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A method is proposed for treating linear longitudinal perturbations in one-

dimensional collisionless plasma diodes with a uniform plasma region and

thin electrode sheaths. The method is comprehensive in that it allows for

very general equilibrium, initial, boundary, and external- circuit conditions.

Upon Laplace-transforming theVlasov and Poisson equations inboth space

and time, appropriate evaluation of all pertinent relations leads to a set of

2+2n9 [riff isthenumber of particle species) coupled integral equations in x

and v for the following quantities (which are the timeLaplace transforms of

the respective physical perturbations): js(u) (external-circuit current den

sity), E(xyu) (electrostatic field), /f(» > 0,w), and ~f*(v < 0,w) (velocity

distribution functions of the plasma-bound particles at the left- and right-

hand plasma boundaries, resp.), where c is the species index. The formal

solution of these integral equations and the inverse Laplace transformation

(« -+ t) are discussed in general terms. In particular, it is shown that the

intrinsic eigenfrequencies are given by the zeros of the coefficient determi

nant of the integral equations. A comparison with previous treatments is

given, and it is concluded that extensions of the method proposed to more
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general systems should be feasible.

a) Permanent address: Institute for Theoretical Physics,
University of Innsbruck, A-6020 Innsbruck, Austria
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L INTRODUCTION AND SUMMARY

In the first part (§1) of his famous 1946 paper,1 Landau derived the gen

eral solution to the initial-value problem for small-amplitude longitudinal elec

tron oscillations in an infinite, uniform collisionless plasma. Any perturbation

a(x,v,t) was represented as a spatial Fourier integral, with every Fourier com

ponent

%,M)e-f«* fa real)

evolving in time independently of the others. (Here and henceforth we use a

notation conforming with the rest of this paper.) The key result was Landau's1

Eq.(10), which provided an explicit expression for the time Laplace transform

of the potential-perturbation amplitude associated with a given wavevector q.

In a straightforward extension to multi-species plasmas, Landau's1 equa

tion (10) can be re-written in the form

where q is real, w is complex (cf. Subsec. II.B), V(q, w) is the Fourier-Laplace

transform of the electrostatic-potential perturbation V(x,t), <r = 1,...,na is

the particle-species index, e? is the electric charge of a particle of species <r,

f{ (q, v) is the Fourier transform of /,. (x, v) (the initial perturbation of the

velocity distribution function of species <r), and

' ~ m'q /_«,<?«+ w dv [-'

is the well-known dielectric function for longitudinal plasma oscillations, with

/ (v) representing the equilibrium velocity distribution function of species <r.
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Here and henceforth, the bar and the tilde indicate equilibrium quantities and

perturbations, respectively. For agiven value ofg, Eqs. (1) and (2) as they stand

are valid only in the upper « half-plane; if Imw < 0, the path of integration

must usually bedistorted in thecomplex v-plane, so as to ensure proper analytic

continuation with respect to w.

Inverting V{q,u) into V(qtt) one finds that the latter contains, among

other possible contributions, terms proportional toexp(-wv*), where the mode

frequencies «„ (v = ..., 1,2,...) are the zeros of the dielectric function,

£(*,«„) = 0, (3)

and hence also represent poles ofV(q, w) as given by (1).

Ever since its appearance in the literature, the infinite-plasma dispersion

relation (3) (or- some analogous dispersion relation for more complex veloc

ity structures) has been used by numerous authors for investigating the wave-

propagation and stability properties of a great variety of plasma configura

tions.2'3 As long as the wavelengths in question are much shorter than the

relevant macroscopic dimensions, this approach is usually believed to be jus

tified. However, due to its relative simplicity, and owing to the fact that a

proper treatment of bounded plasma systemsisusually muchmoredifficult and,

hence, not readily feasible (the eigenmodes are no longer identical with single

Fourier modes), Landau's infinite-plasma result is often also applied to situa

tions where abounded-system analysis would be more appropriate.4*8 (Rognlien

et al.7 found that the eigenmodes of systems described by fluid-type equations

can under certain circumstances, but not generally, be constructed from the

roots of the corresponding infinite-system dispersion relation. At the same
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time, however, they pointed out that their treatment did not in general apply

to collisionless plasmas described by kinetic equations.)

Thus, the question we wish to answer in the present work is the following:

What is the equivalent ofLandau's fundamental result (1) for linear pertur

bations in collisionless bounded plasma systems, where not only equilibrium

plasma properties and initial conditions, but also boundaries and external cir

cuits have to be taken into account? May we expect explicit results similar to

(1) (which would be the most favorable case), or will we end up with some

thing considerably more complex? If the latter is true, how can we still extract

information on dispersion and stability properties?

We decide to solve this problem for asystem that is sufficiently simple to

allow for a basically analytic treatment, but still complex enough to account

for typical bounded-system effects.

The system we choose is the collisionless, one-dimensional plasma diode

with "thin" sheaths (in asense to be specified in Subsec. HA) but otherwise

allowing for very general equilibrium, boundary, and external-circuit condi

tions. The major geometrical assumptions, namely one-dimensionality and thin

sheaths, are not believed to be crucial to the whole (integral-equation) approach

as such (cf. Subsec. ffl.A) but are certainly helpful in this first stage ofdevel
opment of the theory.

The present work is divided into two parts. In Part I (this paper), the
general formalism is developed (Sec. II) and conclusions of ageneral nature are

drawn (Sees, m, IV). Part H8 presents adetailed and quantitative application

of the formalism to a very fundamental special case, namely to an extended

Pierce-type problem involving anon-trivial external circuit. This is astriking
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example ofhow a plasma that is stable in the infinite-system limit may become

violently unstable if part ofabounded system. The numerical results presented

in Part II also demonstrate that the external circuit may have drastic effects

on the stability and dispersion properties of the whole system, a fact which is

frequently ignored.

The rest of this paper (Part I) is organized as follows. Subsection II.A de

scribes the model considered and introduces the basic equations (Vlasov-Poisson)

for the plasma region. In Subsec. n.B these equations are Laplace transformed

with respect to t and z, the perturbations of the velocity distribution functions

are eliminated, and the resulting form ofPoisson's equation is Laplace inverted

withrespect to x. InSubsection II.C, thecondition of total-current conservation

is used to "link" the plasma to the external circuit at the left-hand electrode,

and Poisson's equation is cast into a form symmetric with respect to both elec

trodes. Subsection ILD presents a very general class of boundary conditions,

whence asetof integral equations is derived for the perturbations of the veloc

ity distribution functions at the plasma-sheath boundaries. In Subsec. HE we

adopt avery general class ofexternal-circuit conditions, thus closing the system

ofequations needed to determine the dynamics ofour linearly perturbed diode

system.

