
 

 

 

 

 

 

 

 

 

Copyright © 1983, by the author(s). 
All rights reserved. 

 
Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 
lists, requires prior specific permission. 



MODELING AND EVALUATION OF DATABASE

CONCURRENCY CONTROL ALGORITHMS

by

M. J. Carey

Memorandum No. UCB/ERL M83/56

7 September 1983



Modeling and Evaluation of

Database Concurrency Control Algorithms

Copyright © 1983

by

Michael James Carey



MODELING AND EVALUATION OF

DATABASE CONCURRENCY CONTROL ALGORITHMS

Ph.D. Michael James Carey Electrical Engineering
and Computer Science

Sponsors: ^Pt^^d^J
Air Force Office of Scientific Research 0" *~-\
Naval Electronic Systems Command Michael RVStSnehraker
California Fellowship in Microelectronics Chairman of Committee

ABSTRACT

In database management systems, transactions are provided for

constructing programs which appear to execute atomically. If more than one

transaction is allowed to run at once, a concurrency control algorithm must be

employed to properly synchronize their execution. Many concurrency control

algorithms have been proposed, and this thesis examines the costs and

performance characteristics associated with a number of these algorithms.

Two models of concurrency control algorithms are described. The first is

an abstract model which is used to evaluate and compare the relative storage

and CPU costs of concurrency control algorithms. Three algorithms, two-

phase locking, basic timestamp ordering, and serial validation, are evaluated

using this model. It is found that the costs associated with two-phase locking

are at least as low as those for the other two algorithms.

The second model is a simulation model which is used to investigate the

performance characteristics of concurrency control algorithms. Results are



presented for seven different algorithms, including four locking algorithms,

two timestamp algorithms, and serial validation. All performed about equally

well in situations where conflicts between transactions were rare. When

conflicts were more frequent, the algorithms which minimized the number of

transaction restarts were generally found to be superior. In situations where

several algorithms each restarted the same number of transactions, those

which restarted transactions which had done less work tended to perform the

best.

Two previously proposed schemes for improving the performance of

concurrency control algorithms, multiple versions and granularity hierarchies,

are also examined. A new multiple version algorithm based on serial

validation is presented, and performance results are given for this algorithm,

the CCA version pool algorithm, and multiversion timestamp ordering.

Unlike their single version counterparts, all three algorithms performed

comparably under the workloads considered. Three new hierarchical

concurrency control algorithms, based on serial validation, basic timestamp

ordering, and multiversion timestamp ordering, are presented. Performance

results are given for these algorithms and a hierarchical locking algorithm.

All were found to improve performance in situations where the cost of

concurrency control was high, but were of little use otherwise.



To Carol



u

ACKNOWLEDGEMENTS

I would like to thank my advisor, Mike Stonebraker, for introducing me

to the area of database systems and for supervising this thesis. His support,

guidance, and encouragement have been invaluable these past few years. I

would also like to thank the other members of my thesb committee: Mike

Powell taught me a great deal about large software systems during my stay at

Berkeley, and Ron Wolff played a major role in the statistical aspects of this

work. All three members of my thesis committee were extremely generous

with their time in helping me to finish.

I would like to thank all the students, faculty, and staff of Project

INGRES for providing an excellent research environment. Toni and Margie

were the source of many helpful discussions and ideas, and Joe was always

willing to help with system questions and problems.

I am grateful for all of my friends at Berkeley. They believed in me,

kept me entertained, and made the last three years memorable. Although

there are many, I would especially like to thank Fred and Pat, Clem, the

OSMOSIS group, and Paul and Kathleen.

Lastly, I would like to thank the people most responsible for making this

all possible: My wife, Carol, for all her love, support, patience, and under

standing, and my family, for their love and support throughout the years.



ill

This thesis was supported by the Air Force Office of Scientific Research

Grant AFOSR-78-3596, the Naval Electronic Systems Command Contract

NESC-N00039-81-C-0569, and a California Fellowship in Microelectronics.



IV

TABLE OF CONTENTS

Chapter 1. Introduction 1

1.1 Background 1

1.1.1 An Example 1

1.1.2 Transactions and Concurrency Control 5

1.2 Concurrency Control Research 8

1.3 Performance Issues 11

1.4 Thesb Overview 14

Chapter 2. Concurrency Control Costs 17

2.1 Overview 17

2.2 Transaction Requests 19

2.3 The Concurrency Control Database 19

2.4 Algorithm Descriptions 21

2.5 Using the Model 22

2.5.1 Two-Phase Locking 23

2.5.2 Basic Timestamp Ordering 27

2.5.3 Serial Validation 31

2.6 Algorithm Cost Comparisons 35

2.6.1 Storage Cost 38



V

2.6.2 CPU Cost .-• 42

2.6.3 Cost Comparison Summary 45

2.7 Future Model Extensions 48

2.7.1 Multiple Versions 48

2.7.2 Granularity Hierarchies 48

2.7.3 Dbtributed Databases 49

2.8 Summary 51

Chapter 3. Concurrency Control Performance 52

3.1 Background Considerations 52

3.2 Model Description 54

3.2.1 The Workload Model 54

3.2.2 The Queuing Model 58

3.2.3 Algorithm Descriptions 65

3.3 Performance Experiments 67

3.3.1 Algorithms Studied 68

3.3.2 Concurrency Control Costs 71

3.3.3 The Statbtical Approach 74

3.3.4 Experiments and Results 77

3.3.4.1 Experiment 1: Transaction Size 77

3.3.4.2 Experiment 2: Access Patterns 92



VI

3.3.4.3 Experiment 3: Mixed Workload ~. 96

3.3.4.4 Experiment 4: Multiprogramming Level 100

3.3.4.5 Experiment 5: System Balance 103

3.3.4.6 Experiment 6: Concurrency Control Cost 104

3.3.4.7 Algorithm Anomalies 107

3.4 Conclusions 110

3.4.1 Performance in Under Low Conflicts 110

3.4.2 Blocking versus Restarts Ill

3.4.3 Transaction Size 113

3.4.4 Concurrency Control Overhead 114

3.4.5 Granularity and Performance 115

3.4.6 System Balance 115

3.4.7 Algorithm Anomalies 115

Chapter 4. Performance Enhancement Schemes 117

4.1 Multiple Versions 118

4.1.1 Multiversion Timestamp Ordering 118

4.1.2 Multiversion Locking 121

4.1.3 Multiversion Serial Validation 123

4.1.4 Multiple Versions and Performance 125

4.1.4.1 Concurrency Control Costs 125



Vll

4.1.4.2 The Simulation Approach .7.. 127

4.1.4.3 Experiments and Results 328

4.1.4.3.1 Experiment 1: Low Conflict Performance 128

4.1.4.3.2 Experiment 2: Read-Only Transaction Size 132

4.1.4.3.3 Experiment 3: Read-Only Transaction Fraction 136

4.2 Granularity Hierarchies 138

4.2.1 Hierarchical Algorithms 139

4.2.1.1 Hierarchical Locking 139

4.2.1.1.1 Hierarchical Validation 141

4.2.1.1.2 Hierarchical Timestamps 144

4.2.1.1.3 Hierarchical Multiple Version Algorithms 1-10

4.2.2 Hierarchies and Performance 153

4.2.2.1 Modeling a Hierarchy 153

4.2.2.2 Concurrency Control Costs 154

4.2.2.3 Experiments and Results 155

4.2.2.3.1. Experiment 1: Low Concurrency Control Cost 156

4.2.2.3.2 Experiment 2: Large Transaction Size 159

4.3 Summary 163

Chapter 5. Conclusions 105

5.1 Summary of Results 105



VU1

5.2 Comparison With Other Work ~. 168

5.3 Implications of the Results 174

5.4 Limitations of Results 176

5.5 Future Research Directions 179

References 182

Appendix 1. Timestamp-Based Serial Validation 193

Appendix 2. The "No Blind Writes" Assumption 195

Thomas Write Rule 195

Multiversion Timestamp Ordering 195

Appendix 3. Simulation Output Analysb 199

A Statbtical Model 199

Variance Estimation 200

Confidence Intervals 202

Experimental Results 204



CHAPTER 1

INTRODUCTION

1.1. BACKGROUND

An important component of any shared database system b the transac

tion manager. Thb portion of the system b responsible for dealing with the

recovery and synchronization aspects of database management; it does so by

providing applications programmers with an abstraction known as a transac

tion with which to construct programs which access the database. A small

example will illustrate the usefulness of the transaction abstraction.

1.1.1. An Example

Consider the database of three bank accounts shown in Figure 1.1 and

the three sample banking transactions shown in Figure 1.2. For the moment,

no distinction will be made between a transaction and a program. The read

and write operations in Figure 1.2 respectively represent reading values from

the database into local variables and writing values from local variables into

the database. Transaction Tx transfers twenty dollars from account X to

account Y, transaction 72 computes interest for account X, and transaction

Ta deposits thirty-five dollars into account Z. If these three transactions are

all allowed to run concurrently without synchronization, the operations



comprising the transactions may be arbitrarily interleaved. As thb example

will illustrate, thb may produce undesirable results.

Since transaction Ta accesses no data in common with either transaction

Tx or T2, the manner in which the operations of Tz are interleaved with the

operations of the other transactions will have no effect on the outcome of

their concurrent execution. However, since Tx and T2 read and write com

mon data, certain interleavings of the operations of these two transactions

may produce undesirable results. If Tx and T2 execute serially, i.e., one of

the transactions completes before the other begins, only two outcomes may

result from executing the three transactions on the database of Figure 1.1.

Figure 1.3 depicts these two possibilities. In execution A, Tx executes before

Tm so the funds transfer of transaction Tx completes before the interest com-

Figure 1.1: Small example database.



putation of transaction T2 takes place. In execution £, Tx executes after T2,

so the interest computation of T2 completes before the funds transfer of Tx

takes place.

Outcomes that are the result of executing transactions serially are known

as serial outcomes. Executions in which transaction operations may be inter

leaved, but which produce the same results as some serial outcome, are called

serializable executions (Eswa76, Papa79, Bern81b]. An example of a non-

serializable interleaving of the operations of transactions Tx and T2 b given

in Figure 1.4. In thb example, Txs subtraction of twenty dollars from

transaction Tl:

begin
read xjualue from X;
read yjoalue from Y;
zjoalue := zjoalue - 20;
yjoalue :«= yjoalue + 20;
write zjoalue into X;
write yjvalut into Y;

end;

transaction T2:
begin

read xjualue from X;
xjualue :=» xjualue * 1.10;
write xjoaluc into X;

end;

transaction T3:

begin
read zjoalue from Z;
xjualue := zjoalue + 35;
write zjoalue into Z;

end;

Figure 1.2: Three example transactions.



Figure 1.3: Possible serial outcomes.

account X b lost when T2 writes the results of its interest computation into

the database.

There are other problems besides lost updates that can occur when tran

sactions are permitted to execute concurrently with no controb. For exam

ple, if a monthly report-generating transaction T4 were to read the values in

T2: read zjoalue from X;
T2: zjoalue :»= zjoalue * 1.10;
Tl: read xjualue from X;
Tl: read yjoalue from Y;
Tl: xjualue :» zjoalue - 20;
Tl: yjoalue :•» yjoalue + 20;
Tl: write zjoalue into A';
Tl: write yjoalue into Y;
T2: write zjoalue into X;

Figure 1.4: A non-serializable interleaving.



the database of Figure 1.1 while transaction Tx was executing, it could read

inconsbtent data. In particular, if TA reads the balances from both accounts

X and Y after Tx has written its new value for X but before it has written

its new value for Y, T4 will see twenty dollars mbsing from X but not yet

added to Y. T4 could not see such partial results in any serializable execu

tion of Tx and T4. In a serializable execution, T4 would see the database

either as it appeared before Tx ran or as it appears after the completion of

Tx. This example illustrates another of the possible ways in which problems

can arise from concurrently executing transactions in the absence of some

type of synchronization mechanism.

1.1.2. Transactions and Concurrency Control

The transaction abstraction was introduced to provide applications pro

grammers with a solution to the synchronization problems illustrated by the

previous example. Transactions are also intended to simplify the construction

of reliable applications programs. As summarized in [Spec83], the key proper

ties of transactions are:

Serializability. If several transactions access the database concurrently,

their effects are equivalent to the effects that would result from running the

same transactions in some serial order.

Failure atomicity. When a transaction executes, either all of its effects

or none of its effects will be reflected in the database. Thb guarantees that



(

6

only transactions which execute to completion will have an effect on the data

base.

Permanence. Once a transaction executes successfully, its effects on the

database will never be lost due to subsequent software or hardware failures.

To make use of the transaction abstraction, an applications programmer

b provided with three primitives: BEGIN, END, and ABORT transaction.

The BEGIN statement telb the transaction manager that the operations fol

lowing it in the execution of a program are to be grouped together as a tran

saction. The END statement telb the transaction manager that the transac

tion b finished and that it should be committed. Committing a transaction

makes its effects on the database both vbible to other transactions and per

manent. The ABORT statement telb the transaction manager that execution

of the transaction b to be stopped and that its effects on the database are to

be dbcarded. Thus, enclosing a collection of database operations between

BEGIN and END allows the applications programmer to make the operations

appear as a single, atomic operation.

The aspect of transaction management that b relevant to thb thesis b

providing the property of serializability. The problem of guaranteeing serial

izability for concurrent transactions b known as the concurrency control

problem, and a number of solutions to thb problem are known (a comprehen

sive survey b given in [Bern81bJ). Thb thesb will examine many of tLese

solutions, or concurrency control algorithms, with the objective of



determining which ones are superior according to a set of criteria to be intro

duced later in thb chapter.

The dual problem of providing the recovery properties of the transaction

abstraction will not be addressed in thb study. It will be assumed throughout

thb thesb that a recovery algorithm known as deferred updates [Gray79] b

employed. In thb algorithm, data written by a transaction b not actually

changed in the database until the transaction successfully commits. Thb

recovery assumption b made so that all concurrency control algorithms can be

evaluated in a common framework. Also, it reduces the number of parame

ters which might otherwbe have to be varied in the performance studies.

Other researchers are investigating the problem of jointly evaluating solutions

to the concurrency control and recovery problems [Agra83b, AgraS3c, Grif83].

In discussing concurrency control algorithms, the terms object, data

item, and granule will be used in referring to parts of the database. The

term object will be used to mean the smallest logical unit of data which b of

interest. Typical examples of objects in a database are records or pages. The

terms data item and granule will be used interchangeably to refer to units of

the database upon which concurrency control decbions are based. The term

granule in particular b used to mean a group of one or more objects which b

treated as a single unit for concurrency control purposes.



8

1.2. CONCURRENCY CdNTROL RESEARCH

Much research on algorithm construction has been done in the area of

concurrency control for both single-site and dbtributed database systems.

Some of thb research has focused on the theory involved in proving the

correctness of concurrency control algorithms, called serializability theory

(Eswa76, Bern79, Papa79j. Other research has led to the development of new

concurrency control algorithms, most of which are based on one of three

mechanbms: locking [Mena78, Rose78, Gray79, Lind79, Ston79], timestamps

[Reed78, Thom79, Bern80, Bern81b], and commit-time validation (also called

certification) [Bada79, Casa79, Baye80, Kung81, Ceri82]. Bernstein and

Goodman [Bern81b] survey many of these algorithms and describe how new

algorithms can be created by combining these mechanbms.

Most concurrency control algorithm proposab deal solely with the two

operations read and write. Recently, however, concurrency control algo

rithms have been proposed that use more information about transactions or

recognize additional operations [Bern78, Garc83, Hsu83, Bern81a, Allc82,

Schw82, Spec83]. Examples of the kinds of additional information which may

be used are the order in which data items are accessed, the particular set of

items'which the transaction might access, and the manner in which writes are

computed from reads. Examples of additional operations which might be

recognized are an insert operation to create a new data item and a delete

operation to eliminate a data item. The number of possible proposab b great,



9

limited only by the amount and type of semantic information that-applica

tions programmers are willing or able to cope with.

When only read and write operations are allowed, serializability theory b

concerned with two types of dependencies which can arbe between transac

tions, read/write and write/write dependencies. Consider the execution of

two transactions Tt- and 7y. A read/write dependency holds from transac

tion Tt to transaction Ty if either 2} reads some data item which b later

written by Ty or Tf writes some data item which b later read by Tj. A

write /write dependency holds from Tf to 7y if T; writes some data item

which b later written by 7y. The exbtence of a read/write or write/write

dependency from TV to Tj implies that T; must precede Tj in any serial exe

cution of transactions which produces the same results as their concurrent

execution. One can construct a graph, called a dependency graph, with tran

sactions as nodes and an arc from T; to Tj if there b a dependency from T,-

to T:. It can be shown that the concurrent execution of a collection of tran

sactions b serializable if and only if the dependency graph for the execution b

acyclic [Papa79]. For concurrency control algorithms based on other types of

operations, other types of dependencies are defined between operations to pro

vide the basb for serializability [Bern81b, Schw82].

As mentioned above, the most common types of concurrency control

algorithms are locking, timestamps, and validation algorithms. Each type of

algorithm seeks to prevent non-serializable executions of transactions. In



10

locking algorithms, transactions are required to lock objects which they read

or write. Locks can be set either at transaction startup time or dynamically

as reads and writes are performed. When a transaction cannot set a lock

because a conflicting transaction has the object locked, it must wait until the

object b unlocked. All locking algorithms examined in thb thesb are varia

tions of a scheme known as two-phase locking [Eswa76, Gray79], where tran

sactions must lock each object before accessing it and may not release any

locks until all needed locks have been obtained. Thus, locks serve to serialize

conflicting accesses to objects by blocking transactions wbhing to make such

accesses.

In timestamp algorithms, each transaction b assigned a timestamp when

it starts running. Timestamps are sequence numbers, guaranteed to be

unique, which provide a total ordering for transactions based on their startup

order. Typical of timestamp algorithms b basic timestamp ordering

[Bern81b]. In addition to transaction timestamps, each object has a read

timestamp and a write timestamp in basic timestamp ordering. These are the

timestamps of the youngest reader and the youngest writer of the object,

respectively. (A transaction 7; b said to be younger than another transaction

Tj if r, has a larger timestamp.) These timestamps are used to force tran

sactions which access a common object in a conflicting manner to do so in

their startup order. Transactions attempting to violate the timestamp order

ing are restarted (aborted and started over).



11

In validation algorithms, transactions are permitted to run fredy until

they reach their commit point. Upon reaching thb point, each transaction b

subjected to a test which ensures that committing it will not lead to non-

serializable results. Transactions which fail thb test are restarted. Typical of

algorithms of thb type b serial validation, an algorithm in which transaction

readsets and writesets are maintained and tested for conflicting intersections

at commit time [Kung81].

1.3. PERFORMANCE ISSUES

All concurrency control algorithms have a cost associated with the con

trob which they provide. Since it would be easy to simply require transac

tions to execute serially, one might question the decbion not to achieve serial

izability in thb simple manner. Several factors make concurrent transaction

execution desirable. First, to achieve the best possible transaction

throughput, it b necessary to keep the various hardware components busy.

The more parallelbm (such as CPU-I/O overlap) that can be achieved, th?

better the overall system performance will be. Running one transaction at a

time makes achieving such overlap extremely difficult, leading to poor

resource utilization. Thb problem b even more severe if transactions can

pause for thinking in the middle of their execution. Second, system users

always want fast response for their transactions. Serial transaction scheduling

has the undesirable property of making short transactions wait for any long

transactions which precede them regardless of whether or not they actually



12

conflict. Thb leads to poor average response times. Allowing concurrent

database accesses by non-conflicting transactions solves these potential prob

lems.

Given that a concurrency control algorithm b needed, and that many

algorithms have been proposed, the database system designer b faced with a

difficult decbion: Which concurrency control algorithm should be chosen?

Several recent studies have evaluated concurrency control algorithm perfor

mance using qualitative, analytical, and simulation techniques. Bernstein and

Goodman performed a comprehensive qualitative study which dbcussed per

formance bsues for several dbtributed locking and timestamp algorithms

pern80]. Results of analytical studies of locking performance have been

reported by Irani and Lin [Iran79l and Potier and Leblanc [Poti80]. Simula

tion studies of locking done by Ries and Stonebraker provide insight into

granularity versus concurrency tradeoffs [Ries77, Ries79a, Ries79b]. Analyti

cal and simulation studies by Garcia-Molina [Garc79] provide some insight

into the relative performance of several variants of locking as well as a voting

algorithm [Thom79] and a ring algorithm [E1H77]. Simulation studies by Lin

and Nolte [Lin82, Lin83] provide some comparative performance results for

locking and several timestamp algorithms. A recent thesis by Galler [Gall82]

provides a new analytical technique for locking, some qualitative techniques

for comparing algorithms, and some simulation results for locking versus

timestamps which contradict those of Lin and Nolte. A recent thesb by



(
13

Robinson [Robi82a] includes some experimental studies of locking~versus

serial validation (see abo [Robi82b]).

These performance studies are informative, but they fail to offer

definitive results regarding the choice of a concurrency control algorithm for

several reasons. First of all, little attention ha3 been given to the relative

storage and CPU costs of the various algorithms. Second, the analytical and

simulation studies have mostly examined either one or a few alternative algo

rithms, and they are based on a variety of system modeb and assumptions.

Examples of modeling detaib which vary from study to study are whether

transaction sizes are fixed or random, whether there b one or several classes

of transactions, which system resources are modeled and which are omitted,

and what level of detail b used in representing resources which are included in

the modeb. Thb makes it difficult to arrive at general conclusions about the

alternative algorithms. Third, the modeb used in many cases are

insufficiently detailed to reveal certain important effects. For example, some

modeb group the I/O, CPU, and message delay times for transactions into a

single random delay [Lin82, Lin83], in which case the performance benefit of

achieving CPU-I/O overlap cannot be revealed. Finally, the few comprehen

sive studies of alternative algorithms which have been performed were of a

non-quantitative nature.



14

1.4. THESIS OVERVIEW

Thb thesb reports on a study of concurrency control alternatives which

b both more comprehensive and more conclusive than previous studies. Two

modeb of concurrency control algorithms are developed and used to obtain

information about how various algorithms compare with one another. The

first model b an abstract model which provides a uniform framework for

describing concurrency control algorithms in terms of the information which

they store, when they require transactions to block or restart, and the way in

which they process concurrency control requests. Descriptions of alternative

algorithms in this framework are used to perform simple analyses of the costs

associated with the algorithms.

The second model presented b a performance model, a closed queuing

model of a database system from the perspective of a concurrency control

algorithm. Thb model has been implemented in the form of a substantial

simulation program, and it serves as a general framework for studying the

performance of concurrency control algorithms. Most of the simulator b

algorithm-independent, allowing various algorithms to be described in terms

of a small amount of code. Once described for the simulator, all algorithms

can be subjected to the same system and transaction workload characteristics.

Thus, the simulation model facOitates fair comparisons of the performance of

alternative concurrency control algorithms.



15

Thb thesb concentrates entirely on the single-site concurrency, control

problem in which the only operations performed by transactions are read and

write. Little b known about concurrency control costs and performance in

thb environment, so it seems appropriate to study alternative algorithms in

hopes of identifying some general principles in thb environment. Where

appropriate, the implications of these findings on other types of concurrency

control algorithms will be dbcussed, and extensions to the cost and perfor

mance modeb will be proposed for future investigations of distributed con

currency control algorithms.

Chapter 2 of the thesis presents the techniques used for comparing the

storage and CPU costs of concurrency control algorithms. The abstract

model b used to describe three different algorithms, one based on locking, one

based on timestamps, and one based on validation. Storage and CPU cost

results are obtained for the three algorithms described, and model extensions

are suggested for dealing with both multiple version and dbtributed con

currency control schemes.

Chapter 3 of the thesb describes the model used to study the perfor

mance of alternative concurrency control algorithms. The simulation model

of a database system, the transaction workload model, and a set of bench

mark workloads for performance studies are all presented in thb chapter.

Using the simulation model, the performance of seven variants of concurrency

control algorithms are studied, and conclusions are drawn about the relative



17

CHAPTER 2

CONCURRENCY CONTROL COSTS

In thb chapter, a model for evaluating the costs associated with alterna

tive concurrency control algorithms b described. The model, first reported in

[Care83a), b intended to facilitate descriptions and analyses of single-site con

currency control algorithms. Descriptions of a two-phase locking algorithm, a

timestamp algorithm, and a validation algorithm are formulated using the

model, and these descriptions are analyzed in order to compare the relative

costs associated with these algorithms. At the end of the chapter, some prel

iminary ideas are described for future extensions of the model for evaluating

the costs associated with multiple version, hierarchical, and dbtributed con

currency control algorithms.

2.1. OVERVIEW

The cost analysb techniques for single-site concurrency control algo

rithms are based on an abstract model. Thb model contains a single con

currency control scheduler, which makes scheduling decbions based on infor

mation that it maintains about the hbtory of requests received to date. Thb

information b referred to as the concurrency control database, and b treated

conceptually as a simple, relational database, ignoring the many data struc-



(

16

merits of blocking and restarts as tactics for enforcing serializability. -

Chapter 4 examines two approaches which have been suggested for

improving the performance of existing concurrency control algorithms, multi

ple versions of objects and granularity hierarchies. Some of the exbting pro

posab for concurrency control algorithms based on multiple versions and

granularity hierarchies are reviewed, and several new algorithms based on

these ideas are developed. In particular, the use of granularity hierarchies,

previously proposed only for use in conjunction with locking algorithms, b

generalized for use with other types of concurrency control mechanbms. The

performance of several algorithms based on each of these two types of perfor

mance improvements are studied.

Finally, Chapter 5 summarizes the key results obtained in the previous

chapters and presents some general concurrency control principles that have

been identified in the course of thb study. The conclusions of the thesb are

presented, and topics for future work in concurrency control are identified.



TRANSACTION

REQUESTS

CC 9CB8DUUR

oo BEGIN:...

oo ACCESS:.,

eo END:...

SCHEDULER

RESPONSES

18

Figure 2.1: Abstract concurrency control model.

tures which might be used in an actual implementation. For a particular con

currency control algorithm, the scheduler obeys a well-defined set of rules

which describe how it should respond to incoming requests, based both on the

requests themselves and on the contents of the concurrency control database.

For reasons of simplicity, concbeness, and implementation independence,



19

these rules are formulated as relational database queries. The abstract model

is summarized in Figure 2.1.

2.2. TRANSACTION REQUESTS

The abstract model recognizes three types of requests from transactions:

BEGIN, END, and ACCESS. The first two mark the beginning and the end

of transaction execution, and the latter indicates that the requesting transac

tion wishes to access one or more objects. A given transaction may make any

number of ACCESS requests during its execution. When the scheduler

receives an ACCESS request, it also receives a collection of (obj-idt mode)

pairs indicating the objects and modes (read or write), associated with the

current request. This collection is referred to as the REQ relation for the

purpose of formulating concurrency control algorithms in relational terms. It

is assumed in the model that transactions abide by the responses received

from the scheduler, accessing data objects accordingly. It is also assumed

that writes go to a list of deferred updates [Gray79] to be installed as new

data values at transaction commit time.

2.3. THE CONCURRENCY CONTROL DATABASE

The concurrency control database, shown in Figure 2.2, consists of four

relations. The XACT relation contains transaction state information, specify

ing the transaction identifier, state (ready, blocked, committed, aborted), and

timestamp of each current transaction. The ACC relation contains



XACT(xact-id,state,ts)
ACC(obj-id,mode,xact-id,ts)
BLKD(blocked-id,cause-id,obj-id)
HIST(xact-id,obj-id,mode)

Figure 2.2: Concurrency control database.

20

information about accesses to objects, specifying the object identifier, access

mode (read or write), transaction identifier, and timestamp for each current or

recent access. This relation plays the role of a concurrency control table in

algorithm descriptions. For locking, the ACC relation will store current

access information in the form of lock table entries, and it will store informa

tion about current and recent accesses in the form of timestamp entries for

basic timestamp ordering. The BLKD relation contains information about

any blocked transactions, containing the transaction identifiers of these tran

sactions, the transaction identifiers of the transactions which they are waiting

for, and the identifier of the object which is the source of the conflict which

led to the blocking action. It is assumed that deleting a BLKD relation entry

implicitly unblocks the corresponding transaction, allowing it to continue pro

cessing where it left off. The HIST relation stores histories of ACCESS

requests which are conditionally granted until a concurrency control decision

is. made at transaction commit time (such as in serial validation). Entries in

this relation specify the transaction identifiers, object identifiers, and access

modes associated with such requests.



21

Not all concurrency control algorithms use all of the relations in The con

currency control database, as this set of relations is intended to represent the

coUection of all possible information which algorithms might require. For the

same reason, not all concurrency control algorithms use all of the fields of

these relations. Thus, the portion of the concurrency control database used

by an algorithm is specified as part of its description.

2.4. ALGORITHM DESCRIPTIONS

Concurrency control algorithm descriptions in the abstract model have

three parts. These are:

(1) A list of the concurrency control database relations and fields used by the

algorithm.

(2) A pair of views, BLKCFL and RSTCFL, which define the situations

where blocking or restarting are called for, respectively. Each of these is

a view in the relational database sense [UllmS3], a query which is dynam

ically evaluated upon reference.

(3) Three query sets, describing the actions to be taken on receipt of

BEGIN, ACCESS, and END requests. These query sets access the con

currency control database and REQ relation associated with the current

request and are assumed to execute atomically when invoked. The syn

tax for the query sets is based on the syntax of the QUEL query

language [Ston76], with deviations or additional high-level macro-



*>9nit

operations introduced in cases where a QUEL description is difficult or

impossible (such as checking for cycles in the BLKD relation in the

upcoming description of locking).

2.5. USING THE MODEL

In this section, the descriptive power of the single-site abstract model is

demonstrated by using the model to describe the two-phase locking [Gray79],

basic timestamp ordering [Bern81b], and serial validation [Kung81] algo

rithms. Several liberties are taken with the QUEL syntax in the process.

First, range statements are omitted. Second, the macro-operations shown in

Figures 2.3 through 2.5 are defined. The BLOCK operation blocks a specified

transaction, recording its transaction identifier and the identifier of the tran

saction which it is waiting for in the BLKD relation. The EXPUNGE opera

tion deletes all of the information associated with a specified transaction, and

is used at transaction commit or restart time. The RESTART operation res

tarts a specified transaction. A fourth macro-operation, CYCLE(xact-id), is

also used in the locking description. This macro-operation searches for cycles

of blocked transactions in the BLKD relation involving a specified transaction

and returns true if and only if a cycle is found. (This last operation cannot be

conveniently specified in QUEL.) Finally, the existence of several global vari

ables, such as req-xad-id, the identifier for the transaction making the

current request, is assumed. Other such variables will be assumed and com

mented upon as they seem reasonable and convenient.



BLOCK(x3ct-idl,xact-id2) =

replace XACT(state = "blocked")
where XACT.xact-id = xact-id1

append to BLKD(xact-idIpcact-id2)
}

Figure 2.3: Definition of BLOCK macro-operation.

EXPUNGE(xact-id) =
{

delete XACT
where XACT.xact-id = xact-id

delete ACC
where ACC.xact-id == xact-id

delete BLKD
where BLKD.blocked-id = xact-id
or BLKD.cause-id = xact-id

delete HIST
where HIST-xact-id =* xact»id

}

Figure 2.4: Definition of EXPUNGE macro-operation.

RESTART(xact-id) =

replace XACT(state = "aborted")
where XACT.xact-id = xact-id

EXPUNGE(xact-id)
}

Figure 2.5: Definition of RESTART macro-operation.

23

2*5.1. Two-Phase Locking

In two-phase locking (2PL) [Gray70], the concurrency control scheduler

maintains a lock table. Transactions set read and write locks on objects

before accessing them, and they release their locks at commit time. A tran

saction may set a read lock on an object as long as no other transaction has a



24

write lock set on the object, and a transaction may set a write lock an object

if no other transaction has a read or write lock set on the object. When a

transaction tries to set a lock and fails, it must wait until the lock is released

and then try again. Deadlocks are a possibility, and must either be prevented

or detected and broken by restarting one of the transactions involved. An

informal description of two-phase locking is given in Figure 2.6.

The linear-time deadlock detection algorithm of Agrawal, Carey, and

DeWitt [Agra83a] is used for this example. In this algorithm, when a transac-

procedure readReq(7\x);
begin

If writeLocked(z) then
block(T);
If cycle(r) then

restart(r);
fi;

else

grant readReq;
readLock(r,z);

fi;
end;

procedure writeReq(7\x);
begin

If readLocked(z) or writeLocked(x) then
block(r);
ifcycle(T)tben

restart(r);
fi;

else

grant writeReq;
writeLock(7\x);

ft;
end;

Figure 2.6: Informal description of 2PL algorithm.



c2

tion Tj is forced to wait for a lock on some object X, it blocks on exactly one

of the transactions 7y which holds a lock on X. If more than one transaction

holds a lock on X, one is chosen arbitrarily. As shown in [Agra83a], if

deadlocks are checked each time a transaction must wait, the cycle-checking

operation (i.e., the deadlock detector) can operate in a very efficient manner.

Figures 2.7 through 2.0 give a description of this variation of 2PL using the

abstract model.

