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ABSTRACT

In database management systems, {ransactions are provided for
constructing programs which appear to execute atomically. If more than one
transaction is allowed to run at once, a concurrency control algorithm must be
employed to properly synchronize their execution. Many concurrency control
algorithms have been proposed, @d this thesis examines the costs and

performance characteristics associated with a number of these algorithms.

Two models of concurrency control algorithms are described. The first is
an abstract model which is used to evaluate and compare the relative storage
and CPU costs of concurrency control algorithms. Three algorithms, two-
phase locking, basic timestamp ordering, and serial validation, are evaluated
using this model. It is found that the costs associated with two-phase locking

are at least as low as those for the other two algorithms.

The second model is a simulation model which is used to investigate the

performance characteristics of concurrency control algorithms. Results are



presented for seven different algorithms, including four locking algorithms,
two timestamp algorithms, and serial validation. All performed about equally
well in situations where conflicts between transactions were rare. When
conflicts were more frequent, the algorithms which minimized the number of
transaction restarts were generally found to be superior. In situations where
several algorithms each restarted the same number of transactions, those
which restarted transactions which had done less work tended to perform the
b.est.

Two previously proposed schemes for improving the performance of
concurrency control algorithms, multiple versions and granularity hierarchies,
are also examined. A new multiple version algorithm based on serial
validation is presented, and performance results are given for this algorithm,
the CCA version pool algorithm, and multiversion timestamp ordering.
Unlike their single version counterparts, all three algorithms performed
comparably under the workloads considered. Three new hierarchical
concurrency control algorithms, based on serial validation, basic timestamp
ordering, and multiversion timestamp orderihg, are presented. Performance
results are given for these algorithms and a hierarchical locking algorithm.
All were found to improve performance in situations where the cost of

concurrency control was high, but were of little use otherwise.
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CHAPTER 1

INTRODUCTION

1.1. BACKGROUND

An important component of any shared database system is the transac-
tion manager. This portion of the system is responsible for dealing with the
recovery and synchronization aspects Qf database management; it does so by
providing applications programmers with an abstraction known as a iransac-
tion with which to construct programs which access the database. A small

example will illustrate the usefulness of the transaction abstraction.

1.1.1. An Example

Consider the database of three bank accounts shown in Figure 1.1 and
the three sample banking transactions shown in Figure 1.2. For the moment,
no distinction will be made between a transaction and a program. The read
and write operations in Figure 1.2 respectively represent reading values from
the database into local variables and writing values from local variables into
the database. Transaction T transfers twenty dollars from account X to
account Y, transaction T, computes interest for account X, and transaction
T, deposits thirty-five dollars into account Z. If these three transactions are

all allowed to run concurrently without synchronization, the operaticns
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comprising the transactions may be arbitrarily interleaved. As this example

will illustrate, this may produce undesirable results.

Since transaction T accesses no data in common with either transaction
T, or T,, the manner in which the operations of T, are interleaved with the
operations of the other transactions will have no effect on the outcome of
their concurrent execution. However, since T, and T, read and write com-
mon data, certain interleavings of the operations of these two transactions
may produce undesirable results. If T, and T, execute serially, i.e., one of
the transactions completes before the other begins, only two outcomes may
result from executing the three transactions on the database of Figure 1.1
Figure 1.3 depicts these two possibilities. In execution A, T, executes before

T,, so the funds transfer of transaction T completes before the interest com-

<>

X =60
Y = 115
Z="7

Figure 1.1: Small example databzse.
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putation of transaction T, takes place. In execution B, T, executes after T,
so the interest computation of T, completes before the funds transfer of T

takes place.

- Outcomes that are the result of executing transactions serially are known
as sersal outcomes. Executions in which transaction operations may be inter-
leaved, but which produce the same results as some serial outcome, are called
serializable executions [Eswa76, Papa79, Bern8lb]. An example of a non-
serializable interleaving of the operations of transactions T, and T, is given

in Figure 1.4. In this example, T,'s subtraction of twenty dollars from

transaction T1:

begin
read z_value from X;
read y_velue from Y;
z_volue ;= z_value - 20;
y_volue = y_value + 20;
write z_value into X;
write y_value into Y;

end;

transaction T2:

read z_valye from X;

2_value ;= z_value * 1.10;

write z_value into X;
end; .

transaction T3:

begin
read z_value from Z;
2_value ;= z_value + 35;
write z_value into Z;

end;

Figure 1.2: Three example transactiors.



Figure 1.3: Possible serial outcomes.

account X is lost when T, writes the results of its interest computation iunto

the database.

There are other problems besides lost updates that can occur when tran-

sactions are permitted to executie concurrently with no controls. For exam-

ple, if a monthly report-generating transaction T, were to read the valuzs in

T2: read z_value from X;
T2: z_volue :== 2_value * 1.10;

TI:
TI:
TL
T1:
TI:
TL
T2:

read z_value from X;
read Lvolue from Y;
2_value ;== z_vslye - 20;
pvolue ;= g value + 20;
write z_value into X
write y_valucinto Y;
write z_value into X

Figure 1.4: A non-serializable interleaving.



the database of Figure 1.1 while transaction T} was executing, it could read
inconsistent data. In particular, if T, reads the balances from both accounts
X and Y after T; has written its new value for X but before it has written
its new value for Y, T, will see twenty dollars missing from X but not yet
added to Y. T, could not see such partial results in any serializable execu-
tion of T, and T,. In a serializable execution, T, would see the database
either as it appeared before T'; ran or as it appears after the completion of
T,. This example illustrates another of the possible ways in which problems
can arise from concurrently executing transactions in the absence of some

type of synchronization mechanism.

1.1.2. Transactions and Concurrency Control

The transaction abstraction was introduced to provide applications pro-
grammers with a solution to the synchronization problems illustrated by the
previous example. Transactions are also intended to simplify the construction
of reliable applications programs. As summarized in [Spec83], the key proper-

ties of transactions are:

Serializability. If several transactions access the database concurrently,
their effects are equivalent to the effects that would result from running the

same transactions in some serial order.

Failure atomicity. When a transaction executes, either all of its effects

or none of its effects will be reflected in the database. This guarantees that
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only transactions which execute to completion will have an effect on the data-

base.

Permanence. Once a transaction executes successfully, its effects on the

database will never be lost due to subsequent software or hardware failures.

To make use of the transaction abstraction, an applications programmer
is provided with three primitives: BEGIN, END, and ABORT {ransaction.
The BEGIN statement tells the transaction manager that the operations fol-
lowing it in the execution of a program are to be grouped together as a tran-
saction. The END statement tells the transaction manager that the transac-
tion is finished and that it should be committed. Committing a transaction
makes its effects on the database both visible to other transactions and per- -
manent. The ABORT statement tells the transaction manager that execution
of the transaction is to be stopped and that its effects on the database are to
be discarded. Thus, enclosing a collection of database operations betwesn
BEGIN and END allows the applications programmer to make the operations

appear as a single, atomic operation.

The aspect of transaction management that is relevant to this thesis is
providing the property of serializability. The problem of guaranteeing se:ial-
izabifity for concurrent transactions is known as the concur;cncy control
problem, and a number of solutions to this problem are known (a comprehen-
sive survey is given in [Bern81b]). This thesis will examine many of tlese

solutions, or econcurrency control algorithms, with the objective of



determining which ones are superior according to a set of criteria to be intro-

duced later in this chapter.

The dual problem of providing the recovery properties of the transaction
abstraction will not be addressed in this study. It will be assumed throughout
this thesis that a recovery algorithm known as deferred updates [Gray79] is
employed. In this algorithm, data written by a transaction is not actually
changed in the database until the transaction successfully commits. This
recovery assumption is made so that all concurrency control algo:ithms can be
evaluated in a common framework. Also, it reduces the number of parame-
ters which might otherwise have to be varied in the performance studies.
Other researchers are investigating the problem of jointly evaluating solutions

to the concurrency control and recovery problems [Agra83b, Agra83c, Grif83].

In discussing concurrency control algorithms, the terms object, data
stem, and granule will be used in referring to parts of the database. The
term object will be used to mean the smallest logical unit of data which is of
interest. Typical examples of objects in a database are records or pages. The
terms data stem and granule will be used interchangeably to refer to units of
the database upon which concurrency control decisions are based. The term
granule in particular is used to mean a group of one or more objects which is

treated as a single unit for concurrency control purposes.



1.2. CONCURRENCY CONTROL RESEARCH -

Much research on algorithm construction has been done in the area of
concurrency control for both single-site and distributed database systems.
Some of this research has focused on the theory involved in proving the
correctness of concurrency control algorithms, called serializabslity theory
[Eswa76, Bern79, Papa79]. Other research has led to the development of new
concurrency control algorithms, most of which are based on one of three
mechanisms: locking [Mena78, Rose78, Gray79, Lind78, Ston79), timestamps
[Reed78, Thom79, Berng0, Bern81b], and commit-time validation (also called
certification) [Bada79, Casa79, Baye80, Kung81, Ceri82]. Bernstein and
Goodman [Bern81b] survey many of these 2!gorithms and describe how new

algorithms can be created by combining these mechanisms.

Most concurrency control algorithm proposals deal solely with the two
operations read and write. Recently, however, concurrency control algo-
rithms have been proposed that use more information about transactions or
recognize additional operations [Bern78, Garc83, Hsu83, Bern8la, Allc82,
Schw82, Spec83]. Examples of the kinds of additional informaticn which may
be used are the order in which data items are accessed, the particular set of
items which the transaction might access, and the manner in which writes are
computed from reads. Examples of additional operations which might be
recognized are an inserf operastion to create a new data item and a delete

operation to eliminate a data item. The number of possible proposals is great,
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limited only by the amount and type of semantic information that—gpplica-

tions programmers are willing or able to cope with.

When only read and write operations are allowed, serializability theory is
concerned with two types of dependencies which can arise between transac-
tions, read/write and write /write dependencies. Consider the execution of
two transactions T; and T;. A reed/wrile dependency holds from transac-
tion T; to transaction T if either T; reads some data item which is later
written by T; or T; writes some data item which is later read by T;. A
write /write dependency holds from T; to T; if T; writes some data item
which is later written by T;. The existence of a read/write or write [write
dependency from T; to T; implies that T; must precede T in any serial exe-
cution of transactions which produces the same results as their concurrent
execution. One can construct a graph, called a dependency graph, with tran-
sactions as nodes and an arc from T; to T if there is a dependency from T;
to T;. It can be shown that the concurrent execution of a collection of tran-
sactions is serializable if and only if the dependency graph for the execution is
acyclic [Papa79]. For concurrency control algorithms based on other types of
operations, other types of dependencies are defined between operations to pro-

vide the basis for serializability [Bern81b, Schw82].

As mentioned above, the most common types of concurrency control
algorithms are locking, timestamps, and validation algorithms. Each type of

algorithm seeks to prevent non-serializable executions of transactions. In
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locking algorithms, transactions are required to lock objects which tl?ey read
or write. Locks can be set either at transaction startup time or dynamically
as reads and writes are performed. When a transaction cannot set a lock
because a conflicting transaction has the object locked, it must wait until the
object is unlocked. All locking algorithms examined in this thesis are varia-
tions of a scheme known as two-phase locking [Eswa76, Gray79], where tran-
sactions must lock each object before accessing it and may not release any
locks until all needed locks have been obtained. Thus, locks serve to serialize
conflicting accesses to objects by blocking transactions wishing to make such

accesses.

In timestamp algorithms, each trapsaction is assigned a timestanip when
it starts running. Timestamps are sequence numbers, guaranteed to be
unique, which provi;ie a total ordering for transactions based on their startup
order. Typical of timestamp algorithms is basic timestamp ordering
[Bern81b]. In addition to transaction timestamps, each object has a read
timestamp and a write timestamp in basic timestamp ordering. These are the
timestamps of the youngest reader and the youngest writer of the object,
respectively. (A tramsaction T; is said to be younger than another transaction
T; if T; has a larger timestamp.) These timestamps are used to force tran-
sactions which access a common object in a conflicting marner to do so in
their startup order. Transactions attempting to violate the timestamp orde:-

ing are restarted (aborted and started over).
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In validation algorithms, ‘transactions are permitted to run frecly until
they reach their commit point. Upon reaching this point, each transaction is
subjected to a test which ensures that committing it will not lead to non-
serializable results. Transactions which fail this test are restarted. Typical of
algorithms of this type is serial validation, an algorithm in which transaction
readsets and writesets are maintained and tested for conflicting intersections

at commit time [Kung8l].

1.3. PERFORMANCE ISSUES

All concurrency control algorithms have a cost associated with the con-
trols which they provide. Since it would be easy to simply require transac-
tions to execute serially, one might question the decision not to achieve serial-
izability in this simple manner. Several factors make concurrent transaction
execution desirable. First, to achieve the best possible transaction
throughput, it is necessary to keep the various hardware components busy.
The more parallelism (such as CPU-I/O overlap) that can be achieved, th
better the overall system performance will be. Running one transaction at a
time makes achieving such overlap extremely difficult, leading to pocr
resource utilization. This problem is even more severe if transactions can
pausc; for thinking in the middle of their execution. Second, system users
always want fast response for their transactions. Serial transaction scheduling
has the undesirable property of meking short transactions wait for any long

transactions which precede them regardless of whether or not they actually
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conflict. This leads to poor average response times. Allowing concurrent
database accesses by non-conflicting transactions solves these potential prob-

lems.

| Given that a concurrency control algorithm is needed, and that many
algorithms have been proposed, the database system designer is faced with a
difficult decision: Which concurrency control algorithm should be chosen?
Several recent studies have evaluated concurrency control algorithm perfor-
mance using qualitative, analytical, and simulation techniques. Bernstein and
Goodman performed a comprehensive qualitative study which discussed per-
formance issues for several distributed locking and timestamp algorithms
[Bern80]. Results of analytical studies of locking performance have been
reported by Irani and Lin [Iran78] and Potier and Leblanc [Poti80]. Simula-
tion studies of locking done by Ries and Stonebrak_er provide insight into
granularity versus concurrency tradeoffs [Ries77, Ri&s‘a’@a,.RiaﬂQb]. Analyti-
cal and simulation studies by Garcia-Molina [Garc78] provide some insight
into the relative performance of several variants of locking as well as a voting
algorithm [Thom?79] and a ring algorithm [Eli77]. Simulation studies by Lin
and Nolte [Lin82, Lin83] provide some comparative performance results for
locking and several timestamp algorithms. A recent thesis by Galler [Gall82]
provides a new analytical technique for locking, some qualitative techniques
for comparing algorithms, and some simulation results for locking versus

timestamps which contradict those of Lin and Nolte. A recent thesis by
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Robinson [Robi82a] includes some experimental studies of locking versus

serial validation (see also [Robi82b}).

These performance studies are informative, but they fail to offer
deﬁﬁitive results regarding the choice of a concurrency control algorithm for
several reasons. First of all, little attention has been given to the relative
storage and CPU costs of the various algorithms. Second, the analytical and
simulation studies have mostly examined either one or a few alternative algo-
rithms, and they are based on a variety of system models and assumptions.
Examples of modeling details which vary from study to study are whether
transaction sizes are fixed or random, whether there is one or several classes
of transactions, which system resources are modeled and which are omitted,
and what level of detail is used in representicg resources which are included in
the models. This makes it difficult to arrive at general conclusions about the
alternative algorithms. Third, the models used in many cases are
insufficiently detailed to reveal certain important effects. For example, some
models group the I/O, CPU, and message delay times for transactions into a
single random delay [Lin82, Lin83], in which case the performance benefit of
achieving CPU-I/O overlap cannot be revealed. Finally, the few comprehen-
sive studies of alternative algorithms which bave been performed were of a

non-quantitative nature.
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1.4. THESIS OVERVIEW

This thesis reports on a study of concurrency control a!ternai.ivé which
is both more comprehensive and more conclusive than previous studies. Two
models of concurrency control algorithms are developed and used to obtain
information about how various algorithms compare with one another. The
first model is an abstract model which provides a uniform framework for
describing concurrency control algorithms in terms of the irformation which
they store, when they require transactions to block or restart, and the way in
which they process concurrency control requests. Descriptions of alternative
algorithms in this framework are used to perform simple analyses of the costs

associated with the algorithms.

The second model presented is a performance model, & closed queuing
model of a database system from the perspective of a concurrency control
algorithm. This model has been implemented in the form of a substantial
simulation program, and it serves as a general framework for studying the
performance of concurrency control algorithms. Most of the simulator is
algorithm-independent, allowing various algorithms to be described in terms
of a small amount of code. Once described for the simulator, all algorithms
can be subjected to the same system and transaction workload characteristics.
Thus, the simulation model facilitates fair comparisons of the performance of

alternative concurrency control algorithms.
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This thesis concentrates entirely on the single-site concurrency. control
problem in which the only operations performed by transactions are read and
write. Little is known about concurrency control costs and performance in
this environment, so it seems appropriate to study alternative algorithms in
hopes of identifying some general principles in this environment. Where
appropriate, the implications of these findings on other types of concurrency
control algorithms will be discussed, and exiensions to the cost and perfor-
mance models will be proposed for future investigations of distributed con-

currency control algorithms.

Chapter 2 of the thesis presents the techniques used for comparing the
storage and CPU costs of concurrency control algorithms. The abstract
model is used to describe three different algorithms, one based on locking, one
based on timestamps, and one based on validation. Storage and CPU cost
resuits are obtained for the three algorithms described, and model extensions
are suggested for dealing with both multiple version and distributed con-

currency control schemes.

Chapter 3 of the thesis describes the model used to study the perfor-
mance of alternative concurrency control algorithms. The simulation model
of a database system, the transaction workload model, and a set of bench-
mark workloads for performance studies are all presented in this chapter.
Using the simulation model, the performance of seven variants of concurrency

control algorithms are studied, and conclusions are drawn about the relative
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CHAPTER 2 -

CONCURRENCY CONTROL COSTS

In this chapter, a model for evaluating the costs associated with alterna-
tive concur.rency control algorithms is described. The model, first reported in
[Care83a], is intended to facilitate descriptions and analyses of single-site con-
currency control algorithms. Descriptions of a two-phase locking algorithm, a
timestamp algorithm, and a vslidation algorithm are formulated using the
model, and these descriptions are analyzed in order to compare the relative
costs associated with these algorithms. At the end of the chapter, some prel-
iminary ideas are described for future extensions of the model for evaluating
the costs associated with multiple version, hierarchical, and distributed con-

currency control algorithms.

2.1. OVERVIEW

The cost analysis techniques for single-site concurrency control algo-
rithms are based on an abstract model. This model contains a single con-
currency control scheduler, which makes scheduling decisions based on infor-
mation that it maintaips about the history of requests received to date. This
information is referred to as the concurrency control database, and is treated

conceptually as a simple, relational database, ignoring the many data struc-
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merits of blocking and restarts as tactics for enforcing serializability. —

Chapter 4 examines two approaches which have been suggested for
improving the performance of existing concurrency control algorithms, multi-
ple versions of objects and granularity hierarchies. Some of the existing pro-
posals for concurrency control algorithms based on multiple versions and
granularity hierarchies are reviewed, and several new algorithms based on
these ideas are developed. In particular, the use of granularity hierarchies,
previously proposed only for use in conjunction with locking algorithms, is
generalized for use with other types of concurrency control mechanisms. The
performance of several algorithms based on each of these two types of perfor-

mance improvements are studied.

Finally, Chapter 5 summarizes the key results obtained in the previous
chapters and presents some general concurrency control principles that have
been identified in the course of this study. The conclusions of the thesis are

presented, and topics for future work in concurrency control are identified.
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Figure 2.1: Abstract concurrency control model.
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tures which might be used in an actual implementation. For a particular con-

currefxcy control algorithm, the scheduler obeys a well-defined set of rules

which describe how it should respond to incoming requests, based both on the

requests themselves and on the contents of the concurrency control database.

For reasons of simplicity, conciseness, and implementation independence,
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these rules are formulated as relational database queries. The abstract model

is summarized in Figure 2.1.

2.2. TRANSACTION REQUESTS

The abstract model recognizes three types of requests from transactions:
BEGIN, END, and ACCESS. The first two mark the beginning and the end
of transaction execution, and the latter indicates that the requesting transac-
tion wishes to access one or more objects. A given transaction may make any
number of ACCESS requests during its execution. When the scheduler
receives an ACCESS request, it also receives a collection of (obj—id, mode)
pairs indicating the objects and modes (read or write), associated with the
current request. ﬁh collection is referred to as the REQ relation for the
purpose of formulating concurrency control algorithms in relational terms. It
is assumed in the model that tramsactions abide by the responses received
from the scheduler, accessing data objects accordingly. It is also assumed
that writes go to a list of deferred updates [Gray79] to be installed as new

data values at transaction commit time.

2.3. THE CONCURRENCY CONTROL DATABASE

The concurrency control database, shown in Figure 2.2, comsists of four
relations. The XACT relation contains transaction state information, specify-
ing the transaction identifier, state (ready, blocked, committed, aborted), and

timestamp of each current transaction. The ACC relation contains



XACT(xact-id,state,ts)
ACC(obj-id,mode,xact-id, ts)
BLKD(blocked-id,cause-id,obj-id)
HIST(xact-id,obj-id,mode)

Figure 2.2: Concurrency control database.

information about accesses to objects, specifying the object identifier, access
mode (read or write), transaction identifier, and timestamp for each current or
recent access. This relation plays the role of a concurrency control table in
algorithm descriptions. For locking, the ACC relation will store current
access information in the form of lock table entries, and it will store informa-
tion about current and recent accesses in the form of timestamp entries for
basic timestamp ordering. The BLKD relation contains information about
any blocked transactions, containing the transaction identifiers of these tran-
sactions, the transaction identifiers of the transactions which they are waiting
for, and the identifier of the object which is the source of the conflict which
led to the blocking action. It is assumed that deleting a BLKD relation entry
implicitly unblocks the corresponding transaction, allowing it to continue pro-
cessing where it left off. The HIST relation stores histories of ACCESS
requests which are conditionally granted until a concurrency control decision
is. made at transaction commit time (such as in serial validation). Entries in
this relation specify the transaction identifiers, object identifiers, and access

modes associated with such requests.



—

21

Not all concurrency control algorithms use all of the relations in the con-

currency control database, as this set of relations is intended to represent the

collection of all possible information which algorithms might require. For the

same reason, not all concurrency control algorithms use all of the fields of

these relations. Thus, the portion of the concurrency control database used

by an algorithm is specified as part of its description.

2.4. ALGORITHM DESCRIPTIONS

Concurrency control algorithm descriptions in the abstract model have

three parts. These are:

1)

(2)

(3)

A list of the concurrency control database relations and fields used by the

algorithm.

A pair of views, BLKCFL and RSTCFL, which define the situations
where blocking or restarting are called for, respectively. Each of these is
a view in the relational database sense [Ullm83], a query which is dynam-

ically evaluated upon reference.

Three query sets, describing the actions to be taken on receipt of
BEGIN, ACCESS, and END requests. These query sets access the con-
currency control database and REQ relation associated with the current
request and are assumed to execute atomically when invoked. The syn-
tax for the query sets is based on the syntax of the QUEL query

language [Ston76], with deviations or additionsl high-level macro-
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operations introduced in cases where a QUEL description is difficult or
impossible (such as checking for cycles in the BLKD relation in the

upcoming description of lockirg).

2.5. USING THE MODEL

In this section, the descriptive power of the single-site abstract model is
demonstrated by using the model to describe the two-phase locking [Gray79],
basic timestamp ordering [Bern81b), and serial validation [Kung8l] algo-
rithms. Several liberties are taken with the QUEL syntax in the process.
First, range statements are omitted. Second, the macro-operations shown in
Figures 2.3 through 2.5 are defined. The BLOCK operation blocks a specified
transaction, recording its transaction identifier and the identifier of the tran-
saction which it is waiting for in the BLKD relation. The EXPUNGE opera-
tion deletes all of the information associated with a specified transaction, and
is used at transaction commit or restart time. The RESTART operation res-
tarts a specified transaction. A fourth macro-operation, CYCLE (zact-id), is
also used in the locking description. This macro-operation searches for cycles
of blocked transactions in the BLKD relation involving a specified transaction
and returns true if and only if a cycle is found. (This last operation cannot be
conv;niently specified in QUEL.) Finally, the existence of several global vari-
al.Jles, such as reg-zact—id, the identifier for the transaction making the
current request, is assumed. Other such variables will be assumed and com-

mented upon as they seem reasonable and convenient.
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BLOCK({xact-id1,xact-id2) =
replace XACT{(state = “blocked”’)

where XACT.xact-id = xact-id1l
append to BLKD(xact-id1,xact-id2)

Figure 2.3: Definition of BLOCK macro-operation.

EXPUNGE(xact-id) =

delete XACT
where XACT .xact-id = xact-id
delete ACC
where ACC.xact-id = xact-id
delete BLKD
where BLKD.blocked-id = xact-id
or BLKD.cause-id = xact-id
delete HIST
} where HIST xact-id = xact-id

Figure 2.4: Definition of EXPUNGE macro-operation.

RESTART(xact-id) =

replace XACT(state = “‘aborted”)
where XACT.xact-id = xact-id
EXPUNGE(xact-id)

}
Figure 2.5: Definition of RESTART macro-operation.

2.5.1. Two-Phase Locking

In fwo-phase locking (2PL) [Gray79)], the concurrency control scheduler
maintains a lock table. Transactions set read and write locks on objects
before accessing them, and they release their locks at commit time. A tran-

saction may set a read lock on an object as long as no other transaction bas a
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write lock set on the object, and a transaction may set a write lock an object
if no other transaction has a read or write lock set on the object. When a
transaction tries to set a lock and fails, it must wait until the lock is released
and then try again. Deadlocks are a possibility, and must either be prevented
or detected and broken by restarting one of the transactions involved. An

informal description of two-phase locking is given in Figure 2.6.

The linear-time deadlock detection algorithm of Agrawal, Carey, and

DeWitt [Agra83a] is used for this example. In this algorithm, when a transac-

procedure readReq(T,z);
begin
if writeLocked(z) then
block(T);
If cycle(T) then
restart(T);
else
grant readRegq;
readLock(T,z);
f;
end;

procedure writeReq(T,z);
begin
if readLocked(z) or writeLocked(z) then
block(T);
if cycle(T) then
restart(T);
else
grant writeReq;
writeLock(T,z);
fi;
end;

Figure 2.6: Informal description of 2PL algorithm.
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tion T; is forced to wait for a iock on some object X, it blocks on exattly one
of the transactions T; which holds a lock on X. If more than one transaction
bolds a lock on X, one is chosen arbitrarily. As shown in [Agra83a), if
deadlocks are checked each time a transaction must wait, the cycle-checking
operation (i.e., the deadlock detector) can operate in a very efficient manner.
Figures 2.7 through 2.9 give a description of this variation of 2PL using the

abstract model.

The subset of the concurrency control database needed for 2PL is
specified in Figure 2.7. In Figure 2.8, the conditions under which blocking
and restarts are required are defined as views. The BLKCFL view says that

a block conflict has occurred if there is an ACC relation entry for one of the

XACT(xact-id state)
ACC{(xact-id,mode,obj-id)
BLKD(blocked-id,cause-id)

Figure 2.7: Concurrency control database for 2PL.

define view BLKCFL(xact-id = ACC.xact-id)
where REQ.obj-id = ACC.obj-id
and ACC.xact-id != req-xact-id
and ((REQ.mode = “read”
and ACC.mode = ‘“write")
or (REQ.mode == “‘write"))

define view RSTCFL (xact-id = BLKD.xact-id)

where CYCLE(BLKD.blocked-id)
and BLK.blocked-id = req-xact-id

Figure 2.8: Block and restart conflict views for 2PL.
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on BEGIN:
append to XACT(reg-xact-id, ‘ready")
on ACCESS:
replace ACC(mode = REQ.mode)
where not any(BLKCFL)
and ACC.obj-id = REQ.obj-id
and ACC.xact-id = req-xact-id
append to ACC
(req-xact-id, REQ.mode,REQ.obj-id)
where not any(BLKCFL)
and not any(ACC.obj-id
where ACC.obj-id = REQ.obj-id
and ACC.xact-id = reg-xact-id)
BLOCK(reg-xact-id, BLKCFL xact-id)
where any(BLKCFL)
and BLKCFL xact-id =
min(BLKCFL xact-id)

RESTART(reg-xact-id)
where any(BLKCFL) and any(RSTCFL)

on END:

replace XACT(state = “committed”)
where XACT.xact-id == reg-xact-id
EXPUNGE(req-xact-id)

Figure 2.9: Request processing queries for 2PL.

current requests, and either the current request is a read request and the
ACC entry is a write entry, or else the current request is a write request (in
which case the mode of the ACC entry does not matter). In other words, the
ACC relation serves as a lock table, and a transaction must block if an
incompatible lock is already set on an object that it wants to access. The
RSTCFL view says that a restart conflict has occurred if there is a cycle in

the BLKD relation involving the current requesting tramsaction. In other
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words, a transaction must restart if it is the cause of a deadlock. (This is not

necessarily the best victim to select from a performance standpoint.)

Figure 2.9 gives the query sets for processing requests under 2PL. When
a BE‘GIN request arrives, the state of the requesting transaction is set to indi-
cate that it is ready to run. When an ACCESS request arrives, the BLKCFL
view is materialized. If no block conflicts exist (i.e., the BLKCFL view is
empty), then the ACC relation is updated to indicate that locks have been
granted on all requested objects. If a block conflict does exist (i.., the
BLKCFL view is not empty), the requesting transaction is blocked on one of
the conflicting transactions (the one with the smallest transaction identifier is
arbitrarily picked here), and the RSTCFL view is materialized. If a restart
conflict exists, the requesting transaction is restarted. This corresponds to
granting requests if no locks interfere, blocking a transaction if one or more
locks are unobtainable, and restarting a transaction if it becomes the cause of

a deadlock condition.

2.5.2. Basic Timestamp Ordering

In the basic thwtaﬁp ordering (BTO) algorithm [Bern81b}, each tran-
saction T has a timestamp, T'S(T), which is issued at the time that T begins
executing. Associated with each data item z in the database is a read times-
tamp, R-TS(z), and a write timestamp, W-7S(z). These timestamps record

the timestamps of the latest reader and writer (respectively) for z, and are
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procedure readReq(T,z);
begin
i TS(T) < W-TS(z) then
restart(T);
else
grant readReq;
R-TS(z) :== max(TS(T),R-TS(z));

end;

procedure writeReq(T,z);
begin
i TS(T) < R-TS(z) or TS(T) < W-TS(z) then
restart(T);
else
grant writeReq;
W-TS(z) := TS(T),

end;

Figure 2.10: Informal description of BTO algorithm.

maintained in a timestamp table. (Entries with timestamps older than the
oldest active transaction may be deleted from the table since they will never
cause an active transaction to be restarted.) A.read request from T for z is
rejected if TS(T) < W-TS(z), and a write request from T for z is rejected if
TS(T) < W-TS(z) or TS(T) < R-TS(z). Transactions whose requests are
rejected are restarted, causing serialization to occur in timestamp order.
Deadlock is impossible, although cyclic restarts are a possibility [Date82,
Lin82, Ullm83]. The BTO algorithm is described informally in Figure 2.10.
For the purpose of this example, read requests will be processed as they

arrive, and all write requests wi!l be processed together just prior to transac-

tion commit time. This simplifies the considerations involved in making BTO
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XACT(xact-id,state,ts)
ACC(ts,mode,obj-id)
HIST(xact-id,obj-id)

Figure 2.11: Concurrency control database for BTO.

define view RSTCFL(obj-id = ACC.obj-id)
where (REQ.obj-id = ACC.obj-id
and ACC.ts > reg-ts
and (REQ.mode = “read”
and ACC.mode = “‘write”')
and regq-type = ACCESS)
or (HIST.obj-id = ACC.obj-id
and HIST xact-id = req-xact-id
and ACC.ts > reqg-ts
and reg-type = END)

Figure 2.12: Restart conflict view for BT'O.

work with deferred updates, as otherwise some scheduling would be required
to prevent transactions from reading objects for which a write request has
been processed but the associated deferred update has not yet taken place
[Bern81lb, Agra83b). Figures 2.11 through 2.13b give a description of BTO
using the model. The global variable reg-ts is assumed to contzin the times-
tamp of the transaction making the current request. The macro-operation
CURRENT-TS() is assumed to return the current timestamp value, impli-
citly increasing its value by one and setting the global variable current-ts to
the v;tlue of the current timestamp. The global variable oldest-#s is assumed
to contain the timesta.mp of the oldest active transaction. The global variable

req-type is assumed to indicate the type of the current request.
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on BEGIN:

append to XACT
(req-xact-id,"ready”’,CURRENT-TS())

on ACCESS:
replace ACC(ts = max(ACC.ts,req-ts)
where not any(RSTCFL)
and REQ.mode = *‘read”
and ACC.mode = *‘read”
and ACC.obj-id = REQ.obj-id
append to ACC
(reg-ts, REQ.mode, REQ.obj-id)
where not any(RSTCFL)
and REQ.mode = ‘“‘read”
and not any(ACC.obj-id
where ACC.obj-id = REQ.obj-id
and ACC.mode == ‘“‘read’)

append to HIST(req-xact-d REQ.obj-id)
where REQ.mode = ‘‘write"’

RESTART(XACT xact-id)
where XACT xact-id = REQ.xact-id
and any(RSTCFL)
2nd REQ.mode = ‘‘read”

Figure 2.132: Request processing queries for BTO.

