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INTRODUCTION

After the introduction of the concept of a fuzzy set by ZADEH [24]

much research has been done to establish a fuzzy real line. Its purpose

is to provide arithmetics for "numbers" such as "approximately five" or

"much larger than ten" where the vagueness is not inherited from

randomness.

An interesting problem is now the estimation of parameters which

are vague in the sense as described above. As a first step into this

direction we introduce random variables mapping into the fuzzy real line

(which is surveyed in Section 1) and their expected value. We prove a

Strong Law of Large Numbers for independent, identically distributed

fuzzy-valued random variables with finite second moment.

1. THE FUZZY REAL LINE

Our concept of fuzzy numbers follows the ideas of HOHLE [9-11] being

somewhat different from other ideas in this context, as summarized in

DUBOIS and PRADE [4]. The fuzzy real line has been introduced indepen

dently (and in different forms) by HUTTON [12], GANTNER, STEINLAGE and

WARREN [5], and HOHLE [10], all of which focussed on its topological

aspects. More recently, additional research in this topic has been done

by LOWEN [15] and RODABAUGH [12-21]. In particular, the multiplication

of fuzzy numbers has been developed in [21] most recently.

Throughout this paper, 1R will denote the real line, and 1 = Ru {-«>,+«>}

the two-point compactification ofR. For the unit interval [0,1] we shall

write I.

The (extended) fuzzy real line 1(1) is the set of all functions

p : R -> I such that
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p(—) = 0, p(+co) = 1; (1.1)

V r €R : p(r) = sup{p(s)|s< r}. (1.2)

Note that these are precisely the cumulative distribution functions

on IR. In a more particular setting (usually assuming p(r) = 0 for* r < 0)

they have been studied extensively in the context of probabilistic metric

spaces (see SCHWEIZER and SKLAR [22]).

A natural interpretation of a fuzzy number p is the following:

p(r) is the degree to which p is less than the (nonfuzzy) number r, or,

the truth value of the statement "p is less than r." This degree and

truth value were suggested by ZADEH [24] to take on any value in I rather

than 0 and 1 only. The letter I inR(I) referes to the fact that more

general objects (such as lattices) were considered instead of I in the

literature (see GOGUEN [6], but also [15] and [19-21]).

Of course, any nonfuzzy real number r is identified with 5=1/ ^n,

where 1« denotes the characteristic function of the set A. The fuzzy

numbers corresponding to -» and +» are 6_m - 1/ ^ and 6+oo = ^/+00-l-

A fuzzy number p is said to be finite if inf {p(r)|r € R} = 0 and

sup{p(r)|r 6R} = 1. The set {p/m|p €R(I),p} finite will be denoted

R(I).

Next consider closed intervals [a,b], [c,d] (whose bounds may be

infinite) and a nondecreasing function f : [a,b] -+• [c,d] which is left-

continuous in (a,b) and satisfies f(a) = c. Then its quasi-inverse

[f]q : [c,d] - [a,b] defined by

[f]q(s) = sup{r<:[a,b]|f(r)<s} (1.3)

is again nondecreasing, left-continuous in (c,d), and satisfies
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[f]q(c) = a. This concept was introduced by SHERWOOD and TAYLOR [23]

and has been studied by HOHLE [11] in a more general setting.

If 1^(1) denotes the set of all quasi-inverses of fuzzy numbers p

inlR(I) then it is easily seen that the mapping q:p -*• [p]q is an

involution from R(I) ontoRq(I). It is therefore possible to introduce

an algebraic structure onR(I) as follows (of course only if the right-

hand sides of (1.5) and (1.6) make sense):

p< p « [^(a) < Wq(a) for all a € I; (1.4)

[p©p]q(a) = [p]q(a) + Mq(a); (1.5)

[p0*]q(a) =sup{[p+]q(B)-[^]q(e)+[p+]q(l-3).[nq(6)

+ [p"]q(6)-[p+]q(l-0)+[(|)']q(l-3)-[(j)"]q(l-6)|6<a},

where in the latter formula p and p" are fuzzy numbers as follows:

+
+ .0 ifr<0,

P (r) = < (1.7)
p(r) if r > 0;

Jp(r) if r < 0,
P (r) = < (1.8)

\l if r > 0.

