Copyright © 1983, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.



DESIGN CONSIDERATIONS OF A SPEECH RECOGNITION
SYSTEM USING SPECIAL PURPOSE INTEGRATED CIRCUITS

by

Menahem Lowy

Memorandum No. UCB/ERL M83/50
25 August 1983

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720



Design Considerations of a Speech Recognition System
Using Special Purpose Integrated Circuits

By

Menahem Lowy

B.S. {(Technion-Israel Institute of Teéhnology) 1960
M.S. (Technion-Israel Institute of Technology) 1975

DISSERTATION
Submitted in partial satisfaction of the requirements for the degree of
DOCTOR OF PHILOSOPHY
in

Engineering

in the
GRADUATE DIVISION
OF THE
UNIVERSITY OF CALIFORNIA, BERKELEY

’

e A - ; ( 1
'”Md’\/@&'}z%\.w
%



Design Considerations of a Speech Recognition System
Using
Special Purpose Integrated Circuits
Ph.D. Menahem Lowy EECS Dept

e U/ ot
Signature: ) U /:)‘2{,?{.; Lies-

Committee Chairman

ABSTRACT

High accuracy, large vocabulary speech recognition systems have
extremely high computational requirements. In order to perform the computa-
tion fast enough to have real time response, an investigation was made of special
purpose integrated circuits. These integrated circuits make it possible to obtain
a system small and inexpensive enough to be generally useful. An analysis of the
architecture for these circuits is presented and a circuit which implements a
critical portion of the algorithm was realized. This integrated circuit imple-
ments a dynamic time warp algorithm which is required in the patiern matching
part of a high performance speech recognition system. With this chip the system

is capable of recognizing 500 words in real time with high accuracy.
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CHAPTER 1

Introduction

Improving man-machine communication has been a subject for research for
many years. The ease of interfacing with machines by voice hold promises of
increasing the use of computers or intelligent machines for the more menial
daily tasks. This goal has sparked a wide interest in the field of voice or speech
recognition [1]. The advances in large scale integration should make it possible
to inexpensively implement the circuits and algorithms needed for voice com-
munication with computers. This thesis describes the realization of such a

speech recognition system.

A more general motivation behind this project is the investigation of LSI
integration techniques as applied to real time signal processing. The speech

application was chosen for investigation because:

(1) Speech recognition systems have reached a stage where they promise to be
commercially feasible. It is possible to obtain very high recognition accu-
racy ( above 99 percent ) by the use of the dynamic time-warp algorithms
[2].[3]. These algorithms solve the problem of aligning the time-warped
speech utterances and enable accurate comparison between the different
patterns. However they have the disadvantage of requiring a'large amount

of computation.

(2) The bandwidth of the speech signal is compatible with the processing rates

of present-day digital MOS technology [4].



To appreciate the importance of these two points, the nature of speech and the

problem associated with it must be explained.

1.1. Nature of Speech

Speech communication between human beings involves the generation and
reception of a complex acoustic signal. This process may be thought of as a cod-
ing operation which takes place over a hierarchy of processing levels. The
highest level is the one where thoughts are formed. These are encoded on a
lower level, the linguistic level, in the form of words. The words are encoded in
successively lower levels involving neural processing and articulatory move-

ments until the lowest level is reached with the acoustic signal.

Redundant information is present in every processing level to correct ambi-
guities at that level. One form of this redundant information is the multiple per-
ceptual "cues” used to distinguish between the different speech elements. As an
example to distinguish between the sound /s/ and other speech sounds we use
the presence of the fricative noise, the initial rate of rise in energy, the concen-
tration of energy in certain frequency bands, the relative intensity of the sound,
etc. . Another form of this redundant information involves interaction between
levels. Thus an error in the identification of a speech sound from its acoustic
pattern can be corrected by referring to physical or linguistic rules governing
the production of such sounds, by knowledge about the vocal characteristic of

the talker and also whether the total message "makes sense".

The cues, or sources of knowledge, are subconsciously used by talkers when
trying to understand a sentence. These include the characteristics of speech
sounds ( phonetics ), variability in pronunciation ( phonology ). the stress and

intonation patterns of speech ( prosodics ), the sound patterns of words ( lezicon



. ), the grammatical structure of language { syntaz ), the meaning of words and
sentences ( semantics ), and the context of conversation ( pragmatics ).

- In addition to the acoustic waveform, some of the additional cues present in
speech can be used mostly for task oriented applications. The grammatical
structure of sentences can be used to reduce search by restricting the number
of acceptable alternatives. Syntactic structure imposes an ordering and mutu-
ally interdependent relationship among words such that only a subset of the
vocabulary is searched. The accuracy for the sentence as a whole will increase
as the system is restricted to smaller vocabularies. Additional level of informa-
tion such as pragmatics are added in an Al ( artificial intelligence ) approach to

improve recognition aceuracy. [5)

At present our recognition system does not use these cues to improve
recognition. The hardware uses only the lowest level, i.e. the acoustic waveform
of the utterance, to recognize words . If these higher knowledge sources were

added, this would further improve recognition performance.

1.1.1. Basic Speech Mechanism

Voiced speech is produced by the vibration of the vocal folds powered by air
coming from the lungs during exhalation. The resulting pulse wave drives the
acoustic system which is composed of the nasal and the vocal tract. The func-
tion of the vocal tract is to filter the spectrum of the excitation, depending on
the position of the speech organs, to produce the sounds known as speech. The
linguistic information in speech is conveyed by the modifications introduced in
the vocal tract by the tongue, lips. jaws and velum. and by switching on and off
the vibrations of the vocal cords. The linguistic information then appears as a
time varying spectrum which depends on the particular configuration of the

vocal tract at that time.



The changes in the shape of the vocal tract and the resulting changes in the
spectra of the acoustic waveform correspond to different soungis. For certain
sounds, the organs of speech do not take a fixed configuration but are in con-
stent motion along a smooth trajectory. Therefore the result is a complex and
continual motion transmitted to the emitted sound in the form of a constantly
changing amplitude spectrum. To characterize speech we must then character-
ize this time varying spectrum. Due to the masses involved in the speech pro-
duction mechanism, the rate of change in the shape of the vocal tract is limited.
Therefore, for small intervals of time, of the order of 10 to 20 msec., the spec-

trum can be considered to be stationary.

This is the basis upon which speech can be transformed into a pattern and

compared to other patterns to determine similarity between them.

1.1.2. Phonetic Considerations
The acoustic properties of the sounds in the English language influence the
choice of the filters and other parameters in the realization of the feature

extraction subsystem [6].

The design of the feature extraction block depends on the following charac-

teristics of the English sounds:

(1) the frequency range of the spectrum of the acoustic waveform. This
influences the number of channels of the spectrum analyzer and also the

amount of computation in the system.

(2) the characteristic of the waveform of the different sounds. The shortest
duration of the plosive consonants as /b/, /p/./d/. /t/ influences the time

during which the features are assumed to be constant.



(3) the range of intensity of the different sounds. This is necessary for defining

the dynamic range of the filters and of the A/D converter.

(4) the variation in the pitch frequency of the vocal cords. The énergy within a
frequency band depends on the number of pitch harmonics contained in the
band. In the low frequency part of the speech-sound spectrum, where the
spacing between pitch harmonics is relatively high, a too narrow band-
defining filter exhibits energy variations due to the variation in the number
of pitch harmonics in its band. These variations in energy are mistakenly

attributed to variations of the pattern.

The acoustic spectra cover the frequency range from below 200Hz up to
8Khz. However, information which permits discrimination between voiced and
unvoiced sounds is also contained in the appearance of the fundamental of the
pitch waveform. The sounds of highest frequency are the fricative consonants /
¥ /,/s/ and /f/. For the sound /s/, this frequency band extends from 4 Khz up
to 8 Khz. The main noise energy for /f/ and /8 / is in the band from 6 Khz to 8
Khz.

The plosive consonants or stops, are characterized by short silence (or
near-silence for voiced stops ) followed by a short burst of noise when the stop is
released. This burst of noise is of very short duration, about 10 to 15 ms, when

the sound has no or little aspiration.

The relative intensity of the sounds in the English language has a range of
about 30 dB. The vowels have the higher intensity levels whereas the weak frica-
tives and plosives have low intensity such as the sound of /¥ /in thin. There-
fore, in a single syllable like thought, the recognition system is faced with a
change of intensity of almost 30 dB.



1.2. Problems in Speech Recognition

In general, template based recognition algorithms can be characterized as
a processing and comparison of a received acoustic pattern with an expected
pronunciation or template. The sources of errors in this matching are: acoustic
variability, hardware and algorithm limitations in the comparison, and inadequa-
cies in the stored templates [7]. Variability is due to the deviation of message
pronunciation from time to time and talker to talker from the expected sound
pattern. Due to this variability, and due to the fact that the only level of infor-
mation is the acoustic waveform, the hardware must implement the time align-
ment algorithm between the patterns. Finally, storing adequate templates is a

crucial factor in the accuracy of the system.

These problems are more difficult in a system which allows the input words
to be spoken without pauses ( connected word recognition system ) rather than
one which has pauses between the words ( isolated w‘ord recognition system ).
This is because in connected speech it is difficult to determine where one word
ends and another begins. In addition, due to the modification of the beginning
and end of a word ( co-articulation eflect ), acoustic characteristics of 'sound in
a connected word recognition systems exhibits much greater variability. A
more complex problem is addressed in a speech understanding system which
makes use of sources of knowledge and of task-specific information to reduce

search in the vocabulary. In such a system as long as the message is understood

it is not important to recognize each phoneme or word correctly [8].

The accuracy of e system is very dependent on a variety of factors. By
increasing the size of the vocabulary, making the system user independent or
recognizing connected speech, we increase the number of recognition errors in

the system. In addition, vocabularies with many similar sounding words are



more difficult to recognize. For small vocabulary systems, trained for each user
and recognizing isolated words, it is possible to obtain virtually error free recog-

nition.

1.3. Brief Review of Speech Recognition Efforts [9].[10]

The research on automatic speech recognition is based on an understand-
ing of the generation and physics of speech, the mechanisms of hearing, and the
tolerance of the ear. A great deal of useful research has also been concerned
with relations between the perceptual and acoustics aspects of speech commun-
ication[11].

The first truly successful recognizer was reported in 1952 by Davis, Bid-
dulph and Balashek of Bell Laboratories [12]. This device could recognize the ten
digits, spoken over the telephone by a single talker, with an accuracy approach-
ing 100 percent. Since then, many systems have been reported . In 1958 Wiren
and Stubs [13] produced a device based on phoneme classification. This
classification was based on voiced/unvoiced, turbulent/ mnonturbulent,
stop/fricative, and acute/grave determinations. In 1959 Forgie and Forgie [14]
at Lincoln Laboratories reported a study where they used a 35-channel filter
bank whose outputs were envelope-detected, sampled and fed to a computer.
The computer program made use mainly of the frequency positions of the for-
mants F1 and F2 and of fundamental voice-frequency measurements. For 21
male and femnale talker, with no adjustment for the talker, the vowel recognition

accuracy was 93 percent.
The availability of computers bas led to it being used in place of the

hardware concerned with classifying the utterance on the basis of output signals

from a hardware spectrum analyzer. A number of practical recognizers were



demonstrated in Japan. The high recognition scores obtained in these systems
are sometimes attributed to the phonetic simplicity of the Japanese language. A
study of vowel recognition was reported in 1881 by Suzuki and Nakata [15]. They
used a 26 channel spectrum analyzer and separate wideband, formant-related
channels. The channel outputs were separately grouped and connected to indivi-
dual vowel-decision circuits. The speech was segmented into voiced and unvoiced
segments and envelope-ihtensity and fundamental voice-frequency measure-
ments were also used. To reduce the errors due to formant movement during
vowel sounds, separate recognition decisions were made at intervals throughout
voiced segments. Final classification was made by observing the phoneme most
frequently recognized. Sakai and Doshita reported in 1962 [16] using separate
circuits for segmenting speech into vowels and consonants and for classifying
the segmented phonemes. Zero-crossing analysis was combined with measure-
ments of the variations of energy in various frequency regions. The segmenta-
tion operation made use of m-easures of the "stability” of, and the "distance”
between the digital patterns generated. It was claimed that 90 percent correct

recognition was obtained on vowels and 70 percent on consonants.

Pols et al. have published results [17],[18] obtained by principal com-
ponents analysis . Using this method the three first formants F1, F2 and F3 are
found from the spectral analysis of the speech waveform . Their preprocessor
used 16 channels . The dimensionality was reduced by finding the best three-
dimensional plane defined by the 16 dimensional vectors. The word-recognition
system based on this method obtained more than 90 percent correct recogni-
tion.

In 1971 Sakoe and Chiba [2] published results obtained when using dynamic

programming for solving the problem of time alignment between the patterns to



be compared. This was a major breakthrough as it improved the recognition
accuracy from about 90% obtained until then up to 99% and above. The algo-
rithms based on dynamic programming are now a major technique in speech
recognition systems.

