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The linearized Boltzmann equation has been widely used to describe the

transport of particle swarms in prescribed fields and background media, such

as neutrons in fissible material,1 electrons in semiconductors,2 or electrons and

ions in weakly ionized gases.*"8 These studies have two basic goals, namely (i)

calculating transport coefficients (i.e., moments of the distribution functions),

and/or (ii) finding the distribution functions themselves.

The present work is concerned with the second of these goals. We first

formulate, in integro-diflerential form, a very general bounded and dynamic

multi-swarm problem which, to our knowledge, includes all situations consid

ered previously as special cases. The relevant linear Boltzmann equations are

then cast into their path-integral forms, and their complete formal solution

is derived by means of an appropriately extended version of the successive-

collision iteration method.2'4"7 This scheme is readily interpreted in physical

terms, and its convergence is inferred from a simple physical argument.

Consider a fixed spatial domain B surrounded by the surface A as shown

in Fig. 1, and assume that confined therein are n„ particle swarms numbered

by the swarm (or species) index tr (o = 1,..., n9). Let species <r be character

ized by the particle mass m*, the electric particle charge if, and the velocity

distribution function /'(r.v,*). The swarm particles move in prescribed elec

tromagnetic and gravitational fields E(r, *), B(r, *), and g(r,*), at the same time

undergoing binary collisions with the molecules of a background gas having an

arbitrary but given velocity distribution function. Allowing for volume produc

tion of swarm particles, the integro-diflerential linear Boltzmann equation may

be written
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in

where

a*(r,v,t) =£ [E(r,t)+ ^ XB(r,*)] +g(r,t)
is the acceleration, the source term 7*(r, v, t) describes volume production,

cr*'(r, v, t) = / *V/Cw'(r, v - v', *) /*V,V, *)

describes the gain for species <r from collisions of species a*, and P*(r,v,t) is

the total collision frequency. The scattering kernel lfw'(r,v*- v7, t) basically

represents the probability for a species-?* particle with pre-collision velocity v'

to end up after collision as a species-? particle with velocity v. Any kind of

collision, conservative or reactive, is admitted for which the CTs and P's remain

finite.

Equation (1) must be complemented by initial and boundary conditions.

Let us assume that at the initial time £,- the swarm distributions are given

everywhere as

r(p,v,t = tt) = /f(p,v), (2)

and that the relation between incoming and outgoing particles at the surface A

is of the fairly general form

/A(^»vt»,*)=gJ(pi4,v,.n,0

+£ /^ir'h.Vi^v^fir'fr^v^t) (3)
e****lJ

where r^ is a "surface point" (i.e., a position still within B but infinitesimally

close to A), /5(Pi4»v,-«,t) = /"(ta, vt»,t) (which notation is convenient because

/^(rA.v'in,*) will be treated as an unknown), and Vftt and v0ttt are inward
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and outward directed velocities, respectively, cf. Fig. 1. The (given) func

tion ^(r^Vfo,*) describes externally controlled injection into B, while the

"generalized- reflection" kernel WA*'(TA,vin *- vjtt<,*) basically represents the

probability for a species-?1 particle hitting the surface A with velocity v£ttt to

be "re-injected" as a species-? particle with velocity v,-a. Clearly, this model is

capable of describing such processes as elastic or inelastic reflection, secondary

emission, surface ionization and neutralization, or simply absorption of swarm

particles.

Equations (1), (2) and (3) define a very general evolution problem for the

functions /%(taj Vftt,*) and /'fov,*), which we now cast into a path-integral

form suitable for both general considerations and practical applications. As is

well known, the operator

d9 d d - d idX
dt dt dr dv w

appearing in (1) represents the time derivative associated with the motion of

species-? particles alongtheir collisionless phasetrajectories(free paths, charac

teristics). The species-? characteristic through the point [r, v, t|, to be denoted

by [**(*)! •*(*)»*], can, in principle, always be calculated from the equations of

motion &*/<& = v* and dv*/£ = a*, with * < t and the "final" conditions

r*(i = t) = r, v*(t = t) = v. Of course, the symbol a* introduced here is

shorthand for a*(f*, v*, £), and analogous notationswill be used for other quan

tities, too. With (4), formal integration of (1) along the species-? characteristic

through [r, v, t\ leads to

/*(r,v,*) =HfJ,vJ,£) exp|-«*(£,t)|

+L* £ CT*>",v*,*) +7*(r*,v*,t) expl-ic'M] ,
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where [rj = r*(£)fvj = **(£),* = Q is the (suitably chosen) "origin" of

the species-? characteristic through [r,v,£j, and

is the "collisional relaxation exponent". In some cases — e.g., in time-independ

ent problems—it may be convenient to re-write the path integrals by using one

of the identities A = |<*r"| / |v*| and dt = \dv*\ / |a*|.