The subset of the concurrency control database needed for 2PL is

specified in Figure 2.7. In Figure 2.8, the conditions under which blocking

and restarts are required are defined as views. The BLKCFL view says that

a block conflict has occurred if there is an ACC relation entry for one of the

XACT(xact-idfstate)
ACC(xact-id,mode,obj-id)
BLKD(blocked-id,cause-id)

Figure 2.7: Concurrency control database for 2PL.

define view BLKCFL(xact-id = ACCxact-id)
where REQ.obj-id = ACC.obj-id
and ACCxact-id!» req-xact-id
and ((REQ.mode = "read"

and ACC.mode -» "write")
or (REQ.mode —"write"))

define view RSTCFL(xact-id = BLKD.xact-id)
where CYCLE(BLKD.blocked-id)
and BLK.blocked-id = req-xact-id

Figure 2.8: Block and restart conflict views for 2PL.



on BEGIN:

append to XACT(req-xact-id,"ready")

on ACCESS:

replace ACC(mode = REQ.mode)
where not any(BLKCFL)
and ACC.obj-id « REQ.obj-id
and ACCxact-id = req-xact-id

append to ACC
(req-xact-id,REQ.mode,REQ.obj-id)
where not any(BLKCFL)
and not any(ACC.obj-id

where ACC.obj-id = REQ.obj-id
and ACCxact-id = req-xact-id)

BLOCK(req-xact-id,BLKCFLjcact-id)
where any(BLKCFL)
and BLKCFLjcact-id »

mln(BLKCFL.xact-id)

RESTART(req-xact-id)
where any(BLKCFL) and any(RSTCFL)

on END:

replace XACT(state = "committed")
where XACT.xact-id « req-xact-id

EXPUNGE(req-xact-id)

Figure 2.0: Request processing queries for 2PL.

26

current requests, and either the current request is a read request and the

ACC entry is a write entry, or else the current request is a write request (in

which case the mode of the ACC entry does not matter). In other words, the

ACC relation serves as a lock table, and a transaction must block if an

incompatible lock is already set on an object that it wants to access. The

RSTCFL view says that a restart conflict has occurred if there is a cycle in

the BLKD relation involving the current requesting transaction. In other



27

words, a transaction must restart if it b the cause of a deadlock. (This b not

necessarily the best victim to select from a performance standpoint.)

Figure 2.9 gives the query sets for processing requests under 2PL. When

a BEGIN request arrives, the state of the requesting transaction b set to indi

cate that it b ready to run. When an ACCESS request arrives, the BLKCFL

view b materialized. If no block conflicts exbt (i.e., the BLKCFL view b

empty), then the ACC relation b updated to indicate that locks have been

granted on all requested objects. If a block conflict does exbt (i.e., the

BLKCFL view b not empty), the requesting transaction b blocked on one of

the conflicting transactions (the one with the smallest transaction identifier b

arbitrarily picked here), and the RSTCFL view b materialized. If a restart

conflict exbts, the requesting transaction b restarted. Thb corresponds to

granting requests if no locks interfere, blocking a transaction if one or more

locks are unobtainable, and restarting a transaction if it becomes the cause of

a deadlock condition.

2.5.2. Basic Timestamp Ordering

In the basic timestamp ordering (BTO) algorithm [Bern81b], each tran

saction T has a timestamp, TS(T), which b issued at the time that T begins

executing. Associated with each data item x in the database b a read times

tamp, R-TS{x), and a write timestamp, W-TS(z). These timestamps record

the timestamps of the latest reader and writer (respectively) for x, and are



procedure readReq(7\x);
begin

VTS(T)< W-T5(*)then
restart( 7);

else
grant readReoj
R-TS{x):- max{TS(T),R-TS(z)y,

fl;
end;

procedure writeReq(T,*);
begin

If TS{T) < R-TS{x) or TS(T) < W-TS(z) then
restart(r);

else

grant writeReoj
W-TS{z) := TS{T);

fl;
end;

Figure 2.10: Informal description of BTO algorithm.

28

maintained in a timestamp table. (Entries with timestamps older than the

oldest active transaction may be deleted from the table since they will never

cause an active transaction to be restarted.) A read request from T for x is

rejected if TS(T) < W-TS(x), and a write request from T for x b rejected if

TS(T) < W-TS(x) or TS{T) < R-TS(x). Transactions whose requests are

rejected are restarted, causing serialization to occur in timestamp order.

Deadlock b impossible, although cyclic restarts are a possibility [Date82,

Lin82, Ullm83]. The BTO algorithm b described informally in Figure 2.10.

For the purpose of thb example, read requests will be processed as they

arrive, and all write requests will be processed together just prior to transac

tion commit time. Thb simplifies the considerations involved in making BTO



XACT(xact-id,state,ts)
ACC(ts,mode,obj-id)
HIST(xact-id,obj-id)

Figure 2.11: Concurrency control database for BTO.

define view RSTCFL(obj-id = ACC.obj-id)
where (REQ.obj-id = ACC.obj-id

and ACC.ts > req-ts
and (REQ.mode = "read"

and ACC.mode = "write")
and req-type » ACCESS)

or (MST.obj-id = ACC.obj-id
and fflSTjcact-id = req-xact-id
and ACC.ts > req-ts
and req-type •» END)

Figure 2.12: Restart conflict view for BTO.

29

work with deferred updates, as otherwbe some scheduling would be required

to prevent transactions from reading objects for which a write request has

been processed but the associated deferred update has not yet taken place

[Bern81b, Agra83b). Figures 2.11 through 2.13b give a description of BTO

using the model. The global variable req-ts b assumed to contain the times

tamp of the transaction making the current request. The macro-operation

CURRENT-TSQ b assumed to return the current timestamp value, impli

citly increasing its value by one and setting the global variable current-ta to

the value of the current timestamp. The global variable oldest-ts b assumed

to contain the timestamp of the oldest active transaction. The global variable

req-type b assumed to indicate the type of the current request.



on BEGIN:

append to XACT
(req-xact-id/,ready,,,CURRENT-TS())

on ACCESS:

replace ACC(ts = max(ACC.ts,req-ts)
where not any(RSTCFL)
and REQ.mode = "read"
and ACC.mdde = "read"
and ACC.obj-id = REQ.obj-id

append to ACC
(req-ts,REQ.mode,REQ.obj-id)
where not any(RSTCFL)
and REQ.mode «• "read"
and not any(ACC.obj-id

where ACC.obj-id «= REQ.obj-id
and ACCmode = "read")

append to HIST(req-xact-d,REQ.obj-id)
where REQ.mode = "write"

RESTART(XACTjtact-id)
where XACT-xact-id = REQ-xact-id
and any(RSTCFL)
and REQ.mode = "read"

Figure 2.13a: Request processing queries for BTO.

30

While thb description appears a bit lengthy, its semantics are actually

relatively simple. The ACC relation plays the role of the timestamp table for

BTO. The "append to ACC..." portion of the query set for ACCESS

requests in Figure 2.13a handles the case where there b no current timestamp

for a requested object, recording a new one. The "replace ACC..." portion

of the query set for ACCESS requests handles the case where there is a

current timestamp for the object, updating it as called for by the BTO algo

rithm. The HIST relation b used to defer write timestamp checking until



31

commit time, with similar timestamp checking and updating involving the

HIST relation occurring in the END request portion of the description in Fig

ure 2.13b.

on END:

replace XACT(state = "committed")
where XACT.xact-id «= req-xact-id
and not any(RSTCFL)

replace ACC(ts = max(ACC.ts,req-ts)
where not any(RSTCFL)
and ACC.mode = "write"

and ACC.obj-id = HIST.obj-id
and HISTjcact-id = req-xact-id

append to ACC(req-t8,HIST.obj-id,"write")
where not any(RSTCFL)
and HISTjcact-id = req-xact-id
and not any(ACC.obj-id

where ACC.obj-id •» HIST.obj-id
and ACC.mode = "write")

RESTART(XACT.xact-id)
where XACT.xact-id •» req-xact-id
and any(RSTCFL)

delete HIST
where HIST.xact-id = req-xact-id

delete XACT
where XACT.xact-id « req-xact-id

delete ACC

where ACC.ts < oldest-ts

Figure 2.13b: Request processing queries for BTO (cont.).

2.5.3: Serial Validation

The serial validation (SV) algorithm [Kung8l] requires that the readsets

and writesets of all transactions be recorded as they execute. These readsets

and writesets are the sets of items which the transaction reads and writes,



32

procedure validate('/);
begin

valid := true;
foreach Ttt In RC(T) do

foreach zT In recdset(T) do
foreach x9 In writeset(Trc) do

If if n jf then
valid := false;

fl;
od;

od;
od;
If valid then

commit writtstt{T) to database;
else

restart^);
fl;

end;

Figure 2.14: Informal description of SV algorithm.

respectively. Transactions are allowed to execute freely until commit-time,

writing their database changes into a list of deferred updates. Each transac

tion is subjected to a commit-time validation procedure in a critical section (a

section of code which excludes other transactions from making concurrency

control requests). This validation procedure is used to ensure that commit

ting the transaction will not leave the database in an inconsistent state. Let

RC(T) be the set of recently committed transactions, i.e., those which com

mit between the time when T starts executing and the time at which T

enters the critical section for validation. Transaction T is validated if

readset(T)f\ writesct(Tre) = Q for all transactions Trc € RC(T). If T is

validated, its updates are applied to the database; otherwise, it is restarted.

An informal description of the serial validation algorithm is given in Figure



33

2.14.

Rather than write a description of serial validation as originally

presented [Kung81], a new, potentially more efficient version with different

but provably equivalent semantics will be described. In this version, each

transaction is assigned a startup timestamp, S-TS(T), at startup time, and

each transaction receives a commit timestamp, C-TS(T), when it enters its

commit processing phase. A write timestamp, TS(x), is maintained for each

data item x; TS(x) is the commit timestamp of the most recent (committed)

writer of x. A transaction T will now be allowed to commit if and only if

S-TS{T) > TS{xr) for each object xr in its readset. Each transaction T

which successfully commits will update TS(xv) to be C-TS(T) for all data

items 3L in its writeset.

procedure validate( T);
begin

valid := true;
foreach xr In readset(T) do

if$-rs(r)< rS(*r)then
valid := false;

A;
od;
If valid then

foreach xv In write8et{T) do
TS{z9):= C'TS(T);

od;
commit writeset(7) to database;

else
restart(7);

fi;
end;

Figure 2.15: Informal description of revised SV algorithm.



XACT(xact-id,state,ts)
ACC(ts.obj-id)
HIST(xact-id,mode,obj-id)

Figure 2.16: Concurrency control database for SV.

define view RSTCFL(obj-id = HIST.obj-id)
where HIST.obj-id = ACC.obj-id
where HIST.xact-id •» req-xact-id
where HIST.mode — "read"
and ACC.ts > req-ts

Figure 2.17: Restart conflict view for SV.

34

It is fairly easy to show that this test is equivalent to the original

readset/writeset test of [Kung81]. A formal equivalence proof is given in

Appendix 1. An informal description cf the revised SV algorithm is given in

Figure 2.15, and Figures 2.16 through 2.18 give a description of SV using the

model. For typical transaction mixes, it is expected that RC(T) will tend to

be larger than one and the writesets of transactions will not be overly large.

The revised SV algorithm will entail less CPU cost than the original SV algo

rithm for such mixes. In the original version, the commit-time test involves

checking \RC(T)\ writesets for each object xr, whereas a single timestamp is

checked for each xr in the revised version. The revised version involves an

additional cost for updating TS(xv) for each xv, but this is unlikely to be

significant compared to the cost reduction for testing the readset.



on BEGIN:

append to XACT
(req.xacMd,,4readyM,CURRENT-TS())

on ACCESS:

append to HIST
(req-xact-id,REQ.mode,REQ.obj-id)

on END:

replace XACT(state «=* "committed")
where XACT.xact-id = req-xact-id
and not any(RSTCFL)

RESTART(XACTjcact-id)
where XACT.xact-id «= req-xact-id
and any(RSTCFL)

replace ACC(ts = current-Is)
where not any(RSTCFL)
and HIST.mode = "write"

and ACC.obj-id « HIST.obj-id
and HISTjcact-id «= req-xact-id

append to ACC
(obj-id •» KST.obj-id,ts = current-ts)
where not any(RSTCFL)
and HIST.mode =* "write"

and HISTjcact-id = req-xact-id
and not any(ACC

where ACC.obj-id => HIST.obj-id)

delete HIST
where HIST.xact-id «= req-xact-id

delete XACT
where XACT.xact-id =» req-xact-id

delete ACC

where ACC.ts < oldest-ts

Figure 2.18: Request processing queries for SV.

35

2.6. ALGORITHM COST COMPARISONS

In this section, techniques are presented for using the model to compare

the relative cost characteristics of various concurrency control algorithms.

The storage and CPU costs are compared via a simple complexity analysis,



36

based on implementation-independent units of CPU and storage costs- These

cost units are based on ideas presented in [Bern80], where table accesses and

table entries were informally used to compare algorithm costs. The analysis

techniques are illustrated by using them to compute and compare the costs of

the three algorithms described in the previous section.

To facilitate cost analyses, a performance model based on a set of simple

parameters is used. The parameters will be defined as though the transaction

mix used to evaluate algorithm costs consists of transactions of the same fixed

size. The performance parameters used here are not all independent, so it

would be difficult to carry out an accurate expected-value analysis of algo

rithm costs. The techniques applied here can be thought of as a formal

analysis of a simple transaction mix, or alternatively as a mean-value approxi

mation [Ferr78] to an analysis of a mix where the parameters are interpreted

as being averages. The problem of carrying out a more precise analysis of

average costs is left for future work.

Let T4 be the number of transactions in the system (i.e., the multipro

gramming level). Let R be the readset size for these transactions, and let Fv

be the fraction of the readset also included in the writeset. Each transaction

thus makes f?(l+ Fv) data access requests. (It is assumed that the writeset is

a subset of the readset for each transaction, and that transactions do not

make the same request twice). Let Fb be the fraction of blocked transactions,

so that Fb T% is the current number of blocked transactions. Let Fre be the



37

recent commit factor, so that Frc Tm is the number of recently committed

transactions, where a recently committed transaction is one which committed

since the oldest remaining active transaction began running. These parame

ters are summarized in Table 2.1.

The blocking and restart characteristics of algorithms will influence the

parameters Fh and Fn, so they will vary from algorithm to algorithm. The

parameter Fw is determined solely by the transaction mix. To bound these

parameters, note that 0 < FA < 1 and 0 < Fw < 1. For the parameter Fre,

however, all that is certain is that Fre > 0, as Fre is determined by the vari

ance in running times for transactions in the mix. One would expect transac

tions to commit roughly in their startup order if all are truly the same size,

and this would produce a small value for Fre. However, a very long transac

tion mixed with a collection of short transactions would result in a large value

for Fn, as many short transactions could complete during the lifetime of the

long transaction.

R

•EL

Simple Cost Parameters

number of transactions in system
readset size for transactions
fraction of readset that is written

fraction of blocked transactions
recent commit factor

Table 2.1: Parameters for algorithm cost analyses.



38

2.6.1. Storage Cost

In order to compare the storage costs of various concurrency control algo

rithms, the sizes of the relations in the concurrency control database portion

of their models may be analyzed. One field of one tuple of one relation is

taken as the unit of storage cost for this analysis. Given an algorithm, the

tuple widths of the concurrency control database relations are determined by

the algorithm description. The cardinalities of the relations can be deter

mined by considering the behavior of the query sets in the description using

the simple performance model just described. The overall database size is

simply the sum of the products of the cardinalities and tuple widths for each

relation in the database. Both upper and lower bounds on the storage cost of

algorithms may be determined by considering both possible extremes of the

degree to which requests from different transactions have objects in common.

The 2PL algorithm will be analyzed first. The XACT relation represents

a storage cost of 27*,, and the BLKD relation represents a cost of 2FbTa.

For the ACC relation, a storage cost of ZTM(l-Fv)R is incurred for storing

read locks (note that only one lock is set on objects that are to be written).

For storing write locks, the cost can vary from as low as ZFW R, in the case

where all T€ transactions write the same objects, to as high as STaFvR, in

the case where no two transactions write the same object. Thus, for 2PL:

ST02PL < 2Ta(l+Fb)+ZT,R (la)



39

STO^ >2Ti(l+Fb)+3TgR(l-Ft,)+ZFwR - (lb)

The BTO algorithm is considered next. The XACT relation represents a

storage cost of 3TM. The HIST relation must store write request entries for

the T€ active transactions, so it represents a storage cost of 2T€FWR. In

addition, the ACC relation must store the timestamps associated with

recently-accessed objects. The amount of storage required for this informa

tion depends upon the degree of overlap between transactions. In the case

where all transactions access totally different objects, the ACC relation must

hold R read timestamp entries and RFW write timestamp entries for each of

the T€ active transactions plus the FrcT4 recently committed transactions.

This yields a worst-case total storage cost for the ACC relation of

&TB(1+ Fre)R(l+ Fv). At the other extreme, if all active and recently com

mitted transactions access the exact same set of objects, the storage cost of

the ACC relation is just ZR(1+FW), since each object has at most one read

timestamp entry and one write timestamp entry. Thus, for BTO:

STOBTO < 3ra(l+Ffe)i?(l+FJ+ Ttf+2FWR) (2a)

STOBTO > 3i?(l+0+ r.(3+2F„i?) (2b)

The SV algorithm is considered last. The XACT relation again

represents a storage cost of 3T4. The HIST relation must store read and

write request entries for the T« active transactions, so it represents a storage

cost of 3TMR(1+FW). In addition, the ACC relation must store the times-



40

tamps associated with recently-accessed objects. As in the BTO algorithm,

the amount of storage required for this information depends upon the degree

of overlap between transactions. In the case where all transactions access

totally different objects, the ACC relation must hold RFW write timestamp

entries for each of the T# active transactions plus the FM Ta recently commit

ted transactions. This yields a worst-case total storage cost for the ACC rela

tion of 2T€{l+Fre)RF9. At the other extreme, if all active and recently

committed transactions access the exact same set of objects, the storage cost

of the ACC relation is just 2RFV, since each object has at most one times

tamp entry. Thus, for SV:

STOsv < 2r#(l+Ffe)i?Ft8+3r4(l+i?(l+Fw)) (3a)

STOsv > 2RFW + 3r,(l+ R(l+ Fv)) (3b)

Given the bounds on Fb and Fw, some conclusions can be drawn about

the relative storage costs of the algorithms. From equations (la), (2a), and

(3a), it can be concluded that 2PL has the smallest worst-case storage cost of

the three algorithms, which is {4+ZR)T4. The worst-case storage costs of

the other two algorithms are dependent on the parameter Fre, which b

unbounded. A more detailed analysb of these equations reveak that the

worst-case storage cost of SV b strictly smaller than that of BTO (assuming

the same Fre values for the two algorithms). Moreover, if Fb < 1/2, 2PL b

certain to have a smaller worst-case storage cost than both SV and BTO.



41

The worst-case storage cost occurs when transactions do not compete-for the

same data items, which b likely to be the case for real mixes of transactions

according to the analysb of the probability of conflicts in [Gray81a]. Thus,

Fb is likely to be small for 2PL, leading to the conclusion that 2PL dominates

SV, and SV in turn dominates BTO, with respect to worst-case storage cost.

A comparison of equations (2b) and (3b) reveab that, with respect to

best-case storage cost, BTO dominates SV for T% > 3. Comparing equations

(lb) and (3b), it b seen that, if Fb < 1/2, 2PL b certain to dominate SV as

well. Finally, a comparison of equations (lb) and (2b) indicates that BTO

dominates 2PL unless Fw > 3/5 and Fb < 1/2. Since the best-case costs

apply when transactions tend to conflict (access the same objects), thb combi

nation of Fw and Fb b impossible. If Fv b large, transactions will be com

peting for write locks on these shared objects. Lots of blocking will result,

leading to the conclusion that the (non-independent) parameters Fb and Fv

cannot realbtically take on these values at the same time if transactions tend

to request common data items. Hence, BTO dominates 2PL with respect to

best-case storage cost.

To summarize the overall storage cost results, then, SV b the worst of

the three algorithms. 2PL b best in terms of worst-case storage cost, indicat

ing that it b superior under low-conflict transaction mixes. BTO b best in

terms of bestrcase storage cost, meaning that it b best under high-conflict

transaction mixes. These results are shown in Table 2.2 at the end of the



42

following section. -

2.6.2. CPU Cost

The number of operations involved in executing the query sets for vari

ous algorithms b analyzed in order to compare their CPU costs. The unit of

CPU cost for thb analysb is taken to be one tuple access, insertion, or

replacement in one relation, so the assumption b that the CPU time required

b proportional to the number of table lookups (as proposed in different terms

by Bernstein and Goodman [Bern80]). CPU cost b not charged for accesses to

the REQ relation, as thb relation b simply used to facilitate modeling the

way transactions pass requests to the scheduler in a QUEL query language

setting.

Unfortunately, analyzing the CPU cost of a given concurrency control

algorithm b, in general, considerably more complex than analyzing the

storage cost of the algorithm. In thb paper only the no-conflict CPU cost

(Bada81], the CPU cost experienced by a transaction which does not conflict

in any way with other concurrent transactions, b considered. Since actual

conflicts are reported to be rare [Gray81a], the no-conflict CPU cost should be

a reasonable "first-order" estimate. The problem of generalizing the analysb

to include the additional sources of CPU cost associated with transactions

which must restart or repeat requests due to blocking b left for future work.



43

2PL b again considered first. The cost of processing a BEGIN request b

1. The cost of materializing the BLKCFL view b 1, so the cost of processing

i?(l+ Fw) data access {ACCESS) requests b 2i?(l+ F.) if no blocking occurs.

The cost of processing an END request b 3+ R, 1 to change the state of the

committing transaction and 2+A to delete all the information about the

transaction (assuming one BLKD access to determine the lack of blocked

transactions). Hence, for 2PL:

CPUzpl = 4+i?(3+2F„) (4)

BTO b considered next. The cost of processing a BEGIN request b

again 1. The cost of materializing the RSTCFL view b 1 for an ACCESS

request restart conflict check and 2 for an END request check for each write

entry in the HIST relation. Thus, the cost of processing R read requests,

each of which checks for a restart conflict and then conditionally inserts or

updates a timestamp in the no-conflict case, b 2R. The cost of processing

RFV write requests, each of which simply records the pending request in the

HIST relation, b RFW.

The cost of processing an END request for BTO depends on the number

of timestamps deleted at that time. In the no-conflict case, it is assumed that

all transactions access different data items, meaning that all timestamps asso

ciated with a given transaction must eventually be explicitly deleted. Thb

timestamp deletion cost b charged to the transaction creating the timestamp,



44

even though deletion may occur at some later point in time. Thus, the cost of

processing an END request b 2RFW to check the HIST relation contents for

restart conflicts, 1 to change the state of the committing transaction, 2RFW to

update the write timestamp of each write request in the HIST relation once

the transaction has indeed committed, and 1+R(1+2FV) to delete the infor

mation associated with the transaction. Hence, for BTO:

CPUBTO = 3+£(3+ 7FV) (5)

The analysb for SV b much like that for BTO. The cost of processing a

BEGIN request b 1. The cost of processing R(l+F9) read and write

requests, each of which simply records the pending request in the HIST rela

tion for later consideration, b R{1+ Fw). The timestamp deletion cost for SV

b charged to the transaction creating the timestamp, as in the analysis for

BTO. The cost of materializing the RSTCFL view b 2 for an END request

check for each read entry in the HIST relation. Thus, the cost of processing

an END request for SV b 2R to check the HIST relation contents for restart

conflicts, 1 to change the state of the committing transaction, 2RFV to

update the write timestamp for each write request in the HIST relation once

the transaction has indeed committed, and l+i?(l+2Fw) to delete the infor

mation associated with the transaction. Hence, for SV:

m/51, = 3+l?(4+5FJ (C)



Results of Cost Comparisons

CC
Algorithm

Storage
Cost

CPU

Cost

2PL best under

low conflicts

best no-conflict

cost

BTO best under

high conflicts
second best under

infrequent writing

SV worst of

the three

second best under
frequent writing

45

Table 2.2: Summary of algorithm cost results.

Comparing equation (4) with equation (5), 2PL b seen to have a smaller

no-conflict CPU cost than BTO unless Fw b extremely small, in which case

2PL and BTO are almost the same. Comparing equation (4) with equation

(6), 2PL b abo seen to have a smaller no-conflict CPU cost than SV. Com

paring equations (5) and (6), BTO b found to have a smaller no-conflict CPU

cost than SV if Fw < 1/2, and that SV has a smaller no-conflict CPU cost if

Fr > 1/2. Thus, with respect to thb CPU cost metric, 2PL b dominant,

BTO b second-best if writing b infrequent, and SV b second-best if writing b

frequent. These results are shown in Table 2.2.

2.6.3. Cost Comparison Summary

In the previous sections, the storage and CPU costs of 2PL, BTO, and

SV were compared. 2PL was found to be the algorithm involving the least

storage cost under low-conflict transaction mixes, with BTO being the best

under high-conflict mixes. SV was the worst algorithm with respect to



45

storage cost. 2PL was also found to be the algorithm with the smallest no-

conflict CPU cost. BTO turned out to be second-best with respect to no-

conflict CPU cost if writing b infrequent, with SV being second-best if writing

b frequent. These results are summarized in Table 2.2.

The cost results for 2PL, BTO, and SV seem to be supported by intuitive

reasoning. The worst-case (low-conflict) storage cost results will be considered

first. All three algorithms store the same information about transactions.

2PL stores no information about blocked transactions, as there are none in

thb case. Thus, the difference lies in the amount of information stored by

each algorithm about data accesses. 2PL simply stores one lock for each item

in the readset of an active transaction. (Recall that the writeset b assumed

to be a subset of the readset.) BTO stores one read timestamp for each item

in the readset of an active or recently committed transaction, plus a write

timestamp for each item which b abo in the writeset of an active or recently

committed transaction. SV stores both the readset and the writeset of each

active transaction, plus it stores the write timestamp associated with each

data item in the writeset of a recently committed transaction. Thus, intuition

supports the conclusion that 2PL should have the smallest worst-case storage

cost. '

The best-case (high-conflict) storage cost results will be considered next.

As before, all three algorithms store the same information about transactions.

2PL stores information about blocked transactions, and there will be many in



47

thb situation. 2PL abo stores one read lock for each of the R(l-Fw)items in

the readset but not in the writeset of each of the Tt active transactions, and

it stores one write lock for each of the RFW objects written by all transac

tions. (It b assumed that transactions conflict totally, and write locks are

held by just one transaction at a time). BTO only stores a total of R read

timestamps and RFW write timestamps, as transactions conflict totally and

each object read has one read timestamp and each object written has one

write timestamp. SV also stores only one write timestamp for each item writ

ten by recently committed transactions, but it must still separately store all

R readset entries and RFW writeset entries for each of the active transactions.

Thus, BTO intuitively has the smallest best-case storage cost, again support

ing the conclusions obtained from the model.

The no-conflict CPU cost b considered last. 2PL simply checks and

obtains a lock for each of the R read requests and RF9 write requests in a

transaction in the absence of conflicts. BTO checks and updates R times

tamps for read requests and RFW timestamps for write requests, but it also

pays an additional cost for keeping a lbt of write requests during transaction

execution for use in processing them together at commit time. SV keeps a lbt

of read requests and a lbt of write requests for commit-time use, plus it must

check R timestamps and update RFV timestamps at commit time. Hence,

intuition supports the conclusion that 2PL has the lowest no-conflict CPU

cost of the three algorithms considered.



48

2.7. FUTURE MODEL EXTENSIONS

In thb section, extensions for the abstract model which will facilitate stu

dies of the costs of multiple version, hierarchical, and dbtributed concurrency

control algorithms are briefly described.

2.7.1. Multiple Versions

Several recent concurrency control algorithm proposals involve maintain

ing multiple versions of data objects [Reed78, Baye80, Stea81, Chan82,

Bern82b]. In order to describe such algorithms using the abstract model, a

new concurrency control database relation, the OBJ relation, b introduced.

Thb relation has obj-id, version-id, and obj-value fields, and each version

of each object in the database has a corresponding tuple in thb relation. In

places where an obj-id was called for in single-site algorithms, an (obj-id,

version-id) pair will be used in in the multiple version abstract model. The

analysb techniques can be applied to thb extended model in the same manner

as for the single-site model, except that C, units of storage cost will be

assessed for obj-value fields of OBJ tuples to reflect the fact that objects

require much more storage than typical concurrency control information.

2.7.2. Granularity Hierarchies

Several locking algorithms which operate using multiple leveb of

granules, organized as a hierarchy, have been proposed [Gray75, Gray79,

Kort82]. Chapter 4 of thb thesb presents hierarchical variants of other types



49

of concurrency control algorithms [Care83b] and examines their performance

characteristics. Thb section briefly sketches extensions to allow the abstract

model to support descriptions of algorithms which use a two-level hierarchy of

granules.

In order to describe hierarchical algorithms using the abstract model, the

obj-id fields of all concurrency control database relations will become

gran-id fields. These new granule identifiers can either identify objects

(lower level granules) or parent granules of objects (higher level granules). In

addition, a new concurrency control database relation, the HIER relation, b

introduced. Thb relation has parent-id and obj-id fields which associate

objects with their parent granules. Thb explicit mapping of parent granules

to objects will make it possible for algorithm descriptions to easily extract the

parent granule for a given object granule. Since the HIER relation b simply

used to represent a mapping which would be implicit in an actual implemen

tation, no additional costs will be assessed for storing or accessing thb rela

tion. The analysb techniques are otherwbe directly applicable to this

extended model.

2.7.3. Distributed Databases

Many recent concurrency control algorithm proposab are intended for

use in dbtributed database systems [Rose78, Mena78, Ston79, Lind79, Bern80,

Bern81b, Bern82a, Thom79, CeriS2]. In order to describe distributed con-



50

currency control algorithms within the abstract model, each site wilLhave a

concurrency control scheduler with an associated concurrency control data

base, and the schedulers will interact via messages. To model thb interaction,

some new notation will be introduced for use in writing algorithm descriptions

for dbtributed systems. Queries of the form <command> where <predi-

cate> AT-SITES-OF(obj-id) will be used to indicate that the predicate

must be true at all sites where the specified object resides, indicating the need

for a round-trip message exchange to evaluate the predicate. In cases where

the AT-SITES-OF clause b left out, just the local site will be involved in

evaluating the predicate.

With thb extension, algorithm descriptions will be formulated as before,

except that the AT-SITES-OF(X) set must be described for all objects X.

It b thb set description which will serve to differentiate primary site, primary

copy, and decentralized concurrency control schemes [Bern81b, Bern82a] from

one another, for example. The cost analysb techniques again carry through,

though it b necessary to account for the additional cost when the

AT-SITES-OF set contains more than a single site. Abo, a new type of

cost, message cost, arises in dbtributed systems. Thb cost may be character

ized by analyzing the number of messages required to evaluate non-local

predicates when executing the new query sets on behalf of transactions.



51

2.8. SUMMARY

Thb chapter described a new model of concurrency control algorithms

that provides a unified framework for describing and comparing different algo

rithm proposab. Several sample descriptions were given, and it was shown

how the model facilitates analyses of the relative storage and CPU costs of

algorithms. It was found that the costs associated with two-phase locking are

at least as low as those for basic timestamp ordering and serial validation.

The model of thb chapter differs from previous work [Bern80, Bern81b,

Gall82], as other frameworks for describing concurrency control algorithms

have not supported both algorithm descriptions and quantitative algorithm

comparisons. Finally, extensions which should enable the model to be used

for descriptions and cost analyses of multiple version, hierarchical, and dbtri

buted concurrency control algorithms were briefly described.



52

CHAPTER 3

CONCURRENCY CONTROL PERFORMANCE

Thb chapter describes a simulation model of a database system which b

sufficiently general to allow the performance of many different single-site con

currency control algorithms to be evaluated under various transaction work

loads and system costs. Performance results obtained using thb simulation

model are given for seven concurrency control algorithms based on locking,

timestamp, and validation approaches.

3.1. BACKGROUND CONSIDERATIONS

Before describing the simulation model, it will be helpful to consider the

nature of the problem which it addresses. The purpose of a concurrency con

trol algorithm b to permit the simultaneous execution of a number of transac

tions in order to enhance system performance. The degree to which an algo

rithm allows transactions to execute concurrently and make progress towards

completion b called its level of useful concurrency. In order to compare

alternative algorithms, a measure of their relative leveb of useful concurrency

must be obtained. The number of active transactions at first seems like a rea

sonable metric for the level of useful concurrency achievable, as the active

transactions are exactly those which are usefully executing in a concurrent



53

manner. However, restarts are a possibility in many variants of locking, and

they are the major conflict-resolving tactic in basic timestamp ordering and

serial validation. The possibility of transaction restarts makes the number of

active transactions a useless concurrency metric, as b illustrated by the fol

lowing example based on serial validation.

Consider a mix of N transactions whose readsets and writesets all include

some object X, and suppose serial validation b the concurrency control algo

rithm being used. All N transactions will be allowed to execute concurrently.

When they are subjected to the commit-time validation test after executing

all their reads, doing their respective computation, and caching their writes

locally, N-l will be forced to restart. Thus, knowing that // transactions are

executing concurrently b not informative.

A better measure of the concurrency benefits offered by alternative algo

rithms would be a measure of the number of successful commits for some mix

of transactions. Hence, in thb thesb, the metric chosen b the number of com

mits per unit time, or throughput. Concurrency control semantics are actually

implemented and simulated in a closed queuing model of a database system to

obtain thb throughput information. The queuing model, a workload model,

and the techniques used to implement concurrency control algorithms will be

described in the next section. First, however, the reasons for using a detailed

simulation approach will be dbcussed.



54

There are several reasons why detailed simulation seemed like the best

Way to obtain performance information about alternative concurrency control

schemes. Analytic queuing modeb of concurrency control algorithms are

difficult to develop because the sharing of a large number of dbtinct data

objects b a key factor in determining algorithm performance. Recent papers

on the subject have dealt primarily with models of very simple concurrency

control schemes, such as exclusive-only locking [Gall82, Good83]. Thus, it

would be prohibitively hard to develop tractable analytical modeb of a

significant number of concurrency control algorithms for comparative pur

poses. Second, by selecting a detailed simulation approach, a more realistic

collection of transaction mixes and workloads can be studied. Finally, there

are certain facts about the behavior of transactions in real systems which are

difficult to represent in an analytical model. For example, restarted transac

tions re-request the same data objects that they requested the last time.