The speech-understanding project sponsored by the advanced research pro-
ject agency (ARPA ) in 1971 gave renewed impetus to research in the field. The
goal was to achieve continuous speech understanding for a 1000-word vocabulary
for a specific task for a small number of speakers in near real time on a big
computer ( a capability of 100 MIPS ). The absence of speciﬁcatic;ns concerning
the applicability of these systems to real-world problems and that the systems
be cost effective helped to focus it on scientific and computational issues. But
unfortunately this resulted in ignoring the work needed to develop future practi-
cal systems [19].

Five systems were originated at: Bolt Beranek and Newman Inc. (BBN), at
Carnegie-Mellon University (CMU), at Lincoln Laboratories (LL), at Stanford
Research Institute (SRI) and at System Development Corporation ( SDC ). After

two years the project focused on the three systems at ﬁBN. CMU and SDC.

The three ARPA speech-understanding systems use semantic, grammatical
and phonological sources of knowledge to overcome acoustic ambiguity. The
approach which was chosen consisted basically of the following steps: the first
step was to process the acoustic input to obtain a phonetic transcription of what
wae said. This consists of a sequence of states called phonetic segments. The
second step consisted of trying to find the most likely candidate words and word

sequences that might be present in this phonetic transcription.

A description of the systems and of the results obtained in the different

groups which participated in the project is described in [19].
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Only the Harpy system from CMU met or exceeded in 1976 the goals set
forth in 1971. The recognition accuracies obtained is between B0 and 80 percent
for a constrained vocabulary of 200-300 words for a specific task. Harpy is an
-éxtension of a Markov model of a sentence decoding originally employed by
Baker [20] in a sentence recognition system called Dragon. In that system, time
alignment is obtained using Markov models. Other knowledge domains like syn-
tactic, semantic and acoustic can also be modeled as Markov processes. The
HEARSAY-I system also from CMU, exhibited the best performance of the sys-
tems other than Harpy. In this system a hierarchy of speech unit's is used : sub-
phonemes, phonemes, surface phonemes, syllables, words and phrases
represent knowledge sources to achieve significant economy in the computation.
To deal with multiple knowledge sources in the system the following strategy was
defined: whenever any knowledge source has something to say, it writes it on a
structurally uniforrn data base for all other knowledgg sources to see. The con-
trol of the computer processof is taken by the knowledge source that has the

highest match between this pattern matching and one of its templates.

Since the ARPA project the main effort in speech recognition has been pur-
sued at Bell Labs, at IBM, and in Japan. Many speech recognition systems have
been developed and are available commercially. Doddington in [21], has made a
comparative survey of some of the systems. Continuous efforts at IBM have
resulted in a continuous speech recognition system as described in [22]. The IBM
system consists of an acoustic processor (AP) followed by a linguistic decoder
(LD). The speaker and the AP are conceptually viewed as combined in a acoustic
channel which provides the LD with information y. The LD tries to find that word
string w which maximizes the probability P(w,y) of the joint observation of the
input-output pair w,y at the terminals of the channel. The system can correctly

identify 93 percent of the words contained in sentences of a 1000 continuous
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word special purpose vocabulary.

1.4. Speech Recognition System Requirements

This thesis describes a speech recognition system which has the potential
to be of sufficiently low cost and small size to make it possible to significantly

increase the use of such systems.
The important characteristics of this system are:

- very high recognition accuracy, typically > 99% for a cooperative talker

using the system in isolated word recognition mode.
- recognizes words spoken both in isolation and in continuous speech

-  speaker dependent system that is, each user trains the system by storing

one or more templates representing a word in the vocabulary.

- real time recognition of a vocabulary of about 500 templates ( more pre-
cisely, the vocabulary being searched in real time amounts to 250 sec. of

speech ).

1.4.1. Processing of Speech Signals in Real Time

1t has been stated that the main problen;x in speech recognition systems is
how to use the massive amount of data pertaining to different sources of
knowledge and to process them in real time to maximize recognition accuracy
[23].

A word recognition system is basically a pattern recognition system in
which an incoming pattern is compared to the patterns stored in the system.

The model of such a system is illustrated in Fig. 1.1.



Fig. 1.1
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processor for all the computations in the system. Due to overhead operations
like fetching and decoding of instructions, such a system is not optimized for
the high rate of computation needed for the feature extraction done in the
front end and for the dynamic time warp algorithms. Therefore, the dynamic
time warp algorithms used are modified in order to reduce the amount of com-
putation needed. Many of these modifications introduce recognition errors. It
seemed necessary therefore to implement the highest performance algorithms
without compromise and solve the computation speed problem by using another

approach.

To increase the rate of computation without having recourse to expensive
high performance processors, we use custom designed integrated circuits. Fig.
1.3 shows the block diagram of the system using this approach. The front-end
and the realization of the dynamic time-warp algorithm are distinct functions
and use special purpose circuits. Flexibility in the system is still retained by the
use of a standard microprocessor { which can have relatively low performance ).

as a controller.

The custom designed circuits perform the necessary operations in the
required time without any difficulty. Improvement in the computational rate is
done using pipelining techniques and parallel circuits. These circuits use smaller
area and lower clock rates then the generally used micro-processors. In addi-
tion, it is possible to increase the capability of the system by connecting other

processing 1.C."s in parallel together with their associated memories.

Our goal is to realize a speech recognition system using custom designed
integrated circuits for the feature extraction block and for the pattern match-
ing one. With the addition of a low-cost microprocessor the complete system will

consists of only three chips with additional memory IC's.
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The input to the system is the acoustic waveform of the spoken utterance.

This model performs the following basic steps:

.a) The feature extraction of the input waveform is done in the front end part
of the system. One or more coded representation of the input utterances

are stored as templates in the system memory during the training phase.

b) The pattern matching part determines the similarity between the incoming
word and the templates. This determinatibn is based on the "distance”
obtained between the incoming word and each reference template in the
vocabulary of the system. The smaller this "distance”, the more similar the

reference is to the incoming word.

c) Based on the number of templates stored for each word, different decision
rules are applied to determine which templates most closely matches the

incoming word.

The main problem encountered when matching patterns representing the
incoming words to those representing the words in vocabulary is the correct
time alignment of the different parts of the incoming word to those of the refer-
ence one ( the template ). This non-linear time alignment is necessary due to
the variation of pronunciation of the same word at different times. To obtain
high accuracy we use the dynamic time warp algorithms to optimally time align
the incoming patterns to the stored ones. However these algorithms require &
large amount of computation. The processing of the algorithm, the large voca-
bulary and the capability of real time recognition all combine to require a rate
of computation of the order of 30 million additions/sec. .

Realizations of speech recognition systems [24).[25] use general purpose

processors to compute the D.T.W. algorithms. Fig. 1.2 shows the basic block

diagram of a typical speech recognition system using a general purpose



Fig. 1.2 Standard architecture of a speech recognition system
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1.5. Description of the Thesis

An overview of the system is given in Chapter 2. Chapter 3 discusses the
\:liﬂerent. implementations of the feature extraction circuit and different struc-
tures for realizing the fliters in digital form. Chapter 4 describes the operation
of the dynamic time-warp circuit and the different cells used in the realization
of the chip. Chapter 5 lists the modifications and additions done on the

integrated circuit which further integrate the recognition system.



CHAPTER 2

Overview of the Speech Recognition System

This chapter describes the basic considerations aflecting the design of the

speech recognition system. The main parts of the system are shown in Fig. 2.1.

2.1. Feature Extraction Subsystem

The main operations of the feature extraction block, as described in Fig.

2.2, are:

(1) pre-conditioning of the input signal by amplification and lowpass filtering

(2) characterization of the short-time energy spectrum based on band-pass
fliiters and energy averaging

(3) logarithmic compression of the samples. This reduces the data rate in the
system and simplifies the normalization procedure.

(4) amplitude normalization. This is done by dividing each feature by the
overall energy of the speech signal.

(5) realization of the end-point detection algorithm. For correct recognition,
the system finds the beginning and ending of the utterance by separating
speech from background noise.

In [28], different techniques have been proposed to analyze speech. From
these, different features set have been obtained. The feature sets most fre-

quently used to represent speech are those based on linear predictive analysis (

LPC ) and on the filter-bank analysis.

18
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White and Neely have shown in [3] that the use of either feature set results
in similar recognition accuracy. They have found that an LPC analysis of the
fourteenth order is equivalent to a set of 20 one-third octave band-pass filters.

Each type of analysis used its appropriate metric or “distance measure” .

In the LPC based feature set, speech is represented as a series of
frequency-smoothed power spectra. The speech samples forming the power
spectra are obtained as a linear combination of past speech samples. By minim-
izing ( over a finite interval ) the squared differences between the actual sam-
ples and the linearly predicted ones, a unique set of predictor coefficients is

obtained.

In the filter bank analysis of speech we use the output of a bank of filters to

characterize the short-time energy spectrum of the waveform.

Our system uses a bank of bandpass fllters to obtain the set of features.

The reasons for this choice are:'

a) the distance measure, characterizing the dissimilarity between speech seg-

ments, is simple to implement.

b) filters are easy to simulate, design and implement either in digital or analog

( switched capacitor ) form.

c) bank of filters are available in integrated form [27].

2.1.1. Filter bank Analyzer

The time-varying spectra of the acoustic waveform is obtained from the
short-time energy of the speech signal. Because the properties of speech
change relatively slowly with time, short segment of speech signal can be pro-
cessed as if they were short segments from a sustained sound with fixed proper-

ties.
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The feature extraction operation transforms the large amount of raw data
into a smaller set which represents as faithfully as possible the identifying pro-
perties of the acoustic waveform. This smaller set of features, representing
discrete time segments of speech, serves as a basis for comparing the time seg-

ment of the spoken utterance to those of stored templates.

After preamplification and lowpass filtering, the speech signal is first
linearly filtered by a bank of bandpass filter to characterize the spectrum in
different frequency bands. The output of the spectrum analyzer is sampled
every 10 msec. to obtain a set of features representing the input waveform dur-
ing this time interval. |

The disadvantage of the average magnitude computation is that the
dynamic range is approximately the square root of the dynamic range for the

standard energy computation given by:

E = ¥ 2%m)h(n-m)

M=~
Because the short-time energy overemphasizes large levels and because of

ease of implementation, we use the short-time average magnitude [28]. defined

M, = f: Iz(m.)l.w(n-m)

where: z(m) represents a sample of the speech signal, and w(n) is a window
positioned at time of sample index n.

This process is illustrated in Fig. 2.3 . These operations are realized using
bandpass filters, full wave rectification and a lowpass fllter representing the win-

dowing operation.
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2.1.1.1. Definition of the Bandpass Filters

The number of frequency bands in the spectrum analyzer depends on two
conflicting requirements: accurate representation of speech spectrum on one
hand and minimizing computation and memory requirements on the other. The
continuously changing pitch frequency imposes another constraint on the
choice of filters. Each channel is integrated during a short time interval which
is unrelated to the pitch frequency. Therefore the energy in the bandpass fllters
fluctuates as a particular pitch harmonic moves in or out of the filter passband.
This fluctuation is severe in narrow band filters where the eneréy may change
considerably from frame to frame when in fact it should represent the same

average magnitude. Therefore there is a limit to the minimum width we can use

in the bandpass fllters.
Accurate representation of speech spectrum depends on:
(1) the extend of frequency coverage desired

(2) the number of filters in the analyzer, which depends on the bandwidth of
the individual filters.

In addition, the computation and memory requirements also depend on:
(3) the speech sampling frequency
(4) the order of each filter
(5) the accuracy of filter realization.
(6) the desired dynamic range of the filters

The selection of the bandpass filters is frequently done by duplicating the
frequency response of the ear.

The ear makes a crude Fourier analysis of an acoustic signal - much as a set

of contiguous bandpass filters does. This frequency analyzing behavior is
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reflected in the mechanical response of the basilar membrane. The basilar
membrene in the inner ear exhibits nonsymmetric (and also nonlinear) selec-
tivity at different frequencies [29]. Fig. 2.4 in [30] shows the variation of the

equivalent filter bandwidth of the ear as obtained from measurements on:

(1) critical bandwidths [31]

§

SANDWDTH (H2)
g 8§ 8§

FREQUENCY (H2)

Fig. 24 Measurements on the selectivity of the ear
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(2) bands of equal contributions to articulation index [32]

and comparison with 1/3 and 1/6 octave bandwidths curves.

From these measurements, the ear seems to behave like linearly spaced
fliters with a bandwidth between 100 and 140 Hz up to a frequency of 800 to 1200
Hz. From that frequency and up, the filters have logarithmic spacing with
bandwidths between 1/3 to 1/8 octave.

Other factors which influenced the choice of fllters in our system are:

(1) Good recognition results obtained by White, [3], using third-octave filters up
to 10 kHz. His comparison with other recognition systems indicates the

necessity for good high frequency discrimination.

(2) possibility of using commercially available switched-capacitor bandpass
filters.