Subsection II.F reviews the structure of the problem, which in the most

general case involves 2+ 2n9 coupled integral equations in x and v for the fol

lowing quantities, which are the time Laplace transforms of the corresponding

physical perturbations: jc(u) (external-circuit current density), E(x, u) (electro

static field), fi (v > 0,w) and /*(v <0,w) (velocity distribution functions for

the plasma-bound particles at the left-hand and right-hand plasma boundaries,
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respectively). These integral equations basically represent the bounded-system

analogue to Landau's infinite-plasma result (1) and can be easily shown to re

duce to the latter in the appropriate limit. Explicit solutions for the time

Laplace transforms je{u) etc. may be expected only for "sufficiently" simple

systems. However, the intrinsic eigenfrequencies w„ (as opposed to frequencies

generated externally) are shown tobe the zeros ofthe coefficient determinant of

the up to 2+2*1, integral equations in asuitable basis-set representation. Thus,

there is still asystematic way of analyzing stabUity and dispersion properties
for any given application.

The discussion in Subsec. m.A leads to the main conclusion that the integ
ral-equation approach adopted here is likely to be extendible to more general

and complex problems. In Subsec. ffl.B we review some pertinent literature and

hence conclude that the present method includes asignificant class of previous

treatments as special cases and, in addition, has potential for investigating

problems that have hardly been touched in the previous literature. Finally,
Sec. IV summarizes our main conclusions.



II. METHOD

A. Model and basic equations

We consider a one-dimensional diode as shown in Fig. 1. The surfaces of

the (ideally conducting) electrodes are located at z=0(-left-hand electrode")
and x= L(uright-hand electrode"). Let the intervening space be filled with a

collisionless plasma consisting ofn9 particle species, and let the far ends of the

electrodes be connected through an external circuit with specified properties
(Subsec. HE).

For the d.c.state to be perturbed (henceforth referred to as "equilibrium")
we assume auniform plasma with aconstant plasma potential Vpj extending

over the region xx < x < xr. In the regions 0 < x < xx and z, < x < L

we allow for space-charge sheaths, which are crucial in shaping the equilibrium

velocity distribution functions.9'12 With respect to the perturbations, these

sheaths are assumed to be -thin" (z« - 0,z, - L)." This approximation is

justified if (i) the typical times of particle transit through the sheath regions

are short compared with the characteristic time scales of the perturbations (cf.
Subsec. ILD), and (ii) the sheath widths are small with respect to the typical

scale lengths of the perturbations (cf. Subsec. HE). Globally speaking, these

requirements restrict the validity ofour analysis to perturbations which do not

crucially depend on the fine structures ofthe sheaths, and for which the sheath

impedances can be neglected.

The thin-sheath approximation is ofrelevance, e.g., for longitudinal modes

in asingle-ended Qmachine"*15 at "moderate" interelectrode biases, whereas

for "very high" biases the sheath widths may no longer be negligible.18*17 As an

-8-
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example, Fig. 1shows a"one-emitter" potential distribution, which represents
one of the self-consistent equilibrium configurations of the ideal one-emitter
plasma diode or single-ended Q machine.*'11

In the plasma region, the small-amplitude longitudinal oscillations we wish
to study are described by the linearized Vlasov and Poisson equations:

9f . df g»
ir+,,ir = -^B (4)m

BE 4 ^ a f°° -,
(5)

where E(x,t) =E(x,t) is the electrostatic field, m° and /*(z,»,*) =Jc(v) +
/ (x,v,t) are the particle mass and velocity distribution function of species <r,
and fl= dj9(v)ldv.

Equation (4) has the following formal solution, which will be needed later
on:

r<w)=n*., m.) - ^ffini f <(* t(i,i, (6)

where {z = z+v{t - *),* = „,*}, with *^ the basic parameter| is any
point along the equilibrium particle trajectory passing through the given point
(x, t/,t), and {z0 =*+V(t0 -*), v0 =„,*„} is the starting point for integration
along the trajectory.

The problem to be solved consists in predicting the linear evolution in time
of the perturbed diode system for given equilibrium, initial, boundary, and
external-circuit conditions. In the rest of this section we present avery general
method for tackling this problem, which implies introducing several additional
relations and unknowns. The following subsections describe the single steps
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which will eventually (Subsec. H.F) lead to aset ofcoupled integral equations

for the time Laplace transforms of thedynamic variables chosen.

B. Laplace transformations and x-inversion

In order to solve the linearized basic equations in the plasma region, we

choose to make use of Laplace transformations in both space and time. Let

these be defined by

5(f)-/ «W*5M, 5(z)=/ £e-<*5(,) (7a,b)

and

m-J <*e~*T{t), T(t)= £e-"r(»), (8a,b)

where, as usual, Img, (Img)lf Imw, and (Imwh must be "sufficiently" positive.

A major advantage of using these transformations lies in the fact that they

permit one to handle boundary and initial conditions in a very natural and

convenient manner. Note that, although the spatial transformation is formally

applied to the whole half-space (0 < z < oo), only the plasma region (z, <
* < Xr) will ultimately be of physical interest.

To our knowledge, the only previous solution of the linearized Vlasov equa

tion by means of the double Laplace transform method has been given by

Evans.18 In Refs.19 and 20 this method was also applied in the context of

cold-fluid type systems. However, all of these treatments were concerned with

semi-infinite systems, which may be viewed as special limiting cases ofthe diode

configuration considered here. A preliminary version ofthe present method was
given in Ref. 21.
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On application of (8a) (first) and (7a) (second), Eqs. (4) and (5) turn into

and

Air*•(-)+iqE(q, ») *, £ *r <fo /'(,, „, u)f (10)

where the subscripts *and /indicate values at t=0(initial values) and z= z,,
respectively. (Analogously, values at z - zr will be denoted by subscript r.)
Let us insert the perturbations /*(*,!/,«) as given by (9) into the Laplace-
transformed Poisson equation (10), which then becomes

-4<rl/£^[^»»-^,W)]}. (u)
At this point we may most easily recover the infinite-plasma result (1) in

the limit of an infinitely long diode. We first note that the double Laplace
transform of the definition equation

E(x,t) J-J (12)

is given by

%«)»V'i(«) +<gV'(g,«)f (13)

so that (11) can be easily re-written in terms of V(q,u). Let us, just for the

present purpose and without lack ofgenerality, transform the interval 0<z <L

into the new one -L/2 <x< L/2, with L- oo. Since Landau1 used Fourier

integrals to represent his perturbations, the latter were tacitly assumed to be
localized in space. In particular, this is the case for /*(z,M), E(x,t), and
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V(x,t)y so that these quantities all become zero at z = ±L/2 as L tends to

infinity. This means that the quantities Ei(u) and /f(»,w) in Eq. (11) must

vanish. Finally, letting Imq become real leads us, via (13), to Eq. (1).