Detailed simulation provides a way to model such facts and evaluate algo

rithm performance without requiring the implementation of many alternative

algorithms in an actual database system.

3.2. MODEL DESCRIPTION

3.2.1. The Workload Model

An important component of the performance model b a transaction

workload model. When a transaction b initiated from a terminal in the simu-



55

lator, it b assigned a workload, consbting of a readset and a writeset^ which

determines the objects that the transaction will read and write during its exe

cution. Two transaction classes, large and small, are recognized in order to

aid in the modeling of realbtic transaction workloads. The class of a transac

tion b determined at transaction initiation time and b used to determine the

manner in which the readset and writeset for the transaction are to be

assigned. Transaction classes, readsets, and writesets are generated using the

workload parameters shown in Table 3.1.

The parameter numjterms determines the number of terminab, or level

of multiprogramming, for the workload. The parameter restartjielay deter

mines the mean length of time required for a terminal to resubmit a transac-

Workload Parameters

dbjiize size of database

granjsize size of granules in database
numjterms level of multiprogramming
delayjmean mean xact restart delay
smaUjprob Pr(xact b small)
smalljmean mean size for small xacts

largejmcan mean size for large xacts
small^xactjtype type for small xacts
largejzadjtype type for large xacts
smalljiizejiist size dbtribution for small xacts

largejtizcjdist size dbtribution for large xacts
smalljiDritejprob Pr(write X | read X) for small xacts
large_write_prob Prfwrite X | read X) for large xacts

Table 3.1: Workload parameters for simulation.



56

tion when it finds that its current transaction has been restarted, with the

delay associated with each particular restart determined by sampling from an

exponential distribution with this mean.

The parameter dbjiize determines the number of objects in the database.

The parameter granjsize determines the number of objects in each granule of

the database. Concurrency control requests are made on the basis of

granules. Thus, when a transaction reads or writes an object, an associated

concurrency control request is made for the granule which contains the object.

In modeling read and write requests, objects and granules are given integer

names ranging from 1 to dbjBtze and 1 to \dbjsize/granjsize\ respectively.

Object i is contained in granule \(i-l)/granjsize\ 4-1.

The readset and writeset for a transaction are lists of the numbers of the

objects to be read and written, respectively, by the transaction. These lists

are assigned at transaction startup time. When a terminal initiates a transac

tion, small_prob is used to randomly determine the class of the transaction. If

the class of the transaction is small, the parameters smalljmean,

smalljzactjlype, smalljsize_dt8t, and smalljwritemj)Tob are used to choose the

readset and writeset for the transaction. The readset size for a new small

transaction is determined by the smalljdist and smalljmean parameters. The

readset size distribution, given by smalljdist, is either constant, uniform, or

exponential. If it is constant, the readset size is simply smalljmean. If the

distribution is uniform, the readset size is selected from a uniform distribution



57

on the range [1, 2smalljmean]. If it is exponential, the readset size is-selected

from an exponential distribution with mean smclljmean and truncated to an

integer value. All transactions read at least one object, so the readset size is

set to 1 if the exponentially determined value is less than one. The size of the

readset is truncated to the size of the database if it exceeds dbjBtze, as tran

sactions cannot possibly access more data than the database holds.

The particular database objects accessed by a small transaction are

determined by the parameter small!_xactjtype. This parameter determines the

type, either random or sequential, for small transactions. If small transactions

are random, the readset is assigned by randomly selecting objects without

replacement from the set of all objects in the database. In the sequential

case, all objects in the readset are adjacent, so the collection of objects in the

readset is selected.randomly from the set of all possible collections of adjacent

objects of the appropriate size. The random transaction type is intended to

model transactions which access objects using either a primary hashed index

or a secondary index, whereas the sequential transaction type is intended to

model transactions which access objects using'either an ordered primary index

or a sequential scan of an entire relation or file. Finally, given the objects in

the readset for a small transaction, the objects in its writeset are determined

as follows using the smalljiDrittjprob parameter: It is assumed that all

objects written by a transaction are first read by the transaction ("no blind

writes"). When an object is placed in the readset, it is also placed in the



58

writeset with probability smalljivritejprob.

The readsets and writesets for the class of large transactions are deter

mined in the obvious analogous manner using the largejmean,

targe^xactjtypc, largcj&izej&i&t, and largejivritcjprob parameters. Small and

large transactions differ only in the choice of parameter values. The purpose

of having two transaction classes, large and small, it to enable the workload

model to better represent realistic database workloads. For instance, it is pos

sible to use the workload model to represent a mix of small transactions

which randomly read and update a single object with large transactions which

read a large number of objects sequentially. Such mixes will be used in the

performance experiments reported later in this chapter and in Chapter 4.

3.2.2. The Queuing Model

Central to the detailed simulation approach used in this thesis is the

closed queuing model of a single-site database system shown in Figure 3.1.

This model is an extended version of the model of Ries [Ries77, Ries79a,

Ries70b]. There is a fixed number of terminals from which transactions ori

ginate. When a new transaction begins running, it enters the startup queue,

where processing tasks such as query analysis, authentication, and other prel

iminary processing steps are performed. Once this phase of transaction pro

cessing is complete, the transaction enters the concurrency control queue (or

cc queue) and makes the first of its concurrency control requests. If this



59

TIRMINALS

Figure 3.1: Logical database queuing model.

request is granted, the transaction proceeds to the object queue and accesses

its first object. If more than one object may be accessed prior to the next

concurrency control request, the transaction may cycle through this queue

several times. (An example of this will be given shortly.) When the next con

currency control request is required, the transaction re-enters the concurrency



60

control queue and makes the next desired request. It is assumed for conveni

ence that transactions which read and write objects perform all of their reads

before performing any writes. It would otherwise be necessary to introduce

one or more additional parameters to determine how reads and writes are to

be interleaved, and it is felt that this would be unlikely to affect the results

significantly.

If the result of a concurrency control request is that the transaction must

block, it enters the blocked queue until it is once again able to proceed. If a

request leads to a decision to restart the transaction, it goes to the back of the

concurrency control queue after a randomly determined restart delay period of

mean delayjmean; it then begins making all of its concurrency control

requests and object accesses over again. Eventually, the transaction may

complete and the concurrency control algorithm may choose to commit the

transaction. If the transaction is read-only, it is finished. If it has written

one or more objects during its execution, however, it must first enter the

update queue and write its deferred updates into the database.

To further illustrate the operation of the logical model, suppose that an

implementation of the two-phase locking algorithm studied in Chapter 2 is

used in the model. Consider transaction T of Figure 3.2. Suppose that

objects Xi and X% are contained in granule (7jT but object X$ is contained in

granule G2. T will begin by entering the startup queue in order to perform

initialization tasks. When it is ready to begin processing objects, T enters



transaction T:

begin
read xljoolut from X\,
read xSjoolut from X&
read z&joalut from X&
compute;
write xljualuc into Xfi
write z2jvalue into Jfo

end;

Figure 3.2: Example transaction.

61

the concurrency control queue and tries to set a read lock on granule Gv If it

succeeds, it enters the object queue and reads AY T then returns to the con

currency control queue and requests a read lock on granule G«. Assuming it

succeeds in setting the required lock, it proceeds to the object queue and reads

object X$. Now, since T already holds a read lock on granule Glr it proceeds

directly to the back of the object queue and reads X2> If T is ever unable to

set a lock, it must wait in the blocked queue until the lock is available. If

waiting introduces a deadlock, T may be restarted instead of being permitted

to wait.

After completing its reads, T will proceed to the concurrency control

queue and request a write lock on granule Gv If the lock is granted, T will

enter the object queue and write object Xv It will then return to the back of

the object queue and write X>. After finishing its writes, T returns to the

concurrency control queue in order to request permission to commit. (This

request is never denied using locking, but the validation test would take place



62

here in an implementation of serial validation.) T then proceeds-to the

update queue to perform its deferred updates. Once it has finished its

updates, T enters the concurrency control queue one last time to release its

locks. FinaUy, having completed all necessary activities, T finishes and a new

transaction is generated in its place.

To illustrate another case where a transaction may access a number of

objects following a single visit to the concurrency control queue, suppose that

an algorithm which requires all locks to be preclaimed were used for the previ

ous example. T will enter the startup queue and then proceed to the con

currency control queue, as before. At this point, however, T will request a

write lock on granule Gx and a read lock on granule <72, and it will have to

wait in the blocked queue if it is unable to set both locks. Once T succeeds

in setting the required locks, it proceeds to the object queue. T reads object

Xh goes to the back of the object queue, reads Xb, goes to the back of the

object queue, and reads X>. T then goes to the back of the object queue,

writes Xly goes to the back of the object queue, and writes X2. T finishes as

before, entering the concurrency control queue, moving to the update queue,

and finally returning to the concurrency control queue to release its locks.

Underlying the logical model of Figure 3.1 are two physical resources, the

CPU and I/O (disk) resources. Associated with each logical service depicted

in the figure (startup, concurrency control, object accesses, etc.) is some use of

each of these two global resources. When a transaction enters the startup



63

queue, it first performs its startup-related I/O processing and then performs

its startup-related CPU processing. The same is true of each of the other ser

vices in the logical model. Each involves I/O processing followed by CPU

processing, with the amounts of CPU and I/O per logical service being

specified as simulation parameters. All services compete for portions of the

global I/O and CPU resources for their I/O and CPU cycles. The underlying

physical system model is depicted in Figure 3.3. As shown, the physical

model is simply a collection of terminals, a CPU server, and an I/O server.

Each of the two servers has one queue for concurrency control service and

another queue for all other service.

The scheduling policy used to allocate resources to transactions in the

concurrency control I/O and CPU queues of the underlying physical model is

FCFS (first-come, first-served). Concurrency control requests are thus pro

cessed one at a time, as they would be in an actual implementation. The

resource allocation policies used for the normal I/O and CPU service queues

of the physical model are FCFS and round-robin scheduling, respectively.

These policies are again chosen to approximately model the characteristics

which a real database system implementation would have. When requests for

both concurrency control service and normal service are present at either

resource, such as when one or more concurrency control requests are pending

while other transactions are processing objects, concurrency control service

requests are given priority.



TERMINALS

Figure 3.3: Physical database queuing model.

System Parameters

startupjio I/O time for transaction startup
startupjcpu CPU time for transaction startup
objjio I/O time for accessing an object
objjcpu CPU time for accessing an object
cc^io basic unit of concurrency control I/O time
ccjcpu basic unit of concurrency control CPU time
staggerjmean mean of exponential randomizing delay

Table 3.2: System parameters for simulation.

64



65

The parameters determining the service times (I/O and CPU)~for the

various logical resources in the model are given in Table 3.2. The parameters

startupjo and startupjcpu are the amounts of I/O and CPU associated with

transaction startup. Similarly, the parameters objjlo and objjcpu are the

amounts of I/O and CPU associated with reading and writing an object in the

database. Reading an object takes resources equal to objjlo followed by

objjcpu. Writing an object takes resources equal to objjcpu at the time of

the write request and objjlo at deferred update time, as it is assumed that

the deferred update list is maintained in buffers in main memory. The

parameters cc_io and ccjcpu are the amounts of I/O and CPU associated

with a concurrency control request. All these time parameters represent con

stant service time requirements rather than stochastic ones for simplicity.

Finally, the staggerjmean parameter is the mean of an exponential time dis

tribution which is used to randomly stagger transaction initiation times from

terminals (not to model user thinking) each time a new transaction is started

up. All parameters are specified in internal simulation units, the unit of CPU

time allocated to a transaction in one sweep of the round-robin allocation

code for the simulator.

3.2.3. Algorithm Descriptions

As mentioned previously, a major objective in the design of the simulator

was to facilitate implementing a variety of concurrency control algorithms

within a common framework. Concurrency control algorithms are described



66

for simulation purposes as a collection of four routines, InitjCC_AHorithm,

RequestJSemantics, Commit^Semantics, and UpdateJSemantics. Each these

routines is written in SIMPAS, a simulation language based on extending

PASCAL with simulation-oriented constructs [Brya80a, Brya80b]. SIMPAS is

the language in which the rest of the simulator is implemented as well.

InitjCC^lgorithm is called when the simulation starts up, and it is responsi

ble for initializing all algorithm-dependent data structures and variables. The

other three routines are responsible for implementing the semantics of the

concurrency control algorithm being modeled.

When a transaction reaches the front of the concurrency control queue,

one of the three concurrency control semantics routines is invoked. If the

transaction has any remaining read or write requests to make, the routine

invoked is RequestJSemantics. This routine processes the next request(s),

returning information to the simulator informing it how many units of simula

tion time to charge for CPU and I/O associated with processing the con

currency control request. This cost is computed based on the ccjcpu and

ccjio parameters. The RequestJSemantics routine also returns a concurrency

control decision of access, block, restart, update, or commit. This result

informs the simulator which queue the transaction should go to next. It is the

RequestJSemantics routine which is responsible for checking concurrency con

trol data structures such as a lock table.



67

When the transaction arrives in the concurrency control queue after

finishing its last request, the CommitJSemantics routine is called. This rou

tine is responsible for doing whatever algorithm-dependent commit time pro

cessing is called for. As an example, this routine is responsible for performing

the validation test in simulations of concurrency control algorithms based on

commit-time validation. Again, the routine returns cost and concurrency con

trol result information to the simulator.

Finally, if the transaction executes to completion, the UpdateJSemantics

routine is called after the transaction has committed and written its deferred

updates to disk. This routine is responsible for any algorithm-dependent

cleanup processing that is called for, such as releasing locks in simulations of

locking algorithms. It returns cost information to the simulator which indi

cates the number of CPU and I/O units to charge for its post-update con

currency control processing.

3.3. PERFORMANCE EXPERIMENTS

This section reports on the results of a number of simulation experiments

for seven concurrency control algorithm variants. Before presenting these

experiments and results, however, the algorithms examined in the study will

be reviewed briefly, the concurrency control cost modeling details for the algo

rithms will be described, and the statistical approach used in the experiments

will be outlined.



68

3.3.1. Algorithms Studied

The algorithms investigated in the performance experiments of this

chapter are all variants of the two-phase locking, basic timestamp ordering,

and serial validation algorithms discussed earlier in this thesis.

Dynamic Two-Phase Locking (2PL). This algorithm is similar to the

locking algorithm described and analyzed using the cost model of Chapter 2,

except that its blocking behavior is a bit more complex. In this algorithm,

transactions request read locks for granules which they read. Transactions

later upgrade these read locks to write locks for granules which they also

write (when they write the first object in the granule). When a lock request

must be denied, the requesting transaction is blocked and placed at the end of

a queue of transactions waiting to obtain the lock. When a lock is released,

transactions are unblocked by removing transactions from the front of the

lock wait queue until either the queue is empty or a transaction with an

incompatible lock request reaches the front of the queue. A waits-for graph of

transactions is maintained [Gray79], and deadlock cycle detection is per

formed each time a transaction blocks. If a deadlock is discovered, the tran

saction which just blocked and caused the deadlock is chosen as the victim

and restarted. (This may not be the optimal victim choice, but it was

selected initially for ease of implementation.)

Wait-Die Two-Phase Locking (WD). This algorithm is closely related

to dynamic two-phase locking, except deadlock prevention is used instead of



60

deadlock detection. Wait-die deadlock prevention [Rose78] is used, so

deadlocks are prevented by ordering transactions by the times when they first

start running. When a lock request from a transaction Ij conflicts with a

lock held by another transaction Ty, T; is permitted to wait only if it started

running before Tj. Otherwise, T; is restarted. This restart rule prevents the

formation of deadlock cycles and does away with the need for deadlock detec

tion. However, since a transaction T,- which waits for an older transaction 7y

will not always result in a real deadlock, WD will result in more restarts than

2PL. WD was selected over the related wound-wait algorithm [Rose78] for

two reasons. The first reason is that it was slightly simpler to implement.

The second reason is that WD is the deadlock-preventing counterpart of 2PL

in the sense that both algorithms are non-preemptive (they only restart the

transaction making the current request).

Dynamic Two-Phase Locking, No Upgrades (2PLW). This algorithm is

nearly identical to dynamic two-phase locking. The difference is that, if a

transaction reads and writes an granule x, it does not request a read lock and

then later upgrade its read lock to a write lock. Rather, for granules which

are eventually read, write locks are requested the first time the granule is

accessed, eliminating upgrades. Since transaction readsets and writesets are

determined at startup time in the simulator, the necessary knowledge is avail

able. Full deadlock detection is employed as before.



Exclusive, Preclaimed Two-Phase Locking (PRE). This algorithm is a

simple form of two-phase locking, in which all granules read or written by a

transaction are locked in exclusive access mode (write locked) at transaction

startup time. If a transaction is unable to obtain the set of all required locks,

it blocks without obtaining any of these locks and proceeds when all required

locks are indeed available. This is basically the version of locking which Ries

investigated in his experiments [Ries77, Ries70a, Ries79b]. Neither deadlocks

nor upgrades are possible with this algorithm. The use of only exclusive locks

will result in more blocking than would occur using both read and write locks.

This will aid in establishing later performance results about the effects of

blocking.

Basic Timestamp Ordering (BTO). This is the version of basic times

tamp ordering described in Chapter 2, with read timestamps checked dynami

cally and all write timestamps checked at commit time.

Basic Timestamp Ordering, Thomas Write Rule (TWW). This is a ver

sion of basic timestamp ordering which differs from the previous version in the

following manner: When a transaction Tf makes a write request for an object

x and TS(Ti) > R-TS(x) but TS(Ti) < W-TS{x), the previous version of

basic timestamp ordering would call for 7*,- to be restarted. In this version,

Ti-'s request is granted, so 7*,- is not restarted, but the actual (outdated) write

is ignored. In all of the experiments that follow, TWW never outperformed

BTO; in fact, the performance of the two algorithms was always identical.



71

This is due to the fact that, under the "no blind writes" assumption which

underlies the mechanism by which writesets are assigned in the model, TWW

is identical to BTO (see Appendix 2). Thus, results for TWW are not

presented separately.

Serial Validation (SV). This is the modified version of serial validation

that was presented in Chapter 2, with the semantics of the original serial vali

dation algorithm [Kung81] implemented via startup and commit timestamps.

3.3.2. Concurrency Control Costs

In order to simulate the concurrency control algorithms of interest, it is

necessary to make some assumptions about their costs. To evaluate them

fairly and determine how their blocking and restart decisions affect perfor

mance, the assumptions made for each of the algorithm simulations are con

sistent. This section will briefly describe how the ccjcpu and ccjo parame

ters are used in modeling the costs for each of the algorithms in the study.

The concurrency control costs incurred by a transaction which makes Nr

granule read requests and Nw granule write requests will be given for each

algorithm.

For all of the locking algorithms except preclaimed locking (2PL, WD,

and 2PLW), a CPU cost of ccjcpu and an I/O cost of ccjo are assessed each

time the algorithm makes a read or write lock request for a granule. For 2PL

. and WD, the total concurrency control CPU and I/O costs for a transaction



72

in the absence of restarts are (Nr+ Nw)cc_cpu and (Nr+ Nv)ccJo~ respec

tively. For 2PLW, which sets write locks initially on granules that are both

read and written, the total concurrency control costs in the absence of restarts

are Nrccjcpu and NrccJo. Thus, since 2PLW sets fewer locks overall, its

concurrency control cost is lower. The PRE algorithm incurs the same total

concurrency control costs as 2PLW, Nrccjcpu and NrccJo, but the entire

lock-setting cost for PRE is charged at transaction startup time to model pre-

claiming.

For the BTO and TWW algorithms, a CPU cost of ccjcpu and an I/O

cost of ccjo are assessed each time the algorithm checks a read or write

access privilege for a granule. Thus, the total concurrency control cost for

BTO and TWW in the absence of restarts is the same as for 2PL and WD,

with one minor difference. For BTO and TWW, the read-related costs of

Nrccjcpu and NrccJo are charged dynamically, as read requests are received

and processed, but the write-related costs of Nvccjcpu and NwccJo are all

charged together at transaction commit time to model the fact that BTO and

TWW defer write request checking until then. The costs for BTO and TWW

serve to model the timestamp-checking costs for these algorithms.

For the SV algorithm, a CPU cost of ccjcpu and an I/O cost of ccjo

are charged for each of the granules read and written, and all charges are

assessed at transaction commit time. The read-related charges model the

testing of readset granules to make sure that none have timestamps which



73

indicate that some recently committed transaction wrote the granule,-and the

write-related charges model the timestamp updating process once a transac

tion has committed. Thus, the total concurrency control costs in the absence

of restarts for SV are the same as those for 2PL, WD, BTO, and TWW,

(Nr+Nw)cc_cpu and (Nr+ Nw)ccJo, but the points where the costs are

assessed differ somewhat.

In all cases, an attempt has been made to fairly but simply account for

concurrency control costs. It is assumed that the unit costs for concurrency

control operations in locking, timestamps, and validation are all the same,

ccjcpu and ccjo, as a first-order approximation. This is reasonable since the

basic steps in each algorithm involve doing one or two table lookups per

request. Thus, the costs of processing requests in the various algorithms are

not likely to differ by more than small constant factors. This is borne out by

the CPU cost results of Chapter 2.

For transactions which must wait for locks, the concurrency control costs

are assessed once the transaction has unblocked and succeeded in obtaining

the desired lock(s). For transactions which are restarted during commit-time

concurrency control checking, the costs for the commit-time checking are

assessed in full for simplicity. It would otherwise be necessary to keep careful

track of exactly how far along transactions are in the tests when they fail.

Examples of transactions which might have to restart at commit time are

those failing BTO or TWW write tests or the SV validation test. No other



74

concurrency control costs are assessed for any of the algorithms for any rea

son.

Of course, if a transaction is restarted, it will pay the additional costs

involved in executing again from the beginning. These include all the costs

associated with reading and writing the objects that the transaction accesses,

plus the costs for making all of its concurrency control requests over again.

3.3.3. The Statistical Approach

In the simulation experiments performed in this thesis, the metric chosen

is the transaction throughput rate. This section sketches the methods used in

this thesis to discriminate between throughput differences due simply to sta

tistical variations and those actually due to algorithm performance charac

teristics.

Throughput results and confidence intervals for these results are obtained

from the simulations using a slight variant of a standard simulation analysis

technique. Surveys of alternative techniques may be found in [Sarg76, Ferr78,

Saue81]. For several reasons, the method of batch means was chosen from

the options of batch means, independent replications, and the regenerative

method. First, due to a lack of exponential service times and the fact the

transactions compete for a large number of shared logical resources (granules),

the only true regeneration state for the simulations in this thesis is the state

in which all terminals are in their 44stagger delay" waiting periods prior to



75

submitting new transactions. It was found experimentally that, following ini

tial startup, this state does not occur with sufficient frequency to permit use

of the regenerative method. Second, as described in [Sarg76], batch means

has the advantage over independent replications that initial transients do not

bias each of the throughput observations. Finally, implementation considera

tions made the use of batch means simpler than the method of independent

replications, as the simulator would have to garbage collect and re-initialize

simulation and algorithm-dependent data structures between observation

periods if the method of independent replications were chosen.

Using the method of batch means, simulation runs are divided up into a

set of numjbatches individual batches or sub-runs, each of which is

batchjime simulation time units long. Each batch within a simulation run

provides one throughput observation, and these observations are averaged to

estimate the overall throughput. Confidence intervals are usually computed

using standard techniques assuming that the throughput observations from

the batches are independent and identically distributed [Saue81]. Two ques

tionable assumptions underly the use of batch means. The first assumption is

that batches are long enough so that the results are not biased by startup

transients. The second assumption is that batches are not correlated.

Appendix 3 addresses the assumptions underlying batch means, reviewing

the mathematics associated with the method, describing how startup tran

sients were excluded from the results, and detailing a method which was used



76

to account for correlation between batches in computing confidence intervals.

The appendix gives sample confidence interval results obtained for one of the

experiments of thb chapter to illustrate the usefulness of the statistical

methods used in this thesis. Appendix 3 also describes the choice of the set

tings selected for the batchjime and numjbatches simulation control parame

ters for the experiments and gives confidence interval results for each of the

experiments in this thesis. Little will be said about confidence intervals

beyond this section, but only differences which are statistically significant

shall receive attention.

In order to make definitive statements and draw conclusions about con

currency control performance issues, it is necessary that confidence intervals

for the experimental results be sufficiently small so that they do not overlap

from algorithm to algorithm, at least where important differences are to be

demonstrated. This consideration affected the choice of transaction sizes in

the experiments. Small confidence intervals are achievable only when a "rea

sonably large" number of successful transaction commits is contained in the

overall simulation run, as otherwise the variance in throughput results from

the batches will be too large. (The results of experiments performed in this

thesis seem to indicate that 1000 or more commits are desirable.) The "large"

transactions studied in this thesis are therefore not all that large in terms

objects accessed, as prohibitively long simulations would be necessary to pro

duce statistically meaningful results for simulations involving very large



77

transactions. ~

3.3.4. Experiments and Results

In thb section, the results of sue different performance experiments are

reported. Each of these experiments was performed on the seven concurrency

algorithms described earlier in thb chapter. These experiments were designed

to investigate the relative performance of the various algorithms, in hopes of

identifying algorithms whose performance b either uniformly superior to that

of the other algorithms or whose performance b superior under some set of

reasonable conditions. The first three experiments investigate the relative

performance of the algorithms under various transaction workloads; the

fourth experiment investigates the effect which the level of multiprogramming

has on the performance results; the fifth experiment investigates the effect of

system balance on the performance results; and the sixth experiment exam

ines the effect of concurrency control costs on the performance results. All of

the experiments reported in thb chapter were run with batchjime = 50,000

and numjbatches = 20, or a total of 1,000,000 simulation time units, as

described in Appendix 3.

3.3.4.1. Experiment 1: Transaction Size

Thb experiment investigates the performance characterbtics of the seven

concurrency control algorithms under workloads consisting of fixed-size tran

sactions. The parameters varied in thb experiment are the granularity of the



78

database and the size of transactions. Since concurrency control requests are

made for granules, rather than objects, varying the granularity of the data

base varies the probability that transactions will conflict with one another.

When the finest granularity b chosen, where each granule contains a single

object, conflicts will be rare for small transactions in a large database. When

the granularity b coarse, the entire database will consbt of only a few

granules. Frequent conflicts between transactions will be inevitable in thb

case. The purpose of thb experiment b to observe the behavior of the algo

rithms of interest under varying probabilities of conflicts, and ako to see how

the choice of transaction size affects thb behavior.

The system parameter settings for thb experiment are given in simulated

time in Table 3.3. All simulations were run with one simulation unit inter

preted as one millbecond of simulated time. With these system parameter

System Parameter Settings

System
Parameter

Time

(Milliseconds)

startupjo
startupjcpu
objjo
objjcpu
ccjo
ccjcpu

staggerjmean

35

10

35

10

0

1

20

Table 3.3: System parameters for experiment 1.



79

settings, a transaction incurs a startup cost of one 35 millbecond disk access

and 10 millbeconds of CPU time. In addition, thb same cost b incurred for

each read or write of an object. Charges for reading and writing objects are

assessed in the manner described in the section which presented the details of

the queuing model. The cost associated with processing each concurrency

control request b 1 millbecond of CPU time and no I/O time. A 20 mil

lbecond random delay time b used to stagger transaction startups.

The relevant workload parameter settings for thb experiment are given

in Table 3.4. The database consists of 10,000 objects, and its granularity b

varied from 1 to 10,000 granules (or 10,000 down to 1 object per granule).

Thb could correspond, for example, to a 10 megabyte database where objects

are 1 kilobyte pages and granules are groups of one or more pages. The

number of terminab submitting transactions against the database b 10, and

Workload Parameters

dbjBize
granjiize
numjerms
delayjmean
small^prob
smalljmean
smalljzactjype
smalljsizejdist
smalljwrite_prob

10000 objects
vary from 1 to 10000 objects/granule
10

1 second

1.0

vary from 1 to 30 objects
random

fixed

0.5

Table 3.4: Workload parameters for experiment 1.



80

all transactions are the same size. Transactions each read a fixed number of

objects selected at random from among all objects in the database. This

number b varied for different simulation runs within thb experiment. Tran

sactions update each object that they read with fifty percent probability.

Table 3.5 shows the throughput results for experiment 1.1, where a tran

saction size of smalljmean = 1 was used. Table 3.6 shows the throughput

results for experiment 1.2, where smalljmean = 2 was used. The

throughputs are given in units of transactions per second of simulated time.

The Grans column in each table contains the total number of granules in the

Throughput versus <Granularity

Grans 2PL WD 2PLW PRE BTO SV

1 8.252 8.063 11.215 11.127 7.790 7.655

10 10.971 11.004 11.420 11.421 10.648 10.314

100 11.373 11.373 11.419 11.420 11.328 11.262

1000 11.413 11.413 11.420 11.420 11.405 11.402

10000 11.419 11.419 11.420 11.420 11.418 11.416

Table 3.5: Throughput, experiment 1.1 (smalljmean = 1).

Throughputrversus Granularity

Grans 2PL WD 2PLW PRE BTO SV

1 3.400 3.638 6.479 6.241 2.505 3.634

10 5.974 5.790 7.096 7.161 5.119 5.231

100 7.039 6.966 7.161 7.163 6.906 6.714

1000 7.152 7.149 7.161 7.161 7.138 7.113

10000 7.159 7.159 7.160 7.161 7.158 7.158

Table 3.6: Throughput, experiment 1.2 (smalljmean = 2).



81

10,000 object database. All of the algorithms studied have strikingly similar

performance with more than 100 granules in the database for small transac

tions. For coarser granularities, the algorithms do dbplay significant

differences. In particular, the two best algorithms are 2PLW and PRE. 2PL

and WD do somewhat worse than the two best algorithms, followed by SV

and BTO.

Based on their virtually identical performance under fine granularities,

the concurrency control cost of 1 millbecond of CPU time per granule request

has little effect the performance of the algorithms. For example, although

PRE and 2PLW make fewer concurrency control requests than 2PL and WD,

they do not exhibit significantly greater throughputs. All differences may be

attributed to the blocking and restart behavior of the algorithms. It was

hypothesized that the differences under coarser granularities were due to

differences in the number of restarts incurred using the algorithms, and an

examination of the restart counts supports thb hypothesb.

Restart Counts versus Granularity

Grans 2PL WD 2PLW PRE BTO SV

1 5960 7858 0 0 7185 7206

10 1096 3060 0 0 1909 2753

100 109 363 0 0 224 378

1000 14 40 0 0 31 40

10000 2 4 0 0 4 6

Table 3.7: Restarts, experiment 1.1 (smalljmear. = 1).



Restart Counts versus Granularity

Grans 2PL WD 2PLW PRE BTO SV

1 6311 7638 0 0 7594 6529

10 2366 4633 242 0 4071 3844

100 247 706 3 0 508 879

1000 20 73 0 0 51 102

10000 2 11 0 0 4 9

Table 3.8: Restarts, experiment 1.2 (smalljmean = 2).

82

Tables 3.7 and 3.8 contain the restart counts for the two smallest tran

saction sizes tested. No restarts occurred with PRE, as PRE b deadlock free.

Few restarts occurred with 2PLW. 2PLW b deadlock free when only one

granule b accessed per transaction, and few deadlocks occurred at the next

smallest transaction size setting. Restarts were more frequent with 2PL, as

additional deadlocks occur when two or more transactions hold a read lock on

a common granule and then each attempts to upgrade thb read lock to a

write lock. The WD algorithm also led to a number of restarts at upgrade

time. More restarts occurred with WD than with 2PL because restarts were

called for when deadlock was a possibility as opposed to only when it actually

occurred. Finally, both SV and BTO use restarts as their single conflict-

resolving tactic, and both led to many restarts under coarse granularity as a

result.

The marginally superior performance of WD as compared to SV and

BTO for coarse granularities is probably due to the fact that SV and (to a

slightly lesser extent) BTO tend to allow transactions to get further along



Resources Consumed

Resource 2PLW PRE

I/O
CPU

905685.5

265253.0

872204.0

255452.0

Table 3.9: Utilization, experiment 1.2, coarsest granularity.

83

before restarting them, so less resource waste results from the average WD

restart. The marginal performance advantage of 2PLW over PRE when the

entire database b a single granule can be explained by the fact that PRE uses

only exclusive locking and holds locks for entire transaction lifetimes, thereby

totally serializing transaction execution in thb case. 2PLW will permit the

simultaneous execution of multiple read-only transactions, whereas PRE will

not. Thb latter hypothesb b borne out by an examination of the relative

resource utilization results in thb case. Table 3.9 gives the total I/O and

CPU resources consumed by transactions during 1,000,000 units of simulation

time for experiment 1.2 (smalljmean = 2) when the entire database was one

granule.

As the transaction size parameter smalljmean b increased, performance

differences between the algorithms become more pronounced. Table 3.10

shows the throughput results for experiment 1.3, where a transaction size of

smalljmean = 5 was used. Table 3.11 shows the throughput results for

experiment 1.4, where smalljmean = 10 was used. The performance of the

algorithms b beginning to be noticeably different even with 1000 granules in



Throughput, versus Granularity

Grans 2PL WD 2PLW PRE BTO SV

1 0.748 0.788 2.917 2.741 0.169 0.889

10 0.946 1.065 2.097 3.028 0.406 1.200

100 2.823 2.633 3.335 3.360 2.231 2.408

1000 3.320 3.293 3.359 3.361 3.248 3.205

10000 3.357 3.351 3.362 3.361 3.355 3.347

Table 3.10: Throughput, experiment 1.3 (smalljmean = 5).

