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ABSTRACT

We propose a new approach to global routing of gate arrays

which can handle any channel capacities and pin distributions on

the chip. Our approach first identifies the unique connection pat

terns, then takes advantage of the channel capacity in the outer

area before that of inner area. The route of each net grows cau

tiously from outside toward inside in order to achieve high comple

tion rate. We also develop a backtracking method to remove the

wrong connections made in the outer area. Finally, we give a spe

cial case which the maximal network flow technique can solve in

polynomial time.
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1. Introduction

The purpose of global routing is to provide a loose initial routing of nets on

a chip to guide the subsequent detailed wiring. It is a crucial part in gate array

layout design.

A gate array wafer is preprocessed up to and before the interconnection

level and custom logic functions will be realized by the final interconnections.

Usually the gate array layout design is divided into two phases, "placement" and

"routing". However, it is quite difficult to determine whether or not the place

ment results are satisfactory until the routing is done. On the other hand, it is

also hard to say which phase needs improvement if routing fails: when a poor

routing method is used, we may not complete the interconnections for otherwise

good placements.

The wiring space in gate arrays is limited. Channel widths are fixed, giving

rise to the "routing problem for gate arrays," that of fitting the desired inter

connections into the available channels. In order to obtain 100% wire comple

tion, we need to distribute the wires over the chip such that no overflow occurs.

This problem is not trivial if (1) each wiring channel is nearly saturated, or (2)

the channel capacities and pin distribution are not uniform due to the physical

constraints (e.g., complicated macro design, internal blockage and macro intru

sion).

For the gate array wiring, many algorithms have been developed. For

instance, [1, 2] route each net independently using either approximate Steiner

tree method or simply maze-running. If overflows occur, then they reroute

some nets from the congested spots in order to reduce the congestion. Ting and

Hen explore the independent rerouting issue [2]. The incremental assignment
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method [3] uses the "smallest-enclosing-rectangle-first-connected" manner for

the net ordering to be connected. After one net is routed by the shortest path,

the edge weights on a graph reflecting cell adjacency and channel capacity are

updated. A hierarchical routing approach [4] solves the global wiring problem

as an integer programming problem, but with the crucial assumption of a uni

form wiring substrate. Therefore, the choice of cut lines is of little importance.

Karp, et al. [5] provide an upper bound on the channel capacities and a

guaranteed algorithm, but their bound is still too high for the practical cases.

In this paper, we deal with more general cases where both channel capaci

ties and pin distributions can be non-uniform. In the following sections we give a

problem formulation, discuss the existence and properties of solutions and pro

pose a heuristic algorithm based on our analysis. We also discuss briefly the

computational complexity.

2. Formulation of the Problem

Let us assume that the whole chip is divided into a rectangular array of

cells, each of which contains some wiring grid lines and circuit pins. The inter

connections and exact pin locations within each cell are ignored [l]. Each net is
identified with a set of cells where interconnection pins are located. Each cell is

surrounded by four boundaries. Channel capacity of the boundary is the

estimated number of tracks available for net crossing. Each cell thus has four

channel capacities associated with it.

Tfce global routing problem is to construct wire routes for each net in such
a way that for any cell boundary the number of nets crossing it is less or equal
to the corresponding channel capacity. The number of cell boundaries the wire
route crosses is taken to be the length of the wire route. Fig. 1(a) shows a global

routing example for gate array in which the pins of6 nets are distributed in 3 x
3 cell array and channel capacity is indicated on each boundary. Fig. 1(b) shows

a wiring result.

We assume here that two interconnection layers are available for routing,

one of which is used for horizontal wiring, another for vertical.
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3. Existence and Properties of Solutions

Let P be a global routing problem for gate array. We sayP has a solution if
there exist routing patterns for P such that all the nets are completed and, for

any cell boundary, the number of nets crossing it does not exceed the associ
ated channel capacity. Suppose P has m feasible solutions in total, and { S;- J,
j=l. 2, ... m, is a set of all the solutions of P. Aroute Rj of net Ni is said to be a
feasible route ifthere is a solution S;- in which net JV4 takes the route Rj. There-

fore, Sj = \Rjl . Rf R?\. where n is the total number of nets inP. IfU= n sj

* 0, thenU contains the unique portions of solutions, i.e., some nets have unique

routes no matter how others are connected. For instance, if Ni has a unique

route, then R\ = R\ = ... = /#». If Nt has a part of solutions which is unique,
jam . .. lm.then C\Rj * $* If we are unable to identify these unique routing patterns,
i=i

finding a solution of P may require an exhaustive search. In fact, simplified for

mulations by [5, 6, 7] have shown the global routing problem to be NP-complete.

Therefore, we aim at a heuristic algorithm which will wire each net very cau

tiously to eliminate most of the rerouting steps.

Consider an example in Fig. 2(a) which has two solutions shown in Fig. 2(b)-

(c). Fig. 2(d)-(e) show the set of feasible routes for net Nx : \ R} , Ri j. (f)-(g)
the set of feasible routes for net Nz : { R\ . Ri }• If N2 were connected as in Fig.