While this description appears a bit lengthy, its semantics are actually
relatively simple. The ACC relation plays the role of the timestamp table for
BTO. The “append to ACC..." portion of the query set for ACCESS
requests in Figure 2.13a handles the case where there is no current timestamp
for a‘requosted object, recording a new one. The “replace ACC...” poriion
of the query set for ACCESS requests handles the case where there is a
current timestamp for the object, updating it as called for by the BTO algo-

rithm. The HIST relation is used to defer write timestamp checking until
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commit time, with similar timestamp checking and updating involving the
HIST relation occurring in the END request portion of the description in Fig-

ure 2.13b.

on END:

replace XACT(state == ‘“‘committed’’)
where XACT .xact-id = reg-xact-id
and not any(RSTCFL)

replace ACC(ts = max(ACC.ts,reg-ts)
where not any(RSTCFL)
and ACC.mode = ‘‘write"
and ACC.obj-id = HIST.obj-id
and HIST xact-id = reg-xact-id

append to ACC(req-ts,HIST .obj-id, ‘write")
where not any(RSTCFL)
and HIST xact-id = reg-xact-id
and not any(ACC.obj-id
where ACC.obj-id == HIST .obj-id
and ACC.mode = “write")

RESTART{XACT .xact-id)
where XACT .xact-id == reg-xact-id
and any(RSTCFL)
delete HIST
where HIST xact-id = reg-xact-id
delete XACT
where XACT.xact-id = reqg-xact-id

delete ACC
where ACC.ts < oldest-ts

Figure 2.13b: Request processing queries for BTO (cont.).

2.5.3. Serial Validation

The serial validation (SV) algorithm [Kung81] requires that the readsets
and writesets of all transactions be recorded as they execute. These readsets

and writesets are the sets of items which the transaction reads and writes,
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procedure validate( 7');

valid := true;
foreach T, In RC(T)do
foreach z, in readset(T) do
foreach =, in writeset(T,.) do
if z, = z, then
valid := false;
f;
od;
od;
od;
if valid then
commit writeset(T) to database;
else
restart( T);

’

end;

Figure 2.14: Informal description of SV algorithm.

respectively. Transactions are allowed to execute freely until commit-time,
writing their database changes into a list of deferred updates. Each transac-
tion is subjected to 8 commit-time validation procedure in a critical section (a
section of code which excludes other transactions from making concurrency
control requests). This validation procedure is used to ensure that commit-
ting the transaction will not leave the database in an inconsistent state. Let
RC(T) be the set of recently committed transactions, i.e., those which com-
mit between the timg when T starts executing and the time at which T
enters the critical section for validation. Transaction T is validated if
readset(T) N writeset(T,. ) =0 for all trapsactions T, € RC(T). U T is
validated, its updates are applied to the database; otherwise, it is restarted.

An informal description of the serial validation algorithm is given in Figure



2.14.

Rather than write a description of serial validation as originally
presented [Kung8l], a new, potentially more efficient version with different
but‘ provably equivalent semantics will be described. In this version, each
transaction is assigned a startup timestamp, S-TS(T), at startup time, and
each transaction receives a commit timestamp, C-TS(T), when it enters its
commit processing phase. A write timestamp, T5(z), is maintained for each
data item z; TS(z) is the commit timestamp of the most recent (committed)
writer of z. A transaction T will now be allowed to commit if and only if
S-TS(T) > TS(z,) for each object z, in its readset. Each transaction T
which successfully commits will update T'S(z,) to be C-TS(T) for all data

items z, in its writeset.

procedure validate( T);
begin
valid := true;

foreach z, in readset(T) do
¥ S-TS(T) < T5(z,) then
valid := false;
f;
od;
if valid then
foreach z, in writeset(T) do
TS(zg) := C-TS(T);

commit wril eset(T') to database;
else
restart(T');

‘end;

Figure 2.15: Informal description of revised SV algorithm.
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XACT(xact-id,state,ts)
ACC(ts,obj-id)
HIST(xact-id,mode,obj-id)

Figure 2.16: Concurrency control database for SV.

define view RSTCFL (obj-id = HIST .obj-id)
where HIST.obj-id = ACC.obj-id
where HIST xact-id == req-xact-id
where HIST.mode = ‘read”
and ACC.ts > reg-ts

Figure 2.17: Restart conflict view for SV.

It is fairly easy to show that this test is equivalent to the original
readset/writeset test of [Kung81]. A formal equivalence proof is given in
Appendix 1. An informal description cf the revised SV algorithm is given in
Figure 2.15, and Figures 2.16 through 2.18 give a description of SV using the
model. For typical transaction mixes, it is expected that RC(T) will tend to
be larger than one and the writesets of transactions will not be overly large.
The revised SV algorithm will entail less CPU cost than the original SV algo-
rithm for such mixes. In the original version, the commit-time test involves
checking | RC(T)| writesets for each object z,, whereas a single timestamp is
checked for each z, in the revised version. The revised version involves an
additi.onal cost for ﬁpdating TS(z,) for each z,, but this is unlikely to be

significant compared to the cost reduction for testing the readset.
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on BEGIN:
append to XACT
(req-xact-id,"ready’’,CURRENT-TS())

on ACCESS:
append to HIST
(req-xact-id, REQ.mode,REQ.obj-id)

on END:

replace XACT(state = ‘‘committed”)
where XACT .xact-id = reg-xact-id
and not any(RSTCFL)

RESTART(XACT xact-id)
where XACT xact-id == reg-xact-id
and any(RSTCFL)

replace ACC(ts = current-ts)
where not any(RSTCFL)
and HIST.mode = “‘write’’
and ACC.obj-id == HIST .obj-id
and HIST xact-id = reg-xact-id

append to ACC
(obj-id = HIST .obj-id,ts = current-ts)
where not any(RSTCFL)
and HIST.mode = “write"
and HIST xact-id = reg-xact-id
and not any(ACC
where ACC.obj-id == HIST .obj-id)

delete HIST

where HIST .xact-id = reg-xact-id
delete XACT

where XACT.xact-id == reg-xact-id
delete ACC

where ACC.ts < oldest-ts

Figure 2.18: Request processing queries for SV.

2.6. ALGORITHM COST COMPARISONS

In this section, techniques are presented for using the model to compare
the relative cost characteristics of various concurrency control algorithms.

The storage and CPU costs are compared via a simple complexity analysis,
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based on implementation-indep'endent units of CPU and storage costs— These
cost units are based on ideas presented in [Bern8C], where table accesses and
table entries were informally used to compare algorithm costs. The analysis
techniques are illustrated by using them to compute and compare the costs of

the three algorithms described in the previous section.

To facilitate cost analyses, a performence model based on a set of simple
parameters is used. The parameters will be defined as though the transaction
mix used to evaluate algorithm costs consists of transactions of the same fixed
size. The performance parameters used here are not all independent, so it
would be difficult to carry out an accurate expected-value analysis of 2lgo-
rithm costs. The techniques applied here can be thought of as a formal
analysis of a simple transaction mix, or alternatively as a mean-value approxi-
mation [Ferr78] to an analysis of a mix where the parameters are interpreted
as being averages. The problem of carrying out a more precise analysis of

average costs is left for future work.

Let T, be the number of transactions in the system (i.e., the multipro-
gramming level). Let R be the readset size for these transactions, and let F,
be the fraction of the readset also included in the writeset. Each transaction
thus makes R (1+ F,) data access requests. (It is assumed that the writeset is
a subset of the readset for each tramsaction, and that tramsactions do not
make the same request twice). Let F, be the fraction of blocked transactions,

so that F, T, is the current number of blocked transactions. Let F,, be the
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recent commit factor, so that F, T, is the number of recently committed
transactions, where a recently committed transaction is one which committed
since the oldest remaining active transaction began running. These parame-

ters are summarized in Table 2.1.

The blocking and restart characteristics of algorithms will influence the
parameters F;, and F,,, so they will vary from algorithm to algorithm. The
parameter F, is determined solely by the transaction mix. To bourd these
parameters, note that 0 < Fy < 1and 0 £ F, < 1. For the parameter F,,
however, all that is certain is that F,, > 0, as F,, is determined by the vari-
ance in running times for transactions in the mix. One would expect transac-
tions to commit roughly in their startup order if all are truly the same size,
and this would produce a small value for F,,. However, a very long transac-
tion mixed with a collection of short transactions would result in a large value
for F,., as many short transactions could complete during the lifetime of the

long transaction.

Simr.le Cost Parameters

number of transactions in system
readset size for transactions
fraction of readset that is written
fraction of blocked transactions
recent commit factor

RERE T

Ky

Table 2.1: Parameters for algorithm cost analyses.
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2.6.1. Storage Cost ' -

In order to compare the storage costs of various concurrency control algo-
rithms, the sizes of the relations in the concurrency control database portion
of their models may be analyzed. One field of one tuple of one relation is
taken as the unit of storage cost for this analysis. Given an algorithm, the
tuple widths of the concurrency control database relations are determined by
the algorithm description. The cardinalities of the relations can be deter-
mined by considering the behavior of the query sets in the description using
the simple performance model just described. The overall database size is
simply the sum of the products of the cardinalities and tuple widths for each
relation in the database. Both upper and lower bounds on the storage cost of
algorithms may be determined by considering both possible extremes of the

degree to which requests from different transactions have objects in commeon.

The 2PL algorithm will be analyzed first. The XACT relation represents
a storage cost of 2T,, and the BLKD relation represents a cost of 2F, T,.
For the ACC relation, a storage cost of 3T,(1-F,)R is incurred for storing
read locks (note that only one lock is set on objects that are to be written).
For storing write locks, the cost can vary from as low as 3F R, in the case
where all T, transactions write the same objects, to as high as 3T, F_ R, in

the case where no two transactions write the same object. Thus, for 2PL:

STO,p;, < 2T,(1+ F})+3T.R (12)
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STOqp; > 2T,(14 Fy)+ 3T, R(1-F,)+ 3F, R - {1b)

The BTO algorithm is considered next. The XACT relation represents a
storage cost of 3T,. The HIST relation must store write request entries for
the' T, active transactions, so it represents a storage cost of 2T, F R. In
addition, the ACC relation must store the timestamps associated with
recently-accessed objects. The amount of storage required for this informa-
tion depends upon the degree of overlap between transactions. In the case
where all transactions access totally different objects, the ACC relation must
hold R read timestamp entries and RF, write timestamp entries for each of
the T, active transactions plus the F, T, recently committed tramsactions.
This yields a worst-case total storage cost for the ACC relation of
3T,(1+ F,.)R(1+ F,). At the other extreme, if all active and recently com-
mitted transactions access the exact same set of objects, the storage cost of
the ACC relation is just 3R(1+ F,), since each object has at most onc read

timestamp entry and one write timestamp entry. Thus, for BTO:

STOgro < 3T,(1+ F, )R(14+ Fy )+ T,(3+ 2F  R) (2a)
STOg10 > 3R(1+ F )+ T,(3+ 2F, R) (2b)

The SV algorithm is considered last. The XACT relation again

represents a storage cost of 37,. The HIST relation must store read and
write request entries for the T, active transactions, so it represents a storage

cost of 3T,R(1+ F,). In addition, the ACC relation must store the times-
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tamps associated with recentlj;-accssed objects. As in the BTO algorithm,
the amount of storage required for this information depends upon the degree
of overlap between transactions. In the case where all transactions access
totally different objects, the ACC relation must hold RF,, write timestamp
entries for each of the T, active transactions plus the F, T, recently commit-
ted transaétions. This yields a worst-case total storage cost for the ACC rela-
tion of 2T,(1+ F,. )RF,. At the other extreme, if all active and recently
committed transactions access the exact same set of objects, the storage cost
of the ACC relation is just 2RF,, since each object has at most one times-

tamp entry. Thus, for SV:

STOsy < 2T,(1+ F,.)RF,+ 3T,(1+ R(1+ F,)) (32)
STOgy > 2RF,+3T,(1+ R(1+ F,)) (3b)

Given the bounds on Fj and F,, some conclusions can be drawn about
the relative storage costs of the algorithms. From equations (1a), (2a), and
(3a), it can be concluded that 2PL has the smallest worst-case storage cost of
the three algorithms, which is (4+ 3R)T,. The worst-case storage costs of
the other two algorithms are dependent on the parameter F,., which is
unbounded. A more detailed analysis of these equations reveals that the
worst-case storage c;:st of SV is strictly smaller than that of BTO (assuming
the same F,, values for the two algorithms). Moreover, if Fy < 1/2, 2PL is

certain to have a smaller worst-case storage cost than both SV and BTO.
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The worst-case storage cost oc;:urs when transactions do not competeffor the
same data items, which is likely to be the case for real mixes of transactions
according to the analysis of the probability of conflicts in [Gray81a). Thus,
F is likely to be small for 2PL, leading to the conclusion that 2PL dominates

SV, and SV in turn dominates BTO, with respect to worst-case storage cost.

A comparison of equations (2b) and (3b) reveals that, with respect to
best-case storage cost, BTO dominates SV for T, > 3. Comparing equations
(1b) and (3b), it is seen that, if F;, < 1/2, 2PL is certain to dominate SV as
well. Finally, a comparison of equations (1b) and (2b) indicates that BTO
dominates 2PL unless F, > 3/5 and F, < 1/2. Since the best-case costs
apply when transactions tend to conflict (access the same objects), this combi-
nation of F, and F} is impossible. If F,, is large, transactions will be com-
peting for write locks on these shared objects. Lots of blocking will result,
leading to the conclusion that the (non-independent) parameters F; and Fy
cannot realistically take on these values at the same time if transactions tend
to request common data items. Hence, BTO dominates 2PL with respect to

best-case storage cost.

To summarize the overall storaze cost results, then, SV is the worst of
the tl;ree algorithms. 2PL is best in terms of worst-case storage cost, indicat-
ing that it is sdperior ‘under low-conflict transaction mixes. BTO is best in
terms of best-case storage cost, meaning that it is best under high-conflict

transaction mixes. These results are shown in Table 2.2 at the end of the



following section. ' -

2.6.2. CPU Cost

| The number of operations involved in executing the query sets for vari-
ous algorithms is analyzed in order to compare their CPU costs. The unit of
CPU cost for this analysis is taken to be ome tuple access, insertion, or
replacement in one relation, so the assumption is that the CPU time required
is proportional to the number of table lookups (as proposed in different terms
by Bernstein and Goodman [Bern80]). CPU cost is not charged for accesses to
the REQ relation, as this relation is simply used to facilitate modeling the
way transactions pass requests to the scheduler in a QUEL query language

setting.

Unfortunately, analyzing the CPU cost of a given concurrency control
algorithm is, in general, considerably more complex than analyzing the
storage cost of the algorithm. In this paper only the no-conflict CPU cost
[Bada81], the CPU cost experienced by a transaction which does not conflict
in any way with other concurrent transactions, is considered. Since actual
conflicts are reported to be rare [Gray81a), the no-conflict CPU cost should be
a reasonable “first-order” estimate. The problem of generalizing the analysis
to include the addiiional sources of CPU cost associated with transactions

which must restart or repeat requests due to blocking is left for future work.
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2PL is again considered ﬁl"st. The cost of processing 8 BEGIN request is
1. The cost of materializing the BLKCFL view is 1, so the cost of processing
R(1+ F_) data access (ACCESS) requests is 2R (1+ F,) if no blocking occurs.
The cost of processing an END request is 3+ R, 1 to change the state of the
committing transaction and 2+ R to delete all the information about the
transaction (assuming one BLKD access to determine the leck of blocked

transactions). Hence, for 2PL:

CPU2PL = 4+ R(3+ 2F.) (4)

BTO is considered next. The cost of processing a BEGIN request is
again 1. The cost of materializing the RSTCFL view is 1 for an ACCESS
request restart conflict check and 2 for an END request check for each write
entry in the HIST relation. Thus, the cost of processing R read requests,
each of which checks for a restart conflict and then conditionally inserts or
updates a timestamp in the no-conflict case, is 2R. The cost of processing
RF, write requests, each of which simply records the pending request in the

HIST relation, is RF .

The cost of processing an END request for BTO depends on the number
of timestamps deleted at that time. In the no-conflict case, it is assumed that
all transactions access different data items, meaning that all timestamps asso-
ciated with a given transaction must eventually be explicitly deleted. This

timestamp deletion cost is charged to the trzasaction creating the timestamp,
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even though deletion may occu.r at some later point in time. Thus, thg cost of
processing an END request is 2RF, to check the HIST relation contents for
restart conflicts, 1 to change the state of the committing transaction, 2RF, to
update the write timestamp of each write request in the HIST relation once
the transaction has indeed committed, and 1+ R(1+ 2F,) to delete the infor-

mation associated with the transaction. Hence, for BTO:

CPUgpro = 3+ R(3+ F,) (5)

The analysis for SV is much like that for BTO. The cost of processing a
BEGIN request is 1. The cost of processing R(1+ F,) read and write
requests, each of which simply records the pending request in the HIST rela-
tion for later consideratic;n, is R(14 F,). The timestamp deletion cost for SV
is charged to the tramsaction creating the timestamp, as in the analysis for
BTO. The cost of materializing the RSTCFL view is 2 for an END request
check for each read entry in the HIST relation. Thus, the cost of processing
an END request for SV is 2R to check the HIST relation contents for restart
conflicts, 1 to change the state of the committing tramsaction, 2RF, to
update the write timestamp for each write request in the HIST relation once
the transaction has indeed committed, and 1+ R(1+ 2F,) to delete the infor-

mation associated with the transaction. Hence, for SV:

CPUsy = 3+ R(4+5F,) (0)



' Rgsults of Cost Comparisons
CC CPU

Algorithm
best under best no-conflict
low conflicts cost
BTO best under second best under
high conflicts | infrequent writing
)% worst of second best under
the three frequent writing

Table 2.2: Summary of algorithm cost results.

Comparing equation (4) with equation (5), 2PL is seen to have a smaller
no-conflict CPU cost than BTO unless F, is extremely small, in which case
9PL and BTO are almost the same. Comparing equation (4) with equation
(6), 2PL is also seen to bave a smaller no-conflict CPU cost than SV. Com-
paring equations (5) and (6), BTO is found to have a smaller no-conflict CPU
cost than SV if F, < 1/2, and that SV has a smaller no-conflict CPU cost if
F, > 1/2. Thus, with respect to this CPU cost metric, 2PL is dominant,
BTO is second-best if writing is infrequent, and SV is second-best if writing is

frequent. These results are shown in Table 2.2.

2.8.3. Cost Comparison Summary

In the previous sections, the storage and CPU costs of 2PL, BTO, and
SV were compared. 2PL was found to be the algorithm involving the least
storage cost under low-conflict transaction mixes, with BTO being the best

under high-conflict mixes. SV was the worst algorithm with respect to
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storage cost. 2PL was also found to be the algorithm with the smallest no-
conflict CPU cost. BTO turned out to be second-best with respect to no-
conflict CPU cost if writing is infrequent, with SV being second-best if writing

is frequent. These results are summarized in Table 2.2.

The cost results for 2PL, BTO, and SV seem to be supported by intuitive
reasoning. .The worst-case (low-conflict) storage cost results will be considered
first. All three algorithms store the same information about transactions.
9PL stores no information about blocked transactions, as there are none in
this case. Thus, the difference lies in the amount of information stored by
each algorithm about data accesses. 2PL simply stores one lock for each item
in the readset of an active transaction. (Recall that the writeset is assumed
to be a subset of the readset.) BTO stores one read timestamp for each itemn
in the readset of an active or recently committed transaction, plus a write
timestamp for each item which is also in the writeset of an active or recently
committed transaction. SV stores both the readset and the writeset of each
active transaction, plus it stores the write timestamp associated with each
data item in the writeset of a recently committed transaction. Thus, intuition
supports the conclusion that 2PL should have the smallest worst-case storage

cost. -

The best-case (high-conflict) storage cost results will be considered next.
As before, all three algorithms store the same information about transactions.

9PL stores information about blocked transactions, and there will be many in
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this situation. 2PL also stores ‘one read lock for each of the R(1-F,) items in
the readset but not in the writeset of each of the T, active transactions, ard
it stores one write lock for each of the RF, objects written by all transac-
tions. (It is assumed that transactions conflict totally, and write locks are
held by just one transaction at a time). BTO only stores a total of R read
timestamps and RF, write timestamps, as transactions conflict totally and
each object read has one read timestamp and each object written has one
write timestamp. SV also stores only one write timestamp for each item wrii-
ten by recently committed transactions, but it must still separately store all
R readset entries and RF, writeset entries for each of the active transactions.
Thus, BTO intuitively has the smallest best-case storage cost, again suppori-

ing the conclusions obtained from the model.

The no-conflict CPU cost is considered last. 2PL simply checks and
obtains a lock for each of the R read requests and RF, write reguests in a
transaction in the absence of conflicts. BTO checks and updates R times-
tamps for read requests and RF, timestamps for write requests, but it also
pays an additional cost for keeping a list of write requests during transaction
execution for use in processing them together at commit time. SV keeps a list
of read requests é,nd a list of write requests for commit-time use, plus it must
check R timestamps and update RF, timestamps at commit time. Hence,
intuition supports the conclusion that 2PL has the lowest no-conflict CPU

cost of the three algorithms considered.
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2.7. FUTURE MODEL EXTENSIONS

In this section, extensions for the abstract model which will facilitate stu-
dies of the costs of multiple version, hierarchical, and distributed concurrency

control algorithms are briefly described.

2.7.1. Multiple Versions

Several recent concurrency control algorithm proposals involve maintain-
ing multiple versions of data objects [Reed78, Baye80, Stea8l, Chan82,
Bern82b]. In order to describe such algorithms using the abstract model, 2
new concurrency control database relation, the OBJ relation, is introduced.
This relation has obj-¢d, version—id, and obj-value fields, and each version
of each object in the database has a corresponding tuple in this relation. In
places where an obj—¢d was called for in single-site algorithms, an (o0bj-id,
version—id) pair will be used in in the multiple version abstract model. The
analysis techniques can be applied to this extended model in the same manner
as for the single-site model, except that C, units of storage cost will be
assessed for obj-value fields of OBJ tuples to reﬂgct the fact that objects

require much more storage than typical concurrency control information.

2.7.2. Granularity Hicrarchies

Several locking ﬂgorithm which operate using multiple levels of
granules, organized as a hierarchy, have been proposed [Gray75, Gray79,

Kort82]. Chapter 4 of this thesis presents hicrarchical variants of other types
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of concurrency control algorithms [Care83b] and examines their performance
characteristics. This section briefly sketches extensions to allcw the abstract
model to support descriptions of algorithms which use a two-level hierarchy of

granules.

In order to describe hierarchical algorithms using the abstract model, the
obj—id fields of all concurrency control database relations will become
gran—id fields. These new granule identifiers can either identify objects
(lower level granules) or parent granules of objects (higher level grantles). In
addition, a new concurrency control database relation, the HIER relation, is
introduced. This relation has parent-id and obj-id ﬁglds which associate
objects with their parent granules. This explicit mapping of parent granules
to objects will make it possiblg for algorithm descriptions to easily extract the
parent granule for a given object granule. Since the HIER relation is simply
used to represent a m#pping which would be implicit in an zctual implemen-
tation, no additional costs will be assessed for storing or accessing this rela-
tion. The analysis techniques are otherwise directly applicable to this

extended model.

2.7.3. Distributed Databases

Many recent concurrency control algorithm proposals are intended for
use in distributed database systems [Rose78, Mena78, Ston78, Lind79, BerngC,

Bern8lb, Bern82a, Thom79, Ceri82). In order to describe distributed con-
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currency control algorithms within the sbstract model, each site will have a
concurrency control scheduler with an associated concurrency contrc;l data-
base, and the schedulers will interact via messages. To model this interaction,
some new notation will be introduced for use in writing algorithm descriptions
for distributed systems. Queries of the form <command> where <pred:-
cate> AT-SITES-OF(obj-id) will be used to indicate that the predicate
must be true at all sites where the specified object resides, indicating the need
for a round-trip message exchange to evaluate the predicate. In cases where
the AT-SITES-OF clause is left out, just the local site will be involved in

evaluating the predicate.

With this extension, algorithm descriptions will be formulated as before,
except that the AT-SITES-OF (X) set must be described for all objects X.
It is this set description which will serve to differentiate primary site, primary
copy, and decentralized concurrency control schemes [Bern81b, Bern82a] from
one another, for example. The cost analysis techniques again carry through,
though it is necessary to account for the additional cost when the
AT-SITES-OF set contains more than a single site. Also, a new type of
cost, message cost, arises in distributed systems. This cost may be character-
ized by analyzing the number of messages required to evaluate non-local

predicates when executing the new query sets on behalf of transactions.
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2.8. SUMMARY ' _

This chapter described a new model of concurrency control algorithms
that provides a unified framework for describing and comparing different algo-
rithm proposals. Several sample descriptions were given, and it was shown
how the model facilitates analyses of the relative storage and CPU costs of
algorithms. It was found that the costs associated with two-phase locking are
at least as low as those for basic timestamp ordering and serial validation.
The model of this chapter differs from previous work [Bern80, Bern81b,
Gallg2], as other frameworks for describing concurrency control algorithms
have not supported both algorithm descriptions and quantitative algorithm
comparisons. Finally, extensions which should enable the model to be used
for descriptions and cost analyses of multiple version, hierarchical, and distri-

buted concurrency control algorithms were briefly described.
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CHAPTER 3 -

CONCURRENCY CONTROL PERFORMANCE

This chapter describes a simulation model of a database system which is
sufficiently general to allow the performance of many different single-site con-
currency control algorithms to be evaluated under various transaction work-
loads and system costs. Performance results obtained using this simulation
model are given for seven concurrency control algorithms based on locking,

timestamp, and validation approaches.

3.1. BACKGROUND CONSIDERATIONS

Before describing the simulation model, it will be helpful to consider the
nature of the problem which it addresses. The purpose of a concurrency con-
trol algorithm is to permit the simultaneous execution of a number of transac-
tions in order to enhance system performance. The degree to which an algo-
rithm allows transactions to execute concurrently and make progress towards
completion is called its level of useful concurrency. In order to compare
alternative algorithms, a measure of their relative levels of useful concurrency
must be obtained. The number of ective transactions at first seems like a rea-
sonable metric for the level of useful concurrency achievable, as the aclive

transactions are exactly those which are usefully executing in a concurrent
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manner. However, restarts are’a possibility in many variants of locking, and
they are the major conflict-resolving tactic in basic timestamp ordering and
serial validation. The possibility of transaction restarts makes the number of
active transactions a useless concurrency metric, as is illustrated by the fol-

lowing example based on serial validation.

Consider a mix of N transactions whose readsets and writesets all include
some object X, and suppose serial validation is the concurrency control algo-
rithm being used. All N transactions will be allowed to execute concurrently.
When they are subjected to the commit-time validation test after executing
all their reads, doing their respective computation, and caching their writes
locally, N-1 will be forced to restart. Thus, knowing that N transactions are

executing concurrently is not informative.

A better measure of the concurrency benefits offered by alternative algo-
rithms would be a measure of the number of successful commits for some mix
of transactions. Hence, in this thesis, the metric chosen is the number of com-
mits per un.it time, or throughput. Concurrency control semantics are actually
implemented and simulated in a closed queui:;g model of a database system to
obtain this throughput information. The queuing model, a workload model,
and the techniques used to implement concurrency control algorithms will be
described in the next section. First, however, the reasons for using a detailed

simulation approach will be discussed.
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There are several reasons' why detailed simulation seemed like the best
way to obtain performance information about alternative concurrency control
schemes. Analytic queuing models of concurrency contro! algorithms are
difficult to develop because the sharing of a large number of distinct data
objects is a key factor in determining algorithm performance. Recent papers
on the subject have dealt primarily with models of very simple concurrency
control schemes, such as exclusive-only locking [Gall82, Good83]. Thus, it
would be prohibitively hard to develop tractable analytical models of a
significant number of concurrency control algorithms for comparative pur-
poses. Second, by selecting a detailed simulation approach, a more realistic
collection of tranmsaction mixes and workloads can be studied. Finally, there
are certain facts about the bebavior of transactions in real systems which are
difficult to represent in an analytical model. For example, restarted transac-
tions re-request the same data objects that they requested the last time.
Detailed simulation provides a way to model such facts and evaluate algo-
rithm performance without requiring the implementation of many alternative

algorithms in an actual database system.
8.2. MODEL DESCRIPTION

3.2.1. The Workload Model

An important component of the performance model is a transaction

workload model. When a transaction is initizted from a terminal in the simu-
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lator, it is a;signed a workload; consisting of a readset and a writeset] which
determines the objects that the transaction will read and write during its exe-
cution. Two transaction classes, large and small, are recognized in order to
aid in the modeling of realistic transaction workloads. The class of a transac-
tion is determined at transaction initiation time and is used to determine the
manner in which the readset and writeset for the transaction are to be
assigned. Transaction classes, readsets, and writesets are generated using the

workload parameters shown in Table 3.1.

The parameter num_terms determines the number of terminals, or level
of mﬁltiprogramming, for the workload. The parameter restar!_delay deter-

mines the mean length of time required for a terminal to resubmit a transac-

Workload Parameters

db_size size of database

gran_size size of granules in database
num_terms level of multiprogramming
delay_mean mean xact restart delay
small_prob Pr(xact is small)
small_mean mean size for small xacts
large_mean mean size for large xacts

small_zact_type type for small xacts

large_zact_type type for large xacts

small_size_dist size distribution for small xacts
large_size_dist size distribution for large xacts
small_write_prob | Pr(write X | read X) for small xacts
large_write_prob | Pr(write X | read X) for large xacts

Table 3.1: Workload parameters for simulation.
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tion when it finds that its current transaction has been restarted, with the
delay associated with each particular restart determined by sampling from an

exponential distribution with this mean.

" The parameter db_size determines the number of objects in the database.
The parameter gran_size determines the number of objects in each granule of
the database. Concurrency control requests are made on the basis of
granules. Thus, when a transaction reads or writes an object, an associsted
concurrency control request is made for the granule which contains the object.
In modeling read and write requests, objects and granules are given integer
names ranging from 1 to db_size and 1 to [db_size/ gran_sizel, respectively.

Object ¢ is contained in granule [(§-1)/graen_size] + 1.

The readset and writeset for a transaction are lists of the numbers of the
objects to be read and written, respectively, by the transaction. These lists
are assigned at transaction startup time. When a terminal initiates a transac-
tion, small_prob is used to randomly determine the class of the transactica. If
the class of the transaction is small, the parameters smeall_mean,
small_zact_type, small_size_dist, and small_write_prob are used to choose the
readset and writeset for the transaction. The readset size for a new small
transaction is determined by the small_dist and small_mean parameters. The
readset size distribution, given by small_dist, is either constant, uniform, or
exponential. If it is constant, the readset size is simply small_mean. If the

distribution is uniform, the readset size is selected frcm a uniform distribution
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on the range |1, 2small_mcan].. If it is exponential, the readset size isselected
from an exponential distribution with mean smc!l_mean and truncated to an
integer value. All transactions read at least one object, so the readset size is
set to 1 if the exponentially determined value is less than one. The size of the
readset is truncated to the size of the database if it exceedé db_size, as tran-

sactions cannot possibly access more data than the database holds.

The particular database objects accessed by a small transaction are
determined by the parameter small_zact_type. This parameter determines the
type, either random or sequential, for small transactions. If small transactions
are random, the readset is assigned by randomly selecting objects without
replacement from the set of all objects in the database. In the sequertial
case, all objects in the readset are adjacent, so the collection of objects in the
readset is selected randomly from the set of all possible collections of adjacent
objecés of the appropriate size. The random transaction type is intended to
model transactions which access objects using either a primary hashed index
or a secondary index, whereas the sequential transaction type is intended to
model transactions which access objects using-either an ordered primary index
or a sequential scan of an entire relation or file. Finally, given the objects in
the réadset for a smaﬂ transaction, the objects in its writeset are determined
as follows using the small_write_prod parameter: It is assumed that all
objects written by a transaction are first read by the transaction (‘‘no blind

writes’). When an object is placed in the readset, it is also placed in the
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writeset with probability small_lwrite_prob. -

The readsets and writesets for the class of large transactions are deter-
mined in the obvious analogous manner using the large_mean,
large_zact_type, large_size_dist, and large_write_prob parameters. Small and
large transactions differ only in the choice of parameter values. The purpose
of having iwo transaction classes, large and small, it to enable the workload
model to better represent realistic database workloads. For instance, it is pos-
sible to use the workload model to represent a8 mix of small transactions
which randomly read and update a single object with large transactions which
read a large number of objects sequentially. Such mixes will be used in the

performance experiments reported later in this chapter and in Chapter 4.