By inspection of Eq. (11) we see that the dependence of E[q,u) on q is

explicit once the equilibrium distribution functions J*(v) and the initial per-

turbations f{ (z, u) have been specified. Hence, we can now apply to (11) the

inverse spatial transformation (7b), which leads to

£(z,«):=-4*£e"/ -^[(z,»,w) + ^(z, «)£<(*)

^ r~ <- (14)-4*2-e*/ <fo*,(z,»,«)/?(«,w).
Owa\ •'—OO

The known functions £*, k* and A* introduced here are defined in Eqs. (Al)
through (A3) of Appendix A. There we have also listed a number of other

functions which will be encountered in the course of this study and may be

considered as being known, in the sense that they can, in principle, be evaluated

once the equilibrium, initial, boundary, and external-circuit conditions have

been specified.

In deriving Eq. (14) we have interchanged the order of performing the

inverse spatial Laplace transformation (7b) and the velocity integration. It is

not difficult to justify this procedure for the case of a finite number of cold

beams. Moreover, since any plasma may be approximated by a sufficiently

large number ofcold beams, we conclude that it is also admissible for plasmas

with continuous velocity distribution functions.

If the perturbations Ei{ut) and ?f(», w) were explicitly known as functions

ofw, Eq. (14) could now be Laplace inverted for E(x,t), so that our problem
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would be paractically solved. This is, in fact, possible at least for Landau's
infinite-plasma problem (cf. Sec. I), but in general the above functions must
be eliminated or determined via suitable additional relations. In the following
subsections, these relations are introduced and incorporated into our formalism.

C. Total-current conservation and symmetric form of Poisson's
equation

In aone-dimensional system of the form considered here, the total (i.e.,
convection plus displacement) current density depends on time only." At the
left-hand electrode this condition assumes the form

~. M 1 dEi(t) - , ,

where je(t) is the perturbation of the external-current density, and /,(*) is the
perturbation of the convection or particle current density atz = xt:

Mt)=T,e* T dvv}"(v,t). (16)
*=l *—oo

Inserting (16) into (15) and applying the time Laplace transformation (8a)
we find

£,(»)=!
(17);») =£ Eu +4*ja(U) - 4* jJT e° f°° dv v/f(t/, w)

L assl •'-oo

The constant Eu =E(x = z,, t = 0) can be calculated in terms ofother initial

values by integrating (5) twice with respect to z, at t = 0:

AV„< 4ff ^ _ fL
Eu = -

r • 4jt t-^ C** t* /*oo

^'I^'l */ "/ */?(•'.») (18)a=l *'0 Jo J—oo

where AK„ 5 AV^f* = 0), AVp(t) being the perturbation of the potential
drop across the plasma region (cf. Fig. 1and Eq. (12)):
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AVp(t) =- f*'dzE[x,t). (19)

According to Sec. HE below, the initial potential-difference perturbation AVpi
is essentially determined by the initial state ofthe external circuit.

We now insert Et(u) as given by Eq.(17>;into Poisson's equation (14) and,
after rearranging terms, obtain

£(*,«) =£4(z,«) + *«(*>«)/»

+4,r E «* r *M*».«)?f(•,«), (20)
Omml •'-OO

where the (known) functions k4f A6, and k> are defined by Eqs. (A4) through
(A6). Although Eq.(20) contains the same number of unknowns as Eq.(14),
progress has been made in that £,(«) has been replaced with the more useful
quantity J», which establishes aUnk between the plasma and the external
circuit.

Equation (20) contains avelocity integral to be evaluated at *=*,, but
no such integral for x _ *,. ft fc thtls 3a7mnKttic with respect to ^ ^

electrodes, none of which is, however, apriori assigned apreferred role. We
choose to remove this asymmetry by expressing?f(„ <0,H) in terms ot/'r(o <
0,u), to which end we first evaluate (6) at z = s, - 0:

/f(.<M-D|.+i){j:,..,ti)-i2aflJfaift,+i)}
♦^-M*-•■>-;^/>*4}.'','

whereUis the Heaviside unit step function. Obviously, the term with U[t+L/v)
represents the contribution of those particles which took off at the right-hand
electrode at atime t, >0. The second term describes the influence of those
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(slower) particles which at time *. = 0were already on their way towards
the left-hand electrode and thus are the immediate carriers of the information
contained in the initial conditions. The time Laplace transform (8a) of Eq. (21)
is

fUv <0,*)--lp(9,„)+l!Lmfv expH^)£(z',W)
+exp(-»w-)7*(w,w).

(22)

For later use we also write down the analogous relations for the right-hand
electrode, namely

K m v JL-vt J

and its time Laplace transform

}*(v >0,w) =iexp(iw-) **(»,&/)
V V

(23)

m - » jo

+exp(iw-)7f(»,w).

'—exp{iu-)j dx' exp(-iutj)E{x',u) (24)

Inserting (22) into (20) we obtain

E(x,u) = k9{x,u) +k6{x,u)je(e>)+ / dx'kt(x,x',w)E{x',w)
Jo .

+A*Y,e<,\JQ *M*.».«)/f(»,«) (25)

+/ dvk6(x,v,u,) exp(-w-)7*(»,w)l ,
»—OO V I

with the newly introduced known functions ka and *, defined in Appendix A.
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Equation (25) is the more symmetric version of Poisson's equation that

we have been looking for. It contains two source terms corresponding to the

particles entering the plasma region at the plasma-sheath boundaries. If the

boundary perturbations f*{v >0,«) and f*(v <0,w) were explicitly known,
(25) would represent aFredholm-type integral equation for E(x,u) only, with
wand je{u) as parameters. However, in many cases ofinterest these functions

will not be known apriori but have to be determined with the help of the
relevant boundary conditions. Hence, the latter must now be specified. In the
following subsection we introduce avery general class of boundary conditions
and therewith derive additional equations for our unknowns.

D. Boundary conditions on particles and resulting integral equa
tions

Let us assume that, at the plasma-sheath boundaries z= xx and z= zf,
the perturbations of the velocity distribution functions of the plasma-bound
particles are related to those of the sheath-bound particles as follows:

rt(v >o, t) - 7f,(v, t) +J f dv> 6r'K./) tfWi t) (28a)
0*K*1 *~00

}'(v <0, t) =/'„(«, t) +£ r to' tf/(v, „') fT („', t), (28b)
~J9where flg and f% are externally generated (and, hence, explicitly given) per

turbations, and the functions V?(v > Q,v' < 0) and £*'(» <0,.' >0)
essentially represent the probabilities for asheath-bound particle of species a>
with velocity *' to "produce" aplasma-bound particle of species awith velocity
v. The time Laplace transforms of(26a,b) are
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}'(»> o, „)=/• (,, •)+£/* *• if-',,, „.) jft,. u) (27a)

7T(. <o, W)=/%{«,«)+f; /°° *,- *r'(».»') #V, •»). (27b)
<r'asi '0

As an example of an external perturbation mechanism let us mention the
fluctuations in the flux of neutral alkali atoms incident on ahot metal electrode
in aQmachine, which may cause variations in the flux of the plasma-bound
ions produced by contact ionization.