2(h), then JVj can not be connected in that case, since there is no capacity left

on cell (a, l)'s boundaries with which to connect the pins of JVj in cells (a,l) and

(a.2). In other words, there does not exist a solution to the problem Fig. 2(a) in
which N2 takes shape shown in Fig. 2(h). Now, if Nt is wired as in Fig. 2(i), then

net N2 has only one feasible route: \ R\ J. If a portion of net JV2 is connected as

in Fig. 2(j), then feasible solutions for uncompleted nets are: { R\ j for N\, and {

Rf J for Nz.

Therefore, in order to find a solution for P, we hope to have an algorithm

with the following capabilities:

(1) It can select a correct route for a net in each routing step. It does not need

to find an entire route for that net, i.e., it only needs to connect some pins

and go on to other nets.
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(2) After each wiring step, it will be able to update the feasible routes for not

yet completed nets as in Pig. 2(j).

Intuitively, it is clear that we can not build an algorithm having the capabil

ity (2) and solving P without an a priori knowledge of all solutions of P. However,

the capability (2) can be expressed in terms of feasible routing area.

Consider a global routing problem P and the current situation on the chip.

Definition 1. A set Fi of cells forms a feasible routing area for net Nit if, for any

cell Ca e Fi, the.re is a feasible route Rj that reaches Ca, for some solution S3- of

P.

For example, originally feasible routing areas for Ni and Nz are Ka«l). (a.2),

(b.l), (b,2){. Suppose now that Nz is partially connected as in Fig. 2(j). Then the

feasible routing areas are ((a*!)* (&<2)i f°r ^i and t(b.l). (b,2){ for Nz. Hence, a

feasible routing area for a net is determined by the current situation. In other

words, once a net is partially connected, the feasible routing areas of other nets

may be changed.

The feasible routing area can be also interpreted as follows. Let Cj denote a

set of cells at which a route Rj can arrive. The feasible routing area for net Ni is:

Fi = \J Cj, where k is the total number of solutions in the current situation.

Definition 2. A cell is said to be a non-pass-through (NPT) cell if the number of

unconnected pins of different nets inside it is equal to or less by one than the

total remaining channel capacities on its four boundaries.

For example, cell (a,l) in Fig. 1(a) is an NPT cell, since there are 3 uncon

nected pins and total channel capacities are 4. It thus can not be crossed by

nets N4 and N5 which have no pins in (a.1), otherwise at least one of three pins

in (a, 1) can not be connected outward.

We can extend definition 2 to describe a non-pass-through region. A non-

pass-through region is a region whose boundary can not be crossed by a net with

no pins inside this region. Cells (a.l) and (b.l) in Fig. 1(a) form an NPT region,

since the total channel capacities on the region boundary are 6, and there are 5

different pins to be connected outward. Therefore net Ne can not pass through

that region.
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Lemma 1. Suppose P has a solution. If there is a 2-pin net Ni with pins in two
adjacent cells with non-zero channel capacity on the common boundary, then
there exists a solution Sj ofP in which N% is wired through the common boun

dary of such two adjacent cells.

Proof: Suppose the two pins of Ni are in cells C0 and Cb and they are not wired
by the shortest path in a solution Sj. We know 5X exists, since P has a solution.

There are two possible cases:

(1) In Si, the channel capacity on the common boundary of C^ and Q is
greater than the crossing demand there. Then the current route of Nt can

be removed and replaced simply by the segment between CB and Q>.

(2) In Slf no channel capacity is left on Ca and Cb's common boundary. It

means that there is at least one other net Nj which crosses the common

boundary (see Fig. 3(a)). We can reroute Nj by taking the route of Nit and

connect #4 by the segment between Ca and Cb. Fig. 3(b) illustrates this

point. •

Lemma 2. If P has a solution, and the total channel capacities on a closed

region boundary are fj, and there are v pins inside, v > fJ,, then at least v-fi of

them should be connected within this region.

Proof: By contradiction. Suppose only y pins are connected inside the region, y

< v-fi. In the best case, only those 1/-7 unconnected pins need to pass through

the region boundary. Thus, there should be more than 1/ - (v-fi) channel capaci

ties to accommodate them, which contradicts the assumption. •

Fig. 4(a) shows a closed region (outlined in boldface) with channel capaci

ties 5 along its boundary and 8 pins of 5 different nets. These 5 nets need to be

connected outward. Hence there are 8 pins which must be connected within the

region.

Lemma 3. Suppose P has a solution. If there are two adjacent NPT cells, Ca and

C*, with non-zero channel capacity jjl on the common boundary, and there are \x

or fewer nets with pins in both C* and C&. Then there is a solution in which these

pins are connected by the shortest path between Ca and Cb.

Proof: Let Nu N2 Nj, j ^ y., be the nets with pins in both CB and Q,. If there
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are nets with exactly 2 pins among Ni Nj, then we can apply Lemma 1 to

connect such nets by the shortest paths. If all j nets are connected, we are

done.