Throughput, versus Granularity

Grans 2PL WD 2PLW PRE BTO SV

1 0.281 0.240 1.518 1.425 0.001 0.336

10 0.074 0.234 0.432 1.415 0.004 0.355

100 0.827 0.701 1.414 1.759 0.235 0.784

1000 1.676 1.599 1.784 1.790 1.473 1.480

10000 1.776 1.770 1.788 1.788 1.763 1.749

Table 3.11: Throughput, experiment 1.4 (smalljmean = 10).

84

the database, a trend which will continue as the transaction size b increased

further. Thb b due to an increased probability of conflicts between transac

tions when each accesses more objects in the database. The best algorithm at

these transaction sizes under finer granularities b PRE, followed closely by

2PLW, then followed by 2PL, WD, SV, and lastly BTO. As the granularity

becomes coarser, however, thb ordering changes somewhat. In particular,

WD actually does better than 2PL at the second coarsest granularity. Abo,

SV dominates 2PL and WD in addition to BTO at coarser granularities.

Tables 3.12 and 3.13 present the restart counts associated with experi

ments 1.3 and 1.4. As before, the differences between the performance of the



Restart Counts versus Granularity

Grans 2PL WD 2PLW PRE BTO SV

1 4242 6119 0 0 5317 4181

10 4061 5217 3123 0 4940 3651

100 007 1763 66 0 1910 1617

1000 71 164 0 0 188 258

10000 6 20 0 0 10 22

Table 3.12: Restarts, experiment 1.3 (smalljmean = 5).

Restart Counts versus Granularity •

Grans 2PL WD 2PLW PRE BTO SV

1 2351 4142 0 0 2855 2323

10 2816 3837 4223 0 2848 2293

100 1543 2360 769 0 2482 1612

1000 180 388 7 0 501 485

10000 16 31 0 0 38 56

Table 3.13: Restarts, experiment 1.4 (smalljmean = 10).

85

concurrency control algorithms studied can be seen to correlate with

differences in restarts. Here, though, where the number of objects accessed by

a transaction b larger than it was previously, the penalty for restarting a

transaction b much greater. Much more work b lost and must be repeated

by a restarted transaction in thb case. Thb increase in the restart penalty b

the reason why throughput degradation occurs sooner as the granularity b

varied from fine to coarse here. It b abo the reason for the increase in the

magnitude of thb performance degradation effect.

The reason that PRE dominates 2PLW except when the entire database

b one granule b that PRE b the only algorithm studied which is entirely free



86

of restarts. Although 2PLW avoids deadlocks due to lock upgrades,

deadlocks can arbe when two transactions attempt to lock a pair of granules

in the opposite order from each other. 2PLW ends up being the second best

performer here because it has the fewest restarts of all the algorithms except

PRE. An exception occurs with 10 granules in the database and

smalljmean = 10, where 2PLW actually has a larger number of restarts than

some of the alternatives which it outperforms. An explanation in this case b

that 2PLW restarts transactions much earlier in their lifetimes. In 2PLW, a

transaction that b backed out due to a deadlock b restarted when it attempts

to set a write lock prior to reading the granule it b attempting to lock. Less

resources are wasted when a transaction has completed less work prior to

being restarted.

There b a related explanation for the case where WD outperformed 2PL.

In 2PL, the transaction picked as the victim when a deadlock arbes b the one

that induced the deadlock. When two transactions conflict over a granule in

the WD algorithm, the transaction causing the conflict b allowed to wait if it

b older and b forced to restart otherwbe; thb rule leads to the selection of

younger transactions as victims for the purpose of deadlock avoidance in the

WD algorithm. Since transactions which have accessed more objects are

likely to have required more simulated time to execute so far, they are likely

to be the older transactions when conflicts occur. The result is that, because

the version of 2PL simulated here does docs not take age into account in



87

deciding which transaction to restart, the transactions selected are mixed with

respect to the amount of work completed at restart time. Since WD makes

an effort to avoid restarting old transactions, it restarts mostly transactions

which have made less progress, thereby wasting fewer resources. Thb effect

will become even more pronounced with larger transaction sizes.

Unfortunately, the simulation program does not keep track of restarts by

transaction size, making verification of thb hypothesb regarding the relative

performance of 2PL and WD difficult. However, the restart counts for these

experiments support thb hypothesb. It b otherwbe very difficult to explain

why more restarts occurred using WD and yet its performance b superior to

2PL. This suggests that a better victim selection criteria could abo improve

the performance of 2PL, most probably to the point of surpassing WD. For

instance, 2PL could choose the youngest transaction in a deadlock cycle as

the victim to be restarted. 2PL would then restart the youngest transaction

in a true deadlock cycle, whereas WD restarts the youngest transaction in a

potential cycle, so 2PL would once again outperform WD.

The dominance of SV over 2PL and WD at fine granularities in experi

ments 1.3 and 1.4 b abo related to their victim selection policies. The SV

algorithm restarts a transaction only when it conflicts with a recently commit

ted transaction. Thb ensures that at least one transaction in each group of

conflicting transactions will succeed in committing, as otherwbe there will be

no recently committed transaction to cause others to restart. In 2PL, it is



88

possible for a group of conflicting transactions to exhibit a thrashing-type res

tart behavior. Consider a transaction Tx which b restarted due to a conflict

with another transaction T2 over a granule x. Tx may begin again, lock a

granule y needed by a third transaction T3, and cause Tz to subsequently

restart due to a deadlock. Tz may then do the same thing to T2 over still

another granule z. The "pick the conflict-causing transaction" rule for victim

selection b the source of the problem, and the problem worsens as transaction

size increases. In WD, a transaction Tx which restarts due to a conflict with

an older transaction T2 over a granule x can restart and subsequently become

involved in the very same conflict if T2 has not finished with x. Tx may thus

be restarted a number of times due to the one conflict with T2 using WD

[Rose78], leading to a greater number of restarts than would otherwbe be

expected. As a result of the stability of SV and the victim selection problems

of 2PL and WD, SV caused fewer restarts at coarse granularities in these

experiments.

An exception to the statement that algorithm performance b correlated

with the number of restarts b the performance of the BTO algorithm. BTO

does worse than would be warranted by its restart counts. The explanation

for thb exceptionally poor performance b that, under a high probability of

conflicts, BTO b unstable due an to anomaly in the algorithm. Thb anomaly,

cyclic restarts, b mentioned briefly in [Date82, Lin82, UllmS3], and it is illus

trated in Figures 3.4 and 3.5. Figure 3.4 depicts a pair of transactions with



transaction Tl:

begin
read xjoalue from X;
compute;

write xjoalue into X;
end;

transaction T2:

begin
read xjoalue from X;
compute;
write xjoalue into X;

end;

89

Figure 3.4: Cyclic restart transactions for BTO.

workloads which make them prone to the cyclic restart anomaly, and Figure

3.5 demonstrates how these transactions can become involved in an infinite

cycle, restarting each other repeatedly. Only the first ten steps in the infinite

interleaving cycle are shown in the figure.

Step Action
1 Tl: begin xact

2 T2: begin xact

3 Tl: read zjualue from X;
4 T2: read xjoalue from X;
5 Tl: write xjvalut into X;
6 Tl: read xjoalue from X\
7 T2: write xjoalue into X\
8 T2: read xjoalue from X;
9 Tl: write xjoalue into X\
10 Tl: read zjualue from X,

11 etc.

Result

TS(T1) =* 1
TS(T2) = 2
R-TS(A) — 1
R-TS(A) = 2
Restart(Tl) with TS(T1) = 3
R-TS(A) = 3
Restart(T2) with TS(T2) = 4
R-TS(.X) - 4
Restart(Tl) with TS(T1) = 5
R-TS(^Q = 5
etc.

Figure 3.5: Example of cyclic restart anomaly.



90

The problem with the two transactions of Figure 3.4 b that they both

wbh to read and write the same granule. If they attempt to interleave execu

tion in the manner shown in Figure 3.5, performing their reads in timestamp

order and then attempting to do the same for their writes, they are liable to

follow the pattern shown in the figure forever. The problem begins when Tx

b restarted at step 5 because X has been read by a younger transaction, T2.

At thb point, Tx actually becomes younger than T2 and re-reads X. Thb

dooms T2s subsequent write to end in a restart, etc. If the computation

delay between the read and write of X exceeds the delay from the time of a

restart to the time of re-reading X for both transactions Tx and T2, thb pat

tern can indeed persbt forever. Thb b the case for the coarse granularity

throughput results in experiments 1.3 and 1.4. Although the restart counts

for BTO are comparable to those of some locking algorithms which have

higher throughputs, its throughput b lower because the restarts caused by the

anomaly always occur when write timestamp checking takes place. Thb does

not take place until commit time, meaning that the amounts of CPU and I/O

resources wasted due to the anomaly are very high. Thb anomaly was not

observed in experiments 1.1 and 1.2 because the restart delay of one second of

simulated time was sufficient to minimize its chances of occurring with such

small transaction sizes.

Tables 3.14 and 3.15 give the throughput results for the largest transac

tion sizes tested, where smalljmean = 15 and smalljmean = 30 were used.



Throughput, versus Granularity

Grans 2PL WD 2PLW PRE BTO SV

1 0.179 0.139 1.031 0.964 0.000 0.205

10 0.009 0.121 0.143 0.959 0.000 0.207

100 0.203 0.237 0.583 1.111 0.009 0.371

1000 1.023 0.933 1.207 1.216 0.642 0.861

10000 1.193 1.186 1.217 1.218 1.148 1.159

Table 3.14: Throughput, experiment 1.5 (smalljmean = 15).

Throughput. versus Granularity

Grans 2PL WD 2PLW PRE BTO SV

1 0.089 0.071 0.518 0.487 0.000 0.096

10 0.002 0.062 0.020 0.485 0.000 0.096

100 0.006 0.054 0.029 0.481 0.000 0.102

1000 0.266 0.201 0.483 0.592 0.025 0.267

10000 0.571 0.558 0.617 0.614 0.431 0.524

Table 3.15: Throughput, experiment 1.6 (smalljmean = 30).

Restart Counts versus Granularity

Grans 2PL WD 2PLW PRE BTO SV

1 1592 3115 0 0 1908 1585

10 1928 3129 4217 0 1906 1581

100 1619 2363 1522 0 1891 1321

1000 302 582 25 0 900 556

10000 36 67 0 0 106 89

Table 3.16: Restarts, experiment 1.5 (smalljmean = 15).

91



Restart Counts versus Granul arity

Grans 2PL WD 2PLW PRE BTO SV

1 801 2178 0 0 953 805

10 977 2088 4131 0 953 805

100 1010 1781 2114 0 953 797

1000 538 956 285 0 917 545

10000 74 119 4 0 289 148

92

Table 3.17: Restarts, experiment 1.6 (smalljmean = 30).

The restart counts for these cases, experiments 1.5 and 1.6, are given in

Tables 3.16 and 3.17. For the most part, these results simply accentuate the

trends observed in the previous pair of experiments. PRE b dominant due to

its lack of restarts. WD again outperforms 2PL at coarser granularities

because of its preference for restarting transactions which have completed less

work. SV again outperforms 2PL and WD at coarse granularities, even out

performing 2PLW with 10 granules comprbing the database, by causing fewer

restarts. Thb b due to the thrashing behavior of the victim selection criteria

used by 2PL and 2PLW, and to the possibility of repeating conflicts for WD.

Both effects were dbcussed in conjunction with experiments 1.3 and 1.4.

Finally, the anomalous behavior of BTO b extremely pronounced for these

transaction sizes.

3.3.4.2. Experiment 2: Access Patterns

Thb experiment investigates the performance characterbtics of the seven

concurrency control algorithms under two workloads consisting solely of large

transactions. The granularity of the database b varied, as before, in order to



93

vary the probability of conflicts. The system parameter settings -for this

experiment are the same as those for experiment 1 (see Table 3.3). The

objective of this experiment is to observe the effects of random versus sequen

tial object access patterns on algorithm performance.

The relevant workload parameter settings for this experiment are given

in Table 3.18. The database again consists of 10,000 objects, and its granu

larity is varied from 1 to 10,000 granules. The number of terminals submit

ting transactions against the database is 10, and all transactions are large.

Transaction sizes are determined by sampling from a uniform distribution

over the range [1,60], so transactions each read an average of about 30

objects. Both random and sequential access patterns are tested. In the ran

dom case, the objects are selected randomly from among all possible sets of

the appropriate number of objects in the database. In the sequential case, the

Workload Parameters

dbjBtze 10000 objects
granjBtze vary from 1 to 10000 objects/granule
numjterms 10

delayjmean 1 second

small^rob 0.0

largejmean 30 objects
largejiaetjtype random or sequential
largej&izcjiiat uniform

largtjiDrittjpTob 0.1

Table 3.18: Workload parameters for experiment 2.



04

objects are selected at random from among all possible sequences-of the

appropriate size in the database. Transactions update each of the objects

which they read with ten percent probability.

Table 3.19 gives the throughput results for experiment 2.1, where tran

sactions with random access patterns were tested. These results are similar to

those obtained for the larger transaction sizes in experiment 1, though some

of the performance differences are less pronounced due to the reduced proba

bility of writing. Table 3.20 gives the throughput results for experiment 2.2,

where sequential transactions were used. Significant differences are apparent

Throughput, versus Granularity

Grans 2PL WD 2PLW PRE BTO sv

1 0.052 0.068 0.759 0.609 0.000 0.098

10 0.001 0.060 0.035 0.608 0.000 0.099

100 0.024 0.103 0.049 0.612 0.015 0.142

1000 0.537 0.456 0.709 0.738 0.138 0.393

10000 0.780 0.750 0.783 0.787 0.677 0.675

Table 3.19: Throughput, experiment 2.1 (random access).

Throughput, versus Granularity

Grans 2PL WD 2PLW PRE BTO SV

1 0.062 0.071 0.770 0.646 0.000 0.097

10 0.418 0.414 0.797 0.801 0.052 0.408

100 0.712 0.718 0.799 0.799 0.443 0.685

1000 0.770 0.770 0.798 0.799 0.700 0.746

10000 0.775 0.775 0.798 0.799 0.728 0.754

Table 3.20: Throughput, experiment 2.2 (sequential access).



95

in the results of the second experiment. 2PLW and PRE are dominant, fol

lowed by WD and 2PL, with SV being the second worst algorithm and BTO

being the worst of the algorithms investigated.

Tables 3.21 and 3.22 show the restart counts associated with experiments

2.1 and 2.2. The differences between the two experiments are clearly a func

tion of restart behavior, and there is a simple explanation for the significant

reduction in restarts from experiment 2.1 to experiment 2.2 for the locking

algorithms. Since transactions request resources in sequential order in the

latter experiment, all deadlocks related to random locking order disappear.

Restart Counts versus Granularity

Grans 2PL WD 2PLW PRE BTO SV

1 478 2296 0 0 711 455

10 697 1967 2590 0 711 461

100 535 1225 1157 0 602 468

1000 182 453 74 0 450 304

10000 5 30 2 0 76 84

Table 3.21: Restarts, experiment 2.1 (random access).

Restart Counts versus Granularity

Grans 2PL WD 2PLW PRE BTO SV

1 459 2258 0 0 642 445

10 284 1324 0 0 678 301

100 79 191 0 0 267 99

1000 29 58 0 0 78 49

10000 23 45 0 0 57 42

Table 3.22: Restarts, experiment 2.2 (sequential access).



96

2PLW is deadlock-free for the mix of experiment 2.2, and the only deadlocks

(or potential deadlocks) for 2PL and WD occur due to lock upgrades. As a

result of the reduction in the number of restarts for all of the locking algo

rithms, the restart-based SV and BTO algorithms are unable to compete with

the performance of the locking algorithms for the mix of large sequential tran

sactions.

3.3.4.3. Experiment 3: Mixed Workload

This experiment investigates the performance characteristics of the seven

concurrency control algorithms under a workload consisting of a mix of large

and small transactions. The granularity of the database is again varied in

order to vary the probability of conflicts. The system parameters are the

same as for experiment 1 (see Table 3.3), and the workload parameters for

this experiment are listed in Table 3.23. The workload investigated here is a

mix of the workloads of the two previous experiments, with some of the tran

sactions being the small fixed-size transactions from experiment 1 and the

remainder being the larger transactions from experiment 2. This workload is

intended to represent a fairly realistic combination of small and large transac

tions. The fraction of small transactions in the mix is varied to investigate

algorithm performance under different combinations of small and large tran

sactions.



Workload Parameters

dbjtizt 10000 objects
granjBtze vary from 1 to 10000 objects/granule
numjterms 10

delayjmean 1 second

smalljprob vary from 0.2 to 0.8
smalljmean 2 objects
small^xaetjtype random

smalljBtztjiiat fixed

smalljwrite.jtrob 0.5

largejmean 30 objects
largejzaetjtype sequential
largejiizejiiat uniform

largejwrite^prob 0.1

Table 3.23: Workload parameters for experiment 3.

97

The throughput results for experiment 3 are given in Tables 3.24 through

3.27. The associated restart counts are given in Tables 3.28 through 3.31.

There are few surprises, as the results are mostly a combination of those

observed previously in experiments 1.2 and 2.2. The locking algorithms are

dominant, with 2PLW being the best and PRE tying except at the coarsest'

granularity setting. WD is next, outperforming 2PL for reasons related to the

discussion of WD versus 2PL in experiments 1.3 and 1.4. WD picks the

younger transaction to restart in order to avoid deadlocks when conflicts arise,

and in this case the younger transaction is likely to be one of the small tran

sactions in the mix. As a result, WD wastes fewer overall resources due to

restarts than are wasted by 2PL. The advantage of WD over 2PL is more

pronounced for mixes of mostly small transactions, as the likelihood of its



98

selecting a large transaction to restart is the smallest for such mixes. ~SV and

BTO perform as expected based on the observations from previous experi

ments. SV is generally the second worst algorithm here, outperforming 2PL

only under very coarse granularities where the thrashing behavior of 2PL is

the most serious. BTO is uniformly inferior to the other algorithms tested.

Throughput. versus Granularity

Grans 2PL WD 2PLW PRE BTO SV

1 0.066 0.091 0.919 0.771 0.000 0.111

10 0.464 0.517 0.967 0.963 0.124 0.450

100 0.883 0.894 0.966 0.964 0.691 0.858

1000 0.930 0.945 0.966 0.969 0.775 0.905

10000 0.942 0.944 0.966 0.967 0.874 0.913

Table 3.24: Throughput, experiment 3.1 (smalljprob = 0.2).

Throughput, versus Granularity

Grans 2PL WD 2PLW PRE BTO SV

1 0.069 0.109 1.126 0.992 0.000 0.128

10 0.535 0.633 1.227 1.226 0.073 0.522

100 1.055 1.112 1.228 1.226 0.862 1.022

1000 1.183 1.183 1.229 1.228 1.081 1.112

10000 1.200 1.184 1.229 1.228 1.113 1.130

Table 3.25: Throughput, experiment 3.2 (smalljprob = 0.4).



Throughput- versus Granularity

Grans 2PL WD 2PLW PRE BTO SV

1 0.089 0.203 1.535 1.344 0.002 0.202

10 0.639 0.857 1.709 1.709 0.159 0.710

100 1.462 1.556 1.713 1.717 0.410 1.352

1000 1.646 1.669 1.714 1.715 1.463 1.571

10000 1.688 1.679 1.713 1.715 1.576 1.578

Table 3.26: Throughput, experiment 3.3 (smalljprob = 0.6).

Throughput- versus Granularity

Grans 2PL WD 2PLW PRE BTO SV

1 0.101 0.450 2.521 2.371 0.022 0.333

10 0.853 1.551 2.830 2.860 0.338 0.963

100 2.352 2.580 2.865 2.861 1.246 2.185

1000 2.675 2.752 2.859 2.864 2.415 2.504

10000 2.803 2.777 2.860 2.864 2.634 2.554

Table 3.27: Throughput, experiment 3.4 (smalljprob = 0.8).

Restarts versus Granularity

Grans 2PL WD 2PLW PRE BTO SV

1 489 2892 0 0 631 469

10 317 1621 3 0 554 336

100 56 214 0 0 180 85

1000 24 72 0 0 135 46

10000 17 48 0 0 60 39

Table 3.28: Restarts, experiment 3.1 (smalljprob = 0.2).

99



Restarts versus Granularity

Grans 2PL WD 2PLW PRE BTO SV

1 487 3494 0 0 669 460

10 386 2191 6 0 536 373

100 101 330 0 0 198 122

1000 21 71 0 0 71 58

10000 15 58 0 0 56 49

Table 3.29: Restarts, experiment 3.2 (smalljprob = 0.4).

Restarts versus Granularity

Grans 2PL WD 2PLW PRE BTO SV

1 584 4621 0 0 861 508

10 484 2971 11 0 673 416

100 113 438 1 0 462 151

1000 22 98 0 0 84 52

10000 7 58 0 0 42 43

Table 3.30: Restarts, experiment 3.3 (smalljprob = 0.6).

Restarts versus Granularity

Grans 2PL WD 2PLW PRE BTO SV

1 589 6003 0 0 762 481

10 562 3781 58 0 574 496

100 158 904 0 0 344 235

1000 43 211 0 0 115 102

10000 15 160 0 0 63 71

Table 3.31: Restarts, experiment 3.4 (smalljprob = 0.8).

100

3.3.4.4. Experiment 4: Multiprogramming Level

This experiment investigates the effects of the multiprogramming level on

the results of the previous experiments. Experiment 3.1 is repeated with two



101

different levels of multiprogramming. Also, the effect of the level of multip

gramming on throughput when no concurrency control algorithm is used is

investigated for the transaction mix of experiment 3.1.

The first part of this experiment consisted of running experiment 3.1

with all of the same system and workload parameters except for the level of

multiprogramming. (See Tables 3.3 and 3.23 for these parameter settings.)

The level of multiprogramming was set at 5 and then 20 terminals instead of

its previous setting of 10. The throughput results from this experiment are

presented in Tables 3.32 and 3.33. These results are basically the same as

To-

Throughput, versus Granularity

Grans 2PL WD 2PLW PRE BTO SV

1 0.134 0.183 0.915 0.771 0.002 0.219

10 0.681 0.749 0.965 0.967 0.326 0.660

100 0.921 0.921 0.964 0.964 0.869 0.908

1000 0.953 0.953 0.964 0.965 0.914 0.939

10000 0.956 0.955 0.964 0.964 0.930 0.942

Table 3.32: Throughput, experiment 4.1 (numjterms = 5).

Throughput, versus Granularity

Grans 2PL WD 2PLW PRE BTO SV

1 0.034 0.043 0.919 0.771 0.005 0.059

10 0.174 0.303 0.964 0.965 0.064 0.296

100 0.798 0.812 0.963 0.963 0.434 0.735

1000 0.899 0.9C0 0.961 0.965 0.738 0.847

10000 0.919 0.912 0.961 0.964 0.800 0.863

Table 3.33: Throughput, experiment 4.2 (numjterms = 20).



102

those of experiment 3.1, the only difference being that the throughputs of all

algorithms are slightly higher in experiment 4.1 and slightly lower in experi

ment 4.2. The difference in throughputs observed here is due to the fact that

the level of multiprogramming, like granularity, affects the probability of

conflicts. Halving the multiprogramming level results in a lower rate of

conflicts, and doubling it results in a higher rate of conflicts.

The second part of this experiment consisted of varying the multipro

gramming level with concurrency control turned off. This was accomplished

by using the serial validation simulation, with the validation code modified to

always validate transactions. The result is a simulation in which transactions

incur the usual concurrency control costs but are never blocked or restarted

due to conflicts. The system and workload parameters, with the exception of

the multiprogramming level, were again those those of experiment 3.1. The

Effects of Multiprogramming Level

MP Level Throughput Rate CPU Used I/O Used

1 2.121±3.09% (9095 C7) 227639.4 731175.7

2 2.711±4.88%(90%C7) . 293877.5 943777.7

3 2.838±3.77%(00%C7) 308886.5 992059.0

4 2.860±3.44%(90%C7) 311163.0 999280.0

5 2.861±3.64%(90%C/) 311360.0 999935.0

6 2.865±3.74%(90%C7) 311397.0 999966.0

7 2.866±3.63%(90%CJ) 311473.0 1000000.0

25 2.855±4.38%(90%<7/) 311601.0 1000000.0

Table 3.34: Throughput and utilization, experiment 4.3 (no CC).



103

results of this experiment, including confidence intervals, are given in Table

3.34. As is apparent in the table, the throughput rate reaches its maximum

(within the limits of statistical variation) at a multiprogramming level of 4.

Beyond this point, adding more transactions to the system has virtually no

effect on throughput because the bottleneck resource, I/O in this case, is close

to full utilization from this point on. (This is illustrated in the table by the

amount of I/O time consumed out of a possible 1,000,000 total simulation

units.) Thus, aside from affecting the probability of conflicts, the multipro

gramming level has little or no effect once the number of transactions in the

system is sufficient to allow the bottleneck resource to achieve full utilization.

3.3.4.5. Experiment 6: System Balance

This experiment investigates the effects of the system balance on the

results of the previous experiments. Experiment 3.1 is repeated with the I/O

cost parameters decreased so that the system is CPU bound and then bal

anced instead of being I/O bound (as it was in the original experiment). The

system parameter settings used in this experiment are presented in Table

3.35. The I/O costs associated with startup processing and object processing

have been decreased from from 35 to 5 and then 10 milliseconds. These

correspond intuitively to systems which have multiple disks. The CPU cost

associated with processing a concurrency control request is still set at 1 mil

lisecond. The workload parameter settings used in this experiment are those

of experiment 3.1 (see Table 3.23).



System Parameter Settings

System
Parameter

Time

(Milliseconds)

startupjo
startupjcpu
objjo
obj_cpu
eejio
ccjcpu

staggerjmean

5 and 10

10

5 and 10

10

0

1

20

Table 3.35: System parameters for experiment 5.

104

The throughput results for this experiment are shown in Tables 3.36 and

3.37. These results are analogous to those of experiment 3.1, with higher

throughputs overall because of the decrease in the I/O cost for processing

each transaction. No other significant differences appear to be present in the

data, the conclusion being that system balance is not a significant factor with

respect to selecting from among a set of alternative concurrency control algo

rithms.

3.3.4.6. Experiment 6: Concurrency Control Cost

This experiment investigates the effects of concurrency control costs on

the results of the previous experiments. Experiment 3.1 is repeated with the

concurrency control cost parameters modified to investigate the effects of

alternative concurrency control costs. The system parameter settings used in

this experiment are those of experiments 1 through 3 (see Table 3.3), except



Throughput versus Granularity

Grans 2PL WD 2PLW PRE BTO SV

1 0.240 0.303 3.004 2.294 0.004 0.406

10 1.676 1.000 3.385 3.369 0.373 1.587

100 3.024 3.008 3.391 3.389 2.073 2.906

1000 3.211 3.215 3.370 3.370 2.928 3.084

10000 3.028 3.028 3.140 3.141 2.823 2.913

Table 3.36: Throughput results, experiment 5.1 (CPU bound).

Throughput, versus Granularity

Grans 2PL WD 2PLW PRE BTO SV

1 0.237 0.398 2.799 1.742 0.000 0.398

10 1.594 1.851 3.261 3.215 0.254 1.557

100 2.951 3.015 3.306 3.284 2.196 2.856

1000 3.142 3.144 3.272 3.270 2.958 3.049

10000 2.962 2.965 3.073 3.071 2.866 2.896

Table 3.37: Throughput results, experiment 5.2 (balanced).

105

for the ccjcpu and eejio parameters. Experiments are performed with con

currency control being free (eejepu = 0, eejio = 0), expensive in terms of

CPU cost (eejepu = 5 milliseconds, eejio = 0), and expensive in terms of

I/O cost (eejepu = 1 millisecond, eejio = 35 milliseconds). The last case is

as though concurrency control information were kept on disk, with one disk

access being required per concurrency control request processed. This is simi

lar to the situation examined most thoroughly by Ries [Ries77, Ries79a,

RiesTOb]. The workload parameter settings are the same as for experiment

3.1 (see Table 3.23).



Throughput versus Granularity

Grans 2PL WD 2PLW PRE BTO SV

1 0.066 0.088 0.919 0.771 0.000 0.111

10 0.473 0.515 0.967 0.963 0.121 0.460

100 0.883 0.893 0.967 0.964 0.698 0.863

1000 0.931 0.945 0.966 0.969 0.834 0.905

10000 0.942 0.944 0.966 0.967 0.874 0.912

Table 3.38: Throughput, experiment 6.1 (eejcpu = 0, cejo = 0).

Throughput. versus Granularity

Grans 2PL WD 2PLW PRE BTO SV

1 0.066 0.088 0.917 0.769 0.000 0.111

10 0.433 0.521 0.967 0.963 0.115 0.455

100 0.883 0.892 0.967 0.964 0.603 0.862

1000 0.932 0.943 0.966 0.969 0.834 0.905

10000 0.942 0.944 0.966 0.959 0.877 0.905

Table 3.39: Throughput, experiment 6.2 (ccjcpu = 5, eejo = 0).

Throughput. versus Granularity

Grans 2PL WD 2PLW PRE BTO SV

1 0.063 0.076 0.894 0.754 0.000 0.108

10 0.416 0.447 0.930 0.928 0.038 0.432

100 0.810 0.813 0.924 0.024 0.631 0.786

1000 0.787 0.794 0.870 0.872 0.662 0.766

10000 0.475 0.475 0.511 0.510 0.460 0.460

Table 3.40: Throughput, experiment 6.3 (ccjcpu = 1, eejio = 35).

106

The throughput results from this experiment are shown in Tables 3.38

through 3.40. Again, the results are similar to those of experiment 3.1. The

fact that Tables 3.38 and 3.39 are nearly identical to each other and to the

results of experiment 3.1 (see Table 3.24) indicates that the effects of the cost



107

of concurrency control are negligible as long as concurrency control overhead

is small compared to the costs associated with object accesses. In Table 3.40,

the effect of the vastly increased costs associated with processing concurrency

control requests is apparent from the fact that a medium granularity is

optimal rather than the finest granularity. This illustrates that the tradeoff

observed by Ries for locking in [Ries77, Ries79a, Ries79b] exists for many

concurrency control algorithms. This tradeoff arises in all algorithms because

coarse granularities lead to high conflict probabilities and fine granularities

lead to high concurrency control overhead. Other than this, however, nothing

new is evident in the results of the experiment, as 2PLW and PRE display

the best throughputs, with WD, 2PL, SV, and finally BTO following behind

them, as in the previous experiments.

3.3.4.7. Algorithm Anomalies

Several preliminary experiments, not reported in detail here, were per

formed before a restart delay was added to the model. In these experiments,

BTO did even worse than it did in the experiments reported here. Without a

restart delay, the behavior of BTO was strongly dominated by the cyclic res

tart problem described earlier in this chapter. Cyclic restarts were identified

as the cause of this performance problem after a log of transaction requests

and responses was kept by the simulator and examined in detail. Another

algorithm, multi-version timestamp ordering (MVTO), was also found to share

the cyclic restart problem with BTO. (The MVTO algorithm is investigated



108

in the next chapter.)

A related algorithm anomaly was uncovered in experiments with an ear

lier version of 2PL, a version where a transaction making a read request for a

granule was not required to block unless the current lock on the granule was a

write lock. This version of 2PL, which is basically the 2PL variant analyzed

in Chapter 2, suffers from a fairness problem: If a transaction blocks waiting

to write a granule, subsequent read requests may be granted for the granule

even though the writer "asked first1*. Starvation (infinite waiting) of writers

is one possible result of this policy. The anomaly shown in Figures 3.6 and

3.7 is another. The anomaly, repeated deadlocks, occurs when the three

transaction Tl:

begin
read xjoalut from X;
compute;
write xjoalut into X;

end;

transaction T2:

begin
read xjoalut from X;
compute;
write xjoalut into X;

end:

transaction T3:

begin
read xjoalut from X;
compute;
write xjoalut into X;

end;

Figure 3.6: Repeated deadlock transactions for anomalous 2PL.



109

update transactions of Figure 3.6 wish to access a common object. As shown

in Figure 3.7, it is possible for one of the transactions to starve indefinitely

while the other transactions repeatedly restart each other due to deadlocks.

In Figure 3.7, all three transactions start running, and then all three

make read requests for X. After step 6, read locks are held on X by all three

transactions. At step 7, Tx makes a write request for X and is forced to

block until T2 and J3 release their read locks on X. At step 8, T2 also

makes a write request for X and is restarted to resolve the deadlock that

would arise between Tx and T2 if T2 were allowed to wait. At step 0, T2

resubmits its read request, and is again granted a read lock on X. Then, at

step 10, Tz submits a write request for X} at which point its fate is the same

Step Action Result
1 Tl: begin xact

2 T2: begin xact

3 T3: begin xact

4 Tl: read xjoalut from X; Read(Tl,X)
5 T2: read xjoalut from X; Read(T2,X)
6 T3: read xjoalut from X; Read(T3,X)
7 Tl: write xjoalut into X; Block(Tl)
8 T2: write xjoalut into X; Restart(T2)
0 T2: read xjoalut from X; Read(T2,X)
10 T3: write xjoalut into X; Restart(T3)
11 T3: read xjoalut from X; Read(T3,X)
12 T2: write xjoalut into X; Restart(T2)
13 T2: read xjoalut from X; Read(T2,X)
14 etc. etc.

Figure 3.7: Example of cyclic restart anomaly.



110

as the previous fate of T2. The result is that Tx starves while T2_and Tz

alternately get into deadlocks with Tx and are restarted. Note that arbi

trarily many transactions could actually become involved in such repeated

deadlock situations. The 2PL algorithm examined in the experiments of this

chapter was free of thb anomaly because readers were made to wait for X

when one or more conflicting transactions were already waiting to write X.

