

Copyright © 1983, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

IMPLEMENTATION OF RULES

IN RELATIONAL DATA BASE SYSTEMS

by

M. Stonebraker, J. Woodf.ill and E. Andersen

Memorandum No. UCB/ERL M83/54

13 June 1983

IMPLEMENTATION OF RULES

IN RELATIONAL DATA BASE SYSTEMS

by

Michael Stonebraker, John Woodfill

and Erika Andersen

Memorandum No. UCB/ERL M83/54

13 June 1983

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

IMPLEMENTATION OF RULES IN 'RELATIONAL DATA BASE SYSTEMS

by
Michael Stonebraker, John Woodfill and Erika Andersen

Dept of Electrical Engineering and Computer Science
University of California

Berkeley, Ca.

ABSTRACT

This paper contains a proposed implementation of a rules system in a rela
tional data base system. Such a rules system can provide data base services
including integrity control, protection, alerters, triggers, and view processing.
Moreoever, it can be used for user specified rules. The proposed implementa
tion makes efficient use of an abstract data type facility by introducing new data
types which assist with rule specification and enforcement.

I INTRODUCTION

Rules systems have been used extensively in Artificial Intelligence applica
tions and are a central theme in most expert systems such as Mycin [SH0R76]
and Prospector [DUDA7B]. In this environment knowledge is represented as
rules, typically in a first order logic representation. Hence, the data base for an
expert system consists of a collection of logic formulas. The role of the data
manager is to discover what rules are applicable at a given time and then to
apply them. Stated differently, the data manager is largely an inference engine.

On the other hand, data base management systems have tended to
represent all knowledge as pure data. The data manager is largely a collection of
heuristic search procedures for finding qualifying data. RepresentaUon of first
order logic statements and inference on data in the data base are rarely
attempted in production data base management systems.

The purpose of this paper is to make amodest step in the direction of sup
porting logic statements in a data base management system. One could make
this step by simply adding an inference engine to a general purpose DBMS. How
ever, this would entail a large amount of code with no practical interaction with
the current search code-of a data base system. As a result, the DBMS would get
much larger and would contain two essentially non overlapping subsystems. On
the other hand, we strive for an implementation which integrates rules into
DBMS facilities so that current search logic can be employed to control the
activation of rules.

rt^rrl^eirx3ies svstem that we Plan to implement is a variant of the proposal in
LST0N82J. which was capable of expressing integrity constraints, views and pro
tection as well as simple triggers and alarms for the relational DBMS INGRES
[ST0N76]. Rules are of the form:

on condition
then action

The conditions which were specified include:
the type of commandbeingexecuted (e.g. replace, append)

-1-

the relation affected (e.g. employee, dept)
the user issuing the command
the time of day
the day of week
the fields being updated (e.g. salary)
the fields specified in the qualification
the qualification present in the user command

The actions which we proposed included:
sending a message to a user
aborting the command
executing the command
modifying the command by adding qualification or

changing the relation names or field names

Unfortunately, these conditions and actions often affect the command
which the user submitted. As such, they appear to require code that manipu
lates the syntax and semantics of relational commands. This string processing
code appears to be complex and has little function in common with other data
base facilities. In this paper.we make use of two novel constructs which make
implementing rules a modest undertaking. These are:

1) the notion of executing the data
and

2) a sequence of QUEL commands as a data type for a relational data base sys
tem

The remainder of this paper is organized as follows. In Section II we indi
cate the new data types which must be implemented and the operations
required for them. Then in Section III we discuss the structural extensions to a
relational data base system that will support rules execution. Lastly, Section IV
and V contains some examples and our conclusions.

H RULES AS ABSTRACT DATA TYPES

Using current INGRES facilities [F0GG82, 0NG82. ST0NB2a] new data types
for columns of a relation can be defined and operators on these new types
specified. We use this facility to define several new types of columns and their
associated operators in this section.

The first data type is a QUEL command, e.g.
range of e is employee
replace e(salary = l.l*e.salary) where e.name s "John"

. . +

The abstract data type facility supports an external representation such as
that above for a given data type. Moreover, when an object of the given type is
stored in the data base it is converted to an internal representation. QUEL com
mands are converted by the INGRES parser to a parse tree representation such
as the one noted in Figure 1 for the qualification "where 13. -I- employee.salary =
100". Consequently, a natural internal form for an object of type QUEL is a
parse tree. Each node in this parse tree contains a value (e.g. 13.) and a type
(e.g. floating point constant).

The second new data type which will be useful is an ATTRIBUTE-FUNCTION.
This is a notion in the QUEL grammar and stands for anything that can be
evaluated to a constant or the name of a column. Examples of attribute func
tions include:

13.