In the present system we are using 12 1/3 octave fourth-order Butterworth
filters. The bandwidths of the bandpass fllters used in the present system appear
in Table 2.1. The frequency range spans the band from 200 Hz to 5 kHz. The first
filter is one octave wide. The reason is that using 1/3 octave filters in that range
would result in filters narrower than the spacing between pitch harmonics. Pitch
variations would then give unconsistent energies in that band.

Preliminary investigation [33] has shown that there is little difference in
recognition accuracy when using fllters having two or three complex poles pairs.
However when using one complex pole pair fllters, a noticeable degradation in

recognition accuracy occurs.

2.1.1.2. Definition of the Lowpass Filter

The window w{n) integrates the incoming signal to yield the slow changes, -

the envelope - of the speech spectrum. The duration of the window w(n) is



ot i ol | o

200 | 400 | 200
400 | 500 100

630 | 800 170

800 | 1000 | 200
1000 | 1250 | 250
1250 | 1600 | 350
1800 | 2000 | 400
2000 | 2500 | 500
2500 | 3150 | 650
3150 | 4000 | 850
4000 | 5000 | 1000

PeBoowoue N~

Table 2.1 Frequency Bands of the Analyzer

chosen to be short enough to respond to rapid amplitude changes but long
enough to provide sufficient averaging for obtaining a smooth energy function.
The duration of the impulse response should be on the order of one to two pitch
periods. Pitch frequencies, however, vary for different speakers. The average
fundamental pitch frequency is 120 Hz for men, 225 Hz for women and 265 Hz for
children. The total range of fundamental frequencies encountered in speech

extends from about 80 Hz to about 500 Hz.

It is obvious then that one window will not have adequate duration for all
speakers. A compromise is reached for a filter having a duration of the order of
10 to 20 msec. Another solution is to realize different filters for male and female
users. For digital fliter realization of the windows, the additional coefficients

require only a few more memory locations, depending on the order of the filter.



28

In our system. the window is realized as the impulse response of a three
pole, lowpass fllter having a cutof! frequency of about 25 Hz.

-

2.1.2. Logarithmic Compression and Amplitude Normalization

The samples obtained from each channel are passed through a logarithmic
compressor. This reduces the dynamic range of the signal and simplifies the
normalization procedure. The circuit realizing this operation is a 258 u-law
integrated coder. Each time frame is then characterized by a se.t of N numbers

MM fori=1,2,...N where each number is proportional to the log energy of the
speech signal in a given frequency band. N, the number of channels in the spec-
trum analyzer is typically between 12 to 20. The system uses at present 12

channels.

As the log energy depends on the loudness of the speech, each number in
the set must be normalized before using it for comparison. The normalization is
done for every frame by subtracting from each feature the average sum of the
features. This is equivalent to dividing the energy of the speech waveform in
that band by the geometric average of the total energy present during that time
frame and then compressing logarithmically. The justification for this operation
is the following:

In order to compare two log frequency spectra, L, and Lp respectively,

we have to find a constant a minimizing the squared distance between them.

Defining the distance between the two spectra as:

D(a+Lula)=3l(a+1) -1
i=]

where p is the the number of features ,12 in our system, and l}" and l-‘(‘) are

the i th feature appearing in the log energy of L, and Lz respectively.



For minimum D

. 2= fA(a ) -0 )=0

from which we obtain:

S -1

a = &L
¥

The constant a is then the difference between the average of the log
features of the spectra. The normalized features which we use in our computa-

tions of pattern matching are then of the form:

2ro

D= pf) 850
i =rf P

In practice, a constant is added to the normalized features to place it in the

numnerical range desired.

2.1.3. Endpoint Detection

A word recognition system is basically based on pattern recognition. There-

fore errors in endpoint location will result in errors in the recognition process.

When the background noise is significantly lower than the weak fricatives,
the location of the beginning and the end of an isolated utterance can be deter-
mined by the use of a simple energy threshold test and temporal constraints on
the word.[34] This ideal condition very rarely exists. In practice, the utterance

is corrupted by:

(1) background noise, like machinery hum, door slamming, etc.
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(2) speaker generated artifacts like clicks, lip smacking and breathiness.

These types of noise add pulses at the beginning and at the end of the word mak-
ing it difficult to determine the correct endpoints.

The basic endpoint detector is based on the double threshold technique
[35]. The actual circuit has been modified by Davies and is described in [36].
The operation of the algorithm is shown in Fig. 2.5 . Two thresholds designated

T, and T, respectively are defined at the beginning of each training and
recognition session. For frames to belong to speech, they must be above the two
thresholds for a cert.ain. amount of time larger then the minimum word width.
The gap allowed between two such pulses, if they belong to the same word,
should not be larger than the maximum gap time. A counter then looks back and
gelects as the beginning point the first frame having risen above T; for which
these conditions are true. The ending point is at that first frame falling under

T; for which the next pulse rising over T, is at a distance greater than the
maximum gap time.

Heuristic considerations are used to choose the time durations and the
thresholds appearing in the algorithm. We use values of 3 db and 10 db above the
background noise for the first and second threshold respectively. The minimum
word width is 80 msec and the maximum gap between pulses belonging to the

same word is 180 msec.

Improvements can be added to this algorithm to discriminate against cer-
tain types of noise. To reduce the effect of breath noise, for example, the slope

between the two thresholds is constrained by the use of another counter.
Detecting the ending of a word is complicated by:

(1) weak fricatives with low trailing slope like the ending sound /v/ as in five.
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Fig. 25 Endpoint detection algorithm
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(2) breathiness added at the end of the word.

In the first case the word tends to be shortened as the endpoint detection
algorithm will delete the trailing end of the word which blends into noise. In the
second case the opposite effect occurs as the breathiness will be included within

the endpoints.
The problems mentioned above can be reduced by:

(1) extending the range of frequency of the bank of filters to provide better

characterization of the input waveform

(2) improving the endpoint detection algorithm to include differentiation

between voiced, unvoiced and silence sounds
(3) incorporating temporal clues in the algorithm.

Including elements of the hybrid technique as proposed. by L.Lamel [37]
improves endpoint detection. When using this technique, the endpoint detector
supplies several estimates for each endpoint with the final decision as to the
"correct” endpoints being made by the recognition stage. Alternatively, feed-
back can be used from the recognition stage to obtain a revised estimate of the

endpoints.

2.1.4. Downsampling

After endpoint detection the normalized filter values are either stored in
the system dictionary ( the template memory ) during the training mode, or
sent to the pattern matching circuit during the recognition mode. To decrease
the data rate through the system, frames which are similar to the previous one
ere not transmitted. Also the previous frame is not repeated. In this way the sys-
tem dynamically varies the spectral sampling rate. This method increases the

accuracy of the system by reducing the emphasis the system would otherwise
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place on long steady sounds during pattern matching. Reducing the frame rate
also increases the size of the vocabulary that can be processed in real time.
Another advantage is that more words can be stored in the vocabulary of the

system.

This selective downsampling is explained in more detail in [38]. Basically, a
new frame is transmitted only if the spectral distance between it and the previ-
ous frame is greater then a predefined threshold. With the threshold at its
present value, the spectral sampling rate is decreased from once e;very 10 msec.
to about every 23 msec. when averaged over long periods of speech. Fbr short
periods the spectral sampling rate can be as fast as the original one or very low

as during steady vowels.

2.2. Pattern Matching

The output of the endpoint detector is a string of N dimensional vectors.
Each vector characterizes the state of the vocal tract during a short time inter-
val of the order of 26 msec. This string of Qectors represents a pattern. During
the training phase, these patterns are the references or “templates”, which are
stored in the memory of the system. During the recognition phase, the incoming
utterance must be matched against each template. The template having the
smallest “distance” ( most similar ) to the incoming utterance is selected as the

recognized word.

The success of this operation is dependent on three steps:
(1) correct pattern of the utterances
(2) efficient distance computations

(3) flexible matching procedure.
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The first step is dependent on feature extraction and endpoint detection
algorithms. The second and third steps involve both distance computation and
time alignment. These operations are strongly related and are done simultane-

ously.

The main problem in matching the speech patterns is that due to varying
speech rates, the repetition of a word has parts which have different duration
than their corresponding parts in other repetitions. The repetition may have
parts which are compressed and others which are expanded as ct;rnpared to the
criginal word. The problem is illustrated in Fig. 2.8. To compare the two pat-
terns it is therefore needed to align the corresponding parts of the words using
a non-linear time alignment. Sakoe and Chiba proposed the use of dynamic time
warping to improve the fit between references and test patterns [2]. In this
method, a nonlinear expansion and/or compression of the time scale is used to
provide an optimal fit between the patterns. Sakoe and Chiba also suggested the
use of dynamic programming, as developed by Bellman [39], for the efficient

implementation of the time warping algorithm.

Dynamic programming is a method for finding efficiently an optimal path
between two points. This path is determined by minimizing a weight function.
The operation of the dynamic programming ( DP ) algorithm can be best
explained with reference to Fig. 2.7a

The optimal path between the two points A and P is found by applying the
principle of optimality [38] stating that the globally optimal path is also locally
optimal. Therefore starting from point A we find the best ( local optimum ) path
to point E by comparing the two paths existing from A to E . That is comparing 5
+ 2 with 8 + 3 and choosing the path with the smaller weight. The weight at

point E is then 7 with the path passing through point B. The optimal path from A
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to H is obtained by comparing the sum of the paths from A to D and from D to H
with the accumulation of the paths from A to E and from E to H. As all the accu-
mulated weights of these paths are known, the optimal path to H is easily found.
The accurnulated weight at point H is 9 with the path passing trough point E. In

this way the optimal path to every point in the matrix is successively found until

we reach point P.
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Fig. 2.7a. Principle of operation of the dynamic time-warp algorithm.
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This method is applied for the time alignment of speech patterns as shown
inFig. 2.7b:

Each time interval, during which the speech is considered to remain sta-
tionary, is represented by a vector of 12 features. The horizontal segments
represent the time intervals - or ( time ) frames - of the incoming pattern
denoted by R{m), 0 sm<M . The vertical segments represent the frames of the
reference pattern denoted by T(n), 0 sn<N. The weight attributed to each cell
in the two dimensional grid is obtained by computing the local distance between
the corresponding reference frame [ R(m) ] and ( incoming ) test frames [ T(n)
]

The distance between the two patterns is the sum of the local distances
along the optimal time-alignment path. The optimal time-alignment path is a
function relating the m time axis of the reference pattern to the n time axis of

the test pattern and has the form:
m =w(n)

where w{n) is restricted to begin at the point n=1, m=1, to pass through the
grid of points (n,m), where n and m are integers, and to end at the point n=N,

m=M. The required function is the solution to the minimization problem posed

by:

D= min Lﬁf‘ d( T(n).R(w(n)) )

where d( T(n),R(w(n)) ) is the "distance" between frame n of the unknown pat-

tern, and frame w(n) of the reference pattern.

This function is found using the dynamic programming technique. Fig. 2.7b

shows the matching between the patterns of two repetitions of the word " four”



38

baving different durations. The numbers in parenthesis indicate the ('local ) dis-
tance between the corresponding frames of the reference and incoming test pat-
terns. The optimal path, found using the dynamic programming method, passes
through the cells indicating the best match ( smallest distance ) between the
segments of the reference and test patterns. The distance between the two pat-

terns is obtained by summing the local distances along its path.
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Fig. 2.7b  Speech pattern alignment using DTW algorithm.
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2.2.1. Distance Computation
The distance between two patterns depends on:
(1) the time alignment
(2) the measure we use to compute the distance between them.

The "distance” between the two patterns is defined as the accumulation of
the spectral distances between their aligned frames. Several measures have
been proposed for calculating the spectral distances [40]. Among the most
widely used are the LPC log likelihood distance for LPC based analysis and the
Euclidean distance. The distance used depends on the features set chosen to

describe the speech waveform.

As described earlier, we use the following as measure of distance between

two spectra of energy S, and Sp:

d(S4.Sg) = g: I‘-ﬂ Sa(w) - In Sp(w) | ?

The features we are using represent the in-band log energy. Substituting the
unknown and reference patterns in the distance measure we obtain the square

of the Euclidean distance:

d(T.R) =3 LY - 1§9] 2

isl
where Uf) and I§" are the normalized log energy estimate of the i** bandpass
filter of spectra A and B respectively. We have found that euclidean distance

gives generally better recognition accuracy then the distance based on absolute

value of the difference between features [3].

This distance is computed between every frame of the unknown pattern and

every frame of the reference pattern. Thus for N frames in the unknown and #
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frames in the reference pattern, we have NM calculations when comparing the
test pattern with one reference pattern. For a vocabulary consisting of ¥ refer-
ence words, the number of distance calculations is WN# . This distance calcula-

tion is the step requiring the most computation in the word recognition system.

222 Dynamic Programming for Time Warping

Dynamic programming uses a succession of simple operations to find the
optimal path. Beginning from frame (1,1), the optimal path to a pbint in the grid
comes from a previous point for which the accumulated distance is minimum.
Thus, if D(n,m) represents the minimum accumulated distance to the point

(n,m) we have:

D(n.m) =d(Tp.Rm) + ggun D{n - l.q).D(n.m-l)]

where: D(n,m) is the minimum accumulated distance to the grid point (n,m),
d(Tn.Rm) is the local distance between these two frames as described in the
previous section and g is the number of points from which a permissible path
exists to the point (n.m).