3.4. CONCLUSIONS

In this chapter, a simulation model of a single-site database system was

described, and the model was used to compare the performance offered by

seven alternative concurrency control algorithms under several different tran

saction workloads. Workloads consisting of all small transactions, all larger

transactions, and a mix of transaction sizes were examined. Also, experi

ments were performed to learn about the effects of factors such as the level of

multiprogramming, system balance, and concurrency control costs on the rela

tive performance of the alternatives. A number of interesting conclusions are

implied by the results of this study.

3.4.1. Performance Under Low Conflicts

A recent paper by Jim Gray et al [Gray8la] argued that, in most real

database system environments, conflicting transactions are a rarity. An

analysis based on a simple model of "real-world" transactions showed that

blocking is rare even when all locks are exclusive, and that deadlocks are



Ill

much more rare than blocking. The results of the experiments reported in

thb chapter indicate that, in such situations, the choice of a concurrency con

trol algorithm can be made more or less arbitrarily. In situations where the

granularity of the database led to few conflicts in the simulation studies, all

algorithms performed almost identically.

3.4.2. Blocking versus Restarts

Some concurrency control algorithms, such as locking, use blocking as the

primary mechanism for handling conflicting requests, restarting transactions

only when absolutely necessary. Other algorithms, such as those based on

timestamps or validation, choose to restart transactions in order to avoid or

resolve conflicts. The results of the experiments of thb chapter indicate that,

in cases where concurrency control algorithms dbplay significantly different

performance characteristics, the algorithms which perform the best are the

ones which choose blocking when it is a viable option.

Several aspects of the experiments support the conclusion that blocking

b the conflict-resolving mechanism of choice. First of all, 2PLW and PRE

outperformed all other algorithms when conflicts were not rare (under coarse

granularities) in most of the experiments of thb chapter. These algorithms

were also the ones which called for the fewest number of restarts. The only

case where performance suffered due to blocking was in the situation where

PRE was used and the entire database was one granule. In this case, PRE



112

totally serialized accesses to the database, and was outperformed by-2PLW,

which allowed multiple concurrent readers. Thb was an extreme case, how

ever, and would almost certainly disappear if PRE allowed both shared and

exclusive locks to be preclaimed. Abo, 2PL and WD, both of which caused

some restarts, outperformed BTO and SV by requiring fewer restarts overall.

In a few cases, where large, random transactions were involved, SV actually

outperformed 2PL, WD, and even 2PLW under coarse granularities. Thb

was due to the use of an overly simplbtic victim selection policy for 2PL and

2PLW, and to a problem with repeated conflicts for WD. In these cases, SV

won by actually requiring fewer restarts.

Another factor supporting thb conclusion b the outcome of experiment

4, where the level of multiprogramming was varied with concurrency control

turned off. It was found that the maximum possible throughput was achieved

in all cases where four or more transactions were available to be run, as the

bottleneck resource (I/O in the experiment) was fully utilized beyond thb

point. This indicates that, as long as blocking a transaction leaves the system

with a sufficient number of runnable transactions, blocking will not degrade

the performance of the system. (Thb also explains why PRE did so well in

the other experiments even though PRE b quite conservative in terms of

allowing transactions to execute concurrently.)

Given that blocking b preferable to restarts, the choice of a concurrency

control algorithm b fairly simple. If sufficient knowledge about what a



113

transaction will access b available at startup time, preclaimed locking with

read and write locks b a good choice. Preclaiming avoids the possibility of

deadlock, and the use of read and write locks will enhance its concurrency.

The necessary knowledge may be available in relational database systems

where query analysb can help identify the data to be accessed. If transaction

readsets and writesets are not known a priori, but it b possible to know at

read time whether or not a write will take place for the granule to be read,

2PLW with an improved deadlock victim selection criteria (to be discussed

shortly) b a good choice. 2PLW avoids upgrade-induced deadlocks, and

improving its victim selection criteria will avoid possible thrashing under

mixes including large, random transactions. If no prior information b avail

able, 2PL with an improved victim selection criteria would be the best choice,

as restarts are avoided except when they are absolutely necessary to break

dependency cycles. Algorithms such as BTO or SV, which resolve conflicts

via restarts, are never recommended based on these results.

3.4.3. Transaction Size

Experiments 1 through 3 investigated the performance of the alternative

algorithms under different transaction sizes, access patterns, and mixes. In all

cases, the conclusions were the much the same. One difference observed

between the small and large transaction results was that, with larger transac

tions, the performance differences were decidedly more noticeable. Thb was

partly due to the increase in the probability of conflicts, but abo due to the



114

fact that more work was wasted by the average restart when larger transac

tions were involved. Another observation was that WD outperformed 2PL in

the mixed size workload because WD chooses younger transactions to restart,

and younger transactions are more likely to be the smaller ones. Choosing

smaller transactions to restart lowered the wasted resources due to restarts,

suggesting that 2PL should have incorporated an age or size based victim

selection criteria for deadlock resolution. Thb was abo indicated by the

instances where thrashing by 2PL led to its being outperformed by SV.

3.4.4. Concurrency Control Overhead

The performance of the algorithms for a mix of small and large transac

tions was investigated with each concurrency control request requiring from 0

to 5 milliseconds of simulated CPU time in experiment 6. Concurrency con

trol costs were seen to be insignificant compared to other factors such as the

costs involved with the subsequent object reads and writes. Thb indicates

that concurrency control overhead b not a problem as long as concurrency

control decbions can be made in an amount of time which b fairly small com

pared with the overall amount of processing time required by transactions.

Thb will be the case for most proposed algorithms as long as concurrency

control tables can be maintained in primary memory.



115

3.4.5. Granularity and Performance

A second conclusion related to concurrency control overhead may be

drawn from the results of experiment 6: All concurrency control algorithms

have the same characteristics as those reported for locking by Ries [Ries77,

Ries70a, Ries70b]. If the costs associated with concurrency control are indeed

large enough to be significant, a medium granularity on the order of 100 or so

granules b likely to be optimal due to the concurrency/overhead tradeoff.

Thb indicates that granularity hierarchies may improve performance for other

types of concurrency control algorithms, a hypothesb which will be tested in

the next chapter. Also, if concurrency control overhead b not significant,

granularities on the order of 1000 or more granules are needed to produce

optimal performance, especially in the presence of large, random transactions.

3.4.6. System Balance

The effect of system balance on the choice of a concurrency control algo

rithm b minimal. Thb was illustrated by the results of experiment 5. Thus,

while system balance b certainly of interest for determining the overall

throughput which b achievable with a given transaction mix, it b not a factor

which needs to be considered in selecting a concurrency control algorithm.

3.4.7. Algorithm Anomalies

Some concurrency control algorithms have anomalies which can hurt

their performance in situations where confiicts are not rare. One example b



116

the cyclic restart anomaly of BTO (and MVTO), and another b the repeated

deadlock anomaly associated with some variants of locking. The degree to

which these anomalies affect performance depends on the length of typical res

tart delays in the system of interest, as the anomalies arise due to the fact

that transactions which are restarted request the same data items each time

they run. However, algorithms with such anomalous behavior are probably

worth avoiding, as there are a number of reasonable concurrency control alter

natives which do not have such problems.



117

CHAPTER 4

PERFORMANCE ENHANCEMENT SCHEMES

In thb chapter, two ideas which have been suggested for enhancing the

performance of concurrency control algorithms are addressed. The first part

of thb chapter b concerned with multiple version concurrency control algo

rithms. Rather than keeping just one value for each object in the database, a

set of values (the current one and several previous values) are maintained.

These values are used to enhance concurrency for long-running transactions.

Several multiple version algorithms are reviewed in the first half of thb

chapter, and one new multiple version algorithm b introduced. The simula

tion model of the previous chapter b then used to perform several experi

ments which investigate situations in which multiple versions offer improved

performance.

The second proposal examined b the notion of structuring the database

as a granularity hierarchy rather than a flat collection of granules (as in the

algorithms of previous chapters). Granularity hierarchies can be used to

enhance performance under mixes of large and small transactions. The

second half of thb chapter reviews the idea of a lock hierarchy and extends

thb notion to other forms of concurrency control. Three new hierarchical

concurrency control algorithms are introduced in thb part of the thesis. The



118

performance model of Chapter 3 b extended to model a two-level granularity

hierarchy, and experiments are performed to examine the potential benefits of

granularity hierarchies.

4.1. MULTIPLE VERSIONS

There have been a number of recent papers proposing the use of multiple

versions of data to increase potential concurrency [Reed78, Baye80, SteaSl,

Chan82, Bern82b]. For most of these algorithms, the idea b to allow long,

read-only transactions to read old versions of data objects while allowing

update transactions to create newer versions. Thb section of the thesb

reviews several such algorithms, presents a new one based on modifying the

serial validation algorithm of Kung and Robinson [Kung8l], and then exam

ines the performance of these algorithms using the simulation model

developed in the previous chapter.

4.1.1. Multhrersion Timestamp Ordering

The multiversion timestamp ordering (MVTO) algorithm [Reed78] b

similar to the BTO algorithm in many ways'. Associated with each transac

tion T b a timestamp, TS( T), bsued at the time at which T begins execut

ing. Associated with each data item x in the database b a set of versions.

Each version b a (time,value) pair indicating a value of x and the (times

tamp) time at which the value was assigned to x. If T is a timestamp, let

x[T] be the value of the most recent version of x written at time less than or



119

equal to T. A read request from T for x will be granted using the value

x\TS( T)]t and awrite request from T for x, if granted, will result in the crea

tion of a new version of x. A write request from T for x will be denied if it

attempts to create a new version of x when the previous version has been

read by a transaction with a timestamp larger than TS( T).

For concurrency control purposes, a read/write hbtory, #„,($), b main

tained for each data item x. Thb hbtory b a set of time intervab which

correspond to versions of x. The starting time of each interval b the creation

timestamp of the version, and the ending time of each interval b the largest

timestamp of any reader of the version. For example,

Hrw(x) = {(3,6), (10,13)} means that x has two versions, one created at time

3 and last read at time 6, and the other created at time 10 and last read at

time 13. Hbtories in MVTO play the role which timestamps played in BTO,

allowing the concurrency control algorithm to know when potential conflicts

arise.

The MVTO algorithm grants all read requests using the appropriate ver

sion, extending the interval in //^(x) associated with the version read as

necessary. A write request from T for x b rejected if any interval in H^x)

contains the time TS(T). Otherwbe, transactions which have already read x

between TS(T) and the end of the interval containing TS(T) would have

their reads invalidated by T"s write. If the write request is granted, a new

version of x is created, and a new interval with starting and ending times of



120

TS(T) b added to Hr9(x). Continuing with our previous example,.a read

request for x from a transaction T with TS(T) = 7 would be granted using

the version of x created at time 3, and the hbtory for x would be changed to

Hr*(x) = ((3>7)> (10>13)}- A wite reciuest from T for x wouW now be

rejected if 3 < TS(T)< 7 or 10 < TS(T) < 13. If T5(T) = 8, however,

the request would be granted, a new version of x would be created, and the

hbtory for x would be changed to H^x) = {(3,7), (8,8), (10,13)}.

An informal description of the MVTO algorithm b given in Figure 4.1.

In the figure, the extVers operation b assumed to extend the version interval

corresponding to x[TS(T)\ in Hrw(x) if TS(T) b larger than the ending time

of the interval. The newVers operation b assumed to create a new interval in

Hrv(x), starting at TS(T) and having length zero, recording the creation of a

procedure readReqfT,*);
begin

grant readReq using x\TS(T)\;
ext\en(Hrv(x), TS(T));

end;

procedure writeReq(7\x);
begin

If TS(T)lnHrv(x)thtn
restart(7);

else

grant writeReq;
newVers(/U*)( TS(T));

fl;
end;

Figure 4.1: MVTO algorithm.



121

new version of x. It b assumed that the grant writeReq operation-creates

this new version of x and stamps it as having been created at time TS( T).

4.1.2. Multlversion Locking

There have been several proposab for multiversion locking algorithms

[Baye80, Stea81, Chan82]. This section reviews one of the most recent ones,

an algorithm proposed for use in the Ada-compatible database management

system under development at CCA [Chan82]. Thb algorithm, which will be

referred to as the CCA version pool algorithm, uses two-phase locking to

synchronize update transactions and allows read-only transactions to run

using older versions of data items. The CCA proposal includes schemes for

implementing version selection efficiently and for dealing with maintenance

and garbage collection of old versions in a bounded buffer pool, but thb study

will only be concerned with the concurrency control aspects of the proposal.

The semantics of the CCA version pool algorithm are actually quite sim

ple, and can be explained as follows. As in the timestamp-based version cf

serial validation, transactions are assigned startup timestamps when they

begin running and commit timestamps when they reach their commit point.

Also, transactions are classified at startup time as being either read-only or

update transactions. When an update transaction reads or writes a data item,

it locks the item, just as it would in two-phase locking, and it reads or writes

the most recent version of the item. When an item b written, a new version



122

of the item b created, and versions of items are stamped with the-commit

timestamp of their creator.

When a read-only transaction wbhes to access an item, no locking b

needed. Instead, the transaction simply reads the latest version of the item

with a timestamp less than the startup timestamp of the read-only transac

tion. Since the timestamp associated with a version b the commit timestamp

of its writer, a read-only transaction T b made to read only versions which

procedure readReq(7\z);
begin

If readOnly(J) then
grant readReq using x\TS(T)\;

else

If writeLocked(x) then
block(T);
If cycle(7)then

restart(T);
fi;

else
grant readReq using z[current\;
readLock(7\j);

fi;
A;

end;

procedure writeReq(7\z);
begin

If readLocked(x) or writeLocked(x) then
block(T);
if cycle(r)then

restart( T);
fi;

elie

grant writeReq;
writeLock(7\x);

fi;
end;

Figure 4.2: CCA version pool algorithm.



123

were written by transactions which committed before T even began running.

Thus, T is serialized after all transactions which committed prior to its

startup, but before all transactions which are active but uncommitted during

any portion of its lifetime. An informal description of the CCA version pool

algorithm b given in Figure 4.2. The startup timestamp of transaction T b

denoted as TS( T), and the most recent committed version of x b denoted as

x[eurrent] in the description. It b assumed that the grant writcReq opera

tion creates a new version of ?, and also that thb version of x b stamped

with the commit timestamp of T when T commits.

4.1.3. Multiversion Serial Validation

The previous section described a multiversion locking algorithm which

enhanced a known concurrency control algorithm by permitting read-only

transactions to read older version of objects. In thb way, serializability was

guaranteed for update transactions in the usual way, and it was guaranteed

for read-only transactions by having them read a consbtent set of older ver

sions of data determined by their startup time. Conflicts between read-only

transactions and update transactions were eliminated, increasing the level of

concurrency which can be achieved using the algorithm. This idea can be

applied outside the domain of locking. Thb section demonstrates its general

ity by developing a multiversion variant of the serial validation algorithm of

Kung and Robinson [Kung81].



procedure validate(7*);
begin

valid := true;
If not readonly(T) then

foreach x, In rtadstt(T) do
1tS-TS(T)< rS(*,)then

valid := false;

fi;
od;
If valid then

foreach xv In writesct{T) do
TS(xv):= C-TS(T);

od;
commit writcset(T) to database;

eke

restart(r);
fi;

fi;
end;

Figure 4.3: Informal description of multiversion SV algorithm.

124

The multiversion SV algorithm can be developed in a manner which fol

lows naturally from the CCA version pool algorithm. Transactions are again

classified as read-only or update transactions at startup time. Update tran

sactions record their readsets and writesets, performing either the validation

test of Kung and Robinson [Kung81] or the timestamp-based validation test

developed in Chapter 2. As in the CCA version pool algorithm, versions are

stamped with the commit timestamp of their creators, and read-only transac

tions read the latest versions of items with timestamps less than their startup

timestamps. As a result, the serializability of update transactions b

guaranteed by SV semantics and the serializability of read-only transactions b

guaranteed by making sure they read consbtent, committed versions of data.



125

An informal description of the multiversion SV algorithm b given-in Fig

ure 4.3. The timestamp-based validation test of Chapter 2 b used for update

transactions. It b assumed that an appropriate version selection mechanbm

provides each transaction T with either x\TS(T)\ or x[eurrent] when it reads

x, depending on whether Tisa read-only transaction or an update transac

tion, respectively. It b abo assumed that new versions are created and

stamped with C-TS(T) when writeset(T) b committed to the database.

4.1.4. Multiple Versions and Performance

In thb section, the performance characterbtics cf the three previous mul

tiple version concurrency control algorithms are investigated using the simula

tion model of Chapter 3. Each multiple version algorithm b studied and com

pared to its single version counterpart. Before reporting on the experiments,

however, some detaib of the concurrency control cost modeb of the algo

rithms and the simulation approach taken will be described.

4.1.4.1. Concurrency Control Costs

As in Chapter 3, in order to simulate the concurrency control algorithms

of interest, it is necessary to make some assumptions about their costs. Thb

section will briefly describe how the eejcpu and eejio parameters are used in

modeling the costs for each of the multiversion algorithms in order to evaluate

them using the simulation model. The concurrency control costs for a tran

saction which makes Nr granule read requests and Nw granule write requests



126

will be given for each algorithm.

The cost model used for the MVTO algorithm is identical to that

described in the previous chapter for the BTO algorithm. Each read access

request for a granule b assessed a CPU cost of eejcpu and an I/O cost of

eejio at the time of the request, and each write request b assessed the same

CPU and I/O costs at transaction commit time. Thus, total read-related con

currency control costs of Nr ccjcpu and NrceJio are charged dynamically, and

total write-related concurrency control costs of Nv ccjcpu and Nvcejio are

charged at commit time. Again, these costs are intended to model the costs

of the required timestamp operations. In particular, the read request costs are

intended to model the cost of extending the read/write hbtory for the

granules read, and the write request costs are intended to model version crea

tion and timestamping costs.

The cost model used for the CCA version pool algorithm b nearly identi

cal to the model described in the previous chapter for the 2PL algorithm.

The one difference between thb cost model and the 2PL cost model b that

read-only transactions run nearly for free. At the time of startup for a read

only transaction, a CPU cost of eejcpu and an I/O cost of eejio are assessed

to model the cost of recognizing and marking the transaction as read-only.

After thb point, no concurrency control costs are assessed for read-only tran

sactions.



127

The cost model used for the multiversion SV algorithm b analogous to

the model used for the CCA version pool algorithm. The original SV cost

model b used here for update transactions, and read-only transactions pay a

CPU cost of eejcpu and an I/O cost of eejo at transaction startup time.

The costs assessed for read-only transactions model the cost of recognizing

them as read-only and marking them as such.

4.1.4.2. The Simulation Approach

In order to simulate the multiple version algorithms, it was assumed that

old versions of objects are accessible in as little time as the most recent ver

sion of each object. Thb assumption b reasonable if access paths for locating

versions of active data items can be kept in primary memory. Such caching

of version location information can be probably be achieved using algorithms

such'as those described in [Chan82]. Otherwbe, the results reported here will

be optimbtic about the degree of performance improvements which are

obtainable using the multiple version algorithms. Thus, the only salient

aspect of simulating multiple version algorithms b representing their different

concurrency control semantics.

The implementation of these multiple version algorithms was simplified

by the observation that none of them ever rejects a read request. It can abo

be shown that, under the "no blind writes" assumption, MVTO accepts and

rejects writes in exactly the same way that BTO does (see Appendix 2).



128

Thus, no transaction can ever write a version of an object other than the

latest one in any of the multiple version algorithms. As a result, each multi

ple version algorithm was implemented by simply changing the simulation

description for its single version counterpart to always accept read requests.

4.1.4.3. Experiments and Results

In thb section, the results of three multiple version performance experi

ments are reported. Each of these experiments was performed on the three

multiple version algorithms just described and their single version counter

parts. The experiments were designed to investigate the performance of the

multiple version algorithms under both low conflict transaction mixes and

mixes which are more likely to benefit from the availability of multiple ver

sions. The first experiment investigates the performance of the algorithms

under mixes of transactions where the level of conflicts b fairly low. The

second experiment investigates the performance of the algorithms as a func

tion of read-only transaction size for a mix of small update transactions and

larger read-only transactions. The third experiment investigates the perfor

mance of the algorithms as a function of the fraction of read-only transactions

in the mix.

4.1.4.3.1. Experiment 1: Low Conflict Performance

Thb experiment investigates the performance of the multiple version

algorithms under a transaction mix similar to that of experiment 3.4 of the



120

previous chapter. The only change in the mix is that large transactions will

be read-only in thb case, as multiple version algorithms are specifically aimed

at improving performance for such mixes. The objective of thb experiment b

to investigate the performance of the multiple version algorithms for situa

tions where conflicts are fairly rare. The system parameters used for the

experiment are given in Table 4.1, and the workload parameters are given in

Table 4.2. The batehjiime and numjbatches parameter settings used in thb

experiment are the same as those used for the previous experiments. The

database consbts of 10,000 objects, and its granularity b one object per

granule. The number of terminals used b 10. Small update transactions,

which are eighty percent of the mix, each read two objects and then update

them each with fifty percent probability. Large transactions, the other

twenty percent of the mix, read a uniformly dbtributed number of objects

System Parameter Settings

System
Parameter

startupjio
startupjcpu
objjio
objjcpu
eejio
eejcpu

staggerjmean

Time

(Milliseconds)

35

10

35

10

0

1

20

Table 4.1: System parameters for experiment 1.



130

sequentially. The mean size of the large transactions in the mix b"30, and

they are read-only.

The results of thb experiment are shown in Table 4.3, where throughput

rates for the three multiple version algorithms and their single version coun

terparts are given for various granularities. The associated restart counts are

given in Table 4.4. All of the multiple version algorithms yield similar perfor

mance (within limits of statistical variation) for all but the coarsest granular

ity. This occurs because the probability of conflicts between pairs of update

transactions b quite small, given their size, and all of the multiple version

algorithms allow read-only transactions to proceed without interference of any

kind.

Workload Parameters

dbjiize 10000 objects
granjsize 1 object/granule
numjterms 10

delayjmean 1 second

smalljprob 0.8

smalljmean 2 objects
smalljxaetjtype random

smalljBizejiist fixed

smalljwrite_prob 0.5

largejmean 30

largejzaetjtype sequential
largejiizejiist uniform

largejwritejprob 0.0

Table 4.2: Workload parameters for experiment 1.



Throughput versus Granularity

Grans BTO MVTO 2PL VP SV MVSV

1 1.707 1.707 1.837 2.228 0.407 2.364

10 2.632 2.844 2.831 2.030 1.183 2.863

100 2.030 2.008 3.000 3.011 2.307 2.000

1000 2.018 3.012 3.012 3.013 2.601 3.012

10000 2.026 3.013 3.013 3.013 2.755 3.013

Table 4.3: Throughput, experiment 1.

Restarts versus Granularity

Grans BTO MVTO 2PL VP SV MVSV

1 6005 6005 3051 3865 404 3340

10 761 033 800 306 545 811

100 04 80 34 31 214 77

1000 42 7 0 0 82 7

10000 32 0 0 0 56 0

Table 4.4: Restarts, experiment 1.

131

The CCA version pool (VP) algorithm does not offer any significant per

formance improvement over 2PL except at the coarsest granularity examined.

Thb b because 2PL b capable of handling the workload of the experiment

quite well without multiple versions. Both of the other multiple version algo

rithms do succeed in outperforming their single version counterparts, although

the advantage of MVTO over BTO b only slight and occurs only for coarse

granularity (10 granules in the database). The advantages of multiple ver

sions are much more pronounced for SV versus MVSV, as SV is the worst of

the three single version algorithms for the transaction mix of thb experiment.

The poor performance of SV here occurs because transactions are not checked



132

for conflicts until transaction commit time, a practice that strongly biases sin

gle version SV against large read-only transactions: They perform all their

reads and then test to see if any of the granules have been updated, an

occurrence which b likely with many small update transactions in the mix.

4.1.4.3.2. Experiment 2: Read-Only Transaction Size

Thb experiment investigates the performance characterbtics of the mul

tiple version algorithms under a workload consbting of a mix of small update

transactions and larger read-only transactions. The parameter varied here b

the size of the read-only transactions in the mix. The purpose of the experi

ment b to observe the behavior of the algorithms while varying the degree to

which old versions may beneficial. The workload parameters used in thb

experiment were selected in order to emphasize situations in which multiple

version algorithms are indeed beneficial.

The system parameter settings for this experiment are the same as those

used for experiment 1 (see Table 4.1). The relevant workload parameter set

tings for thb experiment are given in Table 4.5. The database consbts of 100

objects, and its granularity b one object per granule. The number of termi-

nab used b 10. Small update transactions, which are forty percent of the

mix, read two objects and update each with fifty percent probability. Large

read-only transactions, the other sixty percent of the mix, sequentially read a

uniformly dbtributed number ofobjects. The mean size for large transactions



133

b varied from 1 to 30 objects. '

The motivation for selecting such a small database size was two-fold.

First, it was desired that read-only transactions read a significant fraction of

the database so that the probability of conflicts with update transactions

would be significant. Otherwbe, the multiple version algorithms would not be

of use in improving performance. Second, it was necessary to keep the size of

read-only transactions small in terms of the number of objects accessed so

that reasonably tight confidence intervab could be obtained without using

unreasonable amounts of simulation time (i.e., using the same batehjtime and

numjbatches parameters that were used in Chapter 3). Thb tradeoff dictated

the selection of a relatively small database size. One might also view these

Workload Parameters

dbjsize 100 objects
granjBise 1 object/granule
numjterms 10

deiayjmean 1 second

smalljprob 0.4

smalljtnean 2 objects
smattjzaetjtype random .
smatljsizejiist fixed

smalljwritejprob 0.5

largejmean vary from 1 to 30 objects
largejraetjtype sequential
largejtizejdist uniform

largejwrite^prob 0.0

Table 4.5: Workload parameters for experiment 2.



134

parameter settings as an approximation to a large database with fairly coarse

granularity.

The results of this experiment are shown in Table 4.6, where throughput

rates for the three multiple version algorithms and their single version coun

terparts are given for six different read-only transaction sizes. Table 4.7 gives

the associated restart counts. All of the multiple version algorithms again

yield approximately the same performance, as the probability of conflicts

between small transactions is still small

Throughput versus Read-Only Transaction Size

Size BTO MVTO 2PL VP SV MVSV

1 7.613 7.613 7.716 7.717 7.386 7.669

2 6.545 6.573 6.641 6.641 6.110 6.610

5 4.435 4.649 4.668 4.675 3.722 4.660

10 2.725 3.174 3.157 3.183 1.957 3.177

15 1.903 2.462 2.452 2.468 1.271 2.464

30 0.812 1.336 1.282 1.336 0.483 1.336

Table 4.6: Throughput, experiment 2.

Restarts versus Read-Only Transaction Size

Size BTO MVTO 2PL VP SV MVSV

1 240 240 54 53 536 133

2 214 186 39 39 618 103

5 281 83 22 17 706 58

10 362 38 31 6 654 27

15 431 27 24 7 562 17

30 372 4 50 2 373 2

Table 4.7: Restarts, experiment 2.



135

The CCA version pool aigorithm only outperforms the 2PL algorithm

upon which it is based for the largest size setting examined, and not by much.

This is because 2PL itself is again quite successful in handling the mix in the

experiment. Neither 2PL nor VP are deadlock-free or particularly close to

deadlock-free for this mix, as both permit lock upgrades. Any slight advan

tage of VP over 2PL may thus be explained by the fact that large read-only

transactions can cause update transactions to queue up waiting for a common

granule in 2PL. When this granule subsequently becomes available, the wait

ing update transactions will each obtain read locks and then deadlock when

they attempt to upgrade these locks to write locks. It is expected that a ver

sion pool variant of 2PLW, in which upgrades are not permitted, would have

no performance advantages whatsoever over 2PLW.

Both of the other multiple version algorithms do succeed in outperform

ing their single version counterparts. The advantages of multiple versions are

again most pronounced for SV versus MVSV. The poor performance of SV is

due to its bias against large read-only transactions for this workload. BTO is

also somewhat biased against large read-only transactions, as objects which

are read late in their execution are likely to have been updated by younger

transactions. With BTO, though, read-only transactions have some chance of

causing conflicting update transactions to be restarted. Also, read-only tran

sactions are likely to be restarted less far into their execution with BTO, thus

wasting fewer resources. As a result, MVTO does not provide the same



136

relative improvement over BTO that MVSV provides over SV.

4.1.4.3.3. Experiment 3: Read-Only Transaction Fraction

This experiment again investigates the performance characteristics of the

multiple version algorithms under a workload consisting of a mix of small

update transactions and large read-only transactions. The parameter varied

in this case is the fraction of read-only transactions in the mix. The workload

parameters of the previous experiment were used again in order to emphasize

situations in which multiple version algorithms are beneficial.

The system parameter settings for this experiment are the same as those

used in previous experiments (see Table 4.1). The workload parameter set

tings for this experiment are the same as those of the previous experiment

with largejmean = 30 (see Table 4.5). The fraction of read-only transactions

in the mix is varied by varying the the *malljproh parameter (the fraction of

update transactions in the mix) from 0.0 to 1.0.

Throughput versus Uipdate Transaction Fraction

Pr(Sm) BTO MVTO 2PL VP SV MVSV

0.0 0.878 0.878 0.878 0.878 0.878 0.878

0.2 0.815 1.043 1.021 1.043 0.540 1.043

0.4 0.812 1.336 1.282 1.336 0.483 1.336

0.6 0.981 1.868 1.739 1.872 0.526 1.867

0.8 1.130 2.947 2.606 2.956 0.546 2.943

1.0 6.842 6.842 7.013 7.010 6.691 6.790

Table 4.8: Throughput, experiment 3.



Restarts versus Update Transaction Fraction

Pr(Sm) BTO MVTO 2PL VP SV MVSV

0.0 0 0 0 0 0 0

0.2 224 1 35 0 286 2

0.4 372 4 50 2 373 2

0.6 506 24 73 12 418 23

0.8 730 72 163 30 453 83

1.0 605 605 263 267 908 702

Table 4.9: Throughput, experiment 3.

137

The throughput results of this experiment are shown in Table 4.8. The

restart counts are shown in Table 4.9. Again, all three of the multiple version

algorithms yield virtually identical performance. The main new finding of

this experiment is that multiple version algorithms outperform their single

version counterparts most significantly when the mix contains mostly small

update transactions. For MVTO and MVSV, an explanation is that when

many small update transactions can run to completion during the execution

of a few large read-only transactions, the update transactions are likely to do

something which will force the read-only transactions to be restarted. All it

takes, roughly speaking, is for one update transaction to write something that

a read-only transaction reads. An explanation for VP is that a mix of many

small update transactions and a few large read-only transactions is the most

likely mix to suffer from the increased lock upgrade deadlock problem

described previously.



138

4.2. GRANULARITY HIERARCHIES

In addition to studying alternative locking protocols and their correct

ness, several researchers have examined issues associated with selecting the

appropriate level of granularity for partitioning a database into lockable units

(Gray75, Gray79, Ries79a, Ries79b]. It was found that a database can be

organized as a hierarchy of lockable units, called a lock hierarchy, and locking

protocols for such a hierarchy have been developed [Gray75, Gray79, Kort82].

It was also found that, under some typical transaction mixes, a lock hierarchy

offers improved system performance [Ries79a, Ries79b].

Other types of concurrency control algorithms have been proposed, some

of which have been studied in previous chapters of this thesis. Most proposals

ignore the granularity issue, modeling a database simply as a homogeneous,

unstructured collection of fixed-size objects. Timestamp-based algorithms

have been criticized for this very reason [Gray81b]. In this section of the

thesis, it is shown that granularity hierarchies can be used outside the domain

of locking. Hierarchical versions of a validation algorithm, a timestamp algo

rithm, and a multiversion algorithm are presented. These hierarchical algo

rithms were first introduced in [Care83b]. The simulation model of the previ

ous chapter is extended to handle hierarchical algorithms, and the perfor

mance characteristics of several hierarchical concurrency control algorithms

are studied.



(

139

4.2.1. Hierarchical Algorithms

This section reviews of the concept of hierarchical locking and presents a

hierarchical version of the PRE algorithm whose performance was studied in

the previous chapter. Following a review of of lock hierarchies, three new

hierarchical concurrency control algorithms are developed. First, however,

some useful notation must be introduced.

For a granule y, the notation parent(g) will refer to the granule immedi

ately above g in the hierarchy. The notation children(g) will refer to the set

of granules right below g in the hierarchy. The notation deaccndents(g) will

refer to the set of all descendents of g in the hierarchy. Finally, the notation

ancestors(g) will refer to the set of all ancestors of g in the hierarchy.

Granules at the bottom level of the hierarchy will be referred to as leaf

granules.

4.2.1.1. Hierarchical Locking

In locking algorithms, a transaction wishing to access some item in the

database must first lock the item. A key performance question is: How big

should the lockable items (or granules) be? To maximize potential con

currency for small transactions, many small granules are best, and to minim

ize locking overhead for large transactions, a few large granules are best. The

notion of hierarchical locking was introduced to allow more than one level of

granularity to be used.



140

In hierarchical locking [Gray75, Gray79, Kort82], the database is viewed

as a hierarchy of granules. When a transaction sets a lock on an item at a

given level of the hierarchy, it is implicitly locking all of its descendents as

well. Small transactions obey a locking protocol whereby they set intention

locks at higher levels of the hierarchy before setting access locks at a lower

level. An intention lock on a granule indicates that some lower-level granule

is (or will be) locked. Large transactions can then avoid setting many lower-

level locks. The result is a small increase in locking overhead for small tran

sactions, a penalty which is hopefully offset by a large decrease in locking

overhead for large transactions.

