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Abstract. Deadlock detection is usually considered to be expensive, and timeouts or
deadlock prevention techniques are usually resorted to as a result, which many
times causes unnecessary transaction restarts. In this paper, we show that under
certain reasonable assumptions, deadlocks can be detected very cheaply.

1. Introduction

Deadlocks have been a topic of active interest during the past several years

(see [8] for an annotated bibliography). They are typically characterized in terms of

a waits-for graph [5, 6], a directed graph that represents which transactions are

waiting for which other transactions. In this paper, we explore some of the special

properties of the waits-for-graph in the context of database systems, and present

very efficient linear deadlock detection algorithms.

The organization of the paper is as follows. In Section 2, we describe our

assumptions regarding the locking protocol used for concurrency control. In partic

ular, we assume all locks to be exclusive. "We outline some important properties of a

waits-for-graph in Section 3. Our continuous deadlock detection algorithm is

presented in Section 4. The theoretical basis for the algorithm is presented in

Appendix A. In Section 5, we relax our assumption about the locks being exclusive to

allow shared read-locks and present our modified deadlock detection algorithm. The

proof of correctness of the modified algorithm is given in Appendix B. In Section 6,

we extend our algorithm to perform periodic deadlock detection instead of deadlock
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detection every time a transaction blocks. In Section 7, we present our conclusions.

2. Assumptions

Deadlocks arise in database systems in the context of concurrency control algo

rithms based on locking [3]. In locking, access to database objects is mediated by a

lock manager, and a transaction must set a lock on an object that it wishes to

access before being allowed to access the object. In this paper, we assume such a

locking protocol is employed, and we make the following assumptions about this pro

tocol:

1. The locking protocol is the strict two-phase protocol, that is, a transaction holds

all its locks till its completion1.

2. A transaction requests one lock at a time and is blocked if a lock cannot be

granted.

3. All locks are exclusive.

3. Waits-tor Graph in Database Systems

Deadlocks have been expressed in terms of waits-for graphs. It has been

shown [5, 6] that there exists a deadlock if and only if there is a cycle in the waits-

for graph. A waits-for graph G is a directed graph whose vertices represent transac

tions and an edge (T^T.) e Gif the transaction T^ is waiting for a lock owned by Tj.

We will say that Tj is *waiting on T- if there is a path from T^ to Tj in the waits-for

graph.

Management of the Waits-for Graph

The waits-for graph is maintained by the lock manager. For each locked object,

the lock manager keeps the transaction number of the owner of the lock and a

queue of the transactions that are waiting for the object to become free. We will

1 Gray [3] has shown that to avoid a cascade of transaction aborts, a transaction must hold all the
locks until it executes the commit action and then release them together.



assume that the queue discipline is 'first in first out (FIFO)'2. Before allowing a tran

saction ^ to wait for a transaction T-3, the lock manager checks that the addition of

the edge (T^.Tj) to the waits-for graph will not result in a cycle in the graph. The

edge (Tj.Tj) is added to the graph and Tj is blocked, only if this test succeeds. When

a lock is released and a blocked transaction is activated, or when a transaction com

pletes, the waits-for graph is appropriately modified.

Properties of a waits-for graph

1. A cycle-free waits-for graph is a forest of trees (Theorem 2 in Appendix A).

2. If the transaction Tj waits for T., then deadlock can occur if and only if T- is an

ancestor of Tj, that is, Tj is *waiting for Tj. (Theorem 4 in Appendix A).

3. Only the transactions corresponding to the roots in a cycle-free waits-for graph

are active. All descendants of each of the roots are blocked ^waiting for the root

(Theorem 3 in Appendix A). Thus, a cycle is created only when the transaction

corresponding to a root waits for one of its descendants.

4. Any connected subgraph of a waits-for graph can have at most one cycle

(Theorem 5 in Appendix A).

4. Continuous Deadlock Detection Algorithm

The basic idea of the algorithm is that whenever a transaction T- requests a lock

owned by T-, test if T. is *waiting for T-. This test is performed by taking a directed

walk starting from T- to the root of the tree. A deadlock occurs, only if the root

corresponds to T..

