

Copyright © 1983, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

PROGRAM REFERENCE FOR KIC

by

G. C. Billingsley

Memorandum No. UCB/ERL M83/62

3 October 1983

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Giles C. BiUingsley

Author

Program Reference for KIC

Title

RESEARCH PROJECT

Submitted to the Department of Electrical Engineering and Computer

Sciences, University of California, Berkeley, in partial satisfaction of the

requirements for the degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

i: (KuA^cJ/.Committee: \ Jw^ULAdk, A /feg^JTPsJtesearch Advisor

rtzZm. pate

Date

PROGRAM REFERENCE FOR KIC

Giles C. BiUingsley

Electronics Research Laboratory

Electrical Engineering and Computer Science Department

University of California

Berkeley, California 94720

ABSTRACT

The internal structure of the KIC interactive, color graphics
editor is explained in this report. The database, user interface,
and system dependencies are examined, and information is
presented to assist the programmer who would wish to extend the
KIC program.

August 28, 1983

Acknowledgements

I would like to thank all those who have contributed to the development of

the KIC editor. The history of KIC and all related programs spans several years,

and appropriately there are many persons to be acknowledged for their kind

help and support.

The invaluable advice and encouragement of Professor Richard Newton is

greatly appreciated. Professor Newton has guided the development of the KIC

editor from the time that the project was begun by Kenneth H. Keller in the Fall

of 1980, and he has provided excellent opportunities for both the KIC program

and myself. The opportunities for me include a Research Assistantship funded in

part by Tektronix Inc., National Semiconductor Corp., and Digital Equipment

Corp., the opportunity to develop the KIC editor with an excellent user commun

ity including Berkeley graduate students in the Integrated Circuits Group and

designers from National Semiconductor, Evans and Sutherland Corp., CSIRO Aus

tralia, and Tektronix, and the opportunity to be part of perhaps the world's most

prestigious university CAD effort in integrated circuits.

The support and professional experiences provided by Professor D. 0.

Pederson are also greatly appreciated. Professor Pederson, along with Dr.

Stewart Taylor of Tektronix, convinced me to enter the graduate study program

at Berkeley and has continually helped to make my studies at Berkeley produc

tive and beneficial.

I am very grateful to those persons who have provided assistance and

software during the development of the KIC program. These persons include

Kenneth H. Keller who initially designed and wrote KIC and the CD database

package, Peter P. Moore who developed the nmalloc memory management

u

package, Chris Wilson of CSIRO who wrote the initial version of geometry stretch

ing procedures, Peter Harris of Jupiter Systems Inc. for firmware support on the

AED 512, Professor J. K. Ousterhout who provided the UNIX directory search path

procedures, and Professor Carlo Sequin for his early interest in the KIC program

and his helpful suggestions for the user interface. Also, Mark Bales implemented

the first version of the MFB graphics package.

I also gratefully acknowledge the helpful support from the early industrial

users of KIC. Dr. J. Craig Mudge and Chris Wilson of the VLSI design group at the

Division of Computing Research, CSIRO, Australia, provided both ideas and

software for the geometry stretching commands in KIC. J. Halverson and R.

Haslan of Evans and Sutherland have provided help for the development and

improvement of KIC under VMS. S. Sriram, F. Taku, and S. Carcia of the

Engineering Systems Group of Digital Equipment Corp. and A Hanover of the

Methodology and Advanced Development Group of Digital Equipment Corp. have

also given considerable support to the development of KIC on VMS. Jim Solomon

and Joe Santos of the Speech Design Group of National Semiconductor, where I

worked on KIC as a summer employee during the Summer of 1982, were the first

major industrial users of KIC in the Santa Clara area, and I am very grateful for

their kind support. The work of Ed Gould, who helped to improve the user inter

face of the CIF conversion programs and who wrote a new .KIC parser, is appreci

ated. Tektronix has been generously supportive of my work by providing graph

ics and computing equipment, financial support, and the opportunity to share

ideas with their excellent CAD effort; in particular, I would like to acknowledge

the assistance and advice of Dr. E. Cohen, J. Crawford, and S. Potter of the Tek

tronix MCE CAD group.

I would also like to thank Dr. I. Getreu of Tektronix for his support and

encouragement throughout the course of this work.

- in

The most important acknowledgements, the personal ones, are saved for

last. To my parents in Oregon, Virgil and Rosemary, I am deeply thankful for

their their constant, loving support and infinite patience during my graduate

years. And to my Uncle Jess and Aunt Betty BiUingsley I am especiaUy grateful

for their understanding and for making certain that this over-worked Berkeley

graduate student enjoyed at least one good, home-cooked meal every month!

Finally, to the friends that I have found at Berkeley who have given me help

ful criticism and assistance throughout the course of my research project. I

thankfully acknowledge the generous assistance of Clem Cole, Mark Hofmann,

Ken KeUer, Jim Kleckner, Grace Man, Peter Moore, Tom Quarles, and Rick Spick-

elmier.

C C V

IV

Table of Contents

Chapter 1: Introduction 1

Chapter 2: The CD Database 4

2.1. Introduction 4

2.2. CD Descriptor Types 7

2.2.1. The Symbol Descriptor 7

2.2.2. The Master-List Descriptor 9

2.2.3. The Symbol Table Descriptor 10

2.2.4. The Object Descriptor 11

2.2.5. The Generator Descriptor 12

2.2.6. The Transform Descriptor 13

2.2.7. The Property List Descriptor 14

2.2.8. The CD Layer Descriptor , 15

2.2.9. The Path Descriptor 16

2.3. Storage Bins 17

2.4. CD Procedures 20

2.4.1. CD Initialization 20

2.4.2. Error Handling in CD 20

2.4.3. CD Symbol Management 21

2.4.4. CD Object Creation Routines 24

2.4.5. CD Object Generator 29

2.4.6. Accessing Objects in CD 30

V

2.4.7. Object Deletion in CD ' 33

2.4.8. CD Information Routines 33

2.4.9. CD Integrity 35

2.5. Two Dimensional Transformation Package 37

2.5.1. Initialization 37

2.5.2. The Current Transformation 37

2.5.3. The Transformation Stack 38

2.5.4. The Instance Transformation 40

2.5.5. Inverse of the Current Transformation 40

2.6. Traversing a Symbol Hierarchy with CD 42

2.7. Translation Routines 45

2.8. The CD Parameters Descriptor 48

Chapter 3: The Fast CIF Parser 50

3.1. Action Routines 51

Chapter 4: The KIC User Interface 56

4.1. Window and Viewport Management 56

4.1.1. Text Viewports 57

4.1.1.1. Layer Menu Viewport 58

4.1.1.2. Parameter Viewport 59

4.1.1.3. Prompt Viewport 59

4.1.1.4. Command Menu Viewport 60

4.1.2. Layout Viewports 61

4.1.3. Clipping 63

4.1.4. Window/Viewport Transformations 64

VI

4.2. KIC Data Structures 67

4.2.1. The Area Descriptor 67

4.2.2. The Window Stack Descriptor 68

4.2.3. The KIC Layer Table Descriptor 68

4.2.4. The Cursor Descriptor 71

4.2.5. The KIC Selection Queue 72

4.2.6. The Context Descriptor 72

4.3. The KIC Parameters Structure 75

4.4. KIC Command Menus 86

4.5. The Pointing Device 92

4.6. The Frame Buffer Interface 98

4.6.1. The Frame Buffer Descriptor 98

4.6.2. The Frame Buffer Routines 101

4.7. Geometry Display Routines 113

4.7.1. Redisplay 114

4.8. Geometry Input Routines 117

4.9. Geometry and Symbol Modification Procedures 120

Chapter 5: System Dependencies 124

5.1. Terminal I/O Dependencies 124

5.2. The Directory Search Path 124

5.3. Memory Management 125

5.4. The System Interface 126

Appendix A A Catalog of All Routines and Macros Al

Appendix B: The CD Programmers's Manual B.l

vu

Appendix C: The KIC Tutorial User's Guide C.l

AppendixD: The MFB Programmers's Manual D.l

AppendixE: The MFBCAP Programmer's Manual E.1

Appendix F: KIC and Related Manual Pages ~ F.l

References &1

Chapter 1

Introduction

KIC [1,2] is an interactive, two-dimensional, color graphics editor intended

primarily for the mask level design of integrated circuits. It is written in the C

programming language and runs in either a UNIX^ or VMS% environment.

KIC has been designed as a powerful, inexpensive, user-friendly graphics

editor that will run on most low to medium performance graphics terminals.

Data that is generated by KIC can be represented by an intermediate graphic

description language, such as CIF (Caltech Intermediate Form) or Calma

STREAM,3 which permits the data to be easily transported to other layout sys

tems. Also, the geometric database used by KIC can be used to interface to

other tools, such as a layout rules checking program [8].

The internal structure of the KIC program is described in detail in this

report. The reader must be familiar with the C programming language as

defined in [3] or [9]. Other KIC documentation includes a database manual and

a user's tutorial, both included as appendices to this report. A programmer

should be thoroughly familiar with this report and these two appended manuals

before attempting an addition or enhancement to the KIC program.

KIC can be viewed as four major subsystems, as illustrated in Figure 1.

KIC uses the CD (CIF Database) relation database system that manages a

set of files. Each file contains the definition of a layout-cell that is stored as an

ASCII CIF symbol description [5]. A cell definition can contain instances of other

1 UNIX is a trademark of Bell Laboratories.

8 VMSis a trademark of Digital Equipment Corp.
a STREAM is a trademark of Calma, Inc.

POINTING

DEVICE / GRAPHICS
TERMINAL

MODEL

FRAME

BUFFER

KIC

WINDOW & VIEWPORT

MANAGER
_

±.

CD DATABASE

FAST CIF

PARSER

*

STRMTOKIC/ \ CIFTOKIC
KIC/CD
FILES

OTHER

CIF

KICTOSTRM KICTOCIF VVARIANTS,

Figure 1. The KIC system.

cells, and thus the database supports hierarchical layout descriptions. Other

layout formats, such as Calma STREAM format, can be obtained from CD transla

tion routines [11]. The CD database package reads these layout descriptions

from disc files and transforms them into virtual-memory data structures. This

package is described in detail in Chapter 2. A major part of this process con

cerns the parsing of CIF data from, the resident disk files. A fast CIF parser has

been developed for this purpose and is described in Chapter 3.

KIC is designed to run on a wide range of raster graphics terminals or frame

buffers and indeed has been used with several devices including the AED 512 and

767, the Tektronix 4113 and 4105, the HP2648A, the Metheus Omega-400, and the

Masscomp MC500 series computer. KIC uses the notion of an ideal color graph

ics frame buffer, and a separate package of routines maps commands for this

ideal frame buffer to the real device. This package can be a set of hard-coded

routines for the particular terminal, or the Model Frame Buffer (MFB) package

can be used. MFB is a terminal independent graphics package that uses an

ASCII database file (MFBCAP) to represent the frame buffer characteristics in an

extended UNIX termcap format; see termcap(5) and curses(3) in the BSD UNIX

programmer's manual. MFBCAP and the associated MFB routines are docu

mented in Appendix D and E. A description of how to interface KIC to a new

graphics terminal is contained in Section 4.6.

Chapter 2

The CD Database

2.1. Introduction

CD (CIF Database) is a package of C procedures for managing CIF databases

at an object level; geometric objects are modeled as GF geometries and

grouped as CIF symbols. For a description of the CIF language, see [4] or [5].

The KIC program is only one application of the CD database package, other appli

cations including language conversion programs between KIC/CD format, CIF,

and Calma STREAM.

Because the data model of CD is CIF, the CD database inherits both the

advantages and limitations of the CIF language. As an example, one important

feature of CIF is that it is hierarchical. However, called and placed symbols can

not be magnified or arrayed without adopting nonstandard extensions of the

language. Such limitations are described in the various sections of this chapter.

The reader should be aware of the following CD terminology: a master

refers to the definition of a symbol, and an instance refers to a call and place

ment of a symbol within a master. To explain the phrase traversing a symbol,

think of the symbol as a tree structure where each element is an instance that

is linked to its master. A procedure that traverses a symbol would visit each

branch of the symbol-instance tree structure. Finally, a lambda coordinate is

one that is within the coarse resolution of CD; for example, if the CD database

unit is one one-hundredth of a micron and the coarse resolution of CD is one

hundred database units, then the minimum lambda value is one micron. This

coarse resolution allows coordinates to be represented as integers while provid

ing a finer resolution when smooth contours are required.

When a symbol is opened via the CDCpenQ routine, it is mapped into main

memory from local or library files, each storing one CIF symbol definition. Also,

all symbols that are called by the symbol are read into main memory. A symbol

that has been opened is referenced by a symbol descriptor defined in the next

section. To reflect at its secondary storage site the changes to a symbol that

has been opened, a program invokes the CDUpdaieQ routine. To remove open

symbol unknown from CD (i.e., to remove it from main memory), a program

invokes the CDQoseQ routine.

Geometries or objects are collectively organized in a symbol or cell. The

types of valid objects within a symbol are boxes, polygons, wires, round flashes,

and symbol calls or instance arrays. For each object there is a procedure that

creates the object in a particular symbol on a particular layer. These data

insertion routines are CDMakePolygonQ, CDMakeWireQ, CDMakeBoxQ, and

CDMakeRoundFlashQ. The CIF call has been extended to handle instance

arrays. To create an instance array, a program invokes the CDBeginMakeQillQ,

CDTQ, and CDEndMakeCaUQ procedures. All object creation procedures

return a pointer to an object descriptor that has the purpose of referencing the

object in the database. The CDDeleteQ procedure removes an object from a

master celL

There are several routines for acquiring or storing information that is

specific to a particular object or symbol. The bounding box of an object can be

accessed via the CDBBQ routine. Associated with each object is an integer

information field that can be accessed by the CDSetlnfoQ and CDInfoQ rou

tines for extending that object's description. In addition to the integer informa

tion field, each object can have a linked-iist of property strings that are

accessed via the CDAddPropertyQ and CDPropertyQ procedures.

CD uses a two dimensional, rectilinear or "Manhattan" transformation pack-

6

age that can be used by any CD application program. The transformation pack

age is described in Section 2.5. With the transform package, a program can

define a current transformation composed of translations, reflections, and rota

tions, obtain the transformation and inverse transformation of coordinates, and

manage several transformations with a transformation stack.

Traversing the contents of a master is performed with a object generator

loop. In the context of CD, an object generator is a set of procedures that allow

the program to sequentially access objects on a particular layer that intersect a

particular area. To begin a generator, a program would invoke the CDInitGenQ

routine with an area of interest and a specific layer as parameters. The pro

cedure will return a pointer to a generator descriptor, defined in the next sec

tion. Every invocation of the CDGenQ procedure will then return a pointer to an

object descriptor whose bounding box, transformed by the current transforma

tion, intersects the area and lies on the particular layer. When CDGenQ has

returned all objects that qualify, the procedure returns a null pointer to the

object descriptor.

The CDTypeQ procedure returns the type of an object descriptor, (e.g.,

box, polygon, etc.) and can be used to dispatch to a type-specific procedure for

manipulating the object.

CD provides several routines for translating to or from CIF. The CDToQ rou

tine translates CIF directly into CD format. CDFromQ translates a CD symbol

hierarchy into a CIF file. Also, the CDParseCIFQ procedure will build the CD

database from a CIF file rather than from a directory of symbol files. This latter

procedure is useful for translating CIF into other layout languages such as

Calma STREAM. These routines are explained in Section 2.7.

2.2. CD Descriptor Types

There are several descriptor types defined as structures in the cd.h file.

descriptor type
symbol
symbol table
master-list

structure name

s

bu

m

object
label

o

la

polygon
round flash

po

r

wire w

call c

transform t

generator
property
layer
path

g
prpty
1

P

The following sections describe the various descriptors in greater detail.

2.2.1. The Symbol Descriptor

The symbol descriptor is defined in ths cd.h file as follows:

/*
* Symbol desc.
v

struct s (
int sLeft, sBottom, sRight, sTop;
int sBBValid;
int sA, sB;
char *sName;
short slnfo;
struct o ***sBin[CDNUMLAYERS+l];
struct m *sMasterList;
struct prpty *sPrptyList;
J;

A symbol descriptor is associated with each symbol that resides in the data

base and is necessary for accessing the objects contained in the respective sym

bol. This descriptor is allocated and initialized by the CDOpenQ routine only

and released by the CDCloseQ routine. All current symbol descriptors are

referenced in the CD symbol table; the symbol table descriptor is described in

the next section.

8

The sName member is a pointer to a null-terminated character string con

taining the name of the respective symbol. The bounding box of the symbol in

coordinates is given by sLeft, sBottom, sRight, and sTop. Because the bounding

box of the symbol depends on the objects contained in the symbol, there is a

time (for example, when the CIF is being parsed or the symbol is being opened)

when the bounding box is not valid. This condition is flagged by the sBBValid

boolean member of the symbol descriptor.

The sA and sB members define the magnification factor of the symbol KIC

and the CD database do not permit symbol magnification, and therefore these

members are always set to unity. If such a feature is added to KIC, it should be

done at the symbol level rather than at the object level to be consistent with the

CIF data modeL For example, the magnification factor of any geometry or

instance in a symbol would always be unity. However, the magnification factor of

a symbol definition that is called by another would not necessarily have to be

unity. This symbol magnification factor would be defined by a ratio of two

integers in the DS command in the respective symbol file and these two integers

would become the sA and sB members in the symbol descriptor when the sym

bol is opened by CD.

The objects contained in a symbol are organized in a storage bin structure

that is explained in greater detail in Section 2.3. In brief, the storage bins are a

three dimension array of doubly linked object descriptor lists; each object list is

indexed in the array of bins according to its layer and the lower, left coordinate

of its bounding box. sBin is a pointer to the symbols storage bins. The bin

structure is declared as a triple star (***sBin[CDNUMLAYERS+1]) because the

bins are allocated on demand for each layer with layer zero being the instance

layer.

slnfo is the integer information field of the symbol and is initialized to zero,

9

and sPrptyList is a pointer to the symbol property list. If the sPrptyList pointer

is NULL, the property list is empty, sMasterList is a pointer to the symbol's

master-list that is explained in greater detail below.

2.2.2. The Master-List Descriptor

The master-list descriptor is defined in the cd.h file as follows:

/•
* Master-list desc.

•/
struct m j

int mReferenceCount;
int mLeft, mBottom, mRight, mTop;
char *mName;
struct m *mPred, *mSucc;

i:

Every symbol in CD has one master-list. The master-list is a doubly linked-

list of structures containing one link for each symbol that is called by the

respective symbol. The mName member is a pointer to a null-terminated char

acter string containing the name of the called symbol. The number of times

that the symbol is referenced is given by mReferenceCount. The untransformed

bounding box of the symbol is given by mLeft, mBottom, mRight, and mTop.

Note that if symbol mName was opened by an invocation of the CDOpenQ rou

tine, the bounding box of the returned symbol descriptor would be identical to

mLeft, mBottom, mRight, and mTop.

The purpose of the master-list is to simplify the procedure of reflecting any

change to the bounding box of an instance in the bounding box of all its masters.

For a brief example, consider symbols X and Y that contain an instance of sym

bol Z. If the bounding box of symbol Z is changed, a call to the CDReflectQ pro

cedure with the symbol descriptor of Z as an argument would cause the master-

list of every resident symbol in the CD database, except symbol Z, to be

searched for an occurrence of Z. When an instance of Z is found, the bounding

box of the instance, as specified in the respective master-list structure member,

CC2

10

is compared with the computed bounding box of symbol Z; if there is a

difference, the master-list is modified and the bounding box of the master sym

bol is recomputed. At the completion of this procedure, the bounding boxes of

symbols X and Y will have been recomputed to reflect the change in the bound

ing box of Z. In other words, the CDReflectQ routine has the purpose of per

forming bounding box propagation which is further explained in Section 2.4.9 on

CD integrity.

The symbol call descriptor also contains a pointer to a master-list descrip

tor. This is further explained in Section 2.4.4 that describes the CD object crea

tion routines.

2.2.3. The Symbol Table Descriptor

The CD symbol table and symbol table descriptor are defined in the ca\h file

as follows:

/'
* Hash table of symbol descs keyed on symbol's name.
*/

struct bu }
struct s *buSymbolDesc;
struct bu *buPred;
struct bu *buSucc;

b
struct bu *CDSymbolTable[CDNUMLAYERS+l];

The procedure by which CD remembers a resident symbol is a hash table of

symbol descriptors that is keyed on the name of the respective symbol. Each

entry in the hash table named CDSymbolTable is a null-terminated, doubly

linked-list of bu structures that contain a pointer to an open symbol descriptor.

A procedure for computing the entry point into the hash table is shown below:

^include "cd.h"

/•
* Function GetSymbol()
* Fmd and return the symbol descriptor of symbol 'Name'.
v

struct s *GetSymbol(Name)
char *Name; /* name of the symbol to be found */
i
int Key;
char *cp
struct bu *Bucket;

cp = Name;
while(*cp != NULL)

Key += (int)(*cp++);
Bucket = CDSymbolTablef Key%CDNUMLAYERS];
while(Bucket != NULL)(

if(strcmp(Bucket->buSymbolDesc->sName, Name) == 0)
return(Bucket->buSymbolDesc);

Bucket = Bucket->buSucc;

j
i

11

2.2.4. The Object Descriptor

The object descriptor is defined in the cd.h file as follows:

/*
* Object desc.
v

struct o j
int oLeft, oBottom, oRight, oTop;
char oType;
char oLayer;
short olnfo;
struct o *oPred, *oSucc;
struct o *oRep;
struct prpty *oPrptyList;
i;

One object descriptor is associated with each object in a symbol. This

descriptor is allocated and initialized by an object-specific routine (e.g., CDMak-

eBoxQ, CDMakeWireQ, CDMakePolygonQ, etc.). An object descriptor is

released only by invocation of the CDDeleteObjectDescQ routine.

The oType member is a character that identifies the type of the object and

can assume any of the following values defined in the cd.h file:

/*
•Types of geometries
V

^define CDSYMBOLCALL *c*

#define CDPOLYGON 'P*
^define CDROUNDFLASH •r*

^define CDLABEL •r

^define CDWIRE *w'

jjfdefine CDBOX 'b'

12

The bounding box of the object is given by oLeft, oBottom, oRight, and

oTop. The layer on which the object exists is specified by oLayer. When the

object descriptor is allocated, the oRep pointer is cast as a pointer to an

object-specific descriptor that extends the definition of the respective object;

these object specific descriptors are defined in Section 2.4.4 concerns the object

creation routines.

olnfo is the integer information field of the symbol and is initialized to zero,

and oPrptylast is a pointer to the null-terminated object property list. The

pointers oPred and oSucc are used to access the previous and successive

objects in the doubly linked-list of objects that constitute a storage bin.

2.2.5. The Generator Descriptor

The generator descriptor is defined in the cd.h file as follows:

/•
* Generator desc.

•/
struct g {

int gLeft, gBottom, gRight, gTop;
int gBeginX, gX, gEndX, gBeginY. gY, gEndY;
char gLayer;
struct o *gPointer;
!;

An object generator in the context of CD is a set of procedures for acquiring

object descriptors for all objects on a specific layer and in a specific area of

interest. Invocation of the CDInitGenQ will return a pointer to an allocated and

initialized generator descriptor that contains all the status information for the

operation of the generator. More specifically, the generator descriptor stores

^ t

13

information that includes the area of interest, the storage bins that are to be

searched, and the present position in the storage bin currently being searched.

gLeft, gBottom, gRight, and gTop defines the area where the generated

objects should reside, and gLayer is the layer on which the generated objects

should exist with layer zero being the instance layer. The gBeginX, gEndX and

gBeginY, gEndY members define the range of the storage bins to be searched,

and gX and gY define the storage bin that is currently being searched. The

gPointer member is a pointer to an object descriptor in the storage bins and

points to the descriptor where the next search sequence will begin.

2.2.6. The Transform Descriptor

The CD package uses only rectilinear or "Manhattan" transformations. In

CD, a transformation is characterized by a null-terminated linked-list of

transformation descriptors. The transform descriptor is defined in the cd.h file

as follows:

/*
* Transform desc.

* If MX, tType == CDMIRRORX. If MY, tType == CDMIRRORX.
* If R, tType == CDROTATE. tX == XDirection, tY == YDirection.
* If T, tType == CDTRANSLATE, tX == TX. tY = TY;
•/

struct t (
char tType;
int tX. tY;
struct t *tSucc;

i:

The transformation that is called Mirroring in X is an operation that

effectively multiplies all x-coordinates by -1, or, in other words, mirrors in the

direction of x. This transformation can be confusing because it is also identical

to a reflection in the y-axis. Likewise, the transformation that is called Mirror

ing in Y is an operation that effectively multiplies all y-coordinates by -1, or, in

other words, mirrors in the direction of y. This transformation is also identical

to a reflection in the x-axis.

14

A rotation is always in the counter-clockwise direction and about the origin

of the coordinate system. The angle of rotation is defined with two integers,

namely XDirectvon and YDirecthon, and is the arctangent of the ratio

YDirection/XDirection. If the angles of rotation is always an integer multiple of

90 degrees, either XDirectvon or YDirection will be zero, but never both.

The sequence of transformations is significant. A brief example of this fact

follows: consider the point (0,0) translated in the positive x-direction by 100

units and then rotated 90 degrees. The resulting coordinate would be (0,100).

Now consider the point (0,0) rotated by 90 degrees and then translated in the

positive x-direction by 100 units, the exact opposite of the previous transforma

tion order. The resulting point would be (100,0) and not (0,100).

The sequence of the transforms is identical to the succession of the

transformation descriptors in the list. The character member tType specifies

the type of transformation that is defined by the descriptor and can be assigned

to the following values defined in the cd,h file:

/* mirror in direction of x */
/* mirror in direction of y */
/* rotate by vector X, Y */
/* translate to X, Y */

If the transformation is a rotation or a translation, tX and tY define the

angle or displacement, respectively. The tSucc member points to the next

transformation descriptor in the linked-list and is null in the last transform

definition in the list.

2.2.7. Hie Property list Descriptor

CD provides the capability of attaching property lists to symbols and

objects; a CD property list is a null-terminated linked-list of property descrip

tors. The property list descriptor is defined in the cd,h file as follows:

/*
* Types of transformations
V

^define CDMIRRORX •x'

#define CDMIRR0RY y
#define CDROTATE *r'

#define CDTRANSLATE 'f

15

/•
* Property list desc.
v

struct prpty j
int prpty_Value;
char *prpty_String;
struct prpty *prpty_Succ;
I;

In CD, a property consists of an identifying integer and a null-terminated

character string extension. The identifying integer prptyjj/alue defines the type

of property, and the string extension prpty_^tring is a modifier. There is no

standard set of properties and associated property values for CD or KIC; a user

is free to set his own standard set of property values for his own specific use.

The prpty_Succ member points to the next property descriptor in the

linked-list and is null in the last property in the list.

2.2.8. The CD Layer Descriptor

The layer descriptor is defined in the cd.h file as follows:

#define CDNUMLAYERS 35

/*
* CD Layer Table
V

struct 1 {
char ITechnology;
char lMask[3];
/* True if CDFrom should output layer */
char lCDFrom;

CDLayer[CDNUMLAYERS+l];

The CD layer descriptor is the building block of CD's layer table that is used

to equate a layer's name to a positive integer. This integer is always used inter

nally in CD to represent the respective layer.

A CIF layer name can be up to four characters long. The first character of

the CIF layer name is stored in ITechnology and the remaining characters are

stored in the IMask character buffer; the remaining characters in IMask will be

blanks. A layer is recognized as undefined if the ITechnology character member

16

of the layer table is a blank or space character. The ICDProm boolean has the

purpose of identifying the layer as visible or invisible when converting from

KIC/CD format to another layout language, such as CIF or Calma STREAM.

The maximum layers known to CD, and therefore the size of the layer table,

is defined by CDNUMLAYERS in the cd.h file. CD can be recompiled to provide

more mask layers. Because object layer numbers are stored in character fields,

the absolute maximum number of layers is 126. The size of the layer table is

larger than CDNUMLAYERS because layer zero is reserved as the instance layer.

2.2.9. The Path Descriptor

A contour or trajectory of coordinates is represented in CD as a null-

terminated linked-list of path descriptors. The path descriptor is defined in the

cd.h file as follows:

/*
* linked path structure.
•/

struct p {
int pX, pY;
struct p *pSucc;
):

The pX and pY integer members define one coordinate in the path. The

sequence of the coordinates in the path is identical to the succession of the path

descriptors in the linked-list. The pSucc member points to the next path

descriptor in the linked-list and is null at the last coordinate in the list.

17

2.3. Storage Bins

All objects contained within a CD symbol are sorted by position and layer,

and the sorted objects are stored in bins. A pointer to these storage bins is con

tained in the symbol descriptor, and each symbol has one complete set of

storage bins. This section presents a detailed description of the storage algo

rithm.

The world coordinate system of CD ranges from CDBINMINX to CDBINMAXX in

the x-direction, and from CDBINMINY to CDBINMAXY, and the world coordinate

system is covered by a square array of CDNUMBINS by CDNUMBINS storage bins

where these values are defined in the cd.h file as shown below. There is a special

storage bin called the residual bin that only for convenience is contained in the

storage bin array thereby adding another row and column to this array.

/•
* These are the numbers that CD uses to determine which bin an object
* resides in. They should reflect the average size of a layout being
* edited by KIC. KIC will not fail if the numbers are too small.
* Anything outside of this window is placed in the residual bin.
* If these numbers become too large, CDIntersect() must use floating
* point calculations.
V

#define CDBINMAXX 500000
#define CDBINMAXY 500000
#define CDBINMINX (-CDBINMAXX)
#deflne CDBINMINY (-CDBINMAXY)

^define CDNUMBINS 10

Each storage bin contains the beginning pointer to a linked-list of object

descriptors, those objects that are contained in the particular bin. When an

object is inserted into a bin as a result of a call to an object creation routines

(e.g„ CDMakeBoxQ, CDMakeWireQ, etc.), it is inserted at the top of the linked-

list. The bin into which an object is inserted depends on the bounding box of the

object. If the bounding box intersects an area covered by more than one bin,

the object is inserted into the residual bin. Otherwise, the object is inserted into

the bin that contains the bounding box of the object.

IB

If CD is compiled with a large number of bins, it will be able to rapidly

traverse a symbol hierarchy or quickly access any geometry in the symbol.

However, many storage bins also means that a signiflcant amount of memory

must be dedicated to the bin pointers, and that the number of objects in the

residual bin to be disproportionately large when compared to the number of

objects in the remaining bins; because the bins are smaller, the number of

objects that intersect more than one bin increases and these objects are

inserted into the residual bin.

The size of the residual bin can effect the speed at which the bins are

searched for objects. When the storage bins are searched for an object in a

specific area, it is of course necessary to examine the contents of each storage

bin that intersects the particular area. However, the bounding box of an object

that also intersects this area may also intersect several bins, in which case the

object descriptor is stored in the residual bin. Therefore, the residual bin must

always be searched, and consequently it is preferable to have the residual bin be

as small as possible.

CD allocates the memory for the storage bin pointers on demand. This

means that the memory requirements for the storage bins is a function of the

number of layers being used in the symbol as well as the number of storage bins.

When CD must allocate memory for the storage bin pointers, CDNUMBINS+1 by

CDNUMBINS+1 bins are allocated, where CDNUMBINS is defined in the cd.h file.

The bin that is pointed to by sBin[Layer][0][0] is the residual bin. The bins

sBin[Layer][Xl[0] and sBin[Layer][0][Yl, where X and Y are positive integers

not greater than CDNUMBINS, are unused. The remaining bins represent the

symbols storage bin structure.

The CD procedure that computes the range of storage bins that intersect a

particular area is called CDIntersectQ. The CD procedure that inserts an object

19

descriptor into the storage bin of a symbol descriptor and allocates mempry if

the particular bin has not been allocated is called CDInsertObjectDescQ. These

two CD routines are intended to be transparent to the CD user, and therefore

will not be described further in this document.

To possibly increase the efficiency of this binning algorithm, the values of

CDBINMAXX, CDBINMINX, CDBINMAXY, and CDBINMINY should be as small as pos

sible while still reflecting a realistic working area for the CD application. CD will

not fail if the real working area exceeds CD's range for the world coordinate sys

tem. Objects that exist outside the working world coordinate system of CD will

be inserted into the outer-most bins, and an object generator will find such

objects in those bins.

To minimize the number of objects in a given bin, the value of CDNUMBINS

should be as large as is affordable with the resulting memory requirements. If

the size of a pointer is four bytes, then the amount of memory required for only

the pointers of a binning structure in an entire symbol hierarchy is given by the

following equation:

4*(number of symbols)*(number of layers)*(CDNUMBINS+l)*(CDNUMBINS+l)

For an IC layout with 80 symbols, eight mask layers, and using only 10 bins, the

memory requirements for the bin structure can exceed 300 kbytes. Also, as the

numbers of bins increases, the size of the residual bin can be expected to

increase. But by far the greatest disadvantage to the binning algorithm is that

most bins remain empty and unused; a layout can typically exist entirely in the

first Cartesian quadrant of the world coordinate system, in which case only one

quarter of the bins would be used.

20

2.4. CD Procedures

2.4.1. CD Initialization

There are three procedures for initialization of the CD database.

void CDInitQ

int CDPath(Path)
char *Path;

void CDSetLayer(Layer, Technology, Mask)
int Layer;
char Technology;
char Mask[3];

CDInitQ must be invoked before any other CD procedures. This routine will

clear the layer table, set the directory search path to be the present working

directory, initialize the transformation stack, and allocate storage for diagnos

tics. CDInitQ should be called only once by an application.

CDPathQ sets the search rules for symbol-name resolution. The argument

Path is a pointer to a null-terminated string containing a list of directory names

to be searched separated by blanks. When a cell is opened via CDOpenQ the list

of directories is searched for the existence of the symbol file. The old search

path is removed by a call to CDPathQ and the default search path is the current

directory. In the UNIX environment, csh(l) style names, as described in the

BSD UNIXprogrammer's manual, will be understood.

CDSetLayerQ Inserts the layer argument Layer into the CD layer table with

the name TechnologyMask. If Technology and Mask contain only space or blank

characters, the layer definition is removed from CD, but any object that exists

on the particular layer is not deleted. The layer table is denned above with the

CD layer descriptor.

a4.2. Error Handling in CD

CD has a simple mechanism for handling errors. In the cd.h file, there are

two external error variables that are allocated by CDInitQ:

21

extern int CDStatusInt; /* CD's diagnostic integer */
extern char *CDStatusString; /* CD's status string */

If a CD routine encounters any difficulty, it will place an identifying diagnos

tic integer in CDStatusInt and a pointer to diagnostic character string in

CDStatusString, and then return the with value of False. The possible fatal

values for CDStatusInt are defined in the cdh file as follows:

^define CDPARSEFAILED 1 /* (FATAL) parse failed */
^define CDNEWSYMBOL 3 /* symbol not insearch path*/
#define CDMALLOCFAILED 11 /* (FATAL) out of memory */
#define CDBADBOX 12 /* zero width or length box */
#define CDXFORMSTACKFULL 13 /* transform stack overflow */
#define CDBADPATH 14 /* bad directory search path */

Error handling in CD may be confusing at first because only those routines

in which an error might occur will have a returned value. The routines in which

no error is expected are assigned the type definition void.

2.4.3. CD Symbol Management

There are four CD procedures for creating, deleting, and maintaining CD

symbols.

int CDOpen(SymbolName, SymbolDesc, Access)
char *SymbolName, Access;
struct s **SymbolDesc;

void CDSymbol(SymbolName, SymbolDesc)
char *SymbolName;
struct s **SymbolDesc;

hit CDClose(SymbolDesc)
struct s *SymbolDesc;

int CDUpdate(SymbolDesc, SymbolName)
struct s *SymbolDesc;
char *SymbolName;

The procedure CDOpenQ opens a symbol named SymbolName, allocates

memory for and returns the pointer SymbolDesc to a symbol descriptor that

represents the new symbol in the CD database.

The Access argument to CDOpenQ is a character that determines the result

after the current search path has been examined for the existence of a symbol

22

named SymbolName. If the character Access equals the character 'w*. then

CDOpenQ will create the cell in the database if it does not exist in the current

search path. In other words, the symbol will be opened for writing. If Access

equals the character *r\ then CDOpenQ will create the cell in the database if

and only if it exists in the current search path. In other words, the symbol is

only read into memory. If the cell does not exist in the current search path, no

symbol descriptor is inserted into the database, and SymbolDesc is assigned the

value of NULL. Finally, if Access equals the character 'n', the symbol is opened

regardless of whether any symbol named SymbolName exists in the current

search path. If such a file exists in the search path, it is not read into memory.

In other words, CD creates a new symbol.

CDOpenQ will call the routine PCIFQ to read the symbol into the database.

The parsing procedure is described in greater detail in Chapter 3. A brief

synopsis of PCIFQ is as follows:

PCIF(SymbolName, StatusString, Statuslnt)
char *SymbolName;
char **StatusInt;
int *StatusInt;

There are three requirements for the parser; first, the parser must locate

and read the symbol SymbolName, and insert the symbol definition into the CD

database by using the object creation routines described below in Section 2.4.4

(e.g., CDMakeBoxQ, CDMakeWireQ, etc.). Second, the parser must provide a

file called parser.h which contains the diagnostics described below. Finally,

when the parse is completed, PCIFQ must return a pointer to a null-terminated

diagnostic string via StatusString, and Statuslnt must be set to a value defined

in the parser.h file as follows:

#define PSUCCEEDED 1 /* successful return */
^define PFAILED 2 /* parser failed */
#define PNOTAPPLICABLE 3 /* parser failed, bad syntax */

23

PCIFQ may return with the diagnostic string StatusString equal to NULL if

and only if the parse succeeds. CDOpenQ returns with the value False if the

parse failed or if it was unable to allocate memory. When CDOpenQ returns,

CDStatusInt, as defined above, is set to a diagnostic value that is defined in the

cd.h file as follows:

^define CDPARSEFAILED 1 /* (FATAL) parse failed */
^define CDOLDSYMBOL 2 /* symbol already in opened */
#define CDNEWSYMBOL 3 /* symbol not in search path */
#define CDSUCCEEDED 4 /* new symbol found in path */

Only CDPARSEFAILED is returned as a fatal error (i.e., CDOpenQ returns

with the value False, and CDStatusInt has been set to the value of CDPAR

SEFAILED); this simplifies the diagnostic test. However, if the Access argument

is set to 'r* and the symbol is not found in the search path, CDOpenQ returns

with CDStatusInt set to the value of CDNEWSYMBOL. The application program

mer should be aware of this behavior because it could be considered as an error

if, for any reason, the symbol is expected to exist, such as when traversing a

symbol hierarchy. When the returned value of CDOpenQ identifies an error,

CDStatusString will contain a diagnostic message.

CDSymbolQ returns a pointer to symbol descriptor if the symbol Symbol-

Name has been previously opened and exists in memory. If the symbol does not

exist in memory, SymbolDesc is returned as a null pointer.

The CDCloseQ procedure will remove the symbol identified by SymbolDesc

from memory and any associated instances and geometries. Also, all property

lists associated with the symbol or any object in the symbol will be removed.

CDUpdaieQ will save any changes that have been made to the symbol refer

enced by SymbolDesc. The output will appear as CIF in a file in the current

working directory identified by the null-terminated string SymbolName. If Sym

bolName is a null pointer, the name of the CIF file will be identical to the name

C ^. -

24

of the symbol being updated.

2.4.4. CD Object Creation Routines

There are eight procedure for inserting an object into a CD symbol.

int CDMakeBox(SymbolDesc, Layer, Length, Width, X, Y, Pointer)
struct s *SymbolDesc;
struct o **Pointer;
int Layer;
int Length, Width;
intXY;

int CDMakeLabel(SymbolDesc, Layer, Label, X, Y, Pointer)
struct s *SymbolDesc;
struct o **Pointer;
int Layer;
char 'Label;
intXY;

int CDMakePoiygon(SymbolDesc, Layer, Path, Pointer)
struct s 'SymbolDesc;
struct o **Pointer;
struct p *Path;
int Layer;

int CDMakeWire(SymbolDesc, Layer, Width, Path, Pointer)
struct s *SymbolDesc;
struct o **Pointer;
struct p *Path; •
int Layer, Width;

int CDMakeRoundFlash(SymbolDesc, Layer, Width, X, Y, Pointer)
struct s 'SymbolDesc;
struct o "Pointer;
int Layer;
int Width, X Y;

int CDBeginMakeCall(SymbolDesc. SymbolName, NumX. DX, NumY, DY, Pointer)
struct s *SymbolDesc;
struct o "Pointer;
char *SymbolName;
int NumX, DX NumY. DY;

int CDT(Pointer, Type, X, Y)
struct o 'Pointer;
char Type;
intXY;

int CDEndMakeCall(SymbolDesc, Pointer)
struct s *SymbolDesc;
struct o 'Pointer;

CDMakeBoxQ will create a box of length Length in the x direction and width

Width in the y direction, centered at X,Y on the layer Layer in the symbol

25

identified by the descriptor SymbolDesc. Zero width or length boxes are not

allowed. Pointer contains a returned pointer to the object descriptor of the

newly created box. Because the object descriptor contains sufficient informa

tion to characterize a rectangle, the oRep member of the object descriptor, as

described previously in Section 2.2.4, is a null pointer if the object descriptor

represents a box. There is no box descriptor in CD.