A hierarchical version of preclaimed exclusive locking (H-PRE) is

described informally in Figure 4.4. The functions ILocked(g) and XLocked(g)

return true if is g is currently locked in intention or exclusive mode, respec

tively. Procedures ILock(g) and XLock(g) are used to set these two types of

locks. The function ableToRun(T) returns true if all locks required by tran

saction T are available. All locks are determined to be available if no

exclusive lock is set on any ancestor of any granule which T wishes to access,

and no intention or exclusive lock is set on any of the granules themselves.

The procedure sttLocks(T) is the called by each transaction T at startup

time in order to preclaim its locks. This routine sets all locks for T if they

are available, blocking T if not. Intention locks are set on each ancestor of

each granule to be accessed by T, and exclusive locks are set on each of the



function ableToRun(T);
begin

runnable :« true;
foreach g in readset{T) (J writt9ti(T) do

foreach G In anec8tor$(g) do
lfXLock(G)then

runnable := false;

fl;
od;
If ILock(j) or XLock(f) then

runnable := false;

fi;
od;
return runnable;

end;

141

procedure setLocks(r);
begin

tfableToRun(T)then
foreach g In readsct{T) M writetet[T) do

foreach G In ancc8tor$(g) do
ILock(G);

od;
XLock(i);

od;
else

block(T);
fl;

end;

Figure 4.4: Informal description of H-PRE algorithm.

granules themselves.

4.2.1.1.1. Hierarchical Validation

In this section, a hierarchical version of the serial validation algorithm

(SV) of [Kung81] will be presented. In describing the hierarchical version of

the algorithm, the notation and assumptions of Chapter 2 are employed.



142

For hierarchical serial validation (H-SV), the read and write sets of a

transaction will be sets of granules. Short transactions may specify these sets

in terms of small granules, and large transactions may specify them in terms

of granules higher up in the granularity hierarchy. As in SV, these sets are

used for commit-time conflict testing. A transaction T is validated if

read8et(T)f) writcact(Tre) — to for all transactions Tre £ RC(T), where

RC(T) is the set of recently committed transactions for T. In testing for

possible conflicts under H-SV, the algorithm must recognize that a granule gx

has some data in common with another granule g2 if 0i = ?2>

gx € ance8tor8(g2)1 or g2 € ancestors(g^. The H-SV algorithm is given in

Figure 4.5. The validation test used here is the original test of Kung and

Robinson [Kung81]. A hierarchical version of the timestamp-based SV algo

rithm can be developed in a manner analogous to the hierarchical version of

BTO which will be presented in the next section.

Theorem: The hierarchical version of SV is correct in the sense that serial-

izability is guaranteed.

Proof: The SV algorithm is known to be correct [Kung81). Thus, it suffices

to show that H-SV only commits transactions which would be committed by

SV. This may be shown as follows:

When a transaction T requests access to a granule g, it is requesting per

mission to access some or all of the granules in descendentsig). The H-SV



procedure validate(T);
begin

valid := true;
foreach Ttc\nRC{T) do

foreach gT In readset(T) do
foreach gv In writeset{TTC) do

If 9t •» Qv op Or € anec8tor9{gv)
or pv € ance0/ord(ir) then

valid := false;

fl;
od;

od;
od;
If valid then

commit writeset(T) to database;
else

restart( T);
fl;

end;

Figure 4.5: H-SV algorithm.

143

algorithm will commit T as long as no granule gr in its readset either con

tains, equals, or is a sub-granule of another granule gv in the writeset of any

recently committed transaction. This ensures that H-SV commits T only if

there is no overlap between the leaf granules associated with granules in the

readset of T and those associated with granules in the writeset of any

recently committed transaction. These associated leaf granules are a superset

of those which would comprise the readset of T and the writesets of the

recently committed transactions for SV. Thus, SV would commit T as well.



144

4.2.1.1.2. Hierarchical Timestamps

This section presents a hierarchical version of the basic timestamp order

ing algorithm (BTO) of [Bern81b]. The assumptions and notation used in

describing the hierarchical version of the algorithm are the same as those used

in the initial description of the algorithm in Chapter 2.

To extend the BTO algorithm for hierarchical use, each granule g will

have read and write summary timestamps, Rs-TS(g) and W5-rS(0), in addi

tion to its actual read and write timestamps. Its read and write summary

timestamp values will be:

RsmTS(n) = mzx{R-TS(G) \ G € g U descendents(g)}

Ws-TS(g) = max{W'TS(G) \ G e g U dcscendents(g)}

The actual read (write) timestamp for a granule g is the largest times

tamp of any transaction for which a read (write) request for g has been

granted. The summary read (write) timestamp for g is the largest timestamp

of any transaction for which a read (write) request for g or any sub-granule of

g has been granted. With these timestamps at each level of the hierarchy,

the BTO algorithm requires two extensions. First, when a transaction T

wishes to access a granule g, it must make sure that no granule in

ancestors(g) has an actual timestamp that violates the BTO ordering rules

when compared with TS(T). This would mean that some transaction

younger than T has already made a request that potentially conflicts with



procedure readReq(T,;);
begin

okay :» true;
foreach G In ancestors(g)do

If TS{T)< lT-r5(G)then
okay :« false;

fl;
od;
If TS{T) < Ws-TS{g) then

okay := false;
fl;
If not okay then

restart(r);
else

grant readReq;
R-TS{g) := mzx{TS{T),R-TS(g));
Rs-TS{g) := mzx(TSiT),RS'TS{g)))
while parent(g) exists do

9 := parent (g);
Rs-TS{g):- max(rS(r),/?5-r%));

od;

fl;
end;

procedure writeReq(r^);
begin

okay := true;
foreach (7 in ancc^or*!^) do

If 75(7) < R-TS(G) or rS(T) < W-TS(G) then
ofay := false;

fl;
od;
If TS(T) < Rs-TS(g) or TS(T) < Ws-TS[g) then

okay := false;
fl;
If not oJbay then

restart(T);
else

grant writeReq;
W-TS(g) := T5(T);
WS'TS{g):=TS(T);
while parent(g) exists do

p :«» poren/(fl);
Hfr-TSU) := m3x(TS{T),Ws-TS(g)y,

od;

fl;
end;

Figure 4.6: H-BTO algorithm.

145



14G

7"s request. Second, the algorithm must propagate timestamp .changes

upwards in the hierarchy to keep the summary timestamp values accurate.

The hierarchical version of BTO (H-BTO) is given in Figure 4.6.

To illustrate the roles played by the actual and summary timestamps in

H-BTO, consider the simple hierarchy of Figure 4.7, where there are two

lower-level granules, X and Y, and one upper-level granule, XY. Suppose

that R-TS(X) = 8, W-TS(X) « 8, R-TS(Y) = 15, W-TS(Y) = 13,

R-TS{XY) = S, and W-TS(XY) = 5. This implies that X and Y have

been accessed since time 5, but that their parent granule XY has not been

accessed as a whole since that time. The summary timestamp values will be

*5-rs(X) = 8, ws-TS{X) = st /?5-rs(r) = i5, ws-ts(Y) = 13,

RS-TS(XY) = 15, and WS-TS(XY) = 13. (Note that the actual and sum

mary timestamp values are always the same for leaf granules, so it is not

actually necessary to maintain them separately at the bottom level of the

hierarchy.)

Now, suppose that a transaction T with timestamp TS(T) = 10 wishes

to read X. H-BTO checks W- TS(XY), finds that the request is acceptable

thus far, then checks WS-TS(X) and finds that the request is indeed accept

able. H-BTO grants the request, setting R-TS(X) and RS-TS(X) equal to

10. Suppose instead that T had wished to read XY. H-BTO would have

checked WS-TS(XY), found that the request violated the BTO ordering rules

for reading because some sub-granule of XY had been written since time 10,



XY

X Y

Figure 4.7: Simple example hierarchy.

and rejected the request.

147

Theorem: The hierarchical version of BTO is correct in the sense that serial-

izability is guaranteed.

Proof: The BTO algorithm is known to be correct [Bern82a]. Thus, it

suffices to show that H-BTO only grants requests which would be granted by

BTO. This may be shown as follows:

When a transaction T requests access to a granule g, it is requesting per

mission to access some or all of the granules in descendents(g). The H-BTO

algorithm grants a read request as long as two conditions hold:

(1) TS(T) > W~TS{G) for all G € ancestors(g)

(2) TS(T)> Ws-TS(g)



148

The first condition guarantees that no transaction younger than. T has

written any granule which contains g, and thus possibly g itself. The second

condition guarantees that no transaction younger than T has written any por

tion of g. If both conditions (1) and (2) hold, H-BTO grants the request.

This occurs only when no transaction younger than T has written g or any

portion thereof, so no write timestamps of leaf granules associated with g in

the hierarchy would exceed TS(T) in the BTO algorithm. BTO would there

fore grant the request as well.

The H-BTO algorithm grants write requests as long as two conditions

hold:

(1) TS(T) > R-TS(G) and TS(T) > W-TS(G) for all G € ancestors(g)

(2) TS(T) > Rs-TS(g) and TS(T) > Ws-TS{g)

The first condition guarantees that no transaction younger than T has

read or written any granule which contains g, and thus possibly g itself. The

second condition guarantees that no transaction younger than T has read or

written any portion of g. If both conditions (1) and (2) hold, H-BTO grants

the request. This occurs only when no transaction younger than T has read

or written g or any portion thereof, so no read or write timestamps of leaf

granules associated with g in the hierarchy would exceed TS(T) in the BTO

algorithm. BTO would therefore grant the request as well. •



149

4.2.1.1.3. Hierarchical Multiple Version Algorithms

In this section, a hierarchical variant of the multi-version timestamp ord

ering algorithm (MVTO) of Reed [Reed78] is presented. Version management

and concurrency control are treated separately in the description, making the

hierarchical version of MVTO a natural extension of its non-hierarchical coun

terpart. The notation and definitions used here are the same as those used in

the description of the non-hierarchical version of the algorithm.

To extend the MVTO algorithm for hierarchical use, each granule g will

have a read/write summary history, Hs(g), in addition to its actual history,

H^g). This summary history will be:

Hs{9) = U iHrv>(G) I G 6 g U descendents(g)}

Thus, Hs{g) is the union of H^G) for all granules G having any data

in common with g. This union operation may be interpreted graphically.

The read/write history for a granule can be thought of as a timeline, with the

intervals in the history being line segments drawn on this timeline. The union

of two or more hbtories is computed by overlaying their timelines, with the

intervals in the resulting history being those intervals included in one or more

of the histories being unioned. For example, the union of {(3,7), (10,13)} and

{(1,2), (5,11) (15,17)} would be {(1,2), (3,13), (15,17)}. This example fa also

depicted graphically in Figure 4.8.



I I 1 f M I | 1 I | I I | > H^gl)
o i e e 4 6 e rr b 9 no n is is u u u it u

I ' I ' I ' " M • I M1 ' I ' ' *We2)
o a 2 e 4 e e n a 9 no m 12 as u as ie a? is

i i I nl I I I I I I—I—UuJ—J—r-> \J H^Cgk)
0 1 e 3 4 5 6 7 8 9 10 11 12 13 14 IS IS 17 IB k=l

Figure 4.8: Union operation for read/write histories.

150

These actual and summary histories are analogous to the actual and sum

mary timestamps used in creating the H-BTO algorithm from the BTO algo

rithm. With these histories at each level of the hierarchy, the MVTO algo

rithm requires two extensions. First, when a transaction T wishes to write a

granule g, it must make sure that no higher-level granules have actual his

tories with an interval containing TS(T). Second, when a transaction T

causes some history to be updated, the algorithm must propagate the change

upwards in the hierarchy to keep the summary histories accurate. For the

lowest level granules in the hierarchy, the actual and summary histories will

always be equal (just as for timestamps in the H-BTO algorithm), so they

need not be separately maintained for leaf granules.



procedure readReq(T,p);
begin

grant readReq;
txtVen(Hrv(g), TS(T));
txt\tn(Hs(g), TS(T));
while parent(g)exists do

g :«s parent [g);
txtVtts(Hs(g), TS(T));

od;
end;

procedure writeReq(7\;);
begin

okay := true;
foreach G in anee8tort(g)do

If TS{T) \nHrviG)thzn
okay := false;

ft;
od;
If TS(T) In /fefo) then

ofay :=» false;
fl;
If not okay then

restaur);
else

grant writeReq;
newVers(/U*). rS(T));
*twVtn(Hs{g), TS{T));
while parent (g) exists do

p := parent{g);
newVers(tf5U). T5(r));

od;
fl;

end;

Figure 4.0: H-MVTO algorithm.

151

The hierarchical version of MVTO (H-MVTO) is given in Figure 4.9. It

fa assumed in the figure that the newVers operation creates a new inten'al in

a history by taking the union of the history and the new interval, and that

the extVers operation merges intervals when extending one causes it to over

lap with another.



I

152

Theorem: The hierarchical version of MVTO fa correct in the sense that seri-

alizability is guaranteed.

Proof: The MVTO algorithm fa known to be correct [Bern82b]. Thus, it

suffices to show that H-MVTO only grants requests which would be granted

by MVTO. This may be shown as follows:

When a transaction T requests access to a granule g, it fa requesting per

mission to access some or all of the granules in descendents(g). The H-MVTO

algorithm always grants read requests, just as the MVTO algorithm does.

The H-MVTO algorithm grants write requests as long as two conditions hold:

(1) TS(T) fa in no interval in H^G) for any G € ancestors(g)

(2) TS(T) fa in no interval in Hs(g)

The first condition guarantees that no granule containing g has an inter

val which contains TS(T), so the version of g to be written cannot have been

read by a younger transaction. The second case guarantees that no granule

contained within g has an interval which contains TS(T), so no portion of

the version of g to be written can have been read by a younger transaction.

If both conditions (1) and (2) hold, H-MVTO grants the request. This occurs

only when neither g nor any portion thereof has a version which was written

before TS(T) and read after TS(T), so no read/write hfatories of leaf

granules associated with g in the hierarchy would have intervals containing

TS(T) under MVTO. MVTO would therefore grant the request as well. •



153

4.2.2. Hierarchies and Performance

In this section, the performance characteristics of several hierarchical

concurrency control algorithms are investigated using the simulation model of

Chapter 3. The algorithms studied are a hierarchical version of PRE and the

three new hierarchical concurrency control algorithms presented in the previ

ous section. PRE was chosen for hierarchical study because it was felt to be

representative of the class of hierarchical locking algorithms and was the easi

est of the locking algorithms to implement hierarchically. The other three

algorithms were chosen as being representative of hierarchical versions of the

validation, timestamp, and multiple version approaches. The purpose of this

performance study is to investigate the hypothesis that any hierarchical con

currency control algorithm should display much the same performance advan

tages over its non-hierarchical counterpart as locking does in some situations

[Ries70a, Ries79b]. Before presenting the details of the performance experi

ments of this section, however, the manner in which the performance model of

Chapter 3 was extended to accommodate the study of a two-level granularity

hierarchy fa described.

4.2.2.1. Modeling a Hierarchy

In order to allow hierarchical concurrency control algorithms to be simu

lated, a new parameter, sizejthrcshold, was added to the simulator. This

parameter defines the threshold, in objects, used to classify transactions as



154

being small or large for concurrency control purposes. Small transactions are

those with readset sizes which are less than or equal to sizejthresholdf and

large transactions are those whose readsets exceed sizejthreshold. The other

modification made to support hierarchical algorithms involved changing the

interpretation of the granjtize parameter somewhat. A two-level hierarchy fa

simulated, and it fa assumed that each lower level granule in the hierarchy

contains just one database object. The granjsize parameter fa thus used to

determine the size of the higher-level database granules in the hierarchy.

4.2.2.2. Concurrency Control Costs

As with previous simulations, it is necessary to make some assumptions

about the concurrency costs of the various algorithms to be simulated. The

cost models used for the H-PRE, H-SV, H-BTO, and H-MVTO algorithms are

simple variations on the cost models previously described for PRE, SV, BTO,

and MVTO. For transactions which access higher-level granules, the costs are

assessed as previously described for PRE, SV, BTO, and MVTO using the

number of unique higher-level granules read and written in place of the

number of database granules read and written. For transactions which access

lower-level granules, concurrency control costs are computed using the

number of lower-level granules (objects) read and written, and then the result

ing costs are doubled. Thfa cost doubling models the fact that transactions

which access lower-level granules incur extra overhead to descend the two-

level hierarchy of concurrency control information each time a request is



(

155

processed.

4*2.2.3. Experiments and Results

In this section, the results of two hierarchical performance experiments

are reported. The experiments were performed on H-PRE, H-SV, H-BTO, H-

MVTO, and the non-hierarchical counterparts of these four hierarchical algo

rithms. The first experiment investigates the performance of the hierarchical

algorithms under low concurrency control costs. The second experiment was

designed to investigate the potential performance advantages offered by

hierarchical algorithms in certain cases.

Before discussing the experiments and results, one other point should be

made to motivate the choice of large values for the concurrency control cost

parameters: Hierarchical algorithms are useful for enhancing performance

only when the costs associated with each concurrency control request are

large. In Chapter 3, where a 1 millisecond (simulated time) CPU cost was

charged for processing concurrency control requests, the results of the experi

ments with thfa CPU cost showed no performance degradation at fine granu

larities. Only in the last experiment in the chapter, where the cost of con

currency control request processing was extremely high, was the need for a

hierarchy indicated. Thus, hierarchies may not be useful in practice today.

However, as large primary memories allow more and more data to be buffered

for long periods of time in main memory, the ratio of the cost of object pro-



156

cessing to the cost of concurrency control should decrease. Thfa may make

hierarchies more attractive, making a study of their behavior worthwhile.

4.2.2.3.1. Experiment 1: Low Concurrency Control Cost

Thfa experiment investigates the performance characteristics of hierarchi

cal concurrency control algorithms under a workload consisting of a mix of

small and large transactions. The parameter varied in this experiment is the

size of the large transactions in the mix, the intention being to observe the

behavior of the algorithms as the degree to which hierarchies are potentially

helpful is varied. The system parameter settings used are those of Table 4.1,

where concurrency control costs are low. The batchjtime and numj>atches

parameter settings used in thfa experiment are the same as those used for the

previous experiments. The purpose of thfa experiment fa to investigate the

performance of the hierarchical algorithms when concurrency control costs are

not particularly high.

The workload parameter settings for this experiment are given in Table

4.10. The database consists of 10,000 objects, and its granularity fa 10 objects

per higher-level granule in the two-level hierarchy. The number of terminals

used fa 10. Small transactions, which are forty percent of the mix, each read

two objects, updating each object with fifty percent probability. Large tran

sactions, the other sixty percent of the mix, sequentially read a uniformly dis

tributed number of objects. The mean size for large transactions is varied



Workload Parameters

dbjsize 10000 objects
granjBize 10 object/granule
numjterms 10

delayjmean 1 second

small^prob 0.4

smalljmean 2 objects
small_zactjtypc random

smallj&izejdist fixed

smalljwritejprob 0.5

largejmean vary from 1 to 30 objects
large^xactjtype sequential
largejtizejiist uniform

largejivritejprob 0.1

sizejthreshold 4 objects

Table 4.10: Workload parameters for experiment 1.

157

from 1 to 30 objects. Each object fa updated with ten percent probability.

The size threshold for distinguishing between small and large transactions is 4

objects, so transactions which access 4 or fewer objects are considered small

and make their concurrency control requests based on objects (lower-level

granules). Transactions which access 5 or more objects are considered large

and make their requests based on higher-level granules.

The throughput results for experiment 1 are given in Tables 4.11a and

4.11b, with the associated restart counts given in Tables 4.12a and 4.12b.

The results are exactly as one would expect with low concurrency control

costs: No significant performance improvements are offered by the hierarchi

cal algorithms in thfa case. The tiny performance differences that do show up



Throughput versus Large Transaction Size

Size PRE H-PRE SV H-SV

1 7.444 7.445 7.435 7.434

2 6.346 6.346 6.337 6.327

5 4.414 4.414 4.386 4.368

10 2.030 2.930 2.888 2.873

15 2.281 2.281 2.215 2.189

30 1.228 1.228 1.130 1.112

Table 4.11a: Throughput, experiment 1.

Throughput versus Large Transaction Size

Size BTO H-BTO MVTO H-MVTO

1 7.444 7.442 7.444 7.442

2 6.342 6.331 6.342 6.331

5 4.404 4.374 4.405 4.385

10 2.805 2.867 2.905 2.861

15 2.234 2.181 2.235 2.178

30 1.113 1.081 1.111 1.070

Table 4.11b: Throughput, experiment 1 (cont.).

Restarts versus Large Transaction Size

Size PRE H-PRE SV H-SV

1 0 0 13 14

2 0 0 11 24

5 0 0 18 37

10 0 0 25 40

15 0 0 37 53

30 0 0 49 58

Table 4.12a: Restarts, experiment 1.

158



Restarts versus Larg<e Transaction Size

Size BTO H-BTO MVTO H-MVTO

1 5 7 5 7

2 4 18 4 18

5 9 34 6 24

10 19 46 12 48

15 24 55 19 51

30 56 71 51 70

159

Table 4.12b: Restarts, experiment 1 (cont.).

are in the favor of the non-hierarchical algorithms. These arise because of a

slightly elevated restart count due to the fact that large transactions claim

somewhat more data than needed with the hierarchical algorithms, thus

increasing the probability of conflicts. In thfa case, no significant gains in

terms of concurrency control overhead are available to offset this effect. Of

course, since the size of large transactions fa never chosen to be very large due

to statistical considerations, thfa does not imply that hierarchies would not be

useful for mixes including much larger transactions.

4.2.2.3.2. Experiment 2: Large Transaction Size

Thfa experiment repeats the study of the previous experiment in a situa

tion where concurrency control costs are large. The parameter varied in this

experiment fa again the size of the large transactions in the mix, the intention

being to observe the behavior of the algorithms as the degree to which hierar

chies are potentially helpful fa varied. The system and workload parameters

used in the experiment were selected in order to emphasize situations where



160

hierarchical algorithms are indeed beneficial. The system parameter jettings

for thfa experiment, are summarized in Table 4.13. The concurrency control

costs for thfa experiment are a combination of the largest cc^cpu and ccjio

parameters used in experiment 6 of Chapter 3. The workload parameters are

the same as those used for the previous experiment (see Table 4.10).

The results of thfa experiment are shown in Tables 4.14a and 4.14b,

where throughput rates for the four hierarchical algorithms and their non-

Svstem Parameter Settings

System
Parameter

Time

(Milliseconds)

startupjio
startupjcpu
objjio
objjcpu
ccjio
ccjcpu

staggerjmean

35

10

35

10

35

5

20

Table 4.13: System parameters for experiment 2.

Throughput versus Large Transaction Size

Size PRE H-PRE SV H-SV

1 4.662 3.395 4.292 3.010

2 3.869 3.314 3.577 2.942

5 2.534 2.928 2.353 2.601

10 1.608 2.204 1.505 1.956

15 1.245 1.781 1.134 1.578

30 0.662 1.049 0.571 0.884

Table 4.14a: Throughput, experiment 2.



Throughput versus Large Transaction Size
Size BTO H-BTO MVTO H-MVTO

1 4.293 3.013 4.293 3.013

2 3.580 2.944 3.580 2.944

5 2.363 2.602 2.365 2.607

10 1.514 1.945 1.514 1.942

15 1.153 1.575 1.153 1.558

30 0.584 0.897 0.590 0.891

Table 4.14b: Throughput, experiment 2 (cont.).

Restarts versus Large Transaction Size

Size PRE H-PRE SV H-SV

1 0 0 3 3

2 0 0 8 12

5 0 0 9 21

10 0 0 13 27

15 0 0 24 38

30 0 0 23 47

Table 4.15a: Restarts, experiment 2.

Restarts versus Large Transaction Size

Size BTO H-BTO MVTO H-MVTO

1 1 2 1 2

2 3 9 3 9

5 5 18 2 13

10 8 36 8 37

15 15 37 12 47

30 16 40 11 39

161

Table 4.15b: Restarts, experiment 2 (cont.).

hierarchical counterparts are given for six different large transaction sizes.

The non-hierarchical algorithms made all their concurrency control requests



162

based on objects for thfa study. The results are consistent with what one

would expect based on the results of the previous chapter and by Ries for a

two-level lock hierarchy [Ries79a, Ries79b]. That fa, all of the concurrency

control algorithms studied do benefit from the use of a granularity hierarchy.

The first result worth noting is that the performance of the hierarchical

algorithms follow the same trend as was observed in Chapter 3 for their non-

hierarchical counterparts. The hierarchical version of PRE, which uses block

ing rather than restarts, exhibits the best performance of the three algo

rithms. The H-SV algorithm performs second best, and the H-BTO and H-

MVTO algorithms perform the least well of the three algorithms studied. The

restart counts for thfa experiment are given in Tables 4.15a and 4.15b. Thus,

the use of a granularity hierarchy does not alter the result that blocking fa the

mechanism of choice for dealing with transaction conflicts.

Second, the use of a granularity hierarchy helps improve performance as

expected for all of the algorithms. Initially, when large transactions are of

mean size 1, the hierarchical algorithms exhibit worse performance than their

non-hierarchical counterparts, as the overhead for small transactions is greater

using the hierarchical algorithms. However, as the size of the large transac

tions in the mix fa increased, the hierarchical algorithms perform better due to

reduced concurrency control overhead for large transactions. With a mean

large transaction size of 5 objects, large transactions make concurrency con

trol requests in terms of higher-level granules, and a slight performance



163

improvement fa observed. As large transaction size fa increased further, the

degree of the benefit increases. As much as fifty percent additional

throughput is available using the hierarchical algorithms instead of the non-

hierarchical algorithms by the time largejmean = 30 objects fa reached.

4.3. SUMMARY

Thfa chapter has examined two performance enhancement schemes for

concurrency control algorithms, multiple versions and granularity hierarchies.

In terms of algorithmic concepts, several multiple version algorithms were

reviewed, and a new, multiple version serial validation algorithm was

presented. The notion of hierarchical locking was reviewed, and the notion

was extended so as to be applicable to other types of algorithms. New

hierarchical versions of serial validation, basic timestamp ordering, and mul-

tiversion timestamp ordering were presented.

Three experiments were presented which addressed the performance

fasues associated with multiple versions, and a number of conclusions were

drawn from the results of the experiments. First, multiple versions did not

improve performance much for 2PL, except in extreme cases, as 2PL was

quite capable of handling the transaction mixes tested without multiple ver

sions. The improvement of MVTO over BTO was also fairly limited. Multi

ple versions helped improve performance the most for SV, as SV was the

worst of the single-version algorithms for the transaction mixes examined.



164

Second, all of the multiple version algorithms performed virtually alike in the

experiments, as they all enabled large read-only transactions to execute

without interference. The sizes of small update transactions and the database

were such that conflicts between update transactions were very unlikely, so

differences in the performance of the algorithms for update transactions did

not play a role in the results. Finally, it was found that multiple versions

improved performance the most for workloads consisting of many small

update transactions and a few large read-only transactions.

Two experiments were presented which addressed the performance issues

associated with granularity hierarchies. The experiments investigated using a

two-level hierarchy in scenerios where the cost of concurrency control was

normal and extremely large, respectively. It was found that hierarchies are

not helpful if concurrency control costs are not significant, as fa the case nor

mally. The results for hierarchical versions of PRE, SV, BTO, and MVTO

indicate that hierarchies are indeed beneficial for mixes of small and large

transactions when concurrency control fa extremely expensive, however. The

hierarchical PRE algorithm performed the best out of all of the hierarchical

algorithms investigated, reinforcing the conclusions of Chapter 3 about block

ing versus restarts.



165

CHAPTER 5

CONCLUSIONS

In this chapter, the results of the previous chapters are reviewed. The

overall conclusions of thfa thesfa are compared and contrasted with those of

other concurrency control researchers. Implications of the results of this work

for other types of concurrency control algorithms, such as distributed con

currency control algorithms and algorithms which use information about tran

saction semantics, are presented. Finally, directions are suggested for future

research in the area of concurrency control algorithms and performance.

5.1. SUMMARY OF RESULTS

Chapter 2 of thfa thesfa presented an abstract model of concurrency con

trol algorithms which was useful for describing algorithms and analyzing their

relative storage and CPU costs. Results obtained from a comparison of the

costs of a two-phase locking variant, basic timestamp ordering, and serial vali

dation indicated that the two-phase locking variant examined has the best

overall cost characteristics. The storage costs of basic timestamp ordering

and serial validation each contained factors dependent upon the number of

recently committed transactions as well as the currently active transactions,

making them potentially more expensive (especially when transactions tend to



166

access disjoint sets of data items). The no-conflict CPU costs of the algo

rithms were less distinct, with differences involving constant factors on the

order of a factor of two or less, although locking was again the lowest-cost

algorithm. In light of the results of later chapters, which indicate that locking

fa superior in terms of performance, it suffices to summarize the main cost

result obtained using the model of Chapter 2 as follows:

(2.1) The costs associated with two-phase locking are at least as low
as those for basic timestamp ordering and serial validation.

Chapter 3 presented a performance model of concurrency control algo

rithms which was implemented in the form of a fairly flexible, detailed simu

lation program. Seven concurrency control algorithms, including two-phase

locking with full deadlock detection (with and without read/write upgrades),

two-phase locking with wait-die deadlock prevention, preclaimed exclusive

two-phase locking, basic timestamp ordering (with and without the Thomas

write rule), and serial validation. The main conclusions of Chapter 3 can be

summarized as follows:

(3.1) When conflicts between transactions were rare, all of the con
currency control algorithms examined performed equally well. If Gray
fa right about conflicts being rare in most real database systems
[Gray81a], the choice of a concurrency control algorithm will not affect
performance.

(3.2) For workloads in which conflicts were not rare, the concurrency
control algorithms that performed the best were those which minim
ized the number of transaction restarts. Blocking is thus the mechan
ism of choice for dealing with transaction conflicts.



167

(3.3) The main difference' between workloads of small transactions
and those with larger transactions fa that larger transactions make the
penalty associated with restarting a. transaction even greater. For
mixes of small and large transactions, performance can be improved
by attempting to select small transactions to restart when restarts are
required.

(3.4) If concurrency control costs are low compared to the cost of ob
ject accesses, which fa likely for current database systems, concurrency
control overhead does not affect performance. Fine granularities are
recommended in this case, although optimal performance can be ob
tained with as few as 1000 or more granules unless large, random tran
sactions are anticipated. If concurrency control costs are high, the
conclusions regarding blocking versus restarts still hold, but con
currency control overhead will be a significant factor. Medium granu
larities or a hierarchy will be necessary for optimal performance.

(3.5) Some algorithms have anomalies in their behavior which can de
grade their performance in the absence of a sufficient period of delay
following transaction restarts. An example fa the cyclic restart ano
maly shared by basic timestamp ordering and multiversion timestamp
ordering.

Chapter 4 investigated two concurrency control performance enhance

ment schemes, multiple versions and granularity hierarchies. Previously pro

posed algorithms using each of these schemes were reviewed. A new multiple

version algorithm was proposed, and several new hierarchical algorithms were

also proposed. Performance experiments were performed to investigate situa

tions in which multiple versions and granularity hierarchies offer performance

benefits. The main conclusions of Chapter 4 were:

(4.1) Multiple versions may be used in conjunction with serial valida
tion in order to improve performance when the workload includes up
date transactions and large read-only transactions.



168

(4.2) For workloads consisting of read-only transactions and update
transactions with the property that conflicts between update transac
tions were of low probability, all of the multiple version algorithms
performed alike, enabling transactions to execute with little interfer
ence.

(4.3) Multiple versions did little to improve the performance of 2PL,
as 2PL did well for the workloads examined without multiple versions.
They did help somewhat for basic timestamp ordering and
significantly for serial validation, however.

(4.4) Multiple versions were the most effective for workloads consist
ing of many small update transactions and a few large read-only tran
sactions.

(4.5) Granularity hierarchies may be used in conjunction with serial
validation, basic timestamp ordering, and multiversion timestamp ord
ering to attempt to improve performance when the cost of concurrency
control fa high and the workload includes a mix of small and large
transactions.

(4.6) Hierarchical versions of preclaimed locking, serial validation,
basic timestamp ordering, and multiversion timestamp ordering all
succeeded in improving performance for a mix of small and large tran
sactions. Hierarchical preclaimed locking performed the best of the
hierarchical algorithms investigated. However, these performance im
provements were only obtained when the cost of concurrency control
was extremely high. No improvements were obtained for the transac
tion mixes examined with normal concurrency control costs.

5.2. COMPARISON WITH OTHER WORK

In thfa section, the results of this thesis are compared with those of other

related studies. The most relevant related work to date has been performed

by Ries [Ries77, Ries79a, Ries79b], Bernstein and Goodman [Bern80], Lin and

Nolte |Lin82, Lin83], Peinl and Reuter [Pein83], Galler [Gall82], Robinson



169

[Robi82a, Robi82b], and Agrawal and DeWitt [Agra83b, Agra83c]. -Each of

these studies will be reviewed in turn, and the results of each.will be exam

ined in light of the conclusions of thfa thesis.

In his thesfa studies, Ries [Ries77, Ries79a, Ries79b] examined the effects

of granularity on performance. Most of his studies assumed that an I/O cost

was associated with concurrency control, as in experiment 6 of Chapter 3.