Otherwise, we consider the remaining nets, say Nlt .... Nk, tek^j. Note that

the channel capacity left on the Ca and Q,'s common boundary becomes fi - (j -

k). Since Q is an NPT cell, the nets with pins in Ca, but not in Cb, can not cross

Q. Only Nlt .... Nk can pass through the common boundary. Since channel

capacity fi -j + k ^ k, each of Ni,..., N^ has a route through the common boun

dary. This completes the proof. •

Fig. 4(b) shows two NPT cells with capacity 2 on the common boundary. Net

1 and 4 have routes through the common boundary, shown in Fig. 4(c).

The following theorem describes the situation when the interconnection has

a unique pattern.

Theorem 1. The wire route of net Ni has a unique pattern if and only if Ni is

forced by the current situation on the chip (i.e., channel capacity constraints,

previous routed patterns, etc.) to take the unique shape.

Proof: First, if the situation on chip will force a net Ni to take a unique route or

part of it, then, in any feasible solution, A^'s route is unique or part of it is

unique.

Next, suppose Nt has a unique solution or part of it is unique. Since the

connection pattern (or part of it) is unique now, no matter how the remaining

nets are routed, this particular connection can not take a different shape. In

other words, no matter how the connections are made for other nets at each

step, the feasible routing area (or part of it) for Ni is the same at each time. If

this is not the case, Ni can take at least 2 different shapes, which contradicts

our assumption. Thus, a unique pattern of Nt is forced by the current situation

on the chip. This completes the proof. •

Before going on, we need the concept of "barrier".

Definition 3. A barrier is a boundary of a closed non-pass-through region.

Definition 4. A boundary of a closed region is said to be a barrier for net Ni if

the route of Ni can not cross this region.
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In Fig. 5. the boundary of the region formed by cells (a.1) and (b.l) . outlined in
boldface, is a barrier for net Na, since Ns can not cross this closed region.

Definition 5. Aconnection pattern is said to be a generalized routing for a net
Ni if it connects all the pins of Nt and may contain some redundant segments.
Rg. 6(a) shows a route for net Nv Fig. 6(b) shows a generalized routing for Nlt
with an example of redundant segments in the upper right quadrant. The gen
eralized routing will be used in proving the following theorem.

Theorem 2. Suppose a global routing problem Phas a solution and a net Nt is to
be connected. The feasible routing area Fi of Ni is a region Bi bounded by the

barriers for net Ni.

Proof: Consider a generalized routing for net Nt. Suppose the theorem is not

true, then there are 3 possible cases:

(a) Fi DBi andFi * Bi.

(b) Fi n Bi * 0, but Fi f Bi and Fi 4 Bt.

(c) Ft C Bi and Fi * Bi

If either (a) or (b) holds, then, from the definition of barrier. P does not
have a solution, since Ni can cross its barrier. This contradicts the assumption

of the existence of a solution.

Suppose (c) holds. Consider any ceil Ca in S» - Ft. Since Ca is not in the
feasible routing area of Nit generalized routings of Nt can not reach Ca. There
fore, the boundary of Ca is a barrier for ty. Hence it should be part ofthe boun

dary of Bi. It implies Bi - Fi = 0, which contradicts the assumption Fi * Bi.
This completes the proof. •

By Theorem 2, in order to find a solution for P. we need to find the barriers
first to guide the net connections, Le., check all possible dissections of the rout
ing area. This amounts to an exhaustive search.

4. Graph Model and Definition

We define a cell graph G=(V. E). where each vertex v4 e Vcorresponds to a

cell, and there is an edge e^ = (vit Vj) € Eif the corresponding cells of v4 and v$
are adjacent with non-zero channel capacity on the common boundary. Each
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edge s^ has an associated capacity which is the corresponding channel capacity

on the common boundary of v4 and Vj. Fig. 7 shows a cell graph for Fig. 1(a).

Definition 6. In a particular planar drawing of the cell graph G(see Fig. 7), with

the boundary of the exterior face of the G's planar drawing corresponds to the

cells abutting the boundary of the chip, we define two types of mesh.

(1) Outermost mesh which bounds the particular drawing of G, i.e., the circuit

separates the exterior face from G.

(2) Innermeshes which bound the areas in the drawing, where edges are miss

ing.

Fig. 8(a) shows an example of a cell array where the cell boundaries with 0
channel capacity are marked with heavy lines. Fig. 8(b) shows the plane graph G
with the outermost and inner meshes drawn in dotted lines. Sometimes the

outermost and inner meshes may overlap somewhere. See Fig. 8(c)-(d).

5. Heuristic Algorithm

Since the gate array global routing problem is NP-complete, we must
develop a heuristic algorithm. It first embeds the unique routes forced by the
NPT cells. Then it connects nets along the outermost and inner meshes, which

we will explain in detail. The outermost (inner) mesh will become smaller
(larger) as the channel capacities on the mesh are used up. The routed nets net
will gradually grow from outside to inside. Hence, competition for the internal
routing resource is lessened. It makes chips more routabie and eliminates most
of the rerouting steps. In the following subsections, we explain each routing

step.