CDMakeBoxQ will return with the value False if it is unable to allocate

storage. Otherwise, the value True is returned.

CDMakeLabelQ will create a label on the layer Layer in the symbol

identified by the descriptor SymbolDesc. The lower, left corner of the label will

be referenced to the coordinate X, Y, and Label is a pointer to a nuU-terrninated

string containing the label. Pointer contains a returned pointer to the object

descriptor of the newly created label For all labels, the oRep member of the

object descriptor, as described in Section 2.2.4, is cast as a pointer to a label

descriptor that is defined in the cd.h file as follows:

/*
* Label desc.

v
struct la \

char 'laLabel; /* text body */
int laX, laY; /* lower, left corner */
f:

CDMakeLabelQ will return with the value False if it is unable to allocate

storage. Otherwise, the value True is returned.

CDMakePolygonQ will create a polygon with a linked-list coordinate path

Path on the layer Layer in the symbol identified by the descriptor SymbolDesc.

Path is a pointer to a linked-list of coordinates as described previously in the

section that defines the path descriptor. Pointer contains a returned pointer to

the object descriptor of the newly created polygon. For all polygons, the oRep

member of the object descriptor, as described in Section 2.2.4, is cast as a

26

pointer to a polygon descriptor that is defined in the cd.h file as follows:

* Polygon desc.
V

struct po \
struct p *poPath; /* the polygon contour */
{:

CDMakePolygonQ will return with the value False if it is unable to allocate

storage. Otherwise, the value True is returned.

CDMakeWireQ will create a wire of width Width with a coordinate path Path

on the layer Layer in the symbol referenced by the descriptor SymbolDesc.

Path is a pointer to a linked-list of coordinates as described above in Section

2.2.9 that concerns the CD path descriptor. Pointer contains a returned pointer

to the object descriptor of the newly created wire. For all wires, the oRep

member of the object descriptor, as described in Section 2.2.4. is cast as a

pointer to a wire descriptor that is defined in the cd.h file as follows:

/•
* Wire desc.

v
struct w (

int wWidth; /* the wire width */
struct p *wPath; /* the wire contour */
i;

CDMakeWireQ will return with the value False if it is unable to allocate

storage. Otherwise, the value True is returned.

CDMakeRoundFlashQ will create a round flash of diameter Width centered

at X, Y on the layer Layer in the symbol identified by the descriptor Symbol

Desc. Zero diameter round flashes are not allowed. Pointer contains a returned

pointer to the object descriptor of the newly created round flash. For all round

flashes, the oRep member of the object descriptor, as described in Section 2.2.4,

is cast as a pointer to a round flash descriptor that is defined in the cd.h file as

follows:

27

/*
* Round flash desc.

•/
struct r [

int rWidth; /* the flash diameter */
int rX, rY; /* the center of the flash */
i:

The KIC program does not use round flashes and the round flash routines

are only presented in this section for completeness. All round geometries are

represented in KIC as polygons.

CDMakeRoundFlashQ will return with the value False if it is unable to allo

cate storage. Otherwise, the value True is returned.

CDBeginMakeCallQ allocates memory and initializes the object descriptor

that will represent the newly created instance of the symbol SymbolName.

NumX is the number of instances in the untransformed x direction and NumY is

the number of instances in the untransformed y direction. DX and DY are the

distances between the left and right edges and the top and bottom edges

respectively of two adjacent cells in the instance array. Pointer returns a

pointer to the new object descriptor. For all symbol calls, the oRep member of

the object descriptor, as described in Section 2.2.4, is cast as a pointer to a call

descriptor that is defined in the cd.h file as follows:

/•
* Call desc.

*/
struct c {

/* not used */
int cNum;
/* Pointer to transformation descriptor. */
struct t *cT;
/* Pointer to master-list descriptor. */
struct m 'cMaster;
/* Array parameters. */
int cNurnX, cNumY, cDX, cDY;

I:

The cT member of the call descriptor is a pointer to the transformation list

that will be defined by subsequent calls to the CDTQ routine. The cMaster

L. Z Z

26

member is a pointer to the master-list descriptor in the master-list of the sym

bol that instances the cell represented by the call descriptor. Because the

master-list descriptor contains the instance name, it is not necessary to contain

a name buffer in the call descriptor. The master-list is described in Section

2.2.2.

If SymbolName is not in the current search path, or CDBeginMakeCaU, can

not allocate storage, CDBeginMakeCaU returns with the value False and CDSta

tusInt will be set to a diagnostic integer defined in the cd.h file as follows:

#define CDPARSEFAILED 1 /* (FATAL) parse failed*/
^define CDNEWSYMBOL 3 /* symbol not in search path */
#define CDMALLOCFAILED 11 /* (FATAL) out of memory */

After invoking BeginMake CallQ, the procedure CDTQ is invoked for each

transformation in the call. The argument Pointer is a pointer to the object

descriptor that was returned by the CDBeginMakeCaU,Q procedure. The charac

ter Type identifies the transformation to be added to the call, and the valid

arguments for Type are defined in the cd.h file as follows:

^define CDMIRRORX 'x' /* mirror in direction of x */
#define CDMIRRORY 'y' /* mirror in direction of y */
#define CDROTATE V /* rotate by vector X. Y */
#define CDTRANSLATE *f /• translate to X. Y */

The arguments X and Y of CDTQ are used to qualify a rotation or transla

tion. Only rectilinear rotations are valid. For a rotation of 90 degrees, X has the

value of 1, and Y has the value of 0. For a rotation of 180 degrees, X has the

value of -1, and Y has the value of 0. For a rotation of 270 degrees, X has the

value of 0, and Y has the value of -1. For a translation, the integers X and Y are

used to specify the x and y displacements, respectively.

Remember that transformation order is signiflcant. Each invocation of

CDTQ adds another transformation descriptor to the transformation list that is

referenced by cT in the respective call descriptor, and thus the invocations of

29

CDTQ must be in the identical order of the instance transformation.

Finally, CDBndMakeCailQ is invoked to insert the call into the master sym

bol identified by SymbolDesc. The argument Pointer was of course returned by

a previous call to the CDBeginMakeCallQ procedure. CDEndMakeCaUQ will

return with the value False if it is unable to allocate storage. Otherwise, the

value True is returned.

2.4.5. CD Object Generator

An object generator in the context of CD is a set of procedures for acquiring

object descriptors for all objects on a specific layer and in a specific area of

interest. A generator will contain the following three CD procedures:

int CDInitGen(SymbolDesc, Layer, Left, Bottom, Right, Top, GenDesc)
struct s 'SymbolDesc;
struct g "GenDesc;
int Layer;
int Left, Bottom;
int Right, Top;

void CDGen(SymbolDesc, GenDesc, Pointer)
struct s 'SymbolDesc;
struct g 'GenDesc;
struct o "Pointer;

void CDType(Pointer, Type)
struct o 'Pointer;
char *TVpe;

CDInitGenQ returns a pointer to a generator storage descriptor GenDesc

that is allocated automatically and described in Section 2.2.5. Further invoca

tions of CDGenQ will return each object in the symbol identified by SymbolDesc

on the layer Layer whose bounding box intersects the area given by Left, Bot

tom, Right, and Top. If Layer equals zero, the invocations of CDGenQ will

return instances only (i.e., layer zero is the instance layer). CDInitGenQ will

return with the value of False if it is unable to allocate the generator storage

descriptor. Otherwise, the value of True is returned.

CDGenQ returns a pointer to an object descriptor that identifies an object

c _ ..

30

within the area of interest as defined by the previous call to .CDInitGenQ which

returned the pointer to the generator descriptor GenDesc. If CDGenQ returns

with Pointer set to NULL, then the last object has been returned and GenDesc

storage has been released.

CDTypeQ returns the type of an object pointed to by Pointer. The argu

ment Type is a pointer to a character that is set by CDOpenQ to a value defined

as follows in the cd.h file:

/•
•Types
V

#define

of geometries

CDSYMBOLCALL 'c'

^define CDP0LYG0N •p'
^define CDROUNDFLASH 'r'

^define CDLABEL '1'

^define CDWIRE •w1

^define CDBOX 'b'

This information routine is typically used in a generator loop to dispatch a

type-specific procedure for accessing the object. An example of a generator

loop for traversing a symbol hierarchy is provided in Section 2.6.

2.4.6. Accessing Objects in CD

All information that is necessary to characterize an object is stored in that

object's respective object descriptor and another representative descriptor that

is referenced in the object descriptor. Information for a specific object is there

fore easily obtained from the respective object descriptor. The following eight

CD procedures are used for accessing object-specific information:

void CDBox(Pointer, Layer, Length, Width, X, Y)
struct o 'Pointer;
int 'Layer, 'Length, 'Width, *X *Y

void CDLabel(Pointer, Layer. Label, X, Y)
struct o 'Pointer;
char "Label;
int 'Layer;
int *X. *Y;

^ <- —

31

void CDPolygon(Pointer, Layer, Path)
struct o 'Pointer;
int 'Layer;
struct p "Path;

void CDWire(Pointer, Layer, Width, Path)
struct o 'Pointer;
struct p "Path;
int 'Layer, 'Width;

void CDRoundFlash(Pointer, Layer, Width, X, Y)
struct o 'Pointer;
int 'Layer;
int 'Width, *X. *Y;

void CDCall(Pointer, SymbolName. NumX, DX, NumY, DY)
struct o 'Pointer;
char "SymbolName;
int 'NumX. *DX, 'NumY, »DY;

void CDInitTGen(Pointer, TGen)
struct o 'Pointer;
struct t "TGen;

void CDTGen(TGen, Type, X, Y)
struct t "TGen;
char *Type;
int *X *Y;

CDBoxQ will return the length Length in the x direction and the width

Width in the y direction of a box identified by the pointer Pointer to an object

descriptor. The box is centered at the coordinate X, Y and on the layer Layer.

CDLabelQ returns the pointer to a null-terminated label Label that has

lower, left justification to the coordinate X, Y and whose object descriptor is

pointed to by Pointer. The label is on the layer Layer.

CDPolygonQ will return a pointer to the linked-list coordinate path Path of

a polygon identified by the pointer Pointer to an object descriptor. The polygon

is on the layer Layer. The linked-list coordinate path is defined in Section 2.2.9

that describes the path descriptor.

CDWireQ will return a pointer to the linked-list coordinate path Path of a

wire with width Width that is identified by the pointer Pointer to an object

descriptor. The wire is on the layer Layer.

32

CDRoundFlashQ will return the diameter Width of a round flash identified

by the pointer Pointer to an object descriptor. The round flash is centered at

the coordinate X, Y and on the layer Layer. As explained earlier, KIC does not

use CD round flash routines.

CDCallQ returns the a character pointer to the name SymbolName of an

instance referenced by the object descriptor Pointer. Also returned is NumX

which is the number of instance in the untransformed x direction and NumY

which is the number of instances in the untransformed y direction. DX and DY

are the distances between the left and right edges and the top and bottom edges

respectively of two adjacent cells in the instance array.

The CDInitTGenQ routine initializes the transformation generator loop to

access the transformations of the instance referenced by Pointer. TGen is a

returned pointer to a transform generator descriptor. Subsequent invocations

of CDTGenQ will return the individual components of the instance transforma

tions.

CDTGenQ returns a character that identifies one component of the

transformation of the instance for which TGen was returned by the CDIn

itTGenQ routine as the transform generator descriptor. The argument Type is

a pointer to a character that is set by CDTGenQ to one of the values that are

defined as follows in the cd.h file:

#define CDMIRRORX 'x' /* mirror in direction of x */
#define CDMIRRORY 'y' /* mirror in direction of y */
jjfdefine CDROTATE V /* rotate byvector X, Y */
#define CDTRANSLATE *t* /* translate to X. Y */

The order in which the transformation components are returned by

CDTgenQ is identical to the order in which they were defined by calls to CDTQ.

The integer pointers X, Y are used to specify a rotation or translation. For a

rotation of 90 degrees, X has the returned value of 0, and Y has the returned

33

value of 1. For a rotation of 180 degrees, X has the returned value of -1, and Y

has the returned value of 0. For a rotation of 270 degrees, X has the returned

value of 0, and Y has the returned value of -1. For a translation, the returned

values of X and Y specify the x and y displacements, respectively. When

CDTGenQ returns with TGen set to NULL, then the last transformation has been

returned and TGen storage has been freed.

2.4.7. Object Deletion in CD

There is one procedure for removing objects from their respective symbol:

void CDDelete(SymbolDesc, Pointer)
struct s 'SymbolDesc;
struct o 'Pointer;

CDDeleteQ will remove the object pointed to by Pointer from the symbol

referenced by SymbolDesc. Because the object descriptor is doubly linked-list

(Le., it contains a pointer to the successor and predecessor in the list), the task

of deleting the object from the list can be completed without searching the

storage bins for the particular object that is to be removed. Also, the memory

of any property list that is associated with the deleted object is released.

2.4.8. CD Information Routines

There are six procedure for accessing or setting a variety of information

fields in object or symbol descriptors:

int CDBB(SymbolDesc, Pointer, Left, Bottom, Right, Top)
struct s 'SymbolDesc;
struct o 'Pointer;
int 'Left, 'Bottom. 'Right, Top;

void CDInfo(SymbolDesc, Pointer, Info)
struct s 'SymbolDesc;
struct o 'Pointer;
int 'Info;

void CDSetInfo(SymbolDesc, Pointer, Info)
struct s 'SymbolDesc;
struct o 'Pointer;
int Info;

34

void CDProperty(SymbolDesc, Pointer, Property)
struct s 'SymbolDesc;
struct o 'Pointer;
struct prpty "Property;

int CDAddProperty(SymbolDesc, Pointer. Value. String)
struct s 'SymbolDesc;
struct o 'Pointer;
char 'String;
int Value;

int CDRemoveProperty(SymbolDesc, Pointer, Value)
struct s 'SymbolDesc;
struct o 'Pointer;
int Value;

CDBBQ returns the bounding box of an object pointed to by Pointer in the

symbol identified by SymbolDesc. If Pointer is a null pointer, then CDBBQ

returns the bounding box of the entire symbol. The CDBBQ procedure may

have to use temporary storage during the computation of a symbols bounding

box. If it can not allocate the required memory, CDBBQ returns with the value

of False. Otherwise, the value of True is returned.

CDInfoQ returns the value Info of the integer information field of an object

referenced by Pointer. If Pointer is a null pointer, then the value of the infor

mation field of the symbol referenced by SymbolDesc is returned.

CDSetlnfoQ sets the integer information field the object pointed to by

Pointer. If Pointer is a null pointer, then the information field of the symbol

referenced by SymbolDesc is set. The information field is used extensively by

KIC to mark the object or temporarily storing information while the object is

being modified.

CDPropertyQ returns the pointer Property that references the linked-list

of properties associated with the object referenced by Pointer. If Pointer is a

null pointer, then the property list of the symbol referenced by SymbolDesc is

returned. The pointer Property is returned as a null pointer if there is no pro

perty list associated with the particular object.

35

The property list structure is defined in Section 2.2.7. A property consists

of an identifying integer and a null terminated character string extension.

There is no standard set of properties or property values, and CD never tries to

interpret the entries in a property list. Property lists are available for the

user's own specific use.

CDAddPropertyQ inserts property information into the property list of the

object referenced by Pointer. If Pointer is a null pointer, then the property is

added to the property list of the symbol referenced by SymbolDesc. The pro

perty information consists of an identifying integer Value and a null-terminated

character string extension that is pointed to by String. If CDAddPropertyQ is

unable to allocate memory, the value False is returned. Otherwise, the value of

True is returned.

CDRemovePropertyQ deletes property information from the property list of

the object referenced by Pointer. If Pointer is a null pointer, then the property

is removed from the property list of the symbol referenced by SymbolDesc.

Every property with the value of Value is removed. If CDRemovePropertyQ has

trouble allocating or releasing memory, the value False is returned. Otherwise,

the value of True is returned.

2.4.9. CD Integrity

After a symbol has been created or modified, it is eventually necessary to

reflect the changes throughout the CD database. The following procedure is pro

vided for this purpose:

int CDReflect(SymbolDesc)
struct s 'SymbolDesc;

CDReflectQ must be invoked at certain times by the CD application if the

symbol that is referenced by SymbolDesc is modified. If the changes to the

symbol has changed its bounding box, a call to CDReflectQ will update the

36

bounding box information in every other symbol in the CD database that refer

ences it either directly or indirectly. This procedure is called bounding boxpro-

pagatixm. Only the changes to the symbol referenced by SymbolDesc are pro

pagated through the database.

The correct use of CDReflectQ is important and well worth an example.

Consider two symbols X and Y, where symbol Y is called in X. The bounding box

of Y is changed by some means. If CDReflectQ is invoked with the symbol

descriptor of X as an argument, the changes to symbol Y will not be reflected in

the bounding box of symbol X. If however CDReflectQ is invoked with the symbol

descriptor of Y as an argument, all changes to the symbol Y will then be

reflected in the bounding box of X and all other symbols that call Y.

The value of False is returned if CDReflectQ is unable to allocate new

memory. Otherwise, the value of True is returned.

37

2.5. Two Dimensional Transformation Package

The following routines provide two dimensional, rectilinear transformations

using integer arithmetic. The package of routines includes such capabilities as

translation, mirroring, rotation, a transformation stack, and inverse transforma

tions. Transformations are modeled by three by three integer matrices. A

further explanation of these procedures and how a transformation may be

modeled by an integer array is provided in [6] and [7].

2.5.1. Initialization

The following procedure initializes the transform package:

void TInit()

TInitQ initializes the transform package and returns with the current

transform equal to the identity transform. Unlike the CDInitQ procedure,

TInitQ may be invoked more than once in an application program where the

only effect will be that all contexts in the transformation stack are lost. This ini

tialization routine is invoked by CDInitQ, by KIC routines that capable of detect

ing a recursive symbol hierarchy, and by interrupt handling routines.

2.5.2. The Current Transformation

The following eight procedures are used to access or modify the current

transformation:

void TIdentity()

void TTranslate(X, Y)
intXY;

voidTMY()

voidTMX()

void TRotate(XDirection, YDirection)
int XDirection, YDirection;

void TPoint(X, Y)
int «X, *Y;

TIdentityQ sets the current transformation to the identity matrix. The

previous current transformation is destroyed.

38

TTranslateQ postmultiplies the current transformation matrix by a

transformation that translates by a displacement of X, Y.

TMYQ postmultiplies the current transformation matrix by a transforma

tion that mirrors the y-coordinates (i.e., mirrors in the direction of the y axis).

TMXQ postmultiplies the current transformation matrix by a transforma

tion that mirrors the x-coordinates (i.e., mirrors in the direction of the x axis).

TRotateQ postmultiplies the current transformation matrix by a transfor

mation that rotates counter-clockwise by an angle that is expressed as a CIF-

style direction vector. Only 0, 90, 180, 270 degree rotations are allowed.

The TPointQ procedure transforms the point X, Y by multiplying it by the

current transformation matrix.

2.5.3. The Transformation Stack

The transformation stack structure is defined in the xforms.h file as fol

lows:

#define XFORMSTACKSIZE 100

/*
* Transformation stack structure.

v
struct tt {

int ttStack[XF0RMSTACKSIZE][3][3];
int ttSP;
int ttCurrent[3][3];
int ttInverseCurrent[3][3];
I:

Transformations are saved in their respective three by three array

representations in the ttStack stack structure member. The ttSP integer

member points to the current transformation on the stack, and the current

transformation is also contained in the ttCurrent array member. When the user

invokes the TInverseQ procedure to compute the inverse of the current

transform, the resulting transformation matrix is saved in the tt Inverse Current

structure member.

39

The following procedures are used for maintaining the transformation

stack:

int TEmpty()

int TFuU()

void TPushQ

void TPop()

void TCurrent(TF)
int *TF;

TEmptyQ returns the value of True if the transformation stack is empty. If

the transformation stack is completely filled, the value of False is returned.

TFuUQ returns the value of True if the transformation stack is full. Other

wise, the value of False is returned.

TPushQ pushes the current transform onto the transformation stack. The

value of the current transform is not changed, and the transformation stack is

not checked for an overflow condition.

TPopQ pops the current transform from the transformation stack. The

value of the current transform becomes the transform that was most recently

pushed onto the stack, and the transformation stack is not checked for an

underflow condition.

TCurrentQ places the current transform matrix in a nine integer array

that is passed from the calling program. The first row of the transformation

matrix appears as the first three integers in the argument, the second row of

the transformation matrix appears as the next three integers, etc. After several

transformations have been defined by TTranslateQ, TRotateQ, TMXQ, and

TMYQ, it is possible to determine the minimum resultant or equivalent

transformation through the examination of the elements of the current transfor

mation matrix as described in the following table:

40

TF[0] TF[3] TF[1] TF[4] Transformation
1 Translate only.
0 Rotate 90 deg., translate.
0 Rotate 180 deg., translate.

-1 Rotate 270 deg., translate.
1 Mirror in X translate.

-1 Mirror in Y, translate.
0 Mirror in X rotate 90 deg., translate.
0 Mirror in X rotate 270 deg., translate.

For all cases, the X, Y translation vector is given by TF[6], TF[7].

2.5.4. The Instance Transformation

The following procedure is provided specifically for maintaining instance

transformations:

void TPremultiply()

As an application program traverses a symbol hierarchy, it will maintain the

current instance transformation by computing the product of the symbols

current transform and the transformation of its master. TPremultiplyQ forms

the instance transform by premultiplying the current transform with the

transform that was last pushed onto the transformation stack and placing the

product in the current transformation matrix. Thus, the procedure for

transforming the coordinates of an instance is demonstrated below:

/* push master cell transform onto stack */
TPush();

/* set current transform to identity */
TIdentity();

/* Invoke TMX, TTranslate, etc. to build instance transform */
TMX();
TMY();
TTranslate(Dx, Dy);

/* Form the instance transform */
TPremultiplyO;

/* Invoke TPoint to transform instance points */
TPoint(&X, &Y);

/* return to master transform */
TPopQ;

1 0 0

0 -1 1

0 1 -1

-1 0 0

-1 0 0

1 0 0

0 -1 -1

0 1 1

<~ -. ^

41

2.5.5. Inverse of the Current Transformation

The following procedures are used to obtain an inverse transformation:

void TInverse()

void TInversePoint(X, Y)
int *X *Y;

TInverseQ computes the inverse of the current transformation. Computa

tion of the inverse transformation does not affect the current transformation.

The TInversePointQ routine transforms the point X, Y by multiplying it by the

inverse transform matrix. The TInversePointQ routine should not be invoked

before the TInverseQ procedure has computed the inverse of the current

transformation.

42

2.6. Traversing a Symbol Hierarchy with CD

The following routine is intended to display a symbol on a graphics terminal.

The reader will note the use of the two dimensional transformation package

described above as well as routines such as DisplayBoxQ that display

geometries on a CRT. It is assumed that the geometry display routines will

accomplish whatever window-viewport clipping is necessary. This example is

similar to the KIC display routine.

#include "cd.h"

main(){

/* initialize transformation stack */
TInit();

/* display SymbolName in the area Left, Bottom - Right, Top */
Dispiay(SymbolName, Left, Bottom, Right, Top)

\

Display(SymbolName, Left, Bottom, Right, Top)
char 'SymbolName;
int Left, Bottom, Right, Top;
!
struct s 'SymbolDesc;
struct g 'GenDesc;
struct o 'Pointer;
struct t TGen;
char 'InstanceName;
int NumX. NumY, DX DY;
int X, Y, Layer;
char Type;

/* open symbol named SymbolName (here we assume it exists) */
CDOpen(SymbolName, &SymbolDesc, 'r');

/* initialize generator to return instances in SymbolName */
CDInitGen(SymbolDesc, 0, Left, Bottom. Right, Top, fcGenDesc);

loop {
/* Invoke CDGen to access a pointer to an instance array */
CDGen(SymbolDesc, GenDesc, ^Pointer);

43

/* Have all instances been traversed? */
if(Pointer == NULL)

break;

/* push current transform of master onto stack */
TPushQ;

/* set current transform to identity */
TIdentity();

/* Access instance information */
CDCall(Pointer, fclnstanceName, &NumX. &DX, &NumY. &DY);

/* Initialize generator to return transform of InstanceName */
CDInitTGen(Pointer. &TGen);

/* place instance transformation in current transformation */
loop {

CDTGen(&TGen, &Type, &X &Y);
if(TGen == NULL)

break;
else if(Type == CDTRANSLATE)

TTranslate(X, Y);
else if(Type == CDMIRRORX)

TMX();
else if(Type == CDMIRRORY)

TMY();
else if(Type == CDROTATE)

TRotate(X, Y);
i

/* Combine transform of InstanceName with it's master */
TPremultiplyO;

/* recursively call display to traverse and display instance */
Dispiay(InstanceName, Left, Bottom, Right, Top);

/* pop master transform from stack */
TPop();
i

/♦ now traverse the geometries */
for(Layer = 1; Layer <= CDNUMLAYERS; ++Layer) (

/* Set the current color to be a color associated with Layer. */
SetColor(Layer);

/* initialize generator for layer Layer */
CDInitGen(SymbolDesc, Layer, Left. Bottom, Right, Top, &GenDesc);

loop \
/* Invoke CDGen to access pointer to an object */
CDGen(SymbolDesc, GenDesc, ^Pointer);

/* Last object? */
if(Pointer == NULL)

break;

/* Access the type of the geometry as Type */
CDType(Pointer, &Type);

i
!

44

/* Dispatch according to Type to specific procedure */
if(Type == CDBox) f

/* Access the box */
CDBox(SymbolDesc, Pointer, ...);
/* Transform the box's center. */
TPoint(&X, &Y);
/* Display the box. */
DisplayBox(X, Y, Length. Width);
i,

else if(Type == CDWire)}
/* Access the wire */
CDWire(SymbolDesc, Pointer, ...);

i

etc.

i

45

2.7. Translation Routines

The layout description language of CD is CIF. The following routines are

used by CD to generate or interpret CIF:

int CDTo(CTFFUe,Root,A,B,Program)
char 'CIFFile.'Root;
int AB;
char Program;

int CDFrom(Root,CIFFile,AB,Layers,NumLayers,Program)
char 'Root.'CIFFile.Program;
int 'Layer.NumLayers;
int A.B;

int CDParsedF(Root,aFFile,Program)
char •Root.'CIFFile.Program;

int CDGenCIF(FileDesc,SymbolDesc,SymbolNum,AB,Program)
FILE 'FileDesc;
struct s 'SymbolDesc;
int *SymbolNum,A,B;
char Program;

CDToQ translates from a CIF file named CIFFUe into symbol files, each hav

ing a file name identical to the symbol that it contains. CIF commands that are

not between a DS and a matching DF are stored in the file specified by Root. All

objects are scaled by the ratio A/B microns per lambda.

CDToQ will call the routine PCIFQ to read the input CIF file. The require

ments for this parser can be found in Section 2.4.3 describing the CDOpenQ rou

tine and in the section that describes the fast CIF parser.

Because there are different styles of CIF that embed symbol names

differently, the character Program will tell CDToQ and the parser PCIFQ which

style of CIF to expect. Before calling the parser, CDToQ sets the dProgram

character in the CD parameters structure described in Section 2.8 to the char

acter Program. By accessing this structure member, the parser determines the

origin of the CIF. The following values for Program are valid for the fast CIF

parser used by CD:

Program CIF format
•a' Stanford CIF.
'b* NCACIF,
'e' Berkeley's KIC with property extensions,
'h' HP's IGS,
T Xerox's Icarus,
•k' Berkeley's KIC,
'm' mextra-style CIF,
•s' Xerox's Sif,
'n' none of the above.

46

If the CDToQ routine encounters any difficulty in the CIF conversion, the

value of False is retuned, CDStatusInt is set to value of CDPARSEFAILED, and a

diagnostic message is placed in CDStatusString.

The CDFromQ routine translates a symbol hierarchy rooted at the symbol

named Root into a CIF file named CIFFUe. The style of CIF output is identified

by the character Program. The valid arguments for Program are the same as

for the CDToQ procedure. All objects are scaled by the ratio A/B microns per

lambda during the conversion. It is assumed that all instances in the symbol

hierarchy exist in the current search path.

The Layers argument is a pointer to an array of NumLayers integers that

are used to mask certain layers in CD layer table. If Layers[N] is zero, where N

is a non-negative integer less than NumLayers, then any object that is on layer

number N in the CD layer table will not appear in the CIF output file.

If CDFromQ encounters any difficulty in the conversion, the value of False

is retuned and CDStatusInt is set to one of the following values defined in the

cd.h file:

#deflne CDPARSEFAILED 1 /* (FATAL) parse failed */
#define CDNEWSYMBOL 3 /* symbol not in search path */
^define CDMALLOCFAILED 11 /♦ (FATAL) out of memory */

If no difficulty is encountered, CDFromQ returns with the value of True.

The CDParseCIFQ procedure will create a CD database rooted at a symbol

named Root from a CIF file CIFFUe rather than building the database from a

47

hierarchy of symbol files. The style of CIF input is identified by the character

Program. The valid arguments for Program are the same as for the CDToQ rou

tine.

When CDPorseCIFQ encounters a reference to a layer that was not previ

ously defined in the CD layer table by a call to CDSetLayerQ, the new layer is

added to the layer table. This differs from the CDFromQ and CDOpenQ routines

that return CDPARSEFAILED whenever they encounter an undefined layer. A

layer is considered undefined if the ITechnology field in the CD layer table is a

blank character. See Section 2.2.B that describes the CD layer descriptor.

If CDPorseCIFQ encounters any difficulty in the conversion, the value of

False is retuned and CDStatusInt is set to one of the following values defined in

the cd.h file:

#define CDPARSEFAILED 1 /* (FATAL) parse failed */
#define CDNEWSYMBOL 3 /* symbol not in search path */
#define CDMALLOCFAILED 11 /* (FATAL) out of memory ♦/

If no difficulty is encountered, CDParseCIF returns with the value of True.

CDGenCIFQ is used by the CDToQ routine to generate a CIF file identified

by the stream FileDesc of the CD symbol referenced by SymbolDesc. The

integer SymbolNum contains the number of the first symbol created in the CIF

file; the value will be incremented by one for succeeding symbol definitions. The

style of CIF output is identified by the character Program, and the valid argu

ments for Program are the same as for the CDToQ procedure. All objects are

scaled by the ratio A/B microns per lambda during the conversion. If CDFromQ

encounters any difficulty in acquiring or allocating memory, the value of False is

retuned and CDStatusInt is set to the value of CDMALLOCFAILED as defined in

the cd.h file. If no difficulty is encountered, CDGenCIFQ returns with the value

of True.

LL*

48

2.8. The CD Parameters Descriptor

Several parameters are required by CD to control actions. The CD parame

ters struct is defined in the cd.h file as follows:

struct d j
/•

* DCONTROLCDOPEN denotes CD is in CDOpen
* DCONTROLPCIF denotes CD is in parsing CIF in CDParseCIF
* DCONTROLCDTO denotes CD is in CDTo
* DCONTROLVANILLA denotes CD is in none of the above

V
char dControl;

/* Current parameters for symbol being parsed in CDOpen. */
int dNumX.dDXdNumY.dDY;

/* Scale factors for CDTo and CDFrom. */
int dA,dB;

/* Symbol scale factors. */
int dDSAdDSB;

struct o 'dPointer;
struct s 'dSymbolDesc;
struct s 'dRootCellDesc;

/* UNIX file names are limited to 14 characters */
char dSymbolName[FILENAMESIZE];
FILE 'dSymbolFiieDesc;

/•
* Fields used in CDTo follow.

V

/* True if parsing root symbol. */
int dRoot;

/* Root's file desc. */
FILE 'dRootFileDesc;

/* Current property list for symbol being parsed */
struct prpty 'dPrptyList;

/•
* dProgram == 'a' if Stanford CIF.
* dProgram == 'b'ifNCACIF.
* dProgram == 'e' if Berkeley CIF with property extensions.
* dProgram == 'h* if HP's IGS.
* dProgram == 'i'if Xerox's Icarus GF.
* dProgram == 'k' if Berkeley CIF.
* dProgram == *m* if mextra-style CIF.
* dProgram == 's' if Sif gened it.
* dProgram == 'n' if none of the above.
•/

char dProgram;

O L

49

f+

* Symbol name table for CIF file being parsed.
* UNIX file names are 14 characters, VMS names are smaller.

V
char dSymTabNames[CDNUMREMEMBER][FILENAMESIZE];
int dSymTabNumbers[CDNUMREMEMBER];
int dNumSymbolTable;

/•
* Because CIF files may have FORWARD references, CDTo must
* pass over the CIF file TWICE. On the first pass, it just
* fills up the symbol name table.
v

int dFirstPass;

/* True if debugging */
int dDebug;
int dNumSymbolsAllocated;
i

CDDesc;

The contents of the CD parameters descriptor CDDesc are available to all

source files that include the cdh header file. Most of the members in the CD

parameters structure are used for the parsing or generating of CIF. They are

used most frequently by the parser and action routines as working storage

space for symbol information. See Chapter 3 that describes the CIF parser and

action routines for a complete explanation of the use of each member in the CD

parameters descriptor.

D i. -

50

Chapter 3

The Fast CIF Parser

The CIF parser is the set of routines that interface KIC and CD to a standard

intermediate layout language (CIF) and the secondary storage site for symbol

definitions. This section describes the requirements of the layout language

parser and the parameters that control its actions.

The term fast is used here to indicate that whenever there was a choice to

be made between the size of the routines and their respective speed, the deci

sion has always been to optimize for speed. Consequently, the parser is the larg

est module in KIC. With the optimizations that have been made to the parser,

the CDOpenQ routine is nevertheless limited by the speed of the parser that is

impeded by the excessive overhead of memory allocation.

Three source files constitute the CIF parser; they are parser.c, actions.c,

and gencif.c. The routines in parser, c scan the input file for the primitive com

mands of the layout language. The action routines are invoked by the parser

when a primitive command is found. The gencif routines produce the primitives

of the CIF layout language in the syntax that the parser understands.

Because the data model for the CD database is CIF, it would be difficult to

replace the fast CIF parser with that of another layout language if the user

should decide to do so. It is nevertheless possible to make CD speak in another

language, given that the layout language is hierarchical and has similar

geometry types. To accomplish this, the programmer would have to replace the

source files parser.c, actions.c, and gencif.c as well as rewrite the CD routines

CDUpdateQ, CDGenCIFQ, CDToQ, CDFromQ, and CDPorseCIFQ.

51

3.1. Action Routines

The function of the parser is to interpret the layout language, and the

action routines are used by the parser to complete tasks that are specific to

primitive commands of the layout language in one of three contexts. The con

text of actions is defined by the dControl member of the CD parameter descrip

tor CDDesc that can have one of four value that are defined in the cd.h file as

follows:

/•
* CD Control flags

#define DCONTROLCDOPEN
#define DCONTROLPCIF
#define DCONTROLCDTO

'o'

'P*
'f

#define DCONTROLVANILLA V

This section will describe the purpose of each of the above flags.

The action routines are invoked only by the parser. The DCONTROLVANILLA

control character flag indicates that CD is not in the process of parsing CIF. An

action routine should therefore never be invoked when the control flag is set to

this value.

The DCONTROLCDTO control flag is used to signify that CD is currently

translating a CIF file into individual KIC or CD symbol files. The action to be per

formed for this case is to output the primitive command that was found by the

parser directly into the respective symbol file. If the CDDesc.dRoot fiag is non

zero, output will be directed to the file referenced by CDDesc.dRootFUeDesc,

and output will otherwise be directed to the file referenced by

CDDesc.dSymbolFUe Desc.

The root file descriptor CDDesc.dRootFUeDesc is initialized by CDToQ or

whatever procedure that would invoke the parser with the CDDesc.dControl flag

set to the value of DCONTROLCDTO. The symbol file descriptor

CDDesc.dSymbolFileDesc however must be initialized by the action routine

52

ABeginSymbolQ which is invoked for a new symbol definition, and therefore this

action routine must be capable of determining the symbol name depending on

the particular style of CIF that is identified by the value of CDDesc.dProgram.

Also this routine must set CDDesc.dRoot to zero to direct subsequent output to

the respective symbol file. The symbol file is closed and CDDesc.dRoot is set to

unity by the action routine AEndSymbolQ which is invoked at the termination of

a symbol definition.

Because CIF may contain forward references to symbols, it is necessary for

the action routines to build and maintain a symbol table. As a result, the pars

ing is a two-pass operation, where the first pass is dedicated to the construction

of the symbol table by the ABeginSymbolQ action routine. The symbol table is

represented in the CD parameters descriptor as follows: the integer dNumSym-

bolTable is a count of the current symbols in the table. The character array

dSymTabNames[CDNUMREMEMBER][FILENAMESIZF!\ contains the symbol

names, and the array dSymTabNumbers[CDNUMREMEMBER] contains the

corresponding symbol numbers.

All measurements are be scaled by the following value:

(CDDesc.dB * CDDesc.dDSA) / (CDDesc.dA * CDDesc.dDSB)

The integer values CDDesc.dDSA and CDDesc.dDSB are the symbol scale factors,

dimensionless, and are currently always set to unity. The integer values

CDDesc.dA and CDDesc.dB define respectively the micron per lambda scaling

ratio. Because the conversion is from CIF, for which the database unit is one

one-hundredth of a micron, to KIC or CD format, for which the database unit is

one-hundredth of a lambda, the value of CDDesc.dB is in the numerator. The

scale factor is computed for every metric value to avoid the use of floating point

arithmetic; because integer arithmetic is significantly more fast than floating

point, this is not a severe penalty.

53

The DCONTROLCDOPEN control flag is used when CD is currently parsing a

symbol file. This action differs significantly from the previously described

actions in that the CD database is constructed in local memory. When objects

are discovered by the parser, the action routine for the object will insert it into

the the symbol descriptor referenced by CDDesc.dSymbolDesc which is initial

ized by the CDOpenQ procedure. Consequently, there is one action routine for

each of the CD object creation procedures described in Section 2.4.4. There is

no scaling performed on the objects when they are inserted into the symbol

storage bins; metric data is represented in one one-hundredth lambda units in

the KIC or CD symbol files.

Because the creation of an instance requires the invocation of several CD

procedures using the same object pointer, the parameter CDDesc.dPointer is

used as the object descriptor pointer for all CD object creation procedures. The

property list referenced by CDDesc.dPrptyList as attached to each object or

symbol after its creation. This allows property information to be saved in the

CIF as user extensions.

The KIC or CD symbol files contain extensive information that allows the

handling of forward references to be postponed until all geometric objects have

been parsed, and thereby avoid two passes through the symbol file. When a sym

bol call is encountered, the action routine will insert the object descriptor for

the instance into the storage bins and a reference is made in the master-list of

the calling symbol. The CDBeginMakeCaUQ procedure will not attempt to open

the instance in CD if the CDDesc.dControl flag is set to DCONTROLCDOPEN. When

the parsing of a particular symbol has completed, CDOpenQ will begin travers

ing the symbol's master-list, read all referenced symbols into the database if

they have not already been opened, and invoke the CDReflectQ procedure to

reflect the bounding box of the every instance throughout the CD database. This

54

algorithm allows CDOpenQ to be called recursively to build a multi-level symbol

hierarchy.

The CDOpenQ routine will set the CDDesc. dControl control flag to the value

of DCONTROLVANILLA before terminating.

The DCONTROLPCIF control flag is used when CD is constructing the data

base from a CIF file instead of a directory of KIC or CD symbol files. The actions

to be performed are often identical to those for DCONTROLCDOPEN where the

major differences are in the handling of symbol definitions. The symbol descrip

tor CDDesc.dSymbolDesc is initialized by CDPorseCIFQ or whatever procedure

that would invoke the parser with the CDDesc.dControl flag set to the value of

DCONTROLPCIF. The symbol descriptor CDDesc. dRootFileDesc, is used as tem

porarily storage of the CDDesc .dSymbolDesc symbol descriptor by the action

routine ABeginSymbolQ which is invoked when a new symbol definition is

discovered by the parser. This action routine will then open a new symbol in the

database for the new symbol definition and therefore this routine must be capa

ble of determining the respective symbol name depending on the particular

style of CIF that is identified by the value of CDDesc.dProgram. The descriptor

pointer CDDesc. dSymbolDesc is again set to the pointer CDDesc. dRootFUeDesc,

by the action routine AEndSymbolQ which is invoked at the termination of a

symbol definition.

When objects are discovered by the CIF parser, the action routine for the

object will insert it into the the symbol descriptor referenced by

CDDesc.dSymbolDesc. There is no scaling performed on the objects when they

are inserted into the symbol storage bins.. An application program that uses the

CDPorseCIFQ routine must be aware that the size of the CDdatabase unit is one

one-hundredth of a micron.

Because CIF may contain forward references to symbols, it is again

55

necessary for the action routines to build and maintain a symbol table. As a

result, the parsing is a two-pass operation, where the first pass is dedicated to

the construction of the symbol table by the ABeginSymbolQ action routine. The

symbol table is represented in the CD parameters descriptor as follows: the

integer dNumSymbolTable is a count of the current symbols in the table. The

character array dSymTabNames[CDNUMREMEMBER][FILENAMESIZ£] contains

the symbol names, and the array dSymTabNumbers[CDNUMREMEMBER] con

tains the corresponding symbol numbers.