-2-

RETBOOL

I
+ F4EQ-

+—F4PLUS—+ 100.
I I

13. F4VAR

The Parse Tree for the Qualification
Where 13. + employee,salary = 100

Figure 1

1.1*employee,salary+20

newsal

The external representation is the same string format used for objects of type
QUEL; the internal representation is that of a parse tree.

Two other data types of lesser significance are also needed, a TIME data
type to contain a time of day value and a COMMAND data type to contain a value
which is one of the QUEL commands.

Current built-in INGRES operators (e.g. *, /, +, etc.) must be extended for
use with attribute functions. In addition, two new operators are also required.
First, we need a function new() which will operate with integer data types. When
called, it will return a new unique identifier which has not been previously used.
Second, we require a partial match operator, ~, which will operate on a variety
of data types and provide either equality match or match the value "*".

HI INGRES CHANGES

We expect to create two rules relation, RULES1 and RULES2, with the follow
ing fields:

create RULES 1(
rule-id = i4,
user-id = clO, *
time = time,
command = command,
relation = cl2,
terminal = c2,
action = quel)

create RULES2 (
rule-id = i4,
type = clO.
att-fnl = attribute-function
operator = cS,
att-fn2 = attribute-function)

For example, we might wish a rule that would add a record to an audit trail

whenever the user "Mike" updated the employee relation. This requires a row in
RULES1 specified as follows:

append to RULESIf
rule-id = new(),
user-id = "Mike",
command = "replace",
relation = "employee",
action = QUEL command to perform audit)

If additionally we wished to perform the audit action only when Mike
updated the employee relation with a command containing the clause "where
employee.name = "Fred"" we would add an additional tuple to RULES2 as follows:

append to RULES2(
rule-id = the one assigned in RULES1
type = "where"
att-fnl = "employee.name"
operator = "="
att.fn2 ="Fred")

We also require the possibility of executing data in the data base. We pro
pose the folldwing syntax:

range of r is relation
execute (r.field) where r.qualification

In this case the value of r.field must be an executable QUEL command and
thereby of data type QUEL. To execute the rule that was just appended to Rl we
could type:

range of r is Rl
execute (r.action) where r.user-id = "Mike" and

r.command = "replace" and
r.relation = "employee"

When a QUEL command is entered by a user, it is parsed into an internal
parse tree format and stored in a temporary data structure. We expect to
change that data structure to be the following two main memory relations:

create QUERY1(
user-id = c 10,
command = command,
relation = cl2,
time = time,
terminals c2)

create QUERY2(
clause-id = i4,
type =cl0,
att-fnl = attribute-function,
operator = c5,
att-fn2 = attribute-function)

If the user types the query:
range of e is employee
retrieve (e«alary)

where (e.name = "Mike" or e.name = "Sally")
and e.salary > 30000

then INGRES will build QUERY1 to contain a single tuple with values:

QUERY1
user-id command relation time terminal

current-user retrieve employee current-time current-terminal

QUERY2 will have four tuples as follows:

QUERY2
clause-id tvoe att-fnl ODerator att-fn2

id-x target-list employee, salary s= employee, salary
id-y where . employee.name = Mike
id-y where employee.name = Sally
id-z where employee.salary > 30000

Notice that QUERY1 and QUERY2 contain a relational representation of the parse
tree corresponding to the incoming query from the user. The where clause of
the query is stored in conjunctive normal form, so that atomic formulae which
are part of a disjunction have the same clause-id, while the atomic formulae and
disjunctions in the conjunction have different clause-ids.

Then we execute the QUEL commands in Figure 2 to identify and execute
the rules which are appropriate to the incoming command. These commands
are performed by the normal INGRES search logic. Activating the rules system
simply means running these commands prior to executing the user submitted
command. After running the commands of Figure 2, the query is converted
back to a parse tree representation and executed. Notice that the action part
of a rule can update QUERY 1 and QUERY2; hence modification of the user com
mand is easily accomplished. The examples in the next section illustrate several
uses for this feature:

range of rl is RULESl
range of r2 is RULES2
range of ql is QUERYl
range of q2 is QUERY2
retrieve into TEMP(rl.id, rl.quel) where

rl.user-id ~ ql.user-id and
rl.command ~> ql.command and
rl.time «* ql.time and
rl.terminal~ ql.terminal

range of t is TEMP
execute (t.quel) where tid < 0 or

(Lid = r2.rule-id and
set(r2.all-but-rule-id by r2.rule-id)

s= set(r2.ali-but-clause-id by r2.rule-id
where r2.ail-but-rule-id ~ q2.all-but-clause-id))

Rule Activation in QUEL
Figure 2.