Many variations of the basic algorithm have been proposed [41].Local and
global constraints on the path have been added to reduce the amount of compu-
tation. To obtain a better fit, the endpoint constraints have been modified to
take into account conditions appearing during generation of speech pat-
terns[42].

We are using the algorithm shown in Fig. 2.8 . The minimum accumulated

distance to any point (n,m) is given by:

D(T(n).R(m)) = d(n,m) + mm[p(n ~1.m).D(n -1,m-1).p(n.m—1)}
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where D(n-1,m) ,D(n-1,m-1) and D(n,m-1) are the accumulated distances, along
an optimal path, at grid points adjacent to the point (n,m). There is no need to
find the optimal path but only the accumulated distance along it.

This computation is done for every point in the grid, up to the last point
(N.M) and is repeated for every reference word in the vocabulary. The reference
pattern which has the smallest accumulated distance to the incoming pattern is

selected as the incoming word.

Justification for using this algorithm is the following: although the incoming
pattern is time warped when refered to the correct reference template, the
order of the characteristic frames remain the same. Therefore the optimal path
which matches the corresponding frames can only increase monotonically The

path can continue only along the three directions as indicated by the algorithm.

When computing the j** column the values of D (ij-1) . 1sisM , are needed.
Therefore the amount of memory required by this algorithm for the computa-
tion of one path through the grid is one column and one cell of memory. Previ-

ous values of accumulated scores are discarded.

An example of the computation of the accumulated score for two successive
frames in the same column is shown in Fig. 2.9a. In each cell, the numbers in
parenthesis indicate the local distance whereas the upper number indicate the
accurnulated distance along an optimal path up to that point. through the grid.
An example showing the optimal path and all the accumulated distances in the

grid appears in Fig. 2.9b.

2.2.3. Time Normalization

To compare correctly the accumulated scores obtained for the different

templates, it is necessary to normalize them to the same time length. This
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normalization should be done by dividing the accumulated score by the length of
the optimal path. However, to simplify the computation, the length of the refer-

ence pattern is used as measure of normalization. The recognized pattern is

then selected by comparing the different %-;’- where Dy is the accumulated

score obtained with reference template N and Ly is its length, in number of
frames. Experiments done on different normalization measures [38] show no

difference in recognition accuracy.

2.2.4. Decision Procedure

To reduce the probability that an unwanted sound may trigger the recogni-
tion system and that the smallest normalized distance, although incorrect, will
be recognized, a numericel threshold is defined. Any normalized distance above
this threshold will be rejected. The threshold should be adjusted to obtain a
good comprise between the number of errors and between the number of rejec-
tion. This operation, and others like 1/0, is performed by the microprocessor in

the system and is adjustable by the user.

2.3. Compatibility with Connected-Speech Recognition Algorithms
Connected-speech recognition systems are more attractive than isolated-
word recognition one’s since they are easier to use. The recognition system
described here is also capable of recognizing connected speech. The feature
extraction subsystem is used for both isolated words and connected speech. The
reference templates are the same ones that are used for isolated word recogni-
tion. The endpoint elgorithm detects the beginning and ending of a string of
words. This string of words passes through a dynamic time-warp algorithm simi-

lar to the one used for isolated words. The algorithm finds the best string of
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templates that when concatenated matches the input string better than any

other concatenation of templates.

The implementation of the algorithm is describe in detail in [38] and is
similar to other algorithms used for connected-speech recognition [43]. Basi-
cally the algorithm concatenates the reference templates having the smallest
normalized topscores. To normalize the topscores of the string of concatenated
templates, the path length of this string must be found. This is done by keeping
track of the number of the individuel frames in the optimal pafh. Each frame
has now both an accumulated score as in the isolated-word algorithm and a path
length associated with it. The normalization and comparisons are done using
the standard microprocessor in the system. The circuit realizing the path
length is implemented by a counter-like circuit. This circuit is integrated with
the circuit implementing the isolated-word algorithm and is described in detail
in chepter 4.

2.4. Training Procedure

One or more reference template must be obtained for each word in the
systemn's vocabulary. In a speaker dependent system, this must be done for
every user. It is very important to obtain a template which is the typical pronun-
ciation of the word. The quality of the template influences greatly the perfor-
mance of the speech recognition system. Different training algorithms have

been used with the system. Among them are:
- repeating each word only once

-  repeating the word several times, typically from 2 to 10 times until the

repetitions are similar and chosing that word which is closest to the others
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-  using more than one template to represent a vocabulary entry
-  constructing an artificial template which is the average of the repetitions

These different methods have been tried and are described in detail in [36,44].



CHAPTER 3

Circuitry for Feature Extraction Using Spectral Analysis

3.1. Current Feature Extraction Circuits

The function of each chip in the integrated recognition system has been
defined in the previous chapter. The front-end chip has not yet been realized,
but its integration is straightforward as most of its functions either have already
been implemented or do not pose any problem of implementation due to size or
frequency rate. Once completed, this special purpose integrated circuit will
replace the feature-extracting breadboard used in the present system. Due to
the modifications made in the original circuitry [45], the version of the circuits

presently in use is described.

Besically the feature extraction system performs a twelve channel spectral
analysis every 10 ms. The output of each channel is averaged by a lowpass filter
which has a window of 20 ms duration. The system consists of the following

parts:

(1) input amplifiers, pre-emphasis and anti-aliasing filters
(2) bandpass filters

(3) half-wave rectifier and lowpass filter

(4) sample-and-hold circuit and analog multiplexer

(5) logarithmic A/D converter

(6) serial-to-parallel data conversion circuit

47



Fig. 3.1 shows the block diagram of the system.

S.1.1. Input Amplifiers, pre-emphasis and anti-aliasing filters

The input signal to the feature extraction circuit comes from a low output
impedance line driver operational amplifier. The input circuit consists of an
input-protected, second order, active lowpass filter with a 3 db cut-off frequency
of about 10 kHz. This is followed by an amplifier having an adjustable gain
between 1 and 18. The output of this amplifier drives a pre-eméhasis circuit.
This circuit is needed as the speech signal has a 6 db roll-off characteristic. The
pre-emphasis circuit is a high-pass filter with a single zero at 500 Hz and a single
pole at 2 kHz. The output of the pre-emphasis ciréuit drives two anti-aliasing
filters. These filters limit the bandwidth of the input signal and cancel the
aliases generated by the switched-capacitor bandpass filters. The first anti-alias
filter is composed of two seconti order lowpass active filters realizing together a
3 db cutof! frequency of 1.4 kHz. The output of this filter is connected to the first
four channels of the spectrum analyzer. The second anti-aliasing filter is a sin-
gle, second order, lowpass filter having a 3 db frequency of 10 kHz. Its output is
analyzed by the eight other channels of the analyzer.

3.1.2. Bandpass filters

The spectrum analyzer uses twelve bands defined by third order, switched-
capacitor, Butterworth filters. The cutofl frequencies of the filters are as indi-
cated in table 2.1 of the previous chapter. Originally the analyzer had 18 chan-
nels. Eighteen 1/3 octave filters spanning the range from 100 Hz to 6.4 kHz and
one full octave fllter indicating the high frequency energy from 5 kHz to 10 kHz.
It was soon apparent that the three lowest filters - from 100 to 200 Hz - were too
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narrow. They were discarded. The three next fllters from 200 to 400 Hz were
combined into one full octave filter. The high frequency filters above 5 kHz were
also discarded as it was found that they did not increase the accuracy of the
recgnition system.

Two kinds of integrated fliters are used, the first one has one full octave
filter per chip and realizes the first filter as a 1/3 octave bandwidth would result
in filters being narrower than the pitch harmonics. The second one has three
1/3 octave filters per chip and needs only one clock signal for the three filters

[48). Four such circuits are used to realize the eleven 1/3 octave filters.

The clock signals for the integrated switched-capacitor filters are derived

from the master clock used in the data conversion circuit.

3.1.3. Half-wave Rectifier and Lowpass Filter

The half-wave rectifier realizes the absolute value function needed in the
' computation of the short-time average magnitude of the speech signal while the

lowpass fllter averages the energy over a duration of about 20 msec.

The output of each bandpass filter is a.c. coupled to an active half-wave
rectifier . The output of the rectifier is buffered and connected to a three pole
Butterworth lowpass active filter. This filter has been modified. Its actual realiza-

tion is shown in Fig. 3.2a, while its impulse response appears in Fig. 3.2b.

8.1.4. Sample-and-hold and Multiplexer

The smoothed output of each channel is sampled every 10 msec. by a
sample-and-hold circuit using the LF 398 monolithic circuit. The output of each
channel is connected to a 18 channel analog multiplexer [47]. The output of the

multiplexer is buffered and serves as input to the logarithmic converter.
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8.1.5. Logarithmic A/D Converter

The logarithmic compression of the sampled signal was done using a u-255
law analog-to-digital converter. Eight bits are used to represent the piece-wise
logarithmic transfer function of the A/D converter. The first bit is a sign bit. The
next three bits indicate one of the eight possible logarithmic chords of the
transfer function. The last four bits indicate the linear arc within that chord

[48]).

S.1.8. Serial-to-Parallel Conversion Circuit

The coder outputs the eight bits representing the speech sample in series.
A circuit is needed to obtain this code as an eight bit-word. The eight bits are
loaded in a shift register. A counter signal the availability of a new word. Another
counter keeps track of the channel being sampled. A flag is issued at the begin-
ning of each new sampling cycle. All the timing signals are derived from one
master clock. These signals select the correct channel from the analog multi-
plexers, provide the digital clock for the A/D converter, and the different clock

frequencies for the switched-capacitor filters.

The output of this conversion circuit are eigbt-bit words representing 10
msec. pseudo-logarithmic samples of the speech signal. These samples are sent

to the 11/23 microprocessor for the following operations:
(1) true 4-bit logarithmic representation

(2) amplitude normalization

(3) realization of the end-point detection algorithm

The purpose of these operations was explained in the previous chapter. The

details of the operations as done in software is explained in [38].
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3.2. Realization of the Future Spectrum Analyzer

Implementation of the spectrum analyzer in digital form is attractive as all
the fiiters can realized by the same circuit using time-muitiplexing . The
dynamic range of the filters can be tailored to one's need as it depends on the
number of bits used in their internal computation. Also additional digital compu-
tations can readily be added to the circuit due to the flexibility of digital pro-

cessing.

Integrated analog-to-digital converters ( ADC ) needed for such a digital
approach have already been realized. Fotouhi [49] has realized a high-resolution
integrated ADC realizing 12 bit monotonicity with a differential nonlinearity (
DNL ) of less than 1/2 LSB. This monotonicity is obtained with only 8 bit ratio
accurate circuit elements thereby reduéing the area needed by the circuit as
compared to other integrated ADC's. The size of the complete ADC, including the
logic, is about 15 000 mil2. The same technique can be extended to obtain resolu-

tion greater than 12 bits.

When using this digital approach, the speech should be sampled at a 14 kHz
rate. The new spectrum analyzer is designed to have sixteen channels. This
increase in the definition of the spectrum is done to enhance recognition accu-
racy. The sixteen fourth order Butterworth bandpass fllters have been chosen
according to the behaviour of the ear that is: a constant bandwidth up to about 1
kHz and a constant Q up to a frequency of 6 kHz. The cutof! frequencies of the

sixteen bandpass filters appear in table 3.1.

Digital fllters however require multiplications that are time consurning

operations and require relatively large area for implementation.

Two approaches are popular to solve this problem. The first one is the
ROM-Accumnulator type of circuit as proposed by Peled and Liu [50]. The second



fiter | 1, [/,, bw
no. || [Hz] | [Hz] | [Hz]
1 75| 220 | 145
2 180 | 380 | 200
3 || 380| 580 | 200
4 || s80| 780 | 200
5 | 780 | 880 | 200
6 || 980 1180 | 200
v |l 1180 | 1402 | 222
8 || 1402 | 1877 | 275
9 | 1877 | 2006 | 329
10 || 2006 | 2400 | 394
11 | 2400 | 2793 | 393
12 || 2793 | 3250 | 457
13 | 3250 | 3781 | 531
14 | 3781 | 4400 | 619
15 |l 4400 | 5138 | 738
16 || 5138 | 8000 | 862

Table 3.1 Frequency Bands of the Analyzer

approach is to use a dedicated signal processor.

S.2.1. ROM-accumulator Circuit

The basic ROM-ACC circuit is shown in Fig. 3.3. Its essential feature is that
all the multiplications and additions of each sections are performed simultane-

ously through the use of a ROM together with an adder-subtractor circuit.
Considering the second-order difference equation for a bandpass filter
y(n) = bez(n) + boz(n-2) —a,y(n-1) - azy(n-2)

and assuming that x(n), y(n), @; and b; are represented in two's complements



R, Ry
[«
x;(n) ¢ ex,(n-1) x;(n=2)
ROM F; Accumulator
| 32,1 ﬂ \ J___' \
yin=2)4 yin=1) Add/subtract
—
\\Jf
R, R,

Fig. 3.3

Basic ROM-Accumnulator section ( after [50])
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zZ(n) = zo(n).z,(n)zoln) - - - 2(n)
¥ () = yoln)yi(nlye(n) - - - yiln)
where Z(n) and y(n) are the two's complement of x(n) and y(n) respectively.