3.2.2. The Queuning Model

Central to the detailed simulation approach used in this thesis is the
closed queuing model of a single-site database system shown in Figure 3.1.
This model is an extended version of the model of Ries [Ries77, Ries79a,
Ries70b). There is a fixed number of terminals from which transactions ori-
ginate. When a new transaction begins running, it enters the startup queue,
where_ processing tasks such as query analysis, authentication, and other prel-
iminary processing sieps are performed. Once this phase of transaction pro-
cessing is complete, the; transaction enters the concurrency control queue (or

cc queue) and makes the first of its concurrency control requests. If this
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Figure 3.1: Logical database queuing model.

request is granted, the transaction proceeds to the object queue and accesses
its first object. If more than one object may be accessed prior to the next
concurrency control request, the transaction may cycle through this queue
several times. (An example of this will be given shortly.) When the next con-

currency control request is required, the transaction re-enters the concurrency
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control queue and makes the n'ext desired request. It is assumed for conveni-
ence that transactions which read and write objects perform all of their reads
before performing any writes. It would otherwise be necessary to introduce
one or more additional parameters to determine how reads and writes are to
be interleaved, and it is felt that this would be unlikely to affect the results
significantly.

If the result of a concurrency control request is that the transaction must
block, it enters the blocked queve until it is once again able to proceed. If a
request leads to a decision to restart the transaction, it goes to the back of the
concurrency control queue after a randomly determined restart delay period of
mean delay_mean; it then begins making all of its concurrency control
requests and object accesses over again. Eventually, t.he transaction may
complete and the concurrency control algorithm may choose to commit the
transaction. If the transaction is read-énly, it is finished. If if has written
one or more objects during its execution, however, it must first enter the

update queue and write its deferred updates into the database.

To further illustrate the operation of the logical model, suppose that an
implementation of the two-phase locking algorithm studied in Chapter 2 is
used in the model. Consider transaction T of Figure 3.2. Suppose that
objects X; and X, are contained in granule G,, but object X is contained in
granule G;. T will begin by entering the startup queue in order to perform

initialization tasks. When it is ready to begin processing objects, T enters
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transaction T:

begin
read zI_value from X,;
read z5_value from X
read z£_value from X,
compute;
write zI_value into X);
write z2_value into Xo;

end;

Figure 3.2: Example transaction.

the concurrency control queue and tries to set a read lock on granule G,. If it
succeeds, it enters the object queue and reads X;. T then returns to the con-
currency control queue and requests a read lock on granule G,. Assuming it
succeeds in setting the required lock, it f)roceeds to the object queue and reads
object X5. Now, since T already holds a read lock on granule G,, it proceeds
directly to the back of the object queue and reads X,. If T is ever unable to
set a lock, it must wait in the blocked queue until the lock is available. If
waiting introduces a deadlock, T may be restarted instead of being permitted

to wait.

After completing its reads, T will proceed to the concurrency control
queue and request a write lock on granule G;. If the lock is granted, T will
enter the object queue and write object X;. It will then return to the back of
the object queue and write X,. After finishing its writes, T returns to the
concurrency control queue in order to request permission to commit. (This

request is never denied using locking, but the validation test would tzke place
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here in an implementation oi: serial validation.) T then proceeds”to the
update queue to perform its deferred updates. Once it has finished its
updates, T enters the concurrency control queue one last time to release its
locks. Finally, having completed all necessary activities, T finishes and a new

transaction is generated in its place.

To illustrate another case where a trarsaction may access a number of
objects following a single visit to the concurrency control queue, suppose that
an algorithm which requires all locks to be preclaimed were used for the previ-
ous example. T will enter the startup queue and then proceed to the con-
currency control queue, as before. At this point, however, T will request a
write lock on granule G; and a read lock on granule G, and it will have to
wasit in the blocked queue if it is unable to set both locks. Once T succeeds
in setting the required locks, it proceeds to the object queue. T reads object
X, goes to the back of the object queue, reads X, goes to the back 'of the
object queue, and reads X,. T then goes to the back of the object queue,
writes X, goes to the back of the object queue, and writes X,. T finishes as
before, entering the concurrency control queue, moving to the update queue,

and finally returning to the concurrency control queue to release its locks.

Underlying the logical model of Figure 3.1 are two physical resources, the
CPU and 1/O (disk) resources. Associated with each logical service depicted
in the figure (startup, concurrency control, object accesses, etc.) is some use of

each of these two globzl resources. When a transaction enters the startup
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queue, it first performs its startup-related 1/O processing and then performs
its startup-related CPU processing. The same is true of each of the other ser-
vices in the logical model. Each involves I/O processing followed by CPU
proéessing, with the amounts of CPU and I/O per logical service being
specified as simulation parameters.‘ All services compete for portions of the
global I/O and CPU resources for their I/O and CPU cycles. The underlying
physical system model is depicted in Figure 3.3. As shown, the physical
model is simply a collection of terminals, a CPU server, and an I/O server.
Each of the two servers has one queue for concurrency control service and

another queue for all other service.

The scheduling policy used to allocate resources to transactions in the
concurrency control I/O and CPU queues of the underlying physica} model is
FCFS (first-come, first-served). Concurrency control requests are thus pro-
cessed one at a time, as they would be in an actual implementation. The
resource allocation policies used for the normal I/O and CPU service queues
of the physical model are FCFS and round-robin scheduling, respectively.
These policies are again chosen to approximately model the characteristics
which a real database system implementation would have. When requests for
both 'concurrency control service and normal service are present at either
resource, such as when one or more concurrency control requests are pending
while other transactions are processing objects, concurrency control service

requests are given priority.
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Figure 3.3: Physical database queuing model.

System Parameters

startup_io
startup_cpu
obj_to

oby_cpu

ce_to
ec_cpu
stagger_mean

I/0O time for transaction startup

CPU time for transaction startup

I/0 time for accessing an object

CPU time for accessing an object

basic unit of concurrency control I/O time
basic unit of concurrency control CPU time
mean of exponential randomizing delay

Table 3.2: System parameters for simulation.

64



o

65

The parameters determin:mg the service times (I/O and CPU)7for the
various logical resources in the model are given in Table 3.2. The parameters
startup_fo and startup_cpu are the amounts of I/O and CPU associated with
transaction startup. Similarly, the parameters obj_to and obj_cpu are the
amounts of I/O and CPU associated with reading and writing an object in the
database. Reading an object takes resources equal to obj_so followed by
obj_cpu. Writing an object takes resources equal to obj_cpu at the time of
the write request and obj_so at deferred update time, as it is assumed that
the deferred update list is maintained in buffers in main memory. The
parameters ec_fo and cc_cpu are the amounts of I/O and CPU associated
with a concurrency control request. All these time parameters represent con-
stant service time requirements rather than stochastic ones for simplicity.
Finally, the stagger_mean parameter is the mean of an exponential time dis-
tribution which is used to randomly stagger transaction initiation times from
terminals (not to model user thinking) each time a new tramsaction is started
up. All parameters are specified in internal simulation units, the unit of CPU
time allocated to a transaction in one sweep of the round-robin allocation

code for the simulator.

3.2.3. Algorithm Descriptions

As mentioned previously, a major objective in the design of the simulator
was to facilitate implementing a variety of concurrency control algorithms

within a common framework. Concurrency control algorithms are described
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for simulation purposes as a ;:ollection of four routines, Im’t,CC’_Al_yon’thm,
‘Request_Semantics, Commit_Semantics, and Update_Semantics. Each these
routines is written in SIMPAS, a simulation language based on extending
PASCAL with simulation-oriented constructs [Brya80a, Brya80b]. SIMPAS is
the language in which the rest of the simulator is implemented as well.
Inst_CC_Algorithm is called when the simulation starts up, and it is responsi-
ble for initializing all algorithm-dependent data structures and variables. The
other three routines are responsible for implementing the semantics of the

concurrency control algorithm being modeled.

When a transaction reaches the front of the concurrency control queue,
one of the three concurrency control semantics routines is invoked. If the
transaction has any remaining read or write requests to make, the routine
invoked is Request_Semantics. This routine processes the next request(s),
returning information to the simulator informing it how many unrits of simula-
tion time to charge for CPU and I/O associated with processing the con-
currency control request. This cost is computed based on the ec_cpu and
cc_so parameters. The Request_Semantics routine also returns a concurrency
control decision of access, block, restart, update, or commit. This result
informs the simulator which queue the transaction should go to next. It is the
Request_Semanties routine which is responsible for checking concurrency con-

trol data structures such as a lock table.
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When the transaction arrives in the concurrency control queue after
finishing its last request, the Commit_Semantics routine is called. This rou-
tine is responsible for doing whatever algorithm-dependent commit time pro-
cessing is called for. As an example, this routine is responsible for performing
the validation test in simulations of concurrency control algorithms based on
commit-time validation. Again, the routine returns cost and concurrency con-

trol result information to the simulator.

Finally, if the transaction executes to completion, the Update_Semantics
routine is called after the transaction has committed and written its deferred
updates to disk. This routine is responsible for any algorithm-dependent
cleanup processing that is called for, such as releasing locks in simulations of
locking algorithms. It returns cost information to the simulator which indi-
cates the number of CPU and I/O units to charge for its post-update con-

currency control processing.

3.3. PERFORMANCE EXPERIMENTS

This section reports on the results of a number of simulation experiments
for seven concurrency control algorithm variants. Before presenting these
experiments and results, however, the algorithms examined in the study will
be reviewed briefly, the concurrency control cost modeling details for the algo-
rithms will be described, and the statistical approach used in the experiments

will be outlined.



3.3.1. Algorithms Studied -

The algorithms investigated in the performance experiments of this
chapter are all variants of the two-phase locking, basic timestamp ordering,

and serial validation algorithms discussed earlier in this thesis.

Dynamic Two-Phase Locking (2PL). This algorithm is similar to the
locking algorithm described and analyzed using the cost model of Chapter 2,
except that its blocking behavior is a bit more complex. In this algorithm,
transactions request read locks for granules which they read. Transactions
later upgrade these read locks to write locks for granules which they also
write (when they write the first object in the granule). When a lock request
must be denied, the requesting transaction is blocked and placed at the end of .
a queue of transactions waiting to obtain the lock. When a lock is released,
transactions are unblocked by removing transactions from the front of the
lock wait queue until either the queue is empty or a transaction with an
incompatible lock request reaches the front of the queue. A waits-for graph of
transactions is maintained [Gray79), and deadlock cycle detection is per-
formed each time a transaction blocks. If a deadlock is discovered, the tran-
saction which just blocked and caused the deadlock is chosen as the victim
and restarted. (This may not be the optimal victim choice, but it was

selected initially for ease of implementation.)

Wait-Die Two-Phase Locking (WD). This algorithm is closely related

to dynamic two-phase locking, except deadlock prevention is used instead of
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deadlock detection. Wait-die deadlock prevention [Rose78] is used, so
deadlocks are prevented by ordering transactions by the times when they first
start running. When a lock request from a transaction T; conflicts with a
lock held by another transaction T, T; is permitted to wait only if it started
running before T;. Otherwise, T; is restarted. This restart rule prevents the
formation of deadlock cycles and does away with the need for deadlock detec-
tion. However, since a transaction T; which waits for an older transaction T;
will not always result in a real deadlock, WD will result in more rosté.rts than
9PL. WD was selected over the related wound-wait algorithm [Rose78] for
two reasons. The first reason is that it was slightly simpler to implement.
The second reason is that WD is the deadlock-preventing counterpart of 2PL
in the sense that both algorithms are non-preemptive (they only restart the

transaction making the current request).

Dynamic Two-Phase Locking, No Upgrades (2PLW). This algorithm is
nearly identical to dynamic two-phase locking. The difference is that, if a
transaction reads and writes an granule z, it does not request a read lock and
then later upgrade its read lock to a write lock. Rather, for granules which
are eventually read, write locks are requested the first time the granule is
accessed, eliminating upgradgs. Since transaction readsets and writesets are
determined at startup time in the simulator, the necessary knowledge is avail-

able. Full deadlock detection is employed as before.
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Ezclusive, Preclaimed Two-Phase Locking (PRE). This algorithm is a
simple form of two-phase locking, in which all granules read or writt;en by 2
transaction are locked in exclusive access mode (write locked) at transaction
startup time. If a transaction is unable to obtain t‘he set of all required locks,
it blocks without obtaining any of these locks and proceeds when all required
locks are indeed available. This is basically the version of locking which Ries
investigated in his experiments [Ries77, Ries79a, Ries70b]. Neither deadlocks
nor upgrades are possible with this algorithm. The use of only exclusive locks '
will result in m;Jre blocking than would occur using both read and write locks.
This will aid in establishing later performance results about the effects of

blocking.

Basic Timestamp Ordering (BTO). This is the version of basic times-
tamp ordering described in Chapter 2, with read timestamps checked dynami-

cally and all write timestamps checked at commit time.

Basic Timestamp Ordering, Thomas Write Rule (TWW). This is a ver-
sion of basic timestamp ordering which differs from the previous version in the
following manner: When a transaction T; makes a write request for an object
z and TS(T;) > R-TS(z) but TS(T;) < W-T5(z), the previous version of
basic ‘timestamp ordering would call for T; to be restarted. In this version,
T;'s request is granted, so T; is not restarted, but the actual (outdated) write
is ignored. In all of the experiments that follow, TWW never outperformed

BTO; in fact, the performance of the two algorithms was always identical.
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This is due to the fact that, under the “no blind writes” assumption which
underlies the mechanism by which writesets are assigned in the model, TWW
is identical to BTO (see Appendix 2). Thus, results for TWW are not

presented separately.

Serial Validation (SV). This is the modified version of serial validation
that was pi'wented in Chapter 2, with the semantics of the original serial vali-

dation algorithm [Kung81] implemented via startup and commit timestamps.

8.3.2. Concurrency Control Costs

In order to simulate the concurrency control algorithms of interest, it is
necessary to make some assumptions about their costs. To evaluate them
fairly and determine how their blocking and restart decisions affect perfor-
mance, the assumptions made for each of the algorithm simulations are con-
sistent. This section will briefly describe how the ec_cpu and cc_so parame-
ters are used in modeling the costs for each of the algorithms in the study.
The concurrency control costs incurred by a transaction whick makes N,
granule read requests and N, granule write requests will be given for each

algorithm.

For sll of the locking algorithms except preclaimed locking (2PL, WD,
and 2PLW), a CPU cost of cc_cpu and an 1/O cost of ce_fo are assessed each
time the algorithm makes a read or write lock request for a granule. For 2PL

and WD, the total concurrency control CPU and I/O costs for a transaction
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in the absence of restarts are (N,+ Ng)ee_cpu and (N,+ N, )cc_io7 respec-

‘tively. For 2PLW, which sets write locks initially on granules that are both

read and written, the total concurrency control costs in the absence of restarts
are N,ce_cpu and N,ec_fo. Thus, since 2PLW sets fewer locks overall, its
concurrency control cost is lower. The PRE algorithm incurs the same total
concurrency control costs as 2PLW, N, cc_cpu and N,cc_to, but the entire
lock-setting cost for PRE is charged at transaction startup time to model pre-

claiming,.

For the BTO and TWW algorithms, a CPU cost of ¢c_cpu and an I/O
cost of ce_fo are assessed each time the algorithm checks a recad or write
access privilege for a granule. Thus, the total concurrency control cost for .
BTO and TWW in the absence of restarts is the same as for 2PL and WD,
with one minor difference. For BTO and TWW, the read-related costs of
N,cc_cpu and N, ec_io are charged dynamically, as read requests are received
and processed, but the write-related costs of N,cc_cpu and N,cc_io are all
charged together at transaction commit time to model the fact that BTO and
TWW defer write request checking until then. The costs for BTO and TWW

serve to model the timestamp-checking costs for these algorithms.

f‘or the SV salgorithm, a CPU cost of ec_cpu and an I/O cost of ec_to
are charged for each of the granules read and written, and all charges are
assessed at transaction commit time. The read-related charges model the

testing of readset granules to make sure that none have timestamps which
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indicate that some recently coinmitted transaction wrote the granule,jand the
write-related charges model the timestamp updating process cnce a transac-
tion has committed. Thus, the total concurrency control costs in the absence
of restarts for SV are the same as those for 2PL, WD, BTO, and TWW,
(N,+ Ng)eec_epy and (N,+ Ny)ec_so, but the points where the costs are

assessed differ somewhat.

In all cases, an attempt has been made to fairly but simply account for
concurrency control costs. It is assumed that the unit costs for concurrency
control operations in locking, timestamps, and validation are all the same,
cc_cpu and cc_io, as a first-order approximation. This is reasonable since the
basic steps in each algorithm involve doing one or two table lookups per
request. Thus, the costs of processing requests in the various algorithms are
not likely to differ by more than small constant factors. This is borne out by

the CPU cost results of Chapter 2.

For transactions which must wait for locks, the concurrency control costs
are assessed once the transaction has unblocked and succeeded in obtaining
the desired lock(s). For transactions which are restarted during commit-time
concurrency control checking, the costs for the commit-time checking are
assessed in full for simplicity. It would otherwise be necessary to keep careful
track of exactly how far along transactions are in the tesis when they fail.
Examples of transactions which might have to restart at commit time are

those failing BTO or TWW write tests or the SV validation test. No othir
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concurrency control costs are assessed for any of the algorithms for eny rea-

son.

Of course, if a transaction is restarted, it will pay the additional costs
involved in executing again from the beginning. These include all the costs
associated with reading and writing the objects that the transaction accesses,

plus the costs for making all of its concurrency control requests over again.

3.3.3. The Statistical Approach

In the simulation experiments performed in this thesis, the metric chosen
is the transaction throughput rate. This section sketches the methods used in
this thesis to discriminate between throughput differences due simply to sta-
tistical variations and those actually due to algorithm performance charac- '

teristics.

Throughput results and confidence intervals for these results are obtained
from the simulations using a slight variant of a standard simulation analysis
technique. Surveys of alternative techniques may be found in [Sarg76, Ferr78,
Saue81]. For several reésons, the method of batch mzans was chosen from
the options of batch means, independent replications, and the regenerative
method. First, due to a lack of exponential service times and the fact the
transactions compete for a large number of shared logical resources (granules),
the only true regeneration state for the simulations in this thesis is the state

in which all terminals are in their “stagger delay” waiting periods prior to
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submitting new transactions. it was found experimentally that, following ini-
tial startup, this state does not occur with sufficient frequency to permit use
of the regenerative method. Second, as described in [Sarg76], batch means
has the advantage over independent replications that initial transients do not
bias each of the throughput observations. Finally, implementation considera-
tions made the use of batch means simpler than the method of independent
replications, as the simulator would have to garbage collect and re-initialize
simulation and algorithm-dependent data structures between observation

periods if the method of independent replications were chosen.

Using the method of batch means, simulation runs are divided up into a
set of num_batches individual batches or sub-runs, each of which is
batch_time simulation time units long. Each batch within a simulation run
provides one throughput observation, and these observations are averaged to
estimate the overall throughput. Confidence intervals are usually computed
using standard techniques assuming that the throughput observations from
the batches are independent and identically distributed [Saue81]. Two ques-
tionable assumptions underly the use of batch means. The first assumption is
that batches are long enough so that the results are not biased by startup

transients. The second assumption is that batches are not correlated.

Appendix 3 addresses the assumptions underlying batch means, reviewing
the mathematics associated with the method, describing how startup tran-

sients were excluded from the results, and detailing a method wihich was used
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to account for correlation bet\;reen batches in computing confidence intervals.
‘The appendix gives sample confidence interval results obtained for one of the
experiments of this chapter to illustrate the usefulness of the statistical
methods used in this thesis. Appendix 3 also describes the choice of the set-
tings selected for the batch_time and num_batches simulation control parame-
ters for the experiments and gives confidence interval results for each of the
experiments in this thesis. Little will be said about confidence intervals
beyond this section, but only differences which are statistically significant

shall receive attention.

In order to make definitive statements and draw conclusions about con-
currency control performance issues, it is necessary that confidence intervals .
for the experimental results be sufficiently small so that they do not overlap
from algorithm to algorithm, at least where important differences are to be
demonstrated. This consideration affected the choice of transaction sizes in
the experiments. Small confidence intervals are achievable only when a “rea-
sonably large” number of successful transaction commits is contained in the
overall simulation run, as otherwise the variance in throughput results from
the batches will be too large. (The results of experiments performed in this
thesis seem to indicate that 1000 or more commits are desirable.) The “large”
transactions studied in this thesis are therefore not all that large in terms
objects accessed, as prohibitively long simulations would be necessary to pro-

duce statistically meaningful results for simulations involving very large
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transactions.

3.3.4. Experiments and Results

~ In this section, the results of six different performance experiments are
reported. Each of these experiments was performed on the seven concurrency
algorithms described earlier in this chapter. These experiments were designed
to investigate the relative performanée of the various algorithms, in hopes of
identifying algorithms whose performance is either uniformly superior to that
of the other algorithms or whose performance is superior under some set of
reasonable conditions. The first three experiments investigate the relative
performance of the algorithms under various transaction workloads; the
fourth experiment investigates the effect which tke level of multiprogramming
has on the performance results; the fifth experiment investigates the effect of
system balance on the performance results; and the sixth experiment exam-
ines the effect of concurrency control costs on the performance results. All of
the experiments reported in this chapter were run with batch_time = 50,000
and num_batches = 20, or a total of 1,000,000 simulation time units, as

described in Appendix 3.

3.3.4.1. Experiment 1: Transaction Size

This experiment investigates the performance characteristics of the seven
concurrency control algorithms under workloads consisting of fixed-size tran-

sactions. The parameters varied in this experiment are the granularity of the
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database and the size of trans:;ctions. Since concurrency control requests are
made for granules, rather than objects, varying the granularity of the data-
base varies the probability that transactions will conflict with one another.
When the finest granularity is chosen, where each granule contains a single
object, conflicts will be rare for small transactions in a large database. When
the granularity is coarse, the entire database will consist of only a few
granules. Frequent conflicts between transactions will be inevitable in this
case. The purpose of this experiment is to observe the behavior of the algo-
rithms of interest under varying probabilities of conflicts, and also to see how

the choice of transaction size affects this behavior.

The system parameter settings for this experiment are given in simulated .
time in Table 3.3. All simulations were run with one simulation unit inter-

preted as one millisecond of simulated time. With these system parameter

System Parameter Settings

System Time
Parameter (Milliseconds)
startup_to 35
startup_cpu 10
obj_to 35
obj_cpu 10
ce_to 0
ce_cpu 1
stagger_mean 20

Table 3.3: System parameters for experiment 1.
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settings, a transaction incurs :; startup cost of one 35 millisecond disk access
and 10 milliseconds of CPU time. In addition, this same cost is incurred for
each read or write of an object. Charges for reading and writing objects are
assessed in the manner described in the section which presented the details of
the queuing model. The cost associated with processing each concurrency
control request is 1 millisecond of CPU time and no I/O time. A 20 mil-

lisecond random delay time is used to stagger transaction startups.

The relevant workload parameter settings for this experiment are given
in Table 3.4. The database consists of 10,000 objects, and its granularity is
varied from 1 to 10,000 granules (or 10,000 down to 1 object per granule).
This could correspond, for example, to a 10 megabyte database where objects
are 1 kilobyte pages and granules are groups of one or more pages. The

number of terminals submitting transactions against the database is 10, and

Workload Parameters
db_stze 10000 objects
gran_size vary from 1 to 10000 objects/granule
num_terms 10
delay_mean 1 second
small_prob 1.0
small_mean vary from 1 to 30 objects
small_zact_type random
small_size_dist fixed
small_write_prob | 0.5

Table 3.4: Workload parameters for experiment 1.
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all transactions are the same size. Transactions each read a fixed number of
.objects selected at random from among all objects in the database. This
number is varied for different simulation runs within this experiment. Tran-

sactions update each object that they read with fifty percent probability.

Table 3.5 shows the throughput results for experiment 1.1, where a tran-
saction size of small_mean = 1 was used. Table 3.6 shows the throughput
results for experiment 1.2, where small_mean =2 was used. The

throughputs are given in units of transactions per second of simulated time.

The Grans column in each table contains the total number of granules in the

l Throughgut versus Granularig !
WD PRE BTO SV

Grans 2PL 2PLW
1 8.252 8.063 | 11.215 | 11.127 7.790 7.655
10 {| 10.971 | 11.004 | 11.420 | 11.421 | 10.648 | 10.314
100 || 11.373 | 11.373 | 11.419 | 11.420 | 11.328 | 11.262
1000 }| 11.413 | 11.413 | 11.420 | 11.420 | 11.405 | 11.402
10000 || 11.419 | 11.419 | 11.420 | 11.420 | 11.418 | 11.416

Table 3.5: Throughput, experiment 1.1 {small_mean = 1).

Throughput versus Granulari

Grans || 2PL WD | 2PLW | PRE | BTO SV
1 ]| 3.400 | 3.638 6.479 6.241 { 2.505 | 3.634
10 || 5.974 | 5.790 7.006 7.161 | 5.119 | 5.231
100 || 7.039 | 6.966 7.161 7.163 | 6.806 | 6.714
1000 {| 7.152 | 7.149 7.161 7.161 | 7.138 | 7.113
10000 || 7.159 | 7.159 7.180 7.161 | 7.158 | 7.158

Table 3.6: Throughput, experiment 1.2 (small_mean = 2).
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10,000 object database. All of the algorithms studied have strikingl; similar
"per{ormance with more than 100 granules in the database for small transac-
tions. For coarser granularities, the algorithms do display significant
differences. In particular, the two best algorithms are 2PLW and PRE. 2PL
and WD do somewhat worse than the two best algorithms, followed by SV

and BTO.

Based on their virtually identical performance under fine granularities,
the concurrency control cost of 1 millisecond of CPU time per granule request
has little eflect the performance of the algorithms. For example, although
PRE and 2PLW make fewer concurrency control requests than 2PL and WD,
they do not exhibit siznificantly greater throughputs. All differences may be
attributed to the blocking and restart behavior of the algorithms. It was
hypothesized that the differences under coarser granularities were due to
differences in the number of restarts incurred using the algorithms, and an

examination of the restart counts supports this hypothesis.

Restart Counts versus Granularity

Grans || 2PL | WD | 2PLW | PRE | BTO | SV
1 || 5860 | 7858 0 0 7185 | 7206
10 || 10968 | 3060 0 0 1809 | 2753
100 109 363 0 0 224 378
1C00 14§ 40 0 0 31 40
10000 2 4 0 0 4 6

Table 3.7: Restarts, experiment 1.1 (small_mean = 1).



F Restart Counts versus Granularity
Grans || 2PL | WD | 2PLW | PRE | BTO SV
1 || 6311 | 7638 0 0 7594 | 6529
10 || 2366 | 4633 242 0 4071 | 3844
100 247 706 3 0 508 879
1000 20 73 0 0 51 102
10000 2 11 0 0 4 9

Table 3.8: Restarts, experiment 1.2 (small_mean = 2).

Tables 3.7 and 3.8 contain the restart counts for the two smallest tran-
saction sizes tested. No restarts occurred with PRE, as PRE is deadlock free.
Few restarts occurred with 2PLW. 2PLW is deadlock free when only one
granule is accessed per transaction, and few deadlocks occurred at the next
smallest transaction size setting. Restarts were more frequent with 2PL, as -
additional deadlocks occur when two or more transactions hold a read lock on
a common granule and then each attempts to upgrade this read lock to a
write lock. The WD algorithm also led to a number of restarts at upgrade
time. More restarts occurred with WD than with 2PL because restarts were
called for when deadlock was a possibility as opposed to only when it actually
occurred. Finally, both SV and BTO use restarts as their single conflict-
resolving tactic, and both led to many restarts under coarse granularity as a

result.

The marginally shperior performance of WD as compared to SV and
BTO for coarse granularities is probably due to the fact that SV and (to a

slightly lesser extent) BTO tend to allow transactions to get further along



| Resources Consumed
Resource 2PLW PRE

1/0 805685.5 | 872204.0

CPU 265253.0 | 255452.0

Table 3.9: Utilization, experiment 1.2, coarsest granularity.

before restarting them, so less resource waste results from the average WD
restart. The marginal performance advantage of 2PLW over PRE when the
entire database is a single granule can be explained by the fact that PRE uses
only exclusive locking and holds locks for entire transaction lifetimes, thereby
totally serializing transaction execution in this case. 2PLW will permit the
simultaneous execution of multiple read-only transactions, whereas PRE will
not. This latter hypothesis is borne out by an examination of the relative
resource utilization results in this case. Table 3.9 gives the total I/O and
CPU resources consumed by transactions during 1,000,000 units of simulation
time for experiment 1.2 (small_mean = 2) when the entire database was one

granule.

As the transaction size parameter small_mean is increzsed, performance
differences between the algorithms become more pronounced. Table 3.10
shows the throughput results for experiment 1.3, where a transaction size of
small_mean = 5 was used. | Table 3.11 shows the throughput results for
experiment 1.4, where small_mean = 10 was used. The performance of the

algorithms is beginning to be noticeably different even with 10C0 granules in



84

I Throughgnt versus Gr ty

anulari
Grans || 2PL WD | 2PLW | PRE | BTO SV

1 /10748 | 0.788 | 2.917 | 2.741 | 0.169 | 0.889

10 || 0.946 | 1.065 | 2.097 | 3.028 | 0.406 | 1.200
100 || 2.823 | 2.633 | 3.335 | 3.360 | 2.231 | 2.408
1000 || 3.320 | 3.293 | 3.359 | 3.361 | 3.248 | 3.205
10000 || 3.357 | 3.351 | 3.362 | 3.361 | 3.355 | 3.347

Table 3.10: Throughput, experiment 1.3 (small_mean = 5).

| Throughgut versus Granularig I
Grans || 2PL WD | 2PLW | PRE | BTO SV

1 ||0281 | 0.240 | 1.518 | 1.425 | 0.001 | 0.336

10 || 0.074 | 0.234 | 0.432 | 1.415 | 0.004 | 0.355
100 || 0.827 | 0.701 | 1.414 | 1.759 | 0.235 | 0.784
1000 || 1.676 | 1.599 | 1.784 | 1.790 | 1.473 | 1.480
10000 J{ 1.976 | 1.770 | 1.788 | 1.788 | 1.763 | 1.749

Table 3.11: Throughput, experiment 1.4 (small_mean = 10).

the database, a trend which will continue as the transaction size is increased
further. This is due to an increased probability of conflicts between transac-
tions when each accesses more objects in the database. The best algorithm at
these transaction sizes under finer granularities is PRE, followed closely by
2PLW, then followed by 2PL, WD, SV, and lastly BTO. As the granularity
becomes coarser, however, this ordering changes somewhat. In particular,
WD a.ctually does better than 2PL at the second coarsest granularity. Also,

SV dominates 2PL and WD in addition to BTO at coarser granularities.

Tables 3.12 and 3.13 present the restart counts associated with experi-

ments 1.3 and 1.4. As before, the differences between the performance of the



Restart Counts versus Granularity !
Grans || 2PL | WD | 2PLW | PRE | BTO | SV
1 || 4242 | 6119 0 0 5317 | 4181
10 || 4061 | 5217 | 3123 0 4840 | 3651
100 807 | 1763 66 0 1910 | 1617
1000 71 164 0 0 188 258
10000 8 20 0 0 10 22

Table 3.12: Restarts, experiment 1.3 (small_mean = 5).

estart Counts versus Granularit

| R
Grans || 2PL | WD | 2PLW | PRE

Table 3.13: Restarts, experiment 1.4 (small_mean = 10).

BTO | SV
1 || 2351 | 4142 0 0 2855 | 2323
10 || 2816 | 3837 | 4223 0 2848 | 2293
100 || 1543 | 2360 769 0 2482 | 1612
1000 180 388 7 0 501 485
10000 16 31 0 0 38 56
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concurrency control algorithms studied can be seen to correlate with
differences in restarts. Here, though, where the number of objects accessed by
a transaction is larger than it was previously, the penalty for restarting a
transaction is much greater. Much more work is lost and must be repeated
by a restarted transaction in this case. This increase in the restart penalty is
the reason why throughput degradation occurs sooner as the granularity is
va.rie;l from fine to coarse here. It is also the reason for the increase in the

magnitude of this performance degradation effect.

The reason that PRE dominates 2PLW except when the entire database

is one granule is that PRE is the only algorithr studied which is entirely free
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of restarts. Although 2PLW avoids deadlocks due to lock upgrades,
deadlocks can arise when two transactions attempt to lock a pair of granules
in the opposite order from each other. 2PLW ends up being the second best
performer here because it has the fewest restarts of all the algorithms except
PRE. An exception occurs with 10 granules in the database and
small_mean = 10, where 2PLW actually has a larger number of restarts than
some of the alternatives which it outperforms. An explanation in this case is
that 2PLW restarts transactions much earlier in their lifetimes. In 2PLW, a
transaction that is backed out due to a deadlock is restarted when it attempts
to set a write lock prior to reading the granule it is attempting to lock. Less
resources are wasted when a transaction has completed less work prior to

being restarted.

There is a related explanation for the case where WD outperformed 2PL.
In 2PL, the transaction picked as the victim when a deadlock arises is the one
that induced the deadlock. When two transactions conflict over a granule in
the WD algorithm, the transaction causing the conflict is allowed to wait if it
is older and is forced to restart otherwise; this rule leads to the selection of
younger transactions as victims for the purpose of deadlock avoidance in the
WD algorithm. Since transactions which have accessed more objects are
likely to have required more simulated time to execute so far, they are likely
to be the older transactions when conflicts occur. The result is that, because

the version of 2PL simulated here does docs not take age into account in
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deciding which transaction to llestart, the transactions selected are mixed with
respect to the amount of work completed at restart time. Since WD makes
an effort to avoid restarting old transactions, it restarts mostly transactions
which have made less progress, thereby wasting fewer resources. This effect

will become even more pronounced with larger transaction sizes.