8 Other queue disciplines can be implemented with straight forward modifications to the algorithm
presented in this paper.

3T- is the transaction immediately preceding T: in the FIFO queue.



Data Structures

Assume that each transaction is assigned a unique transaction number. Define

the following data structure:

Tran : Array[O..N-l] of (
Waiting-for : transaction^;
SomeOne-waiting : boolean}.

N is a prime number that is used to map a transaction number (by taking mod) to

an array index4. If the transaction tj is blocked for a lock held by t., then

Tranft^.Waiting-for = tj. Tran[tJ.SomeOne-waiting is true only if at least one tran
saction is waiting for t- to complete.

Deadlock Management Module

Chk-cycle(tj,tj: transaction^) \ - tj requests a lock held by t.

if (Tranftj].SomeOne-waiting is false) then [ - deadlock notpossible (Theorem 4)

Add-edge(tj,,tj);

return(o.k.)j

else I —take a directed walk from t-
J

ancestor := Tran[tj].Waiting-fon

loop I

if (ancestor = t.) then —t. "waiting for t-

return(deadlock)

else if (ancestor = Null) then \ —t- not a descendant of t,

Add-edge(tj,tj);

return(o.k.)j;

ancestor := Tranfancestor].Waiting-for;

J —end loop

4Collisions maybe handled usingstandard techniques [?].



Activate(t : transaction^) j

Tranft^.Waiting-for := Null;

i

Terminate(t : transaction^) \

Tran[tJ.SomeOne-waiting := false;

i

Add-edge(t-,t- : transaction^) (

TranftJ.Waiting-for := t=;

Tran[t-]. SomeOne-waiting := true;

Initialize j

for i:=0 to N-l do j

Tran[i].Waiting-for := Null;

Tran[i].SomeOne-waiting := false};

i

Observations

Note that the loop in the function, Chk-cycle, always terminates because of

Theorem 6 in Appendix A- The loop is executed as many times as the path length,

PL, from t- to the root of the tree5. In the worst case, PL = number of blocked

transactions in the connected subgraph of the waits-for graph that contains the

vertex at which the function Chk-cycle begins the search. Gray et al. [2] have

5The tree that contains the vertex corresponding to tj.
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observed that the probability of a transaction deadlocked in a cycle of length more

than two is very rare and all deadlock cycles are essentially of length two. Hence,

in practice, PL = 2, and the deadlock detection will be very inexpensive.

An optimization has been built into the algorithm by keeping track for each

transaction whether any transaction is waiting for it. Theorem 7 in Appendix A pro

vides the basis for maintaining this information. The field, SomeOne-waiting, will

avoid the execution of the loop in all the cases where there is no transaction wait

ing for tj. Thus, the deadlockdetection will be still more efficient.

The space complexity of the algorithm is 0(N).

5. Shared Read Locks - An Embellishment

The deadlock detection scheme presented in the previous section is based on

the assumption that all locks are exclusive. However, many real systems allow

read-locks to be shared and only write-locks are required to be exclusive. In such

an environment, the number of outgoing edges from a vertex in the waits-for graph

is not bounded by one (Lemma 1 in Appendix A) and the deadlock detection

scheme described in the previous section is not directly applicable.

Modified Deadlock Detection Scheme

We will present a modification in the way the waits-for graph is managed that

will guarantee that there is at most one outgoing edge from each of the vertices of

the waits-for graph. With this modification, the deadlock detection scheme

presented in the previous section can be used.

When a writer Tj wishes to wait on a read-lock and there are more than one

readers, the lock manager selects one of the current readers8, T-, ensures that the

addition ofthe edge Tj->Tj would not create a cycle, and addsTj->T: to the waits-for

6 Agood heuristic to minimize the additional overhead might he to pick the reader that started
reading last, based on the assumption that it might be the one to more likely finish reading last.



graph, Later, when Tj commits, the lock manager checks if there are still readers.

If not, Tj is granted the lock and is allowed to proceed. If yes, however, T->T- is

changed to Tj->Tk for some ongoing reader Tk, if it does not introduce a cycle.