When the parsing of the CIF file has been completed, CDPorseCIFQ will

traverse the master-lists of all symbols for the purpose of assuring that all refer

enced symbols are defined in the database and for bounding box propagation.

The CDBeginMakeCaUQ procedure will not try to open the referenced symbol if

the control flag CDDesc.dControl is set to DCONTROLPCIF, and the bounding box

in the respective master-list descriptor is set to a null box having zero width and

heigth. This is necessary because a referenced symbol may not have been

inserted into the database at the time that the call command is recognized by

the parser.

56

Chapter 4

The KIC User Interface

4.1. Window and'Viewport Management

A window is an area in a world coordinate system that contains objects to be

displayed. A viewport is the area on the graphics display in which the user views

the contents of a window. In other words, the window defines the objects in the

database to be displayed, and a viewport defines where to display the objects.

The world coordinate system in KIC contains the CD symbol that is currently

being edited. The unit of measurement in the world coordinate system is one

one-hundredth of a lambda, the same unit used by CD.

A window may intersect an object in the current symbol such that the

object is not contained entirely in the window, in which case the object would

have to be clipped to the window before it is displayed in the viewport. For KIC,

all windows and viewports are rectangular which simplifies the geometry clipping

procedures.

The coordinate system in a window is identical to the world coordinate sys

tem. The coordinates in a viewport usually correspond to the resolution of the

graphics display; this provides one viewport coordinate per display pixel. The

origin of the coordinate system for the layout viewports in KIC is assumed to be

the lower, left corner of the display. KIC uses a different coordinate system for

the viewports that contain only textual information. In this textual coordinate

system, a coordinate refers to a character block, and the origin is the upper

right corner of the graphics display. For example, the text coordinate (1,1)

refers to the graphical text character in the upper-most row and left-most

column of the display; the text coordinate (5,10) refers to the graphical text

57

character in the fifth row and tenth column of the graphics display.

KIC divides the graphics display into six viewports: the command menu

viewport, the layer menu viewport, the information viewport, the prompt

viewport, and the course and fine layout viewports. The following figure illus

trates the relative positions of each viewport.

C
0
M
M
A
N
D

M
E
N
U

V
I
E
W
P
0
R
T

LAYOUT VIEWPORTS

PROMPT VIEWPORT
INFORMATION VIEWPORT
LAYER MENU VIEWPORT

Figure 2. The KIC viewports

KIC represents windows and viewports with the area descriptor that is

defined in the kic.h file as follows:

/•
* Area structure

•/
struct ka (

int kaLeft, kaBottom, kaRight, kaTop;
int kaX, kaY;
float kaWidth, kaHeight;
):

See Section 4.2 that describes the basic KIC data structures for an explana

tion of the area structure members.

58

4.1.1. Text Viewports

There are four viewports used by KIC for displaying textual information; the

layer menu viewport, the information viewport, the command menu viewport,

and the prompt viewport. Because the position of the prompt viewport can be

computed from the parameter viewport, the first three viewports are defined in

the kvc.h header file as follows:

/*
* KIC text viewports
v

struct ka MenuViewport;
struct ka LayerTableViewport;
struct ka ParameterViewport;

As described above, KIC uses a special coordinate system for viewports that

display only textual information. A coordinate in this system refers to the space

of one character block on the display given that no two characters overlap. The

size and position of textual viewports in KIC are always represented by these

character-block units, and only the kaLeft, kaBottom, kaRight, and kaTop

members of the respective area structure are used to define a text viewport. By

using this character block representation of graphic text, KIC simulates a typi

cal ASCII character terminal.

4.1.1.1. Layer Menu Viewport

The layer menu viewport is used by KIC to display the names and colors of

all layers in the KIC or CD layer tables. The layer menu viewport always occupies

the bottom text rows of the display, and is described first because the size and

position of all other viewports depend on it's size. KIC will display in the layer

viewport only those layers that are defined in the layer table, and therefore the

size of the layer menu viewport is not fixed. KIC computes the number of layer

names that can be displayed in a single row and saves this value in the kpLayer-

sPerMenuRow member of the KIC parameters structure that is described in

Section 4.3; a layer name is assumed to be less than or equal to four characters.

59

From the number of layers defined in the layer table, KIC then computes the

number of text rows required for the layer menu viewport. These computations

are performed by the InitViewportsQ procedure. After the viewports are initial

ized, the ShowLayer TableQ procedure is invoked to display the layer table in

the layer menu viewport.

The layer menu viewport is indeed a menu in that it is used to indicate and

select the current layer. The current layer is represented by the kpLayer

member of the KIC parameters structure and defines the layer to be used by

layer dependent commands such as the geometry creation procedures. The

current layer is indicated by a box around the name of the layer that is drawn

by the OutlineTextQ procedure. When the KIC user points at a layer name in

the layer menu viewport with the graphical pointing device, the PointlayerT-

ableQ procedure is invoked to determine the next current layer in KIC.

4.1.1.2. Parameter 'Viewport

The parameter viewport occupies the graphical text row that is immediately

above the layer menu viewport. It displays current information such as the

name of the current symbol and the width of the large, coarse window in lambda

units. This information is displayed by invoking the ShowParametersQ pro

cedure. Also displayed in the parameter viewport is the lambda coordinate of

the last point entered through the graphical pointing device and the displace

ment of this coordinate from the location of the previous pointing event. This

information is displayed by invoking the ShowXYQ routine.

4.1.1.3. PromptViewport

The prompt viewport occupies the graphical text row that is immediately

above the parameter viewport and displays information that is relevant to the

command procedure that the KIC user currently is executing. A character

string is displayed in the prompt viewport by invoking the ShowPromptQ or

60

ShowPromptAndWaitQ procedures. The latter procedure will a bell character

(control-G) to alarm the user of the prompt, and then wait for two seconds

before continuing.

As it's name suggests, the prompt viewport is also used to prompt the KIC

user for keyboard input. When the user responds to the prompt by typing at the

keyboard of the graphics device, the characters that he types will be displayed

(or echoed) in the prompt viewport. To inform the keyboard input routine of the

character position at which to begin displaying input characters, the character

size of every prompt string is saved by the ShowPromptQ routines in the

fLastCursorColumn member of the current frame buffer structure that is

described in Section 4.6.1.

4.1.1.4. Command Menu 'Viewport

The command menu viewport is a textual viewport used by KIC to display

the current command set or command menu. A command menu in KIC is

represented by an array of character strings, each string containing the name

of a particular command. When the KIC user points in the command menu

viewport with the graphical pointing device, the string that is displayed on the

row to which the user pointed is placed in the kpCommand buffer in the KIC

parameters structure by the PointQ procedure to identify the selection of a

command. The PointQ procedure is described further in Section 4.5.

The width of the command menu viewport is exactly five columns or five

character block units, which requires command names to be no longer than five

characters. The left edge of the command menu viewport is the is the left edge

of the graphics display, and the top of the viewport is also the top of the display.

The bottom row of the command menu viewport is the row that is immediately

above the prompt viewport.

A command menu is displayed in the command menu viewport by the

61

ShbwMenuQ procedure. When a menu command is selected by the KIC user, it

is highlighted by the MenuSelectQ procedure.

4.1.2. LayoutViewports

There are two windows in KIC that will map to one of three viewports for

displaying layout information; the coarse viewport, the large coarse viewport,

and the fine viewport. No more than two layout viewports are ever used at any

given time. The layout windows and viewports are defined in the kic.h file as fol

lows:

/*
* Windows and the viewports they map to.

•/
int FineViewportOnBottom;
int FineWindowWidth,FineKTmdowHeight;
struct ka CoarseViewport,CoarseWindow;
struct ka LargeCoarseViewport.SmaUCoarseViewport;
struct ka FineViewport,FineWindow;

The coarse window CoarseWindow is typically used to define the general

area in which the KIC user is working, and the fine window FineWindow defines a

smaller working area with greater resolution. The fine window is generally con

tained in the area of the coarse window, but is not constrained to be such.

The four defined viewports are allocated as follows: the large coarse

viewport Large Coarse Viewport represents the entire area of the screen that is

dedicated for displaying layout information. The fine viewport represents either

the bottom third or the left half of the layout area depending on the logical

value of Fine ViewportOnBottom. After the display area of the fine viewport has

been allocated, the remaining layout area is represented by the small coarse

viewport SmaUCoarse Viewport. The current coarse viewport, the one that will be

displayed depending on the width of the coarse window, is represented by the

descriptor CoarseVie^uport. Unlike text viewports, the layout viewports are

measured by numbers of display pixels. The size of the large and small coarse

viewports, the fine viewport, and all text viewports is computed by the

82

InitViewportQ procedure.

The coarse window is displayed in either the large coarse viewport or the

small coarse window depending on the width of the window. When the number of

pixels per lambda in the large coarse viewport exceeds roughly the value of

kpPointing Threshold in the KIC parameters structure, only the large coarse

viewport is displayed, and the fine viewport is not displayed. For larger windows,

the contents of the coarse window are displayed in the small coarse window, and

the fine window is displayed in the fine coarse viewport. The decision of whether

the coarse window is displayed in the large or small coarse viewport is made in

the SwitchToFinePositioningQ procedure.

To generalize, there are two modes in KIC for displaying layout information;

one mode is to display only the coarse window in the large coarse viewport, and

the second mode is to display the coarse window in the small coarse viewport

and to display the fine window in the fine viewport. The current mode of display

can be determined from the contents of kpRedisplayControl in the KIC parame

ters structure that can assume one of following values defined in hic.h file:

/*
* Viewport control flags

V
^define SPLITSCREEN *b'
#define FINEVIEWPORTONLY T
#define COARSEVIEWPORTONLY 'c'

If both the fine and small coarse viewports are displayed, the kpRedisplay-

Cbntrol parameter will be assigned the value of SPLITSCREEN by default, and

the kpDisplayFine Viewport parameter will be set to the value of True. If only

the large coarse viewport is displayed, then kpRedisplayControl will assume the

value of COARSEVIEWPORTONLY by default, and the kpDisplayFine Viewport

parameter will be set to the value of False. By setting the display control

parameter to the value of FINEVIEWPORTONLY, only the fine viewport will be

updated by a display routine, and the COARSEVIEWPORTONLY switch will result in

63

only the small or large coarse viewport to be effected by a display routine. Any

procedure that uses the display control parameter to control the KIC geometry

display routines must reset the parameter to it's default value before terminat

ing.

4.1.3. Clipping

Because KIC was written to run on most "dumb" or low performance graph

ics terminals, it is necessary to accomplish window-to-viewport geometry clip

ping on the host machine instead of down-loading the task onto the graphics

device. Clipping is the procedure by which sections are removed from a particu

lar geometry such that the contour will be contained entirely in the targeted

viewport. Because KIC uses only rectangular viewports, the clipping of rectan

gles is trivial and will not be explained here in detail. The LToPQ macro, which

converts lambda coordinates to display coordinates, performs a rectangular

clipping to the destination viewport.

If the graphics device provides such capabilities as geometry clipping and

definable viewports and windows, these tasks can be down-loaded to the device,

but probably not without considerable rewriting of code. The graphics device

would be required to support a world coordinate system that is as extensive as

the system used by CD. Many terminals that claim to have this ability limit the

world coordinate values to short integers that are inadequate for an IC layout

with sub-lambda resolution. The KIC window management system may have to

be modified to be efficiently adapted to graphics device with definable viewports.

At present, the KIC geometry display routines operate under the assumption

that objects can be displayed in any layout viewport at any time; in other words,

there is no notion of a current viewport. Considerable overhead may result from

viewport context switching on a graphics device that handles the KIC viewport

management in this manner.

64

The procedure MFBPolygondipQ for clipping polygons to a window is pro

vided by the MFB library of graphics routines and is described in detail in [6]. It

is an easy task to clip a line segment to a half-plane when the edge of the half-

plane is parallel to a coordinate axis. If we consider the interior of a window or

viewport to be the intersection of four such half-planes, the clipping of a polygon

can be performed by traversing the edge list of the polygon once for each half-

plane, clipping the edges to the respective half-plane.

Polygon clipping is performed in the world coordinate system in KIC; a

polygon is clipped to a particular window and then mapped to the targeted

viewport. KIC invokes the frame buffer interface routine FBPolygonClipQ which

then invokes the MFBPolygondipQ procedure. This provides the programmer

with the ability to easily insert his own polygon clipping routine, if he wishes to,

and still use routines in the MFB graphics library.

4.1.4. Window/Viewport Transformations

KIC uses the LToPQ macro for converting from lambda database coordi

nates to pixel display coordinates, and the PToLQ procedure converts from

display coordinates to lambda coordinates in a given window; the macro is used

for speed and performance considerations. For a more complete explanation of

window/viewport transformations, see [6].

The LToPQ macro performs window-to-viewport clipping of rectangles and

is defined as follows in the coords.h header file:

#define LToP(Viewport,Window,X,Y)i \
X= (int)(((float)(X-Window.kaLeft)*Viewport.kaWidth) \

/Window. kaWidth)+Viewport.kaLeft; \
Y = (int)(((float)(Y-Window.kaBottom)*Viewport.kaHeight) \

/Window. kaHeight)+Viewport.kaBottom; \
if(X < Viewport.kaLeft) X = Viewport. kaLeft; \
else if(X> ViewportkaRight) X = Viewport.kaRight; \
if(Y < Viewport-kaBottom) Y = Viewport.kaBottom; \
else if(Y > Viewport.kaTop) Y = Viewport.kaTop; \
i

65

The efficiency of the procedure is essential because it must be executed at

least twice before any geometry can be displayed on the graphics device. Float

ing point arithmetic is however used for both safety and accuracy. If the com

putation did not use floating point arithmetic and assuming one hundred data

base units per lambda, the approximate allowable window width before an

overflow occurred would be fourty thousand lambda (for a Ik by Ik display reso

lution and a four byte integer representation). If forty thousand lambda is an

acceptable size for a world coordinate system, it is recommended that the

transformation use only integer arithmetic for efficiency; experience has fre

quently shown, however, that a larger world coordinate system is desirable.

The PTqLQ macro performs viewport to window coordinate conversion and

also performs cursor snapping. Cursor snapping is the procedure by which coor

dinates that are returned from the graphical pointing device are constrained to

lie on a grid. The lambda spacing between adjacent points on the grid is

specified by the kpPixToLambdxiSnapping member in the KIC parameters struc

ture defined in Section 4.3. PToLQ is defined in the coords.h file as follows:

#define HALFSNAPPING Parameters.kpHalfPixToLambdaSnapping
^define SNAPPING Parameters.kpPixToLambdaSnapping

PToL(Viewport,Window,X,Y)
struct ka Viewport, Window;
int *X, *Y;

\
float tmpl, tmp2;
tmpl = ((float)(*X - Viewport.kaLeft));
tmp2 = Window.kaWidth / Viewport. kaWidth;
•X = ((int)(tmpl * tmp2)) + Window.kaLeft;
if(*X >= 0) *X = ((*X+HALFSNAPPING)/SNAPPING)*SNAPPING;
else *X= ((*X-HALFSNAPPING)/SNAPPING)*SNAPPING;
tmpl = ((float)(*Y - ViewportkaBottom));
tmp2 = Window.kaHeight / Viewport.kaHeight;
*Y = ((int)(tmpl * tmp2)) + Window.kaBottom;
if(*Y >= 0) *Y = ((*Y+HALFSNAPPING)/SNAPPING)*SNAPPING;
else *Y = ((*Y-HALFSNAPPING)/SNAPPING)*SNAPPING;
i

The PToLQ procedure is invoked whenever the KIC user points in a viewport

66

with the graphical pointing device or when KIC is required to compute the size in

lambda of an area on the graphics display; efficiency is certainly not an issue.

Because it is essential, however, that the PToLQ procedure be the inverse of

LToPQ, accuracy is an issue, and, therefore, floating point arithmetic is used. If

one procedures was not the inverse of the other, the integrity of the layout

display and graphical pointing device would be questionable, and that for a

graphics editor would be intolerable.

87

4.2. KIC Data Structures

The basic data structures of KIC are described in this section. The KIC

parameters structure is described separately in Section 4.3.

4.2.1. The Area Descriptor

The KIC area descriptor is defined in the kic.h header file as follows:

/•
* Area structure.

v
struct ka f

int kaLeft, kaBottom, kaRight, kaTop;
int kaX, kaY;
float kaWidth, kaHeight;
(:

The KIC area structure is used for storing the representations of both rec

tangles and rectangular areas. Every possible representation of the rectangle is

contained in this structure for convenience. The kaLeft, kaBottom members

define the untransformed lower, left coordinate of the rectangle, and the

kaRight, kaTop members define the untransformed upper, right coordinate of

the rectangle. The kaX, kaY members represent the untransformed center of

the rectangle, and the kaWidth member defines the width of the rectangle in the

horizontal direction, and kaHeight defines the height of the rectangle in the

vertical direction.

The area structure is also used by KIC for representing the several windows

and viewports that are described in Section 4.1. In practice, the kaWidth and

kaHeight members are used exclusively for this purpose if and only if the

viewport or window is used for the display of layout information. They are

defined as fioating point values so that the window-to-viewport transformation

routines, which use floating point arithmetic for accuracy, are not required to

compute the floating point width and height and for every window-to-viewport

coordinate transformation.

68

The kaWidth and kaHeight structure members are never used when the ka

area structure represents a rectangle or one of the four viewports that display

only textual information; they are used exclusively for layout viewports or win

dows.

4.2.2. The Window Stack Descriptor

The KIC window structure is defined as follows in the kic.h header file:

/•
* Structure used to save windows in window stack

•/
struct kw {

int kwLastWindowX;
int kwLastWindowY;
int kwLastWindowWidth;
int kwLastFineWindowX;
int kwLastFineWindowY;
char kwName[8];
J;

KIC provides the user with the ability to assign names to specific windows

and to save the respective window on a stack such that the user can randomly

return to any desired view of the layout. An array of kw structures is just such

a list of layout windows. The kwName character string is the user-specified

name for the window. The structure members kwLastWindowX and kwLastWin

dowY define the center coordinate of the window, and kwLastWindowWidth

defines the width of the coarse window in one one-hundredth lambda units. The

coordinate kwLastWindowX, kwLastWindowY defines the center of the fine win

dow or magnifying glass.

The width of the fine window is assumed to be that default value that is com-

V

puted by the InitFine WindowQ initialization routine. If the width of the coarse

window is such that it is not necessary to display the fine window, this condition

would be recognized by invoking the SwitchToFinePositioningQ procedure after

retrieving a window definition from the window stack.

69

4.2.3. The KIC Layer Table Descriptor

The KIC layer descriptor and layer table are defined in the kic.h header file

as follows:

/•
* The following information is read from the .K2Cfile.
v

struct kl \
int klR, klG, klB; /* RGB color */
int klMinDimensions; /* Minimum lambda dimensions */
int ktfllled; /* filled or outlined? */
int klStyle[8]; /* bit array for fill pattern */
int klStylelD; /* style ID */
int klCoarseStylelD; /* style ID for Coarse window */
int kiFineStylelD; /* style ID for Fine window •/
int klVisible; /* visibility */
int klBlink; /* blinking layer? */
int klSymbolic; /* symbolic? */
int klWireWidth; /* wire width >= mindiniensions */
char klTechnology; /* layer name */
char klMask[3];
i

LayerTable[CDNUMLAYERS+1];

int NumLayerTable;

An array of KIC layer descriptors represents the KIC layer table that differs

from the CD layer table in that it contains display information as well as layout

guidelines. The size of the KIC layer table is identical to that of the CD layer

table, and the entries correspond to directly the CD layer numbers. The name

of a particular layer represented by a KIC layer descriptor is given by the char

acter string klTechnologyklMask and also is identical to the name of the

corresponding layer in the CD layer table. As in the CD database, layer zero

represents the instance layer, and because KIC has special procedures for

displaying instances, the KIC layer descriptor for layer zero is unused.

The klMinDimensions structure member specifies the minimum lambda

dimension for the specific layer in the given process technology. If the user

creates a wire in the layout, the width of the new wire will be klWireWidth

lambda units, where klWire Width is greater than or equal to the value of klMin-

70

Dimensions. The klSymbolic member identifies the particular layer as either a

symbolic representation of data or a mask level.

The klR, klG, and klB structure members define the RGB color combination

with which the layer is to be displayed in the layout viewports. All color intensi

ties are normalized by KIC to 255.

KIC displays layers in the layout viewports as either filled or outlined. If a

particular layer is to be filled when displayed, it can have a fill pattern associ

ated with it; the outlining of a layer is not considered as a fill pattern in the KIC

display philosophy. The klFUled member in the KIC layer descriptor is a boolean

that specifies whether the respective layer should be filled or outlined when

displayed. The klStylelD member is the index that identifies the fill pattern for

the respective layer; the value zero is always assumed to represent a solid-fill

pattern. The klStyle array contains and eight by eight intensity array that

defines of the fill pattern that is attributed to the respective layer. The eight

least significant bits of each integer in the klStyle array are used to represent a

row of the pattern.

Because a graphics terminal can in general display solid filled objects more

rapidly than stippled or pattern filled objects, KIC uses a thresholding procedure

for displaying filled geometries in the layout viewports to decrease the time

required to display a window. To do accomplish this, there are separate indices

to identify the fill pattern for a particular layer in the fine and coarse layout

viewports. The number that identifies the fill pattern for a layer in the coarse

viewport is klGoarseStyleID, and klFLneStylelD is the fill pattern index for the

fine layout viewport; for both indices, the value of zero identifies a solid-fill pat

tern, and layers are always outlined if the klFUled layer descriptor member is

zero, regardless of the value of the fill pattern index. If in either layout viewport

the number of pixels that are required to display the length of one lambda unit

71

is less than two, the fill pattern index for the viewport is set to zero to force a

solid-fill pattern. This decision is made in the InitVLTQ routine that must there

fore be invoked whenever the size of a viewport or window changes.

The remaining descriptor members are used specifically as display con

trols. If the klBlink member is set for a particular layer, the layer will be

displayed in a blinking mode on the graphics terminal, given that the device has

the capability of blinking colors. If the klVlsible member is zero, the respective

layer will not be displayed in the layout viewports; that is, it will be invisible.

4.2.4. The Cursor Descriptor

The KIC cursor descriptor is defined in the kic.h file as follows:

/•
* Cursor desc.

v
struct kc {

/* In lambda units. */
int kcPredX, kcPredY, kcX, kcY;
int kcDX, kcDY;
int kcRow, kcColumn;

i
Cursor;

The cursor descriptor is used by the PointQ routine in KIC to report a user

pointing event. When the KIC user points in a layout viewport using the graphi

cal pointing device, the lambda coordinate of the user-selected point is placed in

the kcX, kcY structure members of the KIC cursor descriptor by the PointQ

procedure. The previous user-selected point is moved from the kcX, kcY struc

ture members to kcPredX, kcPredY, and the orthogonal displacements between

the two lambda coordinates are computed and placed in kcDX, kcDY. Whenever

the KIC user points in a layout viewport, the kcRow and kc Column descriptor

members are set to zero.

When the KIC user points in a text viewport using the graphical pointing

device, the respective row-column text coordinate is placed in the kcRow,

72

kcQilumn structure members of the KIC cursor descriptor by the PointQ pro

cedure. As described in Section 4.1.1, the row-column text coordinate system

divides the graphical display into a grid of graphical character blocks with the

origin being in the upper, right corner of the display.

After the PointQ routine is invoked in KIC, KIC determines the viewport to

which the user pointed by testing the values of certain integer flags in the KIC

parameters structure that is described in Section 4.3. The parameters of

interest here are kpPointCoarse Window and kpFointLayerTable.

4.2.5. The KIC Selection Queue

The KIC selection queue is defined in the select.h header file as follows:

struct ks (
struct ks *ksSucc;
struct o *ksPointer;

i;
struct ks *SelectQHead;

struct ka SelectQBB;

The selection queue is a linked-list of ks structures that is used by KIC to

identify specific objects in a particular symbol. The list of objects is typically

used to identify a set of objects that will be subject to an operation such as move

or copy. The SelectQHead pointer references the first ks structure in the

linked-list and is a null pointer if the list is empty. When a an object is inserted

into the selection queue, the respective object descriptor pointer is saved in the

ksPointer member, and the ksSucc pointer member is assigned to the value of

the SelectQHead pointer. The SelectQHead pointer is then set to point to the

new member in the selection queue. In other words, new items in the selection

list are always inserted at the head of the list.

When the SelectQComputeBBQ procedure is invoked, the bounding box of

all objects in the selection queue is computed and stored in the SelectQBB area

structure.

73

4.2.6. The Context Descriptor

The KIC context descriptor is defined in the contexts, c source file as fol

lows:

^include Mcd.h"

/•
* Context stack shouldn't get deeper than transformation stack.
v

struct cc \
int ccX,ccY,ccWidth,ccModified;
int ccNumWindows;
struct kw ccSaveWindow[VIEW^STACKSIZE];
struct o "cclnst;
char ccMaster[8l];

Context[XFORMSTACKSIZE];

int ContextSP = 0;

The context stack is used by KIC to save the context of an editing session

while the KIC user edits another symbol. A typical scenario is as follows: the

user is editing a symbol with an instance of another symbol. The user discovers

that the called symbols is, perhaps, lacking a contact. He then places the con

texts of the current editing session in the context stack and begins editing the

defective symbol When the problems in the called symbol have been corrected,

the user retrieves the previous editing session from the context stack and

begins editing where he was before he discovered the error in the instance.

The size of the context stack can not be larger than that of the transforma

tion stack because the transformations that are associated with the symbols

being edited are saved on the transformation stack. The name of the symbol

that is being edited in the respective context is contained in the ccMaster char

acter string, and cclnst is a pointer to the object descriptor of the instance that

the KIC user began editing after the context was placed on the context stack.

The ccX, ccY, and cc Width define the size and position of the coarse window; the

size and position of the fine window is assumed to be the default value computed

by the InitFine WindowQ procedure. The window stack that is associated with

74

the respective editing context is defined by the ccNumWindows and ccSaveWin-

dow structure members.

The procedures for context switching are appropriately called PushQ and

PapQ. Both routines are responsible for maintaining the context stack pointer

OontextSP. The PushQ routine assumes that the object that is referenced by

the first item in the selection queue is the called symbol to become the next

editing context.

75

4.3. The KIC Parameters Structure

The KIC parameters structure contains the controlling parameters of the

KIC program that may be shared by all program modules. Because this data

structure is so large and the members mostly unrelated, this section may be the

most confusing of any section of this document. Nevertheless, a thorough

knowledge of the internal structure of KIC would require the programmer to

recognize all parameter structure members.

The KIC parameters structure is defined in the fcic./i file as follows:

struct kp }
/* Symbol desc for current cell */
struct s *kpCellDesc;

/*
* Object desc for a geometry currently being created.
* KIC special cases the input of polygons and wires.
V

struct o *kpPointer;

/* True if instances should be expanded */
int kpExpandlnstances;

/* True if instance is expanded in fine viewport only */
int kpExpandFineViewportOnly;

/* If False then the SelectQis not redisplayed */
int kpEnableSelectQRedisplay;

/* Color ID's for command menu */
int kpMenuTextColor;
int kpMenurfighlightingColor;
int kpMenuSeiectColor;

/* IfTrue, user pointed to layer table andCommand[0] == EOS */
int kpPointLayerTable;

/♦ IfTrue, user pointedto coarse viewport and Command[0] == EOS */
int kpPointCoarseWindow;

/* Control of the Layer Menu */
int kpNumLayerMenuRows;
int kpLayersPerMenuRow;

/* Number of sides for round flashes */
int kpNumRoundRashSides;

/* Current layer */
int kpLayer;

/* True if selection commands are LayerSpecific */
int kpLayerSpecificSelection;

76

/* If True, then outline all stippled geometries */
int kpOutline;

/* IfTrue, polygon vertices are clipped to nearest grid point */
int kpClipVerticesToGrid;

/* If True, put grid belowlayout geometries */
int kpGridOnTop;

/* If True, grid will be shown in largeviewport*/
int kpShowGridlnLargeViewport;

/• Color ID'S for grid */
int kpCoarseGridCoior;
int kpFineGridColor;

/* Number of RESOLUTION*lambda between grid points. */
int kpGrid;

/* True if current cell has been modified */
int kpModified;

/* Parameters for modifying geometries */
int kpModifyLeft;
int kpModifyTop;

/* Bounds of coordinate system */
int kpMaxX, kpMaxY, kpMinX, kpMinY;

/* Debug parameters */
int kpNumGeometries;

/* If True, then show redisplay bandwidth */
int kpShowBandwidth;

/* If True, user has just pressed the interrupt key */
int kpSIGINTERRUPT;

/•
* ~ COARSEVIEWPORTONLY if only coarse viewport should be displayed
* == FINEVIEWPORTONLY if only fine viewport should be displayed
* == SPLITSCREEN if both should be displayed
V

int kpRedisplayControl;

/* If True, Fine Viewport (Magnifying Glass) is displayed*/
int kpDisplayFineViewport;

/* If True, all text is displayed */
int kpDisplayAllLabels;

/* If True, all instances will be labeledin the viewport*/
int kpLabelAUInstances;

/* If True, instances willbe marked when selected */
int kpShowInstanceMarkers;

/•
* PointingThreshold is the minimum value of ViewportTidth/WindowWidth
* such that it is still comfortable to point with lambda precision.

int kpPointingThreshold;

77

/•True if wires and polygons should be constrained to 45s */
int kp45s;

/*
* PixToLambdaSnapping is RESOLUTION times the number of lambda
* between points to which a cursor input point is snapped.
V

int kpPixToLambdaSnapping;
int kpHalfPixToLambdaSnapping;

/* Current transform defined in Selection menu */
int kpRotationAngle;/*0, 90, 180, or 270 */
int kpMX;
int kpMY;

/* At what level in the hierarchy are we? See Redisplay */
int kpHierarchyLevel;

/•
* Window stack. kpWindowStack[0] is always the last view.
* If kpNumWindows is zero, only the last view is saved.
•/

struct kw kpWindowStack[VIEW_STACKSIZE];
int kpNumWindows;

/* Background and Highlighting color control */
int kpHighlightingPixel;
int kpHighlightingRed;
int kpHighlightingGreen;
int kpHighlightingBlue;
int kpBackgroundRed;
int kpBackgroundGreen;
int kpBackgroundBlue;

/* used in Attributes.c */
int kpSetBackgroundColor;
int kpSetHighlightingColor;

/* Symbol name for current cell */
char kpCellName[80];

/* Command selected if any from command menu */
char kpCommand[80];

/*
* Current command menu
* == INSTANCEMENU denotes instance menu
* == ATTRIBUTESMENU denotes attribute menu
* == PROPERTYMENU denotes property menu
* == BASICMENU denotes basic menu

* == SELECTIONMENU denotes selection menu
* == DEBUGMENU denotes debug menu
* == AMBIGUITYMENU denotes ambiguity menu

V
char kpMenu;

i
Parameters;

78

The KIC parameters structure contains most of the controlling variables of

the KIC program as well as the information that is shared between the separate

KIC procedures. There is at least one mechanism in KIC to allow the user to

modify each of the structure members.

The name of the symbol that is currently being edited by KIC is saved in the

kpCellName character buffer, and the respective CD symbol descriptor is refer

enced by the kpCellDesc member. The current symbol descriptor is set in the

EdLtQ procedure only.

Another CD descriptor in the KIC parameters structure is the kpPointer

object descriptor pointer that is used to reference an object that is being

inserted into the current CD symbol. The display of a polygon or wire that is

currently being created in the layout is given special consideration; the object

will be displayed above all other objects so as not to obscure the detail. If the

user redefines the position of the fine window while in the process of specifying

the contour of the wire or polygon, the ShowFune WindowQ routine will recognize

that the pointer is not a null pointer and display the referenced object above all

other objects in the window if the respective object intersects the fine window.

The kpCommand character buffer indicates when a user has selected a

menu command and identifies what the specific command is. When a user points

at a command in the menu viewport with the graphical pointing device, the

name of the command is placed in this character buffer by the PointQ routine,

or more specificly by the CbrlAtQ procedure. If the user types at the keyboard

of the of the graphics terminal while the graphical pointing device is active, the

character that the user types is placed at the end of the contents of this buffer

by the PointQ procedure. If the user does not point in the command menu

viewport or does not type at the terminal keyboard, the PointQ routine returns

with the first character of the kpCommnnd buffer set to the value of EOS. Any

79

procedure that calls the PointQ routine is required to test the contents of this

buffer to allow the KIC user the opportunity to make use of the command menu

at all times.

There are two other parameter structure members that are set by the

PointQ routine only. The kpPointLayerTable integer is set to the logical value

of True if the KIC user points in the layer menu viewport with the graphical

pointing device, and the kpPointCoarse Window is set to the value of True if the

user points in the layout viewports, regardless of whether the fine window inter

sects the coarse window. Both of the structure members are by default set to

the value of False by the PointQ routine. If the user points in the layer menu

viewport, the PointLayerTableQ procedure sets the kpLayer structure member

to the value of the index of the new current layer in the KIC layer table.

Several parameters that control the RedisplayQ routine are kpExpandfn

stances, kpExpandFuFieVtewportOnly, kpEnableSelectQRedisplay, and

kpShowBandWhdth. If the kpExpandUnstances integer flag is set to the logical

value of True, all instances will be displayed in full detail in both layout

viewports; otherwise, the instances will be represented in the layout viewports

by only a line around the perimeter of the bounding box of the cell. If the kpEx-

pandPineViewport integer is set to the logical value of True, all instances will be

expanded in full detail in the fine viewport only; an instance in the coarse

viewport will again be represented by the contour of its bounding box. If the

kpEnableSelectQRedisplay integer is set to the logical value of True, the

RedisplayQ routine will invoke the procedure SelectQShowQ before terminat

ing; this latter procedure will highlight in both layout viewports all objects con

tained in the selection queue. The kpNumGeometries integer is set to zero when

the RedisplayQ procedure is invoked and then incremented whenever a

geometric object is displayed thereby providing a count of the number of

80

geometries. If the kpShowBandWixtth integer flag is set, the RedisplayQ routine

will compute the real, user, and system time required to display the particular

area in the layout viewports and report these values to the user before terminat

ing.

The RedisplayQ routine will invoke the ShowOridQ procedure that displays

a grid in the layouts viewports according to the user-specified options. If the

kpQrvd integer member of the parameters structure is less than unity, then a

grid will never be displayed in the layout viewports; otherwise, the value of

kpGrid specifies the lambda spacing of the grid lines starting at the origin of the

world coordinate system. If the number of display pixels per lambda in the fine

viewport exceeds the value of the kpPointing Threshold parameter, then a grid

will be displayed in that layout viewport, and if the kpShowOridlnLargeVLewport

parameter is set to the logical value of True, then a grid will also be displayed in

the large coarse layout viewport if the display pixel per lambda ratio is large

enough to permit a grid. The RedisplayQ procedure will invoke the ShowOridQ

procedure after all layout geometries have been displayed if the kpShowQridOn-

Top parameter is set to the logical value of True that will result in the lines of

the grid being displayed over layout geometries. If the kpShowOrixLOnTop

parameter is not set, the grid will be displayed before layout geometries that

will cause the view of grid lines to be obstructed by layout geometries.

The lines of the grid that is displayed by the ShowOridQ procedure will be

displayed in two colors. The kpFineOridColor parameter is the index of the

layer in the KIC layer table that will be used to display the intermediate grid

lines. Every fifth line of the grid appear in the color of the layer that is indexed

in the KIC layer table by hpCoarseOridColor.

The parameters structure contains other viewport color information. The

kpMenuTextColor is the index of the layer in the KIC layer table whose color will

81

be used as the color of all graphic text in the textual viewport. The

kpMenuSelectColor and kpMenuHighlightingColor members of the parameters

structure define the color indices with which all graphic text will be displayed

and highlighted in the command menu viewport if the respective command is

selected; a highlighted command means that the name of the command is writ

ten over a box that is displayed in the color of the layer that is indexed in the

KIC layer table by kpMenuHighlighbingColor.

The kpBackgroundRed, kpBackgroundQreen, and kpBackgroundBlue

parameter structure members define the red-green-blue combination of the

background color for all viewports. The background color for KIC is always the

first color in the video color table of the graphics terminal. The

^HighlightingRed, kpHighlightingGreen, and kpHighlightingBlue parameters

define the red-green-blue combination of the highlighting color. An object is

highlighted in the layout viewports by displaying a line in the highlighting color

around the perimeter of the object. The highlighting color for KIC is always the

last color in the video color table of the graphics terminal and is always indexed

by the kpHighlightingPixel parameter structure member.

Other members of the parameters structure that control the display of

information in the layout viewports are as follows: the kpOutline parameter is

set to the value of true if stippled geometries are to by outlined; depending on

the fill patterns being used, it is occasionally more pleasing to the eye to have

the perimeter of stipple filled geometries clearly visible. If the kp Outline flag is

set, however, the time that is required for the graphics terminal to redraw the

layout viewports will of course increase. Because KIC assumes that the graphics

terminal is not capable of scaling graphic text, the ShowLabelQ routine, which

is invoked by the RedisplayQ routine to display a label in the layout viewports,

will not display a label in a layout viewport if the number of display pixels per

t c

82

lambda is less than two; the number two was simply chosen after trying several

other values and finding that two was most reasonable for typical IC layouts. If

the kpDisplayAULabels parameter is set to the logical value of True, the

ShowLabelQ routine will always display labels in the layout viewports regardless

of the window-to-viewport scale factor. If the kpShowInstanceMarkers member

of the KIC parameters structure is set, the SelectQShowQ procedure, which is

invoked by the RedisplayQ procedure to highlight the content of the selection

queue, will display a small, diamond shaped marker at the reference point of

each instance in the selection queue; the reference point of an instance is also

the origin of the world coordinate system for the respective symbol and the

point about which the cell would be rotated or mirrored.

The procedure that places objects into the selection queue is controlled by

the kpLayerSpecificSelection member of the KIC parameters structure. If this

parameter is set when KIC asks the user to point in the layout viewports with the

graphical pointing device to identify the object to be placed in the selection

queue, only those objects that lie on the current layer, as defined by the

kpLayer parameter, will be placed in the selection queue. If under this condi

tion of layer specific selection, the KIC user does not point to any object in the

layout viewports that is on the current layer but does point to an instance, the

respective instance will be placed in the selection queue. If the

kpLayerSpecificSelection parameter is set to the logical value of False, all

objects that the KIC user identifies by pointing in the layout viewports will be

placed in the selection queue.

There are several parameters in the KIC parameters structure that control

the creation and editing of objects by KIC. When the KIC user creates a wire or

polygon and begins to define the contour of the object, the angle formed by any

two adjacent segments along contour will be constrained to integer multiples of

83

45 degrees if the kp45s member of the parameters structure is set to the logical

value of True. The kpRotationAngle, kpMX, and kpMY parameters define the

current transformation; if a new instance is placed in the symbol or an object is

moved or copied, the operation is performed with the transformation that is

defined by these parameters. If the kpMX parameter is set, the transformation

will mirror in the direction of the x axis, and if the kpMY is set, the current

transformation will mirror in the direction of the y axis. The current rotation

angle kpRotationAngle may only be set to either the value of 0, 90, 180, or 270

degrees. The kpModifyLeft and kpModifyTop parameters are used exclusively

to specify the direction in which the KIC user will stretch a rectangle using the

KIC stretch-box command. If the kpModifyLeft parameter is set to the logical

value of True, then the left edge of the rectangle will be stretched; otherwise,

the right edge will be stretched. As explained in Section 2.4.4, KIC does not use

the CD round flash descriptor, preferring instead to represent round objects as

polygons, including arcs and doughnuts. If the KIC user creates a round flash or

doughnut, the kpNurnRoundFlashSides integer will specify the number of sides

on the outer perimeter of the polygon that will represent the round object. KIC

will not allow the value of kpNurnRoundFlashSides to be less than eight and not

greater than 360. If the kpCtipVerticesToOrid parameter is set, the vertices of

all polygonal objects will be clipped to the lambda grid; this could result in pecu

liarly shaped round flashes or doughnuts if the respective diameter is small,

finally, if the user creates a new object in the current symbol, or modifies an

existing one, the kpModified flag is set to the value of True, which will cause KIC

to remind the user if the user attempts to abort or edit a new symbol without

updating the current one.

The KIC parameters structure contains information that is used to control

many viewport actions. The kpMenu member of the parameters structure

84

defines the command menu that is currently displayed in the command menu

viewport. The possible values for the kpMenu parameter are denned in the kic.h

file as follows:

/*
♦Menu names

•/
^define BASICMENU 'b'

^define DEBUGMENU 'd'

^define SELECTIONMENU 's*

^define INSTANCEMENU T

^define ATTRIBUTESMENU 'a'

#define PROPERTYMENU 'P'
^define AMBIGUITYMENU 'A'

The number of layers that can be displayed in a single row of the layer

menu viewport is defined by the value of the kpLayersPerMenuRow parameter.