Unfortunately, the simulation program does not keep track of restarts by
transaction size, making verification of this hypothesis regarding the relative
performance of 2PL and WD difficult. However, tke restart counts for these
experiments support this hypothesis. It is otherwise very difficult to explain
why more restarts occurred using WD and yet its performance is superior to
9PL. This suggests that a better victim selection criteria could also improve
the performance of 2PL, most probably to the point of surpassing WD. For
instance, 2PL could choose the youngest transaction in a deadlock cycle as
the victim to be restarted. 2PL would then restart the youngest transaction
in a true deadlock cycle, whereas WD restarts the youngest transaction in a

potential cycle, so 2PL would once again outperform WD.

The dominance of SV over 2PL and WD at fine granularities in experi-
ments 1.3 and 1.4 is also related to their victim selection policies. The SV
algofithm restarts a transaction only when it conflicts with a recently commit-
téd transaction. This ensures that at least one transaction in each group of
conflicting transactions will succeed in committing, as otherwise there will be

no recently committed transaction to cause others to restart. In 2PL, it is
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possible for a group of conﬂictfng transactions’ to exhibit a thrashing-type res-
tart behavior. Consider a transaction T; which is restarted due to a conflict
with another transaction T, over a granule z. T; may begin again, lock a
granule y needed by a third transaction T3, and cause T3 to subsequently
restart due to a deadlock. T3 may then do the same thing to T over stiil
another granule z. The “pick the conflict-causing transaction’ rule for victim
selection is the source of the problem, and the problem worsens as transaction
size increases. In WD, a transaction T; which restarts due to a conflict with
an older transaction T, over a granule z can restart and subsequently become
involved in the very same conflict if T, has not finished with z. T; may thus
be restarted a number of times due to the one conflict with T, using WD
[Rose78], leading to a greater number of restarts than would otherwise be
expected. As a result of the stability of SV and the victim selection problems
of 2PL and WD, SV caused fewer restarts at coarse granularities in these

experiments.

An exception to the statement that algorithm performance is correlated
with the number of restarts is the performance of the BTO algorithm. BTO
does worse than would be warranted by its restart counts. The explanation
for this exceptionally poor pgrformance is that, under a high probability of
conflicts, BTO is unstable due an to anomaly in the algoritbm. This anomaly,
cyclic restarts, is mentioned briefly in [Date82, Lin82, Ullm83], and it is illus-

trated in Figures 3.4 and 3.5. Figure 3.4 depicts a pair of transactions with
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transaction T1:
begin

read z_vslue from X;

compute;

write z_value into X;
end;

transaction T2:
begin

read z_value from X;

compute;

write z_value into X;
end;

Figure 3.4: Cyclic restart transactions for BTO.

workloads which make them prone to the cyclic restart anomaly, and Figure
3.5 demonstrates how these transactions can become involved in an infinite
cycle, restarting each other repeatedly. Only the first ten steps in the infinite

interleaving cycle are shown in the figure.

Step Action Result
1 T1: begin xact TS(T1)=1
2 T2: begin xact TS(T2) =2
3 T1: read z_valuefrom X; R-TS(X)=1
4 T2: read z_value from X; R-TS(X)=2
5 T1: write z_valueinto X;  Restart{T1) with TS(T1) = 3
6 T1: read z_vsluefrom X; R-TS(X)=3
7 T2: write z_valueinto X;  Restart(T2) with TS(T2) = 4
8 T2: read z_valuefrom X; R-TS(X) =4
9 T1: write z_valueinto X;  Restart(T1) with TS(T1) = 5
10 T1: read z_valuefrom X; R-TS(X)=35
1 etc. etc.

Figure 3.5: Example of cyclic restart anomaly.
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The problem with the two transactions of Figure 3.4 is that they both
?vish to read and write the same granule. If they attempt to interleavé execu-
tion in the manner shown in Figure 3.5, performing their reads in timestamp
order and then attempting to do the same for their writes, they are liable to
follow the pattern shown in the figure forever. The problem begins when T,
is restarted at step 5 because X has been read by a younger transaction, T,.
At this point, T, actually becomes younger than T, and re-reads X. This
dooms T,'s subsequent write to end in a restart, etc. If the computation
delay between the read and write of X exceeds the delay from the time of a
restart to the time of re-reading X for both transactions T; and T,, this pat-
tern can indeed persist forever. This is the case for the coarse granularity '
throughput results in experiments 1.3 and 1.4. Although the restart counts
for BTO are comparable to those of some locking algorithms which have
higher throughputs, its throughput is lower because the restarts caused by the
anomaly always occur when write timestamp checking takes place. This does
not take place until commit time, meaning that the amounts of CPU and 1/O
resources wasted due to the anomaly are very high. This anomaly was not
observed in experiments 1.1 and 1.2 because the restart delay of one second of
simulated time was sufficient to minimize its chances of occurring with such

small transaction sizes.

Tables 3.14 and 3.15 give the throughput results for the largest transac-

tion sizes tested, where sma!l_mecn = 15 and smell_mean = 30 were used.
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' Throughgut versus Granularii_:__x l
Grans || 2PL WD | 2PLW | PRE | BTO SV

10179 | 0.138 | 1.031 | 0.964 | 0.000 | 0.205

10 |{ 0.009 | 0.121 | 0.143 | 0.959 | 0.000 | 0.207
100 || 0.203 | 0.237 | 0.583 | 1.111 | 0.009 | 0.371
1000 || 1.023 | 0.933 | 1.207 | 1.216 | 0.642 | 0.861
10000 J| 1.193 | 1.186 | 1.217 | 1.218 | 1.148 | 1.159

Table 3.14: Throughput, experiment 1.5 (small_mean = 15).

F Throughgnt versus Granularig |
Grans || 2PL WD | 2PLW | PRE | BTO SV

1 || 0.080 | 0.071 | 0.518 | 0.487 | 0.000 | 0.096

10 || 0.002 | 0.062 | 0.020 { 0.485 | 0.000 | 0.096
100 || 0.0086 | 0.054 | 0.029 | 0.481 | 0.000 | 0.102
1000 || 0.266 | 0.201 | 0.483 | 0.592 | 0.025 | 0.267
10000 || 0.571 | 0.558 | 0.617 | 0.614 | 0.431 | 0.524

Table 3.15: Throughput, experiment 1.6 (small_mean = 30).

| :Restart Counts versus Granularity ]

Grans || 2PL | WD | 2PLW | PRE | BTO | SV
1 || 1592 | 3115 0 0 1808 | 1585

10 |{ 1928 | 3129 4217 0 1806 | 1581
100 || 1619 | 2363 1522 0 1891 | 1321
1000 302 582 25 0 800 556
10000 36 67 0 0 106 89

Table 3.16: Restarts, experiment 1.5 (small_mean = 15).
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| Restart Counts versus Granularit -

Grans || 2PL | WD | 2PLW | PRE | BTO | SV
1 801 | 2178 0 0 953 | 805

10 977 | 2088 | 4131 0 953 | 805
100 || 1010 | 1781 2114 0 953 | 797
1000 538 956 285 0 917 | 545
10000 74 119 4 0 289 | 148

Table 3.17: Restarts, experiment 1.6 (small_mean = 30).

The restart counts for these cases, experiments 1.5 and 1.6, are given in
Tables 3.16 and 3.17. For the most part, these results simply accentuate the

trends observed in the previous pair of experiments. PRE is dominant due to |
its lack of restarts. WD again outperforms 2PL at coarser granularities
because of its preference for restarting transactions which have completed less
work. SV again outperforms 2PL and WD at coarse granularities, even out-
performing 2PLW with 10 granules comprising the database, by causing fewer
restarts. This is due to the thrashing behavior of the victim selection criteria
used by 2PL and 2PLW, and to the possibility of repeating conflicts for WD.
Both effects were discussed in conjunction with experiments 1.3 and 1.4.
Finally, the anomalous behavior of BTO is extremely pronounced for these

transaction sizes.

3.3.4.2. Experiment 2: Access Patterns

This experiment investigates the performance characteristics of the seven
concurrency control algorithms under two workloads consisting solely of large

transactions. The granularity of the database is varied, as before, in order to
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vary the probability of conflicts. The system parameter settings for this
experiment are the same as those for experiment 1 (see Table 3.3). The
objective of this experiment is to observe the effects of random versus sequen-

tial object access patterns on algorithm performance.

The relevant workload parameter settings for this experiment are given
in Table 3.18. The database again consists of 10,000 objects, and its granu-
larity is varied from 1 to 10,000 granules. The number of terminals submit-
ting transactions against the database is 10, and all transactions are large.
Transaction sizes are determined by sampling from a uniform distribution
over the range [1,60], so transactions each read an average of about 30
objects. Both random and sequential access patterns are tested. In the ran-
dom case, the objects are selected randomly from among all possible sets of

the appropriate number of objects in the database. In the sequential case, the

Workload Parameters
db_size 10000 objects
gran_size vary from 1 to 10000 objects/granule
num_terms 10
delay_mean 1 second
small_prob 0.0
large_mean 30 objects
large_zact_type random or sequential
large_ssze_dist uniform
large_write_prob | 0.1

Table 3.18: Workload parameters for experiment 2.
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objects are selected at random from among all possible sequences-of the
appropriate size in the database. Transactions update each of the objects

which they read with ten percent probability.

" Table 3.19 gives the throughput results for experiment 2.1, where tran-
sactions with random access patterns were tested. These results are similar to
those obtained for the larger transaction sizes in experiment 1, though some
of the performance differences are less pronounced due to the reduced proba-
bility of writing. Table 3.20 gives the throughput results for experiment 2.2,

where sequential transactions were used. Significant differences are apparent

Throughput versus Granulari
Grans || 2PL WD | 2PLW | PRE | BTO SV
1 ]| 0.052 | 0.068 | 0.759 | 0.609 | 0.000 | 0.098
10 || 0.001 | 0.060 | 0.035 | 0.608 | 0.000 | 0.099
100 |} 0.024 | 0.103 | 0.049 | 0.612 | 0.015 | 0.142
1000 || 0.537 | 0.456 | 0.709 | 0.738 | 0.138 | 0.393
10000 || 0.780 | 0.759 | 0.783 | 0.787 | 0.677 | 0.675

Table 3.19: Throughput, experiment 2.1 (random access).

Throughput versus Granulari
Grans || 2PL WD | 2PLW | PRE | BTO SV

1 |{ 0.062 | 0071 | 0.770 | 0.646 | 0.000 | 0.097

10 || 0.418 | 0.414 | 0.797 | 0.801 | 0.052 | 0.408
100 || 0.712 | 0.718 | 0.799 | 0.790 | 0.443 | 0.685
1000 }| 0.770 | 0.770 | 0.798 | 0.789 | 0.700 | 0.746
10000 }| 0.775 | 0.775 | 0.788 | 0.799 | 0.728 | 0.754

Table 3.20: Throughput, experiment 2.2 (sequential access).
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in the results of the second experiment. 2PLW and PRE are domimant, fol-
lowed by WD and 2PL, with SV being the second worst algorithm and BTO

being the worst of the algorithms investigated.

" Tables 3.21 and 3.22 show the restart counts associated with experiments
2.1 and 2.2. The differences between the two experiments are clearly a func-
tion of res.tart behavior, and there is a simple explanation for the significant
reduction in restarts from experiment 2.1 to experiment 2.2 for the locking
algorithms. Since transactions request resources in sequential order in the

latter experiment, all deadlocks related to random locking order disappear.

Restart Counts versus Granularit

Grans || 2PL | WD | 2PLW | PRE | BTO | SV
1 || 478 | 2296 0 0 711 | 455

10 || 697 | 1967 | 2590 0 711 | 461
100 || 535 | 1225 | 1157 0 602 | 468
1000 {| 182 453 74 0 450 | 304
10000 ) 30 2 0 76 84

Table 3.21: Restarts, experiment 2.1 (random access).

I Restart Counts versus Granularity l
Grans || 2PL | WD | 2PLW | PRE | BTO | SV

1 || 459 | 2258 0 0 642 | 445

10 || 284 | 1324 0 0 678 | 301
100 79 191 0 0 267 99
1000 29 - 58 0 0 78 49
10000 23 45 0 0 57 42

Table 3.22: Restarts, experiment 2.2 (sequential access).
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9PLW is deadlock-free for the 'mix of experiment 2.2, and the only deadlocks
(or potential deadlocks) for 2PL and WD occur due to lock upgrades. As a
result of the reduction in the number of restarts for all of the locking algo-
ritlims, the restart-based SV and BTO algorithms are unable to compete with
the performance of the locking algorithms for the mix of large sequential trar-

sactions.

8.3.4.3. Experiment 3: Mixed Workload

This experiment investigates the performance characteristics of the seven
concurrency control algorithms under a workload consisting of a mix of large
and small transactions. The granularity of the database is again varied in
order to vary the probability of conflicts. The system parameters are the .
same as for experiment 1 (see Table 3.3), and the workload parameters for
this experiment are listed in Table 3.23. The workload investigated here is a
mix of the workloads of the two previous experiments, with some of the tran-
sactions being the small fixed-size transactions from experimcat 1 and the
remainder being the larger transactions from experiment 2. This workload is
intended to represent a fairly realistic combination of small and large transac-
tions. The fraction of small transactions in the mix is varied to investigate
algorithm performance under different combinations of small and large tran-

sactions.
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Workload Parameters

db_ssze 10000 objects

gran_size vary from 1 to 10000 objects/granule
num_terms 10

delay_mean 1 second

small_prob vary from 0.2 to 0.8

small_mean 2 objects

small_zact_type random
small_size_dist fixed
small_write_prob | 0.5

large_mean 30 objects
large_zact_type sequential
large_ssize_dist uniform

large_write_prob | 0.1

Table 3.23: Workload parameters for experiment 3.

The throughput results for experiment 3 are given in Tables 3.24 through
3.27. The associated restart counts are given in Tables 3.28 through 3.31.
There are few surprises, as the results are mostly a combination of those
observed previously in experiments 1.2 and 2.2. The locking algorithms are
dominant, with 2PLW being the best and PRE tying except at the coarsest
granularity setting. WD is next, outperforming 2PL for reasons related to the
discussion of WD versus 2PL in experiments 1.3 and 1.4. WD picks the
younger transaction to restart in order to avoid deadlocks when conflicts arise,
and m this case the younger transaction is likely to be one of the small tran-
salctions in the mix. As a result, WD wastes fewer overall resources due to
restarts than are wasted by 2PL. The advantage of WD over 2PL is more

pronounced for mixes of mostly small transactiors, as the likelihood of its
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selecting a large transaction to restart is the smallest for such mixes.—SV and
BTO perform as expected based on the observations from previous experi-
ments. SV is generally the second worst algorithm here, outperforming 2PL
only under very coarse granularities where the thrashing behavior of 2PL is

the most serious. BTO is uniformly inferior to the other algorithms tested.

| Throughgut versus Granularit; I
Grans || 2PL WD | 2PLW | PRE | BTO SV

1 || 0.066 | 0.091 | 0.919 | 0.771 | 0.000 | 0.111

10 || 0.464 | 0.517 0.967 0.963 | 0.124 | 0.450

100 || 0.883 | 0.894 0.966 0.964 | 0.681 | 0.858

1000 || 0.930 | 0.945 0.966 0.969 | 0.775 | 0.905

10000 || 0.942 | 0.944 | 0.966 | 0.967 | 0.874 | 0.213

Table 3.24: Throughput, experiment 3.1 (small_prob = 0.2).

l TEroughput versus Granularity
Grans || 2PL WD | 2PLW | PRE | BTO SV
1] 0069 | 0.109 | 1.126 | 0.892 | 0.000 | 0.123
10 || 0.535 | 0.633 | 1.227 | 1.226 | 0.073 ! 0.522
100 || 1.055 | 1.112 | 1.228 | 1.226 | 0.862 { 1.022

1000 || 1.183 | 1.183 | 1.229 | 1.228 | 1.081 | 1.112
10000 {| 1.200 | 1.184 | 1.229 | 1.228 | 1.113 | 1.130

Table 3.25: Throughput, experiment 3.2 (small_prob = 0.4).
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F Throughput versus Granularity . |
Grans || 2PL

WD | 2PLW | PRE | BTO SV
1 |} 0083 | 0.203 | 1.535 | 1.344 | 0.002 | 0.202
10 || 0.639 | 0.857 | 1.709 | 1.709 | 0.159 | 0.710
100 || 1.462 | 1.556 | 1.713 | 1.717 | 0.410 | 1.352
1000 || 1.646 | 1.669 | 1.714 | 1.715 | 1.463 | 1.571
10000 |} 1.688 | 1.679 | 1.713 | 1.715 | 1.576 | 1.578

Table 3.26: Throughput, experiment 3.3 (small_prob = 0.6).

Throughput versus Granulari
Grans || 2PL WD | 2PLW | PRE | BTO SV

1 | 0.101 | 0.450 | 2.521 | 2.371 | 0.022 | 0.333

10 || 0.853 | 1.551 | 2.830 | 2.860 | 0.338 | 0.963
100 |} 2.352 | 2.580 | 2.865 | 2.861 | 1.246 | 2.185
1000 || 2.675 | 2.752 | 2.859 | 2.864 | 2.415 | 2.504
10000 |{ 2.803 | 2.777 | 2.860 | 2.864 | 2.634 | 2.554

Table 3.27: Throughput, experiment 3.4 (small_prob = 0.8).

| Restarts versus Granularit; I
G PL | WD

rans || 2 2PLW | PRE | BTO | SV

1 || 489 | 2802 0 0 631 | 469

10 || 317 | 1621 3 0 554 | 338
100 56 214 0 0 180 85
1000 24 72 0 0 135 46
10000 17 48 0 0 60 39

Table 3.28: Restarts, experiment 3.1 (small_prob = 0.2).



Restarts versus Granularity I—.

Grans || 2PL | WD | 2PLW | PRE | BTO | SV
1 || 487 | 3404 0 0 669 | 460

10 || 386 | 2191 6 0 536 | 373
100 || 101 330 0 0 108 | 122
1000 21 71 0 0 71 58
10000 15 58 0 0 58 49

Table 3.29: Restarts, experiment 3.2 (small_prob = 0.4).

| Restarts versus Granularit; ’
Grans || 2PL | WD | 2PLW | PRE | BTO | SV

1 || 584 | 4621 0 0 861 | 508

10 || 484 | 2071 11 0 673 | 416
100 || 113 438 1 0 462 | 151
1000 22 98 0 0 84 52
10000 7 58 0 0 42 43

Table 3.30: Restarts, experiment 3.3 (sma!l_prob = 0.6).

Restarts versus Granularit

Grans || 2PL | WD | 2PLW | PRE | BTO | SV
1 | 589 | 6003 0 0 762 | 481

10 || 562 | 3781 58 0 574 | 495
100 || 158 904 0 0 344 | 235
1000 43 211 0 0 115 | 102
10000 15 160 0 0 63 71

Table 3.31: Restarts, experiment 3.4 (small_prob = 0.8).

3.3.4.4. Experiment 4: Multiprogramming Level

This experiment investigates the effects of the multiprogramming level on

the results of the previous experiments. Experimeat 3.1 is repeated with two
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different levels of multiprogramming. Also, the effect of the level of mpltipro-
gramming on throughput when no concurrency control algorithm is used is

investigated for the transaction mix of experiment 3.1.

" The first part of this experiment consisted of running experiment 3.1
with all of the same system and workload parameters except for the level of
multiptogfamming. (See Tables 3.3 and 3.23 for these parameter settings.)
The level of multiprogramming was set at 5 and then 20 terminals instead of
its previous setting of 10. The throughput results from this experiment are

presented in Tables 3.32 and 3.33. These results are basically the same as

Throughput versus Granularity
Grans || 2PL wWD | 2PLW | PRE | BTO SV

11 0.134 | 0.183 | 0815 | 0.771 | 0.002 | 0.219

10 || 0.681 | 0.749 | 0.865 | 0.967 | 0.326 | 0.660
100 || 0.921 | 0.921 | 0.964 | 0.964 | 0.869 | 0.908
1000 || 0.953 | 0.953 | 0.964 | 0.965 | 0.914 | 0.939
10000 || 0.956 | 0.955 | 0.964 | 0.964 | C.930 | 0.942

Table 3.32: Throughput, experiment 4.1 (num_terms = 5).

| Throughgut versus Granularig_z ]

Grans || 2PL WD | 2PLW | PRE | BTO SV
1 || 0.034 | 0.043 | 0819 | 0.771 | 0.005 | 0.059
10 |} 0.174 | 0.303 | 0.964 | 0.665 | 0.064 | 0.296
100 || 0.798 | 0.812 | 0.963 | 0.963 | 0.434 | 0.735
1000 || 0.899 | 0.9C0 0.981 0.965 | 0.738 | 0.847
10000 {| 0.919 | 0.912 0.961 0.964 | 0.800 { 0.863

Table 3.33: Throughput, experiment 4.2 (num_terms == 20).
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thdse of experiment 3.1, the oﬁly difference being that the throughpuf,s of all
algorithms are slightly higher in experiment 4.1 and slightly lower in experi-
ment 4.2. The difference in throughputs observed here is due to the fact that
the level of multiprogramming, like granularity, affects the probability of
conflicts. Halving the multiprogramming level results in a lower rate of

conflicts, and doubling it results in a higher rate of conflicts.

The second part of this experiment consisted of varying the multipro-
gramming level with concurrency control turned off. This was accomplished
by using the serial validation simulation, with the validation code modified to
always validate transactions. The result is a simulation in which transactions
incur the usual concurrency control costs but are never blocked or restarted
due to conflicts. The system and workload parameters, with the exception of

the multiprogramming level, were again those those of experiment 3.1. The

! Effects of Multiprogramming Level |
MP Level Throughput Rate CPU Used | 1/0 Used

1 2.121+ 3.09% (80%CI) | 227638.4 | 731175.7
2 2.711+ 4.88% (90%CI) | 203877.5 | 943777.7
3 2.838+ 3.77% (90%CI) | 308886.5 | $92059.0
4 2.860+ 3.44% (90%CI) | 311163.0 | 999280.0
5 2.861+ 3.64% (90%CI) | 311360.0 | 999935.0
6 2.865+ 3.74% (90%CJI) | 311397.0 | 999966.0
7 2.866+ 3.63% (9095 CI) | 311473.0 | 1000000.0
25 2.855+ 4.38% (90%CI) | 311601.0 | 1000000.0

Table 3.34: Throughput and utilization, experiment 4.3 (no CC).
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results of this experiment, inc'luding confidence intervals, are gi;en in Table
.3.34. As is apparent in the table, the throughput rate reaches its maximum
(within the limits of statistical variation) at a multiprogramming level of 4.
Beyond this point, adding more transactions to the system has virtually no
effect on throughput because the bottleneck resource, I/O in this case, is close
to full utilization from this point on. (This is illustrated in the table by the
amount of I/O time consumed out of a possible 1,000,000 total simulation
units.) Thus, aside from affecting the probability of conflicts, the multipro-
gramming level has little or no effect once the number of transactions in the

system is sufficient to allow the bottleneck resource to achieve full utilization.

3.3.4.5. Experiment 6: System Bzlance

This experiment investigates the effects of the system balance on the
results of the previous experiments. Experiment 3.1 is repeated with the I/O
cost parameters decreased so that the system is CPU bound and then bal-
anced instead of being I/O bound (as it was in the original experiment). The
system parameter settings used in this experiment are presented in Table
3.35. The I/O costs associated with startup processing and object processing
have been decreased from from 35 to 5 and then 10 milliseconds. These
corres;pond intuitively to systems which have multiple disks. The CPU cost
associated with processing a concurrency control request is still set at 1 mil-
lisecond. The workload parameter settings used in this experiment are those

of experiment 3.1 (see Table 3.23).



l S_z_stem Parameter Settings ]

System Time
Parameter (Milliseconds)
startup_to 5 and 10
startup_cpu 10
obj_to 5 and 10
oby_cpu 10
cc_to 0
cc_cpu 1
stagger_mean 20

Table 3.35: System parameters for experiment 5.

The throughput results for this experiment are shown in Tablt;s 3.36 and
3.37. These results zre 2nalogous to those of experiment 3.1, with higher
throughputs overall because of the decrease in the I/O cost for processicg
each transaction. No other significant differences appear to be present in the
data, the conclusion being that system balance is not a significant factor with
respect to selecting from among a set of alternative concurrency control algo-

rithms.

3.3.4.6. Experiment 6: Concurrency Control Cost

This experiment investigates the effects of concurrency control costs on
the re-sults of the previous experiments. Experiment 3.1 is repeated with the
concurrency control cést parameters modified to investigate the effects of
alternative concurrency control costs. The system parameter settings used in

this experiment are those of experiments 1 through 3 (see Table 3.3), except



l ‘ Throughput versus Granularity I '
Grans || 2PL | WD | 2PLW | PRE | BTO SV

1] 0.240 | 0.393 | 3.094 2,204 | 0.004 | 0.406
10 || 1.676 | 1.809 | 3.385 3.369 | 0.373 | 1.587
100 || 3.024 | 3.098 3.301 3.389 | 2.073 | 2.906

1000 || 3.211 | 3.215 | 3.370 | 3.370 | 2.928 | 3.084
10000 || 3.028 | 3.028 | 3.140 | 3.141 | 2.823 | 2.913

Table 3.36: Throughput results, experiment 5.1 (CPU bound).

‘ Throughput versus Granulari
Grans || 2PL WD | 2PLW | PRE | BTO SV

1 |} 0.237 | 0.398 | 2.799 | 1.742 | 0.000 | 0.398

10 || 1.594 | 1.851 | 3.261 | 3.215 | 0.254 | 1.557
100 {| 2.951 { 3.015 | 3.306 | 3.284 | 2.196 | 2.856
1000 || 3.142 | 3.144 | 3.272 | 3.270 | 2.958 | 3.049
10000 || 2.62 | 2.965 | 3.073 | 3.071 | 2.866 | 2.896

Table 3.37: Throughput results, experiment 5.2 (balanced).

for the cc_cpu and cc_fo parameters. Experiments are performed with con-
currency control being free (cc_cpy = 0, cc_io = 0), expensive in terms of
CPU cost (ec_cpu = 5 milliseconds, cc_fo = 0), and expensive in terms of
1/0 cost (cc_cpu = 1 millisecond, cc_so = 35 milliseconds). The last case is
as though concurrency control information were kept on disk, with one disk
access being required per concurrency control request processed. This is simi-
lar to the situation examined most thoroughly by Ries [Ries77, Ries79a,
Ries79b]. The workload parameter settings are the same as for experiment

3.1 (see Table 3.23).
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| : Throughput versus Granularity
Grans || 2PL WD | 2PLW | PRE | BTO SV
1 {{ 0.066 | 0.088 | 0.919 | 0.771 | 0.000 | 0.111
10 || 0.473 | 0.515 | 0.967 | 0.963 | 0.121 | 0.460
100 || 0.883 | 0.893 0.967 0.984 | 0.698 | 0.863

1000 || 0.931 | 0.945 | 0.966 | 0.969 | 0.834 | 0.805
10000 || 0.942 | 0.944 | 0.966 | 0.967 | 0.874 | 0.912

Table 3.38: Throughput, experiment 6.1 (¢c_cpy = 0, cc_fo = 0).

Throughput versus Granulari
Grans || 2PL WD | 2PLW | PRE | BTO SV

1 |} 0.066 | 0.088 | 0.917 | 0.769 | 0.000 | 0.111

10 || 0.433 | 0.521 | 0.967 | 0.963 | 0.115 | 0.455
100 || 0.883 | 0.892 | 0.967 | 0.964 | 0.603 | 0.862
1000 || 0.932 | 0.943 | 0.966 | 0.969 | 0.834 | 0.905
10000 || 0.942 | 0.944 | 0.966 | 0.959 | 0.877 | 0.905

Table 3.39: Throughput, experiment 6.2 (cc_cpy = 5, cc_io = 0).

F Thronghgut versus Granularity I
Grans || 2PL WD | 2PLW | PRE | BTO SV

1 || 0.063 | 0.076 | 0.894 | 0.754 | 0.000 | 0.108

10 || 0.416 | 0.447 | 0.930 | 0.928 | 0.038 | 0.432
100 || 0.810 | 0.813 | 0.924 | 0.824 | 0.631 | 0.786
1000 || 0.787 | 0.794 | 0.870 | 0.872 | 0.662 | 0.766
10000 || 0.475 | 0.475 | 0.511 | 0.510 | 0.460 | 0.460

Table 3.40: Throughput, experiment 6.3 (ce_cpr = 1, cc_fo = 335).

The throughput results from this experiment are shown in Tables 3.38
through 3.40. Again, the results are similar to those of experiment 3.1. The
fact that Tables 3.38 and 3.39 are nearly identical to each other and to the

results of experiment 3.1 (see Table 3.24) indicates that the effects of the cost
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of concurrency control are negligible as long as concurrency control overhead
is small compared to the costs associated with object accesses. In Table 3.40,
the effect of the vastly increased costs associated with processing concurrency
control requests is apparent from the fact that a medium granularity is
optimal rather than the finest granularity. This illustrates that the tradeoff
observed by Ries for locking in [Ries77, Ries79a, Ries79b] exists for many
concurrency control algorithms. This tradeoff arises in all algorithms because
coarse granularities lead to high conflict probabilities and fine granularities
lead to high concurrency control overhead. Other than this, however, nothing
new is evident in the results of the experiment, as 2PLW and PRE display
the best throughputs, with WD, 2PL, SV, and finally BTO following behind

them, as in the previous experiments.

3.3.4.7. Algorithm Anomalies

Several preliminary experiments, not reported in detail here, were per-
formed before a restart delay was added to the model. In these experiments,
BTO did even worse than it did in the experiments reported here. Without a
restart delay, the behavior of BTO was strongly dominated by the cyclic res-
tart problem described earlier in this chapter. Cyclic restarts were identified
as th;e cause of this performance problem after a log of transaction requests
and responses was kept by the simulator and examined in detail. Another
algorithm, multi-version timestamp ordering (MVTO), was also found to share

the cyclic restart problem with BTO. (The MVTO algorithm is investigated
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in the next chapter.) ' _

A related algorithm anomaly was uncovered in experiments with an ear-
lier version of 2PL, a version where a transaction making a read request for a
granule was not required to block unless the current lock on the granule was a
write lock. This version of 2PL, which is basically the 2PL variant analyzed
in Chapter 2, suffers from a fairness problem: If a transaction blocks waiting
to write a granule, subsequent read requests may be granted for the granule
even though the writer ‘‘asked first’’. Starvation (infinite waiting) of writers
is one possible result of this policy. The anomaly shown in Figures 3.6 and

3.7 is another. The anomaly, repeated deadlocks, occurs when the three

transaction T1:
begin

read z_value from X;

compute;

write z_valye into X;
end;

transaction T2:
begin

read z_value from X;

compute;

write z_value into X;
end;

transaction T3:
begin

read z_value from X;

compute;

write z_value into X;
end;

Figure 3.6: Repeated deadlock transactions for anomalous 2PL.
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update transactions of Figure 3.6 wish to access a common object. As shown
in Figure 3.7, it is possible for one of the transactions to starve indefinitely

while the other transactions repeatedly restart each other due to deadlocks.

- In Figure 3.7, all three transactions start running, and then all three
make read requests for X. After step 8, read locks are held on X by all three
transactions. At step 7, T,; makes a write request for X and is forced to
block until T, and Tg release their read locks on X. At step 8, T, also
makes a write request for X and is restarted to resolve the deadlock that
would arise between T, and T, if T, were allowed to wait. At step 9, T,
resubmits its read request, and is again granted a read lock on X. Then, at

step 10, T'; submits a write request for X, at which point its fate is the same

Slep Action Result

1 T1: begin xact

2 T2: begin xact

3 T3: begin xact

4 T1: read z_value from X; Read(T1,X)
5 T2: read z_value from X; Read(T2,X)
6 T3: read z_valuefrom X; Read(T3,X)
7 T1: write z_valueinto X;  Block(T1)
8 T2: write z_valueinto X;  Restart(T2)
9 T2: read z_valuefrom X; Read(T2,X)

10 T3: write z_valueinto X;  Restart(T3)
11 T3: read z_valuefrom X; Read(T3,X)
12 T2: write z_valucinto X;  Restart(T?2)
13 T2: read z_value from X; Read(T2,X)
14 etc. etc.

Figure 3.7: Example of cyclic restart anomaly.
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as the previous fate of Tp. The result is that T, starves while Tp and Ty
alternately get into deadlocks with T and are restarted. Note tb:at arbi-
trarily many transactions could actually become involved in such repeated
deadldck situations. The 2PL algorithm examined in the experiments of this
chapter was free of this anomaly because readers were made to wait for X

when one or more conflicting transactions were already waiting to write X.

8.4. CONCLUSIONS

In this chapter, a simulation model of a single-site database system was
described, and the model was used to compare the performance offered by
seven alternative concurrency control algorithms under several different tran-
saction workloads. ‘Workloads consisting of all small transactions, all larger
transactions, and a mix of transaction sizes were examined. Also, experi-
ments were performéd to learn about the effects of factors such as the level of
multiprogramming, system balance, and concurrency control costs on the rela-
tive performance of the alternatives. A number of interesting conclusions are

implied by the results of this study.