5.1. Two-Pin-Adjacent-Cell Rule

We first search for the nets containing only 2 pins which are located in two

adjacent cells. By Lemma 1, these nets have the routes simply passing through
the common boundary of two adjacent cells, respectively. If the channel capa

city on thecommon boundary is exceeded by the number of nets requiring pas
sage through the boundary, then we arbitrarily select the exact amount of nets
equal to the channel capacity tobe connected by the shortest paths.
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5.2. Rnding NPT Cells and Barriers

After we make the 2-pin-adjacent-cell connections, we update the boundary
channel capacities. Since finding NPT regions and barriers for nets is time con
suming, we only locate the barriers composed of the NPT ceUs. In other words.
we detectin the algorithm the following barriers from the cell graph G.

(1) Acutset whose elements are NPT cells which can be grouped like a wave-
front in G(see Fig. 9(a)-(b)).

(2) Gis disconnected (seeFig. 9(c)-(d)).

5.3. Unique Routes

If there is a net whose pins can not be connected due to the barriers or

graph disconnection, report no solution for the given problem. Otherwise we
consider the following cases.

(1) Some nets with pins in the neighborhood of NPT cells are forced to take
unique routes. For instance, cell (c.2) is an NPT cell and net Nt does not
have a pin in (c,l). Nx thus should have a route from cell (c.l) up to (b.l),
because Ni can not cross cell (c.2). (see Fig. 10(a))

(2) By Lemma 3, the nets which have 2pins in two adjacent NPT cells have con
nections simply through the common boundary of adjacent NPT cells. Fig.
10(a) shows cells (a.4) and (b,4) are NPT cells which both contain a pin of
N& We make a connection for N2 through the common boundary of (a.4)
and (b,4).

(3) If there is a net with two pins located in an NPT cell and its non-NPT neigh
bor, respectively, we connect them by a segment through their common

boundary. Fig. 10(a) presents a connection pattern for Na which has two

pins incells (c.2) and (c.3). where (c.2) is an NPT cell and (c.3) is not.

If there is no detected unique route, we go to section 5.4. Otherwise, we

embed unique routes, update the channel capacity on ceil boundary and con

tinue to consider the following cases.
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5.ai. Updating the Cell Status (From non-NPT To NPT)

We find that a non-NPT cell may become an NPT cell because it contains end

points ofnet routes. To make it clear, we consider an example in Fig. 10(a). Ceil
(b,l) now has an end point of Nx's route which is forced by the NPT cell (c.2).
The remaining channel capacities on (b.l)'s boundaries are 2. Therefore, if some

other net passes through (b,l), Nt has no way to connect to (a,l). Cell (b,l) is

thus a new NPT cell. This indicates that the status of cell (b.l) needs to be

updated to be an NPT cell.

Let us consider an end point of a net's route in a cell to be a new pin in that

cell. We use the following rule to change a cell status from a non-NPT cell to an

NPT cell.

A cell status is updated to be an NPT cell if the number of pins (including

new pins) of different uncompleted nets inside it is equal to orless by one than
the remaining channel capacities on its four boundaries.

Suppose there are new NPT cells created after we embed the unique routes.

We continue to check the neighborhood of new NPT cells in order to find the

unique routes. For instance, in Fig. 10(a). cell (b,l) is a new NPT cell. Hence, a

pin of N4 is forced to move from (a.1) to (a»2). Also case (3) in detecting unique

routes can be applied to Nx which thus has a route from (b,l) up to (a.l). There

fore, Nt is finished with route (c,l) -* (b.l) •* (a,l). (see Fig. 10(b))

5.3.2. Extension of 2-Pin-Adjacent-Cell Rule

If there is a net which needs one more segment of unit length to complete

its connection, then we add the segment, where unit length means crossing only

one cell boundary. For instance, in Fig. 10(a), net N9 needs a segment from

(c,3) to (b,3) to complete its connection. Its final route is shown in Fig. 10(c),
(c,2) -• (c,3) -» (b,3). We can view this step as an extension of Bpin-adjacent-ceU
rule.

After we embed routes due to new NPT cells and extension of 2-pin-

adjacent-rule, we repeatedly check the new NPT cells* neighbors and apply the

extension rule to applicable nets until no further unique routes can be found.

EZ6
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5.4. Iesh Routing

le update the channel capacities after imbedding the detected unique

routes. If cell graph G is disconnected, we treat each maximal connected sub

graph Le., component of G, as a sub-problem. Suppose now, without loss of gen-

eraEj, Gis connected. Since there are no detected unique connection pat

terns, we create the outermost and inner meshes of G and connect nets along

the meshes. The reason is to push the wires to the chip boundary in order to

reduce the congested spots in the center of the chip. We can view inner meshes

as the boundaries of obstructions in the chip. When the channel capacities are

used up along the meshes, the outermost (inner) mesh will become smaller

(larger). We then keep on working on the smaller (larger) meshes until we finish

all the nets.