The number of graphic text rows that are dedicated to the layer menu viewport

is defined by the value of the kpNumLayerMenuRows parameter. If the size of

the coarse window is sufficiently large such that the fine window is to be

displayed in the fine viewport, the kpDisplayFine Viewport parameter is set to

the logical value of True; otherwise, if only the coarse window is displayed in the

large coarse viewport, the parameter kpDisplayFine Viewport is set to the value

of False. The kpRedisplayControl member of the parameters structure controls

the effect of a display routine in the layout viewport. The value of kpRedisplay-

Cbntrol specifies the current mode of display and can be one of three options

that are defined as follows in the kick file:

/•
* Viewport control flags
*/

#define SPLITSCREEN
#define FINEVIEWPORTONLY
#define COARSEVIEWPORTONLY

'b'

T

•c*

If both the fine and small coarse viewports are displayed, the kpRedisplay-

Control parameter will be assigned the value of SPLITSCREEN by default, and

the kpDisplayFine Viewport parameter will be set to the value of True. If only

85

the large coarse viewport is displayed, then kpRedisplayControl will assume the

value of COARSEVIEWPORTONLY by default, and the kpDisplayFine Viewport

parameter will be set to the value of False. By setting the display control

parameter to the value of FINEVTEWPORTONLY, only the fine viewport will be

updated by a display routine, and the COARSEVIEWPORTONLY switch will result in

only the small or large coarse viewport to be effected by a display routine. Any

procedure that uses the display control parameter to control the KIC geometry

display routines must reset the parameter to it's default value before terminat

ing.

The window stack of the current symbol is represented by the kpWindowS-

tack and kpNumWindows members of the parameters structure. See Section

4.2.2 that describes the window stack descriptor.

A user interrupt condition is identified by the kpSIGINTERRUPT member of

the parameters structure. Whenever the KIC user presses the interrupt key

(break or delete under UNIX and control C for VMS), the kpSIGINTERRUPT

parameter is set to the value of True by the CatchSIGINTQ interrupt handling

procedure. The top of the display loop (i.e., the top of the CD generator loop

before the CDGenQ procedure is invoked to return a pointer to an object in the

window to be displayed) the value of the kpSIGINTERRUPT is tested for an

interrupt condition. If an interrupt had occurred, the display routine is ter

minated and the kpSIGINTERRUPT parameter is returned to its default value of

False.

86

4.4. KIC Command Menus

Because of the functionality of KIC, it is impossible to display all KIC com

mands simultaneously in a menu structure. KIC therefore is designed with a

hierarchical menu system that provides specially tailored command sets allow

ing the user to easily complete specific tasks. These command sets are not so

specific or restrictive to frequently burdened the user with the necessity to

traverse the command hierarchy for the desired commands.

The present implementation of the KIC command menu system is slightly

awkward. This method has continued in use simply because it works and has not

yet become inconvenient. This section explains the command menu operation,

and provides a description of the task of adding a new menu command. Also,

suggestions for improving the KIC command menu system are provided.

There are seven possible hierarchical command menus for KIC: the basic

menu at the top of the command hierarchy, the selection menu for object

modification, the instance menu for instance placement, the attribute menu for

defining the viewport display attributes, the property menu for editing the pro

perty lists of selected objects, the ambiguity menu for resolving ambiguities in

instance selection, and the debug menu that the normal KIC user should never

use. The command menu that is currently displayed in the command menu

viewport is identified by the kpMenu member of the KIC parameters structure

that can assume one of the values defined in the kic.h file as follows:

/*
♦Menu names

•/
#define BASICMENU 'b'

^define DEBUGMENU 'd'

^define SELECTIONMENU 's'

^define INSTANCEMENU 'i'

^define ATTRIBUTESMENU 'a*

#define PROPERTYMENU 'P*
^define AMBIGUITYMENU 'A'

87

AcommandmenuinKICisanarrayofcharacterstringpointers,each

pointerreferencingaparticularcommandname.Forexample,thebasicmenu

isdefinedinthehic.hfileasfollows:

/*
*KICmenus.

V
#ifdefAllocate

char*BasicMenu[]=j

"EDit".
"DIR",
"SAve",
"WRite",

"ATtri",
"Insta",
"SElec",
"PRpty",
MII

"RDraw",
"EXpnd",
"PEek".
"PAn".
"Zoom",
"WINdo",
"VIEV.
"LASt",
•III

"45s",
"Grid",
"SNap".
"BOXes",
"WIRes",
"WIDth",
"POLyg",
"DOnut",
"FLASh",
"ARC",
"LABei",
"Undo".
Mi»

"LYra",
"TECh",
"ABort",
"DEBug"
i:

intNumBasicMenu=sizeof(BasicMenu)/sizeof(char*);
#else

#endif

char*BasicMenu[];
intNumBasicMenu;

88

There must be such an array of character pointers for each command

menu in KIC.

Notice that the contents of the command menu are defined by using of a

compile flag named Allocate. This compile flag is set to a non-zero logical value

by one and only one source file that includes the hic.h header file; typically it is

defined in the source file that contains the mainQ procedure.

Also notice that the command names are of mixed case with the capitalized

letters always forming a unique prefix. The convention has become that the

first, capital letters in the command name specify the minimum number of

characters required to identify the particular command name from any other

KIC command; this convention must be obeyed because the PointQ routine,

which compares the user keyboard input to the current command set and

thereby allows commands to be selected through the keyboard, will compare the

user keyboard input to only those characters in the command names that are

capitalized.

The major problem with the KIC command menu structure is that the

menus are defined entirely in the Aric./i header file. As a result, it is necessary

to completely recompile KIC whenever a new command is added to a menu or

the whenever the structure is modified. The preferred solution to the menu

problem might be to have a specific source file, say, menu.c, containing the rou

tines for managing the command menu viewport.

The ShowMenuQ procedure will display a particular command menu in the

command menu viewport. The MenuSelectQ procedure command is invoked to

highlight a specific command menu item whenever the command is user-

selected, and the MenuDeselectQ procedure is invoked to return a specific com

mand menu item to its default, unhighlighted appearance. There is typically a

menu-specific display procedure for each command menu, such as the

89

ShowBasicMenuQ procedure, that in turn invokes the ShowMenuQ routine.

The reason for this one level of indirection is that typically several command

items in a command menu will reflect a mode of operation that is identifled by a

particular member of the parameters structure; for example, the expand com

mand that will cause all called symbols to be displayed in full detail in all layout

viewports. The menu-specific command menu display procedure will be respon

sible for testing the various modes of KIC and highlighting the identifying com

mand menu item if the respective mode is in effect.

The fcic.h header file also has specific character pointers denned for each

possible command menu name for reasons of comparison. Several such pointers

for the commands in the basic menu are defined as follows in the fcic.h file:

#ifdef Allocate
char *MenuEDIT = "EDit";
char*MenuDIR = "DIR";
char *MenuSAVE = "SAve";
char *MenuWRITE = "WRite";

#else

etc.

char *MenuEDIT;
char *MenuDIR;
char *MenuSAVE;
char *MenuWRITE;

etc.

#endif

These character pointers are typically used to determine whether a com

mand menu item has been user-selected. As is described in Section 4.3 on the

KIC parameters structure, when a command in the current command set is

selected, whether by use of the graphical pointing device or keyboard input, the

name of the command as it appears in the command menu viewport is placed

into the kpCommand character buffer in the KIC parameters structure by the

PointQ routine. The procedure that monitors the command menu would there-

90

fore test the returned value of kpCommand for the appearance of a new com

mand name. For example, the following sections of C code could be extracted

from the Basic Q routine:

^include "kic.h"

Basic()i
int LookedAhead = False;

loop (
if(LookedAhead)

LookedAhead = False;
else

Point();

if(strcmp(Parameters.kpCommand,MenuEDIT) == 0)\

etc.

else if(strcmp(Parameters.kpCommand,MenuABORT) == 0)\

etc.

else if(strcmp(Parameters.kpCommand,MenuEXPND) == 0){

etc.

i
etc.

i

In the BasicQ routine, the program will loop continuously until the user

invokes a command to break the loop such as the abort command. This is typi

cal of all command menu routines in KIC

Because the KIC command menus are hierarchical, the BasicQ routine will

invoke procedures such as InstancesQ, SelQ, AttriQ, DebugQ, and PropertiesQ

that will erase the current command viewport, display a specific command

menu, and begin looping with the pointing device as is done in the BasicQ rou

tine. The only argument that is passed to these menu routines is a pointer to

91

the integer LookedAhead that is used by the subroutine to notify the parent rou

tine that the user has already selected a menu command. When the logical

value of the LookedAhead integer is nonzero, the PointQ routine is not invoked

during that particular pass through the loop.

92

4.5. The Pointing Device

The graphical pointing device is extremely important to KIC because it is

used as the major communication link between the editor and the KIC user.

Consequently, considerable thought has been given to its application for layout

entry and viewport control. This section will survey the important PointQ rou

tine in KIC.

KIC demands that the graphical pointing device be the locator type; a user

pointing event would return to the host the display coordinate that was user-

specified and a mask that would identify the button that was pushed on the

pointing device or keyboard. The PointQ routine will map the display coordi

nate to the appropriate viewport and, on the basis of the position and the button

mask, will attempt to determine the intent of the KIC user.

If the graphical pointing device does not have special buttons, such as the

commonly used four button mouse has, KIC will assume that the user is pointing

to a lambda coordinate in the layout viewport if the returned display coordinate

is within the layout viewport and the if the user pressed the space bar on the

keyboard. This being the case, the KIC user would use the space bar of the ter

minal whenever he pointed to a lambda coordinate in the layout viewports.

The PointQ is responsible for acting on the occurrence of several

keyboard-specific commands. The following table lists the special keyboard

commands of KIC and describes the actions that are performed when the event

occurs:

control-A Control A will cause KIC to abort unconditionally. This keyboard
command could be dangerous, and therefore it is possible to
remove it from the PointQ routine by recompiling without the
ABORT compiler flag in the point.c file.

control-C This keyboard command is available if and only if KIC is com
piled to run under UNIX. After the user types controi-C, KIC will
prompt the user for a lambda coordinate that will be accepted

93

as if the user had pointed to that lambda coordinate in the lay
out viewport. ' The PointQ routine will return with the
kpPointCo arse Viewport member of the KIC parameters struc
ture set to the logical value of True.

control-E This keyboard command is identical to the above control-C
command. It is intended for VMS systems for which the
controi-C command produces the terminal interrupt signal SIG-
INT.

control-F After typing control-F, KIC will prompt the user to identify a
new center of the fine window in the current symbol. After the
user has specified the new center, the fine window will be
redrawn in its new position. The relative size of the fine window
will not be affected by this operation. Also, the PointQ routine
will not terminate after this user command; as a result, the
control-F keyboard command is transparent to whatever pro
cedure invokes PointQ.

controi-G When the user types control-G, KIC will prompt the user to iden
tify a new size and position for the fine window in the current
symbol. After the user has specified this information by point
ing to the endpoints of the diagonal of the new fine window, the
fine window will be redrawn in its new position. Because the fine
viewport has a fixed aspect ratio, the horizontal width of the
new fine window that the user specifies will take precedence.
This keyboard command is similar to the control-F command in
that the PointQ routine will not return after this user com
mand; as a result, the control-G keyboard command is tran
sparent to whatever procedure invokes PointQ.

control-L When the user types control-L, KIC will prompt the user for a
positive integer that will identify the new current layer. The
number one identifies the first mask layer in the KIC layer
table, etc. The PointQ routine will return with the kpPointLay-
erTable member of the KIC parameters set to the value of True
whenever the control-L keyboard command is used.

control-N This keyboard command adds another item to the window stack
of the current symbol. After typing control-N, KIC will prompt
the user to name the current coarse and fine windows. When

the KIC user has assigned a name to the current layout win
dows, the windows are pushed onto the kp WindowStack window
stack member of the KIC parameters structure, and the value
of kpNum Windows is incremented by one. This keyboard com
mand is similar to the control-F command in that the PointQ
routine will not terminate after this user command.

control-T This keyboard command changes the size and aspect ratio of
the fine window and viewport. If the fine viewport occupies the
bottom third of the layout area of the graphics display and the
KIC user types control-T, the layout viewports be recomputed
and redrawn such that the fine window will occupy the left half
of the layout area of the display. The new fine window will have
the same width in lambda as the previous fine window and will
have the same center position. This keyboard command is

control-V

control-W

character

escape

94

similar to the control-F command in that the PointQ routine
will not terminate after the command.

This keyboard command is identical to the above control-T
command. It is intended for VMS systems for which the
control-T command has has a special meaning to the system.

This keyboard command provides the option of a where am 17 '
command. When the user types control-W, KIC will then expect
the user to point in the layout viewports, and will notify the KIC
user of the lambda coordinate value by invoking the ShowXYQ
procedure. This keyboard command is similar to the control-F
command in that the PointQ routine will not terminate after
the command.

Whenever the KIC user types a printable character on the key
board while the graphical pointing device is active, the charac
ter is received by the PointQ routine, converted to lower case,
and placed at the end of the contents of the kpCommand buffer
in the KIC parameters structure. The PointQ procedure main
tains a running count of the number of buffered keyboard char
acters and will not immediately terminate after the user types
a character. After the typed character has been buffered, the
contents of the kpCommand buffer are compared with the
current command set that is displayed in the command menu
viewport. If the PointQ procedure determines that the user
has typed a command name, the procedure returns with the
complete command name in the kp Command buffer.

When the KIC user presses the escape button on the keyboard,
all buffered keyboard characters are cleared. The PointQ pro
cedure does not return after the user presses the escape key.

exclamation (!) The exclamation point is the only printable character that has
special meaning to the PointQ procedure. The exclamation
point is used as the KIC system interface; when the KIC user
types an exclamation point, KIC will expect the user to type a
system command terminated by a carriage return. The com
mand string will then be passed to the ShowProcessQ routine
that will execute the command and display any output in the
area of the fine viewport. When the user presses a key on the
keyboard to signify that he has read the displayed output, the
fine window is redrawn. The PointQ procedure does not return
after the user executes a process in the fine viewport.

If the KIC user points in the layer menu viewport with the graphical pointing

device, the PointLayerTable Q routine is invoked to determine if the user actu

ally pointed at a valid layer. If the user user did select a new current layer, the

kpLayer member of the KIC parameters structure is set to the index of the new

current layer in the KIC layer table, and the PointQ procedure returns with the

kpPointLayerTable member of the KIC parameters structure set to the logical

95

value of True. The kpPointLayerTable is typically used by procedures such as

FUleQ, BlinkQ, or VisibQ that require the user to point in the layer menu

viewport to identify layers to be assigned specific attributes. As described

above, the KIC user can also select a new current layer with the control-L key

board command.

When the user points in any layout viewport with the graphical pointing dev

ice, the viewport coordinate is converted to the respective window coordinate by

the CtrlAtQ procedure that is invoked by the PointQ procedure, and the values

are placed in the kcX, kc Y members of the KIC cursor descriptor described in

Section 4.2.4. The previous values of kcX, kcY are moved to kcPredX, kcPredY,

and the displacement is computed and placed in the kcDX, kcDY members of

the KIC cursor descriptor. The CtrlAtQ procedure also sets the kpPointCoar-

se Viewport member of the KIC parameters structure to the value of True and

invokes the ShowXYQ routine to display the current cursor information in the

information viewport. The geometry input procedures, such as BoxesQ, WiresQ,

and PolygonsQ will wait for the kpPointCoarseViewport flag to indicate that

there is new information in the cursor descriptor. The PointQ procedure will

clear the kpCommand buffer in the KIC parameters structure and return

immediately after invoking the CtrlAtQ procedure.

To repeat from the above table of keyboard commands, when the KIC user

types a printable character on the keyboard while the graphical pointing device

is active, the character is received by the PointQ routine, converted to lower

case, and placed at the end of the contents of the kpCommand buffer in the KIC

parameters structure. The PointQ procedure maintains a running count of the

number of buffered keyboard characters and will not immediately terminate

after the user types a character. After the typed character has been buffered,

the contents of the kpCommand buffer are compared with the current com-

98

mand set; the current command set is identified by the kpMenu member of the

KIC parameters structure. If the PointQ procedure determines that the user

has typed a command name, the procedure returns with the complete command

name in the kpCommand buffer.

KIC will be easiest to use if the graphical pointing device has at least four

buttons. If the graphical pointing device has buttons, the fButtons member of

the frame buffer descriptor is set to the value of True, and the number of but

tons on the graphical pointing device is specified by the fNumButtons member

of the frame buffer descriptor that is described in Section 4.6.1. When the user

pushes one of these buttons on the pointing device, the terminal will report a

button mask to the host, and this button mask will be compared with the array

of button masks referenced by the fButtonMask member of the frame buffer

descriptor to identify the respective button that was pushed. The first integer in

the fButtonMask array is the value of the mask for the first button on the point

ing device, etc.

In KIC, the first button on the graphical pointing device is used specifically

for identifying entries in the command or layer menus and for specifying a win

dow coordinate whenever KIC is prompting the user for one. The second point

ing device button is used for repositioning the center of the fine window, and the

fourth button is used to redefine the size of the fine window from two user-

specified window coordinates of the new fine window diagonal. Because the size

of the fine viewport is fixed, the size of the new user-specified fine window will be

clipped to fit into the fixed aspect ratio. The third button on the graphical

pointing device performs the same function as the control-W keyboard com

mand; when the points in the layout viewports by pressing the third pointing

device button, the respective window coordinate is displayed in the information

viewport by the ShowXYQ procedure. The third pointing device button is typi-

97

cally used for measuring the size of objects in the database. The PointQ pro

cedure will terminate after the KIC user presses the second, third, or fourth

pointing device button. Only the first pointing device button will cause the

PointQ procedure to return with a new window coordinate in the KIC cursor

descriptor.

98

4.6. The Frame Buffer Interface

As presented in Chapter 1, KIC is designed to run on a wide range of raster

graphics terminals or frame buffers and indeed runs on several devices includ

ing the AED 512 and 767, the Tektronix 4113 and 4105, the HP2648A, the Metheus

Omega-400, and the Masscomp MC500. The frame buffer is modeled by the con

tents of the KIC frame buffer descriptor that contains the boolean and numeric

capabilities describing the respective frame buffer characteristics. This report

assumes that the reader is familiar with the basic structure of a raster color

graphics terminal, including the use of video memory and the color look-up

table. For more information on this subject, see [6] and [7],

4.6.1. The Frame Buffer Descriptor

The frame buffer descriptor is defined as follows in the/o./i header file.

/*
* Frame Buffer desc.

•/
struct f j

char *fDisplay;
char *fDeviceName;
int *fButtonMask;
int fMaxX,fMaxY;
int fFontHeight;
int fFontWidth;
int fMaxIntensity;
int fMaxP;
int fNumColors;
int fNumRows;
int fNumColumns;
int fNumFillPatterns;
int flnitialized;
int fNonDestructiveText;
int fLastCursorColumn;
int fFilledPolygons;
int fDefinableFillPatterns;
int fButtons;
int fNumButtons;

J
FB;

/* pointer to array of button masks */
/* raster dimensions of viewport */
/* standard font size */

/* set to 255 (normalized intensity) */
/* max pixel intensity */
/* max color index */
/* max number of horizontal rows */
/* max number of vertical columns */
/* max fill index */
/* FB struct is initialized */
/* text doesn't wipe background */
/* last column used by ShowPrompt() */
/* frame buffer has filled polygons */
/* fill styles are definable */
/* pointing device has buttons */
/* number of pointing device buttons */

The fDisplay member of the frame buffer structure is a pointer to a charac

ter string that specifies the name or type of the respective graphics terminal;

99

for example, the Tektronix 4113 might be named "t5". The fDeviceName is a

pointer to the name of the system device driver for the graphics device. An

example of a UNIX device name might be "/dev/ttyOl".

The resolution of the graphics display is defined by the fMaxX and fMaxY

frame buffer structure members. If the display size of the graphics device is

characterized by 640 horizontal pixels and 480 vertical pixels, the values of

fMaxX and fMaxY would be 639 and 479 respectively.

The maximum color index for the frame buffer is defined by the

fNumColors member of the frame buffer descriptor. For a monochromatic

display, this structure member would be assigned the value of unity. Zero is a

valid color index and is always used by KIC as the background color. For a color

display, the maximum gun intensity for red, green, or blue is defined by the

value of the fMaxP structure member. The fMax Intensity structure member is

the value to which KIC normalizes the gun intensities and should always be set to

the value of 255. In other words, KIC assumes that the gun intensity for the

color display is an eight bit value. The FBVLTQ routine, which redefines an

entry in the frame buffer's color look-up table, will convert a color intensity of

255 to the value of the fMaxP structure member.

The maximum index of fill patterns for the frame buffer is given by the

value of the fNumFUlPatterns frame buffer structure member. Zero is

assumed to be the index for a solid-fill pattern. If the fill patterns are definable,

then the fDefinableFUlPatterns structure member is set to the value of True,

and if the frame buffer is capable of filled polygons, including solid fill, then the

fFiUedPolygons structure member is also set to the value of True. The polygon

display mechanism for graphics devices that are not capable of filled polygons is

to draw a line around the perimeter of the object.

The pixel size of the font array for graphic text is defined by the fFont Width

100

and fFontHeight members of the frame buffer structure. From these two struc

ture members and the fMaxX and fMaxY structure members, the values of

fNumRows and fNumColumns are computed; fNumRows specifies the number

of graphic test rows from the top to bottom of the graphics display, and

fNumColumns contains the number of graphic text columns from the left to

right of the display. The size of the graphic text font should be sufficiently small

to allow the value of the fNumRows structure member to be greater than 30.

See Section 4.1.1 that describes the graphic text coordinate system in menu and

information viewports.

When KIC invokes the ShowPromptQ routine to display text in the prompt

viewport, the last textual column in which text is displayed is saved in the

fLast CursorColumn frame buffer structure member. The FBKeyboardQ rou

tine, which obtains a user-typed character string from the keyboard of the

graphics terminal, will use this information to decide where to begin to echo

user-typed text in the prompt viewport.

If the graphic text is not destructive, i.e., the background in the character

font array is not changed when a graphic character is displayed, the fNonDes-

tructiveText frame buffer structure member is set to the value of True. It is

preferable for graphic text to be non-destructive. If the text is destructive, the

display of layout information may be corrupted by a textual label, and KIC will

also highlight command menu items differently in the MenuSelectQ procedure.

It is assumed that the frame buffer has some form of graphical pointing

device. If the graphical pointing device has buttons that send locator reports to

the host such that the host can determine which button was pressed by the KIC

user, the fButtons structure member is set to the value of True. The number of

buttons on the pointing device is given by the fNumButtons structure member.

The fButtonMasks pointer references an array of integers that are used to iden-

101

tify the buttons of the graphical pointing device. If the KIC user presses the first

button on the pointing device, the FBPointQ routine will return with the respec

tive button mask that was received by the host from the frame buffer. The

PointQ procedure will recognize that the first button was pushed because the

button mask value will be identical to the first integer in the array referenced

by the f&uttonMasks pointer, etc. KIC uses no more than four buttons on the

graphical pointing device.

The fInitialized structure member is set when the frame buffer descriptor

is completely initialized and the graphics device driver is in CBREAK mode; see

tty(4) in the BSD UNIX programmer's manuaL CBREAK mode implies that char

acters that are typed at the terminal are not buffered, but becomes available to

KIC when they are typed. Also, character-echo must be disabled; KIC will echo

the keyboard input. Flow control and interrupt processing should always be

enabled.

4.6.2. The Frame Buffer Routines

The frame buffer routines that are required for KIC to control a graphics

device or frame buffer are described in this section. There should be sufficient

information provided here for any programmer to write a display driver for KIC.

However, the best procedure for interfacing KIC to a new graphics terminal is to

take an existing set of frame buffer routines for another graphics terminal and

modify the routines for the new graphics device.

All graphics device dependencies are managed by these frame buffer rou

tines, and, as a result, a set of frame buffer routines that were written for a par

ticular frame buffer will probably differ greatly from routines that were written

for another graphics device. Separate display drivers have been written for

several graphics terminals and graphics work stations as well as the Model

Frame Buffer terminal independent graphics package.

102

The following is a synopsis of all frame buffer routines that are required by

KIC for any graphics device:

FBBegin(Dispiay)
char *Display;

FBInitiaiize()
FBHaltQ

FBEndQ

FBMoveTo(Xl,Yl)
intXl.Yl;

FBDrawLineTo(X2,Y2)
int X2.Y2;

FBLine(Xl.Yl,X2,Y2)
int X1,Y1,X2,Y2;

FBForeground(DisplayOrErase, Colorld)
char DisplayOrErase;
int Colorld;

FBBox(CoiorId.DisplayOrErase,Type,StyleId,Left,Bottom,Right,Top)
char Type.DisplayOrErase;
int Styleld,ColorId,Left,Bottom,Right,Top;

FBDefineFillPattern(StyieId,BitArray)
int Styleld;
int *BitArray;

FBSetFillPattern(Styleld)
int Styleld;

FBVLT(ColorId,Red,Green,Blue)
int ColorId,Red,Green,Blue;

FBText(Mode,RowOrX,ColumnOrY,Text)
int RowOrX.ColumnOrY;
char *Text;
char Mode;

FBPoiygon(ColorId,Type,StyieId,xy,ncoords)
int *xy;
int Colorld,StyleId,ncoords;
char Type;

FBBlink(ColorId,Red,GreeaBlue,Flag)
int Colorld, Flag;
int Red,Green,Blue;

FBFlood()

FBSetCursorColor(Colorld)
int Colorld;

FBPolygonClip(xy,ncoords .window)
int *xy,*ncoords;
struct ka window;

103

FBTransfer()

FBKeyboard(Typeln)
char **TypeIn;

FBPoint(X,Y,Key.Buttons)
int *X.*Y, ♦Buttons;
char *Key;

FBMore(Left,Bottom,Right,Top,Textfile)
int Left,Bottom,Right,Top;
FILE *Textfile;

KIC assumes that all frame buffer routines work properly and therefore are

not required to return a diagnostic value.

The FBBeginQ routine is the first frame buffer routine invoked by KIC and

initializes the frame buffer descriptor described above for the respective graph

ics device. The only argument Display specifies the display name or type and

becomes the fDisplay member of the frame buffer descriptor. The flnitialized

member of the frame buffer descriptor is used to define the state of the graph

ics device driver and is typically not set by the FBBeginQ procedure.

The FBBeginQ routine will invoke the FB'Initialize Q procedure to initialize

the graphics device driver to the required state. If the flnitialized member of

the frame buffer descriptor is set to zero, the FBInitvalizeQ routine will save

the current state of the graphics device driver and then set the state of the

driver to a CBREAK mode with no character echoing; see tty(4) in the BSD UNIX

programmer's manual. CBREAK mode allows a character to become available to

the user program as soon as it appears from the terminal and also permits flow

control. If the flnitialized structure member is not set, then typically there is

no action when FBInitializeQ is invoked. When the communication link with the

graphics device is not over stdio, such as for a Metheus Omega 400 display con

troller which does not have a keyboard, it is also desirable to place the standard

input in CBREAK mode; when KIC requests the user to input through the key

board, the user input will be taken from the standard input device and echoed

normally on the graphics display. The flnitialized member of the frame buffer

104

descriptor is set to the value of True before the FBInitializeQ procedure ter

minates.

There are two procedures for releasing control of the graphics display or

frame buffer: FBHaltQ and FBEndQ. The FBHaltQ routine is invoked when KIC

receives a SIGTSTP stop signal (UNIX only) which is generated by the KIC user

from the keyboard when he wants to suspend, but not terminate, the KIC pro

gram. The FBEndQ routine is however the last frame buffer procedure invoked

by KIC. Both procedures will clear the graphics display, return the device driver

to its original state, and set the flnitialized member of the frame buffer

descriptor to the value of False. If the KIC program was suspended by the user,

invocation of the FB'InitializeQ procedure will again save the current state of

the device driver and set the driver to the required CBREAK mode.

A common configuration for running KIC is to have a graphics terminal con

nected to the host over a serial, full duplex, RS-232 line with a 9600 or 19200

Baud rate. When this is the case, it is always necessary to use buffered output to

reduce the number of system 1/0 requests to the host computer. An example C

procedure for buffering output characters is shown below:

#define BUFSIZE 4096

static int NumTTYBuffer = 0;
static char TTYBufferfBUFSIZE];

FBWrite(cp.n)
char *cp; /* pointer to string to be put in buffer */
int n; /* size of string to be put in buffer */
{
/* test for buffer overflow */
if((NumTTYBuffer + n) >= BUFSIZE)*

write(l.TTYBuffer.NumTTYBufler);
NumTTYBuffer = 0;

1
while(n—)

ITYBuffer[NumTrYBuffer++] = *cp++;
I

If the output graphics code is buffered, it is frequently necessary to flush

the output buffer or transfer all buffered characters to insure that a specific

105

display action will occur immediately. The FBTransferQ procedure would

accomplish this, as in the above C procedure, by writing all buffered characters

to the graphics device and setting the buffered character count to zero. If out

put is not buffered, the FBTransferQ routine will perform no operation.

The FBSetFillPattemQ routine is invoked to set the current fill pattern of

the frame buffer to that identified by the integer Styleld that is greater than or

equal to zero and less than or equal to the value of fNumFillPatterns in the

frame buffer descriptor. Solid fill is always defined by Styleld equal to zero. If

the graphics device does not provide filled geometries or has only solid fill, the

FBSetFiUPatternQ procedure will perform no operation.

The FBDefineFUlPattemQ procedure defines the fill pattern identified by

Styleld and returns with Styleld as the current fill style. As for the FBSet-

FiRPattemQ procedure, the value of Styleld is greater than or equal to zero

and less than or equal to the value of fNumFillPatterns in the frame buffer

descriptor. The BitArray argument is a pointer to an array of eight integers

whose least significant eight bits represent individual rows in an eight by eight

intensity array. For example, a fill pattern with an ascending diagonal line may

be defined by the following eight (decimal) integers:

1 2 4 8 16 32 64 128 256

A diagonal-grid fill pattern can be defined with the following integer array:

257 130 68 40 40 68 130 257

The value of the Colorld argument for all frame buffer routines must be

greater than or equal to zero and less than or equal to the value of fNumColors

in the frame buffer descriptor. The Colorld argument is in fact the index of a

particular display color in the video color table of the respective graphics dev

ice, and the fNumColors member of the frame buffer descriptor specifies the

106

size of the color table.

The color map that is used by KIC is simple; the first color in the video color

table, which corresponds to a Colorld value of zero, is always the background

color of the display. The last color in the video color table, which corresponds to

a Colorld value equal to the fNumColors member of the frame buffer descrip

tor, is always used for highlighting objects in the selection queue, displaying the

coordinate axes, and also defines the color of the cursor. The remaining colors

are dedicated to the display of mask geometries. Two mask layers can not share

the same color index of the video color table unless there are insufficient display

colors in which case the several mask layers will share the last entry in the color

table, the highlighting color.

The FBVLTQ procedure defines the video color table entry for the color

identified by Styleld to be the color represented by the Red, Qreen, Blue com

bination. The values of Red, Qreen, and Blue are normalized to the value of the

fMaxIntensity member of the frame buffer descriptor, which is usually equal to

255, and their absolute maximum value is specified by the fMaxP frame buffer

structure member. Once the color corresponding to Colorld is redefined, all

geometries that were written into the display memory of the respective frame

buffer will immediately be displayed in the new color. The value of the Colorld

argument must be greater than or equal to zero and less than or equal to the

value of fNumColors in the frame buffer descriptor.

The FBForegroundQ routine is invoked to set the current drawing color to

that specified by the Colorld argument. The DisplayOrE}rase argument specifies

whether the color is to be displayed or erased, and it must be one of the values

defined as follows in the fb.h header file:

#define ERASE 'e' /* Erase to background color */
#define DISPLAY 'd' /* Show object as specified */

107

If the color is to be erased, it is assumed that it will be erased to the back

ground color. The DisplayOrErase argument is redundant if the foreground

color is set to color zero, the background color. It is provided for the program

mer who wishes to write a frame buffer driver that uses a special ALU mode

which requires this information.

To explain the meaning of the ALU mode, it is necessary to understand the

procedure by which a geometry is written into the video memory of the graphics

display. If we assume that the display is a typical raster device, each pixel of

the display is represented by a location in the video memory, and that memory

location contains the index in the video color table for the color by which the

respective pixel is to be displayed on the CRT. Most frame buffers provide the

capability of specifying how video display memory is changed by a write opera

tion. One common mode of writing into the video memory is an arithmetic 'OR'

operation between the source color index and the contents of the destination

memory location, where the source color index is the current, foreground color

index. In this case, the ALU mode is the 'OR' mode. KIC will in general use the

'replace' mode in which the contents of the video display memory are replaced

by the source color index, regardless of the previous contents of the display

memory.

The FBFloodQ procedure is invoked to clear the entire display to the

current, foreground color.

The FBSetCursorColorQ routine is invoked to set the color of the graphical

cursor to the color identified by Colorld. As described above, the last entry in

the video color table of the frame buffer is always used for the cursor color.

KIC allows mask colors to blink, if the respective frame buffer has this capa

bility. If the FBBlinkQ routine is invoked with the Flag argument equal to the

value of True, the color that is identified in the video color table of the graphics

108

display by the Colorld index is set to blink between its normal color and the

color defined by the color combination of the arguments Red, Qreen, and Blue.

The normal color for any given value of Colorld is the color that is defined in the

video color table. The rate of blinking is not definable; colors should blink at a

rate that is comfortable to view. If the FBBlinkQ routine is invoked with the

value of the Flag argument set to False, then the color identified by the value of

Colorld is set to a non-blinking state. If the respective frame buffer does not

provide the capability of blinking colors, or alternating color definitions in the

video color table, the FBBlinkQ procedure performs no operation.

There are six routines for displaying figures or geometries on the graphics

display: FBMoveToQ, FBDrawLineToQ, FBLineQ, FBBoxQ, FBPolygonQ, and

FBTextQ. These frame buffer routines will display an object or figure in the

current, foreground color and with the current fill pattern, if applicable. All

coordinates that are passed as arguments to these frame buffer procedures are

display coordinates with there (0,0) origin in the bottom, left corner of the

graphics display. The effect of these routines might be delayed until the

FBTransferQ procedure is invoked to flush the output.

The FBMoveToQ procedure sets the current graphics position to the

display coordinate identified by the XI, Yl arguments. A subsequent invocation

of the FBDrawLineToQ procedure will produce a solid line from the current

graphics position to the display coordinate identified by the X2, Y2 arguments,

and the current graphics position then moves to the latter display coordinate.

The FBLineQ routine is invoked to display a solid line from the XI, Yl display

coordinate to the X2, Y2 display coordinate, after which the current graphics

position is set to the X2, Y2 display coordinate.

The FBBoxQ routine is invoked to display or erase a box in the color

identified by the Colorld argument and in the pattern identified by the Type and

U 2

109

Styleld arguments. The resulting box is defined by the display coordinates Left,

Bottom, Right, Top and is either displayed in the color identified by Colorld,

which becomes the foreground color, or is erased to the background color

depending on the value of the DisplayOrErase argument. The DisplayOrErase

argument must be set to one of the values defined as follows in the fb.h header

file:

#define ERASE 'e* /* Erase to background color */
#define DISPLAY 'd' /* Shoe object as specified •/

The Type argument specifies whether the box is to be filled or outlined, and

this argument must be one of the values defined as follows in the fb.h header

file:

#define FILL T /* Fill with current pattern */
#define OUTLINE *o' /* Outline contour of object */

If the box is filled, the Styleld argument defines the fill pattern to be used;

this fill style becomes the current fill pattern. The box must always be filled

whenever the DisplayOrErase argument specifies an erase operation.

FBPolygonQ is invoked to display a polygon in the color identified by the

Colorld argument and in the pattern identified by the Type and Styleld argu

ments. The vertices of the polygon are defined in the integer array referenced

by the xy pointer; the number of vertices is specified by the ncooras argument,

and the first display coordinate is (xy[0], xy[l]), the second display coordinate

is (xy[2], xy[3]), etc. The Type argument specifies whether the polygon is to be

filled or outlined, and this argument must be one of the values defined as follows

in the fb.h header file:

#define FILL T /* Fill with current pattern */
#define OUTLINE V /* Outline contour of object */

If the polygon is filled, the Styleld argument defines the fill pattern to be

used; this fill style becomes the current fill pattern. If the frame buffer is not

110

capable of displaying filled polygons, the polygons are always outlined.

FBTextQ is invoked to display a character string referenced by the Text

argument at the position defined by the RowOrX and ColumnOrY arguments. As

described in Section 4.1.1, KIC uses two coordinate systems for the positioning

of graphic text, and the FBTextQ procedure must accommodate both systems.

The Mode argument specifies which coordinate system is to be used and must be

set to one of the values defined as follows in the fb.h header file:

#define ROWJSOLUMN 'r' /* use ASCII terminal mode */
^define PD(EL_C00RDINATE 'p' /* use graphics display mode */

If the Mode argument is set to the value of ROW_C0LUMN, the RowOrX and

ColumnOrY arguments specify the position for the first character of the string

in the row-column or character block coordinate system; otherwise, these argu

ments specify the lower, left display coordinate for the first character of the

string. Displayed text is never rotated and normally uses a single character

font. Because the row-column coordinate system is used exclusively for display

ing text in the command, information, and layer menu viewports, the Mode argu

ment could be used, however, to specify one of two graphic text fonts.

FBPointQ is the only frame buffer routine that controls the graphical

pointing device. When invoked, the FBPointQ routine displays the graphical

cursor and then waits for a user pointing event. If the graphical pointing device

is equipped with buttons, a pointing event occurs when the KIC user presses one

of these buttons or presses a character key on the keyboard; otherwise, if there

are no buttons on the graphical pointing device, a pointing event occurs only

when the user presses a character key on the keyboard. After one user pointing

event, the routine terminates, and the returned values also depend on whether

the graphical pointing device is equipped with buttons. If the graphical pointing

device has buttons and the user pressed one of these buttons, FBPointQ

returns with the value of zero in the character referenced by the Key pointer,

Ill

the display coordinate coordinate of the graphics cursor (i.e., the position of the

cursor) in the integers referenced by the X, Y pointers, and the identifying but

ton mask in the integer referenced by the Buttons pointer; this button mask

can be compared with the contents of the fButtonMask member of the frame

buffer descriptor to determine the button that was pressed. If the graphical

pointing device has buttons and the KIC user types at the keyboard of the graph

ics terminal, then the character that was user-typed is returned in the charac

ter referenced by the Key pointer, and the other returned values are meaning

less. If the graphical pointing device does not have buttons and the user presses

a character key on the keyboard, the FBPointQ routine returns with the value

of typed character in the character referenced by the Key pointer, the display

coordinate of the cursor position in the integers referenced by the X, Y

pointers, and the returned value of the Buttons argument is meaningless. The

graphics cursor is always disabled before FBPointQ terminates.

The FBKeyboardQ procedure is invoked to obtain user input from the dev

ice keyboard or the standard input. This input routine will perform character

buffering and input line management, and return the pointer TypeIn to the

input character buffer. The input line management includes the handling of the

erase character (typically control-H or delete), the line kill character (control-X

or control-U), special hacking of control characters (especially the escape char

acter), and character echoing. All characters that are typed by the KIC user are

echoed in the information viewport beginning at the text column specified by

the fLast CursorColumn member of the frame buffer descriptor, and are

displayed with the color identified by the kpMenuTextColor member of the KIC

parameters structure, which becomes the foreground color. FBKeyboardQ ter

minates when the user presses either the new-line or return key (controi-J or

control-M).

112

To display the contents of a file in a viewport of the graphics display, KIC

invokes the FBMoreQ routine. The Textfile argument is the file descriptor for

the text file that is to be displayed in the viewport specified by the Left, Bottom

and Right, Top display coordinates. FBMoreQ will display characters from the

file until it has filled the space of the viewport, and then will prompt the KIC user

in the same viewport before continuing; the procedure is similar to the UNIX

more(l) command. As for the the FBKeyboardQ routine, special hacking of

control characters should be performed because a frame buffer with a serial,

full duplex, RS-232 interface could enter an unknown state when it receives

information that is similar to graphics command code. When the end of the file

detected, the FBMoreQ routine will erase the viewport to the background color,

color index equal to zero, and return. The file referenced by the Textfile argu

ment is not closed before termination.

FBPolygonCLipQ will clip a polygon to the window defined by the window

argument. The vertices of the polygon to be clipped are defined in the integer

array referenced by the xy pointer; the number of vertices is specified by the

integer referenced by the ncoords argument, and the first window coordinate is

(xy[0], xy[l\), the second window coordinate is (xy[2], xy[3])t etc. It is

assumed that the integer buffer referenced by the xy pointer is sufficiently

large to contain the returned vertices of the clipped polygon. The number of

vertices of the clipped polygon is returned in the integer referenced by the

ncoords argument. See Section 4.1.3 that describes window-to-viewport clipping

in KIC.