The homogeneous terms in (26a,b) are capable of describing awide class
of generalized reflection processes that asheath-bound particle of species o>
incident with velocity t,' can undergo. Among them are some simple ones most
commonly used (cf. Subsec. ffl.B). If, e.g., the sheath-bound particle is always
absorbed without releasing any other particle, we have

&r'(t/>0,i/'<0) =0 (28a)

^''(t^oy >0) =0 (28b)

for all permitted values of <r and v. For specular reflection, the 6's become

br'(v > 0, v' <0) . 6„. 6{u +v') (29a)

b°/(v < 0, v' > 0) =6ao. S(v +v')> . (29b)

where *<, is the Kronecker delta symbol and S(x) is the Dirac delta function.

Clearly, the boundary conditions (26) can also describe processes like inelastic

reflection or secondary-particle emission, but these should be discussed in spe
cific future applications rather than in the present general outline of the theory.
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In (28), the perturbations of the velocity distribution functions for the

plasma-bound particles are evaluated at the same time t as those for the sheath-

bound particles. This involves two major physical assumptions, namely that
both (i) the time needed for aparticle to traverse the sheath regions, and (ii) the
time scales ofthe generalized reflection processes taking place at the electrode

surfaces proper, are negligibly small in comparison with the time scales of the

dynamic phenomena of interest. However, these Instant-reflection" conditions
are likely to be satisfied in many cases of practical interest.

It should be borne in mind that the "boundary" conditions (28) are not
only determined by the electrode surface properties but also account, in aglobal
manner, for the sheath regions. (This global treatment is made possible by
the assumption in Subsec. H.A of *thin" sheaths, whereas a finite-sheath the
ory would require amore refined approximation to the solution ofthe Vlasov-

Poisson system in the sheath regions.) Consider, e.g., asingly charged positive
ion of mass mmoving to the right in the configuration shown in Fig.l. If
v < [2e(7L - Vp)/m\1/*, the ion is reflected somewhere in the right-hand
sheath region (xt < x< L), which in terms of (28) counts as aspecular reflec
tion, cf. (29b). In the opposite case the ion hits the electrode surface proper and
there may be neutralized, undergo inelastic reflection, or even release secondary
particles. Clearly, the description of these latter processes will require aform
of b™ considerably more complex than (29b).

We are now in aposition to derive the additional relations required for
determining the functions ft(w > 0,W) and f'r(v < 0,u/), which occur in
Poisson's equation (25). Let us start with ff(t >0,W) as given by (27a), and
express f*(v <0,w) on the r.h.s. step by step in terms of f*(v < 0,w),
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IP i " C?fr[v > 0,«), and ft(v > 0,w) by successive application of Eqs. (22), (27b),
and (24). What comes out is the integral equation

}*{v >0, w) - *[0(t/,») +/ dx' *fx(z', v, w) E(x', u)
Jo

n^ .oo -J (30)

In an analogous manner we can express f'(v < 0,w) consecutively in terms
of }*(v > 0,w), ~f*(v >0,W), f1(v <0,w), and ~f*(v < 0,w) by using Eqs.
(27b), (24), (27a), and (22). The result is

f*{v <0, fa/) =£3(*, W) +y <fc' Affjx',», w) E(x\ u)

it'di •'-oo

Again, the newly introduced known functions are defined in Appendix A.

Equations (25), (30), and (31) constitute asystem of 1+2*, coupled integral
equations in z and v for the 1+2n9 functions E{x,u), /'(v > 0,w), and

fr(v < 0,w). Since both wand je(u) enter as parameters, yet another relation

is required in order to specify the independence of the above functions and to

thus make them invertible into E(x,t) etc. In the following subsection we show

how this relation can be obtained by combining the overall potential balance
with the external-circuit condition.

E. Overall potential balance and external-circuit condition

So far we have essentially concentrated on the plasma region, with je{u>)
entering as a free parameter, cf. Eq. (25). Thus, in order to close the prob

lem we need yet another suitable equation that will completely specify the in
dependence ofthe quantities involved. In the present subsection we derive this
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equation by combining (i) the overall potential balance in the diode/external-
circuit system, (ii) the potential balance in the external circuit, and (iii) the
condition of zero sheath impedance, which is consistent with the thin-sheath
approximation.

The overall balance for the potential perturbations may be written

AV*(t) = AV.fr) +AVp(t) +AV„(t), (32)

where AV9l(t) - V(xt,t) - 7(0,t) and AV„(t) - V(L,t) - V^t) are the
perturbations of the potential drops across the left-hand and the right-hand
sheath regions, respectively. The potential balance for the external circuit
("external-circuit condition") we choose to write in the form

A7a(t) = Z(*)7e(«), (33)

where Z(t) is ageneral linear impedance operator that may be considered known
once the external-circuit properties have been specified.

In order for (32) to be useful in the context of our preceding considerations
(where the basic equations were solved for the uniform plasma region), AVtl(t)
and AV„(t) must be calculated. In afinite-sheath theory this would imply at
least approximate integration of the Vlasov-Poisson system in the (non-uniform)
sheath regions. However, in the thin-sheath approximation considered through
out this paper (cf. Subsec. H.A) we may, by definition, set

±V.l(t) = 0= AV„(t), (34)
so that (32) reduces to

±Ve(t) = AVp(t). (35)

This means that the perturbations of the potential drops developing over the
thin sheath regions are neglected against those building up over the much more
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extended plasma region. (This behavior is exactly opposed to equilibrium con
ditions, where the main potential drops occur over the sheath regions.)

The operator Zintroduced in Eq. (32) is assumed to be linear but otherwise

completely general. However, for many (if not all) cases of practical interest Z
will be of such aform that the time Laplace transform of (33) becomes

&VM = V*o(u) +*•(«)/«(»). (36)

This class of external circuits (which is still very general in that it includes

the usual RLC circuits with a.c. sources) is the one considered henceforth. It

may be useful to note that Ve0(u) reflects the effect of initial conditions and/or
external sources, whereas Ze(u) is ageneralized impedance. The initial state of

the external circuit also specifies the initial potential-difference perturbations
AVe{ and AVpi.

An explicit treatment of an exemplary external circuit is given in Part n,8
where the above aspects are worked out in detail.

Equation (36), with AVe(w) = AVp(u), closes the system of equations

governing our perturbational problem, whose general structure is discussed in
the following subsection.