5.4.L Connecting a Pair of Pins Along Meshes

Suppose we have a global routing problem, shown in Fig. 11(a), whose outer

mostmesh is in Fig. 11(b). For each cell on the outermost mesh, we associate

iritbihepins which are contained in it. For instance, the vertex corresponding

to eel (a.1) is associated with 2 pins of nets 1 and 5 (see Fig. 11(b)). We create a

tableinwhich the nets with least pins appearing on the mesh are at the top. Fig.

11(c) shows a sorted table. We compute the shortest distances for those nets

with2pins on the mesh. If none exist, we then consider those of 3 pins on the

mesh, and so on. For instance, the two pins of net Ni are three units apart (a.2)

-» (U) * (b.l) -> (c,l) and 5 apart for N+. Therefore, net JVX is to have such a

connecting path on the mesh, provided the following things do not happen.

(1) Qsconnection Trouble

Cell graph G will be disconnected so that there is a net which can not be

connected due to this separation.

for instance, net Ni is to be wired along a mesh by a wavy path shown in

Rg. 12(a). Unfortunately, the capacities on edges (d,2)-(d,3) and (b.4)-(c,4)

re 1, respectively. Therefore, the cell graph will be disconnected so that

vetNj can not be connected (Fig. 12(b)). This indicates that Ni can not

take that route.
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(2) Barrier Trouble

The NPT cell barriers will separate cell graph G into several disjoint regions

so that a net can not be connected.

For instance, net Ni is to be wired by a wavy path shown in Fig. 12(c). Since

no capacity will be left on edge (a,2)-(a,3), NPT cell barrier } (b,3), (c,2) J

will separate G into two disjoint regions so that net Nj can not be connected

(Fig. 12(d)). Therefore, Ni should not take that route.

After the above look-ahead check for net Nt in Fig. ll(a)-(c), if no immedi

ate trouble occurs, then we will connect N\ along the mesh by the shortest path

(a,l) -» (b,l) -* (c,l). Otherwise, we choose another pin pair of the next shortest

distance to be connected so as to avoid trouble.

5.4.2. Handling The Vertex of Degree 1

When we exhaust the channel capacities on the mesh, some vertices may

have only one degree. For instance, Fig. 13(a), (b) shows that cell Q has only one

degree, since N{s route passes through Q and N2s route is forced by NPT cells

to reach Q. In order to handle a cell Q of degree 1 in G, we consider the follow

ing possible cases.

(1) A pin is originally in Q given a global routing problem. For instance, net N$

has a pin in Q, which is specified by the problem input.

(2) A new pin is forced to be in C*. e.g., net N2 is forced to reach Q so that Q,

has a new pin of N2.

(3) A net whose route passes through Q. For example, net Nx passes through

The rule for moving pins or extending routes from Q to its neighbor Cj is:

original pins first, new pins second and extension of routes last.

If the channel capacity between Q and Cj is equal to or larger than three,

then Nlt N2 and JV3 can each have a route Q -» CJ. Otherwise, we move Njs pin

first and N2s second.
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5.4.3. Hesh Expansion

In the following cases, we can not imbed a connection along meshes. The

outermost mesh thus needs to be expanded inward, inner meshes outward.

(1) No net has more than 1 pin appearing on the mesh so that no connection

can be made.

(2) No net can be wired on the mesh because its connection will create discon

nection and barrier troubles explained above.

Fig. 14 illustrates an inward expansion of an outermost mesh.

5.4.4. Wire Route Pruning

When we complete a net wire route, it may contain redundant segments,

namely, it is a generalized routing. For instance, Nlt N2 and N$ have routes

ended in cell CJ (see Fig. 13(c)). Suppose, we afterwards complete net 1 by a

path shown in Fig. 13(c). Therefore, net 1 has a redundant segment, Q -» CJ,

which should be deleted.

The procedure to prune the wire route of a completed net is:

(1) Delete the redundant segments from the wire route of the completed net.

(2) The returned channel capacities may have the following effects.

(2.1) Addvertices to the outermost or inner meshes.

(2.2) Merge several components of the cell graph into one component.

(2.3) Reverse NPT cells to become non-NPT cells, i.e., the cell status is

reversed. For instance, in Fig. 13(c), cell CJ becomes a new NPT cell

after we move pins of nets 2,3 and extend net l's route from C* to CJ,

since there are 3 pins of uncompleted nets and the remaining capaci

ties are 3 on CJ's 4 boundaries. After net 1 is finished and a redundant

segment (c,l)-(c,2) is deleted, cell CJ contains 2 pins of unfinished nets

and its channel capacities around it rise to 4. Hence, cell CJ is no

longer an NPT cell.

yz.b
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5.4.5. Backtracking

Since our algorithm wires connections along the mesh with only one-step-

look-ahead ability, it can not foresee the barriers hidden deeply in the center

(Fig. 15). It is possible to make connections in the outer area such that Ni can

not be connected. Therefore, we develop a backtracking method which can han

dle the graph disconnection type problem to remove these poorly placed wires.