Then we can represent the numbers z(n) and y(n) as:

z(n) = —zq(n) + ﬁw)z*

y(n) = —yaln) + Sulmz
Equation (1) can now be written in the form
¥ = $24[bon(n) + bom(n-2) - a(n-1) - oa(n—2)] -
[bozo(ﬂ-) + bozo(n -2) — ayo(n—1) — aayoe(n ‘2)]
Or in a more compact form

Fin) = ﬁz*n ~F
=1

The computation of y(n) is done beginning from the 1LSB (i = L). F; is evaluated
and added to the content of the accumulator. The content of the accumulator is
then shifted one bit to the right using a two’s-complement shift. This computa-
tion does not require any multiplication as the ROM is programmed to output
the result of F; for every combination of I's and U's at the input of the ROM. This
step is repeated for i = L-1,1-2, ... ,1. Then Fj is evaluated and is subtracted

from the content of the accumulator by a two’s-complement subtraction.

The disadvantage of this method is that the number of steps needed to
evaluate the output of one filter is equal to the number of bits in the word.

Direct implementation of digital filters requires 22 bits to obtain a signal-to-
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noise {S/N) ratio of approximately 80 db. Another disadvantage is the size of
the ROM. The equation of a fourth - order bandpass fllter is:

bo( 1-2z"%+ 2—4)
1+a,2 0 +az % +agz 3 +a,2™*

H(z)= (8.1)

The numerator can be computed beforehand as it is the same for all the filters.
For 16 fourth order, bandpass filters we need then 4 inputs to the ROM for the
selection of the filter and 5 inputs for the five coefficients of the filter. The size
of the ROM is then: 2° x 22 = 11264 bits.

For these reasons, the approach using a dedicated processor based on a

parallel-serial (P-S) multiplier is preferred.

8.2.2. Signal Processor for the Realization of Digital Filters

To implement the short-time spectrum analyzer we are using a processor
specially designed for signal processing [51]. The block diagram of the proces-
sor appears in Fig. 3.4. The processor consists of a data memory, an arithmetic
unit and an 1/0 section. Signals are represented in the data memory as fixed-

point two's complement values.

The arithmetic unit consists of pipeline registers, a complementer, a barrel
shifter, an edder and multiplexers and gating circuits. Pipeline segmentation
allows concurrent memory access, addition and invert or shift operation. The
memory output register ( MOR ) is a master-slave register which is loaded each
eycle with the output of a multiplexer. The multiplexer selects either the output
of the data memory or the output of the barrel shifter. The microcode con-
trolled barrel shifter is a parallel shifter array which is used to present the
terms of the canonical signed-digit representation of the coeflicients to the

accumulator. By using the recirculating path from the output of the shifter to
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the multiplexer, we can reduce the requirements of the depth of the shifter (
and hence its size ) at the expense of occasional additional clock cycles. The
shifter has been selected to have a depth of six as this provides a good
compromise between size reduction on one hand and minimum additional clock
cycles ( for shifts greater than six ) on the other. The output of the MOR feeds
the complementer which under program control will give the true value or the
one's complement or the absolute value of its input. The adder is a saturating
adder: if an overflow is detected the output will be the maximum or the
minimum value that can be represented, for positive or negative overflow
respectively. The output of the adder is loaded into the accumulator (ACC).
According to the possible values for the inputs to the adder, the following are

the values which can be loaded into the accumulator:

acc:=0

ace:=[+,~-,].]].2!x MOR fori=1,0,-1,-2,..
acc:=[+,—-,].]]. 2xMOR+acc fori=1,0, -1 -2..
ace:=[+,-,[.| ].2'x MOR+MOR fori=1,0,-1,-2...
acc:= acc

acc:= MOR

Additional features are incorporated in the processor as for example provi-
sion to allow for a wﬂeleeﬁd division operation by a "accumulate if positive”
control. When this feature is used, the output of the adder is loaded into the

accumulator only if it is positive.

The output of the accumulator drives the M-bus, which feeds the memory
input register (MIR). This register is a transparent latch, which may either load
or hold data under program control. All memory write operations store the out-

put of this register; by holding the latch transparent, the accumulator is written



directly into the memory.

All 1/0 transfers are also through the M-bus. Provided are parallel input and

output ports, two serial output ports, and a serial input port.

A multiply operation of a data word by a signed constant is performed in
the arithmetic unit by a sequence of shift-and-add operations. beginning with
the MSB. This is shown in the following example: Consider an eight bit constant
in sign-magnitude format:

-.1100001
First the data is read from memory into the MOR.
MOR := x(n) The multiplication proceeds as in the following microcode segment:

acc := -MOR/2 ; MOR := MOR/2
acc := acc ; MOR := MOR/2
acc := acc - MOR; MOR := MOR/2
acc := acc; MOR := MOR/2

acc := acc; MOR := MOR/2

acc := acc; MOR := MOR/2

acc := acc; MOR := MOR/2

acc := acc + MOR

" The accumulator now contains the original data multiplied by the above
constant. Thus the multiplication by an externally available coeflicient in serial
form can be accomplished by routing the coefficient into the appropriate con-
trol inputs for the processor. To reduce the number of operations the constant
coeflicients are represented in the canonical signed-digit { CSD ) form [52]. In
this scheme, a string of constant of the form:

+ ko2 4 k. 22+ k234 .
where the k's have values of 0 or of 1, is represented as:
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go2'+g9:22%+ -
where the g's have values of +1.

This is a pseudoternary representation in which g; = 0 gives a shift, g; = 11is
an add-and-shift, and g; = -1 is a subtract-and-shift operation. The sum of non-
zero g gives the number of additions and subtractions implied by the
coeflicient. It is known, [52], that using the CSD representation there is a
unique representation for any coeflicient such that the sum of non-zero g; is a
minimum, that:
9i9i-1 = 0 for all valid i
and that prob (g;#0)-1/ 3 as the length of the coeflicient becomes large. There-
fore the use of the CSD form greatly reduces the number of operations in the

processor.

The advantages of the processor approach over the ROM-ACC realization
are: flexibility and small size ( approx. 5 mm?) [53] .

(1) Due to the large amount of computation needed for the analyzer, two pro-
cessors are used to realize the spectrum analysis over sixteen channels in

real time. The size of the memory remains the same.

(2) The processor realizes all the operations needed in the spectrum analyzer
and others needed in the front-end as well without the need of additional

gpecial circuits.

9.3. Bandpass Filter Realization

An efficient realization of the system requires to minimize the number of
clock cycles needed for each operation. In digital filter implementations, the
multiplication is the most time consuming operation. The time neeed to com-

pute the muiltiplications depends on the number of non-zero bits in the
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coeflicient words. It is therefore desirable to reduce the number of these bits to
minimum while still realizing the desired transfer function. This reduction of the
coefficient is done in two steps: in the first one we use digital structures having
low coeflicient-sensitivity. This enables us to use shorter coeflicient words and
still maintain a transfer function close to the desired one. A short coeflicient
word however does not automatically ensure a small number of non-zero bits.
To reduce the numbers of non-zero bits in the coefficients, we use the pseudo-
ternary notation which makes use of non-zero bits with negative sign, so that the
bits can obtain values of =1, 0 and -1. Using this notation, the number of non-
zero bits is reduced in the average to a third of the original number. The second
step is to modify the coeflicients such that the number of non-zero bits is
reduced. This can be done until the transfer function of the filters exceeds
allowable distortions. As there is no well established relation between the shape
of the transfer function and the degradation in recognition accuracy, it is neces-
sary to compare the results obtained with a certain sets of bandpass filters to

the results obtained with simulated ideal filters.

3.3.1. Low-Sensitivity Digital Filter Structures

Other considerations minimizing the number of clock cycles in the realiza-

tion of a digital fliter structure are:
(1) minimum number of additions
() minimum number of memory read and write cycles

The fourth-order Butterworth bandpass fllters specifying the frequency
bands of interest are realized as a cascade of second order filters. This realiza-
tion is less sensitive than the direct realization of the fourth order equation

because the coeflicient accuracy requirements increase with the order of the
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difference equation [54]. The cascade realization is also preferred over the
parallel one as the former requires only five coefficients as can be seen in equa-

tion (3.1), whereas in the parallel form the transfer function is decomposed as:

_ A+ Bz} C+Dz '+ Ez2
H(z)= 1+a,z7' +apz72 Y b,z + bpz™?

This form requires 9 coeflicients. Although the parallel form is less sensitive to
coeflicient quantization as indicated in [55]. the number of shift-and-add opera-

tions is higher than in the cascaded form.

Other configuration which were considered are the lattice filter [56] and the
Fettweis ladder filter [57]. The lattice filter transfer function is sensitive to
coefficient quantization due to the fact that all the coeflicients have a limited
range ( between +1 and -1 ). It requires 5 addition for each second-order sec-
tion and also has a high number of memory read/write cycles. The Fettweis
ladder filter has not been chosen as it requires 8 additions for each second

order section.

3.3.2. Low Frequency Filters

The highest coefficient sensitivity appears for filters having their poles close
to the point z = 1 in the z plane and close to the unit circle. This occurs when
the sampling frequency is much higher than the passband frequency ( low-
frequency filters ) and for high Q filters respectively. This high sensitivity is due
to the low density of allowable positions for the poles in these regions of the z
plane . The position of allowable pole position with positive imaginary part inside
the unit circle of the polynomial equation 2% + a,z + ao = 0 for a five bit quanti-

zation is shown in Fig. 3.5



Fig. 3.5 Possible root positions inside the unit circle for 22 + ;2 +ag = 0.

The number of allowable pole positions is proportional to the length of the

coeflicient word. For a second order equation, the poles are the roots of
2 +a,z +a9=0

and the distance from the pole position to the point z = 1 is:

R={ep - 1F+2}
where zp and 2; are the real and imaginary parts of the roots respectively given

by:
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-al
zg-—-—z
2= ag - 5af
T 0 4 1

From which we obtain:

R=1T+ga,+ag

The quantized coeflicients a, and ag are restricted to discrete values, i.e.

x=4L.Q

where [ is an integer, Q is the quantization step defined as

Q=7
and p is the least significant bit of the coeflicient word. Then the minimal dis-

tance R will be proportional to V@ or 2%.

Thus after truncation or rounding of the ( infinite precision ) coefficients,
each set of pole has to move to a nearby legal position to become a pair of pole
of a new ( distorted ) transfer function. The possible position of the poles on the
z-plane are evenly spaced over the real axis but not over the imaginary one

because the real part of each pole is a,, while the imaginary part is +Vaz-a ? .

The possible locations of poles close to z = 1 is particularly sparse. There-
fore for the low frequency filters, where the sampling frequency is much higher
than the frequencies of interest, and for high Q fllters, which have poles close to
the unit circle, the distortion in the transfer function due to coefficient quanti-

zation is severe.

Second-order sections have been developed which have very low sensitivi-
ties to coeflficient quantization. In [58], the distribution of the possible roots
near the point z=1 is maximized by making the distance between the point z=1
and the nearest pole location to be proportional to the smallest possible step.

By making the distance R proportional to Q we effectively double the wordlength.
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To do this, we set the radicand of R as a product of two coeflicients:

R=W1.8°=V£3. Q.lo.ﬁ
This value must be small, that is:

lei] . lagl « 1
By chosing e, = @, + 2 we are satisfying the previous condition as near the point
2 = 1 the coefficient a, is close to -2.

By equating the values of R

\f1+u,+ao=\/el.e°
we obtain

@Gg=1-e;, +2,eg
The polynomial has now the form

22+ (e, —2)z +1-8; +2,8p
The resulting structure and the distribution of the possible root locations are

shown in Fig. 3.6a and Fig. 3.6b respectively.

Another approach to increase the density of possible root locations near the
unit cirele is to transform the origin of the z- plane to the point z = 1 through a
linear change of coordinates as described in [59]. The resulting structure has
the same low-sensitivity as obtained in [58]. This particuiar filter has also been
developed from the continuous state-variable filter [60]. Other low-sensitivity
structures for high-Q fllters are also described in [81]. An analysis of both the
coeflicient sensitivity and roundoff noise shows the superiority of these struc-

tures.

For realizing a bank of bandpass filters we need to obtain a transfer func-
tion which is close, within a pre-defined error range, to the required one while

using a minimum number of non-zero bits in the coeflicient words.
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To analyze the deviation of a parameter F of a second order section as a

function of its coeflicients we use :

AF _ A Ab
TS sty (®)

where a and b are the coeflicients of the second order denominator and S and
S{ are the sensitivity of the parameter F to a and b respectively. Low-

sensitivity to coefficients is a desirable characteristic which enables us to use

truncated coeflicients.