Ries found that relatively coarse granularities, on the order of 100 granules,

were sufficient to obtain optimal performance for locking. The findings of this

thesfa agree with those of Ries, as granularities of 100 to 1000 granules were

sufficient to achieve the best performance for each algorithm studied in

Chapter 3 under most conditions. Also, Ries compared a pair of locking algo

rithms similar to PRE and 2PL of Chapter 3, and he found that PRE tended

to outperform 2PL. PRE won over 2PL in the studies of thfa thesis as well,

the reason being that no restarts occurred with PRE. Ries also attributed the

dominance of PRE to its lack of restarts. Ries observed a tradeoff between

maximizing concurrency and minimizing concurrency control overhead. The

results of experiment 6 of Chapter 3 demonstrated the existence of thfa tra

deoff for the seven algorithms studied in thfa chapter. Ries found that a lock

hierarchy was useful in the presence of this tradeoff, and experiment 2 of the

granularity hierarchy section of thfa thesis yielded similar results for all algo

rithms tested.



170

Bernstein and Goodman performed a comprehensive study of concurrency

control algorithms for distributed database systems [Bcrn80]. They identified

four metrics — blocking, restarts, messages, and local processing cost — for

rating alternative algorithms, and they qualitatively examined a large number

of algorithms using the metrics. Their results were inconclusive, leading to

the identification of eleven algorithms based on locking and timestamps as

"dominant" over all other alternatives. To the extent that several locking

variants were included in the dominant set, the results of thfa thesfa agree

with those of Bernstein and Goodman. However, a main result of this thesis

fa that restarts are a driving performance factor, whereas blocking fa accept

able as long as a sufficient number of transactions remain unblocked to keep

critical system resources well utilized. Thus, the use of blocking and restarts

as separate metrics seems inappropriate in light of the results of the experi

ments reported here. Also, the results of the first five experiments of Chapter

3 suggest that the local processing cost metric may not be of interest for most

concurrency control algorithms.

Lin and Nolte have performed a number of simulation studies of locking

versus timestamps for distributed database systems [Lin82, Lin83]. The con

clusions of the most recent of their papers are that multiversion timestamp

ordering fa only marginally better than basic timestamp ordering, that basic

timestamp ordering performs better than two-phase locking if the avers se

transaction size fa small, and that two-phase locking performs better thrn



171

basic timestamp ordering if the average transaction size fa large. The_conclu

sions that basic timestamp ordering outperforms locking in some situations

contradicts the findings of thfa thesis. Thfa contradiction occurs for several

reasons, the primary one being that the system model used by Lin and Nolte

does not account for the effects of CPU and I/O resource sharing, as discussed

below. Also, differences between centralized and distributed systems may con

tribute to differences in the results of the studies.

The model of Lin and Nolte assumes that the message delays, CPU pro

cessing times, and I/O processing times associated with concurrency control

requests and subsequent object processing can be legitimately combined into a

single, exponentially determined "communications delay" time. This totally

eliminates the fact that CPU and I/O resources are shared by all transactions,

so service times for transactions in their model are not dependent on the

number of other transactions in service. It fa precisely the sharing of CPU

and I/O resources which allows blocking to have little or no negative perfor

mance impact. The sharing of resources also makes the penalty associated

with restarts greater, as restarted transactions waste CPU and I/O resources

which could have been used by other transactions instead. The absence of

shared resource modeling in Lin and Nolte's work would clearly cause their

results to differ from those reported here. They state in their most recent

paper [Lin83] that they intend to investigate more detailed models, and thi3

thesis would suggest that their future results will differ from previous ones.



172

A recent paper by Peinl and Reuter reports using a metric based-on com

bining the average level of multiprogramming and the number of restarts to

evaluate several alternative concurrency control algorithms driven by refer

ence strings from an actual database system [Pein83]. Algorithms studied in

the paper include two-phase locking, a two-version variant of locking, and

serial validation. Peinl and Reuter obtain results which indicate that the

serial validation algorithm leads to the largest number of restarts, yet they

end up concluding that, in terms of their performance parameter, it performs

well. The results of thfa thesfa indicate that their parameter, which fa the

ratio of the level of multiprogramming and the factor by which the number of

requests fa increased by restarts, fa not the best choice for a performance

metric. A metric based on number of restarts alone seems more appropriate

as long as the level of multiprogramming is five or more. Peinl and Reuter

also stated some conclusions about the relative performance of one-version

versus two-version algorithms, but this thesis did not examine multiple ver

sion algorithms which restricted the number of versions available.

In his thesfa, Galler [Gall82] presented a performance model for exclusive

two-phase locking in a single-site database system, a qualitative framework

for selecting among alternative distributed concurrency control algorithms,

and some simulation results for basic timestamp ordering versus locking in a

distributed database system. Of these, the simulation results are most

relevant to the conclusions drawn here. In particular, Galler reported finding



173

that basic timestamp ordering outperformed two-phase locking in a variety of

environments for mixes of small transactions. Galler attributed thfa to longer

waits until necessary restarts are performed in locking and greater parallelism

between sites with basic timestamp ordering.

Differences between distributed and single-site systems are thought to be

a factor in the contradiction between the results of this thesfa and the work of

Galler. Modeling differences are another factor. The model used by Galler is

similar to that of Lin and Nolte, although Galler claims to account for load-

dependence of transaction service times. Galler concentrates solely on mixes

of transactions which read and write a single object, and his locking algorithm

uses timeouts in place of true deadlock detection. In one study, Galler shows

the throughput for basic timestamp ordering increasing quite steadily up to a

multiprogramming level of at least ten, suggesting that his model of CPU and

I/O sharing may be unrealistic. Results from the multiprogramming level

experiments of thfa thesfa suggest that throughput fa not likely to increase

once a multiprogramming level of four or five has been reached. If anything,

throughput would be expected to decrease beyond thfa point due to an

increase in the probability of conflicts and the use of restarts.

Robinson performed research on the design of general transaction pro

cessing systems (Robi82a, Robi82b]. Robinson designed and implemented

such a system on the Cm* multiprocessor system at CMU [Full78). As a test

of the generality of his design, Robinson performed experiments in which



174

several different concurrency control algorithms were executed by the- system.

His results for locking versus serial validation indicated that the throughput

produced using locking was higher than that produced using serial validation,

and that locking led to fewer restarts. Although Robinson did not intend for

his work to be interpreted as a conclusive study of concurrency control perfor

mance, the results of his experiments concur with those of this thesfa.

Finally, Agrawal and DeWitt have recently completed a performance

study of several combinations of concurrency control and recovery algorithms

[Agra83b, Agra83c]. The result of their study, which was based on an analyti

cal model of the "burden" experienced by transactions operating under the

alternative concurrency control and recovery algorithm combinations, was

that locking (combined with several different recovery mechanisms) was the

best choice examined. They also concluded that serial validation was only

reasonable under workloads consisting of small transactions for which conflicts

are rare. Both of their conclusions are consistent with the results reported

here.

5.3. IMPLICATIONS OF THE RESULTS

The results of this thesfa have several implications. For single-site data

base systems, it fa clear that algorithms which prefer blocking to restarts

should be chosen. If conflicts are not rare, such algorithms will outperform

their competitors, and if conflicts are truly rare, they will perform at least as



175

well. To summarize the discussion at the end of Chapter 3, if sufficient

knowledge of transaction reads and writes fa available at transaction startup

time, preclaiming with read and write lock modes is probably best. Alterna

tively, if writes can be anticipated when objects are read, an upgrade-free

two-phase locking variant with a victim selection criteria based on the

amount of work completed by transactions fa also an excellent alternative. If

reads and writes cannot be predicted before they occur, two-phase locking

with deadlock detection and an improved victim selection criteria fa the algo

rithm of choice. Also, in special cases where structural knowledge makes

using deadlock-free locking protocols an option, such as in hierarchical data

bases or operations on a tree-structured index [Silb80, Moha82], such proto

cols are to be recommended.

For algorithms which utilize transaction semantics or data-type-specific

operation information in an attempt to improve concurrency [Allc82, Bem78,

Bern81a, Kort83, Garc83, Hsu83, Schw82, Spec83], the implication of this

thesfa fa that specialized locking protocols are probably the most promising

approach. The use of semantic information will not change the fact that res

tarts degrade performance in situations where conflicts occur with other than

low probability.

Even for distributed concurrency control algorithms, this thesis would

seem to indicate that locking protocols are likely to dominate those which

resolve conflicts using restarts. The main result of the performance



176

experiments of Chapter 3 was that blocking did not significantly degrade per

formance. With the multiprogramming level of the single-site database sys

tem modeled kept at five or more, the bottleneck resource was fully utilized

and the maximum throughput was obtained. Suppose that the sites in a dis

tributed database system each have a number of active transactions, and

further suppose that locking can succeed at keeping this number at levels

comparable to those which produced optimal throughputs in the single-site

system. Each site in the system should then operate at its maximum

throughput, and optimal performance should be achieved for the entire distri

buted system. This argument should hold as long as the number of messages

required for locking algorithms is comparable to those for other algorithms, so

the costs for locking are not greater than the costs for its competitors in dis

tributed database environments. Similar arguments also apply to the selec

tion of a concurrency control algorithm for a database server in a local com

puter network or for a distributed database system in which a central site is

to be used for concurrency control purposes.

6.4. LIMITATIONS OF RESULTS

The results reported in this thesis are subject to the limitations of the

models used to obtain them. There are a number of assumptions which were

made in the performance model of Chapters 3 and 4, and each of these

assumptions has influenced the results of the thesis to some extent. This sec

tion reviews the major assumptions which underly the model and discusses



177

their expected influence. The major underlying assumptions are:

(1) Transactions do not pause during their execution.

(2) The cost of processing a collection of concurrency control requests is pro

portional to the size of the collection.

(3) Buffer contents are flushed for restarted transactions, so the cost of exe

cuting a transaction from beginning to end is the same independent of

the restart history of the transaction.

(4) The overhead associated with switching contexts from one transaction to

another is not large.

(5) Each object read by a transaction is read only once, and all objects writ

ten must previously have been read.

The first assumption may be interpreted as a decision to model a transac

tion processing system rather than an interactive query processing system, a

decision which may be justified by noting that the performance impact of con

currency control is probably most important for transaction processing

environments in which high throughputs are required. New applications such

as engineering design systems or database browsers weaken the validity of this

assumption. Ries briefly examined the impact of such transaction idle times

on the performance of locking, and he found that coarse granularities were

still sufficient to produce near-optimal performance [Ries70a]. This result sug

gests that additional blocking due to idle transactions would not change the



178

thesis result that locking is the algorithm of choice. Otherwise, this addi

tional blocking should have led to a need for finer lock granularity in his

study.

The second assumption may be restated as the assumption that the over

head of performing a concurrency control system call is not the dominant fac

tor in the cost of concurrency control request processing. Otherwise, the sim

ple cost modeling approach taken in the simulations, based on the ccjio and

eejcpu parameters, poorly reflects reality. Because one of the conclusions of

Chapter 3 was that concurrency control overhead is insignificant as long as it

is small compared to the other costs (like object processing) incurred by tran

sactions, it is not expected that altering this assumption would significantly

alter the results.

The third and fourth assumptions have to do with the costs of restarts

and blocking. The third assumption basically says that restarted transactions

were modeled by starting them all over again, having them re-read all of the

objects in their readsets and re-write all of the objects in their writeset. The

fourth assumption says that blocking was modeled by setting blocked transac

tions aside, and that the cost of blocking was assumed to be some fraction of

the average locking cost modeled by ccjio and ccjcpu. If these assumptions

were drastically modified, so that restarts were nearly free and the cost of

blocking (and context switching) was very high in comparison, it is expected

that the results for blocking versus restarts would come out differently.



179

(Robinson made comments along these lines in a discussion of the outcome of

his experiments, though his results indicated that blocking was cheap and res

tarts were expensive in his Cm* transaction processing system.) It is felt that

such a cost reversal is unlikely for real database systems, as environments

where restarts are cheap due to vast amounts of buffer space are also likely to

have sufficient memory to make context switches inexpensive by keeping

many active transactions in primary memory.

The final assumption can be interpreted as a combination of assuming

that transactions have sufficient buffer space to maintain all items which may

be re-read in primary memory, and that transactions do not make "blind

writes". Both assumptions were made for convenience in generating and

manipulating transaction read and write sets in the simulator. It is not

expected that changing either of these assumptions would to lead to major

changes in the results of this thesis. If the "no blind writes" assumption were

relaxed, however, minor differences would be expected to arise among certain

of the timestamp algorithms. (Appendix 2 discusses the algorithmic aspects

of the effects of the "no blind writes" assumption on basic timestamp ordering

with the Thomas write rule and on multiversion timestamp ordering.)

6.5. FUTURE RESEARCH DIRECTIONS

One area of further research which may be appropriate is to extend the

simulation model of Chapter 3, relaxing some of the assumptions that were



180

discussed in the previous section. It was argued that this should not Alter the

conclusions significantly, but only by trying can the validity of these argu

ments be demonstrated.

Another obvious area for future work is to extend the performance model

of Chapter 3 to the distributed case, introducing a network model to connect

a collection of the single-site queuing models in order to investigate the

hypothesis that locking algorithms will be dominant for distributed con

currency control as well. Much of the work done in this area suffers from

modeling deficiencies, discussed earlier in this chapter, and might benefit from

the use of the more detailed single-site model of this thesis. An alternative to

modeling would be to be to measure the performance of alternative algorithms

in a real system or a representative testbed system of some sort. This under

taking would be worthwhile if a reasonably modular database system were

used as a starting point so that the implementation difficulties would not be

prohibitive.

Finally, with main memory sizes increasing dramatically each year, it is

anticipated that more and more data will be maintained in primary rather

than secondary memory as database systems progress towards meeting the

transaction throughput demands of the late 1980's [Gray83]. This may hap

pen by mapping databases into the virtual address space of transactions

[Trai82, Ston83], or by managing a large buffer pool in such a way that most

data of interest is kept in primary memory. In either case, new concurrency



181

control and recovery techniques may need to be investigated to provide syn

chronization and recovery for transactions in such extremely high-throughput

environments, as the overhead associated with current techniques may become

prohibitive there.



182

REFERENCES

[Agra83a] Agrawal, R., Carey, M., and DeWitt, D., "Deadlock Detection is

Cheap", ACM SIGMOD Record, January 1983.

[Agra83b] Agrawal, R., and DeWitt, D., "Integrated Concurrency Control

and Recovery Mechanisms: Design and Performance Evalua

tion", Technical Report No. 497, Computer Sciences Depart

ment, University of Wisconsin-Madison, February 1983.

[Agra83c] Agrawal, R., "Concurrency Control and Recovery in Multipro

cessor Database Machines: Design and Performance Evalua

tion", Ph.D. Thesis, Computer Sciences Department, University

of Wisconsin-Madison, 1983.

[Allc82] Allchin, J., and McKendry, M., "Object-Based Synchronization

and Recovery", School of Information and Computer Science,

Georgia Institute of Technology, 1982.

[Bada79] Badal, D., "Correctness of Concurrency Control and Implica

tions in Distributed Databases", Proceedings of the COMPSAC

'79 Conference, Chicago, Illinois, November 1979.

[Bada81] Badal, D,, "Concurrency Control Overhead or Closer Look at

Blocking vs. Nonblocking Concurrency Control Mechanisms",

Proceedings of the Fifth Berkeley Workshop on Distributed



183

Data Management and Computer Networks, February 1981.

[Baye80] Bayer, R., Heller, H., and Reiser, A, "Parallelism and Recovery

in Database Systems", ACM Transactions on Database Systems

5(2), June 1980.

[Bern78] Bernstein, P., Rothnie, J., Goodman, N., and Papadimitriou, C,

"The Concurrency Control Mechanism of SDD-1: A System for

Distributed Databases (The Fully Redundant Case)", IEEE

Transactions on Software Engineering 4(3), May 1978.

[Bern79] Bernstein, P., Shipman, D., and Wong, W., "Formal Aspects of

Serializability in Database Concurrency Control", IEEE Tran

sactions on Software Engineering 5(3), May 1979.

[Bern80] Bernstein, P., and Goodman, N., "Fundamental Algorithms for

Concurrency Control in Distributed Database Systems", Techni

cal Report, Computer Corporation of America, 1980.

(Bem81aJ Bernstein, P., Goodman, N., and Lai, M., "Two Part Proof

Schema for Database Concurrency Control", Proceedings of the

Fifth Berkeley Workshop on Distributed Data Management and

Computer Networks, February 1981.

[Bern81b] Bernstein, P., and Goodman, N., "Concurrency Control in Dis

tributed Database Systems", ACM Computing Surveys 13(2),

June 1981.



184

[Bern82a] Bernstein, P., and Goodman, N., "A Sophisticated Introduction

to Distributed Database Concurrency Control", Proceedings of

the Eighth International Conference on Very Large Data Bases,

September 1982.

(Bern82b] Bernstein, P., and Goodman, N., "Multiversion Concurrency

Control Theory and Algorithms", Technical Report No. TR-20-

82, Aiken Computation Laboratory, Harvard University, June

1982.

prya80a] Bryant, R., "SIMPAS - A Simulation Language Based on PAS

CAL", Technical Report No. 390, Computer Sciences Depart

ment, University of Wisconsin-Madison, June 1980.

[Brya80b] Bryant, R., SIMPAS User Manual, Computer Sciences Depart

ment and Madison Academic Computing Center, University of

Wisconsin-Madison, December 1980.

[Care83a] Carey, M., "An Abstract Model of Database Concurrency Con

trol Algorithms", Proceedings of the ACM SIGMOD Interna

tional Conference on Management of Data, San Jose, California,

May 1983.

[Care83b] Carey, M., "Granularity Hierarchies in Concurrency Control",

Proceedings of the Second ACM SIGACT-SIGMOD Symposium

on Principles of Database Systems, Atlanta, Georgia, March



185

1983.

[Casa79] Casanova, M., "The Concurrency Control Problem for Database

Systems", Ph.D. Thesis, Computer Science Department, Har

vard University, 1979.

[Ceri82] Ceri, S., and Owicki, S., "On the Use of Optimistic Methods for

Concurrency Control in Distributed Databases", Proceedings of

the Sixth Berkeley Workshop on Distributed Data Management

and Computer Networks, February 1982.

[Chan82] Chan, A, Fox, S., Lin, W., Nori, A, and Ries, D., "The Imple

mentation of An Integrated Concurrency Control and Recovery

Scheme", Proceedings of the ACM SIGMOD International

Conference on Management of Data, March 1982.

(Conw63] Conway, R., "Some Tactical Problems in Digital Simulation",

Management Science 10(1), January 1963.

pate82] Date, C, An Introduction to Database Systems (Volume II),

Addison-Wesley Publishing Company, 1982.

[EUi77] Ellis, C, "A Robust Algorithm for Updating Duplicate Data

bases", Proceedings of the 2nd Berkeley Workshop on Distri

buted Databases and Computer Networks, May 1977.

(Eswa76] Eswaren, K., Gray, J., Lorie, R., and Traiger, I., "The Notions

of Consistency and Predicate Locks in a Database System",



186

Communications of the ACM 19(11), November 1976.

[Ferr78] Ferrari, D., Computer Systems Performance Evaluation,

Prentice-Hall, Englewood Cliffs, New Jersey, 1978.

[Full7S] Fuller, S., Ousterhout, J., Raskin, L., Rubinfeld, P., Sindhu, P.,

Swan, R., "Multi-Microprocessors: An Overview and Working

Example", Proceedings of the IEEE 66(2), February 1978.

[Gall82] Galler, B., "Concurrency Control Performance Issues" Ph.D.

Thesis, Computer Science Department, University of Toronto,

September 1982.

[Garc79] Garcia-Molina, H., "Performance of Update Algorithms for

Replicated Data in a Distributed Database", Ph.D. Thesis, Com

puter Science Department, Stanford University, June 1979.

[Garc83] Garcia-Molina, H., "Using Semantic Knowledge for Transaction

Processing in a Distributed Database", ACM Transactions on

Database Systems 8(2), June 1983.

[Good83] Goodman, N., Suri, R., and Tay, Y., "A Simple Analytic Model

for Performance of Exclusive Locking in Database Systems",

Proceedings of the Second ACM SIGACT-SIGMOD Symposium

on Principles of Database Systems, Atlanta, Georgia, March

1983.



187

[Gray75) Gray, J., Lorie, R., Putzulo, G., and Traiger, I., "Granularity of

Locks and Degrees of Consistency in a Shared Database",

Report No. RJ1654, IBM San Jose Research Laboratory, Sep

tember 1975.

[Gray79] Gray, J., "Notes On Database Operating Systems", in Operat

ing Systems: An Advanced Course, Springer-Verlag, 1979.

[Gray81a] Gray, J., Homan, P., Korth, H., and Obermarck, R., "A Straw

Man Analysis of the Probability of Waiting and Deadlock in a

Database System", Report No. RJ3066, IBM San Jose Research

Laboratory, February 1981.

[Gray81b] Gray, J., "The Transaction Concept: Virtues and Limitations",

Proceedings of the Seventh International Conference on Very

Large Databases, September 1981.

[Gray83] Gray, J., "Practical Problems in Data Management - A Posi

tion Paper", Proceedings of the ACM SIGMOD International

Conference on Management of Data, San Jose, California, May

1983.

[Grif83] Griffeth, N., and Morsi, M., "SORCERER: A Distributed Data

base Testbed and Simulation Tool", School of Information and

Computer Science, Georgia Institute of Technology, 1983.



188

[Hsu83] Hsu, M., and Madnick, S., "Hierarchical Database Decomposi

tion - A Technique for Database Concurrency Control",

Proceedings of the Second ACM SIGACT-SIGMOD Symposium

on Principles of Database Systems, Atlanta, Georgia, March

1983.

{Iran79] Irani, K., and Lin, H., "Queueing Network Models for Con

current Transaction Processing in a Database System", Proceed

ings of the ACM SIGMOD Internationa] Symposium on Manage

ment of Data, 1979.

[Kort82] Korth, H., "Deadlock Freedom Using Edge Locks", ACM Tran

sactions on Database Systems 7(4), December 1982.

[Kort83] Korth, H., "Locking Primitives in a Database System", Journal

of the ACM 30(1), January 1983.

[Kung81] Kung, H., and Robinson, J., "On Optimistic Methods for Con

currency Control", ACM Transactions on Database Systems

6(2), June 1981.

[Lin82] Lin, W., and Nolte, J., "Distributed Database Control and Allo

cation: Semi-Annual Report", Technical Report, Computer Cor

poration of America, Cambridge, Massachusetts, January 1982.

[Lin83] Lin, W., and Nolte, J., "Basic Timestamp, Multiple Version

Timestamp, and Two-Phase Locking", submitted to Symposium



189

on Reliability in Distributed Software and Database Systems,

Palo Alto, California, October 1983.

[Lind79] Lindsay, B., Selinger, P., Galtieri, C, Gray, J., Lorie, R., Price,

T., Putzolu, F., Traiger, I., and Wade, B., "Notes on Distri

buted Databases", Report No. RJ2571, IBM San Jose Research

Laboratory, 1979.

[Mena78] Menasce, D., and Muntz, R., "Locking and Deadlock Detection

in Distributed Databases", Proceedings of the Third Berkeley

Workshop on Distributed Data Management and Computer Net

works, August 1978.

[Moha82] Mohan, O, Fussel, D., and Silberschatz, A., "Compatibility and

Commutativity in Non-Two-Phase Locking Protocols", Proceed

ings of the Second ACM SIGACT-SIGMOD Symposium on

Principles of Database Systems, Atlanta, Georgia, March 1983.

|Papa79] Papadimitriou, C, "Serializability of Concurrent Updates",

Journal of the ACM 26(4), October 1979.

[Pein83] Peinl, P., and Reuter, A., "Empirical Comparison of Database

Concurrency Control Schemes", Department of Computer Sci

ences, University of Kaiserslautem, West Germany, 1983.

[Poti80] Potier, D., and LeBlanc, P., "Analysis of Locking Policies in

Database Management Systems", Proceedings of the Perfor-



190

mance '80 Conference, 7th IFIP W.G.7.3 International- Sympo

sium on Computer Performance Modeling, Measurement, and

Evaluation, Toronto, May 1980.

[Reed78] Reed, D., "Naming and Synchronization in a Decentralized

Computer System", Ph.D. Thesis, Department of Electrical

Engineering and Computer Science, Massachusetts Institute of

Technology, 1978.

[Ries77] Ries, D., and Stonebraker, M., "Effects of Locking Granularity

on Database Management System Performance", ACM Transac

tions on Database Systems 2(3), September 1977.

[Ries79a] Ries, D., "The Effects of Concurrency Control on Database

Management System Performance", Ph.D. Thesis, Department

of Electrical Engineering and Computer Science, University of

California at Berkeley, 1979.

[Ries79b] Ries, D., and Stonebraker, M., "Locking Granularity Revisited",

ACM Transactions on Database Systems 4(2), June 1979.

[Robi82a] Robinson, J., "Design of Concurrency Controls for Transaction

Processing Systems", Ph.D. Thesis, Department of Computer

Science, Carnegie-Mellon University, 1982.

|Robi82b] Robinson, J., "Experiments with Transaction Processing on a

Multi-Microprocessor", Report No. RC9725, IBM Thomas J.



191

Watson Research Center, December 1982.

[Rose78] Rosenkrantz, D., Stearns, R., and Lewis, P., "System Level

Concurrency Control for Distributed Database Systems", ACM

Transactions on Database Systems 3(2), June 1978.

(Sarg76] Sargent, R., "Statistical Analysis of Simulation Output Data",

Proceedings of the Fourth Annual Symposium on the Simulation

of Computer Systems, August 1976.

[Saue81] Sauer, C, and Chandy, N., Computer Systems Performance

Modeling, Prentice-Hall, Englewood Cliffs, New Jersey, 1981.

[Schw82] Schwarz, P., and Spector, A, "Synchronizing Shared Abstract

Types", Technical Report CMU-CS-82-128, Carnegie-Mellon

University, September 1982.

[Silb80] Silberschatz, A, and Kedem, Z., "Consistency in Hierarchical

Database Systems", Journal of the ACM 27(1), January 1980.

[Spec83] Spector, A, and Schwarz, P., "Transactions: A Construct for

Reliable Distributed Computing", Operating Systems Review

17(2), April 1983.

[Stea8l] Stearns, R., and Rosenkrantz, D., "Distributed Database Con

currency Controls Using Before-Values", Technical Report,

SUNY Albany, February 1981.



192

[Ston76] Stonebraker, M.j Wong, E., Kreps, P. and Held, a, "The

Design and Implementation of INGRES", ACM Transactions on

Database Systems 1(3), September 1976.

|Ston79] Stonebraker, M., "Concurrency Control and Consistency of Mul

tiple Copies of Data in Distributed INGRES", IEEE Transac

tions on Software Engineering 5(3), May 1979.

[Ston83] Stonebraker, M., "Virtual Memory Transaction Management",

in preparation.

(Svob81) Svoboda, L., "A Reliable Object-Oriented Repository for a Dis

tributed Computer System", Proceedings of the Eighth Sympo

sium on Operating Systems Principles, Pacific Grove, California,

December 1981.

[Thom79] Thomas, R., "A Majority Consensus Approach to Concurrency

Control for Multiple Copy Databases", ACM Transactions on

Database Systems 4(2), June 1979.

|Trai82) Traiger, I., "Virtual Memory Management for Database Sys

tems", Operating Systems Review 16(4), October 1982.

[UUm83] UUman, J., Principles of Database Systems, Second Edition,

Computer Science Press, Rockville, Maryland, 1983.

[Wolf83] Wolff, R., personal communication.



193

APPENDIX 1

TIMESTAMP-BASED SERIAL VALIDATION

In this appendix, it is shown that the timestamp-based version of serial

validation (T-SV) from Chapter 2 of the thesis preserves the semantics of the

original serial validation (SV) algorithm of Kung and Robinson [Kung81].

The equivalence proof is based on showing that the T-SV algorithm commits

exactly those transactions which would be committed by the SV algorithm,

restarting all transactions which SV would restart.

Lezxuna 1: All transactions which are committed by the SV algorithm are

also committed by the T-SV algorithm.

Proof: Suppose some transaction T is committed by SV but restarted by T-

SV. Let RC(T) be the set of recently committed transactions, those which

committed between the time when T started executing and the time at which

it entered the validation critical section. Since T is committed by SV, it must

be true that readsct(T) f\ wriU8tt(Trc) = 0 for all transactions

Trc eRC(T). Since T is restarted by T-SV, it must also be true that

TS(x) > S-TS(T) for some x € readset{T). However, TS{x) > S-TS(T)

implies that x was written by a transaction which committed subsequent to

the startup of T, as TS(x) is the commit timestamp of the most recent writer

of x and S-TS(T) is the startup timestamp of T. Thus, x must be in



194

writc8et(Trc) for some transaction Trc E RC(T). This contradicts the

assumption that SV committed T, proving the lemma. •

Lemma 2: All transactions which are restarted by the SV algorithm are also

restarted by the T-SV algorithm.

Proof: Suppose some transaction T is restarted by SV but committed by T-

SV. Let RC(T) be the set of recently committed transactions, those which

committed between the time when T started executing and the time at which

it entered the validation critical section. Since T is restarted by SV, it must

be true that some x E readset(T) is also in writeset(Tre) for some transaction

Tn E RC( T). Since T is committed by T-SV, it must also be true that

TS(x)< S-TS{T) for all x E readset (T). However, TS(x)< S-TS(T)

implies that x has not been written by any transaction which committed sub

sequent to the startup of 7\ as TS(x) is the commit timestamp of the most

recent writer of x. Thus, x cannot be in writestt(TTC) for any transaction

Trc E RC(T). This contradicts the assumption that SV restarted 7*, proving

the lemma. •

Theorem: The set of transactions committed by the T-SV algorithm is pre

cisely that set of transactions which would be committed by the SV algo

rithm, so the T-SV algorithm preserves the semantics of the SV algorithm.

Proof: The theorem follows directly from a combination of Lemmas 1 and 2.



195

APPENDIX 2

THE "NO BLIND WRITES" ASSUMPTION

The "no blind writes" assumption says that transactions never write a

data item without having first read the item. This appendix investigates the

consequences of this assumption on two timestamp-based concurrency control

algorithms, basic timestamp ordering (BTO) with the Thomas write rule

[Bern81b] and Reed's multiversion timestamp ordering (MVTO). In particu

lar, it is shown that certain conditions anticipated by each of these algorithms

cannot arise if transactions always read items before writing them.

Thomas Write Rule

The only difference between the BTO algorithm and BTO with the Tho

mas write rule is that BTO will reject a write request from a transaction T

for a data item x if either R-TS(x)> TS(T) or W-TS(x) > TS(T),

whereas BTO with the Thomas write rule will only reject the write request if

R-TS(x) > TS(T). In the latter case, where W-TS(x) > TS(T), BTO with

the Thomas write rule accepts the request and ignores the actual write. The

idea of the Thomas write rule, then, is to reduce the number of restarts by

ignoring old writes.



196

Lemma: Under the "no blind writes" assumption, no write request from from

a transaction T for an item x will ever find R-TS{x) < TS(T) when

W-TS(x)> TS(T).

Proof: The "no blind writes" assumption implies that R-TS(x) > W-TS(x)

for all x, as R-TS(x) is the timestamp of the youngest transaction which has

read x, W-TS(x) is the timestamp of the youngest transaction which has

written x, and R-TS(x) < W-TS(x) would mean that the youngest writer of

x never read x before writing it. The lemma follows trivially. ©

Theorem: Under the "no blind writes" assumption, the behavior of the BTO

algorithm and the BTO algorithm with the Thomas write rule will be exactly

the same.

Proof: Since the lemma shows that the only difference between the two algo

rithms disappears under the "no blind writes" assumption, BTO and BTO

with the Thomas write rule must behave identically under this assumption. ©

Multiversion Timestamp Ordering

In the variant of multiversion timestamp ordering (MVTO) presented in

(Reed78j, a write request from a transaction T for an item x is accepted as

long as no interval in Hrv{x) contains the time TS(T). In other words, if

TS{T) lies in a hole in Hrw{x)y a space between the last read ofone version of

x and the creation (write) of the next newer version of rr, the write request is

accepted. When a write request is accepted, a new version of x is created,



107

and the interval [TS(T),TS{f)) is added to x to denote the new, unread ver

sion. Reads are always accepted, and are granted by returning to T the

latest version of x which was created prior to timestamp time TS( T).

The write request processing logic of MVTO in this original version is a

bit complex, and has it been simplified in more recent related work [SvobSl].

The simplification, made so that versions other than the most recent one can

not be written (for laser disk implementation purposes), involves granting a

write request from T for x only if TS(T) is greater than the timestamp of

the latest read of the most recent version of x. More simply, writes are only

accepted if they define the newest, most recent version of x, in which case the

MVTO algorithm basically becomes BTO enhanced with a version pool for

use by read-only transactions. It can be shown that versions of MVTO with

and without this simplification treat write requests identically under the "no

blind writes" assumption.

Lemma: Under the "no blind writes" assumption, the read/write history of

each item x will have no holes. The rightmost point of each interval associ

ated with each version of x, except for the most recent version, will coincide

with the leftmost point of the interval associated with the next newer version

of x.

Proof: When a transaction T submits a write request for x, it has already

successfully read x under the "no blind writes" assumption. At the time of

this read request, then, the interval in Hrw(x) associated with the version of x



198

read by T will have been extended to TS(T). If T's write request is now

granted, the interval associated with the new version of x will begin at

TS{T)f exactly where the previous interval stopped. Thus, all writes create

versions which pick up where the previous version left off, making holes in

H^x) impossible. •

Theorem: Let R-TS(x) denote the maximum timestamp of any transaction

which has read the most recent version of x using MVTO (i.e., the rightmost

read in H^x)). Under the "no blind writes" assumption, write requests will

be accepted only if TS(T) equals or exceeds R-TS(T).