Suppose there are two components Gx and G2 which are mutually discon

nected. Let us assume that nets Nx,N2, . . . , N* need to be wired from Gx to G2.

First, we select a set of nets (Nt I which satisfy the following conditions.

(1) Nt crosses Gxs boundary more than once.

(2) Nt has no pins in Gx.

(3) Nt has a connecting path from Gx to G2, which does not reach any other

components (see Fig. 16(a)).

We delete the routes of Nts* until there are not less than k capacities

returned to the Gi's border (since there are k nets that need to be wired to Gg).

The channel capacities gained from wire deletion will merge two components Gx

and Gg into one, accompanied with the enlargement of routing meshes. Nets Nx,

.... Nk then are connected from Gx to G2. After that, we update the cell graph

and routing meshes and resume the mesh routing for each component For

instance, Fig. 16(a) shows a net Nt crosses Gx's boundary twice with no pin in Gx.

After Nt*s route is removed, we find a connecting path for Nx to reach GJs

border. Then we resume the mesh routing on the two updated components (see

Fig. 16(b)-(c)).

5.5. Example

Consider the global routing problem in Fig. 17(a) in which each channel

capacity is 2.

Nets 1 and 8 are first connected by the 2-pin-adjacent-cell rule (Fig. 17(b)).

Cells (a,2) and (d.1) are NPT ceils (Fig. 17(c)). Apin of net NQ is forced to move

down to(b.l) which becomes a new NPT cell, and two pins of N9 in (c,l) and (d,l)
are connected according to the case (3) in section 5.3. Then we add one more

LLO
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segment from (c.l) to (c.2) to finish N9 (Fig. 17(d)). The updated cell graph Gis
shown in Fig. 17(e). whose outermost mesh is in Fig. 17(f). Note that no inner
mesh exists at this time. We can create a table (Fig. 17(g)) listing the nets hav
ing pins appearing on the mesh, e.g., Nq has a pin in (b,l).

We sort the table in such an order that the net with least pins on the mesh
is first. We first compute the shortest lengths for those nets with 2 pins on the
mesh. If none exist, we consider those of 3 pins on mesh, and so on. We find
that the pin pairs of N4 and Nx0 have the shortest distance along the mesh, Le..
(a.2) - (a.1) - (b.l) for N* and (d.l) - (d.2) - (d.3) for Nx0. We arbitrarily
choose one pair, say JV4's, to be wired on the mesh. Then we find that neither
disconnection nor barrier troubles will occur after N4 takes that connecting
path. Therefore. N4 is finished. The updated cell graph Gand outermost mesh
are shownin Fig. 17(h) and (i). respectively.

Nx0 is the next one to be wired along the current mesh. We then apply the
extension of 2-pin-adjacent-cell rule to finish Nx0 by adding asegment from (d,2)
up to (c,2) (see Fig. 17(j)). Nx2 is the next one to have a route, (d.2) •+ (d.3) ->
(d.4) -» (c,4). on the mesh. Since cell (d.2) has apin of unfinished net Nx2 and its
remaining channel capacities on boundaries are 2, then (d.2)'s status is updated
to be an NPT cell. Nx3 is forced to.have a route (d.1) - (c,l) (see Fig. 17(k)). Cell
(c,l) is thus a new NPT cell.

Now cell (d.l) has only one degree (see Fig. 17(1)). Since N* and Nx0 are
completed, only Nxa can have a path extended to cell (d.2). But because cell
(d\2) is an NPT cell. JVia's route can not reach (d.2). Therefore, ceil (d.l) is
deleted from G. Ceil (d.2) then has degree 1 so that Nx2 has a route extended to
cell (c,2). After that, Nx2 is completed by adding a segment from (c.2) •» (c.3).
The current cell graph Gand its outermost mesh are shown in Fig. 17(m)-(n).

By the same procedure, we finally obtain a result shown in Fig. 17(q).

5.6. Summary

Let us summarize the routing steps in our algorithm.
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<1> Make 2-pin-adjacent-cell connections.

<2> Find NPT cells and barriers.

<3> Find the unique routes due to the NPT cells, and apply the extension of 2-

pin-adjacent-cell rule to the applicable nets.

<4> Wire pin pairs along the meshes.

<5> If no disconnection and barrier troubles occur, we update cell graph and

create new NPT cells. Repeat checking the neighborhood of NPT cells and

applying the extension of 2-pin-adjacent-cell rule to applicable nets. Other

wise, use backtracking method to remove wrong wires.

<6> Prune wire route of the completed nets.

<7> Go back to step <4> until no more connections can be imbedded.

To conclude this section, we point out some features in our algorithm.