3.4.1. Performance Under Low Conflicts

A recent paper by Jim Gray et al [Gray81a] argued that, in most real
database system environments, conflicting transactions are a rarity. An
analysis based on a simple model of “real-world” transactions showed that

blocking is rare even when all locks are exclusive, and that deadlocks are
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much more rare than blockiné. The results of the experiments‘repqrted in
this chapter indicate that, in such situations, the choice of a concurrency con-
trol algorithm can be made more or less arbitrarily. In situations where the
granularity of the database led to few conflicts in the simulation studies, all

algorithms performed almost identically.

3.4.2. Blocking versus Restarts

Some concurrency control algorithms, such as locking, use blocking as the
primary mechanism for handling conflicting requests, restarting transactions
only when absolutely necessary. Other algorithms, such as those based on
timestamps or validation, choose to restart transactions in order to avoid or
resolve conflicts. The results of the experiments of this chapter indicate that,
in cases where concurrency control algorithms display significantly different
performance characteristics, the algorithms which perform the best are the

ones which choose blocking when it is a viable option.

Several aspects of the experiments support the conclusion that blocking
is the conflict-resolving mechanism of choice. First of all, 2PLW and PRE
outperformed all other algorithms when conflicts were not rare (under coarse
granu}aritiw) in most of the experiments of this chapter. These algorithms
were also the ones which called for the fewest number of restarts. The only
case where performance suffered due to blocking was in the situation where

PRE was used and the entire database was one granule. In this case, PRE
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totally serialized accesses to the database, and was outperformed by-2PLW,
which allowed multiple concurrent readers. This was an extreme case, how-
ever, and would almost certainly disappear if PRE allowed both shared and
exclusive locks to be preclaimed. Also, 2PL and WD, both of which caused
some restarts, outperformed BTO and SV by requiring fewer restarts overall.
In a few cases, where large, random transactions were involved, SV actually
outperformed 2PL, WD, and even 2PLW under coarse granularities. This
was due to the use of an overly simplistic victim selection policy for 2PL ard
2PLW, and to a problem with repeated conflicts for WD. In these cases, SV

won by actually requiring fewer restarts.

Another factor supporting this conclusion is the outcome of experiment
4, where the level of multiprogramming was varied with concurrency control
turned off. It was found that the maximum possible throughput was achieved
in all cases where_four or more transactions were available to be run, as the
bottleneck resource (I/O in the experiment) was fully utilized beyond this
point. This indicates that, as long as blocking a transaction leaves the system
with a sufficient number of runnable transactions, blocking will not degrade
the performance of the system. (This also explains why PRE did so well in
the other experiments even though PRE is quite comservative in terms of

allowing transactions to execute concurrently.)

Given that blocking is preferable to restarts, the choice of a concurrency

control algorithm is fairly simple. I sufficient knowledge about what a
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transaction will access is available at startup time, preclaimed locking with
read and write locks is a8 good choice. Preclaiming avoids the possiﬁility of
deadlock, and the use of read and write locks will enhance its concurrency.
The necessary knowledge may be available in relational database systems
where query analysis can help identify the data to be accessed. If tramsaction
readsets and writesets are not known a priori, but it is possible to know at
read time whether or not a write will take place for the granule to be read,
2PLW with an improved deadlock victim selection criteria (to be discussed
shortly) is a good choice. 2PLW avoids upgrade-induced deadlocks, and
improving its victim selection criteria will avoid possible thrashing under
mixes including large, random transactions. If no prior information is avail-
able, 2PL with an improved victim selection criteria would bé the best choice,
as restarts are avoided except when they are absolutely necessary to break
dependency cycles. Algorithms such as BTO or SV, which resolve conflicts

via restarts, are never recommended based on these results.

3.4.3. Transaction Size

Experiments 1 through 3 investigated the performance of the alternative
algorithms under different transaction sizes, access patterns, and mixes. In all
cases, the conclusions were the much the same. One difference observed
between the small and large transaction results was that, with larger transac-
tions, the performance differences were decidedly more noticeable. This was

. partly due to the increase in the probability of conflicts, but also due to the
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fact that more work was waste;l by the average restart when larger transac-
tions were involved. Another observation was that WD outperformed 2PL in
the mixed size workload because WD chooses younger transactions to restart,
and younger transactions are more likely to be the smaller ones. Choosing
smaller transactions to restart lowered the wasted resources due to restarts,
suggesting that 2PL should have incorporated an age or size based victim
selection criteria for deadlock resolution. This was also indicated by the

instances where thrashing by 2PL led to its being outperformed by SV.

8.4.4. Concurrency Control Overhead

The performance of the algorithms for a mix of small and large transac-
tions was investigated with each concurrency control request requiring from 0
to 5 milliseconds of simulated CPU time in experiment 6. Concurrency con-
trol costs were seen to be insignificant compared to other factors such as the
costs involved with the subsequent object reads and writes. This indicates
that concurrency control overhead is not 8 problem as long as concurrency
control decisions can be made in an amount of time which is fairly small com-
pared with the overall amount of processing. time required by transactions.
This will be the case for most proposed algorithms as long as concurrency

control tables can be maintained in primary memory.
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8.4.5. Granularity and Performance _

A second conclusion related to concurrency control overhead may be
drawn from the results of experiment 6: All concurrency control algorithms
have the same characteristics as those reported for locking by Ries [Ries77,
Ries70a, Ries70b). If the costs associated with concurrency control are indeed
large enough to be significant, a medium granularity on the order of 100 or so
granules is likely to be optimal due to the concurrency/overhead tradeoff.
This indicates that granularity hierarchies may improve performance for other
types of concurrency control algorithms, a hypothesis which will be tested in
the next chapter. Also, if concurrency control overhead is not significant,
granularities on the order of 10600 or more granules are needed to produce

optimal performance, especially in the presence of large, random transactions.

3.4.6. System Balance

The effect of system balance on the choice of a concurrency control algo-
rithm is minimal. This was illustrated by the results of experiment 5. Thus,
while system balance is certainly of interest for determining the overall
throughput which is achievable with a given transaction mix, it is not a factor

which needs to be considered in selecting a concurrency control algorithm.

3.4.7. Aleorithm Anomalies

Some concurrency control algorithms have anomalies which can hurt

their performance in situations where conflicts are not rare. One example is
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the cyclic restart anomaly of BTO (and MVTO), and another is the repeated
deadlock anomaly associated with some variants of locking. The degree to
which these anomalies affect performance depends on the length of typical res-
tart delays in the system of interest, as the anomalies arise due to the fact
that transactions which are restarted request the same data items each time
they run. However, algorithms with such anomalous behavior are probably
worth avoiding, as there are a number of reasonable concurrency control alter-

natives which do not have such problems.



117

CHAPTER 4 -

PERFORMANCE ENHANCEMENT SCHEMES

In this chapter, two ideas which have been suggested for enhancing the
performance of concurrency control algorithms are addressed. The first part
of this chapter is concerned with multiple version concurrency control algo-
rithms. Rather than keeping just one value for each object in the database, a
set of values (the current one and several previous values) are maintained.
These values are used to enhance concurrency for long-running transactions.
Several multiple version algorithms are reviewed in the first half of this
chapter, and one new multiple version algorithm is introduc'ed. The simula-
tion model of the previous chapter is then used to perform several experi-
ments which investigate situations in which multiple versions offer improved

performance.

The second proposal examined is the notion of structuring the database
as a granularity lu'crarclw rather than a flat collection of granules (as in the
algorithms of previous chapters). Granularity hierarchies can be used to
enhance performance under mixes of large and small transactions. The
second half of this chapter reviews the idea of a lock hierarchy and extends
this notion to other forms of concurrency control. Three new hierarchical

concurrency control algorithms are introduced in this part of the thesis. The



118

performance model of Chapter' 3 is extended to model a two-level granularity
hierarchy, and experiments are performed to examine the potential benefits of

granularity hierarchies.

4.1. MULTIPLE VERSIONS

There have been a number of recent papers proposing the use of multiple
versions of data to increase potential concurrency [Reed78, Baye80, Stea8l,
Chan82, Berné2b]. For most of these algorithms, the idea is to allow long,
read-only transactions to read old versions of data objects while allowing
update transactions to create newer versions. This section of the thesis
reviews several such algorithms, presents a new one based on modifying the
serial validation algorithm of Kung and Robinson [Kung81], and then exam-
ines the performance of these algorithms using the simulation model

developed in the previous chapter.

4.1.1. Multiversion Timestamp Ordering

The multiversion timestamp ordering (MVTO) algorithm [Reed78] is
similar to the BTO algorithm in many ways. Associated with each transac-
tion T is a timestamp, TS(T), issued at the time at which T begins execut-
ing. Associated with each data item z in the database is a set of versions.
Each version is a ({ime,value) pair indicating a value of z and the (times-
tamp) time at which the value was assigned to z. If T is a timeétamp, let

z[T] be the value of the most recent version of z written at time less than or
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equal to T. A read request from T for z will be granted using thg value
z|TS(T)], and a write request from T for z, if granted, will result in the crea-
tion of a new version of z. A write request from T for z will be denied if it
attempts to create a new version of z when the previous version has been

read by a transaction with a timestamp larger than TS(T).

For céncurrency control purposes, a read/write history, H,,(z), is main-
tained for each data item z. This history is a set of time intervals which
correspond to versions of z. The starting time of each interval is the creation
timestamp of the version, and the ending time of each interval is the largest
timestamp of any reader of the version. For example,
H,,(z) = {(3,6), (10,13)} means that z has two versions, one created at time
3 and last read at time 6, and the other created at time 10 and last read at
time 13. Histories in MVTO play the role which timestamps played in BTO,
allowing the concurrency control algorithm to know when potential conflicts
arise.

The MVTO algorithm grants all read requests using the appropriate ver-
sion, extending the interval in H,,(z) associated with the version read as
necessary. A write request from T for z is rejected if any interval in H,,(z)
contains the time T'S(T). Otherwise, transactions which have already read z
between TS(T) and the end of the interval containing TS(T) would have
their reads invalidated by T’s write. If the write request is granted, a new

version of z is created, and a new interval with starting and ending times of
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TS(T) is added to H,o(z). Continuing with our previous example, a read
request ‘for z from a transaction T with TS(T) = 7 would be grant;d using
the version of z created at time 3, and the history for z would be changed to
H. (z) = {(3,7), (10,13)}. A write request from T for z would now be
rejected if 3 < TS(T) < 7 or 10 < TS(T) < 13. If TS(T) = 8, however,
the request would be granted, a new version of z would be created, and the

history for z would be changed to H,,(z) = {(3,7), (8,8), (10,13)}.

An informal description of the MVTO algorithm is given in Figure 4.1.
In the figure, the eztVers oberation is assumed to extend the version interval
corresponding to z[TS(T)] in H,,(z) if TS(T) is larger than the ending time
of the interval. The newVers operation is assumed to create a new interval in

H,,(z), starting at TS(T) and having length zero, recording the creation of a

procedure readReq(T,z);
begin
grant readReq using z|TS(T)};
extVers(H,o(z), TS(T));

end;

procedure writeReqg(T,z);
begin )

if TS(T)In H,.(2) then

restart(T);

else
grant writeReq;
newVers(H,o(2), TS(T));
;
end;

Figure 4.1: MVTO algorithm.
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new version of z. It is assumed that the grant writeReq operation- creates

this new version of z and stamps it as having been created at time TS(T).

4.1.2. Multiversion Locking

There have been several proposals for multiversion locking algorithms
[Baye80, Stea81, Chan82]. This section reviews one of the most recent ones,
an algorithm proposed for use in the Ada-compatible database management
system under development at CCA [Chan82]. This algorithm, which will be
referred to as the CCA version pool algorithm, uses two-phase locking to
synchronize update transactions and allows read-only transactions to run
using older versions of data items. The CCA proposal includes schemes for
implementing version selection efficiently and for dealing with maintenance
and garbage collection of old versions in a bounded buffer pool, but this study

will only be concerned with the concurrency control aspects of the proposal.

The semantics of the CCA version pool algorithm are actually quite sim-
ple, and can be explained as follows. As in the timestamp-based version cf
serial validation, transactions are assigned startup timestamps when they
begin running and commit timestamps when they reach their commit point.
Also, transactions are classified at startup time as being either read-oaly or
update transactions. When an update transaction reads or writes a data item,
it locks the item, just as it would in two-phase locking, and it reads or writes

the most recent version of tke item. When 2n item is written, a new version
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of the item is created, and versions of items are stamped with the—commit

timestamp of their creator.

When a read-only transaction wishes to access an item, no locking is
needed. Instead, the transaction simply reads the latest version of the item
with a timestamp less than the startup timestamp of the read-only transac-
tion. Since the timestamp associated with a version is the commit timestamp

of its writer, a read-only transaction T is made to read only versions which

procedure readReq(T,z);
in

beg
if readOnly(T') then
grant readReq using z[TS(T));
else
if writeLocked(z) then
block(T);
if cycle(T) then
restart(T);
else
grant readReq using z|current);
readLock(T,z);
fi;
f;
end;

procedure writeReq(T,z);
begin
§f readLocked(z) or writeLocked(z) then
block(T); :
if cycle(T) then
restart(T);

else
grant writeReq;
writeLock(T,z);

end;

Figure 4.2: CCA version pool algorithm.
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were written by transactions \\;hich committed before T even bégan gunning.
Thus, T is serialized after all transactions which committed prior to its
startup, but before all transactions which are active but uncommitted during
any portion of its lifetime. An informal description of the CCA version pool
algorithm is given in Figure 4.2. The startup timestamp of transaction T is
denoted as TS(T), and the most recent committed version of z is denoted as
z[current] in the description. It is assumed that the grant writeReq opera-
tion creates a new version of z, and also that this version of z is stamped

with the commit timestamp of T when T commits.

4.1.3. Multiversion Serial Validation

The previous section described a multiversion locking algorithm which
enhanced a known concurrency control algorithm by permitting read-only
transactions to read older version of objects. In this way, serializability was
guaranteed for update transactions in the usual way, and it was guaranteed
for read-only transactions by having them read a consistent set of older ver-
sions of data determined by their startup time. Conflicts between read-only
transactions and update transactions were eliminated, increasing the level of
concurrency which can be achieved using the algorithm. This idea can be
applit;.d outside the domain of locking. This section demonstrates its general-
ity by developing a multiversion variant of the serial validation algorithm of

Kung and Robinson [Kung81].
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procedure validate(T);
begin
valid := true;
if not readOnly(T) then
foreach z, In readset(T) do
it S-TS(T) < TS(z,) then
valid :== false;
f;
od;
§f valid then
foreach z, In writeset(T) do
TS(zy) := C-TS(T);

od;
commit writeset(T) to database;
else
restart(T);
fl; '
end;

Figure 4.3: Informal description of multiversion SV algorithm.

The multiversion SV algorithm can be developed in a manner which fol-
lows naturally from the CCA version pool algorithm. Transactions~are again
classified as read-only or update transactions at startup time. Update tran-
sactions record their readsets and writesets, performing either the validation
test of Kung and Robinson [Kung81] or the timestamp-based validation test
developed in Chapter 2. As in the CCA version pool algorithm, versions are
stamped with the commit timestamp of their. creators, and read-only transac-
tions read the latest versions of items with timestamps less than their startup
timw;;amps. As a result, the serializability of update transactions is
guaranteed by SV semantics and the serializability of read-only transactions is

guaranteed by making sure they read consistent, committed versions of data.
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An informal description of the multiversion SV algorithm is Eivenjin Fig-
ure 4.3. The timestamp-based validation test of Chapter 2 is used for update
transactions. It is assumed that an appropriate version selection mechanism
provides each transaction T with either z[TS(T)] or z[current] when it reads
z, depending on whether T is a read-only transaction or an update transac-
tion, respectively. It is also assumed that new versions are created and

stamped with C-TS(T) when writeset(T) is committed to the database.

4.1.4. Multiple Versions and Performance

In this section, the performance characteristics cf the three previous mul-
tiple version concurrency control algorithms are investigated using the simula-
tion model of Chapter 3. Each multiple version algorithm is studied and com-
pared to its single version counterpart. Before reporting on the experiments,
however, some details of the concurrency control cost models of the algo-

rithms and the simulation approach taken will be described.

4.1.4.1. Concurrency Control Costs

As in Chapter 3, in order to simulate the concurrency control algorithms
of interest, it is necessary to make some assumptions about their costs. This
section will briefly describe how the cc_cpu and cc_fo parameters are used in
modeling the costs for each of the multiversion algorithms in order to evaluate
them using the simulation model. The concurrency control costs for a tran-

saction which makes N, granule read requests and NV, granule write requests
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will be given for each algorithm. _

The cost model used for the MVTO algorithm is identical to that
described in the previous chapter for the BTO algorithm. Each read access
request for a granule is assessed a CPU cost of cc_cpu and an I/O cost of
cc_to at the time of the request, and each write request is assessed the same
CPU and 1/O costs at transaction commit time. Thus, total read-related con-
currency control costs of N, cc_cpu and N, ec_fo are charged dynamically, and
total write-related concurrency control costs of N, cc_cpu and N, ec_so are
charged at commit time. Again, these costs are intended to model the costs
of the required timestamp operations. In particular, the read request costs are
intended to model the cost of extending the read/write history for the
granules read, and the write request costs are intended to model version crea-

tion and timestamping costs.

The cost model used for the CCA version pool algorithm is nearly identi-
cal to the model described in the previous chapter for the 2PL algorithm.
The one difference between this cost model and the 2PL cost model is that
read-only transactions run nearly for free. At the time of startup for a read-
only transaction, a CPU cost of cc_cpu and an I/O cost of cc_io are assessed
to model the cost of recognizing and marking the transaction as read-only.
After this point, no concurrency control costs are assessed for read-only tran-

sactions.
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The cost model used for i;he multiversion SV algorithm is ;nalogous to
the model used for the CCA version pool algorithm. The original SV cost
model is used here for update transactions, and read-only transactions pay a
CPU cost of cc_cpu and an I/O cost of cc_io at tramsaction startup time.
The costs assessed for read-only transactions model the cost of recognizing

them as read-only and marking them as such.

4.1.4.2. The Simulation Approach

In order to simulate the multiple version algorithms, it was assumed that
old versions of objects are accessible in as little time as the most recent ver-
sion of each object. This assumption is reasonable if #ccess paths for locating
versions of active data items can be kept in primary memory. Such caching
of version location information can be probably be achieved using algorithms
such‘as those described in [Chan82]. Otherwise, the results reported here will
be optimistic about the degree of performance improvements which are
obtainable using the multiple version algorithms. Thus, the only salient
aspect of simulating multiple version algorithms is representing their different

coccurrency control semantics.

The implementation of these multiple version algorithms was simplified
by the observation that none of them ever rejects a read request. It can also
be shown that, under the “no blind writes"” assumption, MVTO accepts and

. rejects writes in exactly the same way that BTO does (see Appendix 2).
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Thus, no transaction can ever write a version of an object other than the
latest one in any of the multiple version algorithms. As a result, each multi-
ple version algorithm was implemented by simply changing the simulation

dcscription for its single version counterpart to always accept read requests.

4.1.4.3. Experiments and Results

In this section, the results of three multiple version performance experi-
ments are reported. Each of these experiments was performed on the three
multiple version algorithms just described and their single version counter-
parts. The experiments were designed to investigate the performance of the
multiple version algorithms under both low conflict transaction mixes and
mixes ;vhich are more likely to benefit from the availability of multiple ver-
sions. The first experiment investigates the performance of .the algorithms
under mixes of transactions where the level of conflicts is fairly low. The
second experiment investigates the performance of the algorithms as a func-
tion of read-only transaction size for a mix of small update transactions and
laerger read-only transactions. The third experiment investigates the perfor-
mance of the algorithms as a function of the fraction of read-only transactions

in the mix.

4.1.4.3.1. Experiment 1: Low Conflict Performance

This experiment investigates the performance of the multiple version

algorithms under a transaction mix similar to that of experiment 3.4 of the
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previous chapter. The only ch’ange in the mix is that large tran;actipns will
be read-only in this case, as multiple version algorithms are specifically aimed
at improving performance for such mixes. The objective of this experiment is
to investigate the performance of the multiple version algorithms for situa-
tions where conflicts are fairly rare. The system parameters used for the
experiment are given in Table 4.1, and the workload parameters are given in
Table 4.2. The batch_time and num_batches parameter settings used in this
experiment are the same as those used for the previous experiments. The
database comsists of 10,000 objects, and its granularity is one object per
granule. The number of terminals used is 10. Small update transactions,
which are eighty percent of the mix, each read two objects and then update
them each with fifty percent probability. Large transactions, the other

twenty percent of the mix, read a uniformly distributed number of objects

! System Parameter Se('.i:in«suE

System Time
Parameter (Milliseconds)
startup_to 35
startup_cpu 10
obj_so 35
obj_cpu 10
ce_to 0
ce_cpsu 1
stagoer _mean 20

Table 4.1: System parameters for experiment 1.
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sequentially. The mean size of the large transactions in the mix is 30, and

they are read-only.

The results of this experiment are shown in Table 4.3, where throughput
rates for the three multiple vérsion algorithms and their single version coun-
terparts are given for various granularities. The associated restart counts are
given in Table 4.4. All of the multiple version algorithms yield similar perfor-
mance (within limits of statistical variation) for all but the coarsest granular-
ity. This occurs because the probability of conflicts between pairs of update
transactions is quite small, given their size, and all of the multiple version
algorithms allow read-only transactions to proceed without interference of any

kind.

Workload Parameters
db_ssze 10000 objects
gran_size 1 object/granule
num_terms 10
delay_mean 1 second
small_prob 0.8
small_mean 2 objects
small_zacl_type | random
small_size_dist fixed
small_write_prob | 0.5
large_mean 30
large_zact_type sequential
large_size_dist uniform
large_write_prob | 0.0

Table 4.2: Workload parameters for experiment 1.



I Throughgut versus Granularig ]
Grans || BTO | MVTO | 2PL VP SV MVSV
1 || 1.707 1.707 1.837 | 2.228 | 0.407 2.364
10 || 2.632 2.844 2.831 | 2939 | 1.183 2.863
100 || 2.930 2.998 3.009 | 3.011 | 2.397 2.999
1000 || 2.918 3.012 3.012 | 3.013 | 2.691 3.012
10000 || 2.926 3.013 3.013 | 3.013 | 2.755 3.013
Table 4.3: Throughput, experiment 1.
| Restarts versus Granulari _
Grans {| BTO | MVTO | 2PL | VP | SV | MVSV
1 || 6005 6005 3951 | 3865 | 494 3340
10 761 933 809 396 | 545 811
100 04 80 34 31 | 214 77
1000 42 7 0 0 82 7
10000 32 0 0 0 56 0

Table 4.4: Restarts, experiment 1.
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The CCA version pool (VP) algorithm does not offer any significant per-

formance improvement over 2PL except at the coarsest granularity examined.

This is because 2PL is capable of handling the workload of the experiment

quite well without multiple versions. Both of the other multiple version algo-

rithms do succeed in outperforming their single version counterparts, although

the advantage of MVTO over BTO is only slight and occurs only for coarse

granuiarity (10 granules in the database). The advantages of multiple ver-

sions are much more pronounced for SV versus MVSV, as SV is the worst of

the three single version algorithms for the transaction mix of this experiment.

Tke poor performance cf SV here occurs because transactions are not checked
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for conflicts until transaction commit time, a practice that strongly biases sin-
‘gle version SV against large read-only transactions: They perform all their
reads and then test to see if any of the granules have been updated, an

occurrence which is likely with many small update transactions in the mix.

4.1.4.3.2. Experiment 2: Read-Only Transaction Size

This experiment investigates the performance characteristics of the mul-
tiple version algorithms under a workload consisting of a mix of small update
transactions and larger read-only transactions. The parameter varied here is
the size of the read-only transactions in the mix. The purpose of the experi-
ment is to observe the behavior of the algorithms while varying the degree to
which old versions may beneficial. The workload parameters used in this
experiment were selected in order to emphasize situations in which multiple

version algorithms are indeed beneficial.

The system parameter settings for this experiment are the same as those
used for experiment 1 (see Table 4.1). The relevant workload parameter set-
tings for this experiment are given in Table 4.5. The database consists of 100
objects, and its granularity is one object per granule. The number of termi-
nals used is 10. Small update transactions, which are forty percert of the
mix, read two objects g.nd update each with fifty percent probability. Large
read-only transactions, the other sixty percent of the mix, sequentially read a

uniformly distributed number of objects. The mean size for large transactions
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is varied from 1 to 30 objects.

The motivation for selecting such a small database size was two-fold.
First, it .was desired that read-only transactions read a significant fraction of
the database so that the probability of conflicts with update transactions
would be significant. Otherwise, the multiple version algorithms would not be
of use in improving performance. Second, it was necessary to keep the size of
read-only transactions small in terms of the number of objects accessed so
that reasonably tight confidence intervals could be obtained without using
unreasonable amounts of simulation time (i.e., using the same batch_time and
num_batches parameters that were used in Chapter 3). This tradeoff dictated

the selection of a relatively small database size. One might also view these

Workload Parameters

db_stze 100 objects
gran_size 1 object/granule
num_terms 10

delay_mean 1 second
small_prob 0.4

small_mean 2 objects

small_zact_type random .
small_size_dist fixed
small_write_prod | 0.5

large_mean vary from 1 to 30 objects
large_zact_type sequential
large_size_dist uniform

large_write_prob | 0.0

Table 4.5: Workload parameters for experiment 2.
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parameter settings as an approximation to a large database with fairly coarse

granularity.

The results of this experiment are shown in Table 4.6, where throughput
ra.té for the three multiple version algorithms and their single version coun- —
terparts are given for six different read-only transaction sizes. Table 4.7 gives
the associated restart counts. All of the multiple version algorithms again
yield approximately the same performance, as the probability of conflicts

between small transactions is still small.

Size | BIO | MVTO | 2PL | VP | SV | MVSV

1 || 7613 | 7.613 | 7.7168 | 7.717 | 7.386 | 7.669
2 || 6.545 | 6.573 | 6.641 | 6.641 | 6.110 | 6.610
5 || 4435 | 4649 | 4.668 | 4.670 | 3.722 | 4.660
10 || 2.725 | 3.174 | 3.157 | 3.183 | 1.957 | 3.177
15 || 1.903 | 2.462 | 2.452 | 2.468 | 1.271 | 2.464
30 |} 0.812 1.336 | 1.282 | 1.338 | 0.483 | 1.336

Table 4.6: Throughput, experiment 2.

Restarts versus Read-Only Transaction Size
Size || BTO | MVTO | 2PL | VP | SV | MVSV

1 240 240 54 53 | 536 133
2 214 186 39 39 | 618 103

5 281 83 22 17 | 708 58
10 362 38 31 6 | 654 27
15 431 27 24 7 | 562 17
30 . )| 372 4 50 2 | 373 2

Table 4.7: Restarts, experiment 2.
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The CCA version pool algorithm only outperforms the 2PL algorithm
upon which it is based for the largest size setting examined, and not by much.
This is because 2PL itself is again quite successful in handling the mix in the
experiment. Neither 2PL nor VP are deadlock-free or particularly close to
deadlock-free for this mix, as both permit lock upgrades. Any slight advan-
tage of VP over 2PL may thus be explained by the fact that large read-only
transactions can cause update transactions to queue up waiting for a common
granule in 2PL. When this granule subsequently becomes available, the wait-
ing update transactions will each obtain read locks and then deadlock when
they attempt to upgrade these locks to write locks. It is expected that a ver-
sion pool variant of 2PLW, in which upgrades are not permitted, would have

no performance advantages whatsoever over 2PLW.

Both of the other multiple version algorithms do succeed in outperform-
ing their single version counterparts. The advantages of multiple versions are
again most pronounced for SV versus MVSV. The poor performance of SV is
due to its bias against large read-only transactions for this workload. BTO is
also somewhat biased against large read-only transactions, as objects which
are read late in their execution are likely to have been updated by younger
transactions. With BTO, though, read-only transactions have some chance of
causing conflicting update trﬁnsactions to be restarted. Also, read-only tran-
sactions are likely to be restarted less far into their execution with BTO, thus

wasting fewer resources. As a result, MVTO does not provide the same
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relative improvement over BTO that MVSYV provides over SV.

4.1.4.3.3. Experiment 3: Read-Only Transaction Fraction

This experiment again investigates the performance characteristics of the
mﬁltiple version algorithms under a workload consisting of a mix of small
update transactions and large read-only transactions. The parameter varied
in this case is the fraction of read-only transactions in the mix. The workload
parameters of the previous experiment were used é.gain in order to emphasize

situations in which multiple version algorithms are beneficial.

The system parameter settings for this experiment are the same as those
used in previous experiments (see Table 4.1). The workload parameter set-
tings for this experiment are the same as those of the previous experiment
with large_mean = 30 (see Table 4.5). The fraction of read-only transactions
in the mix is varied by varying the the small_prob parameter (the fraction of

update transactions in the mix) from 0.0 to 1.0.

Throughput versus Update Transaction Fraction
Pr(Sm) || BTO | MVTO | 2PL VP SV MVSV

0.0 0878 | 0.878 | 0.878 | 0.878 | 0.878 | 0.878
0.2 0.815 1.043 | 1.021 | 1.043 | 0.540 | 1.043
0.4 0.812 1.336 | 1.282 | 1.336 | 0.483 | 1.336
0.6 0.981 1.868 | 1.739 | 1.872 | 0.526 | 1.887
0.8 1.130 | 2.947 | 2.606 | 2.956 | 0.546 | 2.943
1.0 6.842 | 6.842 | 7.013 | 7.010 | 6.691 | 6.790

Table 4.8: Throughput, experiment 3.
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| Restarts versus Ugdate Transaction Fraction I
Pr(Sm) || BTO | MVTO | 2PL | VP | SV | MVSV

0.0 0 0 0 0 0 0
0.2 224 1 35 0 | 286 2
04 372 4 50 2 | 373 2
0.6 506 24 73 12 | 418 23
0.8 730 72 163 30 | 453 83
1.0 605 605 263 | 267 | 008 702

Table 4.9: Throughput, experiment 3.

The throughput results of this experiment are shown in Table 4.8. The
restart counts are shown in Table 4.9. Again, all three of the multiple version
algorithms yield virtually identical performance. The main new finding of
this experiment is thét multiple version algorithms outperform their single
version counterparts most significantly when the mix contains mostly small
update transactions. For MVTO and MVSV, an explanation is that when
many small update transactions can run to completion during the execution
of a few large read-only transactions, the update transactions are likely to do
something which will force the read-only transactions to be restarted. All it
takes, roughly speaking, is for one update transaction to write something that
a read-only transaction reads. An explanation for VP is that a mix of many
small' update transactions and a few large read-only transactions is the most
likely mix to suffer from fhe increased lock upgrade deadlock problem

described previously.



138

4.2. GRANULARITY HIERARCHIES

In addition to studying alternative locking protocols and their correct-
ness, several researchers have examined issues associated with selecting the
appropriate level of granularity for partitioning a database into lockable units
[Gray75, Gray79, Ries79a, Ries79b]. It was found that a database can be
organized as a hierarchy of lockable units, called a lock hierarchy, and locking
protocols for such a hierarchy have been developed [Gray75, Gray79, Kort82].
It was also found that, under some typical transaction mixes, a lock hierarchy

offers improved system performance [Ries79a, Ries79b].

Other types of concurrency control algorithms have been proposed, some
of which have been studied in previous chapters of this thesis. Most proposals
ignore the granularity issue, modeling a database simply as a homogeneous,
unstructured collection of fixed-size objects. Timestamp-based algorithms
have been criticized for this very reason [Gray81b). In this section of the
thesis, it is shown that granularity hierarchies can be used outside the domaia
of locking. Hierarchical versions of a validation algorithm, a timestamp algo-
rithm, and a multiversion algorithm are presented. These hierarchical algo-
rithms were first introduced in [Care83b]. The simulation model of the previ-
ous chapter is extended to handle hierarchical algorithms, and the perfor-
mance characteristics of several hierarchical concurrency control algorithms

are studied.
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4.2.1. Hierarchical Algorithms

This section reviews of the concept of hierarchical locking and presents a
hierarchical version of the PRE algorithm whose performance was studied in
the previous chapter. Following a review of of lock bierarchies, three new
hierarchical concurrency control algorithms are developed. First, however,

some useful notation must be introduced.

For a granule g, the notation parent(g) will refer to the granule immedi-
ately above g in the hierarchy. The notation children(g) will refer to the set
of granules right below g in the hierarchy. The notation descendents(g) will
refer to the set of all descendents of g in the hierarchy. Finally, the notation
ancestors(g) will refer to the set of all ancestors of g in the hierarchy.
Granules at the bottom level of the hierarchy will be referred to as leaf

granules.

4.2.1.1. Hierarchical Locking

In locking algorithms, a transaction wishing to access some item in the
database must first lock the item. A key performance question is: How big
should the lockable items (or granules) be? To maximize potential con-
currency for small transactions, many small granules are best, and to minim-
ize locking overhead for large transactions, a few large granules are best. The
notion of hierarchical locking was introduced to allow more than one level of

_ granularity to be used.