Equation (5) represents the path-integral version of (1) and is readily inter

preted in physical terms. As one proceeds along a characteristic, the memory

of conditions at the origin is gradually wiped out by collisional loss (first term

on the r.h.s.), while a new distribution builds up through both collisional gain

and volume production, with more recent contributions being dominant (second

term).

The species-? characteristic passing through the point [r,v,t] can either

originate at an "initial" point [fJ = fa(i = *,-), vf s v'f* = *,),* = *,-], withrf

lying in the interior of B, or at a surface point [tA = r*(* = **)»^f» = v*(* =°

iA),i a tA\, with t{ < iA < t. These trajectories, and the points through

which they pass, will be referred to as "i-type" and "A-type", respectively, cf.

the curves C\ and C2 in Fig. 1. For what follows it is convenient to introduce

the unit-step functions Uf{r,v,t) (equals unity for i-type points, vanishes for

A-type points) and C/J[(r, v,t) (equals unity for A-type points, vanishes for i-type

points).

With these preparations, Eq. (5) can be re-written in more detail as follows:
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r- or {/?expHc*M)i +/**[£ d"'+-** «p|-^ft*»}
+Ul I/a expl-**[iA,t)\ +£*\p #*+?" exp[-^(*,t)]}

where /* = /*(rf, vf,*<) and .ft = /*(rj,v£,£). This integral equation

is very convenient in that it explicitly accounts for the mixed initial- and

boundary-value character of the problem. It has to be solved simultaneously

with the boundary condition (3), which also becomes an integral equation for

/A(rA»v,-n,*) and /*(r,v,*) when /"V^v^,*) on the r.h.s. is re-expressed

in terms of these functions via (6).

We now solve Eqs. (3) and (6) formally using the method of successive

collisions.2,4-7 To this end we decompose the two unknown distribution func

tions in the form

(6)

fi(TA,*i.,t) = £/iv(rA,vin,*) (7a)

/*(r,v,t) = f;#(r,v,*) (76)
1/ssO

where the "partial distribution functions" /%„ and /* are the distribution func

tions of the "class-{?, v)n particles, by which we mean those species-? particles

that have suffered exactly v generalized collisions since their first appearance

in the system. By definition, a swarm particle suffers a "generalized collision"

either when it collideswith a background-gas molecule, or when it hits the sur

face A. By "first appearance" of a swarm particle we mean either its presence

within B at t 3= tiy its creation by volume production at some * > **, or its

injection through the surface at some t > (,-. Classes with v = 0 are populated

by these first-appearance mechanisms, whereas classes with v > 1 gain their
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particles from classes with v — 1 through generalized collision processes. Ev

ery class (?, v) loses particles through generalized collision processes, and if the

latter are non-destructive, these particles go into classes with v +1. According

to this philosophy, the partial distribution functions must clearly satisfy the

equations

!ajA*a, v,», *) = sS(rA, v,„, t) (8a)

f! =&f {fU*vl-«*(*<>*)] +|W exp[-*"(M)]}
f V i m+UZ lgA exp[-«"(£,*)| +Ji0 M° expHc*(M)| J

for v = 0, and

/S.»(*a,•*•.*) = £ /^v/ott<6y'(r^,vftl-v'01lt,t)/;l1(rA,vU*»*) (««)
d^l

f*

+OS {/*.* «P[-"r(C.*)l +j£*[£ 6'-i «P|-«"M]}
for v>\, where

GJi'i =Jd?v'K'*'(r,v - v,,*)/?li(r,v',0 . (10)
Equations (8a,b) yield explicit expressions for /^0 and /£, whence G%° can

be calculated via (10). Using these results in (9a,b) and (10), one successively

finds fAl, /f and G\a, which in turn can be inserted into (9a,b) and (10)

to yield /X,2, ff and <?£*', etc. Thus, Eqs. (7)-(l°) define a closed iteration

scheme, which yields the formal solution to our swarm problem and can be seen

to converge as follows.

01

m
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In a specific application, the number of partial distribution functions that

must be retained in (7a,b) for a meaningful approximation to the exact distri

bution functions increases with the number of generalized collisions a typical

swarm particle can undergo. E.g., in a situation where there are hardly any

swarm particles having undergone more than three generalized collisions, one

may safely neglect in (7a,b) ail /£„'s and /*'s with say v >5. This indicates

that the method of successive collisions may become computationally expen

sive in problems where the particles have to be traced through many collisions.

However, for finite evolution times (t -1< < oo) the scheme (7)-(10) is always

bound to converge, and since it can handle non-standard (e.g., strongly non-

equilibrium) situations in a natural way,0"7 it may well provide a suitable basis

for attacking swarm problems which because of their complexity have hardly

been looked at as yet. As an example we may mention swarm behavior near

walls, which is important but needs further consideration.8

In conclusion, recent studies5"7and the present work have contributed to

wards making the path-integral successive-collision method a practicable tool

of transport theory, which seems suitable for attacking more complex swarm

problems than hitherto considered.
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Figure Captions

FIG. 1. Two-dimensional visualization of swarm-problem geometry.
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