(1) In each iteration, we deal with a problem of smaller size. The detected

unique routes are identified prior to any connections along meshes.

(2) We do not complete one net at a time. The wire route of each net grows

from outside toward inside gradually in order to even out the wire distribu

tion in the style of spanning tree.

(3) The rip-up andshove aside rerouting [8, 9] are done automatically.

(4) The look-aheadability helps eliminate wrong connections made in the outer

area. A simple backtracking method removes the wrong wires and connect

those "difficult" nets.

6. Complexity and a Special Case

The main step in our algorithm is to search the shortest path for the pin

pairs along the meshesand check if the graph disconnection or NPT barriers will

separate the connection of some net. Let us assume that (1) the dimension of

the given cell array is p x q, (2) the total number of nets is n, (3) the maximum

number of pins in each net is a. Since we connect a pair of pins each time, it

needs (cr - 1) steps to complete one net. In each routing step we do the following

things.

OLO
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First, we sort the nets having pins on the meshes in increasing number of

pins order. We will need nxlog n comparisons at most. Second, the complexity

of calculating the shortest path between pin pairs along the meshes is

0(nx(p+g)). The effort to find the shortest one among them is 0(n). The one-

step-look-ahead requires 0(pxg) effort for each net. In worst case we need to

check n nets. Therefore, in each routing step the complexity to connect a pair

of pins on the mesh is 0(nxlogn+nx(p+g)+nxpxg;). The approximate total

computation effort is 0(n2x(lag n+pxq)).

Besides showing the general global routing problem to be NP-complete, we

find a special case and its extension which can be solved by the max-fiow min-

cut technique.

Two Pin Shortest Wire in Manhattan Geometry (2-pin SWMG)

Instance: Assume there are 2-pin nets distributed in an M x N cell array in such

a way that for each net, the left hand pin is not below the right hand pin or both

pins are on a same vertical line. The channel capacity on each boundary is also

given.

Question: Can each net on the chip be routed by the shortest wire in Manhattan

geometry such that all the channel capacity constraints are satisfied?

Fig. 16(a) shows the possible distribution of pins and their allowable wire

layouts. Fig. 18(b) shows some wire layouts which are not allowed in the special

case. We find that the special case can be formulated as a network flow problem

so that it is polynomially solvable.

Lemma 4. 2-Pin SWMG can be solved in the polynomial time.

Proof: Let us construct a directed graph H=(Vh,Eh), where each vertex v» in Vh

- {S, TJ corresponds to a cell and S , T represent the source and sink, respec

tively. The edge (v^Vj) is directed from vt to Vj if v* and Vj are two adjacent

cells with Vi to the left of Vj or above Vj. A capacity which is equal to the channel

capacity on the corresponding cell boundary is assigned to each edge.

An edge (S-*Vi) is created between source S and Vi if, in the corresponding

cell of vit we have the left-hand (or top) pins of some nets. Acapacity is assigned

to (S-Wi), which equals the number of left-hand and top pins in v». We create an

086
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edge (vi-*T) between vt and sink T if there are the right-hand (or bottom) pins

in Vi and the number of such nets equals the capacity assigned to this edge. Fig.

18(c)-(d) shows an example with a constructed digraph.

The maximum flow in the digraph H can not be greater than the sum of

capacities of the edges directed to the sink. Since each routing of a net defines

a flow from source to sink, the maximum flow in H is equal to the number of

completed nets. Therefore, the routings can be realized for all the nets in the

array if and only if the maximum flow in H is equal to the sum of capacities of

the edges directed to sink. Thus this special case can be solved in polynomial

time (see [10]). •

For the multi-pin case, we also find that if the nets can be decomposed into

2-pin subnets such that the pin distribution follows the same constraint as

above, then it is solvable by max-flow method.

For instance, net 1 has five pins which can be decomposed into four 2-pin

subnets (Fig. 19). For each subnet, (1) the left hand pin is not below the right
hand pin or both are on a vertical line and (2) the smallest enclosing rectangle
intersects those of other subnets at no more than one point. If every multi-pin

net can be decomposed into such subnets, then the problem is transformed into
a 2-pin SWMG problem. Therefore, we can apply max-flow method to this multi-

pin case.

7. Experimental Results

Table 1 shows some results. The first example is randomly generated. The

second one is a realistic example. Fig. 20(a) shows the pin distribution of the

second example. Fig. 20(b) shows the wire routes of 464 nets. From that, we

can see that the outer area has higher density than the inner area.

From the time complexity analysis, the most time consuming step is the

one-step-look-ahead check. If the pin distribution and channel capacities are
uniform, then we may not need the look-ahead check in order to speed up the

process.