113

4.7. Geometry Display Routines

There are seven routines that are built on top of the frame buffer routines

specifically for displaying objects in the layout viewports: ShowBoxQ, ShowPo-

lygonQ, ShowWireQ, ShowLabelQ, ShowLineQ, ShowManhattanLineQ, and

ShowPathQ. These routines perform the window-to-viewport transformations,

window to viewport clipping, and then display the respective object in the

appropriate viewport depending on the value of the kpRedisplayControl parame

ter. A synopsis of these display routines follows:

ShowBox(Layer, BB, Window)
int Layer;
struct ka BB, Window;

ShowLabei(Layer, Label, X, Y, Flag)
char *Label;
int Layer, X, Y, Flag;

ShowLine(Layer, XI. Yl, X2, Y2, Window)
int Layer, XI, Yl, X2, Y2;
struct ka Window;

ShowManhattanlAne(Layer, XI, Yl, X2, Y2, Window)
int Layer, XI, Yl, X2, Y2;
struct ka Window;

ShowPath(Layer, Path, Window, Terminate)
struct p "Path;
struct ka Window;
int Layer, Terminate;

ShowPolygon(Layer, Path, Window)
struct p *Path;
struct ka Window;
int Layer;

ShowWire(Layer. Width, Path, Window)
struct p *Path;
struct ka Window;
int Layer, Width;

All coordinate values that are passed as arguments to these display rou

tines must be world coordinates and not display coordinates. The Layer argu

ment defines the color with which the object is to be displayed, and the Window

argument defines the window to which the object should be clipped.

The display routines must also consider the fill pattern for the respective

114

layer. Because there are frame buffers that do not provide the capability of

stippled fill patterns, the KIC geometry display routines provide at least two

modes of presentation for the objects on any layer. These two modes are filled

and outlined, and the presentation mode for a given layer is determined by the

logical value of the klFilled member of the KIC layer table for the respective

layer. See Section 4.2.3 that describes the KIC layer table descriptor.

Except for a few peculiarities, these procedures should be easily under

stood by any programmer ho is familiar with the frame buffer routines and CD

path descriptor. The remainder of section will discuss the peculiarities of the

individual routines.

Because the CD database has no notion of text size, a Window argument is

not passed to the ShowLabelQ procedure. This display procedure will attempt

to evaluate the size and position of the text label in display pixels from the

fFontWidth and jFontHeight members of the frame buffer descriptor, and from

this information it will determine the number of characters in the label that will

fit into each of the layout viewports. Normally, the ShowLabelQ routine will not

attempt to display a label in a viewport if the number of display pixels to window

lambda is less than two; the label will however always be displayed in all layout

viewports if the Flag argument is set to a True logical value.

The ShowManhattanLineQ routine is identical to the ShowLineQ routine,

except that it uses a more simple clipping algorithm. If this procedure is used

to display a line that is neither vertical or horizontal with respect to the graph

ics display and is not contained entirely within the window defined by the Win

dow argument, it will not be displayed accurately.

The ShowPathQ routine will use the FBLineQ procedure to display the path

list referenced by the Path argument. If the Terminate argument is set, the

path is terminated to produce the contour of a polygon.

115

47.1. Redisplay

Before an area of the layout viewports can be drawn, it must first be erased

to the background color. The ShowBoxQ routine could be used to erase an area

of the layout viewports by drawing a box on layer zero, but typically the Erase-

BoxQ procedure is used.

EraseBox(Area, Window)
struct ka Area, Window;

The EraseBoxQ procedure will erase the area identified by the Area argu

ment in the window identified by the Window argument.

After an area of the layout viewports has been erased, the RedisplayQ rou

tine is invoked to display the layout information in the viewport.

Redisplay(SymbolDesc, AOI)
struct s *SymbolDesc;
struct ka AOI;

The RedisplayQ procedure will display all layout information of the CD sym

bol referenced by the SymbolDesc symbol descriptor contained within the win

dow defined by the AOI argument. The kpRedisplayControl member of the KIC

parameters structure determines the viewports that will be affected by this rou

tine. This routine is also controlled by the Expandlnstances and kpExpand-

FvneViewportOnly members of the KIC parameters structure defined in Section

4.3.

Given the above geometry display routines, the RedisplayQ procedure is a

simple application of the CD database. The example C procedure that is pro

vided in Section 2.6 as an example of traversing a symbol hierarchy is similar,

but not identical, to the RedisplayQ procedure.

Because of the display philosophy of KIC, in particular the fact that a red

box displayed on top of a green box will hide the green box, this routine is

inherently inefficient since it must traverse the entire symbol hierarchy once

L. 1-

116

for each layer so that the layer interactions will be consistent (e.g., red objects

are always displayed above green objects). There are at least two possible

modifications that would increase the efficiency and speed of the RedisplayQ

procedure: the first is to modify the CD database to recognize the layers in the

symbol's bin structure that are in use. This would eliminate the overhead of ini

tializing CD to search an empty bin structure. The second modification would be

to change the display philosophy of KIC and use the 'OR' ALU mode described in

Section 4.6.2. In this case, each layer would correspond to one memory plane in

the frame buffer, and a red object displayed on top of a green object would pro

duce a, perhaps, brown object in the area of intersection. This approach was

used in earlier versions of KIC but was rejected in favor of priority redisplay and

color stipple patterns. The major problem with the plane-per-layer, color mix

ing solution is that it severely limits the number of uniquely colored layers that

can be displayed simultaneously on the graphics display because most frame

buffers have fewer than 10 memory planes, and most IC designers claim to be

more comfortable with the notion of layer depth than with puzzling layer

interactions.

117

4.B. Geometry Input Routines

There are seven routines in KIC that allow the user to create objects in the

CD database. A synopsis of these procedures follows:

Arcs(LookedAhead)
int "LookedAhead;

Boxes(LookedAhead)
int "LookedAhead;

Doughnut(LookedAhead)
int "LookedAhead;

Flash(LookedAhead)
int "LookedAhead;

Label(LookedAhead)
int "LookedAhead;

Polygons (LookedAhead)
int "LookedAhead;

Wires(LookedAhead)
int "LookedAhead;

From the argument list of each routine, one could correctly conclude that

these routines are similar. This section will describe the requirements and

resulting similarities of these input procedures.

Each of the above procedures for creating geometries is invoked after the

KIC user selects a corresponding command menu item. Each routine will ter

minate when the user either selects a new menu command or after an error con

dition is detected, such as if the CD database is unable to create an object

because of a failure of the mallocQ routine. While in one of the geometry crea

tion routines, if the user selects another menu command, the integer that is

referenced by the LookedAhead argument is set to the value of True. Another

way of interpreting the use of the LookedAhead argument is that it is used by a

child procedure to notify the parent procedure that the KIC user has performed

an action that the child procedure is unable to handle. See Section 4.4 that

describes the KIC command menus.

Because these procedures interface to the KIC user and thereby directly

118

affect how efficiently he can use KIC, the procedures must be user-friendly.

There is a set of requirements for any such routine. Firstly, geometry creation

must be a mode of operation, rather than a single command; this allows the KIC

user to create several objects without having to specify that he is doing so for

each object. Secondly, the KIC user must be able to change the current layer

while KIC is in the geometry creation mode of operation. The user must also be

capable of 'undoing' his last action.

A pseudo C procedure is provided below as an example of a basic KIC user

interface routine. All the above geometry creation routines are similar to the

following model:

MakeObject(LookedAhead)
int "LookedAhead;

i
initialize;
use ShowPrompt to tell the user what he's doing;

while(True)j

PointQ;

/* Has the user selected a menu command? */
if (Parameters.kpCommand[0] != EOS)f

/* Did the user point to UNDO? «/
if (strcmp(Parameters.kpCommand,MenuUNDO) == 0)\

if (nothing to undo){
"LookedAhead = True;
return;

else if (current object has been terminated)j
delete the entire object;
set flag to expect first point of new object;
i

elsej
undo the last point;
i

/* The user selected another menu command. */
elsej

terminate the current object;
"LookedAhead = True;
return;

i
j

I

119

/* Did the user not point in the layout viewport? */
else if (SParameters.kpPointCoarseWindow)

continue;

/* Do we expect the first point of a new object? */
else if (expect first point)\

begin new object;
i

/* Is this the same point as before? */
else if (Cursor.kcX == X And Cursor.kcY == Y){

terminate current object to begin another;
set flag to expect first point of new object;
i

/* If none of the above, add point to object description. */
elsej

add point to current object;
i

i

The above MakeObjectQ procedure allows the user to describe an object by

interactions with the graphical pointing device, and thereby enter the object

into the CD database. The user also has the ability to 'undo' either the previ

ously entered point or the previously created object. The procedure also recog

nizes when the user has not pointed in the layout viewports which permits the

user to easily change the current layer by pointing in the layer menu viewport.

120

4.9. Geometry Modification Procedures

The KIC user must have the capability of easily editing or modifying

geometric objects. There is an entire KIC command menu, the selection menu,

dedicated to this user need. This chapter will describe KIC's philosophy of

object modification and the user interface routines.

The first assumption of object editing in KIC is that the user will desire to

modify several objects simultaneously rather than one object at a time. For

example, he may wish to stretch a signal bus containing several wires, or he may

want to copy a bipolar transistor and add a 90 degree rotation without destroy

ing the inter-spacing of geometry.

The question then arises of how to remember and represent the several

objects that the user will want to modify in a way that the user can easily control

and in a way that will not be cumbersome for any editing operation. In other

words, how would the KIC user define a working set of objects? One solution

might be to require the user to define a rectangular area that contains every

object to be modified. A problem with this simple solution, however, is that it

does not allow the user to be as specific as he might wish to be; suppose, for

example, that the user intends to move all objects in a rectangular area except

one box.

The KIC solution to this problem is the selection queue that contains

pointers to the user-specified objects in the symbol that is currently being

edited. The selection queue is defined in the select.h file as follows:

struct ks {
struct ks "ksSucc;
struct o "ksPointer;

i:
struct ks "SelectQHead;

struct ka SelectQBB;

121

The following procedures are used by KIC to control the selection queue.

SelectQInitQ

SelectQlnsert(Pointer)
struct o "Pointer;

SelectQDelete(Pointer)
struct o "Pointer;

SelectQFirst(Pointer)
struct o ""Pointer;

SelectQClear()

SelectQComputBB()

SelectQShow(AOI)
struct ka AOI;

The SelectQInitQ procedure is invoked to initialiaze the selection mechan

ism. This procedure is invoked once by the InitParametersQ procedure that

assigns the default values to members of the KIC parameters structure.

SelectQlnsertQ is invoked to add an object that is referenced by Pointer to

the selection queue. The object is always inserted at the top of the list. Any pro

cedure that invokes SelectQlnsertQ is required by convention to set the infor

mation field of the particular object to the value of one via the CDSetlnfoQ

database routine.

SelectQDeleteQ removes from the selection queue that object referenced

by the Pointer argument and releases the memory that was used by the respec

tive ks structure. No action occurs if the object descriptor is not contained in

the selection queue. Any procedure that invokes SelectQDeleteQ is required by

convention to set the information field of the removed object to the value of zero

via the CDSetlnfoQ database routine.

The SelectQFirstQ returns in the pointer referenced by Pointer the first

object in the selection queue (the object that is at the head of the list). If the

selection queue is empty, a null pointer is returned.

The SelectQCZearQ procedure is invoked to remove all objects from the

122

selection queue and release all related memory. Before SelectQClearQ ter

minates, the pointer to the top of the selection queue SelectQHead is assigned

to the value of NULL.

When the SelectQCbmputBBQ is invoked, the bounding box of all objects

that are in the selection queue is evaluated and stored in the SelectQBB area

descriptor. If the selection queue is empty, the resulting bounding box will have

impossible values; the top of the box will be below the bottom, and the right side

will be left of the left side.

The SelectQShowQ routine is invoked to highlight in the layout viewports all

objects contained in the selection queue that intersect the area defined by the

AOI argument. The emphasis is provided by outlining the contour of all objects

that qualify with the color that is identified by the kpHighlightingPixel member

of the KIC parameters structure. This routine is always invoked by the

RedisplayQ procedure before it terminates.

The information field of an object is used by KIC to identify the status of the

particular object. A table of the current uses of the object information field is

shown below:

Info = 0 Object is unselected (default value).
•Info = 1 Object is selected and in selection queue.
Info = 2 Object is conditionally deleted and in selection queue.
Info = 3 Object is conditionally copied and in selection queue.
Info = 4 Object is conditionally selected and in selection queue.
Info = 5 Object is polygon or wire being created.
Info s 10 Object is box that could not be stretched (see modify.c)

"Info = 11-255 Object has conditionally new layer and is in
selection queue. The old layer number = Info - 10.

* means that SelectQShow() will highlight these objects.

Given the above routines for managing the selection queue, an example is in

order. The following procedure will examine the contents of the selection queue

and delete all objects that are boxes:

123

^include "kic.h"
^include "selecth"

DeleteBoxes() f
struct ks "SelectQDesc;
char Type;

SelectQDesc = SelectQHead;
while(SelectQDesc != NULL)f

CDType(SelectQDesc->ksPointer,&Type);
if(Type == CDBOX)[

CDDelete(Parameters.kpCellDesc,SelectQDesc->ksPointer);
SeiectQDelete(SelectQDesc->ksPointer);
i

SelectQDesc = SelectQDesc->ksSucc;
i

i

There are six routines for the user-editing of objects in KIC; each procedure

uses the selection queue. A synopsis of each is provided below:

ChangeLayer(LookedAhe ad)
int "LookedAhead;

Copy(LookedAhead)
int "LookedAhead;

Del(LookedAhead)
int "LookedAhead;

Move(LookedAhe ad)
int "LookedAhead;

StretchBox(LookedAhead)
int "LookedAhead;

StretcbPath(LookedAhead)
int "LookedAhead;

The requirements of these user-interface procedures for geometry

modification are similar to those for geometry creation. The KIC user must be

capable of 'undoing' any command, but he most also be capable of canceling the

effect of an "undo*. These procedures are also mode-oriented, thereby allowing

the user to, for example, move objects in the layout viewports without being

required to select the particular command before each action. Also, the user is

capable of redefining the current transformation of objects at any time in the

editing process; the current transformation is described in Section 4.3 covering

the KIC parameters structure.

124

Chapter 5

System Dependencies

At present, KIC runs under Berkeley VM/UNDC, Masscomp Real-Time UNIX,

and VAX/VMS; clearly the program is portable. The major problems that are

involved with transporting KIC to another operating system are described in this

chapter. It is, of course, impossible to predict every possible problem that may

arise by attempting to move KIC to another system; only those difficulties that

have been experienced in past are described. It is also assumed here that all C

compilers are friendly and free of bugs and quirks!

The standard definition of the C programming language is [3]. It is assumed

in KIC to be legal to pass entire structures in argument lists. All data structure

member names in KIC are unique, and therefore no problem should ever arise

from confiicting structure member names. Also, data unions are not used in

KIC.

5.1. Terminal I/O Dependencies

Because the C programming language does not at present have a standard

set of procedures for special I/O control, the first problem with transporting KIC

to another system is usually the frame buffer interface. KIC must operate in a

CBREAK mode; standard I/O, or stdio, is not sufficient. CBREAK mode implies

that characters typed at the terminal are not buffered, but becomes available to

the program when they are typed. Character echoing must also be disabled.

This mode is easily obtained with the Berkeley UNIX tty(4) general tty interface;

under VMS it is available from the sys$qiowQ system service routine.

5.2. The Directory Search Path

To have the capability of easily using standard cell libraries, KIC must have

125

a directory search path capability. When KIC requires that a file be opened, a

list of directories will be searched for that file in the order that the directory

names appear on the respective list. The first file found in the directory list is

opened, and if the file name is not found, a new file is opened in the current

directory. This directory search algorithm is provided in the POpenQ routine.

The list of directories is defined by the PSetPathQ routine that will invoke

the PConvertTildeQ procedure to perform special character conversion. Under

Berkeley UNIX, the tilde (~) character is converted to the complete path name

of the user's home directory; under VMS, the tilde character is converted to the

user's login name.

To transport KIC to a system that does not have UNIX style directory path

names or does not have the equivalent of the UNIX getpwnam(3) routine, it is

necessary to modify the PConvertTildeQ procedure such that it will perform

tilde expansion correctly. And most importantly, the POpenQ procedure must

be modified such that it will be capable of correctly appending a file name to any

directory name in the directory search list. As an example of this under the

VMS file system, the file name CELL.K would have to be appended to the direc

tory name DMAO:[USER. JOE. LAYOUT] to produce the character string

DMA0:[USER.JOE.LAYOUT]CELL.K as the complete path name of the respective

file.

5.3. Memory Management

On virtual memory systems, KIC and the CD database will allocate memory

on demand. For speed considerations, a special memory management package

called nmalloc has been developed. In general, the memory allocation pro

cedure mallocQ, which is provided in most C run-time libraries, attempts to be

efficient and miserly with the existing free memory; consequently, it tends to be

undesirably slow.

126

The nmallocQ routine maintains a separate free list for objects of a partic

ular size. A free list in this case is a linked-list of free memory blocks; the first

few bytes of the memory block are used as a pointer to the next free block of

memory with the same size. Because large blocks of memory (greater than 100

bytes) are infrequently requested, free lists are maintained only for memory

blocks smaller than BO bytes. If a larger piece of memory is requested, the

nmallocQ routine defaults to the usual maJlocQ memory allocation library rou

tine.

All memory blocks are aligned by nmallocQ to the size of an integer, which

is typically four bytes. Therefore, if nmallocQ is invoked to return a pointer to

10 bytes of free memory, the actual size of the allocated memory block will be

12 bytes. Furthermore, if nmallocQ maintains free lists for free memory blocks

that are smaller than 80 bytes, only 20 free lists are required.

The free storage that is contained in a free list for a particular size of

memory block is allocated by the nmallocQ routine only when a block of

memory having that particular size is requested. When the free list must be

constructed, or additional memory added to the list, nmallocQ will request a

large block of memory from the system (typically 4096 bytes), and this memory

block will then be divided to build the desired free list. Under Berkeley UNIX the

sbrk(2) library routine is used to acquire this large block of memory from the

system, and VMS uses the normal mallocQ library routine.

To transport KIC to another system, the nm_blackmjrtlocQ procedure must

be modified such that previously described free lists will be properly con

structed. It is possible to compile KIC to use the usual maUocQ library pro

cedure, and not the nmalloc package, by setting the USEJ3LD_MALL0C compiler

flag in the nmalloc.h header file.

127

5.4. The System Interface

The ShowProcessQ procedure is used by KIC to execute a system command

or a child process. This routine must be capable of running a process, display

ing any output in the area of the fine viewport, and detecting when the process

has completed. Under Berkeley UNIX the popen(3) library routine is used, and

under VMS the LIBSSPAWNQ system service routine is used.

To transport KIC to another operating system, it is necessary to modify the

ShowProcessQ routine, and the argument lists must also be corrected. For

example, to display a directory listing in the area of the fine viewport, the com

mand string under UNIX is as follows:

ShowProcess(" Is -C ");

The corresponding command string under VMS is as follows:

ShowProcess(" DIRECT0RY/C0LUMN=3/0UTPUT=KIC ");

The ShowPromptQ procedure for VMS will recognize the "OUTPUT=KIC" string

and replace the three characters "KIC" with the name of a temporary file. When

the spawned process has completed* the contents of the temporary file are

displayed in the area of the fine viewport.

A.1

Appendix A

A Catalog of All Routines and Macros

The following pages contain a catalog of all routines and macros used in KIC

and the source files in which they are found. This list has two uses: it provides a

index that will allow the programmer to quickly determine the source file that

contains a particular routine, and it also allows the programmer to easily check

the argument list of any function call.

SYNOPSIS

ABeginCall(SymbolNum)
int SymbolNum;

ABeginSymbol(SymbolNum, A, B)
int SymbolNum;
int A, B;

ABox(Length, Width, X, Y, XDirection, YDirection)
int Length, Width;
int X, Y;
int XDirection, YDirection;

AComment(Text)
char *Text;

ADeieteSymbol(SymbolNum)
int SymbolNum;

AEnd()

AEndCall()

AEndSymbol()

ALayer(Technology, Mask)
char Technology;
char *Mask;

AMallocFailed()

APolygon(Path)
struct p *Path;

ARoundFlash(Width, X, Y)
int Width;
int X, Y;

AT(Type, X, Y) .
char Type;
intX Y;

AUserExtension(Digit, Text)
char Digit;
char *Text;

AWire(Width, Path)
struct p *Path;
int Width;

AddLayer()

AddProperty()

AddResultingTransform(Pointer, TF)
struct o *Pointer;
int *TF;

AppendPointToPath(X. Y, Path)
struct p **Path;
int X Y;

A.2

SOURCE FILE

actions, c

actions, c

actions, c

actions, c

actions, c

actions, c

actions, c

actions, c

actions, c

actions, c

actions, c

actions, c

actions, c

actions, c

actions, c

attri.c

prpty.c

move.c

wires.c

A.3

SYNOPSIS SOURCE FELE

Arcs(LookedAhead) polygns.c
int ^LookedAhead;

Area(LookedAhead) select,c
int 'LookedAhead;

Attri() atari, c

BBLabel(Label, X, Y, BBCoarse, BBFine) labels.c
struct ka *BBCoarse;
struct ka *BBFine;
char *Label;
intXY;

Basic () basic,c

Blink(LookedAhead) attrLc
int 'LookedAhead;

Box(DisplayOrErase, Layer, L, B, R, T) boxes.c
char DisplayOrErase;
int Layer, L, B, R, T;

Boxes(LookedAhead) boxes.c
int 'LookedAhead;

CDBB(SymbolDesc, Pointer, Left, Bottom, Right, Top) ctLc
struct s *SymbolDesc;
struct o *Pointer;
int *Left, *Bottom;
int *Right, *Top;

CDBeginMakeCall(SymbolDesc, Name, NumX, DX, NumY, DY, Pointer) cd.c
struct s *SymbolDesc;
struct o *Pointer;
char *Name;
int NumX, DX NumY, DY;

CDAddProperty(SymbolDesc, Pointer, Value, String) cd.c
struct s *SymbolDesc;
struct o *Pointer;
char *String;
int Value;

CDBox(Pointer. Layer, Length. Width. X, Y) cd.c
struct o *Pointer;
int *Length, *mdth;
int *Layer;
int *X. *Y;

CDCall(Pointer, SymbolName. NumX, DX. NumY, DY) cd.c
struct o *Pointer;
char *SymbolName;
int NumX, DX;
int NumY, DY;

SYNOPSIS

CDCheckPath(Path)
struct p *Path;

CDClose(SymbolDesc)
struct s *SymbolDesc;

CDDebug(Debug)
int Debug;

CDDelete(SymbolDesc, ObjectDesc)
struct s *SymbolDesc;
struct o *ObjectDesc;

CDDeleteObjectDesc(SymbolDesc, ObjectDesc)
struct s *SymbolDesc;
struct o *ObjectDesc;

CDEndMakeCall(SymbolDesc, Pointer)
struct s *SymbolDesc;
struct o *Pointer;

CDError(ID)
int ID;

CDFrom(Root, CIFFile, A, B, Layers, NumLayers, Program)
char *Root, *CIFFile, Program;
int *Layers, NumLayers;
int A, B;

CDGen(SymbolDesc, GenDesc, Pointer)
struct s *SymbolDesc;
struct g *GenDesc;
struct o **Pointer;

CDGenCIF(FileDesc, SymbolDesc, SymbolNum, A, B, Program)
struct s "SymbolDesc;
FILE *FileDesc;
int *SymbolNum;
char Program;
int A, B;

CDInfo(SymbolDesc, Pointer, Info)
struct s *SymbolDesc;
struct o *Pointer;
int *Info;

CDInit()

CDInitGen(SymbolDesc, Layer, Left, Bottom, Right, Top, GenDesc)
Btruct s *SymbolDesc;
struct g **GenDesc;
int Layer, Left, Bottom, Right, Top;

CDInitTGen(Pointer, TGen)
struct o *Pointer;
struct t **TGen;

A.4

SOURCE FILE

cd.c

cd.c

cd.c

cd.h

cd.c

cd.c

cd.c

cdLc

cd.c

cd.c

cd.c

cd.c

cd.c

cd.c

A.5

SYNOPSIS SOURCE FILE

CDInsertObjectDesc(SymboIDesc, ObjectDesc) cdc
struct s "SymbolDesc;
struct o *ObjectDesc;

CDIntersect(Left, Bottom, Right, Top, BeginX, EndX, BeginY, EndY) cdc
int Left, Bottom, Right, Top;
int *BeginX, *EndX, *BeginY. *EndY;

CDLabel(Pointer, Layer, Label, X, Y) cdc
struct o "Pointer;
char "Label;
int "Layer;
int «X, *Y;

CDMakeBox(SymbolDesc, Layer, Length, Width, X, Y, Pointer) cdc
struct s "SymbolDesc;
struct o ""Pointer,
int Layer, Length, Width, X, Y;

CDMakeLabel(SymbolDesc, Layer, Label, X, Y, Pointer) cdc
struct s "SymbolDesc;
struct o ""Pointer;
char "Label;
int Layer;
intXY;

CDMakePolygon(SymbolDesc, Layer, Path, Pointer) cdc
struct s "SymbolDesc;
struct p "Path;
struct o ""Pointer;
int Layer;

CDMakeRoundFlash(SymbolDesc, Layer, Width, X, Y, Pointer) cdc
struct s "SymbolDesc;
struct o ""Pointer;
int Layer, Width, X, Y;

CDMakeWire(SymbolDesc, Layer, Width, Path, Pointer) cdc
struct s "SymbolDesc;
struct p "Path;
struct o ""Pointer;
int Layer, Width;

CDOpen(SymbolName, SymbolDesc. Access) cdc
struct s ""SymbolDesc;
char "SymbolName;
char Access;

CDParseCIF(Root, CIFFile, Program) cd.c
char "Root, "CIFFile;
char Program;

CDPatchInstances(SymbolDesc, MasterName) cdc
struct s "SymbolDesc;
char "MasterName;

A.6

SYNOPSIS SOURCE FILE

CDPath(Path) cdc
char "Path;

CDPoiygon(Pointer, Layer, Path) cdc
struct o "Pointer;
struct p "Path;
int "Layer;

CDProperty(SymbolDesc, Pointer, Property) cdc
struct s "SymbolDesc;
struct o "Pointer;
struct prpty ""Property;

CDReflect(SymbolDesc) cdc
struct s "SymbolDesc;

CDRemoveProperty(SymbolDesc, Pointer, Value) cdc
struct s "SymbolDesc;
struct o "Pointer;
int Value;

CDRoundFlash(Pointer, Layer, Width, X, Y) cdc
struct o "Pointer;
int "Layer, "Width, "X, "Y;

CDSetInfo(SymbolDesc, Pointer, Info) cdc
struct s "SymbolDesc;
struct o "Pointer;
int Info;

CDSetLayer(Layer, Technology, Mask) cdc
int Layer;
char Technology, "Mask;

CDSymbol(SymbolName, SymbolDesc) cdc
struct s "SymbolDesc;
char "SymbolName;

CDT(Pointer, Type, X, Y) cdc
struct o "Pointer;
char Type;
int X, Y;

CDTGen(TGen, Type, X, Y) cdc
struct t ""TGen;
char "Type;
int "X, *Y;

CDTo(CIFFile, Root, A, B, Program) cdc
. char "CIFFile, "Root;
char Program;
int A, B;

CDType(Pointer, Type) cdc
struct o "Pointer;
char "Type;

SYNOPSIS

CDUnmark(SymbolDesc)
struct s "SymbolDesc;

CDUpdate(SymbolDesc, SymbolFile)
struct s "SymbolDesc;
char "SymbolFile;

CDWire(Pointer, Layer, Width, Path)
struct o "Pointer;
struct p "Path;
int "Layer, "Width;

Catch(sig)
int sig;

CatchLyra(sig)
int sig;

CatchSIGINT(sig)
int sig;

CenterFullView()

ChangeLayer(LookedAhead)
int "LookedAhead;

OipToGridPoint(X, Y)
int "X. *Y;

Copy(LookedAhead)
int "LookedAhead;

CopyPathWithXForm(Path)
struct p ""Path;

CtrlAt(Menu, X. Y)
char ""Menu;
intXY;

Debug()

DefaultWindows()

Del(LookedAhead)
int "LookedAhead;

Desel()

Dimen(LookedAhe ad)
int "LookedAhead;

DotKIC()

Doughnut(LookedAhead)
int "LookedAhead;

Edit(Ready, Center, Modified)
int Ready, Center, Modified;

A.7

SOURCE FILE

cdc

cdc

cdc

kic.c

lyra.c

kic.c

basic, c

change,c

coords, c

copy.c

copy.c

point.c

debug, c

init.c

delete, c

select, c

attrLc

dotkic.c

polygns.c

basic,c

A.8

SYNOPSIS SOURCE FILE

ElapsedRealTime() measure,c

ElapsedSystemTime() measure.c

ElapsedUserl5me() measure.c

EraseBox(BB, Window) boxes.c
struct ka BB, Window;

EraseLabel(Layer, Label, X, Y) labels, c
char "Label;
int Layer, X, Y;

EraseMagnifyingGlassO viewports,c

ErasePromptQ viewports,c

Expand() basic,c

FBBegin(Display) fb.c
char "Display;

FBBlink(ColorId,RedGreen,Blue,Flag) fb.c
int Colorld, Flag;
int Red,Green,Blue;

FBBox(CoiorId, DisplayOrErase, Type, Styleld, Left, Bottom Right, Top) fb.c
char Type, DisplayOrErase;
int Styleld, Colorld, Left, Bottom, Right, Top;

FBDefineFillPattern(Styield.BitArray) fb.c
int Styleld;
int "BitArray;

FBDrawLineTo(X2,Y2) fb.c
int X2.Y2;

FBEnd() fb.c

FBFlood() fb.c

FBForeground(DisplayOrErase, Colorld) fb.c
char DisplayOrErase;
int Colorld;

FBHaltQ fb.c

FBInitialize()

FBKeyboard(Typeln) fb.c
char ""Typeln;

FBLine(Xl,Yl,X2.Y2) fb.c
int X1.Y1.X2.Y2;

FBMore(LeftlBottom,Right,Top,Textfile) fb.c
int Left,Bottom,Right,Top;
FILE "Textfile;

FBMoveTo(Xl.Yl) fb.c
int X1.Y1;

SYNOPSIS

FBPoint(X,Y,Key,Buttons)
int »X,*Y,"Buttons;
char "Key;

FBPolygon(ColorId, Type, Styleld xy, ncoords)
int "xy;
int Colorld, Styleld, ncoords;
char Type;

FBPolygonClip(xy, ncoords, window)
int "xy;
int "ncoords;
struct ka window;

FBSetCursorColor(colorld)
int colorld;

FBSetFillPattern(Styleld)
int Styleld;

FBText(Mode, RowOrX, ColumnOrY, Text)
char "Text;
char Mode;
int RowOrX, ColumnOrY;

FBTransfer()

FBVLT(ColorId R, G, B)
int Colorld, R, G, B;

Fille(LookedAhead)
int "LookedAhead;

FmePosition(X, Y, Key)
intX, Y;
char Key;

Flash(LookedAhead)
int "LookedAhead;

Flatten()

FlattenCell(CellDesc)
struct s "CellDesc;

FullRedisplay()

GenBeginCall(FileDesc, Number)
FILE "FileDesc;
int Number;

GenBeginSymbol(FileDesc, SymbolNum, A, B)
FILE "FileDesc;
int SymbolNum, A, B;

GenBox(FileDesc, Length, Width, X, Y, XDir. YDir)
FILE "FileDesc;
int Length, Width;
int X, Y, XDir, YDir;

A.9

SOURCE FILE

fb.c

fb.c

fb.c

fb.c

fb.c

fb.c

fb.c

fb.c

attrLc

point,c

polygns.c

flatten.c

flatten, c

point,c

gencif.c

gencif.c

gencif.c

SYNOPSIS

GenComment(FileDesc, Text)
FILE "FileDesc;
char "Text;

GenEnd(FiieDesc)
FILE "FileDesc;

GenEndCall(FileDesc)
FILE "FileDesc;

GenEndSymbol(FileDesc)
FILE "FileDesc;

GenLayer(FileDesc, Technology, Mask)
FILE "FileDesc;
char "Mask;
char Technology;

GenMirrorX(FileDesc)
FILE "FileDesc;

GenMirrorY(FileDesc)
FILE "FileDesc;

GenPolygon(FileDesc, Path)
FILE "FileDesc;
struct p "Path;

GenRotation(FileDesc, X, Y)
FILE "FileDesc;
int X, Y;

GenTranslation(FileDesc, X, Y)
FILE "FileDesc;
intX,Y;

GenUserExtension(FileDesc, Digit, Text)
FILE "FileDesc;
char "Text;
char Digit;

GenWire(FileDesc, Width, Path)
FILE "FileDesc;
struct p "Path;
int Width;

GetCurrentTransform()

GetKeyWord(file, inbuf)
FILE "file;
char "inbuf;

GetMoveTransforrn()

InBox(X, Y, AOI)
struct ka AOI;
int X, Y;

A. 10

SOURCE FILE

gencif.c

gencif.c

gencif.c

gencif.c

gencif.c

gencif.c

gencif.c

gencif.c

gencif.c

gencif.c

gencif.c

gencif.c

copy.c

dotkic.c

move.c

boxes.c

SYNOPSIS

InPath(Deita, Path, X, Y)
struct p "Path;
int X, Y, Delta;

Init()

InitCoarseWindow(X, Y, Width)
int X, Y, Width;

InitFineWindow(X, Y)
int X, Y;

InitParameters()

InitSignals()

InitVLT()

InitViewportQ

Instances(LookedAhead)
int "LookedAhead;

IsManhattan(Xl, Yl. X2. Y2)
int XI, Yl, X2, Y2;

KIC()

LRCLayer(CellDesc,AOI,Layer)
struct s "CellDesc;
struct ka AOI;
int Layer;

LToP(Viewport, Window, X, Y)
struct ka Viewport;
struct ka Window;
int "X. *Y;

Label(LookedAhead)
int "LookedAhead;

LastView()

Lyra(LookedAhead)
int "LookedAhead;

MakeLayerlnvisible(Layer)
int Layer;

MakeLayerVisible(Layer)
int Layer;

MallocFailedO

MenuDeselect(Selection)
char "Selection;

MenuSelect(Selection)
char "Selection;

A.11

SOURCE FILE

polygns.c

initc

init.c

initc

initc

kic.c

initc

init.c

instance, c

45s. c

viewports, c

lyra.c

coords.h

labels, c

zoomc

lyra.c

attrLc

attrLc

kic.c

viewports, c

viewports, c

A. 12

SYNOPSIS SOURCE FILE

Move(Looke dAhe ad)
int "LookedAhead;

move.c

MovePath(TX, TY, Path)
struct p ""Path;
int TX, TY;

move.c

NextCellName() kic.c

NotPointingAtLayout() point,c

OutlineText(Left, Bottom, Right, Top, Type, DisplayOrErase, Colorld)
int Left, Bottom, Right, Top, Colorld;
char Type, DisplayOrErase;

viewports,c

OversizeBox(BB, Delta)
struct ka "BB;
int Delta;

boxes.c

PBox() parser.c

PCIF(CIFFileName. StatusString, Statuslnt)
char "CIFFileName;
char ""StatusString;
int "Statuslnt;

parser.c

PCall() parser.c

PCharacter(Returned, WhiteSpaceControl, EOFControl)
int Returned, WhiteSpaceControl, EOFControl;

parser.h

PComment() parser.c

PConvertTiide(psource, pdest, size)
char ""psource;
char ""pdest;
int "size;

paths, c

PDeleteSymboiO parser.c

PEnd() parser.c

PError(PErrorMessage)
char "PErrorMessage;

parser.c

PErrorCD() parser.c

PErrorEOF() parser.c

PErrorNoSemicolonO parser.c

PErrorUndefinedLayer(Tech, Mask)
char "Mask;
char Tech;

parser.c

PGetPathQ paths,c

PInteger(Returned, EOFControl)
int Returned, EOFControl;

parser.h

A. 13

SYNOPSIS SOURCE FILE

PLayerQ parser.c

PLookAhead(Returned, WhiteSpaceControl For)
int Returned, WhiteSpaceControl, For;

parser.h

PLookForSemi(Returned)
int Returned;

parser.h

POpen(file, mode, ext, prealname)
char "file;

paths,c

char "mode;
char "ext;

char ""prealname;

PPath(Path)
struct p "Path;

parser.c

PPoint(X. Y)
intX,Y;

parser.c

PPolygon() parser.c

PPrimitiveComrnand() parser.c

PRoundFlash() parser.c

PSetPath(string)
char "string;

paths, c

PSymbol() parser.c

PToL(Viewport, Window, X. Y)
struct ka Viewport;
struct ka Window;
int "X, *Y;

coords, c

PUserExtension() parser.c

PWhiteSpace(Returned, WhiteSpaceControl, EOFControl)
int Returned, WhiteSpaceControl, EOFControl;

parser.h

PWhiteSpacel(Returned, EOFControl)
int Returned, EOFControl;

parser.h

PWhiteSpace2(Returned, EOFControl)
int Returned, EOFControl;

parser.h

PWhiteSpace3(Returned, EOFControl)
int Returned EOFControl;

parser.h

PWire() parser.c

Pan(LookedAhead)
int "LookedAhead;

zoom.c

Peek() basic,c

PeekLayer(CellDesc, AOI, Layer, BottomVisibleLayer) redisplay, c
struct s "CellDesc;
struct ka AOI;
int Layer;

SYNOPSIS

int BottomVisibleLayer;

Point()

PointLayerTableQ

Pomt_At_LAYER()

Polygons(LookedAhe ad)
int "LookedAhead;

Pop()

PrintLRC(file)
FILE "file;

Properties(LookedAhead)
int "LookedAhead;

Push()

Redisplay(CellDesc, AOI)
struct s "CellDesc;
struct ka AOI;

RedisplayAfterInterrupt()

RedisplayLayer(CellDesc, AOI, Layer, BottomVisibleLayer)
struct s "CellDesc;
struct ka AOI;
int Layer;
int BottomVisibleLayer;

RemoveLastPointlnPath(Path)
struct p ""Path;

RemoveLayer(LookedAhe ad)
int "LookedAhead;

RemoveProperty()

RemovePropertyList(Pointer, PrptyDesc)
struct o "Pointer;
struct prpty ""PrptyDesc;

RestorePropertyList(Pointer, PrptyDesc)
struct o "Pointer;
struct prpty "PrptyDesc;

Save()

SaveDotKIC()

SaveLastView()

SaveViewOnStack()

Sel(LookedAhead)
int "LookedAhead;

A. 14

SOURCE FILE

point,c

viewports, c

select,c

polygns.c

contexts, c

lyra.c

prpty.c

contexts, c

redisplay,c

redisplay,c

redisplay, c

wires, c

attrLc

prpty.c

prpty.c

basic, c

kic.c

ZOOIXLC

zoomc

select, c

SYNOPSIS

SelectQClear()

SelectQComputeBB()

SelectQDelete(Pointer)
struct o "Pointer;

SelectQFirst(Pointer)
struct o "Pointer;

SelectQInit()

SeiectQInsert(Pointer)
struct o "Pointer;

SelectQShow(AOI)
struct ka AOI;

Selection(AOI)
struct ka AOI;

Selectionlnstances(AOI)
struct ka AOI;

SelectionLayer(AOI, Layer)
struct ka AOI;
int Layer;

Selections(LookedAhe ad)
int "LookedAhead

SetDebounceTime()

SetGridParameters(LookedAhead)
int "LookedAhead;

SetMenuParameters(LookedAhead)
int "LookedAhead'

ShowAttributeMenu()

ShowAxes(Viewport, Window)
struct ka Viewport, Window;

ShowBasicMenu()

ShowBox(Layer, BB, Window)
int Layer;
struct ka BB, Window;

ShowCommandMenu()

ShowDebugMenu()

ShowFineViewportQ

ShowGrid(Viewport, Window, AOI)
struct ka Viewport, Window, AOI;

ShowInstanceMenu()

A. 15

SOURCE FILE

select,c

select, c

select,c

select, c

select, c

select, c

select, c

select, c

select, c

selectc

select,c

point,c

attri.c

attrLc

attrLc

grid.c

basic,c

boxes.c

viewports, c

debug, c

viewports, c

grid.c

instance, c

SYNOPSIS

ShowLabel(Layer, Label, X, Y, Flag)
char "Label;
int Layer;
int X Y;
int Flag;

ShowLayerTable ()

ShowLayout()

ShowLine(Layer, XI, Yl, X2, Y2, Window)
int Layer;
int XI, Yl, X2, Y2;
struct ka Window;

ShowManhattanLine(Layer, XI, Yl, X2, Y2, Window)
int Layer;
int XI, Yl, X2, Y2;
struct ka Window;

ShowMenu(Menu, NumMenu)
char ""Menu;
int NumMenu;

ShowParameters()

ShowPath(Layer, Path, Window, Terminate)
struct p "Path;
struct ka Window;
int Layer;
int Terminate;

ShowPolygon(Layer, Path, Window)
struct p "Path;
struct ka Window;
int Layer;

ShowPrompt(Prompt)
char "Prompt;

ShowPromptAndWait(Prompt)
char "Prompt;

ShowPropertiesQ

ShowPropertyMenuQ

ShowRatio(Name, Value, PerUnitName, PerUnitValue)
char "Name;
char "PerUnitName;
int Value;
int PerUnitValue;

ShowRGB()

ShowSelectionMenuQ

A. 18

SOURCE FILE

labels, c

viewports, c

viewports, c

lines, c

lines, c

viewports,c

viewports,c

polygns.c

polygns.c

viewports.c

viewports, c

prpty.c

prpty.c

measure.c

attri.c

select.c

SYNOPSIS

ShowWire(Layer, Width, Path, Window)
struct p "Path;
struct ka Window;
int Layer, Width;

ShowXY()

StartTimingO

StopTlmingO

StretchBox(LookedAhead)
int "LookedAhead

StretchPath(LookedAhead)
int "LookedAhead;

SwapInts(Dragon, Eagle)
int Dragon, Eagle;

SwitchToFinePositioningO

TCurrent(TFP)
int "TFP;

TEmpty()

TFuU()

TIdentity()

TInit()

TInverse()

TInversePoint(X, Y)
int "X, *Y;

TMX()

TMY()

TPoint(X, Y)
int "X, *Y;

TPop()

TPremultiply()

TPush()

TRotate(XDirection, YDirection)
int XDirection, YDirection;

TTranslate(X, Y)
intX, Y;

To45(xl, yl, x2, y2)
int xl, yl, *x2, *y2;

Trap(n)
int n;

A. 17

SOURCE FILE

wires, c

viewports, c

measure.c

measure, c

modify,c

modify,c

macros.h

init.c

xforms.c

xforms.c

xforms.c

xforms.c

xforms.c

xforms.c

xforms.c

xforms.c

xforms.c

xforms.c

xforms.c

xforms.c

xforms.c

xforms.c

xforms.c

45s. c

kic.c

SYNOPSIS

TypeCoordinate()

UseLRC(cp)
char *cp;

UseRules(rules)
char "rules;

Visib(LookedAhead)
int "LookedAhead

WhereAmI(X, Y, Key)
intXY;
char Key;

Width(LookedAhead)
int "LookedAhead;

Windo(LookedAhead)
int "LookedAhead;

Wires(LookedAhead)
int "LookedAhead

WriteCeU()

Zoom(LookedAhead)
int "LookedAhead;

abs(Dragon)
int Dragon;

free(ptr)
char "ptr;

index(s, c)
char *s, c;

main(argc, argv)
int argc;
char *argv[];

max(Dragon, Eagle)
int Dragon, Eagle;

min(Dragon, Eagle)
int Dragon, Eagle;

A. 18

SOURCE FILE

point.c

lyra.c

lyra.c

attri.c

point.c

wires.c

zoom.c

wires.c

contexts, c

zooitlc

macros,h

nmalloc.h

paths,c

kic.c

macros.h

macros.h

B.1

Appendix B

The CD Programmers's Manual

The Section 3 UNIX manual pages for the CD database package are con

tained in this appendix.