Proof: The lemma showed that holes do not exist in read/write histories

under the "no blind writes" assumption. Hence, outdated writes can never be

accepted under the rules of MVTO. Only a write which creates a new, most

recent version of x will be accepted. Such a write can only be submitted by a

transaction T with timestamp TS(T) such that TS(T) > R-TS(T). •



199

APPENDIX 3

SIMULATION OUTPUT ANALYSIS

This appendix presents the statistical analysis techniques used to inter

pret the simulation results of the experiments of Chapters 3 and 4. The

methods employed here are based on a combination of the traditional batch

means approach [Sarg76, Ferr78, Saue81] and a slightly more sophisticated

technique for estimating variance for use in computing confidence intervals for

the results. The improved variance estimation technique was proposed by

( Wolff [Wolf83]. Sample results, obtained from simulations presented in the

thesis, are given to demonstrate the utility of this approach. Also, the

confidence interval results from each of the experiments of Chapters 3 and 4

are given for reference at the end of this appendix.

A Statistical Model

This section describes the modified batch means approach used in this

thesis. For brevity, the batekjtitne parameter will be referred to as Tb and

the numjbatches parameter will be referred to as nb. Each simulation is run

for 7* simulation time units, and the overall simulation is divided into nb

batches of Tb/nb simulation time units apiece. The throughput estimate for

I the if* batch, denoted as X^ for l<t<n$, is the ratio of the number cf Iran-



200

sactions which commit during the batch to the length of the batch in. simula

tion time units. (This number is multiplied by a scaling factor of 1000 for

display purposes.) These estimates are summed and divided by the total

number of batches in order to compute the overall throughput estimate for a

simulation:

Variance Estimation

To model the statistical characteristics of the throughput observations, it

is assumed that {X,} is a stationary sequence and that each X; has mean fi

and variance a2. It is further assumed that the correlation between adjacent

batches is significant, but that the correlation between non-adjacent batches

is negligible, an idea proposed in [Conw63]. More formally:

°"PW-U!rfcii>! (2)
Given thb model of the correlation between batches, the variance of the sum

of the Xi's may be expressed as:

V«r(E*)= EVfcr(Ai)+ 22? E ^(X^) (3)
1-1 1-1 l-I /-!+ 1

= nb(f> + 2(it*-l)c (4)

Thus, the variance of the mean throughput estimate % is obtained by divid

ing this result by n62:



201

<r 2(nt-l)c

In order to compute a confidence interval for the throughput estimate X,

Var(5C) must be estimated. Thb, in turn, requires that estimates be obtained

for a2 and ?. The estimate often used for o2 in computing confidence intervals

b a2, the sample variance of the throughput observations:

«2 =
1 "•

77EIW (6)
n6-l ,-l

If the Xjys are correlated, the usual sample variance b not a good esti

mate for a2. Instead, tr2 may be estimated by taking advantage of the fact

that only adjacent batches are correlated. The sample variance of the

throughputs from the even batches provides an unbiased estimate of a2, as

does the sample variance of the throughputs from the odd batches, so these

two sample variances are computed and averaged in order to obtain a better

unbiased estimate of a2. (Thb improved estimate of (T2 is denoted a2 to indi

cate that it has been introduced because of the covariance ? between adjacent

batches, and it b assumed that nt, the number of batches, b chosen to be

even.) To estimate (r2, then:

**=t^m&P (7)

J"" ="k72T.e * (8)even

**m = /„ io\ i E (xrxoaY (9)



202

^-TOSPr.L**-'' " (!0>
2 _ 8even + *<xM Q^

*f ~~ 2

The covariance term in equation (5) may then be estimated once s~ has

been computed. Thb estimate of the covariance ?, denoted c, may be com

puted as follows. First, an unbiased estimate n ofthe quantity 2(a2 - c) b:

«=rrEWi^-)2 (12)
Given jc, an estimate of £ b:

«=•? " f (13)
Finally, then, the variance estimate s2 for the overall throughput X may

itself be computed by substituting the variance and covariance estimates of

equations (11) and (13) into equation (5):

2 sf 2(nb-l)e
V = „ + 2~ <14)nb nhz

Confidence Intervals

Given an overall throughput estimate X and an estimate *1 of its vari

ance, confidence intervab can be computed in a fairly simple manner. The

confidence interval computation b performed as though the X^s were

independent, as b typically assumed, with the improved variance estimate s2

used in place of the usual estimate of 82/nb. Thus, the 100(l-a)% confidence

interval for the mean throughput p b computed as:



203

X± 6 ~. (15)

where:

^=Va/2;.l-l» «? = \/«7 (16)
The f0/2;»|-i term b chosen from the Student-t dbtribution with nb-l degrees

of freedom. That b, if Y has thb dbtribution, then:

Prob(Y > t,,,^) = f (17)
In order to obtain the most reasonable confidence interval estimates, the

computational procedure used in thb thesb differs slightly from what has

been described thus far. First, the confidence interval estimates obtained

using the preceding method will be slightly narrow because the correlation

between adjacent X;'s reduces the "effective" number of degrees of freedom

[Wolf83]. The actual confidence interval computations in this thesb are

therefore performed assuming only nb/2 degrees of freedom, a heurbtic

intended to make the confidence intervab obtained using the methods

described here even more realistic.

Second, since the estimator e of the covariance c b itself just a random

variable, actual experimental data may occasionally yield a negative covari

ance estimate. Since correlations tend to be positive in thb type of study,

c<0 b taken to indicate that the actual covariance $ b itself negligible.

When such values are obtained, the associated confidence interval estimate b

computed by reverting to standard methods, using s~/nb to estimate Vcr(X)



204

and using nb-l for the number of degrees of freedom.

Finally, simulations are actually run for a total of nb+l batches worth

of simulation time. The purpose of the extra batch b to allow the results of

the first batch (batch 0) to be dbcarded in order to eliminate any transient

effects which might result from starting the simulation in an unrealistic state

[Conw63]. (The startup state used in implementing the simulations b where

all terminals are in the "stagger delay" state, a state which indeed proved to

be vbited rarely following the start of the simulations.) The mean

throughputs and associated confidence intervab are actually computed using

the results of batches 1 through nb, and all other data (restart counts, etc.) b

abo obtained from these batches only.

Experimental Results

Thb section presents confidence interval results obtained by applying the

methods described in thb appendix to the simulation results obtained from

the experiments of Chapters 3 and 4. As mentioned briefly in the chapters,

all of the experiments of thb thesb were run with control parameter settings

of numjbatches = 20 and batchjtime = 50,000. These settings were selected

based on confidence interval results obtained from preliminary experiments.

Table A3.1 contains actual throughput observations which were obtained

from the simulation studies of 2PL in experiment 3.4 of Chapter 3. Table

A3.2 gives the various estimator and confidence interval values which result



Sample Throughput Observations

Batch 10000 1000 100 10 1

Number Grans Grans Grans Grans Gran

0 2.420 2.440 2.140 1.000 0.440

1 3.140 3.140 2.640 0.920 0.220

2 2.780 2.560 2.640 0.600 0.120

3 2.820 2.120 1.860 0.580 0.140

4 2.780 2.960 2.500 1.300 0.080

5 2.780 2.460 2.180 1.080 0.100

6 2.660 2.580 1.860 1.120 0.060

7 3.320 3.100 2.000 0.840 0.080

8 2.680 2.460 2.820 0.960 0.120

9 2.680 2.860 2.600 0.980 0.080

10 2.740 2.680 2.420 0.880 0.120

11 2.640 2.100 2.280 0.980 0.060

12 3.100 3.260 2.500 0.860 0.100

13 2.620 2.840 1.860 0.600 0.100

14 3.420 3.120 2.600 0.860 0.080

15 2.960 2.900 2.680 0.860 0.100

16 3.040 2.940 2.500 0.560 0.100

17 2.360 2.380 2.360 0.540 0.060

18 2.320 2.600 2.280 0.600 0.080

10 2.380 1.920 2.520 0.880 0.140

20 2.840 2.520 1.940 1.060 0.080

Table A3.1: Chapter 3, experiment 3.4, 2PL observations.

205

when the statbtical methods detailed in thb appendix are applied to this

data. The statbtics in Table A3.2 were produced with nb = 20, as mentioned

above. The observations used in the computation are those from batches 1

through 20 in Table A3.1. The confidence intervab given in Table A3.2 are

for X, the mean throughput, and are given as a percentage of X. These data

samples and results serve to illustrate the utility of the statbtical approach

used here.



206

It b evident from Table A3.1 that discarding batch 0 actually does help

to eliminate transient throughput observations. Table A3.2 shows that the

sample variance $2 b generally smaller than the improved variance estimate

«2, an expected result since the sample variance tends to underestimate the

actual variance when the data b positively correlated. In the cases where the

number of granules (Grans) b 10 and 10,000 in the table, the value of the

covariance estimate e b as large as 15-30% of the size of a2. Thb indicates

that it b indeed worthwhile using these methods to reduce the error that

would occur if the correlation were ignored. In one instance e b seen to be

negative, and in thb case the standard variance estimate a2 b used in the

confidence interval computation.

The remaining tables in thb appendix document the 90% confidence

interval estimates associated with the throughput results given for the experi

ments of Chapters 3 and 4. Again, each confidence interval is expressed as a

percentage of its corresponding throughput estimate. Confidence interval esti-

Sample Confidence Interval Computations

Grans X a2 •? e '1 CI.

1 0.101 0.001 0.001 0.000 0.000 ± 18.85%
10 0.853 0.046 0.047 0.017 0.004 ± 13.45%

100 2.352 0.093 0.095 0.004 0.005 ± 5.51%
1000 2.675 0.139 0.137 -0.009 0.007 ± 5.39%

10000 2.803 0.087 0.091 0.012 0.006 ±4.88%

Table A3.2: Chapter 3, experiment 3.4, 2PL results.



207

mates for experiment 4.3 of Chapter 3 are omitted, as they were reported in

the chapter. These statistical results are included for the sake of complete

ness.



208

Throughout Confidence Intervals -

Grans TPL WD TPLW PRE BTO SV

1 8.252

±1.39%
8.063

±1.27%
11.215

±0.40%
11.127

±0.39%
7.790

±0.97%
7.655

±0.75%

10 10.971

±0.56%
11.004

±0.61%
11.420

±0.44%
11.421

±0.44%
10.648

±0.72%
10.314

± 0.58%

100 11.373

±0.44%
11.373

±0.46%
11.419

±0.46%
11.420

±0.46%
11.328

±0.44%
11.262

±0.43%

1000 11.413

±0.43%
11.413

±0.43%
11.420

±0.45%
11.420

±0.45%
11.405

±0.42%
11.402

± 0.43%

10000 11.419

±0.44%
11.419

±0.44%
11.420

±0.45%
11.420

±0.45%
11.418

±0.44%
11.416

± 0.42%

Table A3.3: Chapter 3, experiment 1.1.

Throuchput Confidence Intervals

Grans TPL WD TPLW PRE BTO SV

1 3.400

± 2.31%
3.638

±2.24%
6.479

±0.91%
6.241

±0.82%
2.595

±2.32%
3.634

± 1.47%

10 5.974

± 1.21%
5.790

± 1.10%
7.096

±0.64%
7.161

±0.67%
5.119

± 1.78%
5.231

±1.38%

100 7.039

±0.82%
6.966

±0.90%
7.161

±0.68%
7.163

±0.68%
6.906

±0.86%
6.714

±0.69%

1000 7.152

±0.64%
7.149

±0.62%
7.161

±0.67%
7.161

±0.68%
7.138

±0.66%
7.113

± 0.66%

10000 7.159

± 0.72%
7.159

±0.70%
7.160

±0.69%
7.161

±0.68%
7.158

±0.66%
7.158

±0.66%

Table A3.4: Chapter 3, experiment 1.2.



200

Throughput Confidence Intervals

Grans TPL WD TPLW PRE BTO SV

1 0.748

±2.56%
0.788

± 3.51%
2.917

± 1.40%
2.741

± 0.73%
0.169

± 11.06%
0.SS9

± 1.75%

10 0.946

±8.10%
1.065

±3.45%
2.097

± 1.92%
3.028

±0.75%
0.406

± 11.19%
1.200

±3.09%

100 2.823

±1.53%
2.633

±1.65%
3.335

±0.79%
3.360

±0.74%
2.231

±3.57%
2.408

± 1.14%

1000 3.320

±0.81%
3.293

±0.80%
3.359

±0.57%
3.361

±0.82%
3.248

±1.36%
3.205

±0.81%

10000 3.357

±0.64%
3.351

±0.67%
3.362

±0.68%
3.361

±0.88%
3.355

±0.68%
3.347

±0.77%

Table A3.5: Chapter 3, experiment 1.3.

Throughput Confidence Intervab

Grans TPL WD TPLW PRE BTO SV

1 0.281

±1.08%
0.240

±2.86%
1.518

± 1.60%
1.425

±0.68%
0.001

± 172.90%
0.336

±1.20%

10 0.074

±34.59%
0.234

±6.05%
0.432

±6.61%
1.415

±0.68%
0.004

±79.33%
0.355

± 2.22%

100 0.827

±3.89%
0.701

± 5.73%
1.414

± 1.57%
1.759

± 0.51%
0.235

± 24.09%
0.784

± 2.71%

1000 1.676

± 1.17%
1.599

± 1.70%
1.784

±0.79%
1.790

±0.80%
1.473

±3.88%
1.4S0

± 1.43%

10000 1.776

±0.79%
1.770

±0.81%
1.788

±0.53%
1.788

± 1.05%
1.763

±0.66%
1.749

± 0.65%

Table A3.6: Chapter 3, experiment 1.4.



210

Throughout Confidence Intervals -

Grans TPL WD TPLW PRE BTO SV

1 0.179

±0.97%
0.139

±4.59%
1.031

± 1.47%
0.964

±0.49%
0.000

±0.00%
0.205

±1.68%

10 0.009

±72.12%
0.121

±5.12%
0.143

± 18.41%
0.959

±0.72%
0.000

±0.00%
0.207

±1.83%

100 0.203

± 17.41%
0.237

±6.55%
0.583

±6.54%
LIU

±1.39%
0.009

± 169.26%
0.371

±4.84%

1000 1.023

± 1.74%
0.933

±4.46%
1.207

±1.09%
1.216

±1.10%
0.642

± 13.61%
0.861

± 2.17%

10000 1.193

±0.92%
1.186

±1.00%
1.217

±0.73%
1.218

± 1.77%
1.148

±2.60%
1.159

± 1.60%

Table A3.7: Chapter 3, experiment 1.5.

Throughout Confidence Intervals

Grans TPL WD TPLW PRE BTO SV

1 0.089

±4.43%
0.071

±6.59%
0.518

± 1.60%
0.487

±0.78%
0.000

±0.00%
0.09G

± 3.31%

10 0.002

± 172.90%
0.062

±7.99%
0.020

± 56.18%
0.485

±0.94%
0.000

±0.00%
0.096

± 3.31%

100 0.006

±84.82%
0.054

± 9.41%
0.029

±47.64%
0.481

± 0.69%
0.000

±0.00%
0.102

± 3.39%

1000 0.266

±9.14%
0.201

± 12.92%
0.483

±4.05%
0.592

±1.30%
0.025

± 136.42%
0.267

± 3.79%

10000 0.571

±2.62%
0.558

±3.34%
0.617

± 1.42%
0.614

± 2.71%
0.431

± 11.21%
0.524

± 3.79%

Table A3.8: Chapter 3, experiment 1.6.



211

Throughput Confidence Intervals -

Grans TPL WD TPLW PRE BTO SV

1 0.062

± 12.07%
0.068

±8.57%
0.759

± 3.85%
0.609

± 5.35%
0.000

±0.00%
0.098

± 10.66%

10 0.001

± 172.90%
0.060

± 12.54%
0.035

±98.00%
0.608

± 5.11%
0.000

±0.00%
0.099

± 14.88%

100 0.024

±73.46%
0.103

±28.07%
0.049

±91.92%
0.612

±4.75%
0.015

± 144.47%
0.142

± 15.27%

1000 0.537

± 12.23%
0.456

± 13.91%
0.709

± 5.41%
0.738

±4.36%
0.138

± 30.52%
0.393

±7.87%

10000 0.780

±3.54%
0.759

±4.07%
0.783

±3.70%
0.787

±4.13%
0.677

±6.39%
0.675

±6.70%

Table A3.9: Chapter 3, experiment 2.1.

Throughput Confidence Intervals

Grans TPL WD TPLW PRE BTO SV

1 0.062

± 11.37%
0.071

±13.90%
0.770

± 5.35%
0.646

±4.80%
0.000

±0.00%
0.097

± 10.15%

10 0.418

±9.48%
0.414

± 11.71%
0.797

±5.44%
0.801

±4.48%
0.052

±88.93%
0.408

±7.76%

100 0.712

± 5.98%
0.718

± 5.58%
0.799

±5.06%
0.799

±5.23%
0.443

± 18.13%
0.685

±6.17%

1000 0.770

±4.36%
0.770

±4.35%
0.798

±5.27%
0.799

±5.45%
0.700

±7.04%
0.746

± 5.65%

10000 0.775

±4.44%
0.775

±4.95%
0.798

±5.24%
0.799

±5.36%
0.728

±5.32%
0.754

±4.13%

Table A3.10: Chapter 3, experiment 2.2.



212

Throughput Confidence Intervals

Grans TPL WD TPLW PRE BTO SV

1 0.066

±8.58%
0.091

± 16.82%
0.919

±4.09%
0.771

± 5.21%
0.000

±0.00%'
0.111

± 12.48%

10 0.464

± 11.78%
0.517

± 10.35%
0.967

±3.15%
0.963

±3.78%
0.124

±24.66%
0.450

±8.81%

100 0.883

± 5.65%
0.894

±6.44%
0.966

±3.35%
0.964

±3.29%
0.691

±9.93%
0.858

±6.89%

1000 0.930

±4.52%
0.945

±5.40%
0.966

±2.92%
0.969

±3.02%
0.775

± 11.31%
0.905

± 4.79%

10000 0.942

±5.46%
0.944

±5.49%
0.966

±3.13%
0.967

±3.01%
0.874

±6.98%
0.913

±4.37%

Table A3.11: Chapter 3, experiment 3.1.

Throughput Confidence Intervals

Grans TPL WD TPLW PRE BTO SV

1 0.069

± 11.91%
0.109

± 12.89%
1.126

±4.93%
0.992

±6.00%
0.000

±0.00%
0.128

± 14.85%

10 0.535

±5.43%
0.633

±9.82%
1.227

±6.48%
1.226

±5.71%
0.073

±80.88%
0.522

±6.66%

100 1.055

±7.18%
1.112

±6.02%
1.228

±5.75%
1.226

±5.58%
0.862

±8.14%
1.022

±4.75%

1000 1.183

±4.69%
1.183

±4.72%
1.229

±5.75%
1.228

±5.90%
1.081

± 10.96%
1.112

± 5.45%

10000 1.200

±4.96%
1.184

± 5.15%
1.229

±5.67%
1.228

±5.26%
1.113

±9.61%
1.130

±5.60%

Table A3.12: Chapter 3, experiment 3.2.



213

Throughput Confidence Intervals

Grans TPL WD TPLW PRE BTO SV

1 0.089

± 16.92%
0.203

±20.25%
1.535

±4.25%
1.344

±5.65%
0.002

± 249.77%
0.202

± 13.31%

10 0.639

± 12.30%
0.857

±7.33%
1.709

± 4.85%
1.709

±5.04%
0.159

± 59.52%
0.710

±8.56%

100 1.462

± 5.52%
1.556

±4.64%
1.713

±5.18%
1.717

± 4.82%
0.410

± 62.60%
1.352

±5.37%

1000 1.646

±6.12%
1.669

±5.20%
1.714

± 5.12%
1.715

± 5.13%
1.463

±6.47%
1.571

±4.56%

10000 1.688

± 5.12%
1.679

± 5.21%
1.713

±5.09%
1.715

± 5.10%
1.576

±5.55%
1.578

±4.56%

Table A3.13: Chapter 3, experiment 3.3.

Throughput Confidence Intervals

Grans TPL WD TPLW PRE BTO SV

1 0.101

± 18.85%
0.450

±22.02%
2.521

±4.25%
2.371

± 5.01%
0.022

±221.16%
0.333

± 11.90%

10 0.853

± 13.45%
1.551

± 9.98%
2.830

±4.20%
2.860

±3.30%
0.338

± 27.01%
0.963

± 13.36%

100 2.352

± 5.51%
2.580

± 5.81%
2.865

±3.78%
2.861

±3.20%
1.246

± 25.21%
2.185

±7.44%

1000 2.675

±5.39%
2.752

±4.99%
2.859

±3.86%
2.864

±3.92%
2.415

±6.27%
2.504

± 5.39%

10000 2.803

±4.88%
2.777

±4.25%
2.860

±3.84%
2.864

±4.02%
2.634

±5.33%
2.554

±5.22%

Table A3.14: Chapter 3, experiment 3.4.



214

Throughput Confidence Intervals

Grans TPL WD TPLW PRE BTO SV

1 0.134

±7.96%
0.183

± 13.45%
0.915

± 4.31%
0.771

± 5.19%
0.002

± 176.61%
0.219

±9.34%

10 0.681

±6.78%
0.749

±7.00%
0.965

±3.62%
0.967

±3.97%
0.326

± 25.71%
0.660

±5.88%

100 0.921

±4.98%
0.921

± 4.41%
0.964

±3.88%
0.964

± 3.89%
0.869

±7.67%
0.908

±6.50%

1000 0.953

± 4.51%
0.953

± 4.52%
0.964

±3.79%
0.965

±3.68%
0.914

±6.66%
0.939

±5.09%

10000 0.956

±4.42%
0.955

± 4.57%
0.964

±3.76%
0.964

±3.82%
0.930

±6.25%
0.942

± 5.18%

Table A3.15: Chapter 3, experiment 4.1.

Throughout Confidence Intervals _

Grans TPL WD TPLW PRE BTO SV

1 0.034

± 14.94%
0.043

± 19.59%
0.919

±4.20%
0.771

± 5.16%
0.005

± 227.19%
0.059

± 18.76%

10 0.174

±45.20%
0.303

±9.70%
0.964

±3.39%
0.965

±4.37%
0.064

±62.01%
0.296

±6.86%

100 0.798

±6.44%
0.812

±5.48%
0.963

±4.37%
0.963

± 4.14%
0.434

± 10.89%
0.735

±6.99%

1000 0.899

± 4.75%
0.900

±4.8S%
0.961

± 3.60%
0.965

± 3.95%
0.738

±6.49%
0.847

±3.98%

10000 0.919

± 3.79%
0.912

± 4.57%
0.961

± 3.84%
0.964

1±3.98%
0.800

±6.87%
0.863

±3.33%

Table A3.16: Chapter 3, experiment 4.2.



215

Throughput Confidence Intervals

Grans TPL WD TPLW PRE BTO SV

1 0.240

±4.90%
0.393

±9.79%
3.094

± 2.67%
2.294

± 2.95%
0.004

± 172.90%
0.406

±4.41%

10 1.676

±7.34%
1.909

±6.28%
3.385

± 2.45%
3.369

±2.42%
0.373

±33.37%
1.587

± 4.65%

100 3.024

±3.09%
3.098

±2.89%
3.391

±2.40%
3.389

±2.29%
2.073

± 10.67%
2.906

±2.71%

1000 3.211

±3.15%
3.215

±3.00%
3.370

± 2.18%
3.370

±2.28%
2.928

±3.23%
3.084

±3.76%

10000 3.028

±2.83%
3.028

±2.94%
3.140

±2.77%
3.141

±2.79%
2.823

±3.82%
2.913

±3.16%

Table A3.17: Chapter 3, experiment 5.1.

Throughput Confidence Intervals

Grans TPL WD TPLW PRE BTO SV

1 0.237

± 5.22%
0.398

±8.17%
2.799

±3.19%
1.742

±3.55%
0.000

±0.00%
0.398

± 5.27%

10 1.594

±9.08%
1.851

±5.28%
3.261

±2.41%
3.215

±2.92%
0.254

±60.83%
1.557

±5.67%

100 2.951

±2.60%
3.015

±3.31%
3.306

±2.38%
3.284

±2.48%
2.196

± 10.43%
2.856

± 3.33%

1000 3.142

±2.99%
3.144

± 3.19%
3.272

±2.53%
3.270

± 2.49%
2.958

±2.93%
3.049

±3.21%

10000 2.962

±2.41%
2.965

± 2.59%
3.073

± 2.82%
3.071

± 2.78%
2.866

±3.40%
2.896

±3.20%

Table A3.18: Chapter 3, experiment 5.2.



216

Throughput Confidence Intervals ~

Grans TPL WD TPLW PRE BTO SV

1

1

0.066

±8.58%
0.088

± 16.26%
0.919

±4.17%
0.771

±5.15%
0.000

±0.00%
0.111

± 15.07%

10

10

0.473

± 10.07%
0.515

±10.30%
0.967

±3.15%
0.963

±3.78%
0.121

± 27.68%
0.460

±9.43%

100

100

0.883

±5.91%
0.893

±6.96%
0.967

±3.25%
0.964

±3.28%
0.698

±9.09%
0.863

±5.87%

1000

1000

0.931

±4.66%
0.945

±5.58%
0.966

±3.13%
0.969

±2.88%
0.834

±9.27%
0.905

±4.74%

10000

10000

0.942

± 5.46%
0.944

±5.60%
0.966

±3.02%
0.967

±3.03%
0.874

±6.70%
0.912

±4.78%

Table A3.10: Chapter 3, experiment 6.1.

Throughput Confidence Intervals

Grans TPL WD TPLW PRE BTO SV

1

1

0.0G6

±8.58%
0.088

± 16.80%
0.917

± 4.13%
0.769

± 4.70%
0.000

±0.00%
0.111

± 14.67%

10

10

0.433

±8.69%
0.521

±9.26%
0.967

±3.29%
0.963

±3.77%
0.115

±35.11%
0.455

± 9.79%

100

100

0.883

±5.84%
0.892

±6.54%
0.967

±3.41%
0.964

±3.21%
0.603

±20.14%
0.862

±6.13%

1000

1000

0.932

± 4.39%
0.943

±5.36%
0.966

±3.03%
0.969

±3.00%
0.834

±9.26%
0.905

± 4.86%

10000

10000

0.942

± 5.41%
0.944

±5.37%
0.966

±3.20%
0.959

±4.26%
0.877

±6.22%
0.905

± 5.04%

Table A3.20: Chapter 3, experiment 6.2.



217

Throughput Confidence Intervals

Grans TPL WD TPLW PRE BTO SV

1

1

0.063

±7.21%
0.076

± 19.19%
0.894

±3.68%
0.754

±4.66%
0.000

±0.00%
0.108

± 14.10%

10

10

0.416

± 12.27%
0.447

± 12.16%
0.930

±3.98%
0.928

±4.44%
0.038

±96.05%
0.432

± 10.51%

100

100

0.810

±5.96%
0.813

±5.27%
0.924

±3.80%
0.924

±4.19%
0.631

± 10.97%
0.786

±6.46%

1000

1000

0.787

±5.89%
0.794

±5.01%
0.870

±3.83%
0.872

±3.99%
0.662

± 11.10%
0.766

±4.68%

10000

10000

0.475

±4.92%
0.475

±4.95%
0.511

±5.04%
0.510

±5.46%
0.460

±5.61%
0.460

±6.75%

Table A3.21: Chapter 3, experiment 6.3.

Throughout Confidence Intervals

Grans BTO MVTO TPL VP SV MVSV

1 1.707

±5.04%
1.707

±5.04%
1.837

±4.06%
2.228

± 2.69%
0.407

± 11.60%
2.364

± 2.61%

10 2.632

±4.53%
2.844

±3.42%
2.831

±3.92%
2.939

±4.13%
1.183

±8.36%
2.863

± 2.93%

100 2.930

±4.33%
2.998

±4.39%
3.009

±4.15%
3.011

±3.92%
2.397

±6.28%
2.999

±4.46%

1000 2.918

±3.82%
3.012

±4.05%
3.012

±4.45%
3.013

± 4.41%
2.691

± 5.01%
3.012

±4.31%

10000 2.926

±3.79%
3.013

±4.33%
3.013

±4.32%
3.013

±4.44%
2.755

±4.55%
3.013

±4.36%

Table A3.22: Chapter 4, experiment 1, multiple versions.



Throughout Confidence Intervals

Size BTO MVTO TPL VP SV MVSV

1 7.613

±0.37%
7.613

±0.39%
7.716

±0.34%
7.717

±0.37%
7.386

±0.60%
7.669

± 0.42%

2 6.545

±0.55%
6.573

±0.59%
6.641

±0.55%
6.641

±0.60%
6.110

± 1.41%
6.610

±0.60%

5 4.435

±1.52%
4.649

± 1.30%
4.668

±1.30%
4.675

± 1.16%
3.722

± 1.85%
4.660

±1.20%

10 2.725

±3.65%
3.174

±2.49%
3.157

±2.52%
3.183

± 2.45%
1.957

±4.30%
3.177

± 2.57%

15 1.903

±3.94%
2.462

±2.37%
2.452

±2.50%
2.468

±2.50%
1.271

±6.06%
2.464

±2.35%

30 0.812

±7.04%
1.336

±4.11%
1.282

±5.35%
1.336

±4.24%
0.483

± 10.71%
1.336

±4.06%

Table A3.23: Chapter 4, experiment 2, multiple versions.

218

Throughput Confidence Intervab

Pr(Sm) BTO MVTO TPL 1 VP SV 1 MVSV

0.0 0.878

± 4.73%
0.878

±4.73%
0.878

± 4.73%
0.878

± 4.67%
0.878

±4.67%
0.878

± 4.67%

0.2 0.815

±5.02%
1.043

±4.36%
1.021

±4.09%
1.043

±4.33%
0.540

±9.88%
1.043

±4.33%

0.4 0.812

±7.04%
1.336

±4.11%
1.282

± 5.35%
1.336

±4.24%
0.483

± 10.71%
1.336

±4.06%

0.6 0.981

±8.22%
1.868

± 4.62%
1.739

±5.03%
1.872

±4.77%
0.526

± 11.15%
1.867

± 4.81%

0.8 1.130

± 11.38%
2.947

±4.92%
2.606

±4.30%
2.956

±4.75%
0.546

± 13.05%
2.943

± 4.90%

1.0 6.842

±0.43%
6.842

±0.43%
7.013

±0.42%
7.010

±0.36%
6.691

±0.56%
6.790

±0.59%

Table A3.24: Chapter 4, experiment 3, multiple versions.



Throughput Confidence Intervals

Size PRE H-PRE SV H-SV

1 7.444

±0.53%
7.445

±0.54%
7.435

±0.63%
7.434

±0.64%

2 6.346

±0.59%
6.346

±0.63%
6.337

±0.74%
6.327

±0.72%

5 4.414

± 1.45%
4.414

± 1.46%
4.386

± 1.31%
4.368

± 1.24%

10 2.930

±1.85%
2.930

±1.79%
2.888

±2.14%
2.873

±2.75%

15 2.281

± 2.10%
2.281

±2.12%
2.215

±3.09%
2.189

±3.35%

30 1.228

±5.26%
1.228

±5.91%
1.130

±5.60%
1.112

±5.80%

Table A3.25a: Chapter 4, experiment 1, hierarchies.

Throughput Confidence Intervals

Size BTO H-BTO MVTO 1 H-MVTO

1 7.444

±0.56%
7.442

±0.58%
7.444

±0.56%
7.442

±0.58%

2 6.342

±0.60%
6.331

±0.65%
6.342

±0.60%
6.331

±0.65%

5 4.404

± 1.35%
4.374

±1.34%
4.405

± 1.45%
4.385

±1.38%

10 2.895

±2.67%
2.867

±3.24%
2.905

±2.30%
2.861

±3.27%

15 2.234

±2.90%
2.181

±3.27%
2.235

± 2.84%
2.178

±4.16%

30 1.113

± 9.61%
1.081

± 10.96%
1.111

± 12.16%
1.079

± 11.72%

Table A3.25b: Chapter 4, experiment 1, hierarchies (cont.).

219



Throughput Confidence Intervals

Size PRE H-PRE SV H-SV

1 4.662

±0.55%
3.395

±0.58%
4.292

±0.65%
3.010

±0.89%

2 3.869

±1.07%
3.314

±0.97%
3.577

±0.97%
2.942

±0.86%

5 2.534

±1.30%
2.928

±0.69%
2.353

±2.31%
2.601

±0.82%

10 1.608

± 2.91%
2.204

± 1.24%
1.505

±3.16%
1.956

±1.92%

15 1.245

±5.68%
1.781

±2.42%
1.134

±6.36%
1.578

±2.95%

30 0.662

±7.65%
1.049

±5.07%
0.571

± 5.79%
0.884

± 5.38%

Table A3.26a: Chapter 4, experiment 2, hierarchies.

Throughiout Confidence Intervals

Shi BTO H-BTO MVTO H-MVTO

1 4.293

±0.72%
3.013

±0.69%
4.293

±0.72%
3.013

± 0.69%

2 3.580

±0.81%
2.944

±0.88%
3.580

±0.81%
2.944

±0.88%

5 2.363

± 2.10%
2.602

± 1.05%
2.365

±2.04%
2.607

±0.80%

10 1.514

±3.31%
1.945

± 2.55%
1.514

±3.36%
1.942

± 2.82%

15 1.153

±5.12%
1.575

± 3.64%
1.153

±5.09%
1.558

± 4.25%

30 0.584

±6.70%
0.897

± 5.41%
0.590

±7.20%
0.891

±6.04%

Table A3.26b: Chapter 4, experiment 2, hierarchies (cont.).

220


	Copyright notice 1983
	ERL-83-56 (1 of 6)
	ERL-83-56 (2 of 6)
	ERL-83-56 (3 of 6)
	ERL-83-56 (4 of 6)
	ERL-83-56 (5 of 6)
	ERL-83-56 (6 of 6)