140

In hierarchical locking [Gray75, Gray79, Kort82], the database is viewed
as a hierarchy of granules. When a transaction-sets a lock on an i?em at a
given level of the hierarchy, it is implicitly locking all of its desceadents as
well. Small transactions obey a locking protocol whereby they set intention
locks at higher levels of the hierarchy before setting access locks at a lower
level. An intention lock on a granule indicates that some lower-level granule
is (or will be) locked. Large transactions can then avoid setting many lower-
level locks. The result is a small increase in locking overhead for small tran-
sactions, a penalty which is hopefully offset by a large decrease in locking

overhead for large transactions.

A hierarchical version of preclaimed exclusive locking (H-PRE) is
described informally in Figure 4.4. The functions ILocked(g) and XLocked(g)
return true if is g is currently locked in intention or exclusive mode, respec-
tively. Procedures ILock{g) and XLock(g) are used to set these two types of
locks. The function ableToRun(T) returns true if all locks required by tran-
saction T are available. All locks are determined to be available if no
exclusive lock is set on any ancestor of any granule which T wishes to access,
and no intention or exclusive lock is set on any of the granules themselves.
The procedure setLocks(T) is the called by each transaction T at startup
time in order to preclaim its locks. This routine sets all locks for T if they
are available, blocking T if not. Intention locks are set on each ancestor of

each granule to be accessed by T, and exclusive locks are set on each of the
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function ableToRun(T);
begin
runnable :== true;
foreach g in readset(T) | J writezet(T) do
foreach G In ancestors(g) do

if XLock(G) then
runnable := false;
fi;
od;

¥ ILock(g) or XLock(g) then
runpable :== false;
fl;
od;
return ruanable;
end;

procedure setLocks(T);

begin
if ableToRun(7T') then
foreach g In readset(T) | ) writeeet(T) do
foreach G In ancestors(g) do
ILock(G);
od;
XLock(g);
od;
else
block(T);
end;

Figure 4.4: Informal description of H-PRE algorithm.
granules themselves.

4.2.1.1.1. Hierarchical Validation

In this section, a hierarchical version of the serial validation algorithm
(SV) of [Kung81] will be presented. In describing the hierarchical version of

the algorithm, the notation and assumptions of Chapter 2 are employed.
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For hierarchical serial validation (H-SV), the read and write sets of a
transaction will be sets of granules. Short transactions may specify th'se sets
in terms of small granules, and large transactions may specify them in terms
of granules higher up in the granularity bierarchy. As in SV, these sets are
used for commit-time conflict testing. A transaction T is validated if
readset(T) N writeset(T,,) =@ for all transactions T,. € RC(T), where
RC(T) is the set of recently committed transactions for T. In testing for
possible conflicts under H-SV, the algorithm must recognize that a granule g,
has some data in common with another granule g, if g; = g
g1 € ancestors(g,), or g, € ancestors(g;). The H-SV algorithm is given in
Figure 4.5. The validation test used here is the original test of Kung and
Robinson [Kung81]. A hierarchical version of the timestamp-based SV algo-
rithm can be developed in a manner analogous to the hierarchical version of

BTO which will be presentéd in the next section.

Theorem: The hierarchical version of SV is correct in the sense that serial-
izability is guaranteed.
Proof: The SV algorithm is known to be correct [Kung81]. Thus, it suffices

to show that H-SV only commits transactions which would be committed by

SV. This may be shown as follows:

When a transaction T requests access to a granule g, it is requesting per-

mission to access some or all of the granules in descendents(g). The H-SV
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procedure validate(T);
begin
valid ;= true;

foreach T, in RC(T)do
foreach g, In readset(T) do
foreach g, in writeset(T,.) do
i g, = g, or g, € ancestors(g,)
or g, € ancestora(g,) then
valid :== false;
fi;
od;
od;
od;
if valid then
commit writeset(T) to database;

restart(T);

end;

Figure 4.5: H-SV algorithm.

algorithm will commit T as long as no granule g, in its readset either con- '
tains, equals, or is a sub-granule of another granule g, in the writeset of any
recently committed transaction. This ensures that H-SV' commits T only if
there is no overlap between the leaf granules associated with granules in the
readset of T and those essociated with granules in the writeset of any
recently committed transaction. These associated leaf granules are a superset
of those which would comprise the readset of T and the writesets of the

recently committed transactions for SV. Thus, SV would commit T as well.
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4.2.1.1.2. Hierarchical Timestamps _

This section presents a hierarchical version of the basic timestamp order-
ing algorithm (BTO) of [Bern81b). The assumptions and notation used in
describing the hierarchical version of the algorithm are the same as those used

in the initial description of the algorithm in Chapter 2.

To extend the BTO algorithm for hierarchical use, each granule g will
have read and write summary timestamps, Rg-TS(g) and Wg-TS(g), in addi-
tion to its actual read and write timestamps. Its read and write summary

timestamp values will be:

Rs-TS(9) = max{R-TS(G) | G € g U descendents(g)}

Wg-TS(g9) = max{W-TS(G) | G € g U descendents(g)}

The actual read (write) timestamp for a granule g is the largest times-
tamp of any transaction for which a read (write) request for g has been
granted. The summary read (write) timestamp for g is the largest timestamp
of any transaction for which a read (write) request for g or any sub-granule of
¢ has been granted. With these timestamps at each level of the hierarchy,
the BTO salgorithm requires two extensions. First, when a transaction T
wishes to access a grenule ¢, it must make sure that no granule in
ancca-tors(g) has an actual timestamp that violates the BTO ordering rules
when compared with TS(T). This would mean that some transaction

younger than T has already made a request that potentially conflicts with
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procedure readReq(T,g);
begin
okay :== true;
foreach G In ancesiors(g) do
i TS(T) < W-TS(G) then
okay == false;
f;
od;
¥ TS(T) < Ws-TS(g) then
okay :== false;
f;
i not okay then
restart(T');

grant readReg;
R-TS(g) := max(TS(T),R-TS(g));
Rs-TS(g) := max(TS(T),Rs-TS(g));
while parent(g) exists do
g = parent(g);
Rs-TS(g) := max(TS(T),Rs-TS(g));
f;
end;

procedure writeReq(T,g);
begin
okay := true;
foreach G In ancestors(g) do
¥ TS(T) < R-TS(G) or TS(T) < W-TS(G) then
okay := false;
ﬂ.

od;
i TS(T) < Rs-TS(g) or TS(T) < Ws-TS(g) then
okay := false;
f;
If not okay then
restart(T);
else
grant writeReg;
W-TS(g) := TS(T);
Ws-TS(g) := TS(T);
while parent(g) exists do
g = parent(g);
Ws-TS(g) := max(TS(T),Ws-TS(g));

Figure 4.6: H-BTO algorithm.
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T's request. Second, the algorithm must propagate timestamp changes
upwards in the hierarchy to keep the summary timestamp values accurate.

The hierarchical version of BTO (H-BTO) is given in Figure 4.6.

" To illustrate the roles played by the actual and summary timestamps in
H-BTO, consider the simple hierarchy of Figure 4.7, where there are two
lower-level granules, X and Y, and one upper-level granule, XY. Suppose
that R-TS(X)=8, W-TS(X)=8, R-TS(Y)=15 W-TS(Y)=13,
R-TS(XY)=25, and W-TS(XY)=>5. This implies that X and Y have
been accessed since time 5, but that their parent granule XY has not been
accessed as a whole since that time. The summary timestamp values will be
Rg-TS(X) =8, W;-TS(X)=38, Rs-TS(Y)=15 W;-TS(Y)= 13,
Rg-TS(XY) =15, and W5-TS(XY) = 13. (Note that the actual and sum-
mary timestamp values are always the same for leaf gr'anules, so it is nct
actually necessary to maintain them separately at the bottom level of the

hierarchy.)

Now, suppose that a transaction T with timestamp TS(T) = 10 wishes
to read X. H-BTO checks W-TS(XY), finds that the request is acceptable
thus far, then checks W5-TS(X) and finds that the request is indeed accept-
able.  H-BTO grants the request, setting R-TS(X) and Rg-TS(X) equal to
16. Suppose instead that T had wished to read XY. H-BTO would have
checked W5-TS(XY), found that the request violated the BTO ordering rules

for reading because some sub-granule of XY had been written siace time 10,
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AN

Figure 4.7: Simple example hierarchy.

and rejected the request.

Theorem: The hierarchical version of BTO is correct in the sense that serial-
izability is guaranteed.

Proof: The BTO algorithm is known to be correct [Bern82a]. Thus, it
suffices to show that H-BTO only grants requests which would be granted by

BTO. This may be shown as follows:

When a transaction T requests access to a granule g, it is requesting per-
mission to access some or all of the granules in descendents(g). The H-BTO

algorithm grants a read request as long as two conditions hold:

(1) TS(T) > W-TS(G) for all G € ancestors(g)
(2) TS(T) > Ws-TS(g)
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The first condition guarantees that no transaction younger than T has
written any granule which contains g, and thus possibly ¢ itself. The; second
condition guarantees that no transaction younger than T has written any por-
tion of g. If both conditions (1) and (2) hold, H-BTO grants the request.
This occurs only when no transaction younger than T has written g or any
portion thereof, so no write timestamps of leaf granules associated with ¢ in
the hierarchy would exceed TS(T) in the BTO algorithm. BTO would there-

fore grant the request as well.

The H-BTO algorithm grants write requests as long as two conditions

hold:

(1) TS(T) 2> R-TS(G) and TS(T) > W-TS(G) for all G € ancestors(g)
(2) TS(T) > Rs-TS(g) and TS(T) 2 W5-TS(g)

The first condition guarantees that no transaction younger than T has
read or written any granule which contains g, and thus possibly g itself. The
second condition guarantees that no transaction younger than T has read or
written any portion of g. If both conditions (1) and (2) hold, H-BTO grants
the request. This occurs only when no transaction younger than T has read
or written g or any portion thereof, so no read or write timestamps of leaf
g;amﬂes associated with g in the hierarchy would exceed TS(T) in the BTO

algorithm. BTO would therefore grant the request as well. o
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4.2.1.1.3. Hierarchical Mul'tiple Versicn Algorithms -

In this section, a hierarchical variant of the multi-version timestamp ord-
ering algorithm (MVTO) of Reed [Reed78] is presented. Version management
and concurrency control are treated separately in the description, making the
hierarchical version of MVTO a natural extension of its non-hierarchical coun-
terpart. The notation and definitions used here are the same as those used in

the description of the non-hierarchical version of the algorithm.

To extend the MVTO algorithm for hierarchical use, each granule g will
have a read/write summary history, Hg(g), in addition to its actual history,

H,,(g)- This summary history will be:

Hg(g9) = | {Ho(G) | G € g U descendents(g)}

Thus, Hg(g) is the union of H,,(G) for all granules G having any data
in common with g. This union operation may be interpreted graphically.
The read/write history for a granule can be thought of as a timeline, with the
intervals in the history being line segments drawn on this timeline. The union
of two or more histories is computed by overlaying their timelines, with the
intervals in the resulting history being those intervals included in one or more
of the histories being unioned. For example, the unicn of {(3,7), (10,13)} and
{(1,2), (5,11) (15,17)} would be {(1,2), (3,13), (15,17)}. This example is also

depicted graphically in Figure 4.8.
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Figure 4.8: Union operation for read/write histories.

These actual and summary histories are analogous to the actual and sum-
mary timestamps used in creating the H-BTO algorithm from the BTO algo- '
rithm. With these histories at each level of the hierarchy, the MVTO algo-
rithm requires two extensions. First, when a transaction T wishes to write a
granule g, it must make sure that no higher-level granules have actual his-
tories with an interval containing TS(T). Second, when a tramsaction T
causes some history to be updated, the algorithm must propagate the change
upwards in the hierarchy to keep the summary histories accurate. For the
lowest level granules in the hierarchy, the actual and summary histories will
alwa&s be equal (just as for timestamps in the H-BTO algorithm), so they

need not be separately maintzined for leafl granules.
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procedure readReq(T,g);
begin
grant readReg;
extVers(H,o(9), TS(T));
extVers(Hs(g), TS(T));
while parent(g) exists do
g = parent(g);
extVers(Hs(g), TS(T));
od;
end;

procedure writeReq(7T',g);
begin
okay := true;
foreach G in ancestors(g) do
i TS(T) In H,o(G) then
okay := false;
f;
od;
i TS(T)1in Hg(g) then
okay :== false;
fi;
if not okay then
restart{T);
else
grant writeReg;
newVers(H, (), TS(T));
newVers(Hs(g), TS(T));
whlle parent(g) exists do
g = pareni(g);
newVers(Hs(g), TS(T));
f1;
end;

Figure 4.9: H-MVTO algorithm.

The hierarchical version of MVTO (H-MVTO) is given in Figure 4.9. It
is assumed in the figure that the newVers operation creates a new interval in
a history by taking the union of the history and the new interval, and that
the eztVers operation merges intervals when extending one causes it to over-

lap with another.
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Theorem: The hierarchical version of MVTO is correct in the sense that seri-
alizability is guaranteed.

Proof: The MVTO algorithm is known to be correct [Bern82b). Thus, it
suffices to show that H-MVTO only grants requests which would be granted

by MVTO. This may be shown as follows:

When a transaction T requests access to a granule g, it is requesting per-
mission to access some or all of the granules in descendents(g). The H-MVTO
algorithm always grants read requests, just as the MVTO algorithm does.

The H-MVTO algorithm grants write requests as long as two conditions hold:

(1) TS(T)is in no interval in H,(G) for any G € ancestors(g)

(2) TS(T)is in no interval in Hg(g)

The first condition guarantees that no granule containing ¢ has an inter-
val which contains TS(T), so the version of g to be written cannot have been
read by a younger transaction. The second case guarantees that no granule
contained within ¢ has an interval which contains TS(T), so no portion of
the version of g to be written can have been read by a younger transaction.
If both conditions (1) and (2) hold, H-MVTO grants the request. This occurs
only when neither g nor any portion thereof has a version which was written
before TS(T) and read after TS(T), so no read/write histories of leaf
granules associa£ed with g in the hierarchy would have intervals containing

TS(T) under MVTO. MVTO would therefore grant the request as well. o
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4.2.2. Hierarchies and Performance _

In _this section, the performance characteristics of several hierarchical
concurrency control algorithms are investigated using the simulation model of
Chapter 3. The algorithms studied are a hierarchical version of PRE and the
three new hierarchical concurrency control algorithms presented in the previ-
ous section. PRE was chosen for hierarchical study because it was felt to be
representative of the class of hierarchical locking algorithms and was the easi-
est of the locking algorithms to implement hierarchically. The other three
algorithms were chosen as being representative of hierarchical versions of the
validation, timestamp, and multiple version approaches. The purpose of this
performance study is to investigate the hypothesis that any hierarchical con- .
currency control algorithm should display much the same performance advan-
tages over its non-hierarchical counterpart as locking does in some sitnations
[Ries79a, Ries79b]. Before presenting the details of the performance experi-
ments of this section, however, the manner in which the performance model of
Chapter 3 was extended to accommodate the study of a two-level granularity

hierarchy is described.

4.2.2.1. Modeling a Hierarchy

.In order to allow hierarchical concurrency control algorithms to be simu-
lated, a new parameter, size_threshold, was added to the simulator. This

parameter defines the threshold, in objects, used to classify tronsaciions as
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being small or large for concufrency control purposes. Small transactions are
‘those with readset sizes which are less than or equal to s:’ze_thrcshéld, and
large transactions are those whose readsets exceed size_threshold. The other
modification made to support hierarchical algorithms involved changing the
interpretation of the gran_size parameter somewhat. A two-level hierarchy is
simulated, angi it is assumed that each lower level granule in the hierarchy
contains just one database object. The gran_size parameter is thus used to

determine the size of the higher-level database granules in the hierarchy.

4.2.2.2. Concurrency Control Costs

As with previous 'simulations, it is necessary to make some assumptions
about the concurrency costs of the various algorithms to be simulated. The
cost models used for the H-PRE, H-SV, H-BTO, and H-MVTO algorithms are
simple variations on the cost models previously described for PRE, SV, BTO,
and MVTO. For transactions which access higher-level granules, the costs are
assessed as previously described for PRE, SV, BTO, and MVTO using the
number of unique higher-level granules read and written in place of the
pumber of database granules read and written. For transactions which access
lower-level granules, concurrency control costs are computed using the
nmeer of lower-level granules (objects) read and written, and then the result-
ing costs are doubled. This cost doubling models the fact that transactions
which access lower-level granules incur extra overhead to descend the two-

level hierarchy of concurrency control information each time a request is
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processed. ' -

4.2.2.3. Experiments and Results

In this section, the results of two hierarchical performance experiments
are reported. The experiments were performed on H-PRE, H-S8V, H-BTO, H-
MVTO, and the non-hierarchical counterparts of these four hierarchical algo-
rithms. The first experiment investigates the performance of the hierarchical
algorithms under low concurrency control costs. The second experimeat was
designed to investigate the potential performance advantages offered by

hierarchical algorithms in certain cases.

Before discussing the experiments and results, one other point should be
made to motivate the choice of large values for the concurréncy control cost
parameters: Hierarchical algorithms are useful for enhancing performance
only when the costs associated with each concurrency control request are
large. In Chapter 3, where a 1 millisecond (simulated time) CPU cost was
charged for processing concurrency control requests, the results of the experi-
ments with this CPU cost showed no performance degradation at fine granu-
larities. Only in the last experiment in the chapter, where the cost of con-
currency control request processing was extremely high, was the need for a
hiera;'chy indicated. Thus, hierarchies may not be useful in practice today.
However, as large primary memories allow more acd more data to be buffered

for long periods of time in main memory, the ratio of the cost of object pro-
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cessing to the cost of concurrency control should decrease. This may make

hierarchies more attractive, making a study of their behavior worthwhile.

4.2.2.3.1. Experiment 1: Low Concurreacy Control Cost

This experiment investigates the performance characteristics of hierarchi-
cal concurrency control algorithms under a workload consisting of a mix of
small and large transactions. The parameter varied in this experiment is the
size of the large transactions in the mix, the intention being to observe the
behavior of the algorithms as the degree to which hierarchies are potentially
helpful is varied. The system parameter settings used are those of Table 4.1,
where concurrency control costs are low. The batch_time and num_batches
parameter settings used in this experiment are the same as those used for the
previous experiments. The purpose of this experiment is to investigate the
performance of the hierarchical algorithms when concurrency control costs are

not particularly high.

The workload parameter settings for this experiment are given in Table
4.10. The database consists of 10,000 objects, and its granularity is 10 objects
per higher-level granule in the two-level hierarchy. The number of terminals
used is 10. Small transactions, which are forty percent of the mix, each read
two c'>bjects, updating each object with fifty percent probability. Large tran-
sactions, the other sixty percent of the mix, sequentially read a uniformly dis-

tributed number of objects. The mean size for large transactions is varied
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Workload Parameters

db_ssze 10000 objects
gran_size 10 object/granule
num_terms 10

delay_mean 1 second
emall_probd 0.4

small_mean 2 objects

small_zact_type random
small_size_dist fixed
small_write_prob | 0.5

large_mean vary from 1 to 30 objects
large_zact_type sequential
large_size_dist uniform

large_write_prod | 0.1
size_threshold 4 objects

Table 4.10: Workload parameters for experiment 1.

from 1 to 30 objects. Each object is updated with ten percent probability.
The size threshold for distihguishing between small and large transactions is 4
objects, so transactions which access 4 or fewer objects are considered smali
and make their concurrency control requests based on objects (lower-level
granules). Transactions which access 5 or more objects are considered large

and make their requests based on higher-level granules.

The throughput results for experiment 1 are given in Tables 4.11a and
4.11b, with the associated restart counts given in Tables 4.12a and 4.12b.
The results are exactly as one would expect with low concurrency control
costs: No significant performance improvements are offered by the hierarchi-

cal algorithms in this case. The tiny performance differences that do show up



Throughput versus Large Transaction Size l

Size || PRE H-PRE SV H-SV

1 7.44 7.445 7.435 7.434
2 6.346 6.346 6.337 6.327
) 4.414 4414 4.386 4.368
10 2.930 2.930 2.888 2.873
15 2.281 2.281 2.215 2.189
30 1.228 1.228 1.130 1.112

Table 4.11a: Throughput, experiment 1.

| Thronghgut versus Large Transaction Size ’

Size || BTO | H-BTO | MVTO | H-MVTO
1 7.444 7.442 7.444 7.442
2 6.342 6.331 6.342 6.331
5 4.404 4.374 4.405 4.385
10 2.805 2.867 2.905 2.861
15 2.234 2.181 2.235 2.178
30 1.113 1.081 1.111 1.079

Table 4.11b: Throughput, experiment 1 (cont.).

I Restarts versus Large Transaction Size ’
S PRE H-PRE SV H-SV

ize R
1 0 0 13 14
2 0 0 11 24
5 0 0 18 37
10 0 0 25 40
15 0 0 37 83
30 0 0 49 58

Table 4.12a: Restarts, experiment 1.
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| Restarts versus Large Transaction Size | _

Size || BTO | H-BTO | MVTO | H-MVTO
1 5 7 5 7
2 4 18 4 18
5 9 34 6 24
10 19 46 12 48
15 24 55 19 51
30 56 71 51 70

Table 4.12b: Restarts, experiment 1 (cont.).

are in the favor of the non-hierarchical algorithms. These arise because of a
slightly elevated restart count due to the fact that large transactions claim
somewhat more data than needed with the hierarchical algorithms, thus
increasing the probability of conflicts. In this case, no significant gains in
terms of concurrency control overhead are available to offset this effect. Of -
course, since the size of large transactions is never chosen to be very large due
to statistical considerations, this does not imply that hierarchies would not be

useful for mixes including much larger transactions.

4.2.2.3.2. Experiment 2: Large Transaction Size

This experiment repeats the study of the previous experiment in a situa-
tion where concurrency control costs are large. The parameter varied in this
experiment is again the size of the large transactions in the mix, the intention
being to observe the behavior of the algorithms as the degree to which hierar-
chies are potentially helpful is varied. The system and workload parameters

used in the experiment were selected in order to emphasize situations where
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hierarchical algorithms are indeed beneficial. The system parameter settings
for this experiment, are summarized in Table 4.13. The concurrency‘control
costs for this experiment are a combination of the largest ec_cpu and cc_so
parameters used in experiment 6 of Chapter 3. The workload parameters are

the same as those used for the previous experiment (see Table 4.10).

The results of this experiment are shown in Tables 4.14a and 4.14b,

where throughput rates for the four hierarchical algorithms and their non-

I sttem Parameter Settings ]

System Time
Parameter (Milliseconds)
startup_to 35
startup_cpu 10
obj_to 35
obj_cpu 10

cc_to 35
ec_cpu 5
stagger_mean 20

Table 4.13: System parameters for experiment 2.

l Throughgut versus Large Transaction Size l

Size PRE H-PRE SV H-SV

1 4.662 3.395 4.292 3.010

2 3.869 3.314 3.577 2.942

. 5 2.534 2.928 2.353 2.601
10 1.608 2.204 1.505 1.956
15 1.245 1.781 1.134 1.578
30 0.662 1.049 0.571 0.884

Table 4.14a: Throughput, experiment 2.



I Throughput versus Large Transgction Size

Size || BTO | H-BTO | MVTO | H-MVTO
1 4.293 3.013 4.203 3.013
2 |} 3.580 2.944 3.580 2.944
5 2.363 2.602 2.365 2.607
10 1.514 1.945 1.514 1.942
15 1.153 1.875 1.153 1.558
30 |} 0.584 0.897 0.590 0.801

Table 4.14b: Throughput, experiment 2 (cont.).

| Restarts versus Lar§e Transaction Size I

Size || PRE H-PRE SV H-SV
1 0 0 3 3
2 0 0 8 12
5 0 0 9 21
10 0 0 13 27
15 0 0 24 38
30 0 0 23 47

Table 4.15a: Restarts, experiment 2.

| Restarts versus Large Transaction Size z
Size || BTO | H-BTO | MVTO | H-MVTO

1
2
5
10
15
30

1
3
5
8
15

16

2
9
18
36
37
40

1
3
2
8
12
11

2
9
13
37
47
39

Table 4.15b: Restarts, experiment 2 (cont.).
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hierarchical counterparts are given for six different large transaction sizes.

The non-hierarchical algorithms made all their concurrency control requests
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based on objects for this study. The results are consistent with what one
would expect based on the results of the previous chapter and by Ries for a
two-level lock hierarchy [Ries78a, Ries78b]. That is, all of the concurrency

control algorithms studied do benefit from the use of a granularity hierarchy.

The first result worth noting is that the performance of the hierarchical
algorithms follow the same trend as was observed in Chapter 3 for their non-
hierarchical counterparts. The hierarchical version of PRE, which uses block-
ing rather than restarts, exhibits the best performance of the three algo-
rithms. The H-SV algorithm performs second best, and the H-BTO and H-
MVTO algorithms perform the least well of the three algorithms studied. The
restart counts for this experiment are given in Tables 4.15a and 4.15b. Thus,
the use of a granularity hierarchy does not alter the result that blocking is the

mechanism of choice for dealing with transaction conflicts.

Second, the use of a granularity hierarchy helps improve performance as
expected for all of the algorithms. Initially, when large transactions are of
mean size 1, the hierarchical algorithms exhibit worse performance than their
non-hierarchical counterparts, as the overhead for small transactions is greater
using the hierarchical algorithms. However, as the size of the large tracsac-
tions in the mix is increased, the hierarchical algorithms perform better due to
reduced concurrency control overhead for large transactions. With a mean
large transaction size of 5 objects, large transactions make concurrency con-

trol requests in terms of higher-level granules, and a slight performance
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improvement is observed. As large transaction size is increased further, the
_degree of the benefit increases. As much as fifty percent additional
throughput is available using the hierarchical algorithms instead of the non-

hierarchical algorithms by the time large_mean = 30 objects is reached.

4.3. SUMMARY

This chapter has examined two performance enhancement schemes for
concurrency control algorithms, multiple versions and granularity hierarchies.
In terms of algorithmic concepts, several multiple version algorithms were
reviewed, and a new, multiple version serial validation Aalgorithm was
presented. The notion of hierarchical locking was reviewed, and the notion
was extended so as to be applicable to other types of algorithms. New
hierarchical versions of serial validation, basic timestamp ordering, and mul-

tiversion timestamp ordering were presented.

Three experiments were presented which addressed the performance
issues associated with multiple versions, and a number of conclusions were
drawn from the results of the experiments. First, multiple versions did not
improve performance much for 2PL, except in extreme cases, as 2PL was
quite capable of handling the transaction mixes tested without multiple ver-
sions.. The improvement of MVTO over BTO was also fairly limited. Multi-
ple versions helped improve performance the most for SV, as SV was the

worst of the single-version algorithms for the transaction mixes examiced.
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Second, all of the multiple version algorithms performed virtually alike in the
_experiments, as they all enabled large read-only transactions to. execute
without interference. The sizes of small update transactions and the database
were such that conflicts between update transactions were very unlikely, so
differences in the performance of the algorithms for update transactions did
not play a role in the results. Finally, it was found that multiple versions
improved performance the most for workloads consisting of many small

update transactions and a few large read-only transactions.

Two experiments were presented which addressed the performance issues
associated with granularity hierarchies. The experiments investigated using a
two-level hierarchy in scenerios where the cost of concurrency control was
normal and extremely large, respectively. It was found that hierarchies are
not helpful if concurrency control costs are not significant, as is the case nor-
mally. The results for hierarchical versions of PRE, SV, BTO, and MVTO
indicate that hierarchies are indeed beneficial for mixes of small and large
transactions when concurrency control is extremely expensive, however. The
hierarchical PRE algorithm performed the best out of all of the hierarchical
algorithms investigated, reinforcing the conclusions of Chapter 3 about block-

ing versus restarts.
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‘CHAPTER 5 -

CONCLUSIONS

In this chapter, the results of the previous chapters are reviewed. The
overall conclusions of this thesis are compared and contrasted with those of
other concurrency control researchers. Implications of the results of this work
for other types of concurrency control algorithms, such as distributed con-
currency control algorithms and algorithms which use information about tran-
saction semantics, are presented. Finally, directions are suggested for future

research in the area of concurrency control algorithms and performance.

6.1. SUMMARY OF RESULTS

Chapter 2 of this thesis presented an abstract model of concurrency con-
trol algorithms which was useful for describing algorithms and analyzing their
relative storage and CPU costs. Results obtained from a comparison of the
costs of a two-phase locking variant, basic timestamp ordering, and serial vali-
dation indicated that the two-phase locking variant examined has the best
overall cost characteristics. The storage costs of basic timestamp ordering
and serial validation each contained factors dependent upon the number of
recently committed transactions as well as the currently active transactions,

making them potentially more expensive {especially when transactions tend to
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access disjoint sets of data items). The no-conflict CPU costs of the algo-
rithms were less distinct, with differences involving constant Iactor§ on the
order of a factor of two or less, although locking was again the lowest-cost
algorithm. In light of the results of later chapters, which indicate that locking
is superior in terms of performance, it suffices to summarize the main cost

result obtained using the model of Chapter 2 as follows:

(2.1) The costs associated with two-phase locking are at least as low
as those for basic timestamp ordering and serial validation.

Chapter 3 presented a performance model of concurrency control algo-
rithms which was implemented in the form of a fairly flexible, detailed simu-
lation program. Seven concurrency control algorithms, including two-phase
locking with full deadlock detection (with and without read/write upgrades),
two-phase locking with wait-die deadlock prevention, preclaimed exclusive
two-phase locking, basic timestamp ordering (with and without the Thomas
write rule), and serial validation. The main conclusions of Chapter 3 can be

summarized as follows:

(3.1) When conflicts between transactions were rare, all of the con-
currency control algorithms examined performed equally well. If Gray
is right about conflicts being rare in most real database systems
[Gray81a], the choice of a concurrency control algorithm will not affect
performance.

(3.2) For workloads in which conflicts were not rare, the concurrency
control algorithms that performed the best were those which minim-
ized the number of transaction restarts. Blecking is thus the mechan-
ism of choice for dealing with transacticn conflicts.



(3.3) The main difference’ between workloads of small transactions
and those with larger transactions is that larger transactions make-the
penalty associated with restarting a transaction even greater. For
mixes of small and large transactions, performance can be improved
by attempting to select small transactions to restart when restarts are
required.

(3.4) If concurrency control costs are low compared to the cost of ob-
ject accesses, which is likely for current database systems, concurrency
control overhead does mot affect performance. Fine granularities are
recommended in this case, although optimal performance can be ob-
tained with as few as 1000 or more granules unless large, random tran-
sactions are anticipated. If concurrency control costs are high, the
conclusions regarding blocking versus restarts still hold, but con-
currency control overhead will be a significant factor. Medium granu-
larities or a hierarchy will be necessary for optimal performance.

(3.5) Some algorithms have anomalies in their behavior which can de-
grade their performance in the absence of a sufficient period of delay
following transaction restarts. An example is the cyclic restart ano-
maly shared by basic timestamp ordering and multiversion timestamp
ordering.

167

Chapter 4 investigated two concurrency control performance enhance-

benefits. The main conclusions of Chapter 4 were:

(4.1) Multiple versions may be used in conjunction with serial valida-
tion in order to improve performance when the workload includes up-
date transactions and large rezd-only transactions.

ment schemes, multiple versions and granularity hierarchies. Previously pro-
posed algorithms using each of these schemes were reviewed. A new multiple
version algoritbm was proposed, and several new hierarchical algorithms were
also proposed. Performance experiments were performed to investigate situa-

tions in which multiple versions and granularity hierarchies offer performance
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(4.2) For workloads consisting of read-only transactions and update
transactions with the property that conflicts between update transac-
tions were of low probability, all of the multiple version algorithms
performed alike, enabling transactions to execute with little interfer-
ence.

(4.3) Multiple versions did little to improve the performance of 2PL,
as 2PL did well for the workloads examined without multiple versions.
They did help somewhat for basic timestamp ordering and
significantly for serial validation, however.

(4.4) Multiple versions were the most effective for workloads consist-
ing of many small update transactions and a few large read-only tran-
sactions.

(4.5) Granularity hierarchies may be used in conjunction with serial
validation, basic timestamp ordering, and multiversion timestamp ord-
ering to attempt to improve performance when the cost of concurrency
control is high and the workload includes a mix of small and large
transactions.

(4.6) Hierarchical versions of preclaimed locking, serial validation,
basic timestamp ordering, and multiversion timestamp ordering all
succeeded in improving performance for a mix of small and large tran-
sactions. Hierarchical preclaimed locking performed the best of the
hierarchical algorithms investigated. However, these performance im-
provements were only obtained when the cost of concurrency control
was extremely high. No improvements were obtained for the transac-
tion mixes examined with normal concurrency control costs.

5.2. COMPARISON WITH OTHER WORK

In this section, the results of this thesis are compared with those of other
related studies. The most relevant related work to date has been performed
by Ries [Ries77, Ries79a, Ries79b], Bernstein and Goodman [Bern80], Lin and

Nolte [Lin82, Lin83], Peinl and Reuter [Pein83], Galler [Gall82], Robinson
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[Robi82a, Robi82b}, and Agrawal and DeWitt [Agra83b, Agrag3c]. Each of
these studies will be reviewed in turn, and the results of each will be exam-

ined in light of the conclusions of this thesis.