This is analogous to what might happen in a "typical" system in the following

situation: T^ gets a read-lock on X, Tg requests a write-lock on X and is blocked

(Tg->T^), and Tg requests a read-lock on X. If the system allows new readers when

a writer is waiting (a policy decision that each system must make, based on a fair

ness versus throughput tradeoff), it would probably not add Tg->T3. Rather, it

would probably let Tg wake up when T^ completes, re-blocking T^ if Tg is still read

ing at that time.

Note that this scheme still allows deadlocks to be detected in linear time,

although not always right as they arise. In the above example, suppose that To

ends up waiting on Tg. Deadlock won't be detected until T* completes, at which

time the edge Tg->Tg is added, and the cycle is found.

The proof of correctness is presented in Appendix B.

6. Periodic Deadlock Detection

In this section, we present an outline of the extension to the continuous

deadlock detection scheme that enables periodic deadlock detection in linear

time. With periodic detection, instead of checking for a cycle before adding an

edge to the waits-for graph, edges are added to the graph without any test and the

graph is periodically examined for cycles.

Define a function Detect-cycle(v) analogous to the Chk-cycle function defined

previously that causes a directed walk in the waits-for graph starting from the ver

tex v. The walk will either terminate at a root or will again reach v, in which case, a

cycle has been detected. Detect-cycle marks every vertex that it touches in the

process of searching for a cycle as visited.
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We will now present the periodic deadlock detection algorithm.

Periodic-detection [

for index := 0 to N-l do Tran[index].Visited := false; —initialize

index := 0;

while (index < N) \

Detect-cycle(index);

while ((Tran[index].Visited is True) And (index < N)) index := index +1;

H

The algorithm simply runs the function Detect-cycle on the first vertex, advances

to the next unvisited vertex, runs Detect-cycle there, etc. In other words, it runs our

linear deadlock detector at every connected subgraph of the waits-for graph. The

time complexity of the algorithm is 0(N), that is, it is linear in the total number of

blocked transactions.

7. Conclusions

In this paper, we have shown that deadlock handling does not have to be expen

sive in the context of database systems. Given certain reasonable assumptions about

the nature of the locking protocol employed, deadlock detection can be accomplished

very inexpensively, and we have presented an implementation of such a scheme. This

scheme is directly applicable to uniprocessor database systems, and it may easily be

extended for use in distributed database systems where a central deadlock detection

mechanism is employed [9].
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APFENDDCA

Definitions

We will first introduce some graph-theoretic definitions adapted

from [l, 4].

A directed graph (or a digraph for short) G consists of a set of vertices V =

iv^,Vg,...J, a set of edges E = (e^,eg,...J, and a mapping that maps every edge

onto some ordered pair of vertices (v.,v.). A vertex is represented by a point

and an edge by a line segment between v- and v- with an arrow directed from v-

to v.. The vertex v, is called the initial vertex and v- the terminal vertex of the
J j

edge.

The number of edges incident out of a vertex v. is called the out-degree of

v- and is written d (v-). The number of edges incident into v- is called the in-

degree ofv^ and iswritten d1^). Asink is avertex v- with d°(v-) =0.

A (directed) walk in a digraph is an alternating sequence of vertices and

edges, !v0'ei»vi»-"en.vn5 'm which each edge e^ is (v^^.v.). Aclosed walk has v

= Vq. A path is a walk in which all vertices are distinct; a cycle is a nontrivial

closed walk with all vertices distinct (except the first and the last). An edge

having the same vertex as both its initial and terminal vertices is called a self-

loop. If there is a path from v- to v., then v- is said to be reachable from v.. The

length of a path is the number of vertices involved in the path.

Each walk is directed from the first vertex vn to the last vertex v„. We
u n

need a concept that does not have this directional property. A semiwalk is

again an alternating sequence iv0«ei«vi»--en.vn) of vertices and edges but each

edge e- may be either ("Vj.pV^) or (vj.vj.j). A semipath and a semicycle are

analogously defined.