CD (CAD3) UNIX Programmer's Manual CD (CAD3)

NAHE

CD - A Package of C Procedures for Managing CIF Databases

/ SYNOPSIS

^include "cdh"

DESCRIPTION

CD is a package of C procedures for managing CIF (Caltech Intermediate Form)
databases at an object level instead of the standard file level. For a description
of the CIF language, see chapter four of the book by Mead and Conway entitled
Introduction to "VLSI Systems and also the Xerox PARC technical report by Hon
and Sequin entitled A Guide to I£I Implementation. The reader should also be
aware of the following terminology: Master refers to the definition of a symbol.
Instance refers to a call of a symbol.

When a symbol is opened via CDOpen, it is mapped into main memory from files
storing one symbol definition. Also, all referenced master symbols are read into
main memory. A symbol that has been opened is referenced by a symbol
descriptor defined below. To reflect at its secondary storage site the changes to
a symbol that has been opened, invoke CDUpdate. To make an open symbol unk
nown to CD, invoke CDClose.

The types of valid objects within a symbol are CIF boxes, polygons, wires,
roundflashes, and symbol calls or instance arrays. For each object, there is a
procedure that creates the object in a particular symbol on a particular layer.
See CDMakePolygon, CDMakeWire, CDMakeBox, and CDMakeRoundFlash below.
The CIF call has been extended to handle instance arrays. To create an array,
invoke CDBeginMakeCall, CDT, and CDEndMakeCall. All object creation pro
cedures return a pointer to an object descriptor that can be used to reference
the object later. CDDelete removes an object from a master celL

Bounding boxes of every object can be accessed via CDBB. Along with each
object is an integer information field that can be used for extending that
object's description. See CDSetlnfo and CDInfo. In addition to the integer infor
mation field each object can have a linked list of property strings. See
CDAddProperty, CDRemoveProperty, and CDProperty.

CD uses a two dirnensional, Manhattan transformation package that the CD user
may also invoke. The transformation package is discussed in detail below. With
the transform package, you can define a current transformation, transform
coordinates, and manage transformations with a transformation stack.

Traversing a symbol is done easily with a generator loop. To initialize a genera
tor, invoke CDInitGen with an area of interest and layer of interest as parame
ters, and it will return a pointer to a generator descriptor. Every invocation of
CDGen will then return a pointer to an object descriptor whose bounding box,
transformed by the current transformation, intersects the area of interest and
lies on the layer of interest. When CDGen has returned all qualifying objects, it
returns a null pointer to the object descriptor.

CDType returns the type of an object descriptor, (e.g., box, polygon, etc.) and
can be used to dispatch a type-specific procedure for manipulating the object.

To translate a CIF file into CD format, invoke CDTo. To translate a symbol into a
CIF file, invoke CDFrom.

3rd Berkeley Distribution 5/20/83

CD(CAD3) UNDC Programmer's Manual CD(CAD3)

ERBOR HANDLING

CD has a simple mechanism for handling errors. In the file cd.h, there are two
external error variables that are allocated by CDInit.

extern Int CDStatusInt;
extern char *CDStatusString;

If a routine encounters any difficulty, it will place an identifying code in CDSta
tusInt and a pointer to diagnostic string in CDStatusString, and then return the
with value of False. The possible fatal values for CDStatusInt are defined in the
cd.h file as follows:

/* (FATAL) parse failed */
/• symbol not in search path */
/• (FATAL) out of memory •/
/* zero width or length box */
/• transformation stack overflow •/
/• bad directory name search path */

Error handling in CD may be confusing at first because only those routines in
which an error can occur will have a returned value. The routines in which no

error is expected are assigned the type definition void.

DESCRIPTOR TYPES

There are several descriptor types defined in the cd.h file. The four most fre
quently used are:

descriptor type structure name
symbol s
object • o
generator g
transform generator t

The definition of each descriptor is given below in the section concerning the
cd.h file.

INITIALIZATION

An application program must include the file cd.h.

void CDInitO
CDInit must be invoked before any other CDprocedures. This routine will
clear the layer table, set the directory search path to be the present
working directory, initialize the transformation stack, and allocate
storage for diagnostics.

int CDPath(Path)
char *Path;

CDPath sets the search rules for symbol-name resolution. Path is a
pointer to a null terminated string containing a list of directory names to
be searched separated by blanks. In the UNIX environment, csh(l) style
names will be understood.

^define CDPARSEFAT7.FD 1

^define CDNEWSYMBOL 3

^define CDMALLOCFAILED 11

^define CDBADBOX 12

^define CDXFORMSTACKFULL 13

^define CDBADPATH 14

3rd Berkeley Distribution 5/20/83

CD (CAD3) UNDC Programmer's Manual CD (CAD3)

void CDSetLayerfLayer.Technology.Mask)
int Layer;
char Technology.Hask[3];

CDSetLayer tells CD that the layer Layer has the name TechnologyMask.
The layer table is defined in the cd.h file as follows:

^define CDNUMLAYERS 35

/* CD layer table */
struct 1}

char ITechnology;
char lMask[3];
/* True if CDFrom should output layer. •/
char lCDFrom;

CDLayer[CDNUMLAYERS+1];
CD can be recompiled to provide a larger number of layers. Because
layer numbers are stored in character fields, the absolute maximum
number of layers is 255.

SYMBOL MANAGEMENT

int CDOpen(SymbolName,SymbolDesc,Access)
char *SymbolName,Access;
struct s **SymboLDesc;

CDOpen opens a symbol named SymbolName and returns a pointer Sym
bolDesc to a symbol descriptor for it.

Access is a character that determines the result after the current search
path has been examined for the existence of a symbol named Symbol-
Name. If the character Access equals the character 'w', then CDOpen will
create the cell in the database if it does not exist in the current search

path. In other words, CDOpen will open the cell for writing. If Access
equals the character 'r', then CDOpen will create the cell in the database
if and only if it exists in the current search path. In other words, the
symbol is only read into memory. If the cell does not exist in the current
search path, no symbol is created in the database, and SymbolDesc is
assigned the value of NULL. Finally, if Access equals the character 'n', the
symbol is opened regardless of whether any symbol named SymbolName
exists in the current search path. If such a file exists in the search path,
it is not read into memory. In other words, CD creates a new symbol.

CDOpen will call a routine PCIFto read the symbol into the database. The
user of CD must provide his own parser, and the parser is of course NOT
required to understand only CIF; any language that is equivalent to CIF
can be used A synopsis of PCIF is as follows:

PCIF(SymbolName. StatusString. Statuslnt)
char ^SymbolName;
char ••Statuslnt;
int *StatusInt;

There are three requirements for PCIF. First, the parser must locate and
read the symbol SymbolName, and insert the symbol definition into the
CD database by using the object creation routines described below (e.g.,
CDMakeBox, CDMakeWire, etc.). Second, the parser must use a file called

3rd Berkeley Distribution 5/20/83

CD(CAD3) UNIX Programmer's Manual CD(CAD3)

parser.h which contains the diagnostics described below. Finally, when
the parse is completed PCIF must return a pointer to a null terminated
diagnostic string via StatusString, and Statuslnt must be set to a value
defined in the parser.h file as follows:

#define PSUCCEEDED 1 /* successful return •/
^define PFAILED 2 /* parser failed */
#deflne PNOTAPPLICABLE 3 /* parser failed due to syntax */
The diagnostic string StatusString may be NULL if and only if the parse
succeeded

CDOpen returns with the value False if the parse failed or if it was unable
to allocate memory. When CDOpen returns, CDStatusInt, as defined
above, is set to one of the values that are defined in the cd.h file as fol
lows:

#define CDPARSEFAILED 1 /* (FATAL) parse failed •/
#define CDOLDSYMBOL 2 /• symbol already in database •/
#define CDNEWSYMBOL 3 /* symbol not in search path •/
#define CDSUCCEEDED 4 /• new symbol(s) found in path •/
If the return is fatal, CDStatusString contains a diagnostic message. Only
CDPARSEFAILED is returned as a fatal error (i.e., CDOpen returns with the
value False); this simplifies the diagnostic test. However, if the Access
argument is set to *r' and the symbol is not found in the search path,
CDOpen returns with CDStatusInt set to CDNEWSYMBOL. The application
programmer should be aware of this since it could be considered as or
result in a fatal error.

void CDS|ymbol(SyniboLName,SymbolI)esc)
char *SymbolName;
struct s **SymboLDesc;

CDSymbol returns a pointer to symbol descriptor if the symbol Symbol-
Name has been previously opened and exists in memory. If the symbol
does not exist in memory, SymbolDesc is returned as a null pointer.

int CDaose(SymbolDesc)
struct s *SymboIDesc;

CDClose will remove the symbol identified by SymbolDesc from memory
and any associated instances and geometries.

int CDUpdate(SymbolDesc,SymbolName)
struct s *SymbolDesc;
char *SymbolName;

CDUpdate will save any changes that have been made to the symbol refer
enced by SymbolDesc. The output will appear as CIF in a file identified by
the null terminated string SymbolName. If SymbolName is a null pointer,
the name of the CIF file will be identical to the name of the symbol being
updated.

3rd Berkeley Distribution 5/20/83

CD (CAD3) UNDC Programmer's Manual CD (CAD3)

CREATING GEOMETRIES

int OTMakeBox(SymbolI)esc,Layer,I^ngth,Width,X,Y.Pointer)
struct s *SymbolDesc;
struct o **Pointer;
int Layer.Length.Width.X.Y;

CDMakeBox will create a box of length Length in the x direction and width
Width in the y direction, centered at X, Y on the layer Layer in the symbol
identified by the descriptor SymbolDesc. Pointer contains a returned
pointer to the object descriptor of the newly created box. CDMakeBox
will return with the value False if it is unable to allocate storage. Other
wise, the value True is returned Zero width or length boxes are not
allowed

int 0)MakeLabel(SyniboLDesc,Layer,LabeLX.Y,Pointer)
struct s •SymbolDesc;
struct o **Pointer;
int Layer;
char'Label;
intX,Y;

CDMakeLabel will create a label on the layer Layer in the symbol
identified by the descriptor SymbolDesc. The label will be referenced to
the coordinate X, Y. Label is a pointer to a null terminated string contain
ing the label. Pointer contains a returned pointer to the object descrip
tor of the newly created label. CDMakeLabel will return with the value
False if it is unable to allocate storage. Otherwise, the value True is
returned.

hit CDMakePolygon(SymbolDesc.Layer,Path,Pointer)
struct s •SymbolDesc;
struct o **Pointer;
struct p *Path;
int Layer;

CDMakePolygon will create a polygon with a linked coordinate path Path
on the layer Layer in the symbol identified by the descriptor SymbolDesc.
Path is a pointer to a linked list of x,y coordinates that is defined in the
cd.h file as follows:

/* Linked path structure */
struct p (

int pX.pY;
struct p *pSucc;
i;

Pointer contains a returned pointer to the object descriptor of the newly
created polygon. CDMakePolygon will return with the value False if it is
unable to allocate storage. Otherwise, the value True is returned.

3rd Berkeley Distribution 5/20/83

CD (CAD3) UNIX Programmer's Manual CD (CAD3)

int OTMakeWire(SymbolDesc,I^yer.Width,Path,Pointer)
struct s •SymbolDesc;
struct o ••Pointer;
struct p *Path;
int Layer,Width;

CDMake Wire will create a wire of width Width with a coordinate path Path
on the layer Layer in the symbol referenced by the descriptor Symbol
Desc. Path is a pointer to a linked list of x,y coordinates that is defined in
the cd.h file as follows:

/* Linked path structure •/
struct p (

int pX,pY;
struct p *pSucc;
i:

Pointer contains a returned pointer to the object descriptor of the newly
created wire. CDMake Wire will return with the value False if it is unable
to allocate storage. Otherwise, the value True is returned.

int 0)MakeItoundTlash(SymbolDesc,lAyer,Width,XY,Pointer)
struct s •SymbolDesc;
struct o ••Pointer;
int Layer,Width,X.Y;

CDMakeRoundFlash will create a roundflash of diameter Width centered
at X, Yon the layer Layer in the symbol identified by the descriptor Sym
bolDesc. Pointer contains a returned pointer to the object descriptor of
the newly created roundflash. CDMakeRoundFlash will return with the
value False if it is unable to allocate storage. Otherwise, the value True is
returned. Zero diameter roundflashes are not allowed.

CREATING INSTANCE ARRAYS

mt OTBegiiiMakeCaU(SymbolDesc.Symb^
struct s •SymbolDesc;
char •SjymboIName;
struct o ••Pointer;
int NumX.IK.NumY.DY;

CDBeginMakeCall allocates memory and initializes the object descriptor
that will represent the new symbol call to the symbol SymbolName.
NumX is the number of instance in the untransformed x direction and

NumY is the number of instances in the untransformed y direction. DX
and DYare the distances between the left and right edges and the top and
bottom edges respectively of two adjacent cells in the instance array.
Pointer returns a pointer to the new object descriptor. If SymbolName is
not in the current search path, or CDBeginMakeCall cannot allocate
storage, CDBeginMakeCall returns with the value False and CDStatusInt
will be set to one of the following values as defined in the cd.h file.

^define CDPARSEFAILED 1 /• (FATAL) parse failed •/
#define CDNEWSYMBOL 3 /• symbol not in search path •/
#define CDMALLOCFAILED 11 /• (FATAL) out of memory •/

3rd Berkeley Distribution 5/20/83

^ C o

CD(CAD3) UNDC Programmer's Manual CD(CAD3)

int CDT(PointerfTjnpetXY)
struct o •Pointer;
char T^pe;
intXY;

After invoking BeginMakeCall, CDT is invoked for each transformation in
the call. Pointer is a pointer to the object descriptor that was returned
by the call to CDBeginMakeCall. The character Type identifies the
transformation to be added to the call. The valid arguments for Type are
defined in the cd.h file as follows:

#define CDMIRRORX 'x' /• mirror in the direction of x •/
#define CDMIRRORY y /• mirror in the direction of y •/
^define CDROTATE V /• rotate by vector X,Y •/
#define CDTRANSLATE T /• translate to X,Y •/

The integers X and Y are used to qualify a rotation or translation. Only
Manhattan rotations are valid. For a rotation of 90 degrees, X has the
value of 0, and Y has the value of 1. For a rotation of 180 degrees, X has
the value of -1, and yhas the value of 0. For a rotation of 270 degrees, X
has the value of 0, and Y has the value of -1. For a translation, the
integers X and Y are used to specify the x and y displacements, respec
tively.

Finally, EndMakeCaU is invoked to insert the call into the master symbol
identified by SymbolDesc. Remember that transformation order is
significant.

int CDEndMakeCaU(SymbolDesc,Pointer)
struct s •SymbolDesc;
struct o *Pointer;

CDEndMakeCall will insert the instance identified by the object descriptor
that is pointed to by Pointer into the master symbol referenced by Sym
bolDesc. Pointer was returned by a previous call to CDBeginMakeCall.
CDEndMake Call will return with the value False if it is unable to allocate

storage. Otherwise, the value True is returned

GENERATORS

int CDInitGen(SymbolDesc,Layer,Left.Bottom.Rlght,Top,GenDesc)
struct s •SymbolDesc;
int Layer;
int Left,Bottom;
int Right.Top;
struct g ••GenDesc;

CDInitGen returns a pointer to a generator storage descriptor which is
allocated automatically. Subsequent invocations of CDGen will return
each geometry in the symbol identified by SymbolDesc on the layer Layer
whose bounding box intersects the area of interest given by Left, Bottom,
Right, and Top. If Layer equals zero, then the subsequent invocations of
CDGen will return instances only (i.e., layer zero is the instance layer).
CDInitGen will return with the value of False if it is unable to allocate the

generator storage descriptor. Otherwise, the value of True is returned.

3rd Berkeley Distribution 5/20/83

t '_ .

CD(CAD3) UNDC Programmer's Manual CD(CAD3)

moid CDGen(SymboU)esctGenDesc,Pointer)
struct s •SymbolDesc;
struct g •GenDesc;
struct o ••Pointer;

CDGen returns a pointer to an object descriptor which identifies an object
within the area of interest as defined by the previous call to CDInitGen
which returned the pointer to the descriptor GenDesc. If CDGen returns
with Pointer set to NULL, then the last object has been returned and Gen
Desc storage has been freed.

void CDType(Pointer,Type)
struct o •Pointer;
char •Type;

CDType returns the type of an object pointed to by Pointer. This informa
tion routine is typically used in a generator loop to dispatch a type-
specific procedure for accessing the object.

ACCUSING GEOMETRIES

void CDBox(Pointer.Layer.Lengtti,Width.XY)
struct o •Pointer;
int •Layer.•Length,*Width,*X, «Y

CDBox will return the length Length in the x direction and the width Width
in the y direction of a box identified by the pointer Pointer to an object
descriptor. The box is centered at the coordinate X, Y and on the layer
Layer.

void CDLabel(Pointer.Layer.Label,XY)
struct o •Pointer;
char ••Label;
int •Layer;
int *X.*Y;

CDLabel returns the pointer to a null terminated label Label that has
lower, left justification to the coordinate X, Yand whose object descriptor
is pointed to by Pointer. The label is on the layer Layer.

void CDPolygon(Pointer.Layer.Path)
struct o •Pointer;
int •Layer;
struct p ••Path;

CDPolygon will return a pointer to the linked coordinate path Path of a
polygon identified by the pointer Pointer to an object descriptor. The
polygon is on the layer Layer. The linked coordinate path is defined above
in the description of CDMakePolygon.

3rd Berkeley Distribution 5/20/83

CD (CAD3) UNDC Programmer's Manual CD (CAD3)

void CDWire(Pointer,Layer,Width,Path)
struct o •Pointer;
struct p ••Path;
int •Layer. •Width;

CDWire will return a pointer to the linked coordinate path Path of a wire
with width Width that is identified by the pointer Pointer to an object
descriptor. The wire is on the layer Layer.

void CDRoundFlash(Pointer,Layer,Width<XY)
struct o •Pointer;
int •Layer. •WidthL,*X*Y;

CDRoundFlash will return the diameter Width of a roundflash identifled by
the pointer Pointer to an object descriptor. The roundflash is centered at
the coordinate X, Yona on the layer Layer.

ACCESSING AN INSTANCE

void CIX:aU(Pomter,SymbolName,NumX.DX,NumY,DY)
struct o *Pointer;
char ••SymbolName;
int •NumX.*DX.*NumYi*DY;

CDCall returns the a character pointer to the name SymbolName of an
instance referenced by the object descriptor pointed to by Pointer. Also
returned is NumX which is the number of instance in the untransformed

x direction and NumY which is the number of instances in the

untransformed y direction. DXana DYare the distances between the left
and right edges and the top and bottom edges respectively of two adja
cent cells in the instance array.

void CDInitTGen(Pointer,TGen)
struct o •Pointer;
struct t ••TGen;

The pointer Pointer should point to an object descriptor of an instance.
CDInitTGen initializes the transformation generator loop to access the
transformations of an instance referenced by Pointer. TGen is a returned
pointer to a transform generator descriptor. Subsequent invocations of
CDTGen will return the instance transformations in order.

void CDTGen(TGen,Type.X.Y)
struct t ••TGen;
char "Type;
int •X.'Y;

CDTGen returns a pointer to a character which identifies a transforma
tion of the instance for which TGen was returned by CDInitTGen as a
pointer to the transform generator descriptor. The character pointer
Type identifies a transformation that was added to the instance by a call
to CDT. The order in which transformations are returned by CDTgen is
identical to the order in which they were specified by calls to CDT. The
possible returned values for Type are defined in the cd.h file as follows:

3rd Berkeley Distribution 5/20/83 9

CD (CAD3) UNDC Programmer's Manual CD (CADS)

#define CDMIRRORX 'x' /• mirror in the direction of x •/
#define CDMIRRORY 'y* /• mirror in the direction of y •/
#define CDROTATE 'r' /• rotate by vector X,Y •/
#define CDTRANSLATE 'f /• translate to X.Y •/

The integer pointers X, Yore used to specify a rotation or translation. For
a rotation of 90 degrees, X has the returned value of 0, and Y has the
returned value of 1. For a rotation of 180 degrees, X has the returned
value of -1, and Y has the returned value of 0. For a rotation of 270
degrees, Xhas the returned value of 0, and yhas the returned value of -1.
For a translation, the returned values of X and Y specify the x and y dis
placements, respectively. If CDTGen returns with TGen set to NULL, then
the last transformation has been returned and TGen storage has been
freed.

INFORMATION ROUTINES

int CDHB(SymbolDesc,Pointer.LefttBottom,Right,Top)
struct s •SymbolDesc;
struct o •Pointer;
int *Left, •Bottom.•Right,*Top;

CDBB returns the bounding box of an object pointed to by Pointer in the
symbol identified by SymbolDesc. If Pointer is a null pointer, then CDBB
returns the bounding box of the entire symbol.

CDBB may have to use temporary storage during the computation of a
symbols bounding box. If it can not allocate the required memory, CDBB
returns with the value of False. Otherwise, the value of True is returned.

void CDInfo(SymbolDesc,Pointer,Info)
struct s *SymbolDesc;
struct o ♦Pointer;

int *Info;
CDInfo returns the value Info of the info field of an object referenced by
Pointer. If Pointer is a null pointer, then the value of the info field of the
symbol referenced by SymbolDesc is returned.

void Q)SetIiifo(SymbolDesc,Pointer,Info)
struct s •SymbolDesc;
struct o •Pointer;
int Info;

CDSetlnfo sets the info field the object pointed to by Pointer. If Pointer is
a null pointer, then the info field of the symbol referenced by SymbolDesc
is set.

3rd Berkeley Distribution 5/20/83 10

CD(CAD3) UNDC Programmer's Manual CD(CAD3)

void CDProperty(SymbolDesc,Pointer.Property)
struct s •SymbolDesc;
struct o *Pointer;
struct prpty ••Property;

CDProperty returns the pointer Property which points to the linked list of
properties associated with the object referenced by Pointer. If Pointer is
a null pointer, then the property list of the symbol referenced by Symbol
Desc is returned The pointer Property is returned as a null pointer if
there is no property list associated with the particular object.

The property list structure is defined in the cd.h file as follows:

/• Property List desc. •/
struct prpty \

int prpty__Value;
char *prpty_String;
struct prpty *prpty_Succ;
l:

A property consists of an identifying integer and a null terminated char
acter string extension. The linked list of properties is terminated by a
null pfrpty^ucc pointer. Properties are assigned to an object or symbol
via the CDAddProperty routine.

int CTAddI^operty(SymboLDesc,Pomter,Value,Sti-ing)
struct s •SymbolDesc;
struct o •Pointer;
char •String;
int value;

CDAddProperty inserts property information into the property list of the
object pointed to by Pointer. If Pointer is a null pointer, then the pro
perty is added to the property list of the symbol referenced by Symbol
Desc. The property information consists of an identifying integer Value
and a null terminated character string extension that is pointed to by
String. If CDAddProperty can not allocate memory, the value False is
returned. Otherwise, the value of True is returned

int (^RemovePropeir^SymbolDesc.Pointer,Value)
struct s •SymbolDesc;
struct o •Pointer;
int Value;

CDRemoveProperty deletes property information from the property list of
the object pointed to by Pointer. If Pointer is a null pointer, then the pro
perty is removed from the property list of the symbol referenced by Sym
bolDesc. Every property with the value of Value is removed. If CDRemo-
veProperty has trouble allocating or releasing memory, the value False is
returned. Otherwise, the value of True is returned

3rd Berkeley Distribution 5/20/83 11

CD (CAD3) UNIX Programmer*s Manual CD (CAD3)

OBJECT DEI£TI0N

void CDDelete(StymbolDesc.Pointer)
struct s •SymbolDesc;
struct o •Pointer;

CDDelete will remove the object pointed to by Pointer from the symbol
referenced by SymbolDesc.

INTEGRITY

int CDReflect(SymbolDesc)
struct s •SymbolDesc;

CDReflect must be invoked at certain times by the CD application if the
symbol that is referenced by SymbolDesc is modified. If the modification
to the symbol has changed its bounding box, a call to CDReflect will
update the bounding box information in every other symbol in the CD
database that either directly or indirectly references it. The value of
False is returned if CDReflect is unable to allocate new memory. Other
wise, the value of True is returned.

TRANSLATING TO AND FROM OF

int CDTo(CIFFiie>Root,A.B,Program)
char •CIFFile.*Root;
intA.8;
char Program;

CDTo translates from a CIF file named CIFFile into symbol files, each hav
ing a file name identical to the symbol that it contains. CIF commands
that are not between a DS and a matching DF are stored in file named
Root. All objects are scaled by the ratio A/B.

CDTo will call a routine PCIF to read the input CIF file. The requirements
of this parser are discussed above in the description of CDOpen.

Because each program embeds symbol names differently, the character
Program will tell CDTo and the parser PCIF which program generated the
CIF file. Before calling the parser, CDTo sets the dProgram character in
the CD parameters structure to the character Program. By accessing this
structure element, the parser determines the origin of the CIF. See the
section on the cd.h file for a description of the CDparameter structure.
The following arguments for Program are valid for the parser in
~cad/src/hie/parser.c :

gram CIF generator
•a' Stanford CIF.
•b' NCA CIF.
•h' HP's IGS.
T Xerox's Icarus,
*k' Berkeley's KIC,
'm' Mextra-style CIF,
•s* Xerox's Sif,
V none of the above,

If CDTo encounters any difficulty in the CIF conversion, the value of False
is retimed and CDStatusInt is set to value of CDPARSEFAILED and a diag
nostic message is placed in CDStatusString.

3rd Berkeley Distribution 5/20/83 12

bob

CD (CAD3) UNIX Programmer's Manual CD (CAD3)

int CDErom(Root, uimle,A,B,Layers,NumLayers1Program)
char *Root,*CIFme,Program;
int *layer,NumLayers;
intA,B;

CDFrom translates a symbol hierarchy rooted with the symbol named
Boot into a CIF file named CIFPUe. The style of CIF output is identified by
the character Program., See the description of the CDTo procedure for a
list of valid arguments for Program. All objects are scaled by the ratio
A/B. All instances in the symbol hierarchy must exist in the current
search path.

The Layers argument is a pointer to an array of NumLayers integers that
are used to mask certain layers in CD layer table. If Layers[N] is zero,
where N is a non-negative integer less than NumLayers, then any object
that is on layer N will not appear in the CIF output.

If CDFrom encounters any difficulty in the conversion, the value of False
is retuned and CDStatusInt is set to one of the following values defined in
the cd.h file:

^define CDPARSEFAILED 1 /»(FATAL) parse failed •/
#define CDNEWSYMBOL 3 /* symbol not in search path */
#define CDMALLOCFAILED 11 /* (FATAL) out of memory */
If no difficulty is encountered, CDFrom returns with the value of True.

int a)PareeOF(Root,CIFFile.Program)
char *Root,*CIFFlle,Program;

CDParseCIF'will construct a CD database rooted at a symbol named Root
from a CIF file CIFFUe rather than a hierarchy of symbol files. The style
of CIF input is identified by the character Program. See the description of
the CDTo procedure for a list of valid arguments for Program.

YHaen CDParseCIF encounters a reference to a layer that was not previ
ously defined in the CD layer table by a call to CDSetLayer, the new layer
is. added to the layer table. This differs from the CDFrom and CDCpen
routines that will return CDPARSEFAILED whenever they encounter an
undefined layer. A layer is considered undefined if the ITechnology field
in the CD layer table is a blank character. See the above section that
describes the initialization routines.

If CDParse CIF encounters any difficulty in the conversion, the value of
False is retuned and CDStatusInt is set to one of the following values
defined in the cd.h file:

#define CDPARSEFAJLED 1 /* (FATAL) parse failed */
#define CDNEWSYMBOL 3 /* symbol not in search path */
#define CDMALLOCFAILED 11 /• (FATAL) out of memory •/
If no difficulty is encountered, CDParseCIF returns with the value of True.

3rd Berkeley Distribution 5/20/83 13

CD (CAD3) UNIX Programmer's Manual CD (CAD3)

EXAMPLE

The following pseudo C routine is an example of traversing a symbol called Sym-
bolName. Traversal in this case means to access the description of all objects
that lie in an area of interest in a symbol. The computations performed with the
accessed descriptions will depend of course on the application.

Traverse(SymbolName,Left,Bottom,Right,Top)
char *SymbolName;
int Left,Bottom,Right,Top;
i
struct s *SymbolDesc;
struct o *Pointer;
struct g »GenDesc;
char *InstanceName;
int NumX,NumY.DXDY,X.Y.Layer;
char Type;

/* Open symbol named SymbolName (we assume here that it exists) */
CDOpen(SymbolName, &SymbolDesc,'r');

•

* Traverse the instances first.

* layer # 0 is the instances layer, because it doesn't make
* sense for an instance to be associated with a particular layer.
*

* First, initialize the generator loop so the generator will
* return all instances whose bounding boxes intersect the
* area of interest.

CDInitGen(SymbolDesc,0,Left,Bottom,Right,Top,&GenDesc);

loop I
/+ Invoke CDGen to access a pointer to an instance array */
CDGen(SymbolDesc,GenDesc,&Pointer);

/* Have all instances have been traversed? */
if(Pointer == NULL)

break;

/• Access the instance array */
CDCall(Pointer, fclnstanceName, &NumX.&DX,&NumY,&DY);

3rd Berkeley Distribution 5/20/83 14

CD (CAD3) UNIX Programmer's Manual CD (CADS)

/*•***

* This instance array calls the symbol named InstanceName.
* Recursively invoke Traverse to traverse InstanceName.

**/

Traverse(InstanceName ,Left, Bottom,Right,Top);
i

A**

* Now, traverse the geometries by layer.

a***/

for(Layer = 1; Layer <= CDNUMLAYERS; ++Layer) (

/* Initialize the generator loop */
CDInitGen(SymbolDesc,Layer,Left,Bottom,Right, Top.&GenDesc);

loop {
/* Invoke CDGen to access pointer to an object */
CDGen(SymbolDesc,GenDesc,&:Pointer);

/* Last geometry? */
if(Pointer == NULL)

break;

/• Access the type of the geometry as Type */
CDType(Pointer,&Type);

/• Dispatch according to Type to specific procedure */
if(Type == CDBox) [

/* Access box */
CDBox(Pointer,&Layer,...);
/* Compute with the box */

3rd Berkeley Distribution 5/20/83 15

CD (CAD3) UNIX Programmer's Manual CD (CAD3)

else if(Type == CDWire) (
/* Access wire */
CDWire(Pointer,&Layer,...);
/• Compute with the wire •/

i

etc.

I
I

i

STORAGE BINS

All objects contained within a symbol are stored in bins. A pointer to these
storage bins is contained in the symbol descriptor, and each symbol has it's own
storage bins. This section will present a brief description of the storage algo
rithm.

The world coordinate system in CD ranges from CDBINMINX to CDBINMAXX in the
x-direction, and from CDBINMINY to CDBINMAXY where these values are defined
in the cd.h file. The world coordinate system is covered by an array of CDNUM-
BINS by CDNUMBINS storage bins (the number if bins is always a perfect square).
There is an additional storage bin which is called the residual bin.

Each storage bin contains the starting pointer to a linked list of object descrip
tors, those objects which are- contained in that particular bin. When an object is
inserted into a bin as a result of a call to one of the object creation routines
described above, it is inserted at the top of the linked List. The bin into which an
object is inserted depends on the bounding box of that object. If the bounding
box intersects an area covered by more than one bin, the object is inserted into
the residual bin. Otherwise, the object is inserted into the bin that contains the
bounding box of the object.

If CD is compiled with a large number of bins, it will be able to traverse a symbol
hierarchy very rapidly. However, a large number of storage bins also means
that a large amount of memory must be dedicated to the bin pointers. CD allo
cates the memory for storage bins on demand; this means that the memory
requirements for the storage bins is also a function of the number of layers
being used in the symbol.

The values of CDBINMAXX, CDBINMINX, CDBINMAXY, and CDBINMINY should be as
small as possible while still reflecting a realistic working area for the CD applica
tion. This will insure that every storage bin will be used. CD will not fail if the
real working area exceeds CD's range for the world coordinate system. Objects
that exist outside the world coordinate system of CD will be inserted into the
outer-most bins.

3rd Berkeley Distribution 5/20/83 18

CD (CAD3) UNIX Programmer's Manual CD (CAD3)

PROCEDURES FOR TWO DIMENSIONAL TRANSFORMATIONS

The following routines provide two dimensional transformations using integer
arithmetic. The source to these routines can be found in ~cad/src/hie. The
package of routines includes such capabilities as translation, mirroring, rota
tion, a transformation stack, and inverse transformations. For a further discus
sion of these procedures, see Newman and Sproull's text Principles of Interac
tive Computer Graphics.

INITIALIZATION OF THE TRANSFORM PACKAGE

voidTInitO
TInit initializes the transform package and returns with the current
transform equal to the identity transform.

THE CURRENT TRANSFORMATION

voidTIdentityO
TIdentiiy sets the current transform the identity matrix. The previous
current transform is destroyed.

void TTranslate(X.Y)
intX,Y;

TTranslate postmultiplies the current transformation matrix by a
transform that translates by a displacement of X, Y.

voidTHYQ
TMY postmultiplies the current transformation matrix by a transform
that mirrors the y-coordinates (i.e., mirrors in the direction of the y
axis).

voidTHXO
TUX postmultiplies the current transformation matrix £y a transform
that mirrors the x-coordinates (i.e., mirrors in the direction of the x
axis).

void TRotate(XDirection,YDirection)
int XDirection.YDirection;

TRotate postmultiplies the current transformation matrix by a transform
that rotates counter-clockwise by an angle that is expressed as a CIF-
style direction vector. Only 0, 90, 180, 270 degree rotations are allowed.

voidTPoint(X.Y)
int *X.*Y;

TPoint transforms the point X, Yby multiplying it by the current transfor
mation matrix.

3rd Berkeley Distribution 5/20/83 17

CD (CAD3) UNDC Programmer's Manual CD (CAD3)

THE TRANSFORMATION STACK

int TEmptyO
TEmpty returns the value of True if the transformation stack is empty.
Otherwise, the value of False is returned.

intTFuU()
TFutt returns the value of True if the transformation stack is full. Other
wise, the value of False is returned.

voidTPushO
TPush pushes the current transform onto the transformation stack. The
value of the current transform is not changed. The transformation stack
is not checked for an overflow condition.

voidTPop()
TPop pops the current transform from the transformation stack. The
value of the current transform becomes the transform that was most
recently pushed onto the stack. The transformation stack is not checked
for an underflow condition.

void TCurrentCTF)
int •TFi

TCurrent places the current transform matrix in a nine integer array
that is passed from the calling program. The first row of the transforma
tion matrix appears as the first three integers in the argument, the
second row of the transformation matrix appears as the next three
integers, etc. After several transformations have been defined by
TTranslateQ, TRotateQ, TMX(), and TMY(), one can determine the
minimum resultant or equivalent transformation through the examina
tion of the elements of the current transformation matrix as described in

the following table.

Transformation

Translate only.
Rotate 90 deg., translate.
Rotate 180 deg., translate.
Rotate 270 deg., translate.
Mirror in X, translate.
Mirror in Y, translate.
Mirror in X, rotate 90 deg., translate.
Mirror in X, rotate 270 deg., translate.

For all cases, the X.Y translation vector is given by TF[6], TF[7].

TflO] TF[3] TF[1] TF[4]
1 0 0 1

0 -1 1 0

0 1 -1 0

-1 0 0 -1

-1 0 0 1

1 0 0 -1

0 -1 -1 0

0 1 1 0

3rd Berkeley Distribution 5/20/83 18

CD (CAD3) UNIX Programmer's Manual CD (CAD3)

THE INSTANCE TRANSFORMATION

void TPremultiplyO
TPremultiply forms the instance transform by multiplying the current
transform with the transform that was last pushed onto the transforma
tion stack and placing the product in the current transformation matrix.
Thus, the procedure for transforming the coordinates of an instance is
demonstrated below:

/* push master cell transform onto stack */
TPush();

/» set current transform to identity */
TIdentityO;

/• Invoke TMX, TTranslate, etc. to build instance transform */
TMX():
TTranslate(Dx.Dy);

/• Form the instance transform */
TPremultiplyO;

/• Invoke TPoint to transform instance points */
TPoint(&X,&Y);

/* return to master transform */
TPop();

INVERSE OF CURRENT TRANSFORMATION

void Tlnverse()
TInverse computes the inverse transform of the current transform.

void TInversePoint(X.Y)
int *X.*Y;

TInversePoint transforms the point X,Y by multiplying it by the inverse
transform matrix. A call to this routine must be preceded by a call to
TInverse.

ANOTHER EXAHPIE

To illustrate the use of the transform package, let us modify the routine
Traverse shown earlier. The new routine is intended to display a symbol on a
graphics terminal. When each object is accessed, it will be clipped to the area of
interest and displayed.

3rd Berkeley Distribution 5/20/83 19

CD (CAD3) UNIX Programmer's Manual CD (CAD3)

main(){

/* initialize transformation stack */
TInitO;

/• display SymbolName in the area Left,Bottom - Right,Top •/
Display(SymbolName,Left,Bottom,Right,Top)

i

Dispiay(SymbolName,Left,Bottom,Right,Top)
char *SymbolName;
int Left,Bottom,Right,Top;
i
struct s *SymbolDesc;
struct g *GenDesc;
struct o •Pointer;
struct t »TGen;
char *InstanceName;
int NumX,NumY,DX,DY,X,Y.Layer;
char Type;

/* open symbol named SymbolName (here we assume it exists) •/
CDOpen(SymbolName, &SymbolDesc,'r');

/* initialize generator to return instances in SymbolName */
CDInitGen(SymbolDesc.O,Left,Bottom,Right,Top,&GenDesc);

loop \
/* Invoke CDGen to access a pointer to an instance array */
CDGen(SymbolDesc,GenDesc,&:Pointer);

/* Have all instances been traversed? */
if(Pointer == NULL)

break;

/* push current transform onto stack */
TPush();

/* set current transform to identity */
TIdentity();

/* Access instance information */
CDCall(Pointer, &InstanceName,&NumX,&DX,&NumY, &DY);

3rd Berkeley Distribution 5/20/83 20

CD (CAD3) UNIX Programmer's Manual CD (CAD3)

/* Initialize generator to return transform of InstanceName */
CDlnitTGen(Pointer.&TGen);

/* place instance transformation in current transformation •/
loop \

CDTGen(&TGen, fcType, &X, &Y);
if(TGen == NULL)

break;
else if(Type == CDTRANSLATE)

TTranslate(X, Y);
else if(Type == CDMIRRORX)

TMX();
else if(Type == CDMIRRORY)

TMY();
else if(Type == CDROTATE)

TRotate(X. Y);
f

/* Combine transform of InstanceName with it's master */
TPremultiplyO;

/• recursively call display to traverse and display instance */
Display(InstanceName,Left,Bottom,Right.Top);

/* pop master transform from stack */
TPop();
i

/* now traverse the geometries */
for(Layer = 1; Layer <= CDNUMLAYERS; ++Layer) j

/* Set the current color to be a color associated with Layer. •/
SetColor(Layer);

/* initialize generator for layer Layer */
CDInitGen(SymbolDesc,Layer,Left,Bottom,Right,Top,&GenDesc);

loop {
/* Invoke CDGen to access pointer to an object */
CDGen(SymbolDesc,GenDesc, ^Pointer);

/* Last object? */
if(Pointer == NULL)

break;

/* Access the type of the geometry as Type */
CDType(Pointer.&Type);

3rd Berkeley Distribution 5/20/83 21

CD(CAD3) UNIX Programmer's Manual CD(CAD3)

/• Dispatch according to Type to specific procedure */
if(Type == CDBox) [

/• Access the box */
CDBox(Pointer, &Layer,...);
/• Transform the box's center. */
TPoint(&X,&Y);
/* Display the box. */
DisplayBox(X,Y,Length,Width);
J

else if(Type == CDWire)j
/* Access the wire */
CDWire(Pointer,&Layer,...);

etc.