" In his thesis studies, Ries [Ries77, Ries79a, Ries79b] examined the effects
of granularity on performance. Most of his studies assumed that an 1/O cost
was associated with concurrency control, as in experiment 6 of Chapter 3.
Ries found that relatively coarse granularities, on the order of 100 granules,
were sufficient t;) obtain optimal performance for locking. The findings of this
thesis agree with those of Ries, as granularities of 100 to 1000 granules were
sufficient to achieve the best performance for each algorithm studied in
Chapter 3 under most conditions. Also, Ries compared a pair of locking algo- -
rithms similar to PRE and 2PL of Chapter 3, and he found that PRE tended
to outperform 2PL. PRE won over 2PL m the studies of this thesis as well,
the reason being that no restarts occurred with PRE. Ries also attributed the
dominance of PRE to its lack of restarts. Ries observed a tradeoff between
maximizing concurrency and minimizing concurrency control overhead. The
results of experiment 8 of Chapter 3 demonstrated the existence of this tra-
deoff for the seven algorithms studied in this chapter. Ries found that a lock
hierarchy was useful in the presence of this tradeoff, and experiment 2 of the
granularity hierarchy section of this thesis yielded similar results for all algo-

rithms tested.
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Bernstein and Goodman performed a comprehensive study of concurrency
control algorithms for distributed database systems [BérnSO]. They i&entiﬁed
four metrics — blocking, restarts, messages, and local processing cost — for
rating alternative algorithms, and they qualitatively examined a large number
of algorithms using the metrics. Their results were inconclusive, leading to
the identification of eleven algorithms based on locking and timestamps as
“dominant” over all other alternatives. To the extent that several locking
variants were included in the dominant set, the results of this thesis agree
with those of Bernstein and Goodman. However, a main result of this thesis
is that restarts are a driving performance factor, whereas blocking is accept-
able as long as a sufficient number of transactions remain unblocked to keep
critical system resources well utilized. Thus, the use of blocking and restarts
as separate metrics seems inappropriate in light of the results of the experi-
ments reported here. Also, the results of the first five experiments of Chapter
3 suggest that the local processing cost metric may not be of interest for most

concurrency control algorithms.

Lin and Nolte have performed a number of simulation studies of locking
versus timestamps for distributed database systems [Lin82, Lin83]. The con-
clusions of the most recent of their papers are that multiversion timestamp
ordering is only marginally better than basic timestamp ordering, that basic
timestamp ordering performs better than two-phase locking if the average

transaction size is small, and that two-phase locking performs better th-n
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basic timestamp ordering if the average transaction size is large. The conclu-
sions that basic timestamp ordering outperforms locking in some siiuations
contradicts the findings of this thesis. This contradiction oceurs for several
reasons, the primary one being that the system model used by Lin and Nolte
does not account for the effects of CPU and I/O resource sharing, as discussed
below. Also, differences between centralized and distributed systems may con-

tribute to differences in the results of the studies.

The model of Lin and Nolte assumes that the message delays, CPU pro-
cessing times, and I/O processing times associated with concurrency control
requests and subsequent object processing can be legitimately combined into a
single, exponentially determined ‘‘communrications delay™ time. This totally .
eliminates the fact that CPU and 1/O resources are shared by all transactions,
so service times for transactions in their model are not dependent on the
number of other transactions in service. R is precisely the sharing of CPU
and 1/O resources which allows blocking to have little or no negative perfor-
mance impact. The sharing of resources also makes the penalty associated
with restarts greater, as restarted transactions waste CPU and I/O resources
which could have been used by other transactions instead. The absence of
shared resource modeling in Lin and Nolte's work would clearly cause their
results to differ from those reported here. They state in their most recent
paper [Lin83] that they intend to investigate more detailed models, and this

thesis would suggest that their future results will differ from previous ones.
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A recent paper by Peinl aixd Reuter reports using a metric based-_on com-
bining the average level of multiprogramming and the number of restarts to
evaluate several alternative concurrency control algorithms driven by refer-
ence strings from an actual database system [Pein83]. Algorithms studied in
the paper include two-phase locking, a two-version variant of locking, and
serial validation. Peinl and Reuter obtain results which indicate that the
serial validation algorithm leads to the largest number of restarts, yet they
end up concluding that, in terms of their performance parameter, it performs
well. The results of this thesis indicate that their parameter, which is the
ratio of the level of multiprogramming and the factor by which the number of
requests is increased by restarts, is mot the best choice for a performance
metric. A metric based on number of restarts alone seems more appropriate
as long as the level of multiproga@g is five or more. Peinl and Reuter
also stated some conclusions about the relatﬁe performance of one-version
versus two-version algorithms, but this thesis did not examine multiple ver-

sion algorithms which restricted the number of versions available.

In his thesis, Galler {Gali82] presented a performance model for exclusive
two-phase locking in a single-site database system, a qualitative framework
for selecting among alternative distributed concurrency control algorithms,
and some simulation results for basic timestamp ordering versus locking in a
distributed database system. Of these, the simulation results are most

relevant to the conclusions drzwwn here. In particular, Galler reported finding
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that basic timestamp ordering outperformed two-phase locking in a variety of
-environments for mixes of small transactions. Galler attributed this to longer
waits until necessary restarts are performed in locking and greater parallelism

between sites with basic timestamp ordering.

Differences between distributed and single-site systems are thought to be
a factor in the contradiction between the results of this thesis and the work of
Galler. Modeling differences are another factor. The model used by Galler is
similar to that of Lin and Nolte, although Galler claims to account for load-
dependence of transaction service times. Galler concentrates solely on mixes
of transactions which read and write a single object, and his locking algorithm
uses timeouts in place of true deadlock detection. In one study, Galler shows
the throughput for basic timestamp ordering increasing quite steadily up to a
multiprogramming level of at least ten; suggesting that his model of CPU and
I/O sharing may be unrealistic. Results from the multiprogramming level
experiments of this thesis suggest that throughput is not likely to increase
once a multiprogramming level of four or five has been reached. If anything,
throughput would be expected to decrease beyond this point due to an

increase in the probability of conflicts and the use of restarts.

Robinson performed research on the design of general transaction pro-
cessing systems [Robi82a, Robi82b]. Robinson designed and implemented
such a system on the Cm# multiprocessor system at CMU [Full78]. As a test

of the generality of his design, Robinson performed experiments in which



174

several different concurrency c'ontrol algorithms were executed by thg system.
.His results for locking versus serial validation indicated that the throughput
produced using locking was higher than that produced using serial validation,
and that locking led to fewer restarts. Although Robinson did not intend for
his work to be interpreted as a conclusive study of concurrency control perfor-

mance, the results of his experiments concur with those of this thesis.

Finally, Agrawal and DeWitt have recently completed a performance
study of several combinations of concurrency control and recovery algorithms
[Agra83b, Agra83c]. The result of their study, which was based on an analyti-
cal model of the “burden” experienced by transactions operating under the
alternative concurrency control and recovery algorithm combinations, was
that locking (combined with several different recovery mechanisms) was the
best choice examined. They also concluded that serial validation was only
reasonable under workloads consisting of small transactions for which conﬁicts'
are rare. Both of their conclusions are comsistent with the results reported

here.

5.3. IMPLICATIONS OF THE RESULTS

The results of this thesis have several implications. For single-site data-
base systems, it is clear that algorithms which prefer blocking to restarts
should be chosen. I conflicts are not rare, such algorithms will outperform

their competitors, and if conflicts are truly rare, they will perform at least as
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well. To summarize the discussion at the end of Chapter 3, if sufficient
knowledge of transaction reads and writes is available at transactior; startup
time, preclaimihg with read and write lock modes is probably best. Alterna-
tively, if writes can be anticipated when objects are read, an upgrade-free
two-phase locking variant with a victim selection criteria based on the
amount of work completed by transactions is also an excellent alternative. If
reads and writes cannot be predicted before they occur, two-phase locking
with deadlock detection and an improved victim selection criteria is the algo-
rithm of choice. Also, in special cases where structural knowledge makes
using deadlock-free locking protocols an option, such as in hierarchical data-
bases or operations on a tree-structured index [Silb80, Moha82], such proto-

cols are to be recommended.

For algorithms which utilize transaction semantics or data-type-spe;:iﬁc
operation information in an attempt to improve concurrency [Allc82, Bern78,
Bern81a, Kort83, Garc83, Hsu83, Schw82, Spec83], the implication of this
thesis is that specialized locking protocols are probably the most promising
approach. The use of semantic information will not change the fact that res-
tarts degrade performance in situations where conflicts occur with other than
low probability.

Even for distributed concurrency control algorithms, this thesis would
seem to indicate that locking protocols are likely to dominate those which

resolve conflicts using restarts. The main result of the performance
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experiments of Chapter 3 was that blocking did not significantly degrade per-
formance. With the multiprogramming level of the single-site datal;ase sys-
tem modeled kept at five or more, the bottleneck resource was fully utilized
and the maximum throughput was obtained. Suppose that the sites in a dis-
tributed database system each have a number of active transactions, and
further suppose that locking can succeed at keeping this number at levels
comparable to those which produced optimal throughputs in the single-site
system. Each site in the system should then operate at its maximum
throughput, and optimal performance should be achieved for the entire distri-
buted system. This argument should hold as long as the number of messages
required for locking algorithms is comparable to those for other algorithms, so
the costs for locking are not greater than the costs for its competitors in dis-
tributed database environments. Similar arguments also apply to the selec-
tion of a concurrency control algorithm for a database server in a local com-
puter network or for a distributed database system in which a central site is

to be used for concurrency control purposes.

65.4. LIMITATIONS OF RESULTS

The results reported in this thesis are subject to the limitations of the
modéls used to obtain them. There are a number of assumptions which were
made in the performance model of Chapters 3 and 4, and each of these
assumptions has influenced the results of the thesis to some extent. This sec-

tion reviews the major assumptions which underly the model and discusses
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their expected influence. The major underlying assumptions are:
(1) Transactions do not pause during their execution.

(2) The cost of processing a collection of concurrency control requests is pro-

portional to the size of the collection.

(3) Buffer contents are flushed for restarted transactions, so the cost of exe-
cuting a transaction from beginning to end is the same independent of

the restart history of the transaction.

(4) The overhead associated with switching contexts from one transaction to

another is not large.

(5) Each object read by a transaction is read only once, and all objects writ-

ten must previously have been read.

The first assumption may be interpreted as a decision to model a transac-
tion processing system rather than an interactive query processing system, a
decision which may be justified by noting that the performance impact of con-
currency control is probably most important for transaction processing
environments in which high throughputs are required. New applications such
as engineering design systems or database browsers weaken the validity of this
assumption. Ries briefly examined the impact of such transaction idle times
on the performance of locking, and he found that coarse granularities were
still sufficient to produce near-optimal performance [Ries79a}. This result sug-

gests that additional blocking due to idle transactions would not change the
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thesis result that locking is the algorithm of choice. Otherwise, this addi-
tional blocking should have led to a need for finer lock granularity in his

study.

The second assumption may be restated as the assumption that the over-
head of performing a concurrency control system call is not the dominant fac-
tor in the cost of concurrency control request processing. Ctherwise, the sim-
ple cost modeling approach taken in the simulations, based on the cc_to and
cc_cpu parameters, poorly reflects reality. Because one of the conclusions of
Chapter 3 was that concurrency control overhead is insignificant as long as it
is small compared to the other costs (like object processing) incurred by tran-
sactions, it is not expected that altering this assumption would significantly

alter the results.

The third and fourth assumptions have to do with the costs of restarts
and blocking. The third assumption basically says that restarted transactions
were modeled by starting them all over again, having them re-read all of the
objects in their readsets and re-write all of the objects in their writeset. The
fourth assumption says that blocking was modeled by setting blocked transac-
tions aside, and that the cost of blocking was assumed to be some fraction of
the average locking cost modeled by cc_fo and cc_cpu. If these assumptions
were drastically modified, so that restarts were nearly free and the cost of
blocking (and context switching) was very high in comparison, it is expected

that the results for blocking versus restarts would come out differently.
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(Robinson made comments aléng these lines in a discussion of the outcome of
.his experiments, though his results indicated that blocking was cheap'and res-
tarts were expensive in his Cm#* transaction processing system.) It is felt that
such a cost reversal is unlikely for real database systems, as environments
where restarts are cheap due to vast amounts of buffer space are also likely to
have sufficient memory to make context switches inexpensive by keeping

many active transactions in primary memory.

The final assumption can be interpreted as a combination of assuming
that transactions have sufficient buffer space to maintain all items which may
be re-read in primary memory, and that transactions do not make ‘‘blind
writes””. Both assumptions were made for convenience in generating and
manipulating transaction read and write sets in the simulator. It is not
expected that changing either of these assumptions would to lead to major
changes in the results of this thesis. If the “no blind writes” assumption were
relaxed, however, minor differences would be expected to arise among certain
of the timestamp algorithms. (Appendix 2 discusses the algorithmic aspects
of the effects of the *‘no blind writes'’ assumption on basic timestamp ordering

with the Thomas write rule and on multiversion timestamp ordering.)

5.5. FUTURE RESEARCH DIRECTIONS

One area of further research which may be appropriate is to extend the

simulation model of Chapter 3, relaxing some of the assumptions that were
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discussed in the previous section. It was argued that this should not alter the
conclusions significantly, but only by trying can the validity of these argu-

ments be demonstrated.

" Another obvious area for future work is to extend the performance model
of Chapter 3 to the distributed case, introducing a nelwork model to connect
a collection of the single-site queuing models in order to investigate the
hypothesis that locking algorithms will be dominant for distributed con-
currency control as well. Much of the work done in this area suffers from
modeling deficiencies, discussed earlier in this chapter, and might benefit from
the use of the more detailed single-site model of this thesis. An alternative to
modeling would be to be to measure the performance of alternative algorithms
in a real system or a representative testbed system of some sort. This under-
taking would be worthwhile if a reasonably modular database system were
used as a starting point so that the implementation difficulties would not be

prohibitive.

Finally, with main memory sizes increasing dramatically each year, it is
anticipated that more and more data will be maintained in primary rather
than secondary memory as database systems progress towards meeting the
transaction throughput demands of the late 1880's [Gray83]. This may kap-
pen by mapping databases into the virtual address space of transactions
{Trai82, Ston83], or by managing a large buffer pool in such a way that most

data of interest is kept in primary memcry. Ip either case, new concurrency
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control and recovery techniqués may need to be investigated to provide syn-
chronization and recovery for transactions in such extremely high-throughput
environments, as the overhead associated with current techniques may become

prohibitive there.



[Agra83al

[Agra83b]

[Agra83c]

[Alle82]

[Bada79]

[Badasi]

REFERENCES -

Agrawal, R., Carey, M,, and DeWitt, D., “Deadlock Detection is

Cheap"”, ACM SIGMOD Record, January 1883.

Agrawal, R., and DeWitt, D., “Integrated Concurrency Control
and Recovery Mechanisms: Design and Performance Evalua-
tion”, Technical Report No. 497, Computer Sciences Depart-

ment, University of Wisconsin-Madison, February 1983.

Agrawal, R., ‘““Concurrency Control and Recovery in Multipro-
cessor Database Machines: Design and Performance Evalua-
tion”, Ph.D. Thesis, Computer Sciences Department, University

of Wisconsin-Madison, 1983.

Allchin, J., and McKendry, M., ‘‘Object-Based Synchronization
and Recovery”, School of Information and Computer Science,

Georgia Institute of Technology, 1882.

Badal, D., “‘Correctness of Concurrency Control and Implica-
tions in Distributed Databases”, Proceedings of the COMPSAC

'79 Conference, Chicago, Illinois, November 1979.

Badal, D., “Concurrency Control Overhead or Closer Look at
Blocking vs. Nonblocking Concurrency Control Mechanisms”,

Proceedings of the Fifth Berkeley Workshop on Distributed



.[Baye80]

[Bern78]

[Bern79]

[Bern80]

[Bern81a]

[Berx;81b]

183

Data Management and Computer Networks, February 1881.

Bayer, R., Heller, H., and Reiser, A., “Parallelism and Recovery
in Database Systems”, ACM Transactions on Database Systems

5(2), June 1980.

Bernstein, P., Rothnie, J., Goodman, N., and Papadimitriou, C.,
“The Concurrency Control Mechanism of SDD-1: A System for

Distributed Databases (The Fully Redundant Case)”, IEEE

Transactions on Software Engineering 4(3), May 1978.

Bernstein, P., Shipman, D., and Wong, W., “Formal Aspects of
Serializability in Database Concurrency Control”, IEEE Tran-

sactions on Software Engineering 5(3), May 1979.

Bernstein, P., and Goodman, N., “Fundamental Algorithms for
Concurrency Control in Distributed Database Systems’, Techni-

cal Report, Computer Corporation of America, 1980.

Bernstein, P., Goodman, N., and Lai, M., “Two Part Proof
Schema for Database Concurrency Control”, Proceedings of the
Fifth Berkeley Workshop on Distributed Data Management and

Computer Networks, February 1981.

Bernstein, P., and Goodman, N., “Concurrency Control in Dis-
tributed Database Systems”, ACM Computing Surveys 13(2),

June 1981.



[Bern82a)

[Bern82b)

[Brya80a]

[Bryag0b]

[Care83a)

[Care83b)

184

Bernstein, P., and Goodman, N., “A Sophisticate’s Introduction
to Distributed Database Concurrency Control”, Proceedings of
the Eighth International Conference on Very Large Data Bases,

September 1882.

Bernstein, P., and Goodman, N., “Multiversion Concurrency
Control Theory and Algorithms”, Technical Report No. TR-20-
82, Aiken Computation Laboratory, Harvard University, June

1082.

Bryant, R., “SIMPAS — A Simulation Language Based on PAS-
CAL", Technical Report No. 390, Computer Sciences Depart-

ment, University of Wisconsin-Madison, June 1980.

Bryant, R., SIMPAS User Manual, Computer Sciences Depart-
ment and Madison Academic Computing Center, University of

Wisconsin-Madison, December 1880.

Carey, M., “An Abstract Model of Database Concurrency Con-
trol Algorithms”, Proceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data, San Jose, California,

May 1983.

Carey, M., “Granularity Hierarchies in Concurrency Control”,
Proceedings of the Second ACM SIGACT-SIGMOD Symposium

on Principles of Database Systems, Atlanta, Georgia, March



- [Casa79)

[Ceri82]

[Chan82]

[Conw63]

[Date82]

[ELi77]

[Eswa76]

185

1983. ' -
Casanova, M., “The Concurrency Control Problem for Database

Systems”, Ph.D. Thesis, Computer Science Department, Har-
vard University, 1979.

Ceri, S., and Owicki, S., “On the Use of Optimistic Metkods for
Concurrency Control in Distributed Databases”, Proceedings of
the Sixth Berkeley Workshop on Distributed Data Management
and Computer Networks, February 1982.

Chan, A, Fox, S., Lin, W, Nori, A., and Ries, D., *“The Imple-
mentation of An Integrated Concurrency Control and Recovery
Scheme”, Proceedings of the ACM SIGMOD International

Conference on Management of Data, March 1982.

Conway, R., “Some Tactical Problems in Digital Simulation”,

Management Science 10(1), January 1963.

Date, C., An Introduction to Database Systems (Volume II),
Addison-Wesley Publishing Company, 1982.

Ellis, C,, “A Robust Algorithm for Updating Duplicate Data-
bases”, Proceedings of the 2nd Berkeley Workshop on Distri-

buted Databases and Computer Networks, May 1977.

Eswaren, K., Gray, J., Lorie, R., and Traiger, 1., *“The Notions

of Consistency and Predicate Locks in a Database System”,



~—

[Ferr78]

[Full7s]

[Gallgg]

{Garc79]

[Garc83]

[Good83]

186

Communications of the ACM 19(11), November 1976.

Ferrari, D., Computer Systems Performance Evaluation,

Prentice-Hall, Englewood Cliffs, New Jersey, 1978.

Fuller, S., Ousterhout, J., Raskin, L., Rubinfeld, P., Sindhu, P.,
Swan, R., “Multi-Microprocessors: An Overview and Working

Example”, Proceedings of the IEEE 66(2), February 1972.

Galler, B., “Concurrency Control Performance Issues” Ph.D.
Thesis, Computer Science Department, University of Toronto,

September 1982.

Garcia-Molina, H., ‘“Performance of Update Algorithms for
Replicated Data in a Distributed Database”, Ph.D. Thesis, Com-

puter Science Department, Stanford University, June 1979.

Garcia-Molina, H., “Using Semantic Knowledge for Transaction
Processing in a Distributed Database”’, ACM Transactions on

Database Systems &(2), June 1983.

Goodman, N., Surij, R., and Tay, Y., “A Simple Analytic Model
for Performance of Exclusive Locking in Database Sysiems”,
Proceedings of the Second ACM SIGACT-SIGMOD Symposium
on Principles of Database Systems, Atlanta, Georgia, March

1083.



[Gray75)

[Gray79]

[Gray81a]

[Gray81b)

[Gray83]

(Grifss)

187

Gray, J., Lorie, I't., Putzulo, G., ard Traiger, 1., “Granu{larity of
Locks and Degrees of Consistency in a Shared Database”,
Report No. RJ1654, IBM San Jose Research Laboratory, Sep-

tember 1975.

Gray, J., “Notes On Database Operating Systems”, in Operat-

ing Systems: An Advanced Course, Springer-Verlag, 1979.

Gray, J., Homan, P., Korth, H.,, and Obermarck, R., “A Straw
Man Analysis of the Probability of Waiting and Deadlock in a
Database System”, Report No. RJ3066, IBM San Jose Research

Laboratory, February 1981.

Gray, J., “The Transaction Concept: Virtues and Limitatiors”,
Proceedings of the Seventh International Conference on Very

Large Databases, September 1981.

Gray, J., “Practical Problems in Data Management -- A Posi-
tion Paper”, Proceedings of the ACM SIGMOD International
Conference on Management of Data, San Jose, California, May

1983.

Griffeth, N., and Morsi, M., “SORCERER: A Distributed Data-
base Testbed and Simulation Tool”, School of Information and

Computer Science, Georgia Institute of Technology, 1983.



[Hsug3]

{Iran79]

[Kort82)

[Kort83]

[Kungs1]

[Ling2]

[Lins3]

188

Hsu, M., and Madnick, S., “Hierarchical Database Decomposi-
tion - A Technique for Database Concurrency Control”,
Proceedings of the Second ACM SIGACT-SIGMOD Symposium
on Principles of Database Systems, Atlanta, Georgia, March

1983.

Irani, K., and Lin, H., “Queueing Network Models for Con-
current Transaction Processing in a Database System”, Proceed-
ings of the ACM SIGMOD International Symposium on Manage-

ment of Data, 1979.

Korth, H., “Deadlock Freedom Using Edge Locks™, ACM Tran-

sactions on Database Systems 7(4), December 1982.

Korth, H., “Locking Primitives in a Database System’, Journal
of the ACM 30(1), January 1983.

Kung, H., and Robinson, J., “On Optimistic Methods for Con-
currency Control’”, ACM Transactions on Database Systems

6(2), June 1981.

Lin, W., and Nolte, J., “Distributed Database Control and Allo-
cation: Semi-Annual Report”, Technical Report, Computer Cor-

poration of America, Cambridge, Massachusetts, January 1982.

Lin, W., and Nolte, J., “Basic Timestamp, Multiple Version

Timestamp, and Two-Phase Locking™, submitted to Symposium



P

[Lind79]

[Mena78]

[Moha82]

[Papa79)

[Peing3)

{Potigo0]

189

on Reliability in Distributed Software and Database §ystems,
Palo Alto, California, October 1983. |

Lindsay, B., Selinger, P., Galtieri, C., Gray, J., Lorie, R., Price,
T., Putzoly, F., Traiger, I, and Wade, B., “Notes on Distri-
buted Databases”, Report No. RJ2571, IBM San Jose Research

Laboratory, 1979.

Menasce, D., and Muntz, R., “Locking and Deadlock Detection
in Distributed Databases”, Proceedings of the Third Berkeley
Workshop on Distributed Data Management and Computer Net-

works, August 1978.

Mohan, C., Fussel, D., and Silberschatz, A., “Compatibility and
Commutativity in Non-Two-Phase Locking Protocols”, Proceed-
ings of the Second ACM SIGACT-SIGMOD Symposium on

Principles of Database Systems, Atlanta, Georgia, March 1983.

Papadimitriou, C., “Serializability of Concurrent Updates”,

Journal of the ACM 26(4), October 1979.

Peinl, P., and Reuter, A., “Empirical Comparison of Database
Concurrency Control Schemes”, Department of Computer Sci-

ences, University of Kaiserslautern, West Germany, 1983.

Potier, D., and LeBlane, P., “Analysis of Locking Policies iz

Database Management Systems’, Proceedings of the Perfor-



[Reed78]

[Ries77]

[Ries78a]

[Ries78b)

[Robig2a]

[Robi82b}

180

mance '80 Conference, 7th IFIP W.G.7.3 International Sympo-
sium on Computer Performance Modeling, Measurement, and

Evaluation, Toronto, May 1980.

Reed, D., “Naming and Synchronization in a Decentralized
Computer System', Ph.D. Thesis, Department of Electrical
Engineering and Computer Science, Massachusetts Institute of

Technology, 1978.

Ries, D., and Stonebraker, M., “Effects of Locking Granularity
on Database Management System Performance”, ACM Transac-

tions on Database Systems 2(3), September 1977.

Ries, D., “The Effects of Concurrency Control on Databease
Management System Performance”, Ph.D. Thesis, Department
of Electrical Engineering and Computer Science, University of

California at Berkeley, 1979.

Ries, D., and Stonebraker, M., “Locking Granularity Revisited”,

ACM Transactions on Database Systems 4(2), June 1979.

Robinson, J., “Design of Concurrency Controls for Transaction
Processing Systems’, Ph.D. Thesis, Department of Computer

Science, Carnegie-Mellon University, 1982.

Robinson, J., “Experiments with Transaction Processing on a

Multi-Microprocessor”, Report No. RC9725, IBM Thomas J.



—

[Rose78]

[Sarg76]

[Saues81]

[Schw82]

[Silb8o]

[Spec83]

[Stea8l]

181

Watson Research Center, December 1982, _

Rosenkrantz, D., Stearns, R., and Lewis, P., “System Level
Concurrency Control for Distributed Database Systems”, ACM
Transactions on Database Systems 3(2), June 1978.

Sargent, R., ‘‘Statistical Analysis of Simulation Output Data”,
Proceedings of the Fourth Annual Symposium on the Siraulation

of Computer Systems, August 1876.

Sauer, C., and Chandy, N., Computer Systems Performance

Modeling, Prentice-Hall, Englewood Cliffs, New Jersey, 1981.

Schwarz, P., and Spector, A., “Synchronizing Shared Abstract
Types'’, Technical Report CMU-CS-82-128, Carnegie-Mellon

University, September 1982.

Silberschatz, A., and Kedem, Z., “Consistency in Hierarchical

Database Systems’, Journal of the ACM 27(1), January 1980.
Spector, A., and Schwarz, P., “Transactions: A Construct for
Reliable Distributed Computing”, Operating Systems Review
17(2), April 1983.

Stearns, R., and Rosenkrantz, D., “Distributed Database Con-

currency Controls Using Before-Values”, Technical Report,
SUNY Albany, February 1981.



[Ston78]

[Ston79)

[Ston83]

[Svob8l]

[Thom?79)

[Trai82]

[Ullms3)

[Wolfs3]

102

Stonebraker, M., Wong, E., Kreps, P. and Held, G., “The
Design and Implementation of INGRES”, ACM Transactions on

Database Systems 1(3), September 1976.
Stonebraker, M., “Concurrency Control and Consistency of Mul-

tiple Copies of Data in Distributed INGRES”, IEEE Transac-

tions on Software Engineering 5(3), May 1979.

Stonebraker, M., ‘Virtual Memory Transaction Management”,
in preparation.

Svoboda, L., “A Reliable Object-Oriented Repository for a Dis-
tributed Computer System”, Proceedings of the Eighth Sympo-
sium on Operating Systems Principles, Pacific Grove, California,

December 1981.

Thomas, R., “A Majority Consensus Approach to Concurrency
Control for Multiple Copy Databas'w", ACM Transactions on

Database Systems 4(2), June 1979.

Traiger, 1., *“Virtual Memory Management for Database Sys-

tems”, Operating Systems Review 16(4), October 1982.

Ullman, J., Principles of Database Systems, Second Edition,

Computer Science Press, Rockville, Maryland, 1983.

Wolff, R., personal communication.



——

193

APPENDIX 1 -

TINIESTA.MP-BASED SERIAL VALIDATION

In this appendix, it is shown that the timestamp-based version of serial
validation (T-SV) from Chapter 2 of the thesis preserves the semantics of the
original serial validation (SV) algorithm of Kung and Robinson [Kung8l].
The equivalence proof is based on showing that the T-SV algorithm commits
exactly those transactions which would be committed by the SV algorithm,

restarting all transactions which SV would restart.

Lemma 1: All transactions which are committed by the SV algorithm are

also committed by the T-SV algorithm.

Proof: Suppose some transaction T is committed by SV but restarted by T-
SV. Let RC(T) be the set of recently committed transactions, those which
committed between the time when T started executing and the time at which
it entered the validation critical section. Since T is committed by SV, it must
be true that readset(T) N writeset(T,.))=0 for all transactions
T,. € RC(T). Since T is restarted by T-SV, it must also be true that
TS(&) > S-TS(T) for some z € readset(T). However, TS(z) > S-TS(T)
implies that z was written by a transaction which committed subsequent to
the startup of T, as TS5(z) is the commit timestamp of the most recent writer

of z and S-TS(T) is the startup timestamp of T. Thus, z must be in
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writeset(T,, ) for some transaction T,. € RC(T). This contradicts the

assumption that SV committed T, proving the lemma. o

Lemma 2: All transactions which are restarted by the SV algorithm are also

restarted by the T-SV algorithm.

Proof: Suppose some transaction T is restarted by SV but committed by T-
SV. Let RC(T) be the set of recently committed transactions, those which
committed between the time when T started executing and the time at which
it entered the validation critical section. Since T is restarted by SV, it must
be true that some z € readset(T) is also in writeset(T,,) for some transaction
T,. € RC(T). Since T is committed by T-SV, it must also be true that
TS(z) < S-TS(T) for all z € readset(T). However, TS(z) < S-TS(T)
implies that z has not been written by any transaction which committed sub-
sequent to the startup of T, as TS(z) is the commit timestamp of the most
recent writer of z. Thus, z cannot be in writeset(T,,) for any transaction
T,. € RC(T). This contradicts the assumption that SV restarted T, proving
the lemma. o

Theorem: The set of transactions committe.d by the T-SV algorithm is nre-

cisely that set of transactions which would be committed by the SV :zigo-

rithm, so the T-SV algorithm preserves the semantics of the SV algorithm.

Proof: The theorem follows directly from a combination of Lemmas 1 and 2.
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APPENDIX 2 -

THE ‘“NO BLIND WRITES” ASSUMPTION

The “no blind writes” assumption says that transactions never write a
data item without having first read the item. This appendix investigates the
consequences of this assumption on two timestamp-based concurrency control
algorithms, basic timestamp ordering (BTO) with the Thomas write rule
[Bern81b} and Reed’s multiversion timestamp ordering (MVTO). In particu-
lar, it is shown that certain conditions anticipated by each of these algorithms

cannot arise if transactions always read items before writing them.

Thomas Write Rule

The only difference between the BTO algorithm and BTO with the Tho-
mas write rule is that BTO will reject 2 write request from a transaction T
for a data item z if either R-TS(z) > TS(T) or W-TS(z) > TS(T),
whereas BTO with the Thomas write rule will only reject the write request if
R-TS(z) > TS(T). In the latter case, where W-TS(z) > TS(T), BTO with
the Thomas write rule accepts the request and ignores the actual write. The
idea of the Thomas write rule, then, is to reduce the number of restarts by

ignoring old writes.
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Lemma: Under the “no blind 'writes" assumption, no write request frgm from
a transaction T for an item z will ever find R-TS(z) < TS(T) when
W-TS(z) > TS(T).

Proof: The “no blind writes” assumption implies that R-TS(z) > W-TS(z)
for all z, as R-TS(z) is the timestamp of the youngest transaction which has
read z, W-TS(z) is the timestamp of the youngest transaction which has
written z, and R-TS(z) < W-TS(z) would mean that the youngest writer of

z never read z before writing it. The lemma follows trivially. e

Theorem: Under the “no blind writes” assumption, the behavior of the BTO
algorithm and the BTO algorithm with the Thomas write rule will be exactly

" the same.

Proof: Since the lemma shows that the only difference between the two algo-
rithms disappears under the ‘“‘no blind writes” assumption, BTO and BTO

with the Thomas write rule must behave identically under this assumption. o

Maultiversion Timestamp Ordering

In the variant of multiversion timestamp ordering (MVTO) presented in
[Reed78], a write request from a transaction T for an item z is accepted as
long as no interval in H,,(z) contains the time TS(T). In other words, if
TS(T) lies in a hole in H,,(z), a space between the last read of one version of
z and the creation (write) of the next newer version of z, the write request is

accepted. When a write request is accepted, a new version of z is created,
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and the interval (TS(T),TS(T)) is added to z to denote the new, unread ver-
sion. Reads are always accepted, and are granted by returning to T the

latest version of z which was created prior to timestamp time T'S(T).