VWe compare three structure having comparable sensitivities and requiring
the same number of operations for implementation. We shall then choose that
structure yielding a transfer function which is closest to the required ones and
having the smallest number of non-zero bits in its coefficients. Although the
structure has not the minimal sensitivity at that frequency, its realization

requires the least amount of operations.

The choice of a low sensitivity structure depends on the position of the
poles of the particular filter. In the realization of the bank of bandpass filters,
different structures will therefore be needed according to the pole positions of
the different filters. In [81)], the structures used for the 16 filters proposed for
the bank of filters is described. A sensitivity analysis results in optimization in

the choice of structures.

8.9.3. Sensitivity Comparison

Three different structures were investigated to implement the low fre-
quency bandpass fiiters. The first is the structure proposed by Agarwal and
Burrus [59] as shown in Fig 3.7a. This will henceforth be designed as the AB

structure . The second structure is the state variable structure [61] and is
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Fig. 3.7  Second order SV structure



70

shown in Fig. 3.7b. This will be called the SV second order structure. In this
structure the second delay does not serve as an integrator. This yields a higher
sensitivity of the center frequency with respect to the two coefficients in the
denominator than obtained with the previous structure. The third structure is a
modification of the state variable one. This is shown in Fig. 3.7c This structure

will be designated as MSV.
The transfer function of the three structures as described in Fig. 8.7 are:
for the AB structure:

-b‘&-l( 1 —z-‘)
1+ (Gl - 2)2-l + (1 + bl —a,)z'a_

H(z) =

for the SV structure:

-Gz 1 -27")

HE) = oG ab 2T+ (1= e
and for the MSV structure:
- U] = -1
H(z) = a3& ( 1 z )

1+ (0g =2)z7 + (1 + agfe - f2)z 2

where the zero at z = 1 has been ignored due to its small influence at low fre-
quencies.

We compare the three structures by computing the sensitivity of the center
frequency of the second order section with respect to the coeflicients in the
denormninator.

The denominators of the second-order sections AB, SV and MSV are given

respectively by:
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Y(n)

-
[
1/2 -—l
. 1/z
Fig. 3.7c Second order MSV structure
22+az +b =22+ (-2+a)z+(1+b,—ay (3.10a)
=224+ (-2+ 8 +yfy)z+ (1 =8) (3.10b)
=22+ (—2+ ag)z + (1 + feaz — ap) (3.10c)

A second order section is determined by the position of its two complex
poles. The coordinates of the poles in the z plane are given in terms of the angle
¥ and the radial distance R It is easier to do the sensitivity analysis in terms of
¥ and §. ¥, the angle of the pole, is found from: @ = —2Rcosd, while §, the radial
distance of the z-plane pole from the unit circle is given by: § =1 - R The

coeflicient b is related to § by the following relation:



The center frequency ¥ is given by ( see appendix ):

_1+R®
cosg = -ﬁ—cosﬂ

Using the relation between R and § in this equation gives us:

costy = [1 + a—f_z_—d)-] cosd

As we are dealing with poles very close to the unit circle ( small $ ) the term in

62 is neglected and to a good approximation ¥, is equal to 3.

The sensitivity SZ, is defined as:

_ 88
53, = da, 3

For the AB structure ¥ can be expressed as:

- 2-a
= -1 a = -l_——l——-
9 =cos >JE cos aviih —u,

Then, ﬂ—is found to be:
aa.,

g8 _ __1 a, —2b,
aal sm. 4(1+b1-al)V1+bl"’al

e
The sensitivity S:' is found by multiplying the previous expression by -1’# In

terms of the coefficients a and b, the sensitivity is:

g0 2 (@t 2b)(a + 2)
%1 " 296Vab -at

where sin® is expressed as:

Using the expressions relating a and b to 8 and § and the relation



2
cosﬂ~1-‘—;—.

a and b can be expressed as:
a=(9-2)1-6)
b =(1-6)2

So that we obtain:

S‘o = _—”f—-————
17 2(1 - 8)Va -

73

(3.10a)

The sensitivity to the coefficient b, is obtained in a similar way and is given by:

S“ = _ﬂf—
®1 7 2(1-6)Va -2

For the SV circuit the sensitivities are:

1
V4 =52

s2 =

= 1
54, = (1-68)Va -+

While for the MSV circuit the sensitivities are:

1
(1-8)Ve -

52, =

s+ L(z-?
- Q
St 8 2(1 - §)Va — o°

The following can be deduced from equations (10) to (12):

(3.10b)

(3.11a)

(3.11b)

(3.12a)

(3.12b)

(1) at low frequencies, i.e. for small values of ¥, the sensitivity S:‘ is close to

zero so that the coefficient a, can be approximated very coarsely while hav-

ing very little influence on the position of the poles.
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(2) at low frequencies the sensitivities S, . S5 . Sj and S2 approaches
1/2 as 9 tends to zero.

{3) as3d in.creases the sensitivity S decreases.

{4) for small and medium selectivity filters, i.e. small or medium Q's, the sensi-
tivity S3, is high. For high selectivity filters this sensitivity is equal to Sg,
and tends to 1/2 for small 4§ .

(68) comparing particularly the AB and SV circuits, we observe that the sum of

1
(1-6)Va -2

sum of the sensitivities in the SV circuits.

the sensitivities in the AB circuits is This is about half the

{8) as ¥ increases the sensitivities of the AB and SV configurations increases.
Therefore beginning from a certain frequency we need to use another

configuration for the realization of the filters.

The AB circuit has lower center frequency sensitivities than the two other
circuits. However as mentioned earlier the deviation of the center frequency of
the filter is given by (9) where ¥ now replaces F. The absolute deviation of the
desired coefficient from its closest possible approximation is therefc;re also

important.

The three different circuits give rise to different coefficients. The choice
which structure to use for the different filters depends on the sum of the pro-
ducts of the deviation and the corresponding sensitivity for the coeflicients of
that particular filter.

In the realization of a bank of bandpass filters the center frequencies of the

different filters must remain constant so that no gap or overlap will be created

due to non-ideal coeflicients. The variations in the bandwidth of the filters due to
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ilter] section circuit actual coefficient approximated coefficient
P— —

0 |higher| ISV |xp=0.076939 |Bp=0.1247085 |0.078125 (2~4+275) |0.125 (279)
lower | SV |a,=0.084948 |pB,=0.0313311|0.0844531 (2~*+27%) 0.03125 (2-%)

1 |higher| AB |@;=0.100354 |b,=0.022989 |0.08375 (2-3+27%) |0.0234375 (275-27)
lower | AB |2,=0.053098 |b,=0.0077411]|0.0546875 (2~*—2-")0.0078125 (~7)

2 |higher| AB |a,=0.128054 |b,=0.0677532]0.125 (279) 0.05858375 (24-2"F)
lower | AB |@,=0.0B4442 |b,=0.031831 |0.078125 (2~*+27%) |0.03125 (27%)

3 |higher| AB |[a;=0.175312 |b,=0.1077579{0.1875 (2~3+2™%) |0.109375 (273-279)
lower | MISV |ap=0.126723 |f,=0.5628157{0.125 (273) 0.5625 (2~1+27%)

4 |higher| AB |a@,=0.2385680 |b,=0.1725217|0.25(272%) 0.171875 (273+274-2"9)
lower | AB |a,=0.182767 |b,=0,1258528/0.1875 (2~3+27%) |0.125 (279)

5 |higher a,=0.311452 |b,=0.24898660.3125 (2~2+27%) [0.25(27%)
lower a,=0.250569 |b;=0.1948139|0.25 (27%) 0.1875 (23+2™)

8 |higher| SV |a;=4.727918 |B,=0.0742053 4.5 (22+271) 0.078125 (274+279)
lower | SV |a,;=4.133265 |f,=0.0665588 |4 (2°) 0.06640825 (2~4+27%)

Table 3.2 Structures and coeflicients for the first seven filters

variations in the "Q" are in our case of much less significance. A change of a few

dB in either direction in the -3 dB overlap points between adjacent filters does

not show an influence in the recognition accuracy.

Teable 3.2 indicates the structures used in the realization of the lower and

higher sections of the seven lower bandpass fliters and also the correct and

approximate coeflicients of the filters.
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The table also indicates the number of non-zero bits used for the approxi-
mated coefficient. As can be seen only one coeflicient uses three non-zero bits.
All the others use one or two non-zero bits. The transfer function of these seven

fllters appears in Appendix A.

The other nine bandpass filters are realized using the direct form. Their

coeflicients are described in [61].

S8.3.4. Filter Structure as a Function of Frequency

As the sensitivity increases with the frequency ¥, other structure having
lower sensitivity to the coefficients must be used for the higher frequency
bandpass filters. The structure called realization 1B in [59], and shown in Fig.
3.8 has the following transfer function:

H(z)= 22+ (-2+apx)z +(1-0d)

For this structure the sensitivities of the center frequency are:

S? = ZbSu +22
“e " 28bVab —a?

sd = __GQ:.L
e ~ 29bVab — o2

Expressing these sensitivities in term of ¥ and §, results in the following expres-

sion for the numerator of the previous sensitivity functions respectively:

2b(a + 2) ~ 2931 — 8)3 + 46(1 - 6)?
and

a(l -bd)~25(% -2) + 8392 +2)(6 - 3)

All the sensitivities have the same denominator: 2b 9Vab — a2

Expressed in terms of ¥ and 4, it is:
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Fig. 3.8  Realization 1B in [59]

2b9Vab — a? = 2(1 ~ §)%92V4e + 9%

The denominators of the sensitivity functions to a first approximation for the
three different structures: Agarwal-Burrus (A-B), realization 1-B and direct reali-

zation are as follows:

A-B: S,,“’l R o

Sg, ~ 9 (2 -2
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1-B: 57 29

53, = 201

direct: SP m 9% ~ ¢
S~ -2
Comparing these expressions with the one for the previous filter shows that
the numerator is proportional to 25° and 269 instead of ¥* and ¥%2 - $?
respectively. For increasing frequencies, the direct realization shows less sensi-
tivity as the denominator of the sensitivity functions are proportional to 92 - 4

and ¥2 - 2 respectively.

The frequency at which another structure is used depends on the
coefficients. At a certain point, different structures have to be tried to find the

coeflicients resulting in minimal non-zero bits.

3.4. Modification of the Coeflicients

Further reduction in the number of operations is done by reducing the
number of non-zero bits in the coeflicients of the filters. This modification of the
coeflicients results in distortion of the transfer function. One approach to this
reduction is described in [62]. The algorithm used there is the following: The
CSD (Canonical signed digit ) representation of each coeflicient of the filter is
restricted to a specified number of non-zero CSD digits. For selected fraction of
the Nyquist frequency, O<#,<Wa..<Wn<1, the filter is optimized by minimizing
the sum of the squared differences between the desired transfer function at the
different frequency bands, /{#;) , and the actual transfer function of the filter

H(e’™") so that the minimization is done on the expression:
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8 lriem - ™
i=0

To find the solution to this optimization problem the optimal filter with
infinite wordlength is first designed and then a random search in the N-
dimensional parameter space is performed in a neighborhood surrounding the
point corresponding to the coeflicients of the optimal infinite wordiength filter.
In this second phase, the random search method is used to find the trial values
for the coeflicients. This random search method has consti'aints on both the the
coefficient wordlength and the maximum number of CSD bits set in each
coefficient. This search does not guarantee that an optimum will be found

although it probably will come very close.

The approach as described in the appendix is different. Due to the use of a
barrel shifter in the hardware, there is no more need to consider the
wordlength. Rather, the number of nomrzero bits is important. So that a
coeflicient represented by a 3-bit word with the first and last bit being non-zero
is less advantageous from the point of view of number of computation than a 5-

bit word where only the last one is non-zero.

The method was developed for maximally flat bandpass fllters. In our appli-
cation we are dealing with four pole filters built as a cascade of two second-order
sections. We are dealing only with the polynomial coeflicients of the denomina-
tor of the individual transfer function. In this case we have four coeflicients
which have to be found so as to reduce the number of shift-and-add operations
their non-zero bits represents and still provide a satisfactory transfer function.
The method to judge this transfer function consists on using the program DINAP
interactively [83]. The detailed algorithm and an example are described in the

appendix .



80

The main idea consists in reducing the number of the non-zero bits in two of
the coeflicients and to modify the two remaining one so that the -3 db points of
the transfer function remain the same. First the coeflicient closést to the smal-
lest combination of powers of two in each section is chosen. The deviation from
the infinite wordlength coeflicient are found by simple subtraction. Using the
formulas which were developed for keeping the center frequency and bandwidth
of the desired filter unchanged, we can find the deviations in the two other
coeflicients. Using the new coeflicients thus obtained we use DINAP to simulate

the filter. The filter thus obtained is not the desired one as:
(1) the formulas are only correct for the first approximation
(2) only the changes in the denominator are taken into account.