The set functions are as defined in [HELD75]. The conditions for activating a
rule are: '

(i) its tuple in RULESl matches the tuple in QUERYl

and either
(ii) each tuple for the rule in RULES2 matches a tuple in QUERY2.

or

(iii) there are no required matches in RULES2
(represented by rule-id < 0).

The second condition provides appropriate rule activation when both the user
query and the rule do not contain the boolean operator OR. However, a rule
which should be activated when two clauses A and B are true will have two tuples
in RULES2. This rule will be activated by a user query containing clauses match
ing A and B connected by any boolean operator. Under study is a more sophisti
cated activation system which will avoid this drawback.

The commands in Figure 2 cannot be executed directly because set func
tions have never been implemented in INGRES. Hence, we turn now to a pro
posed implementation of these functions.

Suppose we define a new operator "|" to be bitwise OR, and "bitor()" to be an
aggregate function which bitwise ORs all' qualifying fields. Then if we add the
attribute "mask" to RULES2, and give each tuple for a particular rule a unique
bit, the following query is correct:

range of t is TEMP
execute (t.quel) where Lid < 0 or

(Lid = r2.rule-id and
bitor(r2.mask by r2.rule-id)
= bitor(r2.mask by r2.ruie-id

where r2.all-but-rule-id ~ q2.all-but-clause-id))
This solution will be quite slow, since the test for each rule involves processing a
complicated aggregate. A more efficient solution involves generating masks for
all rules in parallel and writing special search code as follows:

range of rl is RULESl
range of r2 is RULES2
range of ql is QUERYl
range of q2 is QUERY2
retrieve into TEMP(rl.id, rl.quel, mask = 0) where

rl.user-id ~ ql.user-id and
rl.command ~ ql.command and
rl.time «* ql.time and
rl.terminal** ql.terminal

range of t is TEMP

foreach q2 do begin
replace t (mask = Lmask | r2.mask)

where Lid = r2. rule-id and
r2.all-but-rule-id - q2.all-but-clause-id

end foreach

execute (t.quel) where Lid < 0 or
(Lid = r2.rule-id and

bitor(r2.mask by r2.rule-id)
= Lmask)

Since the value of "bitor(r2.mask by r2.ruleid)" remains constant, the perfor
mance of this 'algorithm can be further improved by including the value of
"bitor(r2.mask by r2.ruleid)" in RULESl and copying it into TEMP as the
"acceptmask". The third query would then become:

execute (Lquel) where Lid = r2.rule-id and
Lacceptmask = Lmask

Notice the case where there are no tuples in RULES2 for a particular rule is han
dled with an acceptmask of zero.

Either a variable length abstract data type "bitstring" or a four byte integer
can be used to store the mask. The abstract data type solution has the advan
tage of allowing an unlimited number of conditions for specifying rule activation,
while the four byte integer solution has the advantage of simplicity and speed,
but can only represent 32 conditions.

IV EXAMPLES

We give a few examples of the utility of the above constructs in this section.
Rrst, we can store a pommand in the data base as follows:

append to storedqueries (id = 6,
quel = "range of e is employee

retrieve (e. salary)
where e.name = "John"")

We can execute the stored command by:
range of s is storedqueries
execute (s.quel) where s.id = 6

The following two examples will pertain to the query:
range of e is employee
replace e(salary = salary*1.5) where e.name = "Erika"

To represent this query INGRES will append the following tuples to the QUERYl
and QUERY2 relations:

QUERYl
user-id command relation 1 time terminal

current-ttser replace employee current-time current-terminal

QUERY2
clause-id type att-fnl operator att-fn2

id-z target-list employee, salary = employee.salary*1.5
id-x where employee.name = Erika

Suppose we want to implement the integrity contraint to insure that
employee salaries never exceed $30,000. Using query modification [ST0N75] we
would add the clause "and employee.salary*1.5 <= 30000". to the user's
qualification with the following rule:

append to RULESl(
rule-id = new(), (call it id-y)
user-id = •, (matches any user-id)
command = "replace",
relation = "employee",
action = "range of Q2 is QUERY2

append to QUERY2(
clause-id = id-x,

type = "where",
att-fnl = Q2.att-fn2.
operator = "<=",

-S-

att-fn2 ="30000")
where Q2.att-fnl = "employee.salary")"

append to RULES2(
rule-id = id-y,
type «"target-list",
att-fnl = "employee.salary",
operator = "=",
att-fn2 = *)

Consider a transition integrity constraint that specifies that the maximum
salary increase is 20%. This means that the new salary divided by the old salary
must be less than or equal to 1.2. This can be achieved by appending a single
tuple to Rl:

append to RULESl(
rule-id = new(),
user-id = •,
command = "replace",
relation = "employee",
action = "range of Q2 is QUERY2

append to QUERY2(
clause-id = id-x,

type = "where",
att-fnl as Q2.att-fn2/Q2.att-fnl.
operator = "<="
att-fn2 ="1.2")

where Q2.att-fnl = "employee.salary""

