

Copyright © 1983, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

PERFORMANCE ANALYSIS OF DISTRIBUTED

DATA BASE SYSTEMS

by •

Michael Stonebraker, John Woodfill,

Jeff Ranstrom, Joseph Kalash,

Kenneth Arnold and Erika Andersen

Memorandum No. UCB/ERL M83/55

25 July 1983

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

PERFORMANCE ANALYSIS OF DISTRIBUTED

DATA BASE SYSTEMS

by

Michael Stonebraker, John Wbodfill, Jeff Ranstrom,
Joseph Kalash, Kenneth Arnold and Erika Andersen

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE
UNIVERSITY OF CALIFORNIA

BERKELEY, CA

ABSTRACT

In this paper we briefly present the design of a distributed relational data

base system. TTien, we discuss experimental observations of the performance of

that system executing both short and long commands. Conclusions are also

drawn concerning metrics that distributed query processing heuristics should

attempt to minimize. Lastly, we comment on architectures which appear viable

for distributed data base applications.

• Research Sponsored by the National Science Foundation under Grant MCS«
8211528 and by the Defense Advanced Research Projects Agency under Con-
tract N00039-C-0235.

1. INIBGDUCnGN

Many algorithms have been proposed to solve distributed relational data

base problems in the areas of:

a) distributed concurrency control

b) distributed crash recovery

c) support of multiple copies of data

d) distributed command processing

There is currently little quantitative knowledge on the performance of such

algorithms. Previous work has been based exclusively on simulation, e.g.

(RIES79, GARC79a, GARC79b, LIN81) or formal modeling, e.g. JGELE78, BERN79].-

One of the objectives of this research is to provide empirical results concerning

the performance of various algorithms.

This paper first presents a short description of a working prototype distri

buted data base system. Then, we present the results of a collection of experi

ments on this prototype. Conclusions concerning query processing algorithms

are drawn as appropriate. Lastly, comments on viable distributed architectures

for data base applications are presented.

S. DISTRIBUTED INGRES

Distributed INGRES operates on a collection of DEC VAX ll/780s and n/7S0s

connected by a 3 mbit ethernet. All run the 4.1cbsd, a version of the UNIX

[RITC75] operating system enhanced at Berkeley with paging, numerous pro

gram development tools, remote interprocess communication, and remote pro

cess execution.

Most features of Distributed INGRES [EPST78] are currently operational. A

master INGRES process runs at the site where the command originated and slave

Ingres processes run at each site which have data involved in the command. The

-2-

master process parses the command, resolves any views, and creates an action

plan to solve the command using the fragment and replicate technique. The

slave process is essentially single-machine Ingres (STON7C, STON80] with minor

extensions and with the parser removed. The coordinator and slaves communi

cate using the 4.lcBSD interprocess message system.

Distributed INGRES supports fragments of relations at different sites. For

example, one can distribute the relation

EMP (name, salary, manager, age, dept)

as follows:

range of E is EMP
distribute E

at Berkeley where E.dept — "shoe"
at Paris where E.dept =»"toy"
at Boston where E.dept !="toy" and

E.dept !="shoe"

Berkeley, Paris and Boston are logical names of machines which are mapped to

site addresses by a lookup table. A single site relation is a special case of the

distribute command, e.g.

distribute ONE-SITE at Berkeley

Currently, all QUEL commands without aggregates are processed correctly

for distributed data. Consider, for example, the following update:

. range of E is EMP
replace E(dept =s"toy") where e.salary > 10000

This command will be processed by all sites containing fragments of the EMP

relation. All qualifying tuples are updated and their site location may be

changed. For example, the tuple of an employee earning more than 10000 in the

shoe department would be moved from Berkeley to Paris.

Distributed INGRES uses a two phase commit protocol (GRAY78, LAMP76].

Slaves send a "ready" message to the master when they are prepared to commit

-3-

an update. Tuples which change sites are included with this message. The mas

ter then redistributes the tuples by piggybacking them onto the commit mes

sage. A three phase commit protocol can optionally be used [SKEE82] for added

reliability. In this case the above redistribution is handled in the second phase.