The heuristic algorithm is implemented as part ofour gate array layout sys

tem.
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B. Conclusion

We analyze the gate array global routing problem and point out the intrinsic

difficulties of finding an optimal solution. A heuristic algorithm is developed

using a new "mesh routing" method as well as some rules for identifying the

unique routes. The algorithm can handle non-uniform situations on the chip so

that it is suitable for gate array chip with built-in circuits (ROM, RAM, etc.). We

also point out the features of mesh routing which will reduce the congestion on

the chip and avoid the one-net-at-a-time ordering problem. This makes chips

more routable. Since it is still possible to make wrong connections, we also pro

pose a backtracking method to reroute. Further optimization on the program

and the combination of mesh routing and hierarchical approach [4] are under

study.
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Example 1 Example 2

287 464

723 1693

267 464

935 5132

1620 8960

1033 5366

16 82

Table 1.
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Figure Captions

fig. 1. An example of global routing problem for gate array.

(a) Pins of 6 nets distributed in a 3*3 array. The numbers in parenthesis

show the channel capacities.

(b) A solution of (a).

Fig. 2. Two solutions for a global routing example.

(a) A global routing problem,

(b), (c) Two solutions for (a),

(d), (e) Feasible routes of net Nx.

(f)t (g) Feasible routes of net N2.

(h) Infeasible route for net N2.

(i) Nxs route forces N2 to take route /?f.

(j) If the solid line connection is made for N2, Nx has to take pattern Rx.

Fig. 3. 2-pin-adjacent-cell rule.

(a) A solution for Ni and Nj.

(b) Ni takes the shortest connection-

Fig. 4. The number of pins asking for passage exceeds the total channel capaci

ties along its boundary.

(a) There are 8 pins inside the cbsed region (outlined in boldface) and 5

capacities are on its boundary. Hence there are 6 pins connected

inside.

(b) Ca and Cb are NPT cells with capacity 2 on the common boundary.

(c) Pins of nets Nx and N+ are connected together.

Pig. 5. A barrier for net N9.

(a,l) and (b.l) form a barrier for net N3.

Fig. 6. Generalized routing.
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(a) A wire route for Nx.

(b) A generalized routing for Nx.

Fig. 7. Cell graph.

A planar drawing of the cell graph for Fig.1(a).

Fig. 8. Outermost and inner meshes.

(a) A problem with 0 channel capacity on some boundaries.

(b) The outermost and inner meshes.

(c), (d) A problem with overlapping outermost and inner meshes.

Fig. 9. Barriers detected by the algorithm.

(a), (b) The NPT cells group like a wavefront barriers,

(c), The cell graph is disconnected.

Pig. 10. Unique routes detected by the algorithm.

(a) A pin of Nx in cell (c.l) is forced to move up. Two pins of N2 in NPT

cells (a,4) and (b,4) are connected together. Two pins of N3 are wired

together, where (c.2) is an NPT cell.

(b) Nx is completed according to the. case (3) of section 5.3. After that,

cell (b.l) becomes an NPT cell so that a pin of N4 in (a.1) is moved to

(a.2).

(c) N$ is finished according to the extension of 2-pin-adjacent-cell rule.

Pig. 11. Selecting a pin pair to be connected on the mesh.

(a) A global routing problem.

(b) Its corresponding outermost mesh.

(c) A table listing the nets with pins on the mesh by which the table is

sorted.

Pig. 12. Disconnection and barrier troubles.

(a), (b) Ni is to be connected by the wavy path. Hence, cell graph is discon

nected so that Nj can not be completed.
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(c), (d) Ni wants to take the wavy path. But Nj can notbe completed.

Pig. 13. Redundant segment.

(a), (b) N2 has an unique route due to NPT cells. Therefore, cell Q has only one

degree.

(c) Nx, N2 and N3's routes reach Cj.

Pig. 14. Mesh expansion.

Outermost mesh is expanded inward.

Pig. 15. A net difficultly to be connected.

Ni has a pin hidden so deep in the center that we can not detect the unique

route for it in the beginning.

Pig. 16. Backtracking.

(a) Nt crosses Gxs boundary twice with no pin in there.

(b) Delete Nt's route to merge Gx and Gz. Then Nx is connected to G^s

border.

(c) After that, we have two new components G\ and G^.

Pig. 17. Example.

(a) A global routing problem.

(b) Nx and N& are connected by the shortest routes.

(c) Cell graph and NPT cells.

(d) Ns has a forced route.

(e) Updated cell graph.

(f) Outermost mesh of (e).

(g) A table of nets which have pins on the mesh.

(h), (i) Updated cell graph and outermost mesh,

(j) The connections already made.

(k) Cell (d,2) becomes an NPT cell so that Nxs has a forced route.

(1) Cell graph for (k).

L. O U
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(m) Delete (d, 1) from cell graph followed by cell (d,2).

(n) The outermost mesh for (m).

(o) Pinal result.

Fig. 18. 2-pin SWMG special case.

(a) Allowable patterns in 2-pin SWMG.

(b) Patterns not allowed.

(c) An example of 2-pin SWMG.

(d) The digraph for (c).

Pig. 19. Multiple pin SWMG case.

A 5-pin net is decomposed into 4 2-pin subnets.

Pig. 20. A realistic example.

(a), (b) The pin distribution and final result of Example 2.
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