F. General structure of the problem and basis-set expansion

Equations (36) (combined with (35) and (19)), (25), (30), and (31) form a

closed set of2+271* coupled integral equations, from which the 2+2*1, unknown

time Laplace transforms /», E{x,u), f*{v > 0,«), and 7,(» < 0,w) can,

in principle, be determined as functions of z, », and w. (Once these solutions

have been established, f{x,v,u) could be calculated via (9).) The last step

in solving the complete perturbational problem then consists in applying the

inverse time Laplace transform (8b) to the above functions, which will yield

the time-dependent perturbations j,(t), E{xyt), }*(v > 0,*), ~f*(v < 0,*), and
finally, via (8), 7*(z,», t) (<r = 1,...,n„).

In order to reduce the problem to its basic structure, we re-write the above

equations more concisely as follows:

*.(«) JM + dx' E(x',«) = -V\,0(w)
Jo

- M*,«) i»+E(x, u) + S0(z, [z'], w) E([x% u)

' +£•»?•(*.!» ><>l.«)/r(M.«)

+e XrM» < %») ?r(H,w) - m*,«)
ff-ii

$f(t>>0,[zq,fa/)£([z'],W)

+/f(•,«) +£ •vr'(»,l»'>o|>fai)-7r'([.qfW)«jfc;0(#,W)
<r*=il

S?(y<0,[z/l,W)E([z'I,w)

+#(»,«) +£ ^rV>'<0],fa,)7;Vl,") =iQt,,fa/)

(37)

(38)

(39)

(40)
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where S0, Sj, Sr are known space-integral operators and "VJ,, *VJr, "Vf^, *V<r<T'
are known velocity-integral operators. These operators are defined in Eqs. (A16)
through (A22) of Appendix A. The square brackets indicate the variables of
integration.

The integral equations (37)-(40) may be viewed as the bounded-system
analogue to the infinite-system result (1), which answers the question raised

in Seel. It thus turns out that in general (i.e., for sufficiently non-degenerate
cases) it is no longer possible to obtain the time Laplace transforms of the

perturbations explicitly as functions ofw. However, in Subsec. n.G it will turn

out that there still exists asystematic way of analyzing stability and dispersion
properties.

Depending on the degeneracy ofaspecific configuration considered, some of

the equations (37)-(40) may be trivially satisfied (as is the case in the extended

Pierce-type problem treated in Part n8), so that only an appropriate subset
thereofmust be actually considered.

In practical applications, when the coefficient functions and integral oper
ators occurring in Eqs. (37)-(40) must be explicitly established, it is convenient

to distinguish between four levels ofquantities as illustrated by Table I. The

level-one quantities, which determine the equilibrium, initial, boundary, and
external-circuit conditions, must be specified, while any higher-level quantity

can be constructed from lower-level ones. For each quantity is indicated in

Table I an equation or section where it is defined or introduced. The level-four

quantities are the functions and operators occurring in Eqs. (37)-(40).

Once established explicitly, Eqs. (37)-(40) will in many cases be too com

plicated to allow for closed analytical solutions. It may then be convenient to
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expand the functions and operators involved in suitable sets of basis functions.

This permits one to transform the integral equations into asystem oflinear al

gebraic equations for the expansion coefficients of the unknown functions. The

coordinate ranges to be covered are 0 < v <Vm** and vmin < v < 0, where

the cutoff velocities »,„, and vmin> must be chosen so as to cover all phenom

ena ofinterest in velocity space. Let there be given three denumerably infinite,

complete sets of linearly independent (but not necessarily orthogonal and/or

normalized) basis functions {^(z)}, {?+(* > 0)}, and {<pj{v < 0)}, defined

in the above intervals, respectively, with *,X,p = ...1,2,.... Any function

involved may then be expanded in one of the forms

/to = /(*) P*W (41a)

Mv > 0) = M\) p+(v) (41b)

/f(» < 0) = /,(„) p^(v) (41c)

or straightforward extensions thereof, e.g.

g(x, v< 0) = g{K, ft) <pK(x) <pj(v). (42)

Note that we have adopted the Einstein convention (double indeces imply sum
mation) for /c, X, and n (but not for the species index <r). As usual, these

expansions permit us to represent continuous functions and operators in terms

of their respective coefficient vectors or matrices. Generally, the latter are in

finite but in practice must always be truncated, the number of terms retained

usually being acompromise between accuracy requirements and technical lim
itations.
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The coefficient equations corresponding to (37)-(40) are respectively given
by

*.(«) /.(«) +Ijf dx' tpR,(x')\ E(k',u) . -y,0(w) (43)

- M*.«) )M +[*«* +5b(* k', »)] £(*!,a,)

+£ TO*, x',«) 7r<x', tf) +£ vr(«,* w, 7^,w)» ^ u) («>TO«A,,o;)7r(X/,a;)+,a,r

Sfi\,Krtv)E(Kf,u)
ft-

(45)+7f(x,«)+ £ vr'(\,\',u)}?(\',U)=~k'l0(\»)

^i1, «)£(«',«)

+#{*«)+£ vrW.«#)£V,»)-*„(*«), (46)

where the matrix elements representing the above integral operators are defined
in astraightforward manner. As an example consider the operator S0, whose
matrix elements may be written in the form

50(/c, k\ u) =
Jli (<j<r)2 rO

-**l.-^rj -kt(K,v,u,) J9(v)l dx' expHfa,!) pAa>). (47)

Using matrix notation, we may re-write Eqs. (43)-(46) in the form

£(w)-u(fa/) = k(fa/). (48)

The (known) infinite coefficient matrix £(W), the (known) infinite column vector
k(w), and the (unknown) infinite column vector u(u) introduced here are given
by
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(z. Lg>T or

""kg 1 + 5o Zqj V2

si
si

I +Z/1 Yi2
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n,lst' zr*

Si
si

»»
S
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Or

yln.

zr*

i+ZT*n*

o

V1

0

0

V2JLor

i+Z}1 Z}2
z2.1 i+z;2

z?#1 nr2
c

(49a)

;• \a
E

u(w) =

.&J

(49b,c)
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0

0

z;n*

A* ft*I + Z?
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where 0, <p, k6, k8, k10, k13, E, f,, f* are infinite column (sub)vectors with

components 0, Zr*//dx<pK(x), *,(*,«), A8(k,w), *J0(Xf«), k*u(p,»), £(«,«),
—<t -a

fi (X,w), /P(^w), respectively, the superscript T indicates transposed vectors,
and 0, 1, 5o, 5f, 5?, 7*, yjr, jrf f K*' are infinite (sub)matrices with

elements 0, ***,, 50(k, *', »), 5f(X, k', w) 5*(* «', w), VJJ(/c, X',«), V£(ic, M',«),
^ (X»X',w), V^^^w), respectively. Let us recall that in practice these
vectors and matrices must always be truncated.