As a last example of an integrity constraint, consider a referential con
straint that a new employee must be assigned to an existing department. Such
a rule would be applied, for example, to the following query:

append to employee (name="Chris", dept = "Toy", mgr = "Ellen")
The corresponding tuples in QUERY2 would look like:

QUERY2
clause-id type att-fnl operator att-fn2

id-z target-list employee.name s: Chris

id-z target-list employee.dept = Toy
id-z target-list employee.mgr = Ellen

Implementation of the constraint requires checking that the department given
in the target list of the append appears in the department relation. This is
accomplished with the following rule:

append to RULES1(
rule-id = new(),
user-id = •,
command = "append",
relation = "employee",
action = "range of Q2 is QUERY2

append to QUERY2(
clause-id = id-z,
type = "where",
att-fnl = "depLname",
operator = "=",
att-fn2 = Q2.att-fn2)

where Q2.att-fnl = employee.dept"

Lastly, protection is achieved primarily by making use of the RULE1 rela
tion, which pertains to the query "bookkeeping" information. Suppose we
wanted to ensure that no one could access the employee relation after- hours
(after 5PM and before BAM). The following tuple would be added to the Rl rela
tion:

append to RULESif
rule-id = new(),
user-id = •,
time = "17:01 - 7:59".
command = *,
relation = "employee",
terminal = \^
action = "range of Ql is QUERYl

range of Q2 is QUERY2
delete Ql
delete Q2

If the query meets the conditions, the action removes the tuples in QUERYl and
QUERY2 and thereby aborts the command.

V CONCLUSIONS

This paper has presented an initial sketch of a rules system that can be
embedded in a Relational DBMS. There are two potentially very powerful
features to our proposal. First, it can provide a comprehensive trigger and
alerter system. Real time data base applications, especially those associated
with sensor data acquisition, need such a facility. Second, it provides stored
DBMS commands and the possibility of parallel execution of triggered actions.
In a multiprocessor environment such parallelism can be exploited.

There are also several deficiencies to the current proposal, including:

a) Rule specfication is extremely complex. This could be avoided by a language
processor which accepted a friendlier syntax and translated it into the one in
this paper.

b) The result of the execution of a collection of rules can depend on the order in
which they are activated. This is unsettling in a relational environment.

c) Rules trigger on syntax alone. For example, if we want a rule that becomes
activated whenever John's employee record is affected, we trigger on any query
having "employee.name = John" in the where clause. However if the incoming
query is to update all employees' salaries, this rule would not be triggered.

d) Commands with multiple range variables over the same relation, so called
reflexive joins, are not correctly processed by the rules engine.

e) Aggregate functions have not yet been considered.

f) As noted earlier, boolean OR is not treated, correctly.

We are attempting to resolve these difficulties with further work.

REFERENCES

[DUDA78]

[F0GG82]

[HELD75]

[0NG82]

[SH0R76]

[ST0N75]

[ST0N76]

[ST0N82]

[ST0N82a]

[ST0N83]

Duda, R. eL aL, "Development of the Prospector Consultation
System for Mineral Exploration," SRI International, October
1978.

Fogg. D., "Implementation of Domain Abstraction in the Rela
tional Database System. INGRES", Masters Report, EECS Dept,
University of California, Berkeley, CA Sept. 1982.
Held, G., et. aL. "INGRES: A Relational Data Base System,"
Proc. 1975 NCC. Anaheim. Ca.. May 1975.
Ong, J., "The Design and Implementation of Abstract Data
Types in the Relational Database System, INGRES," Masters
Report, EECS DepL University of California, Berkeley, CA
Sept. 1982.

Shortliffe, E., "Computer Based Medical Consultations:
MYCIN," Elsevier. New York, 1976.

Stonebraker, M., "Implementation of Integrity Constraints
and Views by Query Modification." Proc. 1975 ACM-SIGMOD
Conference on Management of Data, San Jose, Ca., June 1975.

Stonebraker, M. et al., "The Design and Implementation of
INGRES," TODS 2, 3. September 1976.
Stonebraker, M., et. al., "A Rules System for a Relational Data
Base System," Proc. 2nd International Conference on Data
bases, Jerusalem, Israel, June 1982.

Stonebraker, M.. "Extending a DBMS with Added Semantic
Knowledge," Proc. NSF Workshop on Data Semantics, Inter
vale N.H., May 1982. (to appear in Springer-Verlag book edited
by M. Brodie)

Stonebraker, M., et. al., "Document Processing in a Relational
Data Base System." ACM TOOIS, April 1983.

-10-

	Copyright notice 1983
	ERL-83-54

