is
^q : (u^UgJw- (e^ep; hence for the system of Fig. 6 the map

(u.j,u2) M-(e-|,e2) is i-stable.
Now from Fig. 6,

e2 =e^ - FCe-j-i^) (5.6)

Since ipjl and Fare ^-stable, the map (u-|,u2)h- & is i-stable. It
then follows that, for the system ^(P.C),^ :(u] ,u2) «- (e-,,e2) is i-
stable.
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(«=) We show that, for the system ^(P^+F), the map i|>£+F :(u.j,u2)h- (en,e^)
is i-stable.

Using the Lemma P=P[I+F(-P)]"1 and redraw ^(P.C+F) as in Fig. 7.
Write the equations defining (e,,e2) in Fig. 7.

e1 = u1 - Pe2 (5.7a)

e2 =u2 + (C+F)ei - F(-Pe2)
(5.7b)

= u2 + Fe-j - F(e,-u^) + Ce,

Let

u-l :=u.j (5.8a)

"u"2 := u2 + Fe-j - F(e,-u,) (5.8b)

Since Fis incr. i-stable, the map?: (u^)*-* (u^,u2) defined by (5.7)
and (5.8) is i-stable. Now, with (5.8), equations (5.7) read

el ="l " Pe2 (5-9a)

e2 = u2 + Ce1 (5.9b)

Note that equations (5.9) describe ^(P.C) with input (opUg). By
assumption S(P,C) is i-stable, hence the map ifc : (u-puJ +(ej,e2)»
specified by (5.9), is i-stable. Define i|>c+F =i^?, since both ^c and
ir are ^J-stable, so is i|>c+F: (u-j,u2)h>. (e-j,e2); hence for the system of
Fig. 7, the map (u-j,u2) H»(e.|,e2) is i-stable.

Now from Fig. 7,

e£ = e2 + F(e1-u]) (5.10)
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Since ij;c+F and Fare i-stable, equation (5.10) implies that the map
(u-j,u2) ** e« is i-stable. Consequently, we have shown that for the
system ^(P.C+F), ip£+F : (u-,,u2)h. (e-,,e^) is i-stable.

Theorem 4. (Simultaneous Stabilization)
__ _ n. n

Given two nonlinear causal plants P,, P2 : den ^^p0* Suppose
q n n.

3 incr. xl-stable F: / «-• / "" s.t.

P1 :=P1[I-F(-"P1)]"1 is incr. i-stable. Let P2 := P^I-F^)]"1.
For any C: /Q° •--£, let

Q:= Cd+P-jC)"1 (5.11)

U.t.c.

^(Pt.C+F) and ^(P-.C+F) are i-stable

Qis i-stable and S(P2-P-|,Q) is i-stable (see Fig. 8).

Comments

(i) By Theorem 1, Eq. (5.11) is equivalent to that C=Qd-P-.Q)"1.

(ii) None of the maps P"^, ?«, P2, and Care required to be stable,

(iii) The meaning of the theorem is the following: given two non

linear, not necessarily stable, plants "P, and Pa, if by applying an

incr. i-stable feedback Faround "P, (see Fig. 6), the resulting closed-

loop I/O map P1 :as"Pi[I-F(-P'1)3" is incr. i-stable, then any compensator
of the form Q(I-P1Q)"1+F, for some i-stable Qsuch that 1S(P2-P1 ,Q) is
i-stable, will stabilize both P. and P^.

(iv) If "P-j is incr. i-stable, take F=0, the zero map from
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nQ n.
/e **£q >then P1 =P^ and P2 =?„. The theorem shows, for this

special case, that given two nonlinear plants "P, and "P2, with "P, incr.

i-stable, then the problem of finding a compensator to stabilize both

"P.j and "P2 is equivalent to that of finding an i-stable compensator to
stabilize "P2 - "P^ This result was proven for the linear case in [Vid.

2, Corollary 3.1.1.].

(v) Suppose that we have n nonlinear plants "P,, "P2, ..., "P , then

we may apply successively the theorem to the pairs (P*,"Pi), i =2, 3, ... n,

thus ^("P^C+F) is i-stable for i =1, 2, ..., niff Q:= Cd+P-jC)"1 is
i-stable, and SfP^-P^Q) is-i-stable for i =2, 3, ..., n.

(iv) To the best of the authors' knowledge, there are no known

general conditions under which a general nonlinear plant is stabilizable

by a compensator, incr. i-stable or not.

Proof:

(I) We first show that the system ^(P^C+F) is i-stable. By
assumption, P1 is incr. i-stable and Qis i-stable, hence, with
C=Q(I-P1Q)"1, the system ^(P^C) is ,i-stable. Now Fis incr. i-stable,
so by Theorem 3, the system S(P.j,C+F) is i-stable.

(II) Consider the system ^(Po-PpCP-,) shown in Fig. 9, with input
(u-|,u2,u3) and output (y-j ,y2,e^,y3). We claim that the map

H' : (u-,,u2,u3) ^(y-j.y^e^y^) is i-stable.
Let

Ay3:= W^ " W (5J2)

2 ~Drive S(P2-P.j,C,P-j) with input (u-j-Ay3,u2,0), and call the corresponding
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output (y-|,y2,ej ,y3). Note that y-j =C(I+P.|C)~ e-j =Qe^, thus if we

ignore y3, the system reduces to S(P2-P-,,Q) with input (u,-Ay3,u2) and

output (y-|»y2>ep. By assumption, S(P2-P,,Q) is i-stable, hence, for
2 2 ~ - ~ - I?the system S(P2-P-j ,C,P-|), themap H:(u,-Ay3,u2,0) »-*- (y-j,y2>ep is bi

stable. Since P, is incr. i-stable, 3 M K s.t. V iu, V y,s V T,

HAy3llT = HP-! Cu3-ty1 >-P-|^-|i!T <.$-, CI1U3II-!-) <.$-| Cl|u-|ll-r-^l|u2ll-r->-||U3ll-r) (5.13)

2From inequality (5.13), it follows that, for the system S(P2-P, ,C,P,),
2- - 9 2 2 2~themap tt : (u-. ,u2,u3) •-»• (u-.-Ay3,u2,0) is <o -stable. Define H' := Hit,

since both Hand it are -0-stable, so is H' : (u-.,u2,u3) *-• (y-|»y2»ei),

hence for the system S(P2-P, ,C,P,), the map (u, ,u2,u3)h- (y-i»y2>ei) 1S

O -stable.