As already mentioned, chances are that in a specific application some of

the coefficient equations (43)-(46) are trivially satisfied. In order to obtain a

well-posed problem it is then necessary to eliminate the trivial equations from

the system and to accordingly reduce the matrix £(w) as well as the vectors
k(w) and u(w).

G. Formal solution and calculation ofeigenfrequencies

The last steps toward the solution of our perturbational problem are now

clearly prescribed. Equation (48) has to be solved for the unknown expansion
coefficients as functions of fa/:

«(«) = £->). k(w) (50j

where £-» is the inverse matrix to £(«). Application of the inverse time

Laplace transformation (8b) to this equation yields the time-dependent coeffi
cient vector

*w=/£ <""' *">-/£ «-""£-».£(„), (si)
i.e.,

„—iui

W£ e~,wt je{«>) (52)
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/T(M)-/£<-*-?T(x,«)

(53)

(W)

(55)

The final solution functions are then given by (52) and

£(*.*)-£^M) *»»(*) (58)

/f(t,>o,t) =£7f(x,*)„+(„) (S7)
X

/'(•<M-£/*(**) *£(»). (58)

As in Landau's infinite-plasma case,1 some general properties ofthese solu

tion functions can be conveniently retrieved by choosing an appropriate contour

of integration in the complex u plane, cf. Eqs. (52)- (55) and Fig. 2. Let the

"original" contour C7X be an infinite straight line with Im w= (Imw), = const.,

where (Imc/h must be sufficiently positive for Cx to lie above all singularities

(poles and branch cuts) of the integrand vector, £""*(«) •k(w). As is well

known from function theory, the same result u(*) will follow for any other

contour that is obtained by deforming Ck without crossing the singularities of

the integrand. Let us construct aspecific contour C2 by shifting Cx down to

Imw = (Imfa/)2 < 0but excluding the singularities as shown in Fig 2. The
solution (51) may then be written
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rn =E [-»• R<*w. (O- •ke-*")] +£ [-»• Res^ (fi-. ke"'"')]

+E/^fi-^e-+Et|^.ke-
/* du , -+ / --fi-'-ke-""

</(Imw)9 ^r

(59)

where the sums over v and brespectively contain the contributions from the
poles wv and branch cuts Bb of £"» (with Imw >(Imu/)2; i&.Wr indicates
the residue at a pole w„), the sums over 1/ and Vcontain the contributions
from the poles wv, and branch cuts Bv of k(«) (with Imu; > (Imw)2), and
the last integral represents the contributions from the straight portions with
Imfa/ = (Imfa;)2.

As usual, we call the system unstable if the solution (59) contains com
ponents growing in time after the initial transient has decayed. Such con

tributions can arise froin poles and branch-cut portions with Imw > 0. An

nth-order pole up of the r.h.s. of Eq.(50) gives rise to acontribution of the

form P^MexpHfa/o*), where Pn^(t) is a polynomial of degree n- 1. In
particular, for the most common case of afirst-order pole (n = 1) we obtain a
purely exponential time behavior.

The matrices £(W) and QTl{u) do not depend on the perturbations but
are solely determined by "intrinsic" equilibrium, boundary, and external-circuit

properties. The poles u,u of £~» are the roots of the "characteristic equa
tion",

l£K)| = 0 (i/=...l,2, ...) (60)

where \D(u)\ is the determinant of £(w). In accordance with common terminol
ogy, the roots uv are the eigenfrequencies, and the related oscillation patterns
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in z, », and t are the eigenmodes of our system. Thus, the first term on the

r.h.s. of Eq.(59) represents the eigenmode contributions to the whole solution.

In agiven application it may often be sufficient to study thedispersion and

stability behavior, rather than finding the detailed solution functions (52) and

(56)-{58). One then still has to determine the uppermost poles and branch-

cut portions of both £"*l(w) and k(w). However, in many cases it will be

sufficient to consider the uppermost pole, and it may also be possible to obtain

thedeterminant |£(w)| in analytical form, as isthecase for the problem treated

in Part n.8

Due to lack of sufficient experience with the present method, an exhaustive

discussion of the possible forms of behavior of these singularities cannot be

given as yet and is therefore deferred to an appropriate future date.
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ffl. DISCUSSION AND COMPARISON WITH PREVIOUS LIT
ERATURE

A. Discussion

The formalism developed in Sec. His intended as afirst step toward acom
prehensive kinetic treatment of bounded plasma systems. By "comprehensive"
we mean that plasma, boundary, and external-circuit effects are to be taken
into account simultaneously and realistically.

As the first step it represents, the present work is still subject to some
restrictions which, however, may possibly be relaxed at a later stage, cf. be
low. The most restrictive assumptions are those concerning the linearity of the
problem (which means that we restrict ourselves to small perturbations about
agiven equilibrium state) and the one-dimensional system geometry involving
auniform plasma region and thin sheaths (whose relevance has been discussed
in Subse. H.A). Within this framework, however, the admissible equilibrium,
initial, boundary, and external-circuit conditions are certainly suitable to model
awide range of realistic situations. No kinetic treatment whatsoever is known
to us which includes these latter features in comparable generality, cf. Subsec.
m.B.

The key result of the present paper is the system of integral equations
(37)-(40), which is essentially equivalent to all the basic and auxiliary relations
entering the theory but, at the same time, much more concise and "advanced"
than these. This is because in deriving it we have already performed, in general
terms, many of the mathematical manipulations that would be required anyway
when solving for any non-trivial special case. We may state that, within the
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limits of the model chosen, the treatment of the perturbational problem has

been formalized to theextent that seems possible, so that in practice the "real"

work needs to set inonly at a level where the peculiar details of the special case

considered become important.

As already mentioned, we bear some hope that it may become possible at a

later stage to relax themajor restrictions still inherent to thepresent work. This

hope is founded in the fact that integral-equation approaches, which tend to be

morecompactthan the equivalent differential-equation formulations, seemto be

widely (ifnot generally) applicable to the comprehensive kinetic description of

bounded plasma systems which is attempted here. For, the sources of integral

terms spotted in the present paper, namely the trajectory integral (6), the

current-conservation relation (15) (with (16)), and theboundary conditions (28),

will also persist in more general models. In spite of the added complexity to be

expected, extensions of the present work (e.g, to two dimensions, non-uniform

equilibria, and/or collisional plasma behavior) seem to be worthwhile and will

be attempted. Specific examples involving the solution of integral equations are

provided byRefs. 23-25 (where thestability ofnon-uniform diode equilibria was

studied) or Refs. 26 and 27 (where path-integral formulations of the linearized

Boltzmann equation were used to solve collisional swarm-drift problems).