When a command spans data at multiple sites, a rudimentary version of the

"fragment and replicate" query processing strategy is used. For example, sup

pose a second relation

DEPT(dname, floor, budget)

exists at two sites as follows:

distribute D

at Berkeley where D.budget >5
at Paris where D.budget <=5

Consider the query submitted by a Boston user:

range of E is EMP
range of D is DEPT
retrieve (E.name) where E.dept =D.dname

and D.floor =1

First, the one variable clause "D.floor »1" is detached and run at both Berkeley

and Par is, i.e.

range of D is DEPT
retrieve into TEMP (D.dname) where D.floor si

The original query now becomes

range of E is EMP
range of D is TEMP
retrieve (E.name) where E.dept "D.dname

To satisfy the query, data movement must now take place. One relation (say

TEMP) is replicated at each processing site. Hence, both Berkeley and Paris

send their TEMP relations to each site which has a fragment of EMP. Therefore,

the needed transmissions are:

TEMP(Paris) ->Boston

-4-

TEMP(Paris) ->Berkeley
TEMP(Berkeley)->Paris
TEMP(Berkeley) ->Boston

Now, all three sites have a complete copy of TEMP and a fragment of the EMP

relation. The above query is now performed at each site, and the resulting

tuples are returned to the master site, where they are displayed to the user.

Since our ETHERNET has the hardware capability to support broadcast, it is

possible to perform the above four transfers by broadcasting each fragment of

TEMP. However, the 4.1cBSD operating system does not support multicast or

broadcast transmissions. Consequently, the above four transmissions occur

separately, and the strategy of replication may perform poorly [EPST78]. The

network on which we planned to run [ROWE79] supported broadcast, and we have

not subsequently modified the query processing heuristics.

At the moment, the relation to be replicated is chosen arbitrarily, so TEMP

and EMP are equally likely to be selected for movement. A more elegant stra

tegy is being planned.

3. SIMPLE UPDATES

In all experiments we use the EMP and DEPT relations as discussed in Sec

tion 1. Our data base consists of 30,000 EMP tuples, each 38 bytes long and 1500

DEPT tuples each 18 bytes long. In all cases we will be comparing the perfor

mance of Distributed and single-site INGRES.

The first benchmark consists of 1000 random updates of the form:

replace E (salary =K) WHERE E.name =L

The n-site data base was distributed as follows:

distribute E

at tite-a where e.name <j\
at«tfe>6 where e.name >=/i

and e.name <j2

• 5-

atai'/c-n where e.name >=*;B_i

The constants j\,..-,jn-\ were chosen so that exactly 1000/n updates were

directed to each site. The number of sites, n, was varied from 1 to 3.

Each site ran a script which contained 1000/ n updates and processed the

next command when it received "done" from the previous one. In this way there

was a master INGRES at each site and we avoided creating a bottleneck at a single

coordinating site.

Note that this benchmark consists of a large collection of small transac

tions, each of which can be completely processed at a single site. A distributed

data base should perform well in this situation.

Table 1 indicates for each configuration the CPU time spent inside the

operating system, the CPU time spent inside the INGRES code and the elapsed

time. The benchmark was run on a VAX 11/780 along with 0, 1 or 2 VAX ll/750's.

Unfortunately, the 11/750's have varying amounts of main memory, disk sys

tems, and buffer space allocations. Moreover, the error rate of network

transmission varies between pairs of machines. As a result, a fair amount of

random variation of the numbers must be expected.

For the distributed processing configurations, the reported times are a sum

of the time spent by the master INGRES at that site along with the times spent

by any slave INGRESs on behalf of masters at other sites. According to local

benchmarks, an 11/750 is about 0.629 times as fast as an 11/780 (HAGG83);

hence total CPU time is calculated by scaling 11/750 time by the above factor

and is reported in the row labeled by a*780.