It is clear that p is finite if and only if [p]q(a) is finite for

any a € (0,1). (R(I), <) is a complete lattice, (R(I),+ , <) is a

partially ordered abelian semigroup with neutral element 6Q, (R(I),0 )

is an abelian semigroup with neutral element 6,, and O is distributive

over © . Altogether, (R(I),® ,O , <) has been called a fuzzy hyper-

field in [21], Of course, i:r -*- 6 is an order preserving monomorphism
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from (R,© ,0 , <) into (R(I),© ,O , <). It should be mentioned

that ( R(I), © ,© ) is not a ring; therefore it does not coincide with

PR as considered in [23]. Asequence (Pn)n6™ inR(I) converges to

if for all r € C(p)

p(r) = lim p (r), (1.9)
n-»co

where C(p) is the set of continuity points of p. This is equivalent to

the weak convergence of the corresponding probability measures (see

BILLINGSLEY [2], PARTHASARATHY [17]). It is clear that (pn) + p if and

only if [pn]q + [p]q.

2. FUZZY-VALUED RANDOM VARIABLES

Let (fi,A,P) be a probability space. Since R(I) can be embedded
TO

naturally into [0,1] (equipped with the product a-algebra) it makes

sense to consider measurable functions X : Q, -»-R(I) which we shall call

fuzzy-valued random variables. Obviously, this generalizes the concept

of real-valued random variables. However, they are different from the

fuzzy random variables as studied by PURI and RALESCU [18] and KLEMENT,

PURI and RALESCU [14] where the values are fuzzy subsets of Rp rather

than fuzzy numbers, thus generalizing the idea of random sets (see

MATHERON [16]).

If X is a fuzzy-valued random variable then its quasi-inverse

Xq : Cl ->R^(l) is defined by Xq(a>) = [X(w)]q. It is clear that Xq is

measurable if and only if X is measurable.

Generalizing proposition 3.1 in [13] it is readily seen that the

mapping



a- E(Xq)(a) = [X(to)]q(a)dP(a)) (2.1)

belongs toRq(I) provided the Lebesque integral on the right hand side

exists for each a € I. We therefore can consider the expected value of

the fuzzy-valued random variable X given by

EX = [E(Xq)]q, (2.2)

which, of course,is a fuzzy number again. This extends the classical

expected value of a random variable X :Q -*-R in the sense that

E(i-X) «6EX, (2.3)

i being the embedding from R intoR(I).

It is clear from the definition that E(X + Y) = EX + EY. Moreover,

for any fuzzy number p we also have E(p© X) = p0 EX, which follows

from (1.6) and the Lebesque Monotone Convergence Theorem. The expected

value is therefore a linear functional in the sense that

E(pOX©4>0 Y)= pOEX©(J)OEY. (2.4)

3. LAW OF LARGE NUMBERS

Now consider fuzzy-valued random variables which are independent

and identically distributed. Since it is not clear what the variance

should be (there is no proper subtraction inR(I) and no obvious matrix)

we impose a finiteness condition upon the second moments in order to

state a Strong Law of Large Numbers.

THEOREM. Let X,, X«, ... be a sequence of independent, identically
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distributed random variables with values inR(I) and E(X^) finite. Then

£ • (X1®X2©...©Xn) +E(X]).

Proof: First we claim that for each a H the real random variables

[X-j(0] (a), [Xgt*)] (a), ... are also independent and identically dis

tributed. Fix r ^ R, a € I and put A = {p € R(I)|p(r) > a}. Then we

have

P{XCA} = P{w€Q|X(a))(r)>a = P{a)C ft|[X(to)]q(a) <r},

from which our claim follows immediately.

Next we show that E([X,(•)]q(a)) <+» for any a € (0,1). Assume

that E([X1(-)]q(aQ))2 =+« for some aQ €(0,1) and put
ft| ={w€fi|[X1(o>)]q(a0)>0}, n2 ={a)€fi|[X1(w)]q(a0<0}. Then, by (1.6)

2
and the finiteness of E(Xt) we get

([X^)]^))^) <E[x2(.)]q(aQ) <+-,

f a 2thus implying ([X-j(a))]q(a0)) dP(w) =+»which is impossible because

of *

(CXTtcoJ^d-aoJrdPttt) <E[X^(.)]q(l-a0) <+<*>.
2

Therefore for any a € (0,1) the variance of the (real) random

variable [X,(-)]q(a) is finite and by the classical Strong Law of Large

Numbers we get

[i * (X1 +X2+ ••• +Xn)]q [EXl]q>
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thus completing the proof.
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