Now, we claim that y, =y-i» ^2 =y29 el =el +^3' and nence tne

map (ulsu2,u3) »•* (y-| ,y2,ej) is i-stable. To prove this, write the
equations for 2S(P2-P1 ,C,P1) with input (u^Ug.Uj) and with input
(u-|-Ay3,u2,0), respectively:

e'l =ul " y2 (5.14a) gj =u1 - Ay3 - y2 (5.15a)

y1 =C(ej-P1(u34y1)) (5.14b) ^ =C^-P^) (5.15b)

y2 =(P2"Pi)(Vyl) (5.14c) y2 =(P2-P1)(u2+y1) (5.15c)

Using (5.12), rewrite the equations (5.14) as

e} - Ay3 = u1 - Ay3 - y2 (5.16a)

y1 =C(e^j-Ay3-Piyi) (5.16b)
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y2 = (^l^V*!* (5.16c)

From Eqs. (5.15) and (5.16), we see that (y-j ,y2»e^-Ay3) and (y-j,^.^)

satisfy the same equations. By the well-posedness assumption, Eqs. (5.15)

and (5.16) both have a unique solution, hence y, = y-i» y2 =^2'
~ ~ 2

e-j = e-j +Ay3. Thus, we have showed that, for the system S(P2-P-. ,C,P,), the

map (u-j,u2,u3)»-* (yiSy2»ei) is *i-stable. Since P, is <<3-stable and
2

y3 =Pl(yl+U3^' nence for S(P2-P1,C,P-j), the map (u-j ,u2,u3)h»- y3 is

i-stable. Consequently, for the system S(P2-P-i ,C,P,), the map
H' :(u1su2,u3)ih- (y19y2,e],y3) is i-stable.

(Ill) We prove that ^(P^C+F) is J-stable.
2

Write the equations of S(P2-P,,C,P,) in terms of e,' ,e, ,e2, e3:

ej = u-j - (p2"p])e2 (5.17a)

e1 = e^ - P]e3 (5.17b)

e2 = u2 + Ce1 (5.17c)

e3 = u3 + Ce1 (5.17d)

If u2 = u3, then e2 = e3, thus Eqs. (5.17) reduce to

el = ul " P2e2 (5.18a)

e2 = u2 + Ce1 (5.18b)

e3 = e2

1 2Equations (5.18) describe S(P2,C). Since the system S(P2~P1,C,P1) is

>2,C). By Theorem 3, the S("P2i-stable, so is the system S(P0,C). By Theorem 3, the S(P9,C+F) is
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i-stable. This together with (I) completes the proof.

(-)

By assumption the systems SfP^C+F) and 2S(P2,C+F) are i-stable,
and Fis incr. i-stable. Hence, by Theorem 3, the systems ^(P^C) and
1S(P2,C) are i-stable. Thus, Q=Cd+PjC)"1 is i-stable.

2
Consider the system S(P2,Q,-P.,) of Fig. 10, with input (u-|,u2,u3),

and output (y-, ,y2,e.,,y3). Let Ay3 := P-^y^-P-j^+Ug). Drive the

system with input (u-j-Ay3,u2,0), call the corresponding output (y, ,y2,e-, ,y3)

Note that y^ =Q(I-P-jQ)~ e-j = Ce-j, thus if we ignore y3, the system reduces

to S(P2,C) with input (u-j-Ay3,u2) and output (y-|,y2,e.|). Since S(P2,C)

is 2-stable, it follows then, by similar arguments as those in the proof

of the other implication, that the system S(P2-P,,Q) is i-stable.
This completes the proof.

VI. Summary

In this paper, we introduce a generalized concept of stability:

i-stability and incremental i-stability, both applicable to nonlinear

systems. Theorem 1 generalizes to the nonlinear case the Q-parametriza

tion results established by Zames [Zam. 1]. Theorem 2 extends Theorem

1 to include unstable plants. Finally, in Theorem 4, we give a necessary

and sufficient condition for the existence of a fixed compensator that

stabilizes two given nonlinear plants. It is surprising that these

three theorems generalize the linear theory to the nonlinear case and

the general formulas of the theory are almost unchanged in form.
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ui + ei

Fig. 1. Shows the system S(P,C).

y2

+^6+
y3 e, +u

Fig. 2. Shows the system S(P,F) in which F stabilizes P,

u,+_e,

Fig. 3. Shows the system 3S(P,F,C-F).

"I +^6|

Fig. 4. Shows the system 'sfP^.C-F).
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ui +~ei

Fig. 5. Shows the system S(P,C+F).

ui+ei

3„/wFig. 6. Shows the system JS(PSF,C) with u, = 0.

ui + et

Fig. 7. Shows the system 3S(P,-F,C+F) with u, =0.

ul+ «l

Fig. 8. Shows the system SfP^P^Q).
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Fig. 9. Shows the system ^(Pg-P^C.P,)

Fig. 10. Shows the system ^(Pg.Q.-P,).
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