THE CD.H FILE

The following lists all relevant definitions contained within the cd.h file.

^include <stdio.h>
^include <math.h>
^include "nmalloc.h"
^include "macros.h"

#define FILENAMESIZE 16

/• new malloc routines */
/* user macro package »/

/• maximum size of a file name */

/•
* Values routines return in Statusint of CDOpen, CDBeginMakeCall,
* CDTo, CDFrom, or CDParseCIF.

•/
^define CDPARSEFAILED 1
#define CDOLDSYMBOL 2
#define CDNEWSYMBOL 3
^define CDSUCCEEDED 4

3rd Berkeley Distribution

/* (FATAL) parse failed */
/* symbol already in database •/
/* symbol not in search path */
/* new symbol(s) found in path */

5/20/83 22

CD(CAD3) UNIX Programmer's Manual CD(CAD3)

/•
*Valid arguments to CDErrorQ.
•/

^define CDMALLOCFAILED 11
^define CDBADBOX 12
jjfdefine CDXFORMSTACKFULL 13
#define CDBADPATH 14

/* (FATAL) out of memory •/
/* zero width or length box */
/* transform stack overflow •/
/* bad directory name in search path »/

/'
• Types of geometries

•/
^define CDSYMBOLCALL V

^define CDPOLYGON *P*
^define CDROUNDFLASH 'r'

^define CDLABEL t

jjfdefine CDWIRE 'w*

^define CDBOX 'b'

/•
• Types of transformations

•/
^define CDMIRRORX 'x'

Refine CDMIRRORY y
^define CDROTATE 'r'

^define CDTRANSLATE 'f

/•
* CD Control flags; See struct d below.
V

#define DCONTROLCDOPEN 'o'
^define DCONTROLCDTO 'f
#define DCONTROLVANILLA V

/* mirror in the direction of x */
/• mirror in the direction of y */
/* rotate by vector X,Y */
/* translate to X.Y •/

* Coordinate system with 1 micron features and 1 cm dice.
* Remember that there are 100 CIF units per micron.
V

#define INFINITY 100000000

3rd Berkeley Distribution 5/20/83 23

CD (CAD3) UNIX Programmer's Manual CD (CAD3)

/•
* These are the numbers that CD uses to determine which bin an object
* resides in. They should reflect the average size of a layout being
* edited by KIC. KIC will not fail if the numbers are too small.
* Anything outside of this window is placed in the residual bin.
* If these numbers become too large, CDIntersect() must use floating
* point calculations.

•/
#define CDBINMAXX 500000
#define CDBINMAXY 500000
^define CDBINMINX (-CDBINMAXX)
^define CDBINMINY (-CDBINMAXY)

/•
* PLEASE NOTE

* Because a char is used as the layer and info fields, the absolute
* maximum number of layers is 255. This may be increase by
* recompiling kic with the Layer and Info fields typed as ints.
v

#denne CDNUMBINS 12
jjfdettne CDNUMLAYERS 35

* Number of symbols stored in the symbol table for any given cell.
•/

^define CDNUMREMEMBER 1000

* Storage for diagnostics of CDError().
•/

extern char *CDStatusString;
extern int CDStatusInt;

* Master list desc.

•/
struct m j

int mReferenceCount;
int mLeft,mBottom,mRight,mTop;
char •mName;
struct m *mPred,*mSucc;

\:

3rd Berkeley Distribution 5/20/83 24

CD (CAD3) UNIX Programmer's Manual CD (CAD3)

/•
• Property List desc.
•/

struct prpty [
int prpty_Value;
char *prpty-String;
struct prpty *prpty_Succ;
i;

/•
* Symbol desc.
v

struct s {
int sLeft,sBottom,sRight,sTop;
int sBBValid;
int sA.sB;
char *sName;
short slnfo;

/•
* One bin for each layer. Layer 0 is for call descs.
* Each bin points to a double linked list of object descs.
* Bm[.][0][0] are the RESIDUAL bins-Bin[.][0][l] and Bin[.][l][0]
* are unused. NumBins should be as big as it can be.
* For 20 layers and 100 bins per layer,

^-, • the data structure becomes 2000 words.

•/
struct o ♦**sBin[CDNUMLAYERS+l];

struct m •sMasterlist;
struct prpty *sPrptyList;
i:

* Object desc.
•/

struct o (
int oLeft,oBottom,oRight,oTop;
char oType;
char oLayer;
short olnfo;
struct o *oPred,*oSucc;
struct o *oRep;
struct prpty «oPrptyList;
I:

3rd Berkeley Distribution 5/20/83 25

CD(CAD3) UNIX Programmer's Manual CD(CAD3)

/»
* Polygon desc.
•/

struct po {
struct p *poPath;
i;

/•
* Round flash desc.

•/
struct r {

int rWidth.rX,rY;

1;

/•
* Wire desc.

•/
struct w j

int wWidth;
struct p *wPath;
I;

/•
* Call desc.

v
struct c {

int cNum;
/• Pointer to transformation descriptor. */
struct t »cT;
/• Pointer to master list descriptor. */
struct m *cMaster;
/* Array parameters. */
int cNumX.cNumY,cDX,cDY;

i;

/•
* Transform desc.

* If MX. tType == CDMIRRORX. If MY, tType == CDMIRRORX.
* If R, tType == CDROTATE, tX == XDirection. tY == YDirection.
* If T, tType == CDTRANSLATE. tX == TX, tY = TY;
•/

struct t \
char tType;
int tX,tY;
struct t »tSucc;

i:

3rd Berkeley Distribution 5/20/83 28

CD(CAD3) UNDC Programmer's Manual CD(CAD3)

/•
* Label desc.

•/
struct la {

char *laLabel;
int laXJaY;

i:

/•
* Linked path structure
•/

struct p |
int pX.pY;
struct p ♦pSucc;

i:

/»
* Generator desc.

* Search Bin[Layer][0][0] first.
* Then Bin[Layer][BeginX..EndX][BeginY..EndY].
* Bin[Layer][X][Y] is the current bin.
* Pointer points to the current desc in the current bin.
•/

struct g {
int gLeft,gBottom,gRight,gTop;
int gBeginX,gX,gEndX,gBeginY,gY,gEndY;
char gLayer;
struct o *gPointer;
i:

/•
* CD's current parameter struct
•/

struct d \
A

* DCONTROLCDOPEN denotes CD is in CDOpen
* DCONTROLCDTO denotes CD is in CDTo
* DCONTROLVANILLA denotes CD is in none of the above

•/
char dControi;

/* Current parameters for symbol being parsed in CDOpen. */
int dNumXdDX.dNumY.dDY;

/* Scale factors for CDTo and CDFrom. */
int dA,dB;

/* Symbol scale factors. */
int dDSAdDSB;

3rd Berkeley Distribution 5/20/83 27

CD (CAD3) UNIX Programmer's Manual CD (CAD3)

struct o *dPointer;
struct s *dSymbolDesc;
struct s *dRootCellDesc;

/• UNIX file names are limited to 14 characters */
char dSymbolName[FILENAMESIZE];
FILE *dSymbolFileDesc;

/*
* Fields used in CDTo follow.

•/

/* True if parsing root symbol. */
int dRoot;

/* Roofs file desc. •/
FILE *dRootFileDesc;

/* Current property list for symbol being parsed */
struct prpty *dPrptyIist;

/•
* dProgram == 'h'iflGSgenedit.
* dProgram == *i' if Icarus gened it.
* dProgram == 's' if Sif gened it.
• dProgram
•/

char dProgram;

== 'n' if none of the above.

* Symbol name table.
* 16 comes from the fact that a UNIX file name is only 14 characters
* long and each symbol name is a UNIX file name. VMS file names are
* smaller.

•/
chardSymTabNames[CDNUMREMEMBER][FILENAMESIZE];
int dSymTabNumbers[CDNUMREMEMBER];
int dNumSymboiTable;

/•
* Because CIF files may have FORWARD references. CDTo must pass
* over the CIF file TWICE.
* On the first pass, it just fills up the symbol name table.
* On the second pass, it does the translation to KIC format.

•/
int dFirstPass;

3rd Berkeley Distribution 5/20/83 28

CD(CAD3) UNDC Programmer's Manual CD(CAD3)

BUGS

FELES

• True if debugging.
*/

int dDebug;
int dNumSymbolsAllocated;
i

CDDesc;

• CD layer table

•/
struct 1 (

char ^Technology;
char lMask[3];
/♦True if CDFrom should output layer.*/
char ICDFrom;

CDLayer[CDNUMLAYERS+1];

/•
* Hash table of symbol descs keyed on symbol's name.
•/

struct bu j
struct s *buSymbolDesc;
struct bu *buPred;
struct bu *buSucc;

i;
struct bu *CDSymbolTable[CDNUMLAYERS];

Labels can cause difficulty to an application program because CD has no notion
of font size. Therefore, the bounding box of a label is the lower, left coordinate
to which the label is justified.

^cad/src/kic/cd. c
~cad/src/kic/cd.h
~cad/src/kic/actions.c
~cad/src/kic/parser.c
^cad/src/kic/parser.h
~cad/src/kic/paths.c
~cad/src/kic/xfonus.c
~cad/src/kic/xforms.h

SKE ALSO

kic(CADl)

3rd Berkeley Distribution 5/20/83 29

CI

Appendix C

The KIC Tutorial User's Guide

The KIC tutorial user's guide is contained in this appendix. This user's

guide is appropriate for KIC running under both UNIX and VMS.

The tutorial is supplied separately as part of the program

on tape, as it changes periodically.

D.l

Appendix D

The MFB Programmers^ Manual

The Section 3 UNIX manual pages for the Model Frame Buffer graphics pack

age are contained in this appendix.

MFB(3) UNIX Programmer's Manual MFB(3)

NAME

mfb —model frame buffer interface

SYNOPSIS

^include <~cad/include/mfb.h> in the program source.
cc [flags] files ~cad/lib/mfb.a -1m [libraries]

DESCRIPTION

These routines provide the user with a virtual graphics interface. They perform
the terminal dependent task of encoding/decoding graphics code, thereby allow
ing the user to write graphics programs to run on almost any graphics device.

The user opens and initializes a graphics device by calling the MFBOpen routine
that returns a pointer to that device's MFB data structure defined at the end of
this manual. By maintaining several MFB data structures, an application pro
gram can drive several graphics- devices simultaneously. Once opened, MFB
graphics routines can be called to draw geometries, draw graphics text, set dev
ice parameters, or receive keyboard input. An application program can also use
any of the several utility routines that perform line clipping, polygon clipping, or
window/viewport transformations. Control of the graphics device is released by
calling the MFBCLose routine.

All programs that use MFB routines must include the file mfb.k that defines the
MFBdata structure to contain the information provided by MFBCAP(5).

INITIALIZATION ROUTINES

MFB *MFBOpen(TeiriiinalName, DeviceName, errorcode)
char *TermiiialNamef *DeviceName;
int *errorcode;

MFBOpen initializes the graphics device and fills the MFB data structure
with information found in MFBCAP(5). TerminalNamje is a pointer to a
null terminated string containing the name of the graphics device as
defined in the mfbcap database file. This argument has no default and
can never be null. DeviceName is a pointer to a null terminated string
containing the full path name to the respective graphics device. If null,
stdin and stdout are used by default, errorcode is a diagnostic integer
returned by MFBOpen. The possible returned values for errorcode are
defined in the mfb.h file as follows:

/* successful return •/
/* Unknown terminal type •/
/* Can't open MFBCAP file •/
/• MFBCAP entry too long •/
/• Bad MFBCAP entry */
/♦ infinite loop in MFBCAP entry •/
/* stdout not in /dev */
/* Can't open or close device */
/* Can't access or set device stat •/
/* Error during write */

^define MFBOK 1

^define MFBBADENT -10

^define MFBBADMCF -20

^define MFBMCELNG -30

^define MFBBADMCE -40

^define MFBINFMCE -50

^define MFBBADTTY -60

^define MFBBADDEV -180

^define MFBBADOPT -190

^define MFBBADWRT -220

Only MF30K is not a fatal error.

4th Berkeley Distribution 6/21/83

y w

MFB(3) UNIX Programmer's Manual MFB(3)

void SetCurrentMFB(mlb)
HFB*mfb;

SetCurrentMFB allows the application program to define the current
graphics device. All subsequent calls to MFB routines will affect the
specified device. Because each MFB data structure contains a separate
output buffer, it is not necessary to flush the output before resetting the
current output device. MFBOpen returns with the opened graphics device
defined as the current output device.

int MFBInitializeO
MFBInitialize will flush the output buffer and (re)initialize the device for
graphics input. The graphics device or standard input will be placed in
CBREAK mode. See the manual tty(4). MFBOK is returned if the device
was successfully initialized; MFBBADOPT is returned if an error was
encountered while attempting to access or set the device status, and
MFBBADTTY is returned if standard output can bot be found or accessed.

int MFBClose()
MFBCXose will flush the output buffer and release control of the graphics
device driver. If the graphics device is a tty, it is returned to the state
that existed prior to the respective MFBOpen call. MFBOK is returned if
the device was successfully closed; MFBBADOPT is returned if an error
was encountered while attempting to access or set the device status, and
MFBBADDEV is returned if the output device could not be closed.

int HFBHalt()
MFBHatt will flush the output buffer and release control of the graphics
device driver. If the graphics device is a tty, it is returned to the state
that existed prior to the respective MFBOpen call. MFBHalt differs from
MFB Close in that the memory occupied by the respective, current MFB
data structure is not freed. By calling MFBInitialize, the graphics device
will be reinitialized. This routine is typically used by an application pro
gram for handling the SIGTSTP signal (the keyboard stop signal, usually
control-Z). MFBOK is returned if the device was successfully returned to
its initial state; MFBBADOPT is returned if an error was encountered while
attempting to access or set the device status.

SETTING DEVICE PARAMETERS

Each of the following routines for setting device parameters returns a diagno-
stice integer that is defined in the mfb.h file as follows:

^define MFBOK 1 /* successful return */
#define MFBBADLST -70 /* Illegal line style •/
#define MFBBADFST -80 /* Illegal fill style */
^define MFBBADCST -90 /• Illegal color style */
#define MFBBADTM1 -100 /* No destructive text mode */
^define MFBBADTM2 -110 /• No overstriking text mode */
#define MFBNOBLNK -150 /* No definable blinkers •/
#define MFBTMBLNK -160 /* Too many blinkers */
^define MFBNOMASK -170 /* No definable read or write mask */
^define MFBBADALU -250 /• Cannot set ALU mode */

4th Berkeley Distribution 6/21/83

MFB(3) UND(Programmer's Manual MFB(3)

int HFBSetlineStyle(styleld)
int styleld;

MFBSetLineStyle sets the current line style to that identified by the
integer styleld that is greater than or equal to zero and less than the
value of maxLineStyles in the MFB data structure. The value of max-
UneStyles can be obtained from the MFBInfo routine defined below.
Zero is always the styleld for solid lines. Except for the solid line style,
MFB assumes no default set of lines styles. MFBOK is returned if the line
style was successfully set to that specified by styleld or if styleld was
already the current line style; MFBBADLST is returned if styleld has an
illegal value.

int MFBSetFillPattern(styield)
int styleld;

MFBSetFUlPattem sets the current fill pattern to that identified by the
integer styleld that is greater than or equal to zero and less than the
value of maxFUXPattems in the MFB data structure. The value of max-
FUlPatterns can be obtained from the MFBInfo routine defined below.
Solid fill is always defined by styleld equal to zero. Other than solid fill,
MFB assumes no default set of fill patterns. MFBOK is returned if the fill
style was successfully set to that specified by styleld or if styleld was
already the current fill style; MFBBADFST is returned if styleld has an ille
gal value.

int MFBSetChannelMask(channelMask)
int channelMask;

MFBSetChannelMask defines the current write mask to be the value of
channelMask. The channel mask allows specific memory planes to be writ
ten and erased without disturbing other memory planes. The least
significant bit of channelMask corresponds to the masked value of the
first memory plane, etc. If the corresponding bit is zero, the memory
plane is write-protected. The number of memory planes can be obtained
from the MFBInfo routine defined below. MFBOK is returned if the write
mask was successfully set to channelMask or if channelMask was already
the current write mask; MFBNOMASK is returned if the graphics device
does not have a definable write mask.

int MFBSetReadMask(readmask)
int readmask;

MFBSetReadMask defines the current read mask to be the value of read-
mask. The read mask allows only specific memory planes to be read.
MFBOK is returned if the read mask was successfully set to readMask or if
readMask was already the current read mask; MFBNOMASK is returned if
the graphics device does not have a definable read mask.

4th Berkeley Distribution 6/21/83

MFB (3) UNDC Programmer's Manual MFB (3)

int HFBSetColor(colorId)
int colorld;

MFBSetColor sets the current foreground color to that identified by the
integer colorld that is greater than or equal to zero and less than the
value of maxColors in the MFB data structure. The value of maxCblors
can be obtained from the MFBInfo routine defined below. There is no
default color map in MFB. MFBOK is returned if the foreground color was
successfully set to that specified by colorld or if colorld was already the
current foreground color; MFBBADCST is returned if colorld has an illegal
value.

int MFBSetTextMode(destructiveBooi)
Bool destructiveBool;

MFBSetTextMode defines whether subsequent graphics text will over-
strike or replace previous text. If destructiveBool is true, the text mode
is set to destructive which means that graphic text will set the back
ground color of the font grid to the color that is specified by color style
zero depending on the currently defined ALU operation. Overstriking
mode will only set the pixels of the character font to the current fore
ground color. MFBOK is returned if the graphic text writing mode was
successfully set to that specified by destructiveBool or if destructiveBool
was already the current graphic text writing mode; MFBBADTM1 is
returned if the graphics device does not have a destructive graphic text
mode, and MFBBADTM2 is returned if the graphics device does not have an
overstriking graphic text mode.

int MFBSetALUMode(alumode)
int alumode;

MFBSetALUMode changes the mode by which the graphics display is
changed when an area of the display is over-written. The four possible
modes are JAM (replace mode), OR, EOR (exclusive OR), and NOR The
four valid arguments to MFBSetALUMode are defined in mfb.h as follows:

^define MFBALUJAM 0 /• set ALU mode to JAM •/
#define MFBALUOR 1 /• set ALU mode to OR */
^define MFBALUNOR 2 /* set ALU mode to NOR */
#define MFBALUEOR 3 /* set ALU mode to EOR */
MFBOK is returned if the ALU mode was successfully set to that specified
by alumode or if alumode was already the current ALU operation; MFBBA-
DALU is returned if the graphics device does not have the ALU mode
specified by alumode or if alumode is an invalid or illegal argument.

int HFBSetCursorColor(colorIdl. colorId2)
int colorldl, colorid2;

MFBSetCursorColor sets the graphics cursor to blink between the two
colors identified by colorldl and colorId2. The constraints on the values
for colorldl and colorId2 are the same as for MFBSetColor defined above.
The frequency of the blinking cursor is fixed and can be changed only by
modifying the mfbcap database file. MFBOK is returned if the blinking
cursor colors were successfully set to the specified colors.

4th Berkeley Distribution 6/21/83

MFB (3) UNDC Programmer's Manual MFB (3)

int MFBSetRubberBanding(onFlag, X. Y)
intX,Y;
Bool onPlag;

MFBSetRubberBanding enables/disables rubber banding of the pointing
device. If onFlag is false, then rubber banding is disabled. When enabled,
the center of rubber banding is at X, Y. Rubber banding is always disabled
immediately after the pointing device has been used. MFBOK is returned
if the rubberbanding mode was successfully set to that specified by
onFlag; MFBNORBND is returned if the graphics device does not have rub
berbanding in the pointing device.

int IffBSetBlinkerfcolorld, red, green, blue, onFlag)
int colorld;
int red, green, blue;
int onFlag;

MFBSetBlinker enables the color identified by colorld to blink between its
currently defined color and the color defined by the red, green, blue com
bination. The values of red, green, and blue are normalized to 1000. If
onFlag is zero, the blinking is disabled. The number of colors that may be
defined as blinkers at any given time must be less than the value of max-
Blinkers in the MFB data structure. The frequency of the blinking colors
is fixed and can be changed only by modifying the mfbcap database file.
MFBOK is returned if the color specified by colorld was successfully set to
the desired blinking mode; MFBNOBLNK is returned if the graphics device
does not have blinking VLT layers, and MFBTMBLNK is returned if there
are already too many active blinking layers.

DEFINING DEVICE PARAMETERS

Each of the following routines for defining device parameters returns a negative
value if any difficulty is encountered. The possible returned integers are defined
in mfb.h as follows:

#define MFBOK 1 /* successful return */
#define MFBNODFLP -120 /• No definable line patterns */
#define MFBNODFFP -130 /* No definable fill patterns */
#define MFBN0DFC0 -140 /* No definable colors •/

• int MFBDeflneColor(colorId, red, green, blue)
int colorld;
int red. green, blue;

MFBDefine Color redefines the VLT entry for the color identified by colorld
to be the color represented by the red, green, blue combination where
red, green, and blue are normalized to 1000. Once the color correspond
ing to colorld is redefined, all geometries that were written onto the
display of a frame buffer with colorld as the current color will become the
new color. MFBOK is returned if the VLT entry for colorld was successfully
defined; MFBN0DFC0 is returned if the graphics device does not have a
VLT.

4th Berkeley Distribution 6/21/83

MFB (3) UNIX Programmer's Manual MFB (3)

int MFBDefineFilIPattem(styleId, BitArray)
int styleld;
int *BitArray;

MFBDefineFiUPattem redefines the fill pattern identified by styleld and
returns with styleld as the current fill style. BitArray is a pointer to an
array of eight integers whose least significant eight bits represent indivi
dual rows in an eight by eight intensity array. For example, a fill pattern
with an ascending diagonal line may be defined by the following eight
(decimal) integers:

1 2 4 8 16 32 64 128 256

A diagonal-grid fill pattern can be defined with the following integer array.

257 130 68 40 40 68 130 257

MFBOK is returned if the new fill style for styleld was successfully defined;
MFBNODFFP is returned if the graphics device does not have definable fill
patterns.

int MFBDefineIineStyie(styleId, Mask)
int styleld;
int Mask;

MFBDefineLine Style defines the line style identified by styleld to be the
pattern contained in the eight least significant bits of Mask and returns
with styleld as the current line style. MFBOK is returned if the line style
for styleld was successfully defined; MFBNODFFP is returned if the graph
ics device does not have definable line patterns.

INPUT/OUTPUT ROUTINES

int MFBUpdateO
MFB Update flushes the internal output buffer to the currently defined
output device and will ignore any write error that may occur. A call to
this routine is ABSOLUTELY necessary to complete any graphics display
sequence. MFBUpdate returns the number of characters sent to the out
put graphics device or -1 if a write error occured.

int MFBPointQC Y, key. button)
int *X *Y. •button;
char *key;

MFBPoint enables the graphics pointing device and then waits for user
input. If a keyboard key is pressed, MFBPoint returns with key contain
ing the character that was pressed. If the pointing device is pressed,
MFBPoint returns with the identified viewport coordinate X, Y, the con
tents of key equal to zero, and the button mask of the button that was
pushed. The integer array buttonMask in the MFB data structure con
tains all possible button mask values that can be returned. MFBPoint
returns one of the following values defined in the mfb.h file:

4th Berkeley Distribution 6/21/83 6

MFB(3) UNIX Programmer's Manual MFB(3)

^define MFBOK 1 /• successful return */
#define MFBPNTERR -230 /* Error in pointing device •/
^define MFBNOPTFT -240 /* No pointing format ♦/

#define MFBNOPNT -260 /* No pointing device */

char *Hf?3Keyboard(X,Y, background, foreground)
int background;
int foreground;
intX.Y;

MFBKeyboard enables the graphics keyboard and waits for user input. A
pointer to a character buffer containing the keyboard input is returned
by MFBKeyboard when the user presses the return or linefeed key. Back
space is control-H or the delete character, and control-X or control-U will
kill the line. Pressing the ESCAPE key will cause MFBKeyboard to return
with a null string in the input character buffer.

All keyboard input is displayed in the viewport with the lower left corner
at the viewport coordinate X, Y and is constrained to fit on one line.
Background and foreground are the background and foreground color
styles respectively in which the keyboard input will be displayed.

voidMFBAudio()
MFBAudio will ring the bell or alarm on the graphics device. If the graph
ics device does not have a bell, then a control-G will be sent to standard
output.

int MFBPutchar(c)
chare;

int MFBPutstr(cp,nchars)
intnehars;
char *cp;

int HFBGetcharO
These three routines are used internally by MFB and typically are not
used within an application program. They are comparable to the stdio
routines having similar names. MFBPutchar places a character c in the
output buffer. MFBPutstr inserts a string pointed to by cp containing
nchars characters into the output buffer. The nchars argument is neces
sary to permit'embedded null characters in the output stream. The char
acters remain in the output buffer until the next call to MFBUpdate or
until the contents of the output buffer exceed 4096 characters.

MFBGetchar returns a single character from the graphics input device. If
the graphics device does not have a keyboard, input is obtained from the
terminal from which the application program was invoked. If the graphics
device is a tty, it should be remembered that it is in CBREAK mode.

4th Berkeley Distribution 6/21/83

MFB (3) UNDC Programmer's Manual MFB (3)

TWO DIMENSIONAL GEOMETRY ROUTINES

All coordinates that are passed to the following geometry routines are with
respect to the display resolution of the graphics device. MFB assumes that the
lower, left corner of the display is the origin with an absolute coordinate (0, 0).
All coordinate values are positive integers.

void MFBMoveTo(Xl, Yl)
intXl,Yl;

MFBMove To sets the current graphics position to XI, Yl. No line will be
drawn from the old graphics position.

'void MFBDrawIineTo(Xl, Yl)
int XI. Yl;

MFBDrawLineTo draws a line from the current graphics position to XI, Yl
in the current line style and color. The current graphics position then
becomes XI, Yl.

void MFBUne(Xl, Yl. X2. Y2)
intXl.Yl.X2,Y2;

MFBline draws a line in the current line style and color from XI, Yl to
X2, Y2.

void MFBBox(left, bottom, right, top)
int left, bottom, right, top;

MFBBox displays a rectangle in the current fill pattern and color with
diagonal coordinates at left, bottom and right, top.

void MFBDrawPath(path)
HFBPATH *path;

MFBDrawPath draws a path of vectors in the current line style and color.
Path is a pointer to a data structure defined in the mfb.h file as follows:

struct mfbpath f
int nvertices; /* number of (x,y) coordinate pairs */
int *xy; /* pointer to array of (x,y) coordinates */
1:

typedef struct mfbpath MFBPATH;

The contents of the coordinate array are organized such that xy[0] is the
x coordinate of the first vertex, xy[l] is the y coordinate of the first ver
tex, xy[2] is the x coordinate of the second vertex, etc.

void MFBFlood()
MFBFlood erases a frame buffer display to the current color as previously
defined by MFBSetColor. The result would be the same as drawing a solid
box over the entire display.

void l£FBPixel(X, Y)
intXY;

MFBPixel sets the pixel at location X, Y on the display to the current
color as previously defined by MFBSetColor.

4th Berkeley Distribution 6/21/83 8

MFB (3) UNDC Programmer's Manual MFB(3)

void MFBCircle(X, Y. rad, nsides)
intX, Y, rad, nsides;

MFBCircle draws the perimeter of a circle in the current line style and
color with center at X, Y and with radius rad. The argument nsides is the
number of line segments with which the circle will be drawn if the frame
buffer does not have a circle primitive. The default value for nsides is
twenty.

void MFBFlash(X, Y, rad. nsides)
int X, Y. rad, nsides;

MFBFlash draws a round flash with the current fill pattern and color with
center at X, Yand radius rod. The argument nsides is the number of line
segments with which the flash will be drawn. The default value for nsides
is twenty.

void MFBArc(X, Y, rad. angle1, angle2, nsides)
int XY. rad;
int anglel. angle2, nsides;

MFBArc draws an arc in the current line style and color with center at X,
Y and with radius rad beginning at anglel with respect to the positive
y—axis and ending at angle2 in a counter-clockwise direction. Both
angles are in degrees and are greater than or equal to zero and less than
or equal to 360. The argument nsides is the number of line segments with
which a 360 degree arc will be drawn. The default value for nsides is
twenty.

void MFBPolygon(poly)
MFBPOLYGON •poly;

MFBPolygon draws a polygon with the current fill pattern and color. Poly
is a pointer to a data structure defined in the mfb.h file as follows:

struct mfbpolygon \
int nvertices; /* number of (x,y) coordinate pairs */
int *xy; /* pointer to array of (x,y) coordinates */
i:

typedef struct mfbpolygon MFBPOLYGON;

The contents of the coordinate array are organized such that xy[0] is the
x coordinate of the first vertex, xy[l] is the y coordinate of the first ver
tex, xy[2] is the x coordinate of the second vertex, etc. The difference
between the MFBPOLYGON typedef and the MFBPATH typedef defined
above is that the MFBPOLYGON struct is assumed to define a closed path
of coordinates.

MFBPATH *MFBArcPath(X, Y. rad. anglel, angle2, nsides)
int X, Y, rad;
int anglel, angle2, nsides;

MFBArcPath returns a pointer to a MFBPATH struct that contains an arc
with center at X, Y and with radius rad beginning at anglel with respect
to the positive y—axis and ending at angle2 in a counter-clockwise direc
tion. Both angles are in degrees and are greater than or equal to zero

4th Berkeley Distribution 6/21/83 9

MFB (3) UNIX Programmer's Manual MFB (3)

and less than or equal to 360. The argument nsides is the number of line
segments with which the arc will be drawn. The default value for nsides is
twenty.

MFBPOLYGON *M*BEllipse(X Y, radx, rady, nsides)
int X Y, rad, nsides;

MFBEllipsePath returns a pointer to a MFBPOLYGON struct that contains
an elliptical polygon with center at X, Y and with distance radx from the
center to an edge along the x—axis and distance rady from the center to
an edge along the y—axis. The argument nsides is the number of line seg
ments with which the arc will be drawn. The default value for nsides is

twenty.

void MFBText(text, X, Y. phi)
char *text;
int X Y. phi;

MFBText displays a null terminated string pointed to by text with the
lower left corner at X, Yin the display viewport with the current color and
rotated at the angle phi in degrees. The default value for phi is zero.

voidMFBNaiveBoxFul(left, bottom, right, top)
int top. bottom, left, right;

MFBNaiveBoxFill can be used to draw a filled rectangle on a graphics
device that does not support fill patterns. The MFBLine routine is used to
draw rectangles with eight different fixed fill styles. If the graphics device
does not have a command primitive for drawing a box, then the MFBBox
routine defined above defaults to MFBNaweBoxF&l.

RASTER ROUTINES

void MFBRasterCopy(XY,CXl>Y,DestXDestY);
int XY.DXDY,DestXDestY;

MFBRasterCopy copies a rectangular area with the bottom, left corner at
X, Fand with length DXin the X direcion and width DYin. the Y direction to
an area with the bottom, left corner at DestX.DestY. The mode of the copy
operation was specified by the last call to MFBSetALUMode.

INFORMATION ACQUISITION
int MFBInfo(info);
int info;

MFBInfo is a routine for obtaining device specific information. The possi
ble values for info are defined in mfb.h as follows:

/* max x coordinate */
/• max y coordinate •/
/* max number of colors •/
/* max color intensity •/
/* max number of fill patterns »/
/* max number of line styles •/
/* max number of blinkers •/
/* terminal has pointing device */
/* pointing device has buttons */

^define MAXX 1

^define MAXY 2

^define MAXC0L0RS 3

^define MAXINTENSITY 4

^define MAXFILLPATTERNS 5

#define MAXLINESTYLES 6

^define MAXBUNKERS 7

^define POINTINGDEVICE 8

^define P0INT1NGBUTT0NS 9

4th Berkeley Distribution 6/21/83 10

MFB(3) UNIXProgrammer's Manual MFB(3)

#define NUMBUTTONS 10

^define BUTT0N1 11

^define BUTT0N2 12

^define BUTT0N3 13

^define BUTT0N4 14

^define BUTT0N5 15

^define BUTT0N6 16

#define BUTT0N7 17

^define BUTTONS 18

^define BUTT0N9 19

#define BUTT0N10 20

^define BUTT0N11 21

#define BUTT0N12 22

^define TEXTPOSITIONALBE 30

#define TEXTROTATABLE 31

^define FONTHEIGHT 32

^define FONTWIDTH 33

^define F0NTX0FFSET 34

#define F0NTY0FFSET 35

^define DESTRUCTTVETEXT 36

^define OVERSTRIKETEXT 37

^define VLT 38

^define BLINKERS 39

#define FILLEDPOLYGONS 40

^define DEFFILLPATTERNS 41

^define DEFCHANNELMASK 42

^define DEFLINEPATTERN 43

^define CURFGC0L0R 44

^define CURFILLPATTERN 45

^define CURLINESTYLE 46

#define CURCHANNELMASK 47

^define CURREADMASK 48

^define NUMBITPLANES 49

^define DEFREADMASK 50

^define RASTERCOPY 51

^define OFFSCREENX 52

^define OFFSCREENY 53

^define OFFSCREENDX 54

#define OFFSCREENDY 55

4th Berkeley Distribution 6/21/83

/* num. of pointing dev. buttons */
/* value returned by button 1 */
/* value returned by button 2 •/
/• value returned by button 3 */
/* value returned by button 4 •/
/* value returned by button 5 */
/♦ value returned by button 6 •/
/* value returned by button 7 */
/• value returned by button 8 */
/» value returned by button 9 */
/* value returned by button 10 */
/* value returned by button 11 */
/* value returned by button 12 */
/* Bool: positionable text */
/* Bool: rotatable text •/
/• font height in pixels */
/* font width in pixels */
/* font x offset in pixels */
/* font y offset in pixels */
/• Bool: text can be destructive */
/* Bool: text can be overstrike */
/* Bool: terminal has VLT */
/• Bool: terminal has blinkers */
/* Bool: terminal can fill polygons */
/• Bool: definable fill patterns •/
/* Bool: definable write mask •/
/* Bool: definable line styles •/
/• current foreground color */
/• current fill pattern */
/* current line style */
/* current channel mask */
/• current read mask */
/* number of bit planes */
/• Bool: definable read mask •/
/* Bool: term has raster copy */
/• left of off screen memory */
/• bottom of off screen memory */
/* length of off screen memory */
/• width of off screen memory */

If an invalid argument is used, MFBInfo will return -1.

WINDOW/VIEWPORT TRANSFORMATIONS

MFB provides a set of procedures for converting from window coordinates to
viewport coordinates and vice versa. These transformation routines are NOT
used by the MFB display routines and must be invoked separately by an applica
tion program.

void MFBSetViewport(left, bottom, right, top)
int left, bottom, right, top;

void MFBSetWindow(left, bottom, right, top)
int left, bottom, right, top;

11

MFB(3) UNDC Programmer's Manual MFB(3)

int MFBScaleX(X)
intX

int MFBScaleY(Y)
intY;

int MFBDescaleXpQ
intX

int MFBDescaleY(Y)
intY;

To use these routines, it is necessary to define both the viewport of the
graphics display and the window in the working area by using MFBSet-
Viewport and MFBSet Window. The viewport must always be defined by
non-negative integers that are within the resolution of the graphics
display. Once defined, MFBScaleX and MFBScaleYvriR convert from win
dow coordinate values to viewport coordinates. MFBDescaleX and
MFBDescaleY will perform the inverse transformation. The transform
routines return the scaled values.

GEOMETRY CUPPING ROUTINES

MFB provides a set of routines for clipping lines and polygons to a given window.

voidMFB_YJntercept(Xl. Yl. X2, Y2. value. Yvalue)
intXl.Yl.X2.Y2;
int value;
int *Yvalue;

MFB^XJntercept calculates the value Yvalue of the y coordinate at the
point of intersection of a line defined by the two coordinates XI, Yl and
X2, Y2, and a vertical line with all x coordinates equal to value.

void MFBJUntercept(Xl, Yl. X2, Y2, value. Xvalue)
intXl.Yl.X2.Y2;
int value;
int *Xvalue;

MFB^XJntercept calculates the value Xvalue of the x coordinate at the
point of intersection of a line defined by XI, Yl and X2, Y2, and a horizon
tal line with all y coordinates equal to value.

void HFBLineClipfXl. Yl. X2. Y2. left, bottom, right, top);
int *X1. »Y1. «X2. *Y2;
int left, bottom, right, top;

The above clipping routines are used by MFBLineClip to clip the line seg
ment defined by XI, Yl and X2, Y2 to the window defined by left, bottom,
right, and top.

void MFBPolygonClip(poly. top. bottom, left, right)
MFBPOLYGON •poly;
int top. bottom, left, right;

MFBPolygonCtip clips a polygon with less than 200 vertices defined by
poly to the window defined by left, bottom, right, and top. poly is replaced
by the clipped polygon.

4th Berkeley Distribution 6/21/83 12

MFB(3) UNIX Programmer's Manual MFB(3)

MFBPATH *MFBArcClip(path, left, bottom, right, top)
MFBPATH *path;
int left, bottom, right, top;

MFBArcClip clips an arc with less than 200vertices defined by path to the
window defined by left, bottom, right, and top. MFBCHpArc returns a
pointer to an array of five MFBPATH structs that define the clipped arc.
The contents of several of these returned structs may define a null path.

SPECIAL VIEWPORT ROUTINES
void MFBMore(left, bottom, right, top. Textfile)
int left, bottom, right, top;
FILE *Textffle;

MFBMore will display the contents of a file Textfile in a viewport defined
by left, bottom, right, and top in a manner similar to the UCB program
M0RE(1).

void MFBScroll(left, bottom, right, top, Textfile)
int left, bottom, right, top;
nUE*Textfile;

MFBScroll is an enhanced version of MFBMore defined above that allows
you to scroll up or down through the contents of Textfile. The contents of
Textfile are displayed in a viewport defined by left, bottom, right, and top.

DIAGNOSTICS
char *MFBError(errnum)
int errnum;

MFBError can be used to obtain a null terminated string that describes
the error associated with any of the above mentioned error codes, err
num is the error code returned by a MFB routine. MFBError returns a
pointer to the error information string. The possible values for errnum
are defined in mfb.h as follows:

/* Unknown terminal type */
/* Can't open mfbcap file */
/• MFBCAP entry too long •/
/* Bad mfbcap entry */
/* Infinite mfbcap entry */
/• stdout not in /dev */
/* Illegal line style */
/* Illegal fill style */
/* Illegal color style */
/• No destructive text •/
/• No overstriking text ♦/
/* No definable line styles •/
/* No definable fill styles */
/• No definable colors */
/* No blinkers */
/* Too many blinkers •/
/* Can't open or close device */
/* Can't access or set device stat */
/* No definable read or write mask */

^define MFBBADENT -10

^define MFBBADMCF -20

^define MFBMCELNG -30

^define MFBBADMCE -40

#define MFBINFMCE -50

^define MFBBADTTY -60

^define MFBBADLST -70

^define MFBBADFST -80

#define MFBBADCST -90

^define MFBBADTM1 -100

#define MFBBADTM2 -110

^define MFBNODFLP -120

^define MFBNODFFP -130

^define MFBN0DFC0 -140

^define MFBNOBLNK -150

^define MFBTMBLNK -160

^define MFBBADDEV -180

^define MFBBADOPT -190

#define MFBNOMASK -170

4th Berkeley Distribution 6/21/83 13

MFB(3) UNIX Programmer's Manual MFB(3)

^define MFBBADWRT -200

^define MFBPNTERR -210

jjfdeflne MFBNOPTFT -220

^define MFBNOPNT -230

^define MFBNORBND -240

^define MFBBADALU -250

/* Error in write •/
/* Error in pointing device */
/* No format for pointing device */
/* Nopointing device */
/• NoRubberbanding */
/• Cannot set ALU mode •/

void MFBZeroCountersQ

void MFBCounters(nCh,nBx,BxArea,nLn,LnLngth,nPxl)
int *nC^*m3x.*BxArea,*nL^*LnLDgth.*nPxl;

MFBCounters provides the ability to measure the communications
bandwidth between the host and the graphics device. To use these rou
tines, MFB must be compiled with the DEBUG flag defined in the mfb.h
file.