10
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A digraph is said to be connected if there is at least one semipath between

every pair of its vertices; otherwise, it is disconnected. It is easy to see that a

disconnected graph consists of two or more connected subgraphs. Each of

these connected subgraphs is called a component.

An in-tree is a digraph G such that l) G contains neither a cycle nor a sem-

icycle, 2) G has precisely one sink. This sink is called the root of the in-tree.

Characteristics of a waits-for graph7

THEOREM 1. Awaits-for graph does not have any self-loop.

Proof. A transaction does not wait for a lock that it owns itself.

LEMMA 1. Assuming all locks to be exclusive, for all vertices v-in a waits-for

graph, dPfv^iZ 1.

Proof. A transaction cannot wait for more than one transaction at a time.

LEMMA 2. G is a digraph with n vertices. If there is a unique semipath

between every two vertices of G, then the number of edges in G = n-1.

Proof. Theorem 4.1 in [4].

LEMMA 3. In a digraph, the sum of the out-degrees of all vertices is equal to

the number of edges in the digraph.

Proof. Each edge contributes exactly one out-degree.

LEMMA 4. Any component of a waits-for graph cannot have more than one

sink.

Proof. Suppose a component G has two sinks v« and v . Since G is connected,

we can find a semipath between Vq and v . Extract the subgraph G' that has

only the vertices and the edges comprising this semipath. Let there be p ver

tices in G'. By Lemma 2, number of edges in G' = p-1 and by Lemma 3, the sum

7We will assume throughout that the graph is non-empty.



12

of out-degrees of all vertices in G' = p-1. However, since d°(vQ) = d°(v_) = 0,

there must be some vertex v in G\ and hence in G, that has d°(v) > 1. But, this

contradicts Lemma 1.

LEMMA 5. An.acyclic digraph has at least one vertex of out-degree zero.

Proof. Theorem 16.2 in [4].

LEMMA 6. A connected digraph Gis an in-tree if and only if exactly one vertex

of Ghas out-degree 0 and all others have out-degree 1.

Proof. Theorem 16.4* in [4].

THEOREM 2. A cycle-free waits-for graph is a forest of in-trees.

Proof. Follows from Lemma 1, Lemma 4, Lemma 5 and Lemma 6.

LEMMA 7. In an in-tree, there is a unique path from every vertex to the root.

Proof. Theorem 9.3 in [l].

THEOREM 3. The root v of each of the in-trees in a cycle-free waits-for graph

corresponds to an active transaction for which all other transactions in the

tree are *waiting.

Proof. If v corresponds to a waiting transaction, then d°(v) = 1, a contradic

tion. The second part of the theorem follows from Lemma 7.

LEMMA 8. Blocking of a transaction that has no other transaction waiting for

it cannot create a cycle in the waits-for graph.

Proof. The vertex corresponding to a transaction that has no transaction wait

ing for it has no incoming edge.

LEMMA 9. Waiting for a lock owned by an active transaction cannot result in a

cycle in the waits-for graph.

Proof. The vertex corresponding to an active transaction has no outgoing edge.
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THEOREM 4. Wait by a transaction T.for a lock held by T- will result in a cycle

in the waits-for graph if and only if 71. is *waiting for T.-.

Proof. First, if T, is *waiting for T^ then there is a path from T- to T^ and the

addition of the edge (T^T.) will create a cycle in the waits-for graph.

Suppose now that T. is not *waiting for T. and the addition of the edge

(T^.Tj) creates a cycle inthe waits-for graph. We will show a contradiction. If Tj

is active, waiting for Tj cannot create a cycle by Lemma 9. If T- is *waiting for a

transaction T (s* T-), let us traverse the cycle created by the addition of the

edge (Tj.Tj) starting from Tj,. Since, there is a unique path between T- and T

(Lemma 1), the cycle should have a path between T and Tr. But that would

imply that Tj is *waiting for Tj.

LEMMA 10. Avertex can be on at most one distinct cycle in a waits-for graph.