Several conclusions can be drawn from these results. First, Distributed

INGRES is about 20 percent slower than normal INGRES when run on a local data

base. Distributed INGRES must check the distribution criteria to ascertain that

.ft-

user time system time elapsed time

Normal INGRES

11/780 7:34 3:04 22:34

Distributed
INGRES-local
data base

11/780 9:06 3:53 26:57

Distributed

INGRES - foresign
data base

11/750 7:58 3:02

11/780 5:34 2:57

02*780 10:35 4:51

Distributed
INGRES - 2

sites

11/780 5:14 2:24

11/750 8:24 4:05

02*780 10:31 4:58

28:37

15:30

16:46

Distributed

INGRES - three

sites

11/780 3:43 1:30 12:43
11/750 5:28 2:16 13:34
11/750 5:48 2:13 13:22
03*780 11:09 4:30

Performance of Simple Updates
Table 1

each of the commands is a local one. Currently, this checking is performed at

run time; however, for better performance it could be performed at compilation

time. In addition, each updated tuple must also be checked against the distribu

tion criteria to ensure that it does not change sites (i.e. that the dept field is

not being changed).

Second, Distributed INGRES on a one machine foreign data base is about 10

percent slower than on a local data base. The foreign data requires master

INGRES to communicate with a non-local slave instead of a local slave, and this

requires extra user and system CPU time.

-7-

Third, 2*780 and 3*780 Distributed INGRES use 20 percent more CPU time

than Distributed INGRES on a local data base and 45 percent more CPU time

than single-site INGRES. Both systems use marginally more CPU time than Dis

tributed INGRES on a one-site foreign data base. The benefit of these

configurations is increased parallel processing; hence the benchmark finishes

respectively 25 and 40 percent faster. Of course, the benchmark would have

finished even faster if the additional machines were U/780s. We suspect that a

collection of n ll/780s could finish the benchmark in approximately 28/q

minutes.

Lastly, note that the 3 site benchmark uses the same amount of CPU time

as the two site benchmark. It is reasonable to expect that the total CPU time

would continue to be a constant as additional sites were added. Hence, we

predict that total aggregate CPU time would remain a constant as sites are

added and would be split among an increasing number of machines.

Benchmark 1 on a foreign data base results in 522,880 bytes being

transferred across the network, and less than two percent of the available

bandwidth is consumed. It appears that a large number of machines could be

added to the ETHERNET be fore bandwidth limitations arise.

4. ONE RELATION RETRIEVES

In this benchmark we attempted.to load the network as fully as possible

with the following query:

range of E is EMP
retrieve (E.all)

The result of this query is 3000Q tuples which would ordinarily be printed on the

terminal. To stress differences in the environments being tested, we discarded

the qualifying tuples in both this benchmark and the subsequent one. Hence,

the cost of printing more than 1 mbyte of data is not included in the results

-8-

presented in Table 2. In the 2 site and 3 site benchmarks the EMP relation is

uniformly distributed across the sites. Moreover, we are timing several repeti

tions of the query submitted from a single job stream and then averaging them.

Distributed .INGRES on a local data base runs at about the same speed as

single-site INGRES. The extra overhead of discovering that the query is local is

amortized over a large amount of processing, so the two systems perform com

parably.

user time system time elapsed time

Normal INGRES

11/780 1:44 0:15 2:03

Distributed

INGRES-local
data base

11/780 1:47 0:10 2:05

Distributed

INGRES - foreign
data base

11/750 0:03 0:03 2:54
11/780 1:47 0:20
02*780 1:49 0:22

Distributed

INGRES - 2
sites

11/780 1:06 0:19

11/750 1:36 0:15

02»780 2:06 0:28

Distributed •».

INGRES - three

sites

11/780 0:35 0:05

11/750 1:13 0:16

11/750 1:12 0:17

03*780 2:06 0:26

2:59

2:37

Performance of One-relation Retrieves
Table 3

-0-

On a foreign data base distributed INGRES is 0:49 seconds slower. In this

environment, a slave must write the EMP relation into a temporary file and pass

it across the network to a another file. Consequently, there are a total of two

copies made of the 1200 block EMP relation.