The deviations in the center frequency and bandwidth from the desired filter are ‘
introduced in the formulas an§ new coeflicients are obtained. Using DINAP, the
process of simulating the filter, compensating the formulas by the amount of
deviations, is repeated by compensating alternatively the center frequency and
the bandwidth. Using these compensated equations, we find the last two
coeflicients. The discrete coefficients are then approximated to the ideal
coeflicients. This approximation depends on the amount of deviation that can be

tolerated in the bandwidth and center frequency.
The disadvantages of this method are:
(1) This method is interactive. Therefore it is difficult to make it automatic.

(2) The method is not general. The formulas are derived for second order sec-
tions. In higher order filters the expressions for the center frequency and
the bandwidth are increasingly complex and therefore difficult to use in this

form.
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(3) No provision has been made to give a weight to different portions of the
transfer function.

(4) Although good results are obtained for some examples, there is no proof
that this method yields optimal coefficients.
The advantage of the method is that we are not bound to a certain

wordlength. The coeflicients of the filters have in general different length.

The results obtained for the example described in the appendix show that it
is possible to reduce the number of non-zero bits in the four coeﬁicients from 10
fn the case of almost ideal transfer function to 6 with a tolerable degradation. A
lesser degradation is possible with an increase to 7 or 8 non-zero bits. This is

illustrated in Fig. B1 and Fig. B2 in appendix B.

8.5. Special Purpose Circuits for Spectral Analyzer

The DSP cannot take advantage of the reduction in the number of non-zero
bits as these low-sensitivity structures still require more operations in the reali-
zation than the direct form. The reason is illustrated in the following com-
parison between the computation required for a bandpass flilter in a state vari-

able configuration and in direct form. The SV configuration appears in Fig. 3.7b.

Denoting x(n) as the input variable, y(n) as the output variable and P(n) as

a state variable, the implementation of a SV BPF is the following:

y{(n) = - 1§ Gx(n-1) + P(n-1) + y(n-1) § + y(n-1)
P(n) = aly(n) + P(n-1)

The direct form has a transfer function given by:
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1

H(z) = 571z + (1-0)

The implementation is straightforward:

y(n) = (b-1)y(n-2) - Aly(n-1) + x(n)

Therefore a larger number of additions and read and write cycles must be
done to implement a low-sensitivity structure. This means higher speed needed
in the processor for real time implementation and also more ROM memory for
the microcode. The DSP is an eflicient structure as the adder .is used almost
every clock cycle. Still, the large number of operations in the computation of

the 18 channels requires two processor operating in parallel.

To reap the advantages of the low-sensitivity structures a third approach
for the implementation of the spectrum analyzer is proposed: using special pur-

pose circuits.

To reduce the computations due to multiplication of data by a coeflicient, a
common operation in signal processing, parallel multiplier circuits have been
developed. Their disadvantage is the large area required for their implementa-
tion. Commercially available general purpose signal processors like the 7720 of
NEC and the TMS320 from TI use such parallel multiplier. These multiplier have
little advantage over the parallel-serial ( PS ) multiplier as the number of non-
zero bits in the coefficients of the filters, and hence the number of clock cycles,
is less than two in the average. Therefore, the special purpose circuits use the

PS muitiplier approéch.

The spectrum analyzer requires the computation of 32 second order sec-
tions, for the fourth order bandpass filters, and 16 full-wave rectification. The
computation of the third-order lowpass filter is done in two steps: The first order

section is computed at the 14 kHz rate. The second order section is computed at
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a rate eight times slower [81].

(1)

(=)

Two observation are made on the present digital spectrum analyzer chip :

the area occupied by the data processing circuits is much smaller than the
area occupied by the memory. Thus increasing data circuits increases only

slightly the size of the whole analyzer

the absolute value operation and the lowpass filter are the same for all 16
channels. Therefore special purpose circuits are indicated for their realiza-
tion. .

To increase the throughput of the circuit the following architecture is pro-

posed:

(1)

(2

using parallel circuits for the additions and for the multiplications in the
computation of the second order section. Refering to the previous equation
for the implementation of the state variable structure, the additions are
done in parallel using additional registers and adders. To reduce the
number of cycles for the computation of the mult.iplicatibns. an additional
barrel shifter and adder can compute part of the shift-.and-add operation.
The microcode is made wider but with a reduced depth. Additional control
lines are required to control both barrel shifters. This section computes

alternatively y(n) and P(n).

implementing the full wave rectifier using a dedicated circuit. Basically
this circuit is an "exclusive or”. The data appears in two's complement.
Therefore when the MSB is 0, the data is passed as is. When the MSB is 1, all
the bits are inverted. This introduces a small error as the correct two's
complement operation requires adding a 1 at the LSB. This error has negli-

gible effect on the result of the operation.
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(3) implementing the first order section of the lowpass fliter using a dedicated
circuit with a simplified barrel shifter. The output y(n) of this section is

given by:
y(n) = py(n) + x(n)

where p is the constant representing the value of the pole of the section,
and x(n) is its input sample. This circuit requires an adder, a delay register
and a constant multiplier. As this constant is known, the barrel shifter is
simplified to shifting the data. The second order section of the lowpass
filter requires much less computations and therefore will not be discussed

here.

(4) increasing the dei:t.h of the barrel shifter. Presently the barrel shifter has a
depth of 6. This means that for non-zero bits separated by more than 5 0's,
another shift is needed for the shift-and-add operation. By increasing the
depth of the barrel shifter to 10, no second cycle is needed. A difficulty in
increasing the depth of the barrel shifter is that the loading on the lines

increases as n?. However a depth of 10 is easily feasible.

These changes basically use the same amount of hardware but in a different
configuration. The analyzer is then a cascade of optimized circuit for realizing a
second order section, a full wave rectification and a lowpass filter with adequate

shift registers between them.



CHAPTER 4

Integrated Dynamic Time-Warp Circuit

4.1. Introduction

The digitel features representing the spectrum are stored in the memory of
the system and used as references against which the incoming ‘speech - in the
same representation - is compared. The information which is relevant for our
purposes is the frequency transfer function of the vocal tract. This curve com-
puted every 10 msec is characterized at 12 different frequencies. The problem
of speech recognition then is now reduced to compare an incoming string of
digital words to the ones stored in memory or, in short, reduced to a pattern

matching problem.

In matching speech patterns the incoming pattern differs every time even
for the same utterance. This variation in spectral information is a result of the
particular state of the speaker such as: tiredness, emotional state etc... . There-
fore we have to expend and compress non-linearly the incoming patterns until
we obtain an optimal time alignment of the incoming test pattern with the one
stored in memory.

The comparison of speech patterns uses the dynamic time-warp ( DTW )
algorithm to align the incoming pattern with the reference along a non-linear

time axis. The operation of the algorithm was explained in chapter 2.

The choice of a computationally efficient DTW algorithm performing this
alignment, is described in the next section. Section 3 describes the operation

and architecture of the circuit. The chip layout and specific circuits are

85
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described in section 4. Section 5 presents the performances obtained with this

circuit.

4.2. DTW Algorithm Considerations

4.2.1. Algorithm Selected

The advantage of the DTW algorithm is the small amount of operations it
requires in the computation of the optimal path. However when implemented on
a general purpose computer the DTW algorithm can be the most computational
intensive part of the recognition process. By implementing a relatively simple
circuit dedicated to the algorithm we can implement all the computation of the
algorithm in real time.

We choose an algorithm which does not compromise recognition accuracy
and needs as little silicon area as possible when implemented for real time

recognition.
All the DTW algorithms used have the following points in common :

[1] the "distance"” or degree of dissimilarity between two patterns is the sum of
the distances of some measure of the spectral energy between frames of
the test pattern and the reference patterns after optimal time normaliza-
tion.

There are many proposals for this local distance based on the method used
to extract the speech features. A local distance measure giving good
results in terms of accuracy of recognition when using bandpass filters in
the spectral analyzer, is the Euclidean distance. This distance is computed
as the sum of the squared differences between the energy of each channel

of the incoming frame and the energy of the corresponding channel in the
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frame of the reference template.

[2] the accumulated distance at any point of the two-dimensional grid spanned
by the reference and test pattern, is obtained by summing the local dis-
tance at that point with the minimum of the accumulated score coming

from the locations from which this path can come.

The algorithms differ between themn on the weighting function , the position
and number of states from which the path can originate and on the normaliza-

tion factor.

To reduce the amount of computation, Sakoe and Chiba restricted the
warping of the time axis [84] by imposing constraints on the permissible slope of
the paths . A slope constraint of 2 to 1 for example allows only two frames of one
word to be warped with one frame of the other word. Experiments [38] showed
that these restrictions decrease recognition accuracy . As described in para-
graph 2.5.2 we have chosen the basic algorithm without slope constraints as
shown in Fig. 4.1.

The equation for this algorithm is:

D(i.j) =d(i,j) + min {D(‘i-l,j),D(i-l,j-1).D(1'..j -1) ] (4.1)

where index j refers to the column and index i to the row. d(i.j) is the local dis-
tance between frame j of the incoming test word and frame i of the reference
word, D(i,j-1) . D(i-1.j-1) and D(i-1,j) are the accumulated scores adjacent to
frame (i.j).

This algorithm is simple to implement in IC technique as the memory |
requirements are small. Only the accumulated scores of the previous column -

the D(i,j-1) - are needed and one additional memory cell for D(i-1.j).
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D(i.j) = d(i,j) + min § D(ij-1). D(i-1.j-1), D(i-1.j) }

Fig. 4.1 Implemented DTV algorithm

The distance we are using for d(i.j) is the Euclidean distance given by eq.
(2.8).

da(ig)= Sy -1 P (4.2)

n=1

The algorithm chosen has a bias towards paths on the diagonal. This hap-
pens because the sum of the two local distances along a vertical ( horizontal )
and horizontal { vertical ) paths - two frames - is always greater than the dis-
tance along the diagonal - one frame . The sum is equal only in the case that one
segment has a local distance of zero. The path along the diagonal has less

weight then a path along a vertical ( horizontal ) frame and horizontal {vertical )
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frame and therefore is the one which will be chosen. Favorizing diagonal paths
introduces an error in the pattern matching procedure. This error was found to
be negligible. When our algorithm was compared with others as done in [38], it

performed as well or better. There was no need therefore to correct this effect .

The time normalization needed for correct comparison of the results of the
algorithm and their adaptation to continuous speech recognition is explained in

chapter 2.

4.2.2. Order of Computation

To obtain the optimal path, it is necessary to compute the accumulated
scores at all locations (i,j) . i<N, j<M, of the two-dimensional grid spanned by the
frames of the reference template and those of the incoming word, where NM are
the numbers of frames in the reference template and incoming word respec-
tively. To compute the accumulated score at location (i.j) we need the three
adjacent accumulated scores. The computation of the path must be repeated

for all templates in the reference memory.

Different strategies are used to compute the optimal path in a grid for all
the templates as shown in Fig. 4.2 In Fig. 4.2a, the accumulated scores are com-
puted along the columns of the template for every frame of the incoming word.
This computation is continued up to the last frame of the incoming word. This
sequence is repeated for each template in the memory. In this method all the
frames of the incoming word must be acquired before it is possible to begin the
computation of the optimal paths for the templates except the first one. The
computation of each path is done serially and the frames of the incoming word
must be stored as they are used in the computation of the optimal path for

every template in memory. The recognition is therefore not in real time. This
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technique is used in the speech recognition systems described in [24]and [25].

In 4.2b the accumulated scores are computed along a diagonal. As in the
previous method, all the frames of the incoming word must be ac‘quired before it
is possible to begin the computation of the optimal paths. Here too, the compu-
tation of each path is done serially, and the frames of the incoming word must

be stored. [85] describes a system using this strategy.

The method used in our system is shown in Fig. 4.2c. We compute the accu-
mulated scores - the D(i,j) - column after column, however unlike the method
described in 4.2a, the accurnulated scores are computed for all the frames of all
the templates in the memory, The computation of all the optimal paths begins
as soon as the first frame of the incoming word is obtained. All the paths are
computed in parallel and there is no need to store all the frames of the incoming

word, only one frame at a time.

The advantage of this method is obvious for the recognition of large vocabu-
laries. We can obtain the accumulated scores for all the templates in the refer-
ence memory by stacking them in one column and by repeating the sequence of
computations along the column. These computations are done before the next
frame is available. Thus the top scores for all the paths are available after the
last incoming frame. This provide our system with real time recognition capabil-
ity.

A code word marks the end of each template and the beginning of the next
one. An additional code word indicates the last frame in the TP memory. Thus

all the paths are computed in parallel by time multiplexing the hardware.
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4.2.3. Data Word Length Requirements

The determination of the number of bits needed to represent the local dis-
tance d(i,j) and the accumulated distance D(i,j) is based on the coded features
as obtained in the front-end chip. Each frame is rei:resented by 12 features.
Each feature is 4 bits wide. All features represent a positive number. The local
distance is the sum of 12 squared diflerences between 4 bits wide words. In the
worst case the value of the local distance is 12 times 256. Good matching
between frames is indicated by local distance scores in the order of 20 to 40. In
connected speech mode the scores are higher, up to approximately 80, as the
matching is done between strings of words. As there is no need to represent
precisely the values of local distances which are much larger than the values
expected for good matching, it was found practical to limit the value of the local
distance to 127, thus using only 7 bits.