B. Comparison with previous literature

In order to locate the position of the present work within the pertinent

literature, we now present a comparison with previous contributions to the

kinetic theory of linear, longitudinal, collisionless plasma oscillations in one-

dimensional geometry. An extremely large number of relevant treatments,

henceforth referred to as class A, has accumulated over the years.2 Hence,
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the list of references to be quoted here cannot claim completeness, but we

nevertheless believe it to be representative.

Let us first note that the overwhelming majority of class-A treatments are

those concerned with Landau's infinite-plasma, initial-value problem,1'8 cf. Sec.

I. Within the framework ofthe present method,*this case is the most degenerate

one and can be readily retrieved, e.g., from Eq. (11) as described there. What

then remains to be considered is the much smaller number of those class-A

treatments that actually involve boundaries and will henceforth be referred to

as class B.

Table II provides a fairly detailed comparison between 17 pertinent treat

ments, namely Landau's classical infinite-plasma problem (Ref. 1, §1), 15 pub

lished class-B treatments, and the preesent work. Each treatment is evaluated

with respect to seven basic criteria, and the results of the comparison may be

summarized as follows. ~

Criterion 1 (model). Only nine references, including the present work,

employ truly kinetic theory, whereas the other eight are based on the cold-

fluid approach but are still included here because this type of analysis is most

frequently encountered and easily reproducible from kinetic theory, cf. Part

II. The fact that the cold-fluid case can be retrieved from the present method

as a special case is indicated by the symbol (+)..

Criterion 2(number ofboundaries). As the only representative of the huge

number of infinite-plasma treatments2'3 we have included Landau's classical

initial-value analysis (Ref.l, §1). Four references are concerned with semi-

infinite plasmas, whereas true diode configurations are dealt with in twelve
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treatments, including the present one. The latter covers the infinite and semi-
infinite geometries as special cases.

Criterion 3(degree of non-uniformity of the d.cl plasma equilibrium).
As already stated, the present version of our method is restricted to uniform
plasmas with thin sheaths and thus does not include the problems of Refs. 23,
24, 25, 31, and 33 as special cases.

Criterion 4(description of spatial behavior). In five treatments, the spatial
eigenmode profiles are constructed by suitable superposition of infinite-plasma
modes. References 13 and 30 start out with general Fourier-series expansions,
whereas spatial Laplace transforms are employed in Refs. 18,19, 20 and in the
present work. In the remaining six references, the integral equations governing
the spatial eigenmode structures are directly derived from the basic equations.

Criterion 5 (description of time behavior). Eleven of the 17 references
considered only deal with eigenmodes or driven modes characterized by atime
dependence of the form exp(ot). Reference 33 in addition considers the effect
of an externally applied delta pulse, whereas Laplace transformations, covering
the full initial-value problem, are used in six references including the present
work.

Criterion 6(boundary conditions on particles). None of the previous treat-
ments allows for boundary conditions other than constant emission, plain ab
sorption (i.e., absorption without the release of secondary particles), and specu
lar reflection. These are all special cases of the more general relations (26). The
boundary conditions assumed in Refs. 18 and 20 are not immediately clear.

Criterion 7(a.c. external-circuit properties). Ten previous treatments deal
with the external short circuit, and two are concerned with the open circuit. No
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explicit statement about external circuits is made in Refs. 1(§1 and §2), 13, 18
19, 20, and for Refs. 13,18, and 20 itwould require some detailed work to recon

struct the external-circuit conditions that were implicitly assumed. Interpreting
Landau's infinite-plasma problem (Ref. 1, §1) in terms of the diode picture as
discussed after Eq.(ll), the conditions /"(ioo*, v,t) =0and 7(±oo,f)=0im
ply constant emission (criterion 6) and external short-circuit (present criterion).
Of the treatments considered, only Ref. 31 and the present method allow for
non-trivial external circuits ofsome generality.

In summarizing the foregoingv comparison we may state that the present
method covers the problems treated in Refs. 1(§1 and §2), 13, 18, 19, 20, 28,
29, 30, 32, and 34 as special cases. This is not true of Refs. 23, 24, 25, 31,
and 33 because these are concerned with truly non-uniform plasma equilibria.
Apart from this, all previous treatments are less general than the present one in
that they start out with more restricted specifications and thus cover, apriori,
anarrower range of the physical effects to be expected in real systems. In par

ticular, it appears that the effects of realistic boundary conditions and external
circuits have not been treated to asignificant extent, and that the full pertur
bational problem for the diode (i.e., the problem involving initial and external
perturbations) has not been theoretically analyzed at all. We thus believe that
the present method represents, in several aspects, asuitable starting point for
more comprehensive, realistic, and systematic kinetic descriptions of bounded
plasma systems than have been given so far.
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IV. CONCLUSIONS

We have proposed atheoretical method for studying linear longitudinal
perturbations in one-dimensional collisionless pldsma diodes with thin sheaths.

The key result is the set of 2+2*1, integral equations (37)-(40) for the 2+
2n„ time Laplace transforms J», *[>,„), >f(tf >0,w), and /*(„ <0,W).
Upon expanding the functions involved in suitable basis sets, these equations
transform into the matrix equation (48) for the unknown- coefficient vector u.

In principle, the full solution of the perturbational problem can be found by
solving these equations, in either representation, for the above functions of u,
and by then Laplace inverting the latter into the corresponding time-dependent
perturbations.

However, as discussed in Subsec. H.C, the linear dynamics of the system
is basically governed by the singularities of the coefficient determinant |£(u)|,
so that it may often be sufficient to study these, rather than evaluating all the
details of the full time-dependent solution.

Apart from the geometrical simplicity of the model, the present method is
comprehensive in that it allows for very general equilibrium, initial, boundary,
and external-circuit conditions and thus combines agood deal of the essential
elements present in real systems. The literature survey of Subsec. m.B suggests
that there exists no other kinetic treatment which simultaneously includes all
of these aspects in comparable generality.

Thus, the present method may well represent asuitable starting point for
more complete, systematic, and detaUed kinetic studies of bounded plasma
systems. A first application is provided by Part Hof the present work,8 where
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it is demonstrated that the Pierce instability28 can be drastically modified by
a non-trivial external circuit.

As discussed in Subsec. ffl.A, the integral equations (37)-(40) are equivalent
to all the basic and auxiliary equations entering the theory, but at the same time

much more concise and "advanced" than these. Due to the relative geometrical
simplicity of the one-dimensional diode model considered, it has been possible
here to perform amajor portion of the necessary mathematical manipulations
in general terms. This means that the whole approach has been formalized to
alarge extent, so that, in agiven application, the "real" work has to set in
only at alevel where the peculiar details of the special case considered become
important.