" The write request processing logic of MVTO in this original version is a
bit complex, and has it been simplified in more recent related work [Svob31].
The simplification, made so that versions other than the most recent one can-
not be written (for laser disk implementation purposes), involves granting a
write request from T for z only if TS(T) is greater than the timestamp of
the latest read of the most recent version of z. More simply, writes are only
accepted if they define the newest, most recent version of z, in which case the
MVTO algorithm basically becomes BTO enhanced with a version pool for
use by read-only transactions. It can be shown that versions of MVTO with
and without this simplification treat write requests identically under the “no

blind writes” assumption.

Lemma: Under the “no blind writes” assumption, the read/write history of
each item z will have no holes. The rightmost point of each interval associ-
ated with each version of z, except for the most recent version, will coincide
with the leftmost point of the interval associated with the next newer version

of z.

Proof: When a transaction T submits a write request for z, it has already
successfully read z under the “‘no blind writes” assumption. At the time of

this read request, thea, the interval in H,,(z) associated with the version of z
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read by T will have been extended to TS(T). If T's write request is now
granted, the interval associated with the new version of z will l.)egin at
TS(T), exactly where the previous interval stopped. Thus, all writes create
versions which pick up where the previous version left off, making holes in
H,(z) impossible. o

Theorem: Let R-TS(z) denote the maximum timestamp of any transaction
which has read the most recent version of z using MVTO (i.e., the rightmost
read in H,,(z)). Under the “no blind writes" assumption, write requests will

be accepted only if T'S(T') equals or exceeds R-TS(T).

Proof: The lemma showed that holes do not exist in read/write histories
under the “no blind writes” assumption. Hence, outdated writes can never be
accepted under the rules of MVTO. Only a write which creates a new, most
recent version of z will be accepted. Such a write can only be submitted by a

transaction T with timestamp T'S(T) such that TS(T) > R-TS(T). e
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APPENDIX 3 -

SIMULATION OUTPUT ANALYSIS

This appendix presents the statistical analysis techniques used to inter-
pret the simulation results of the experiments of Chapters 3 and 4. The
methods employed here are based on a combination of the traditional batch
means approach [Sarg76, Ferr78, Saue8l] and a slightly more sophisticated
technique for estimating variance for use in computing confidence intervals for
the results. The improved variance estimation technique was proposed by
Wolfl [Wolf83]. Sample results, obtained from simulations presented in the
thesis, are given to demonstrate the utility of this approach. Also, the
confidence interval results from each of the experiments of Chapters 3 and 4

are given for reference at the end of this appendix.

A Statistical Model

This section describes the modified batch means approach used in this
thesis. For brevity, the batch_time parameter will be referred to as 7, and
the qum_batches parameter will be referred to as n,. Each simulation is run
for T, simulation time units, and the overall simulation is divided into n,
batches of T,/n, simulation time units apiece. The throughput estimate for

the i** batch, denoted as X; for 1<i<n,, is the ratio of the number cf iran-
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sactions which commit during the batch to the length of the batch in simula-
tion time units. (This number is multiplied by a scaling factor of 1000 for
display purposes.) These estimates are summed and divided by the total

number of batches in order to compute the overall throughput estimate for a

simulation:
n
X=1yx 1
n .'§1 (1)
Variance Estimation

To model the statistical characteristics of the throughput observations, it
is assumed that {X;} is a stationary sequence and that each X; has mean p
and variance o2. It is further assumed that the correlation between adjacent
batches is significant, but that the correlation between non-adjacent batches

is negligible, an idea proposed in [Conw63]. More formally:

¢ if |i-5|=1

Given this model of the correlation between batches, the variance of the sum

of the X;'s may be expressed as:

Var( ix) == % VG"(X,) + 2..2-1 i CO!)(.Y.’,XJ) (3)
fo=] jaal fom] jomit1
= n0° + 2(ry-1)¢ (4)

Thus, the variance of the mean throughput estimate X is obtained by divid-

ing this result by n;%
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Var(X) = :T + -2—(’% S®)

In order to compute a confidence interval for the throughput estimate X,
Var(X) must be estimated. This, in turn, requires that estimates be obtained
for 02 and ¢. The estimate often used for o2 in computing confidence intervals

is 82, the sample variance of the throughput observations:

8 = 3 (X-X)? (6)

”5- sam]

If the X;'s are correlated, the usual sample variance is not a good esti-
mate for 02. Instead, 0° may be estimated by taking advantage of the fact
that only adjacent batches are correlated. The sample variance of the
throughputs from the even batiches provides an unbiased estimate of o, as
does the sample variance of the throughputs from the odd batches, so these
two sample variances are computed and averaged in order to obtain a better
unbiased estimate of ¢>. (This improved estimate of ¢ is denoted 82 to indi-
cate that it has been introduced because of the covariance ¢ between adjacent
batches, and it is assumed that n,, the number of batches, is chosen to be

even.) To estimate o2, then:

v o__1 «y
Xoas = ("5/2) X Y
Xcveu = (n /2) .§.=X' (8)
820 = —— Y (Xi-X,4)? (9)

(n5/2) -1:5 ¢ odd



2 _ 1 T )2 -
Secen = (7 /2)-1 ian()(i—xnen) (10)
2 2
8‘2 —_ 8oven + 80dd (11)

2

- The covariance term in equation (5) may then be estimated once a;"’ has
been computed. This estimate of the covariance ¢, denoted ¢, may be com-
puted as follows. First, an unbiased estimate x of the quantity 2(o° - ¢) is:

-1
K= ;;’-_——"2 (Xis 1 X0) (12)

fam}

Given &, an estimate of ¢is:

K
c=s}- (13)

Finally, then, the variance estimate s;"' for the overall throughput X may
itsell be computed by substituting the variance and covariance estimates of

equations (11) and (13) into equation (5):

2 9
8 2(n;-1)e
¢ (62)

2 _
8,._——

. . (14)

Confidence Intervals

Given an overall throughput estimate f and an estimate 33? of its vari-
ance, confidence intervals can be computed in a fairly simple manner. The
confidence interval computation is performed as though the X;’s were
independent, as is typically assumed, with the improved variance estimate 8:.?'
used in place of the usual estimate of s2/n,. Thus, the 1C0(1-a)% confidence

interval for the mean throughput g is computed as:
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X+56 ~ o (15)

. where:

§=stopm-1 8 =1/5%" (16)

The to/2:e,-1 term is chosen from the Student-t distribution with ny—1 degrees

of freedom. That is, if Y has this distribution, then:

Prob(Y > topp 1) = -5;-‘- (17)

In order to obtain the most reasonable confidence interval estimates, the
computational procedure used in this thesis differs slightly from what has
been described thus far. First, the confidence interval estimates obtzined
using the preceding method will be slightly narrow because the correlztion
between adjacent X;'s reduces the “effective’” number of degrees of freedcm
[Wolf83]. The actual confidence interval computations in this thesis are
therefore performed msuming only n,/2 degrees of freedom, a heuristic
intended to make the confidence intervals obtained using the methods

described here even more realistic.

Second, since the estimator ¢ of the covariance ¢ is itself just a random
variable, actual experimental data may occasionally yield a negative covari-
ance estimate. Since correlations tend to be positive in this type of study,
¢<0 is taken to indicate that the actual covariance ¢ is itself negligible.
When such values are obtained, the associated confidence interval estimatc is

computed by reverting to standard methods, using s%/n, to estimate Ver(X)
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and using n,-1 for the number of degrees of freedom. -

Finally, simulations are actually run for a total of n,+ 1 batches worth
of simulation time. The purpose of the extra batch is to allow the results of
the first batch (batch 0) to be discarded in order to eliminate any transient
effects which might result from starting the simulation in an unrealistic state
[Conw83]. (The startup state used in implementing the simulations is where
all terminals are in the “stagger delay’ state, a state which indeed proved to
be visited rarely following the start of the simulations.) The mean
throughputs and associated confidence intervals are actually computed using
the results of batches 1 through n,, and all other data (restart counts, etc.) is

also obtained from these batches only.

Experimental Results

This section presents confidence interval results obtained by applying the
methods described in this appendix to the simulation results obtained from
the experiments of Chapters 3 and 4. As mentioned briefly in the chapters,
all of the experiments of this thesis were run with control parameter settings
of num_batches = 20 and batch_time = 50,000. These settings were selected

based on confidence interval results obtained from preliminary experiments.

Table A3.1 contains actual throughput observations which were obtaired
from the simulation studies of 2PL in experiment 3.4 of Chapter 3. Tzble

A3.2 gives the various estimator and confidence interval values which result



l Samgle Throughgnt Observations l

Batch 10000 1000 100 10 1

Number || Grans | Grans | Grans | Grans | Gran
0 2.420 2.440 2.140 1.000 | 0.440
1 3.140 | 3.140 | 2.640 | 0.820 | 0.220
2 2.780 2.560 2.640 0.600 | 0.120
3 2.820 2.120 1.860 0.580 | 0.140
4 2.780 2.960 2.500 1.300 | 0.080
5 2.780 2.460 2.180 1.080 | 0.100
6 2.660 | 2.580 | 1.860 | 1.120 | 0.060
7 3.320 3.100 2.000 0.840 | 0.080
8 2.680 2.460 2.820 0.960 | 0.120
9 2.680 2.860 2.600 0.980 | 0.080
10 2.740 2.680 2.420 0.880 | 0.120
11 2.640 2.100 2.280 0.980 | 0.080
12 3.100 3.260 2.500 0.860 | 0.100
13 2.620 2.840 1.860 0.660 | 0.100
14 3.420 3.120 2.600 0.860 | 0.080
15 2.960 2.900 2.680 0.860 | 0.100
16 3.040 2.940 2.500 0.560 | 0.100
17 2.360 2.380 2.360 0.540 | 0.060
18 2.320 2.600 2.280 0.600 | 0.080
19 2.380 1.920 2.520 0.880 | 0.140
20 2.840 2.520 1.940 1.060 | 0.080

Table A3.1: Chapter 3, experiment 3.4, 2PL observations.
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when the statistical methods detailed in this appendix are applied to this

data. The statistics in Table A3.2 were produced with n, = 20, as mentioned

above. The observations used in the computation are those from batches 1

through 20 in Table A3.1. The confidence intervals given in Table A3.2 are

for X, the mean throughput, and are given as a percentage of X. These data

samples and results serve to illustrate the utility of the statistical approach

used here.
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It is evident from Table A3.1 that discarding batch O actually does help
to eliminate transient throughput observations. Table A3.2 shows that the
sample variance 82 is generally smaller than the improved variance estimate
3‘2, an expected result since the sample variance tends to underestimate the
actual variance when the data is positively correlated. In the cases where the
number of granules (Grans) is 10 and 10,000 in the table, the value of the
covariance estimate ¢ is as large as 15-30% of the size of 3‘2. This indicates
that it is indeed worthwhile using these methods to reduce the error that
would occur if the correlation were ignored. In one instance ¢ is seen to be

negative, and in this case the standard variance estimate 82 is used in the

confidence interval computation.

The remaining tables in this appendix document the 90% confidence
interval estimates associated with the throughput results given for the experi-
ments of Chapters 3 and 4. Again, each confidence interval is expressed as a

percentage of its corresponding throughput estimate. Confidence interval esti-

Sample Confidence Interval Computations
Grans X 8 8 ¢ & ClL

1 | 0.101 | 0.001 | 0.001 0.000 | 0.000 | &+ 18.85%

10 || 0.853 | 0.046 | 0.047 0.017 | 0.004 | +13.45%
100 |{ 2.352 | 0.003 | 0.095 0.004 | 0.005 +5.51%
1000 || 2.675 | 0.139 | 6.137 | - 0.009 { 0.007 %+ 5.39%
10000 || 2.803 | 0.087 | 0.091 0.012 | 0.006 + 4.88%

Table A3.2: Chazpter 3, experiment 3.4, 2PL results.
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mates for experimernt 4.3 of éhapter 3 are omitted, as they were reported in
. the chapter. These statistical results are included for the sake of complzie-

ness. -



Through

ut Confidence Intervals

8.252 8063 | 11215 | 11127 7.790 7.655

+£139% | £1.27% | +£0.40% | £0.39% | £0.97% | +0.75%

10 “ 10971 | 11004 | 11420 | 11421 | 10648 | 10.314
+0.56% | £061% | £0.44% | £044% | £0.72% | +0.58%

100 || 11373 | 11373 | 11419 | 11420 | 11328 | 11.262
+044% | $046% | £0.46% | +0.46% | +£0.44% | +0.43%

1000 || 11.413 | 11413 | 11.420 | 11420 | 11.405 | 11.402
£0.43% | £0.43% | +£0.45% | +0.45% | £0.42% | +0.43%

10000 || 11.419 | 11410 | 11420 | 11420 | 11418 | 11416
1 £0.44% | +044% | +0.45% | +0.45% | +0.44% | +0.42%

Table A3.3: Chapter 3, experiment 1.1.

Throughput Confldence Intervals
Grans [ TPL | WD | TPLW | PRE [ BTO | SV

1 3.400 3.638 6.479 6.241 2.595 3.634
+231% | £2.24% | £091% | +£082% | £2.32% | +147%

10 5974 5.790 7.096 7.161 5.119 5.231
£1.21% | +1.16% | +£064% | £067% | +1.78% | +1.38%

100 7.039 6.966 7.161 7.163 6.906 6.714
+082% | £050% | +0.68% | +0.68% | +0.806% | +0.69%

1000 7.152 7.149 7.161 7.161 7.138 7.113
+064% | +062% | £0.67% | +0.68% | +0.66% | +0.66%

10000 7.159 7.159 7.160 7.161 7.158 7.158
+0.72% | +£0.70% | +0.69% | +0.68% | +0.66% | +0.66%

Table A3.4: Chapter 3, experiment 1.2.
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e e

Throughput Confldence Intervals

1 0.748 0.788 2.017 2.741 0.169 0.889
+256% | £351% | $1.40% | £0.73% | +11.06% | £1.75%
10 0.046 1.065 2.097 3.028 0.406 1.200
+8.10% | $345% | £1.92% | $0.75% | +11.19% | +3.09%
100 2.823 2.633 3.335 3.360 2.231 2.408
0| 21.53% | +165% | +0.70% | £0.74% | +357% | +1.14%
1000 |  3.320 3.293 3.359 3.361 3.248 3.205
+081% | +£080% | +£0.57% | £0.82% | +1.36% | +£081%
10000 3.357 3.351 3.362 3.361 3.355 3.347
+064% | £067% | $068% | +0.88% | +0.68% | +£0.77%

Table A3.5: Chapter 3, experiment 1.3.

e e ——— e — e

Through

ut Confldence Intervals

1 0.281 0.240 1.518 1.425 0.001 0.336
+1.08% | +2.86% | +1.60% | £0.68% | +172.90% | +1.20%

10 0.074 0.234 0.432 1.415 0.004 0.355
434.50% | +6.05% | +661% | +0.68% | +79.33% | +2.22%

100 I 0.827 0.701 1414 1.759 0.235 0.784
+380% | £573% | £157% | £0.51% | +24.09% | +271%

1000 1.676 1.599 1.784 1.760 1.473 1.480
+1.17% | £1.70% | $0.79% | +0.80% | +3.88% | +143%

10000 1.776 L.770 1.788 1.788 1.763 1.749
| £0.79% | £081% | +0.53% | +1.05% +0.66% | +0.65%

Table A3.6: Chapter 3, experiment 1.4.
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Through

ut Confidence Intervals

N e — e —————

1 0.179 0.139 1.031 0.964 0.000 0.205
£097% | £4.50% | +1.47% | +0.49% +0.00% | +1.68%
10 " 0.000 0.121 0.143 0.959 0.000 0.207
+72.12% | £5.12% | £1841% | +0.72% +0.00% | +1.83%
100 0.203 0.237 0.583 111 0.009 0.371
+1741% | +£655% | +6.54% | £1.39% | +£169.26% | +4.84%
1000 1.023 0.933 1.207 1.216 0.642 0.861
+1.74% | +4.46% | +1.00% | +1.10% | +1361% | +2.17%
10000 J 1.193 1.186 1.217 1.218 1.148 1.159
+092% | £1.00% | +073% | +1.77% +260% | +1.60%

Table A3.7: Chapter 3, experiment 1.5.

Throughput Corfldence Intervels

(Grans | _TPL | WD | TPLW | PRE | B1O | SV
1 0.089 0.071 0.518 0.487 0.000 0.096
+443% | +659% | +160% | +0.78% +000% | +3.31%
10 0.002 0.062 0.020 0.485 0.000 0.096
+£17290% | +7.99% | +$56.18% | £0.94% | +0.00% | +3.31%
100 0.006 0.054 0.029 0.481 0.000 0.102
+84.800 | +041% | +£47.64% | £0.69% | +0.00% | +3.39%
1000 + 0.266 0.201 0.483 0.592 0.025 0.267
+£90.14% | £12.02% | +4.05% | +£1.30% | +136.42% | +3.78%¢
10000 0.571 0.558 0.617 0.614 0.431 0.524
_ +265% | +334% | +142% | £271% | +1.1% | $3.79%

Table A3.8: Chapter 3, experiment 1.6.
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Throughput Confldence Intervals

o 062 0.068 0.759 0.609 o 098
+1207% | +857% | +3.85% | +£5.35% % o.oo% % 10.66%

10 0.001 0.060 0.035 0.608 0.000 0.099
+172.90% | +12.54% | +98.00% | £5.11% +0.00% | +14.88%

100 0.024 0.103 0.049 0.612 0.015 0.142
+73.46% | £28.07% | £91.92% | +£4.75% | +144.47% | +15.271%

1000 0.537 0.456 0.709 0.738 0.138 0.393
+12.23% | +1301% | +541% | $4.36% | +30.52% | +7.87%

10000 0.780 0.759 0.783 0.787 0.677 0.675
| +354% | +407% | +370% | +£4.13% | +639% | +6.70%

Table A3.9: Chapter 3, experiment 2.1.

Through

ut Confidence Intervals

[Grans | _TPL | WD | TPLW | PRE |
1 0.062 0.071 0.770 0.646 0.000 0.097
+£11.37% | +£13.90% | £5.35% | +480% | +000% | +10.15%
10 0.418 0.414 0.797 0.801 0.052 0.408
: +948% | +11.71% | £544% | +4.48% | +8893% | +7.76%
100 0.712 0.718 0.799 0.799 0.443 0.685
| +508% | 2558% | +5.06% | +523% | +1813% | +6.17%
1000 0.770 0.770 0.708 0.799 0.700 0.746
+436% | +435% | +5.271% | £545% | £7.04% | +565%
10000 0.775 0.775 0.798 0.799 0.728 0.754
+4.44% | +495% | £5214% | £536% | +532% | +4.13%

Table A2.10: Chapter 3, experiment 2.2.




Throughput Confidence Intervals

ooso 0.091 0.919 0.771 0.000 om

+858% | +1682% | +4.00% | +5.21% | +0.00% | +12.48%

10 0.464 0.517 0.967 0.963 0.124 0.450
+11.78% | £10.35% | +3.15% | +3.78% | +24.66% | +881%

100 l| 0.883 0.894 0.966 0.964 0.691 0.858
+565% | +£644% | £3.35% | +320% | +9.93% | +6.89%

1000 d 0.930 0.945 0.966 0.969 0.775 0.905
+452% | +540% | £2.90% | +£3.02% | £1131% | +4.79%

10000 0.942 0.944 0.966 0.967 0.874 0.913
+546% | +5.49% | +£3.13% | +£301% | +698% | +437%

Table A3.11: Chapter 3, experiment 3.1.

Throughput Confidence Intervsls
1 0.069 0.109 1.126 0.992 0.000 0.128
+11.91% | +£12.89% | +4.93% | +£6.00% | +0.00% | +14.85%
10 }i 0.535 0.633 1.227 1.226 0.073 0.522
+543% | +982% | £6.48% | £571% | +80.88% | +6.66%
100 1.055 1.112 1.228 1.226 0.862 1.022
27.18% +602% | +£5.75% | +5.58% +8.14% +4.75%
1000 1.183 1.183 1.229 1.228 1.081 1.112
44605 | +4.72% | +5.75% | £590% | $10.96% | +5.45%
10000 1.200 1.184 1.229 1.228 1.113 1.130
+4.96% +5.15% | +£5.61% | +5.26% +9.61% + 5.60%

Table A3.12: Chapter 3, experiment 3.2.
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e e e e s e ——————— e e

Through

ut Confidence Intervals

0.203 . . } .202
+16.92% | +20.25% | +4.25% | +5.65% | +240.77% | +13.31%
10 0.639 0.857 1.709 1.709 0.159 0.710
+12.30% | +7.33% | £4.85% | +£504% | +859.52% | +8.56%
100 1.462 1.556 1713 1.7 0.410 1.352
+552% | +464% | £5.18% | +4.82% | +62.60% | +5.37%
1000 1.646 1.669 1.714 L7115 1.463 1.571
+6.12% | +520% | +£5.12% | +5.13% +647% | +4.56%
10000 1.688 1.679 1.713 1715 1.576 1.578
+512% | +£5.21% | +£5.09% | +5.10% +5.55% | +4.56%

Table A3.13: Chapter 3, experiment 3.3.

Throughput Confldence Intervals

A I e —— e —————— |

1 0.101 0.450 2.521 2.371 0.022 0.333
+18.85% | £22.02% | +4.25% | +5.01% | +221.16% | +11.90%
10 0.853 1.551 2.830 2.860 0.338 0.963
+1345% | +90.08% | +4.20% | +3.30% | +27.01% | +13.36%
100 2.352 2.580 2.865 2.861 1.246 2.185
+551% | +581% | +3.78% | +3.20% | +2521% | +7.44%
1000 2.675 2.752 2.859 2.864 2.415 2.504
+530% | +4.99% | +3.86% | +3.92% +6.27% | +5.39%
10000 2.803 2.777 2.860 2.864 2.634 2.554
+488% | +425% | +£3.84% | +4.02% +533% | +5.22%

Table A3.14: Chapter 3, experiment 3.4.
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e e e et e e e —————

1 0.134 0.183 0.915 0.771 0.002 0.219

+7.96% | +13.45% | +4.31% | +5.10% | +176.61% | +9.34%

10 J 0.681 0.749 0.965 0.967 0.326 0.660

| £678% | +7.00% | +360% | 4301% | +2511% | +588%

100 0.921 0.921 0.964 0.964 0.869 0.908
+498% | +441% | +388% | +3.80% | +7.67% | +6.50% |

1000 0.953 0.953 0.964 0.065 0.914 0.939

+4.51% | +452% | +370% | +368% | +6.66% | +509%

10000 0.956 0.955 0.964 0.964 0.930 0.942

+442% | +4.57% | +3.76% | +382% | +6.25% | +5.18%

Table A3.15: Chapter 3, experiment 4.1.

Throughput Confidence Intervals

SV ’
1| 0.034 0.043 0.919 0.771 0.005 0.059
+14.94% | +10.50% | +4.20% | £5.16% | +227.10% | +18.76%
10 0.174 0.303 0.064 0.965 0.064 0.296
+45.20% | +9.70% | +3.39% | £4.37% | +6201% | +6.86%
100 0.798 0.812 0.963 0.963 0.434 0.735
+644% | +548% | +437% | +4.14% | +1080% | +6.99%
1000 0.899 0.900 0.961 0.965 0.738 0.847
+475% | +4.88% | +3.60% | +3.95% +6.49% | +3.98%
10000 0.919 0.912 0.961 0.964 0.800 0.863
 +370% | +457% | +384% | +398% | +687% | +3.33%

Table A3.16: Chapter 3, experiment 4.2.



215

’

Throuchput Confidence Intervals

Grans TPL | WD | TPLW | PRE [ BTO _| SV
1 0.240 0.393 3.004 2.294 0.004 0.406
£490% | £9.79% | +£267% | £295% | £172.00% | +4.41%
10 1.676 1.909 3.385 3.369 0.373 1.587
+7.34% | £6.28% | £245% | +2.42% | +33.37% | +4.65%
100 3.024 3.008 3.391 3.389 2.073 2.906
+309% | +289% | £240% | £2.20% | +1067% | +£2.71%
1000 3.211 3.215 3.370 3.370 2.928 3.084
+3.15% | £300% | £218% | +£2.28% | +3.23% | +3.76%
10000 3.028 3.028 3.140 3.141 2.823 2.013
+283% | £294% | +£2.77% | £2.79% +3.82% | +3.16%

Table A3.17: Chapter 3, experiment 5.1.

Throughput Confidence Intervals

——e e e e e e——————

1 0.237 0.398 2.799 1.742 0.000 0.398
+522% | £817% | +3.19% | £3.85% | 40.00% | +5.27%

10 1.594 1.851 3.261 3.215 0.254 1.557
+£9.08% | +5.28% | +241% | £292% | +60.83% | +567%

100 2.951 3.015 3.306 3.284 2.196 2.856
+260% | £331% | £2.38% | +248% | £1043% | +3.33%

1000 3.142 3.144 3.272 3.270 2.958 3.049
+£299% | +3.19% | +£2.53% | $249% | +293% | +3.21%

16000 2.962 2.965 3.073 3.071 2.866 2.896
£241% | +£259% | +282% | +278% | +3.40% | +3.20%

Table A3.18: Chapter 3, experiment 5.2.
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Throu gh

ut Confidence Intervals

EMI—-}'!}E-—_

0.066 0.088 0.919 0.771 0.000 0.111

1| +858% | £16.26% | £4.17% | £5.15% | +0.00% | £15.07%

10 0.473 0.515 0.967 0.963 0.121 0.460

10 || +£10.07% | +10.30% | +3.16% | +3.78% | +27.68% | +9.43%
100 0.883 0.893 0.967 0.964 0.698 0.863
100 || +591% | +6.96% | £3.25% | +3.28% | +9.09% | +5.87%
1000 0.931 0.945 0.966 0.969 0.834 0.905
1000 || +466% | +5.58% | +3.13% | +288% | +£9.21% | +4.74%
10000 0.942 0.944 0.966 0.967 0.874 0.912
10000 || +5.46% | +560% | +£302% | +£3.03% | +6.70% | +4.78%

Table A3.19: Chapter 3, experiment 6.1.

Throughput Confidence Intervals
I%_ TPLW

0.0G6 0.088 0.917 0.769 |  0.000 | 0.111

1 +8.58% | +£16.80% | +4.13% | +4.70% | +000% | +14.67%

10 0.433 0.521 0.967 0.963 0.115 0.455

10 || +869% | +9.26% | +3.290% | £3.77% | £35.11% | +9.79%

100 0.883 0.892 0.967 0.964 0.603 0.862

100 || $584% | +6.54% | £3.41% | £3.21% | £20.14% | +6.13%

1000 0.932 0.943 0.966 0.969 0.834 0.905

1000 || $4.30% | +536% | $3.03% | £3.00% | +9.2677 | +4.86%

10000 0.942 0.944 0.966 0.959 0.877 0.905

10000 || +541% | +537% | $3.20% | +4.26% | +6.22% | +504%
Table A3.20: Chapter 3, experiment 6.2.
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Through

ut Confidence Intervals

0.076 0.894 0.754 . 0.108
| £10.19% | +3.68% | +4.66% | +000% | +14.10%
0.416 0.447 0.930 0.928 0.038 0.432
+12.27% | £12.16% | +3.98% | +4.44% | $96.05% | +10.51%
0.810 0313 0.924 0.924 0.631 0.786
+596% | 2+527% | £3.80% | +4.10% | +1097% | +6.46%
0.787 0.794 0.870 0.872 0.662 0.766
+580% | +501% | +3.83% | £3.99% | +11.10% | +4.68%
0.475 0.475 0.511 0.510 0.469 0.460
+492% | +495% | +5.04% | £546% | +561% | +6.75%
Table A3.21: Chapter 3, experiment 6.3.

[Grams ||_BTO |

1 1.707 1.707 1.837 2.228 0.407 2.364
+5.045% | £504% | £4.06% | +269% | +11.60% | +261%

10 2.632 2.844 2.831 2.939 1.183 2.863
+4.53% | $3.42% | £3.02% | +£4.13% | +836% | $293%

100 2.930 2.998 3.009 3.011 2.397 2.999
+4.33% | +430% | £4.15% | £3.92% | +6.28% | +4.46%

1000 2918 3.012 3.012 3.013 2.691 3.012
+382% | +405% | +4.45% | +4.41% | £501% | +431%

10000 2.926 3.013 3.013 3.013 2.755 3.013
+3.70% | £4.33% | +4.232% | +4.44% | +455% | +4.36%

Table A3.22: Chapter 4, experiment 1, multiple versions.



Throughput Confidence Intervals

— e ————

P e e e— e ————————————

1 7.613 7613 7.716 7717 7.386 7.669
+037% | £0.39% | £0.34% | +037% | +0.60% | +0.42%

2 6.545 6.573 6.641 6.641 6.110 6.610
+0.55% | £0.59% | +0.55% | +0.60% | +141% | +0.60%

5 4.435 4.649 4.668 4.675 3.722 4.660
+1.52% | £1.30% | +1.30% | £1.16% | +1.85% | +1.20%

10 2.725 3.174 3.157 3.183 1.957 3.177
+365% | £249% | $2.52% | £2.45% | +4.30% | +2.57%

15 1.903 2.462 2.452 2.468 1.271 2.464
+394% | £2.37% | $2.50% | +2.50% | +6.06% | +2.35%

30 0.812 1.336 1.282 1.338 0.483 1.336
£704% | 24.11% | +$535% | +4.24% | £1071% | +4.06%

Table A3.23: Chapter 4, experiment 2, multiple versions.
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Throughput Confidence Intervals

Pr{Sm BTO TPL VP MVSV

0.0 0.878 0.878 0.878 0.878 0.878 0.878
+4.73% | +4.73% | £4.73% | +467% | +4.67% | +£4.67% |

0.2 0.815 1.043 1.021 1.043 0.540 1.043

+502% | +£4.36% | $4.09% | $4.33% | +9.88% | +4.33%

0.4 0.812 1.336 1.282 1.336 0.483 1.336

£7.04% | +4.11% | £5.35% | £4.24% | $10.71% | +4.06%

0.6 0.981 1.868 1.739 1.872 0.526 1.867

+8.20% | £4.62% | $503% | $4.77% | £11.15% | +4.81%

0.8 1.130 2.947 2.606 2.956 0.546 2.043

£11.38% | £4.92% | +$4.30% | £4.75% | +13.05% | &+ 4.90%

10 6.842 6.842 7.013 7.010 6.691 6.790

|| £043% | £0.43% | +£0.42% | +0.36% | +0.56% | +0.59%

Table A3.24: Chapter 4, experiment 3, multiple versions.



Through

ut Confldence Intervals
7.444 7445 7434
+0.53% | +£0.54% | £0.63% | +0.64%
2 6.346 6.346 6.337 6.327
+0.59% | £063% | $£0.74% | +0.72%
5 4.414 4414 4.386 4.368
+1.45% | £146% | £1.31% | +1.24%
10 2.930 2.930 2.888 2.873
+1.85% | £1.79% | £2.14% | £2.75%
15 2.281 2.281 2.215 2.189
+210% | £2.12% | £3.00% | +3.35%
30 1.228 1.228 1.130 1.112
+526% | £591% | +5.60% | +5.80%

Table A3.25a: Chapter 4, experiment 1, hierarchies.

Throughput Confidence Intervals

Size ]| BTO H-BTO MVTO__| H-MVTO
1 7.444 7.442 744 7.442
+056% | +0.58% | +056% | +0.58%

2 6.342 6.331 6.342 6.331
2060% | +065% | +0.60% | +0.65%

5 4.404 4.374 4.405 4.285
+£135% | +134% | +145% | +1.38%

10 2.805 2.867 2.905 2.861
+267% | +324% | +230% | +3.27%

15 2.234 2.181 2.235 2.178
£290% | £3.27% | +284% | +4.16%

30 113 1.081 1111 1.079
+9.61% | $10.96% | +12.16% | +11.72%

Table A3.25b: Chapter 4, experiment 1, hierarchies (cont.).
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Throughput Confldence Intervals B
Size [ PRE | HPRE | SV H-SV

1 4.662 3.395 4.292 3.010
+0.55% | £0.58% | +£0.65% | +0.80%
2 3.869 3.314 3.577 2.942
+1.07% | £097% | £0.97% | +0.86%

5 2.534 2.928 2.353 2.601
+1.30% | $£069% | £2.31% | +0.82%
10

1.608 2.204 1.505 1.956

+291% | £1.24% | £3.16% | +£1.92%
15 1.245 1781 1.134 1.578
+5.68% | +£242% | £6.36% | +2.95%
30 0.662 1.049 0.571 0.884

| £7.65% | +5.07% | +5.79% | +5.38%

Table A3.26a: Chapter 4, experiment 2, hierarchies.

gshput Confidenee Intervals

Size || BTO | H-BTO H-MVTO

1 4.293 3.013 4.293 3.013
£0.72% | £0.69% | £0.72% | +0.63%

2 r 3.580 2.944 3.580 2.944
+081% | +088% | £081% | +0.88%

5 2.363 2.602 2.365 2.607
+210% | £1.05% | $£204% | +0.80%

10 J 1.514 1.945 1.514 1.942
+331% | £2.55% | £3.36% | +2.82%

15 " 1.153 1.575 1.153 1.558
+5.02% | +3.64% | £5.00% | +4.25%

30 0.584 0.897 0.590 0.891

+6.70% | +£541% | 3$7.20% | +6.04%

Table A3.26b: Chapter 4, experiment 2, hierarchies (cont.).
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