Using 127 as a maximum value and assuming an utterance of 100 frames -
about 2.5 sec. - the maximurn accumulated score would then be 12,700. However
the same argument for choosing the small number of bits in the local distance is
also true here. There is no advantage of representing the distances which
represent an extremely poor match between words. A good match even for such
a long utterance would be of the order of 200 to 1000. Furthermore the final
decision making software of the system includes a threshold level above which
the smallest accumulated score is recognized as "no match”. Therefore suppos-
ing that the threshold would be about half the maximum or about 6350, we

choose a word which is 13 bits wide.
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4.3. Hardware Architecture and Operation

4.8.1. DIWIC Architecture

Our recognition system underwent algorithm improvements which resulted
almost continuously in changes in the hardware. The system, including all peri-
pherals is described in [88]. The description presented here refers to the spe-
cial purpose integrated circuit in the system realizing the DTW algorithm. The
block diagram of the DTW IC is shown in Fig. 4.3.

The computation of the squared difference between the corresponding
features of the reference and incoming word is done using a look-up table imple-
mented by a ROM. The twelve words obtained from the ROM - one for each chan-
nel - are added in the “Local Distance” block. At the end of twelve such accu-
mulations, the output from the adder is the local distance. This local distance is

then stored in the first register of the "Frame Computation" block.

The comparison between the three adjacent accurmnulated scores takes
place during the clock cycles- also. called fast clock - in which the computation
of the local distance is done. As we are doing this comparison along the
columns, the accumulated scores of the previous columns D(ij-1) and D(i-1,j-1)
are read from the scratch memory also called “DP memory" and stored in regis-
ters "A REG" and "B REG" respectively. The accumulated score D(i-1.j) com-
puted in the previous cycle resides in register “C REG". The output of the three
registers appear both at the input of three comparators and at the input of the
multiplexer. ‘

The magnitude comparators output the results of C<A C<B and A<B to the

PLA where A, B and C represents the magnitude of the values stored in the

corresponding registers. The PLA controls the multiplexer to compute the
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correct word. Because the conditions along the first column or along the first
row differ from the conditions existing in the rest of the grid, additional informa-
tion is needed. This information includes : whether the computation tekes place
in the first row , whether the computation is along the first column and whether
the recognition is done for isolated or connected words. The detailed equations
for the PLA appear in section 4.4.7. The correct accurnulated score appearing at
the output of the multiplexer is then added to the local distance and is the accu-
mulated score for this frame. Following the algorithm, this result is used in the
computation of the next cell. Therefore the result is stored in a master/slave
register “C REG" and also sent to the "DP MEMORY". The address counter of this
memory is then incremented and the content is written out and latched into "A

REG" to repeat the same sequence of operations.

4.3.2. Slow-Loop Operations

The operations needed to move from one frame to the other along a column
can be understood by referring to Fig. 4.4 .
At a certain time the three registers A,B and C contain the appropriate accumu-
lated scores as described in Fig. 4.4a. The computation of the accumulated
score for this cell yields a results denoted by D(i,j). To compute the accumu-
lated score for the cell above it in the column the following operations must be

done as shown in Fig. 4.4b:

Ti: R- W ;the DP memory is in write mode
C - M ; the content of C are written in DP memory

A + B : the content of A are transferred to B

T2: W+ R :the DP memory is in read mode
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T3: Ad = Ad + 1 ; the next address is selected
T4: M -+ A ; the accumulated score is read to A

Clocking of the registers , enabling of the tri-state output buffers, enabling and
disabling the DP memory and incrementing the address counter must also be
done in accordance with this sequence of operations. The slow-loop has 6 fast
clock cycles to do all the computation. This time is sufficient to do the sequence

of operations needed without any difficulty.

4.3.3. Clock and Memory Requirements

Equation 4.1 can be rewritten in the following form:

D(i.j) = f;[fz - fE + min {D(i-l,j ).D(i-1,5-1),D(i.j-1) } (4.3)

Assuming a frame for every 20 msec. of speech, and words of average length of
.5 sec., we have 25N frames for a vocabulary of N words. The computation of eq.
(4.3) is being done for all the frames in the template memory during the 20

msec. interval between incoming frames.

The clock frequency is given by:

_N.25.12 _
Jewar = —5 o7 = N1.5*10*

For 500 words of template memory the clock frequency is then:
S eciocx = 7.5MHz .

From the above formula we need 7.5 million operations/sec. or 7.5 Mips for the
subtraction, 7.5 Mips for the squaring operation and the same number for the
additions. Thus we need 22.5 Mips just for the computation of the local dis-

tances. This large number can be reduced by the use of parallel operations and
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the computational rate of the system can be increased by the use of pipeline
registers. The features of the frames are stored in groups of 2. Therefore the
local distance involving the 12 features of the incoming word frame and of the
reference word frame can be computed for the two features in parallel. This is
shown in Fig. 4.5. The operations of subtraction and of squaring can be achieved

in one clock cycle using a table look-up ROM. Such a ROM would output the

[ Input Register | | 5. ol l2-4

| d Adder | { Gen.| | Gen. Control
Accumulator - Path length| |109'C

- counter

| Register ]
D Adder

| C Register PLA

| Multiplexer | and
C,A  Comparator Drivers
C,B  Comparator

| A,B Comparator
[ input Buffer

Fig. 4.8 Floor plan of the DTW chip
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squared difference between the two 4-bits words representing the features of the

incoming and reference frame correspondingly.

The clock frequency is then reduced to 3.75 MHz for the same vocabulary of
500 words. The size of the template memory is 75 k x 8 bits.

The depth of the DP memory is six times less then the template memory as

there is one accurnulated score per frame. The width of the memory will be 13

PHASE 2

PHASE 1

PHASE 1

PHASE 2

Fig. 4.7 Two two-phase generators
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bits in addition of one bit for slope indication and 8 bits for the path length.

4.4. Description of the Circuits of the DTW Chip

The functional blocks of the chip are shown in the floor plan as indicated in

Fig. 4.8
The data path consists of a cascade of register and adders. The slow-loop con-
sists of an adder, registers, a multiplexer, three comparators and a PLA. It was
decided initially to use two-phase non-overlapping clocks and semi-static regis-
ters in the implementation of the circuit. Two such phase éenerators are
needed in the circuit for the fast and for the slow clock. A path length counter
and a control logic circuit are also realized.
To increase testability it was decided to make the connections between the
different sub-systems using the external pins of the chip. In case of an error in
one sub-system, it would be possible to implement its function using an external
circuit.

The input to the chip are partial sums of the square differences between the
feature of the incoming frame and the corresponding feature of the reference
frame. six such partial sums are serially input to the adder at a 3.75 MHz rate.
The accurnulation of these partial sums form the local distance. The output of
the chip are the 13 bit wide accumulated distance for each frame, one bit indi-
cating slope constraint and eight bits indicating the path length associated with

this frame when in connected speech recognition mode.

4.4.1. Two-Phase generators

The chip uses two clock rates. One for the computation of the local distance

at a rate of 3.75 MHz. The other for the computation of the accumulated dis-
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Fig. 4.8 Plot of the two two-phase generators

tance which is 8 times slower. The master clock and the divide-by-eight counter
deriving the slow clock are outside the chip. Thus we have two single phase
clocks as input to the chip and two two-phase generators on chip.

To prevent error in the operation of the chip due to possible skew between the
clocks, the phases of the slower clock are synchronized to those of the faster
clock. This is shown in Fig. 4.7 The clock drivers were designed to drive about 5

pF load capacitors on each phase. The output of the phase generators are



104

brought back to external pins of the chip.

The plot of the two two-phase generators is shown in Fig. 4.8

4.4.2. Registers

The registers on the chip are of the Master/Slave semi-static variety The

electrical configuration is shown in Fig. 4.9a while the layout is shown in part b.

The semi-static configuration enables us to test the operation of the register
when the clock is stopped. In this case, the phase $1 is high and the output of
the slave section is latched. This configuration was used with varying
modifications for every M/S register. Thus it was used for implementing the
input register, the pipe line 2 register, the accurnulator, the C register, the F/F

used for the controller and for the register in the Lx counter.

The accurnulator used in the d; adder needs a provision for clearing its con-
tent. The clear operation is done using a NOR configuration instead of a bufler in

the Slave section. This is shown in Fig. 4.10.
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CLOCK 1 CLOCK 2

Fig. 4.9a Schematic diagram of M/S register

Fig. 4.5b Plot of layout of M/S register
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IN ouT

Fig. 4.10 Accumulator

The "CLEARAC" signal clearing the accumulator occurs when the input
register issues the first partial sum to the "d ADDER". This signal is derived

from the external control unit.

4.4.3. Latches

Registers “A REG" and "B REG" can be implemented using latches. The
latches are also of the semi-static type. The latch configuration used for regis-
ter A and B appears in Fig. 4.11. The advantages of using latches are their small
size and easy control. This configuration requires only one clock line.

The output of “A REG" and "B REG" are connected to the comparators and to the

multiplexer. A plot of one slice of latch A and B appear in Fig. 4.12.
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4.4.4. Adders

Both adders on the chip are ripple adders. Reduction of the propagation
time of the carry is done by having one inversion only between tﬁe carry-in and
the carry-out. This can be achieved by designing full-adder cells having carry-in
end carry-out of opposite polarity. We need then two different cells: one for odd
bits and one for even bits. For small adders this configuration is as fast as the
Manchester carry chain. The two full adder cells are shown in Fig. 4.13. The
adders are designed to be of the saturating type. This means.that with the
appearance of an overflow at the output of the adder the sum outputs of all the
cells is forced high. This was obtained by adding a circuit activated by the carry
out of the last cell. The output of this circuit controls a gate added to the sum
output of all the cells. This signal is labeled LOGIC in Fig .4.13 and Fig. 4.14. The
plots of the two cells is shown in Fig. 4.14.

4.4.5. Comparators

The three comparators needed on the chip compare the amplitude of the
content of the three registers "A REG", "B REG" and "C REG". The comparators
are also of the ripple type. The ripple time of the carry is reduced using the
same technique as in the adders. In this case the configuration is the same for
both the even and odd cells. The comparator is shown in Fig. 4.15 The two cells

differ only by the signals at their inputs.

4.4.6. Multiplexer
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The multiplexer selects one signal out of three depending on the state of
the control lines. The controls coming from the PLA trough buffers are: "Asel”,
"Bsel” and "Csel”. An additional signal called "CLEARMUX" forces the output of
the multiplexer to be low. This is needed when computing the accumulated
score for the cell in the first column and in the first row. As there is no accumu-
lated score yet at this point the output of the multiplexer should be zero. The

basic conflguration of the multiplexer is shown in Fig. 4.18.
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4.4.7. PLA operation

The circuit implementing the different conditions appearing during the
computation of the accumulated score is realized in a PLA. Its outputs control
the multiplexer, the D ADDER, the path length counter and the slope bit

*Cslope".

The inputs to the PLA are the results of the magnitude comparators. In
addition to the outputs of the comparators it is necessary to know whether the
present computation is done for the cell in the first row in the matrix or in the
first column of the matrix. Another input to the PLA indicates wt;ether the sys-
tem is used for isolated word recognition or for connected speech. During the
design of the chip, it was decided to leave the option of using slope constraints
in the computation of the paths. This is used in some algorithms to constrain
the resulting path to meaningful regions. The slope is constraint to remain
between 2 and 1/2. This means that the path cannot have two successive hor-

jzontal movements nor two successive vertical movements.

To obtain this option we need to devote one bit to indicate if the adjacent
accumulated score came from a vertical or horizontal cell or not. This bit is
called slope bit and for the two accumulated scores in the A and C registers is

called Aslope and Cslope respectively.

The PLA has the following inputs:
1- result of the comparison between C and A ( C<A). True when high.
2- result of the comparison between C and B ( C<B). True when high.
3 result of the comparison between A and B { A<B ). True when high.

4~ Aslope indicator. When high, enables the comparison of A . Otherwise A is

not considered in the comparison.
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5 Cslope indicator. When high, enables the comparison of C . Otherwise Cis

not considered in the comparison.
6- first row. True when high.
7- first column. True when high.
8- isolated word mode or connected speech mode (IWR/CS)
9- B Select, the inversion of the output BSelect.

The size of the PLA is determined by the number of inputs and outputs and
by the number of minterms. Reduction of the number of minterms is done using
an external inverter to invert the Bselectnot output and re-insert it as input.
This means having two PLA in cascade. The speed of operation is lowered - there
is still enough time in the slow loop - however the size of the PLA is cut to almost
half.

The equations describing the operation of the PLA are the following:

Aselect = Aslope . A<B. ( T<A + Cslope ) . fcolumn;

Cselect = Cslope.C<B. ( C<A + Aslope ). ( frow + IWR )
Bselect = Aselect + Cselect + fcolumn + ( frow . IWR );
Clearmux = frow. ( IWR + fcolumn );

Noselect = Aselect + Bselect + Cselect + frow . fcolumn;

SetCsiope = Bselect + frow . { fcolumn + TWR ):

The PLA has six ou