According to Subsec. ffl.A, it seems plausible that integral-equation for
mulations of the kinetic perturbational problem can also be found for bounded
plasma systems that are more general than the one considered here. In spite of
the added complexity to be expected, it may well be possible and worthwhile
to extend the present approach to some of those.
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APPENDIX: KNOWN FUNCTIONS AND INTEGRAL OPERATORS

I'l >_ f <fr«pHt»)~f°{g,t>)
kl{z'v'a)-j2iW^TW^) (A1)

Mx,w)=/|i2±^) (A2)
J 2x qD(q,u) v '

u ( i_ f ** exp(-tgz)
k^^-j2iq(q^)D(q,U) <A3>

k4(x, u) - -*w*^- 4* £ e' /" *ifo», W) (A4)

4jt
A6 (a;, w) = ^(z, w) (A5)

u

ut i_ » /<fr expHgs)
w/ 2ir{q+*)D(q,ui) v '

k*(v,u) =J^ <k'exp(-*w^/*(*',») (A7)

*,(.,«)--ft *ki!!
w

ftg »oo j , (Aoj
-4*£V / ~ Aj(2,t;,u;) +l7(-t;)A:9(aj,w,w)^(t;,a;)

^ 1 ^—oo w L Jo=l

M*,*» =4r £ ££ j[^ *M«.«.«)7;W exp (-faJ) (A9)

C(» >o,«)=/>, u) - f; / do' 6r'(v,«') {4**V, u)

-ex> (-**?) E jf ^''V,•") «P (*£) **"(»",«) (A1°)
-exp(-u«/-J /*,(»»}

-39-
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*&(«.» >0, *)=£| £^ «fo< 6r>, „') {̂ i?:'(»') exp (-*£)

-expW) I,£ f £*-<r>*v> - (^)}
(All)

*«'(<'>0.»'>0,u)

""P (toy) j£ jC*" 6r"(,'•""'exp (-*v) 6'v<»"-»')(A12)

*i»*w(»<0,«) = /fg(«,,w)

*fi(*,»<0,«)

-Sf^"^expW) {-tJ^m- (-*£)
+^^jC^-c.o7rw-p(-*.i)}

**«'(» <0,»'<0,u)

- exp ("toy) j£ jf <*»" b'/'(v,«») exp («,£) 6f"'V.,,, (A15>
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So(», [x'l,«) £([x'|, w) =j_/ dx' A,(z,*',«)1E(z', u)

=J"* £{S-jf«f_x *M*,..«) ?:(») exp (-*,£) J£(x',,]

Sj> >0,[x'),u) filM,-) - j-jf*dz'k'n(z', v,U)\ E(x»

+exp(-,W-j^_^ ^exp(^)
xb?°°(p',v»)J?(»")]} E(z',U)

(A18)

(A17)

S'r(v<0,[z'\,u) E({z'\,u)= i-f''dz'k'u(z',v,U)\ £(x',«)

X[^ '̂V)exp(-<WJ)
"£t £*£„ ^6' ''>',""Iffy) «P (-*£)] }£(|x'|>w)

(A18)

•»f,(x, [»' >0], u) tf(|»'l, w) =j-W jf" ,/„' A,(l> „',„)Jfa „) (i4M)

MJ,(x,K<0|,«)7'([»'J,„)

={-•««* jf^ *"*•(«.»'.«) «p (-.«£) 1/*(„', „) (A2°'
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•»f*'(» >o,K>o|,«) /r'(|»'|,«) =j-jf°° *,'*f*'(„,,', „)} /f'(„',«)

x6f*"(»,,'')6rV(»",«')}/r'(<'',«)
(A21)

M?*> <o,k <o|>u)7*Vl.«)= {-jf^*>'*£>,»»} 7;V,«)

(A22)
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Tables

TABLE L Level scheme for establishing the coefficient functions and integral
operators of Eqs. (37)-(40).

LEVEL 1 LEVEL 2 LEVEL 3 LEVEL4

L ILA Eu (18) V".„(«) (36)
n„ (1) Z.(u) (36)
m* (2) D{q,u) (2) K (Al)
e° (1) *« (A5)
rw (2) *. (A2) So (A16)

"9.
X, (A19)

/«(*.») I /?(?.*) (•) *. (A6) v0r (A20)

"9
ks (AS)

//„(» > 0,t) (26a) /£(»><>,«) (27a)j*? (A7)
b*°'
"9

(26a) sr (A17)
frg(v < 0,t) (28b) /*„(»< 0,w) (27b) •vj*' (A21)
b*/ (28b)

Laplace-

*io (A10)

(A18)
external- transformed -*99' (A22)
circuit (33) external- (36) ft (A13)
condition circuit

condition

initial

state of

external

circuit HE A7P, (18)

[/«*.
(dljdt){,
etc.]
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TABLE II. Comparison of some representative contributions to the kinetic

theory of linear longitudinal plasma oscUIations in one-dimensional geometry.

^ •-« •* .H -* •-4 ..< *.

>»
. e

: ~o '. : • «•
4» P J« «J tf) tfj 5

nocmuuucS

Iizuka...1979 Kuznetsov...1980 Landau(§1)1946 Landau(§2)1946 Montgomery...1962 Pierce1944 Pierce1948 Rosenbluth...1963 present1

CRITERION1 REFERENCE-* 33 3113 24 19 18 2p 32 34 2* i* ik sn «>» 99 op p
1.

MODEL

cold-fluid + 4. 1+ 4. 4.
kinetic + + 4.

+ + + (+)
+ + + + + +

2.

NUMBER OF

BOUNDARIES

zero

one + + +

two + + + + +

+ (+)
+ w

+ + + + + + +
3.

PLASMA

EQUILIBRIUM

uniform 4. 4. 4. 4.
unif./thin sh. 4- j
non-uniform + + 4.

+ 1+ + + ++ (+)
1 1+

+ +

SPATIAL

DEPEND

ENCE

inf.-syst. modes 4.
Fourier series + j
Laplace transf. + + +
integral eq. 4- + +

+ + + + (+)

1+ (+)
1 +

+ +1 +
5.

TIME DE

PENDENCE

exp(o*) 4. +4.) 4. 4.
S pulse +

Laplace transf. + + +

+ + +1 + + +(+)
1 1 (+)

+ + +
6.

PARTICLE

BOUNDARY

CONDITIONS

const, emission +[+ + + 4. 4.
plain absorption 4.4.4-4.4.? ? +
spec, reflection +
other

+ + + + + + + (+)

+ + + + +(+)
+ + (+)

+
7.

A.C. j
EXTERNAL |

CIRCUIT Ii

short 4-4. 4.
open | |?| +|?|? |
passive J4-J j | | | |
active 4-1+1 1 II 1 j

+ + + + + + + (+)

M 1 1 1 k+)
Mill K+)

1 1 1 1 1 1 1 ul
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Figure Captions

FIG. 1. Model geometry, with one-minimum equilibrium potential distribu
tion as an example.

FIG. 2. Typical contours of integration for the inverse time Laplace transfor
mation.
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