The cost of a executing a remote copy of the 1200 block file is 0:17 of

elapsed time and 0:11 of system CPl/ time. Hence, about 32 percent of the 0:49

difference is explained by the network overhead; the rest is added INGRES over

head. This remote copy consumes about 19.3 percent of the 3 mbit bandwidth.

Because INGRES adds extra overhead, it uses only 6 percent of the available

bandwidth. Obviously a large number of concurrent data base users would be

required before INGRES could use any substantial fraction of the ETHERNET

bandwidth.

When the data base is distributed over multiple sites, the total CPU time

remains approximately constant and is distributed evenly over the machines.

When two sites are present, about 50 percent of the CPU cycles are offloaded to

an 11/750 which is 0.629 times as fast. The maximum improvement possible in

this configuration is about 25 percent, and it appears that INGRES overhead

offsets this gain. With three sites dividing the work, response time begins to

improve, and this improvement should continue as new sites are added.

Four conclusions can be drawn from the results of this benchmark and the

above discussion. First, query processing heuristics should account for the

speed of the various machines when deciding optimal strategies. To achieve

minimum response time using our configuration, one should give the 11/780

disproportionately more work than the ll/750s. Second, bandwidth will never

be a problem in our environment. Even operating system file transfers do not

come close to using the entire bandwidth, and-INGRES relations cannot be

moved any faster than OS files. Third, data base and file servers are often pro-

• 10-

posed as useful architectural concepts in a local network environment. How

ever, this configuration is closely approximated by a foreign data base which had

the next to worst performance of the ones tested. Unless a server is much fas

ter than other machines on the network or unless other machines do not have

disks, the merits of a server seem doubtful. Lastly, it appears.desirable to split

complex queries among a large number of sites and take advantage of the

resulting parallel processing.

5. JON EXPERIMENT

The last experiment executed the natural join of EMP and DEPT, with EMP

hashed on the dept field and DEPT hashed on the dname field, i.e.*

range of E is EMP
range of D is DEPT
retrieve (E.all, D.all) where E.dept =D.dname

The same environments were tested as in the previous sections. In the 2 and 3

site cases both EMP and DEPT were uniformly distributed, and DEFT was

selected as the relation to be replicated in query processing. Table 4 contains

the measured results.

The elapsed time for the foreign data base is longer than expected by about

2-3 minutes; otherwise these numbers are very similar to the preceding two data

sets. Hence, we will not comment on their relative magnitudes but rather dis

cuss other points.

First, the two and three site versions moved the DEPT relation to solve the

query. Wfe forced distributed INGRES to instead move the EMP relation, and the

results were about 20 times slower, than those reported. The explanation is

somewhat subtle. When Distributed INGRES replicates a relation at multiple

sites, it loses the access structure of the relation involved and does not recreate

the original access path for the composite relation. Hence, if DEPT or EMP is

moved, it becomes a heap at each site. Local INGRES algorithms solve the join by

-11-

user time system time elapsed time

Normal INGRES

11/780 8:41

Distributed

INGRES -local .
data base

11/780 8:57

Distributed

INGRES -foreign
data base

11/750 0:05
11/780 9:01
02*780 9:04

Distributed
INGRES - 2
sites

11/780 4:28
11/750 7:56
02*780 9:28

Distributed

INGRES - three
sites

11/780
11/750
11/750
03*780

3:11

5:27

5:14

9:54

0:38

0:47

0:03

0:42

0:44

:21

1:02

1:00

:13

:43

:40

1:05

9:37

10:34

14:32

10:45

7:41

Performance of Joins
Table 4

iterating over the smaller of the two relations, in this case DEPT. If DEPT is

moved, then INGRES will iterate over a heap producing a large collection of

queries of the form:

retrieve (E.all, -constants-)
where E.dept == constant

These queries can then be executed by a hashed access to the EMP relation.

However, if EMP is moved and becomes a heap, a large number of queries are

generated, each requiring a complete scan of the EMP relation.