Proof. Let a vertex v be on more than one distinct cycles. Starting from v and

moving along the cycles, a vertex v* (v' may be v) will be reached such that

there are two out-going edges from v*. But, then d°(v') > 1, and that contrad

icts Lemma 1.

THEOREM 5. Any component of a waits-for graph can have at most one cycle.

Proof. The transaction T corresponding to the root of a cycle-free component

of a waits-for graph is the only active transaction amongst the transactions

involved in the component. Hence, by Theorem 4, only a wait by T can cause a

cycle in the component, and by Lemma 10, T can cause at most one cycle.

THEOREM 6. A directed walk from, any vertex in a component of a waits-for

graph would result either in detection of the cycle or termination at the root.

Proof. Follows from Lemma 7 and Theorem 5.

THEOREM 7. Jhe in-degree of a vertex in the waits-for graph of a database sys

tem increases monotonically until the vertex is removed from the graph with



the completion of the corresponding transaction.

Proof. A transaction holds all the locks until its completion [3],

14
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APPENDDCB

Model

We postulate a waits-for graph, as before, whose vertices are transactions

and edges (called explicit edges from here on) of the form Ti->T- indicate that

T^ is explicitly waiting on Tj. For proof purposes, there is also a collection of

implicit edges of the form Tj->T., indicating that T, is one of the other readers

of some object X that T- wishes to write. These implicit edges would be present

in a waits-for graph, if we were not trying to bound the out-degree of vertices

by one. Let the graph with just explicit edges be called the E-graph, and the

graph with both explicit and implicit edges be called the El-graph.

Proof of Correctness

Our algorithm will be deemed correct if it can be shown that no cycle

(implicit or explicit) in the El-graph can persist forever.

LEMMA 1. If a vertex in the El-graph has an outgoing implicit edge, there must

be at least one outgoing explicit edge from it.

Proof. A transaction Tj can implicitly wait for a transaction T^ if T^ requests a

write-lock for some object X that has been read-locked by T^ and at least one

other transaction Tj (j &k), and T. chooses T- to explicitly wait for. The other

scenario where Ti can implicitly wait for T^ is when Tj is already explicitly wait

ing for some transaction Tj that holds a read-lock on X, and T^. arrives later on

and is also granted a read-lock on X. In both situations, the implicit edge T--

>T^ cannot be present without the explicit edge T-->Tj being present as well.

Now, when transaction T- commits, the explicit edge T-->Tj is removed and

an implicit edge Tj->T is made explicit. If k = m, the implicit edge T^->Tjc is

now explicit; otherwise, the implicit edge T-">T. remains implicit, but still has
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a related outgoing explicit edge.

LEMMA 2. Sinks in the E-graph are also sinks in the El-graph.

Proof. Suppose there is a vertex v that is a sink in the E-graph but not in the

El-graph. The vertex v cannot have an outgoing explicit edge in the El-graph

because, by definition of the E-graph, the same edge would be outgoing from v

in the E-graph and v is a sink in the E-graph. If v has an outgoing implicit edge,

then by Lemma 1, there must be an outgoing explicit edge from v as well, and

that is not possible. Hence, v is a sink in the El-graph as well.

LEMMA 3. If our deadlock detection algorithm is applied to the E-graph, then,

at any time, the E-graph will have at least one sink.

Proof. By Theorem 2 in Appendix A, a cycle-free E-graph is a forest of in-trees

and our deadlock detection algorithm never allows any cycle to be formed in

the E-graph.

THEOREM 1. If our deadlock detection algorithm is applied to the E-graph, we

cannot reach a state in which no transaction can proceed.

Proof. Either no transaction is waiting, or by Lemmas 2 and 3, at any time,

there is at least one sink in the El-graph that corresponds to a runnable tran

saction.

COROLLARY 1. Cycles in the El-graph cannot persist forever.

Proof. Assume that we quiesce the system, in the sense that no new transac

tions are allowed to enter. By Theorem 1, at any time, there is at least one

runnable transaction in a non-empty system. Assuming that transactions are

finite in length, all transactions will eventually either commit or abort. Either

way, all vertices are eventually removed from the graph, and hence, all cycles
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eventually go away.
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