Wfe did not execute the query with EMP at one site and DEPT at another. In

this case the query processing module should move the DEPT relation to the site

-12-

of EMP. This should add only a few seconds of overhead to the distributed

INGRES time8 for a local data base.

Wfe also did not force the obvious semi-join strategy indicated by the follow

ing commands.

retrieve into W(E.dept)
move W

retrieve into WE (D.all) where D.dname = W.dept
move WB

retrieve (E.all, Wft.all) where E.dept »Wg.dname

Since all values of dname appear in the EMP relation, W2 is exactly the size of

DEPT. This algorithm will consequently perform more poorly than all other ones

since it will perform a projection of the EMP relation in addition to the work

done by other algorithms. Given that bandwidth is not a consideration in our

environment, semi-joins, which must execute the query twice, will seldom be

advantageous.

6. CONCLUSIONS

This paper presented timings for a distributed data base system. By and

large, they are extremely encouraging. Although Distributed INGRES is not

highly optimized, it does not add a large amount of overhead. It is expected that

judicious tuning could make it competitive with single-site INGRES on local data

bases. On distributed data, the costs of moving data are not excessive and

result in substantial parallelism.

|BERN79|

|EPST78|

|GARC79a]

REFERENCES

Bernstein, P. and Chiu, D., "Using Semi-joins to Solve Rela
tional Queries", Computer Corp. of America, Cambridge,
Mass., Jan. 19,79.

Epstein, R., et. al., "Distributed Query Processing-in a Rela
tional Data Base System," Proc. 1978 ACM-SIGMOD Conference
on Management of Data, Austin, Texas, May, 1978.

Garcia-Mo Una, H., "Centralized Control Update Algorithms for
Fully Redundant Distributed Data Bases," Proc. 1st Interna
tional Conference on Distributed Computing, Huntsville, Ala.,

-13-

[GARC79b|

|GELE78]

|GRAY78|

[HAGG83|
[LAMP76]

(LIN81)

|RIES79]

|RITC75|

|ROWE79)

(SKEE82)

ISTON76]

|STON80|

Oct. 1979.

Garcia-Molina, H., "Performance of Update Algorithms for
Replicated Data in a Distributed Data Base," PhD Thesis, Stan
ford University, Computer Science Dept, June 1979.

Gelenbe, E. and Sevcik, K., "Analysis of Update Synchroniza
tion for Multiple Copy Data Bases," Proc. 3rd Berkeley
Wbrkshop on Distributed Data Bases and Computer Networks,
San Francisco, Ca., February 1978.

Gray, J., "Notes on Data Base Operating Systems," in Operat
ing Systems: An Advanced Course, Springer-Verlag, 1978,
pp393-481.

Hagmann, R., private communication

Lampson, B. and Sturgis, H., "Crash Recovery in a Distributed
System," Xerox Palo Alto Research Center, 1976.

Lin, W, "Performance Evaluation of Two Concurrency Control
Mechanisms in a Distributed Data Base System," Proc. 1981
ACM-SIGMOD Conference on Management of Data, Ann Arbor,
Mich., May 1981.

Ries, D., "The Effects of Concurrency Control on Data Base
Management System Performance," Electronics Research
Laboratory, Univ. of California, Memo ERL M79/20, April 1979.
Ritchie, D. and Thompson, K., "The UNIX Timesharing System,"
CACM, June 1975.

Rowe, L. and Birman, K., "Network Support for a Distributed
Data Base System", Proceedings of the Fourth Berkeley
Wbrkshop on Distributed Data Management and Computer
Networks, August, 1979, San Francisco, California.

Skeen, D., "A Quorum-Based Commit Protocol," Proc. 6th
Berkeley Wbrkshop on Distributed Data Bases and Computer
Networks, Pacific Grove, Ca., Feb 1982.

Stonebraker, M. et. al., "The Design and Implementation of
INGRES," TODS 2, 3, September 1976.

Stonebraker, M, "Retrospection on a Data Base System,"
TODS, March 1980.

• 14-

	Copyright notice 1983
	ERL-83-55