The procedure is initialized by invoking MFBZeroCounters after which the
geometry display routines such as MFBBox or MFBLme may be called in
any order. When MFBCounters is invoked, it will return the number of
graphic text characters nCh that where displayed, the number of boxes
nBx displayed, the number of lines nLn displayed, the average pixel area
of a box BxArea, the average line length LnLngth in pixels, and the total
number of pixels nPxl that where affected. Invocation of MFBCounters
does not clear the the counters.

THE MFB DATA STRUCTURE

The MFB data structure is listed below.

#define TTY *f
#define HCOPY 'r*

typedef enum {false, true} Bool;

struct mfb_window j
int left;
int right;
int top;
int bottom;
double length,width;
J:

typedef struct mfb_window WINDOW;
typedef struct mfbwindow VIEWPORT;

struct mfbpath \
int nvertices;
int *xy;

typedef struct mfbpath MFBPOLYGON;
typedef struct mfbpath MFBPATH;

4th Berkeley Distribution 6/21/83 14

MFB(3) UNIXProgrammer's Manual MFB(3)

#ifndef vms
struct mfbremttyb j

struct sgttyb oldttyb;
struct sgttyb newttyb;

J;

struct mfbremstat j
int graphttyw;
int kybrdttyw;
struct stat graphstat;
struct stat kybrdstat;

i:

/* old mode bits of graphics device */
/* old mode bits of standard I/O */
/» old fstats of graphics device */
/* old fstats of standard I/O */

typedef struct mfbremttyb MFBSAVETTYB;
typedef struct mfbremstat MFBSAVESTAT;
#endif

struct mfbformatstrs }
char *startSequence;
char *endSequence;
char *initlineStyles;
char *initFillPatterns;
char *initCoiorStyles;

char *vltEntry;
char »setForegroundColor;
char *screenFlood;

char *channelMaskSet;
char *readMaskSet;

char *enablePointingDevice;
char *enableRubberBanding;
char *disabiePointingDevice;
char *disableRubberBanding;
char *readPointingDevice;
char *formatPointingDevice;

char *keyboardStart;
char *keyboardEnd;
char *keyboardBackspace;
char *audio;

/* first transmitted sequence */
/* last transmitted sequence */
/* initialize line styles */
/* initialize fill styles */
/* initialize color styles */

/* define color in VLT •/
/• set current foreground color */
/* flood screen to current color */

/* set write mask */
/* set read mask */

/* initialize pointing device •/
/* turn on rubber banding */
/* disable pointing device and cursor */
/* turn off rubber banding */
/* wait and read pointing device •/
/* decode format for pointing device •/

/* initailize keyboard */
/* terminate keyboard input •/
/* keyboard backspace sequence */
/* ring the terminals bell */

4th Berkeley Distribution 6/21/83 15

MFB(3) UNIX Programmer's Manual MFB(3)

char *lineDeflneStart; /
char *UneDefineFormat; /
char *lineDefineEnd; /
char *setLineStyle; /
char *setSolidIineStyle; /
char *movePenSequence; /
char *drawLineSequence; /
char *drawSolidUneSequence; /
char »drawLineToSequence; /
char *drawSolidlineToSequence; /

char *drawBoxSequence; /
char *drawSolidBoxSequence; /

char *beginPlygnSequence; /
char *beginSolidPlygnSequence; /
char *sendPlygnVertex; /
char *endPlygnSequence; /

char *drawCircleSequence; /

char *rotateTextSequence; /
char *graphicsTextStart; /
char *graphicsTextEnd; /
char *repiaceON; /
char *overstrikeON; /
char *writePixel; /

char *setALUEOR; /
char *setALUNOR; /
char »setALUQR; /
char «setALUJAM; /

char *blinkerON; /
char •blinkerOFF; /

char *rastCopyStart; /
char •rastCopyEnd; /
char •rastCopyDest; /
char *rastCopySource; /

char *fillDefineStart; /
char *fillDefineFormat; /
char *fillDefineEnd; /
char *setFillPattern; /
char *setSolidFillPattern; /

begin defining a line pattern •/
define bit array of line pattern */
terminate line pattern definition •/
set current line style */
set current line style to solid •/
move current graphics position •/
draw a line in current style */
draw a solid line */
move and draw current position */
move and draw solid line •/

draw box in current style •/
draw a solid box */

begin polygon in cur. fill style */
begin solid polygon •/
define one point in polygon */
terminate polygon sequence */

draw a circle in solid line style */

rotate graphic text •/
begin graphic text •/
terminate graphic text */
turn on destructive text mode •/
turn on overstriking text mode */
write one pixel in current color */

set ALU mode to EOR ♦/

set ALU mode to NOR */
set ALU mode to OR •/
set ALU mode to JAM or REPLACE */

make a color blink */
turn off a blinking layer */

begin raster copy sequence */
terminate raster copy sequence */
define raster copy destination */
define raster copy source area •/

begin defining a fill style •/
define bit array of row/column */
terminate fill style definition */
set current fill pattern */
set current fill pattern to solid */

struct mfb \ /* MFB DATA STRUCT •/

4th Berkeley Distribution 6/21/83 16

MFB(3) UNIX Programmer's Manual MFB(3)

/• used for decode */

/* Resolution */

/* Video Layer Table •/

/* Pointing Device */

/* Keyboard Control •/

/• Line Drawing */

/* Text font */

/* Blinkers •/

/• Fill Patterns */

/* Current variables */

4th Berkeley Distribution

/•
• INTEGERS FIELDS

*/
int lastX.lastY;
int X.Y.Z.T;

int maxX;
int maxY;
int maxColors;
int minOffScreenX;
int minOffScreenY;
int offScreenDX;
int offScreenDY;

int maxlntensity;
int iengthOfVLT;

int buttonMask[l2];
int numberOfButtons;

int keyboardYOffset;
int keyboardXOffset;

int UneDefineLength;
int maxLineStyles;

int fontHeight;
int fontWidth;
int fontXOffset;
int fontYOflset;

int maxBlinkers;

int fillDefineHeight;
int fillDefineWidth;
int maxRllPatterns;

int cursorColorlld;
int cursorColor2Id;
int fgColorld;
int fillPattern;
int UneStyle;
int channelMask;
int readMask;
int numBlinkers;
int textMode;
int stipplePattern[8];

int fileDesc;
int numTtyBuffer;

6/21/83

/* for Tektronix encoding */
/* parameter list */

/* horizontal resolution •/
/» vertical resolution */
/* maximum number of colors •/
/* left of off screen memory */
/* bottom of off screen mem. */
/* length of off screen mem. •/
/* width of off screen mem. */

/* max RGB or LS intensity •/
/* number of bit planes */

/* returned button masks •/
/* 12 maximum */

/* number of bytes in array •/
/* number of line styles •/

/* font height in pixels */
/* font width in pixels •/

/• number of blinkers •/

/* number of byte rows */
/* number of byte columns •/
/* number of fill patterns */

/* blinked cursor color ID */
/• unblinked cursor color ID */
/* cur. foreground color ID */
/* cur. fill pattern ID •/
/* cur. line style ID */
/* cur. write mask */
/* cur. read mask */
/• cur. number of blinkers */
/* text mode (l=dest, 0=rep) */
/* cur. stipple pattern */

/* desc. for graphics device */
/* cur. chars in output queue */

17

MFB{3) UNIX Programmer's Manual MFB(3)

/«
• POINTERS

•/
/* for tty's only */ char *name; /* device name •/

char *terminalName; /* name of MFBCAP entry */

/* I/O routines */ int (*dsply_getchar)();
int (*kybrd_getchar)();
int (*dsplyjungetchar)();
int (*kybrd_ungetchar)();
int (*outchar)();
int (*outstr)();

•BOOLEANS

•/
Bool initializedBool;

/• Video Layer Table */ Bool vltBool;
Bool vltUseHLSBool;

/• Channel Mask */ Bool channelMaskBool;
Bool readMaskBool;

/* Pointing Device */ Bool PointingDeviceBool;
Bool buttonsBool;
Bool readlmmediateBool;

/* Keyboard Control */ Bool keyboardBool;

/• Line Drawing •/ Bool linePatternDefineBooi;
Bool reissueLineStyleBool;

/* Polygon Drawing */ Bool fiUedPlygnBool;

/* Text font */ Bool textPositionableBool;
Bool textRotateBool;
Bool replaceTextBool;
Bool overstrikeTextBool;

/• Blinkers */ Bool blinkersBool;

/• Raster Copy */ Bool rastCopyBool;
Bool rastRSCSFBool;

/• Fill Patterns */ Bool fiUPtrnDefineBool;
Bool fillDefineRowMajorBool;

/* for tty's only */ Bool litout;
Bool raw;
Bool ttylsSet;

4th Berkeley Distribution 6/21/83 18

MFB(3) UNIXProgrammer's Manual MFB(3)

* STRUCTURES

•/
struct mfbformatstrs strings;

WINDOW currentWindow;
VIEWPORT currentViewport;

#ifndef vms
/* graphics device ttyb struct */
MFBSAVETTYB graphTtyb;

/* keyboard ttyb struct if graphics device does not have a kybrd */
MFBSAVETTYB kybrdTtyb;

/• tty status ints */
MFBSAVESTAT oldstat;

#endif

/•
• CHARACTERS

V
char deviceType;
char strBuf[BUFSIZE];
char ttyBuffer[TTYBUFSIZE];
i;

typedef struct mfb MFB;

/* format strings */

/* current window */
/* current viewport */

/* TTYstty. HCOPY=hard copy •/
/* storage for format strings */
/* tty output buffer */

EXAMPI£

The following C program is a simple example that uses several MFB routines.
The terminal type is assumed to be the first command line argument. This pro
gram will display several triangles in different line styles, display at four angles
of rotation the text that is returned from MFBKeyboard, draw a solid line
between two points, and draw an arc clipped to a rectangle.

^include <cad/mfb.h>

main(argc, argv)
int argc;
char *argv[];
f
int i, j, k, m;
int XI. X2. Yl, Y2;
int numcoiors;
int numlinestyles;
int button;
int error;

4th Berkeley Distribution 6/21/83 19

MFB(3) UNDC Programmer's Manual MFB(3)

MFB •mfb, *MFBOpen();
MFBPATH *pp;
char key;
char *TypeIn;

/* open graphics device */
mfb = MFBOpen(argv[l], NULL, fcerror);

/* exit on any error »/
if(error < 0) {

fprintf(stderr, "error: %s\n", MFBError(error));
exit(0);
i

/* get device information */
XI = MFBInfo(MAXX)/2;
X2 = Xl/2;
Yl = MFBInfo(MAXY)/30;
numcoiors = MFBInfo(MAXCOLORS);
numlinestyles = MFBInfo(MAXLINESTYLES);
if(numcolors > 7)

numcoiors = 7;
if(numlinestyies > 7)

numlinestyles = 7;

/• draw pyramid of lines in different line styles */
for(j=0; j<28; ++j) (

/* set color (increment by one to prevent 'invisible' lines) */
k = j %(numcoiors - 1);
MFBSetColor(k + l);

/* define and set line style */
m = j % numlinestyles;
MFBDefineLineStyle(m. j * 6);
MFBSetLineStyle(m);

/* draw pyramid */
MFBLinefO, 0. X2, Yl*j + 2*j);
MFBLine(Xl. 0, X2, Yl*j +'2*j);
j

/* flush output */
MFBUpdateQ;

4th Berkeley Distribution 6/21/83 20

MFB(3) UNIX Programmer's Manual MFB(3)

/• test of MFBKeyboard */
MFBText("Test of MFBKeyboard.", X2, Yl«28, 0);
Typeln = MFBKeyboard(Xl, 5, 0. 1);
MFBText(TypeIn, XI, 70, 0);
MFBTextfTypeln, XI, 70, 90);
MFBText(TypeIn, XI, 70, 180);
MFBText(TypeIn, XI, 70, 270);
MFBUpdate();
sleep(3);

/* test of MFBPoint */
MFBSetColor(l);
MFBFlood();
MFBSetColor(O);
MFBText("Test of MFBPoint.", X2, Yl«28, 0);
MFBPoint(&Xl. &Y1. &key, fcbutton);
MFBPoint(&X2. &Y2, &key, fcbutton);
MFBSetLineStyle(O);
MFBLine(Xl, Yl. X2. Y2);

/• draw outline of box to contain arc •/
MFBIAne(100, 100, 100, 350);
MFBIine(100, 100. 370, 100);
MFBLine(370. 100, 370, 350);
MFBLine(l00, 350, 370, 350);

/• test of MFBArcPath and MFBQipArc */
i = 0;
pp = MFBCUpArc(MFBArcPath(70, 70. 200, 0, 0. 30), 100, 100. 370, 350);
while(pp[i].nvertices != 0 <8c& i < 4) (

MFBDrawPath(&pp[i]);
i++;

i

/* flush output and wait */
MFBUpdate();
sleep(6);

MFBQoseO;
i

4th Berkeley Distribution 6/21/83 21

MFB(3) UNIX Programmer's Manual MFB(3)

DEBOUNCING THE POINTING DEVICE

The following C program is another example of using MFB routines that demon
strates several methods of debouncing the pointing device. Several graphics
terminals can return bogus pointing reports that can be serious and annoying in
some applications. Identifying these bogus reports is very terminal dependent
(e.g. the AED 512 returns bad button masks, the Metheus 400 returns negative
coordinates, etc.), and it is therefore necessary to use all possible tests.

^include <cad/mfb.h>
#ifdef vms
^include <timeb.h>
#else
^include <sys/timeb.h>
#endif

/•
* This is the rnuiimum time in milliseconds
* between accepted pointing events.
•/

jjldefine DEBOUNCETME 100

/•
* we keep track of the time between pointing
* events to debounce the cursor

•/
static long LastPointTime = 0;

/•
* routine to read and debounce pointing device.
v

point(pointX, pointY,Key.Mask)
int *pointX,*pointY,*Mask;
char *Key;
f
struct timeb now;
long newtime;
int XY.Buttons;
char KeyTyped;

SetDebounceTime();
/* Loop until DEBOUNCETIME has passed */
while(True) \

/+ Loop until valid report is received */
while(True) j

/* Get pointing event */
MFBPoint(&X.&Y,&KeyTyped.&:Buttons);

4th Berkeley Distribution 6/21/83 22

MFB (3) UNDC Programmer's Manual MFB (3)

/* Was a character typed? */
if(Key != 0)

break;

/* Does the pointing device have buttons? */
if(MFBInfo(POINTINGBUTTONS))|

/•
* Test button masks and vicinity of coordinate.
* Assume a four button mouse.

*/
if((Buttons == MFBInfo(BUTTONl) ||

Buttons == MFBInfo(BUTT0N2) ||
Buttons == MFBInfo(BUTT0N3) ||
Buttons == MFBInfo(BUTT0N4)) &&
(X < MFBInfo(MAXX) && X > 0 &&
Y < MFBInfo(MAXY) && Y > 0))
break;

i
!

ftime(&now);
newtime = 1000 * now.time + now.millitm;
if((newtime - LastPointTime) < DEB0UNCETIME) continue;
SetDebounceTime();
i

•pointX = X;
•pointY = Y;
•Key = KeyTyped;
•Mask = Buttons;

i

SetDebounceTime()\
struct timeb now;
ftime(&now);
LastPointTime = 1000 • now. time + now.millitm;

1

NOTES

On some systems, MFB is contained in /usr rather than ~cad.

MFB will also compile to run under VMS (a trademark of Digital Equipment
Corp.) or any other operating system. However, special I/O routines such as
those in ~cad/src/mfb/vmsio.c must be provided for MFB to function properly.
MFB was written to be utmost UNIX compatible and consistent with the style of
the C programming language. For example, a control sequence always begins
with a call to an (MFB)Open routine and is terminated by a call to a (MFB)Close
routine. Another example is the provision of the MFBHalt routine that is
intended primarily for the handling of the SIGTSTP signal. One possible excep
tion to the style of C is the use of a global output descriptor that is set by a call
to the SetCurrentMFB routine, as opposed to passing the output descriptor as

4th Berkeley Distribution 6/21/83 23

MFB(3) UNDC Programmer's Manual MFB(3)

BUGS

an argument to ever active function call.

MFB was initially aimed toward the modeling of lower performance graphics ter
minals (e.g., there is currently no support of segments or definable windows and
viewports at the device level). As a result, programs that use MFB are likely to
work on the low performance (least expensive) graphics terminals as well as on
the more expensive devices.

Raster (hard copy) output is not yet implemented.

FUTURE ENHANCEMENTS

Future modifications to MFB may include the following:

Extension to hard copy graphics devices.

Definable vector and raster character fonts.

Improved cursor support including a definable cursor font, cursor track
ing by the host, cursor-on/cursor-off capability, and cursor report
without event.

Window/viewport geometry clipping by the terminal if the device
possesses that capability.

Bit block transfer (BitBlt).

BILES

""cad/lib/mfbcap
~cad/include/mfb.h
~cad/lib/mfb.a
~cad/src/mfb

SEE ALSO

mfbcap(5), termcap(5), curses(3), more(l), kic(CADl)

AUTHOR

Giles Billingsley
Ken Keller

4th Berkeley Distribution 6/21/83 24

MFB(3) UNIX Programmer's Manual MFB(3)

STATUS

The following is a list of the terminals that will currently work with MFB:
4014 Tektronix 4014 with thumbwheels
4113 Tektronix 4112/4113 with thumbwheels or tablet
AED5 AED 512 with joystick or tablet
AED7 AED 767 with joystick or tablet
2648 HP 2648 black and white grahpics terminal with tablet
9872 HP 9872 color pen plotter
D125 DEC VT125 black and white graphics terminal

The following table lists routines that depend on device capabilities and may not
work on all graphics devices. Other MFB routines that are not listed below will
work for all devices.

4 4 A A 2 9 D

0 1 E E 6 6 1

Routine 1 1 D D 4 7 2

4 3 5 7 8 2 5

MFBSetLineStyle
MFBSetFillPattern

X X

X

X

X

X

X

X

X

X

X

X

X

MFBSetChannelMask X X

MFBSetReadMask X X

MFBSetColor X X X X X X
MFBSetTextMode X

MFBSetALUMode X X

MFBSetCursorColor X X

MFBSetRubberBanding
MFBSetBlinker

X
X X

X

MFBDefineColor X X X

MFBDefineFillPattern X X X X

MFBDefineLineStyie X X X

MFBMoveTo X X X X X X X

MFBDrawLineTo X X X X X X X

MFBLine X X X X X X X

MFBDrawPath X X X X X X X

MFBBox X X X X X X X

MFBPoiygon
MFBFlood

X X

X

X

X

X

X

X

X

X X

X

MFBPixel X X X X X X X

MFBCircle X X X X X X X

MFBFlash X X X X X X X

MFBArc X X X X X X X

MFBText X X X X X X X

MFBPoint X X X X X
MFBKeyboard
MFBMore

X X

X

X

X

X

X

X

X

X

X

MFBScroil X X X X X

4th Berkeley Distribution 6/21/83 25

<J j.

E.1

Appendix E

The MFBCAP Programmer's Manual

The Section 5 UNDC manual pages for the MFBCAP graphics terminal data

base file are contained in this appendix.

0 o

MFBCAP(5) UNIX Programmer's Manual MFBCAP(5)

NAME
mfbcap —graphics terminal capability data base

SYNOPSS

~cad/lib/mfbcap

DESCRIPTION

MFBCAP is a data base describing graphics terminals, used, e.g., by Arfc(l) and
mfb(3). Terminals are described in MFBCAP by defining a set of capabilities
that they have, and by describing how operations are performed. Output delays
and initialization sequences are also included in MFBCAP.

Entries in MFBCAP consist of a set of comma (,) separated fields. Entries may
continue onto multiple lines by beginning a continuation line with either a tab or
space character. The first entry for each terminal gives the names by which the
terminal is known, separated by vertical bar (|) characters. The first name is
always 2 characters long, the second name given is the most common abbrevia
tion for the terminal, and the last name given should be a long name fully identi
fying the terminal. The second name should contain no blanks; the last name
may contain blanks for readability. For compatability with other operating sys
tems, it is recommended that the device names use all UPPER CASE LETTERS.

CAPABILITIES

The Parms column indicates which of the four possible parameters are used in
the encoding/decoding of string variable. Upper case letters signify that the
parameter value is passed to the mfb(3) routine, and lower case letters identify
values that are returned.

Name Type
8BB boolean

ALUEOR string
ALUJAM string
ALUNOR string
ALUOR string
APT boolean

BELL string
BLD boolean

BLE string
BLS string

BUI numeric

BU2 numeric

BU3 numeric

BU4 numeric

BU5 numeric

BU6 numeric

BU7 numeric

BU8 numeric

BU9 numeric

BU10 numeric

BU11 numeric

BU12 numeric

4th Berkeley Distribution

Parms Description
transmit in 8 Bit Binary using LITOUT
set ALU writing mode to Exclusive OR
set ALU writing mode to JAM (replace mode)
set ALU writing mode to NOR
set ALU writing mode to OR
Accurately Positionable Text
ring the terminals BELL
Blinkers Definable

Blinkers End
XYZT Blinkers Start

X = off color ID

Y = red/hue intensity when blinked
Z = green/lightness intensity when blinked
T = blue/saturation intensity when blinked
value returned by BUtton 1 of pointing device
value returned by BUtton 2 of pointing device
value returned by BUtton 3 of pointing device
value returned by BUtton 4 of pointing device
value returned by BUtton 5 of pointing device
value returned by BUtton 6 of pointing device
value returned by BUtton 7 of pointing device
value returned by BUtton 8 of pointing device
value returned by BUtton 9 of pointing device
value returned by BUtton 10 of pointing device
value returned by BUtton 11 of pointing device
value returned by BUtton 12 of pointing device

6/21/83

MFBCAP(5) UNIX Programmer's Manual MFBCAP(5)

DBS string XYZT

DCS string XYZ

DFP

DLP
DLS

boolean

boolean

string XYZT

DLT string xy:

DSL string XYZT

DSLT string XY

DSB string XYZT

FDE string X

FDF string XY

FDH numeric

FDR boolean

FDS string X

FDW numeric

FPOLY boolean

GCH numeric

GCS string
GCW numeric

GFS string
GIS string
GTE string
GTH numeric

GTO boolean

GTR boolean

GTS string XYZ

GTW numeric

HLS boolean

ICS string

4th Berkeley Distribution

Draw Box Sequence
X = lower left
Y = lower bottom
Z = upper right
T = upper top
Draw Circle Sequence
X — center x coordinate

Y = center y coordinate
Z = radius of circle

Definable Fill Patterns

Definable Line Patterns

Draw Line Sequence
X,Y = start coordinate
Z,T = end coordinate
Draw Line To (x,y) sequence
X.Y = next current graphics position
Draw Solid line sequence
X.Y = start coordinate
Z,T = end coordinate
Draw Solid line To (x.y) sequence
X.Y = next current graphics position
Draw Solid Box sequence
X = lower left

Y = lower bottom

Z = upper right
T = upper top
Fill pattern Define End
X = style ID
Fill pattern Define Format
X = style ID
Y = one 8 bit row/col of the fill pattern array
Fill pattern Define Height in rows
Fill pattern Define Row major
Fill pattern Define Start
X = style ID
Fill pattern Define Width in columns
terminal is capable of Filled POLYgons
Graphics Character Height
Graphics Clear Screen (in current color)
Graphics Character Width
Graphics Finish String
Graphics Initialization String
Graphics Text End
Graphics Text Height offset
Graphics Text Overstrikes old text
Graphics Text Replaces old text
Graphics Text Start
X,Y = lower left coordinate of text string
Z = number of characters in text string
Graphics Text Width offset
convert RGB color definitions to HLS
Initialize predefined Color Styles

6/21/83

^ - :

MFBCAP(5) UNDC Programmer's Manual MFBCAP(5)

IFP

ILS

KYB
KYBRD

KYE

KYS

KYX

KYY
LDE

LDF

string
string
string
boolean

string
string XY

numeric

numeric

string X

string XY

LDL numeric

LDS string X

MCE string
MCL numeric

MFP numeric

MLS numeric

MPS string XY

MXC numeric

MYC numeric

NBL numeric

NPB numeric

OFFDX numeric

OFFDY numeric

OFFMX numeric

OFFMY numeric

OMO string
PDB boolean

PDE string
PDF string xyzt

PDR string
PDS string
PLE string XY

PLS string XYZ

PLSOL string XYZ

4th Berkeley Distribution

Initialize predefined Fill Patterns
Initialize predefined line Styles
KeYboard Backspace sequence
Terminal has a KeYBoaRD
KeYboard End sequence
KeYboard Start sequence
X,Y = lower left coordinate of keyboard window
KeYboard X offset

KeYboard Y offset

Line Define End

X = style ID
line Define Format
X = style ID
Y = 8 bit fill pattern
line Define Length (in bytes)
Line Define Start
X = style ID
device behaves like the following MfbCap Entry
Maximum number of Colors

Maximum number of Fill Patterns
Maximum number of Line Styles
Move Pen Sequence
X,Y = coordinate to move graphics cursor
Maximum X Coordinate

Maximum Y Coordinate

Number of Blinkers

Number of Pointing device Buttons
length of OFF screen memory in X Direction
length of OFF screen memory in Y Direction
minimum X coodinate of OPT screen Memory
minimum Y coodinate of OFF screen Memory
Overstrike text Mode On sequence
Pointing Device has Buttons
Pointing Device End
Pointing Device coordinate Format
x,y = input coordinate
z = key pushed
t = button mask

Pointing Device initiate Read
Pointing Device Start
PoLygon End sequence
X,Y = first coordinate in the polygon sequence
PoLygon Start sequence
X,Y = first of Z coordinates
Z = number of coordinates
PoLygon start sequence for SOlid fill
X,Y = first of Z coordinates
Z = number of coordinates

6/21/83

19

MFBCAP(5) UNIX Programmer's Manual MFBCAP(5)

PLV string XY send PoLygon Vertex sequence
XY = next coordinate in the polygon sequence
terminal has Pointing Device
disable Pointing device Rubber Banding
enable Pointing device Rubber Banding
Pointing Read Immediately returns coordinates
drive device in RAW mode

Reissue line Style before each line
Replace text Mode On sequence
ROTatable graphics text
Rotate Text Sequence
X = angle of rotation in degrees (-360 <= X <= 360)
RaSter CoPy End sequence
RaSter CoPy Start sequence
transmit RaSter Copy Source coordinate First
RaSter copy DeSTination sequence
X,Y = destination coordinate
Z,T = length,width of area to be copied
RaSter copy SouRCe sequence
XY = source coordinate
Z,T = length,width of area to be copied
Set Color Style
X = new color ID
Set Fill Pattern

X = new fill pattern ID
Set Line Style
X = new line style ID
Set video Read Mask

X = channel read mask

Set Solid Fill Pattern

X = new fill pattern ID
Set Solid Line Style
X = new line style ID
device is a TTY

Video Lookup Table present
XYZT Video Table Entry

X = color ID of new entry
Y = red/hue intensity
Z = green/lightness intensity
T = blue/saturation intensity

numeric Video Table maximum Intensity
numeric VLT Length expressed as number of bit planes
string X Video Write Mask

X = channel write mask

string XY Write PDCel at coordinate XY

POD boolean

PRBOFF

PRBON

PRI

string
string
boolean

RAW boolean

RLS boolean

RMO

ROT

string
boolean

RTS string X

RSCPE

RSCPS

RSCSF

string
string
boolean

RSDST string XYZT

RSSRC string XYZT

SCS string X

SFP string X

SLS string X

SRM string X

SSFP string X

SSLS string X

TTY boolean

VLT boolean

VTE string X

vn

VTL

VWM

WPX

4th Berkeley Distribution 6/21/83

MFBCAP (5) UNDC Programmer's Manual MFBCAP (5)

A Sample Entry

The following entry describes the HP 2648. (This particular 2648 entry may be
outdated, and is used as an example only.)

#
HP2648 with keyboard cursor control
#
h0|H0|2648|HP2648|HP2648A|Hewlett-Packard2648A,

TTY, APT, MXC#719. MYC#359, MCL#2, MFP#8, MLS#2,
GTO, DFP. DLP,
MPS=E*pa%X%d,%Y%dZ,
DLT=E«pf%X%d.%Y%dZ, RLS.
DBS=E*m3b%X%d,%Y%d,%Z%d,%T%dE,
DSL=E*mlBE*pa%X%d,%Y%d,%Z%d.%T%dZ.
DLS=E*pa%X%d,%Y%d,%Z%d,%T%dZ.
WPX=E*pa%X%d,%Y%d.%X%d,%Y%dZ,
PLS=E«pa%X%d.%Y%d.
PLV=,%X%d.%Y%d.
PLE=,%X%d,%Y%dZ,
LDL#1. LDF=E*m%Y%d 1C,
GCS=E*d%X%+A%c$<#500>. GCH#11. GCW#7,
GFS=EHEJE*mRE*dlaeD$<#2500>.
GIS=E*mRE*dlafC$<#3500>,
GTE=E*dT, GTH#1. GTW#1,
GTS=E*pa%X%d,%Y%dZE*dS,
KYBRD, KYB=-H,
KYS=E*pa%X%d,%Y%dZE*m4aE*dS.
KYE=E*dT. KYX#1. KYY#1.
SFP=E&f%X%+ l%cE21.
SCS=E*m%X%+ l%cA,
SLS=E»m2B,
FDH#8, FDW#8, FDR, FDF= %Y%3,
FDS=E&fla%X%+ l%ck36LE«m,
FDE=D$<#90>,
POD, PDR=E*s4 21, PDS=E«dK,
PRBON=E*dM, PRBOFF=E*dN.
PDF=+%d,%X+%d.%Y%3%Z%c, PDE= 21E»dL,

Capabilities in MFBCAP are of three types: Boolean capabilities which indicate
that the terminal has some particular feature, numeric capabilities giving the
size of the terminal, and string capabilities which give a sequence that can be
used to perform particular terminal operations.

Types of Capabilities

All capabilities have an identifying code. For instance, because the HP2648 has
"accurately positionable text" (i.e., graphics text may be positioned with lower
left corner at any pixel on the screen) is indicated by the boolean APT. Hence
the description of the HP2648 includes APT. Numeric capabilities are followed
by the character '#' and then the value. Thus MXC which specifies the maximum
value of the X coordinate on the terminal viewport gives the value '719' for the
HP2648.

4th Berkeley Distribution 6/21/83

fci

MFBCAP (5) UNDC Programmer's Manual MFBCAP(5)

Formatting String Capabilities

String variables have a formatting capability to be used for encoding numbers
into ASCII strings and decoding ASCII strings into numbers. An example of the
former is the capability DBS (for Draw Box Sequence), which takes four
numbers (X, Y, Z, and T) and generates the proper sequence to draw a box from
the lower left corner (X,Y) to the upper right corner (Z,T). An example of a
string decode is the capability PDF (for Pointing Device Format), which takes
an ASCII string from the input stream and extracts from it an x and y coordi
nate, a key (if one was pushed) and a buttonmask (if a cursor button was
pushed).

String Formatting

The string variables have a formatting capability which uses four variables (X Y,
Z, and T) to generate a formated string (with MFBGenCode), or generates four
variables (X, Y, Z, and T) from a formated string (with MFBDecode). Two tem
porary registers represented by the letters R and r are available. All operations
begin with a percent sign *%\ and they are listed below:

Com
%X

%Y

%Z

%T

%C

%F

%L

%d

%2

%3

%c

%hl

%h2

%h3

%h4

%ol

%o2

%o3

%o4

%o5

%o6

%tl

Command Description encode/(decode)
set value/(X variable) to the Xvariabie/(value).
set value/(Y variable) to the Y variabie/(value).
set value/(Z variable) to the Z variable/(value).
set value/(T variable) to the T variabie/(value).
set value to the current foreground color ID.
set value to the current fill pattern ID.
set value to the current line style ID.
output/(input
output/(input
output/(input
output/(input

value in variable length decimal format
value converting to/(from) two decimal digits,
value converting to/(from) three decimal digits,
least significant byte of value

withoutconversions.

output/(input
converting to/
output/(input
converting to/
output/(input
converting to/
output/(input
converting to/
output/(input
converting to/
output/(input
converting to/
output/(input
converting to/
output/(input
converting to/
output/(input
converting to/
output/(input
converting to/
output/(input

least significant four bits
from) one ASCII hex character,
least significant byte
from) two ASCII hex characters,
least significant twelve bits
from) three ASCII hex characters,
least significant sixteen bits
from) four ASCII hex characters,
least significant three bits
from) one ASCII octal character,
least significant six bits
from) two ASCII octal characters,
least significant nine bits
from) three ASGI octal characters,
least significant twelve bits
from) four ASCII octal characters,
least significant fifteen bits
from) five ASCII octal characters,
least significant sixteen bits
from) six ASCII octal characters.
X and Y in Tektronix format.

4th Berkeley Distribution 6/21/83

MFBCAP (5) UNDC Programmer's Manual MFBCAP (5)

%t2 output/(input) Z and T in Tektronix format.
%t3 output X and R in Tektronix format (MFBGenCode only).
%t4 output R and Y in Tektronix format (MFBGenCode only).
%t5 output R and r in Tektronix format (MFBGenCode only).
%ti output/(input) value in Tektronix integer format.
%tr output value in Tektronix real format.
%R store/(retrieve) value in temporary register 1.
%r store/(retrieve) value in temporary register 2.
%+x add x to value.

%-x subtract x from value.

%*x multiply value by x.
%/x divide value by x.
%»x shift value right by x bits.
%«x shift value left by x bits.
%|x ORx with value.
%&x AND x with value.

%~x EOR x with value.
%=x set value equal to x.
%ax set value equal to the absolute value of x.
%~ Complement value (l's complement).
%@ output a single null character (MFBGenCode only).
%% gives'%'.
%B BCD (2 decimal digits encoded in one byte).
%D Delta Data (backwards bed).

Where x can be:

(1) One byte - the numeric value of this byte is used as x.

(2) The character "#" followed by a decimal integer value for x.

(3) The character "%" followed by C, F, L, X Y, Z. T, r, or R - the
value of C, F, L, X, Y, Z, T, r or R is used.

The command formats are similar to those found in termcap(5) or termxnfo(5),
but are more complicated due to the more rigorous requirements of graphics
terminals.

Preparing Descriptions

We now outline how to prepare MFBCAP descriptions of graphics terminals. The
most effective way to prepare a terminal description is to build up a description
gradually, using partial descriptions with simple mfb (3) test routines to check
that they are correct. Be aware that a very unusual terminal may expose
deficiencies in the ability of the MFBCAP file to describe it. To easily test a new
terminal description you can set the environment variable MFBCAP to a path
name of a file containing the description you are working on. After setting the
environment variable, any program that uses mfb(3), e.g., kic, will look at the
pathname defined by the environment variable instead of ^cad/lib /mfbcap.

4th Berkeley Distribution 6/21/83

a i o

MFBCAP (5) UNIX Programmer's Manual MFBCAP (5)

Belays

Delays may be embedded anywhere in a string capability and is distinguished by
the $< and > brackets. The number contained within these brackets describes
the delay in milliseconds to be generated and must conform to the above
description for the variable 'x' (e.g., an integer constant must be preceded by
the character "#"j. Before each delay, the output buffer is flushed.
Basic Capabilities

The number of pixels on a horizontal row of the display is given by the 1IXC
numeric capability, and the number of pixels in a vertical column is given by the
HXY capability. The number of colors available on the display is specified by the
MCL capability. For black and white terminals, such as the HP2648, the MCL
capability is defined as two. The maximum number of stipple fill patterns and
line styles is given by the HFP and MLS numeric capabilities respectively.

Offscreen memory refers to an area of the viewport in pixel coordinates which is
not displayed. The lower, left corner of the off screen memory is specified by
the OFFHX and OFFHY numeric capabilities. The horizontal length of the off
screen memory is specified by the OFFDX numeric capability, and the vertical
width of the off screen memory is specified by the QFTTJY numeric capability.

MFBCAP allows two sequences for initializing and uninitializing the terminal.
The first initialization string sent to the terminal is given by the C3S format
string. This will be the first sequence sent to the graphics device. The graphics
finish/termination string is given by the GFS format string. This will be the last
sequence sent to the graphics device.

The initialization character sequences for color styles, fill styles, and line styles
are defined respectively by the IC& IFP, and US format strings.

The sequence to ring the terminals bell or alarm is defined by the BELL string
and defaults to control-G.

Setting Colors and Styles

The character sequence for setting the current foreground color is defined by
the SCS format string. All subsequent geometries will be drawn in this color.
The format for setting the current line style is given by the SU3 format string,
and the format for setting the current fill style is given by the SFP format string.
All subsequent lines, boxes, and polygons will be drawn with these styles.
MFBCAP assumes that style zero defines a solid line and fill pattern. If this is
not the case for a particular frame buffer, or the format for setting a solid line
or fill style is inconsistent with that for other line styles, such as is the case for
the HP9872, a character sequence for setting the solid line or fill style is defined
by the SSLS and SSRP format strings respectively. If it is necessary for the
current line style to be reissued before a line is drawn (as is the case for the HP
2648), then the RLS boolean must be present in the MFBCAP entry.
Basic Geometries

The character sequence for moving the current graphics position to a x,y pixel
coordinate is defined by the MPS format string. The format for drawing a line in
the current line style from the current graphics position to a x,y pixel coordi
nate is defined by the DLT format string. The character sequence to draw a line
in the current line style from a x,y pixel coordinate to a z.t pixel coordinate is
defined by the DI*3 format string. If the command for drawing a solid line is
different from that for a non-solid line, the character sequence to draw a solid

4th Berkeley Distribution 6/21/83

MFBCAP (5) UNDC Programmer's Manual MFBCAP (5)

line from a x,y pixel coordinate to a z.t pixel coordinate may be defined by the
DSL string capability. The format for drawing a solid line from the current
graphics position to a x,y pixel coordinate is defined by the DSLTformat string.
The sequence for drawing a box in the current foreground color from the lower
left x,y pixel coordinate to the upper right z.t pixel coordinate is specified by
the DBS format string. Because some terminals, such as the Tektronix 4113,
have special raster commands for drawing solid boxes, a format for drawing
solid boxes may be specified by the DSB format string.

The format for setting a pixel in the current color at the x,y pixel coordinate is
defined by the "WPXformat string.

The format for drawing a circle with its center at the x,y pixel coordinate and
having a radius of z pixels is defined by the DCS format string.

The format for clearing the entire screen to the current color is given by the
GCS format string. If there is no such command sequence, it may be substituted
by the command sequence that will write a solid box in the current color over
the entire screen.

There are three format strings for defining the terminal's polygon command
sequence. First the PUS starting sequence is used to define x,y as the first of z
pixel coordinates. This character sequence will be followed by z-1 occurrences
of the PLV format string which defines the remaining vertices of the polygonal
path. Finally, an ending sequence that is defined by the PLE format string ter
minates the polygon sequence. For terminals which have inconsistent formats
for drawing solid polygons, the FU30L sequence may be used in place of the PLS
sequence. If the terminal is capable of drawing a filled polygon in the current fill
pattern, then the JPOLY boolean should appear in the MFBCAP entry.

Video Layer Table

If the terminal has a video layer table, then the VLT boolean must be present in
the MFBCAP entry. MFBCAP assumes that the VLT uses the red-green-blue sys
tem for defining colors. If the HU5 boolean capability is specified, then the RGB
arguments become HLS (hue-lightness-saturation) values. The maximum inten
sity of red, green, or blue in the VLT (or the lightness or saturation if using the
HLS system) is given by the VTI numeric capability. The format for setting a
particular entry of the VLT is given by the VTE format string. The YTL numeric
value can be used to define the length of the VLT in terms of the number of bit
planes.

Defining Styles

The LDS string capability defines the sequence for (re)defining a line style
corresponding to a particular style ID. The IDF format string is used to define
an eight bit mask that represents the new line style. The IDE format string ter
minates the definition of the new line style.

The definition of a new fill pattern is more complicated than is the case for line
styles. It is necessary to transform an eight by eight intensity array into what
ever command syntax is required by the terminal. The FDS string capability is
used to begin the (re)definition of a fill pattern. The FDF format string defines
one row or column of the fill pattern using an eight bit mask (one row of the
eight by eight intensity array). If the FDR boolean is present, then it is assumed
that the fill pattern is being defined by rows in which case the FDF sequence is
sent by the number of times defined by the FDH numeric capability. Otherwise,
it is assumed that the fill pattern is defined by columns, and the FDF sequence is

4th Berkeley Distribution 6/21/83

MFBCAP(5) UNIX Programmer's Manual MFBCAP(5)

sent by the number of times defined by the FDW numeric capability. If, for
example, the number of rows in the fill pattern is ten, the FDFsequence is first
transmitted using each of the eight rows of the initial eight by eight intensity
array, and then the sequence is sent twice using the first and second rows of the
initial intensity array. The FDE format string terminates the definition of the
new fill pattern.

Raster Capabilities

There are four format strings for defining the terminal's raster copy command
sequence. First the RSCPS starting sequence is used to begin the raster copy
command. This character sequence will be followed the RSSRC format string
which defines the lower, left coordinate and length and width of the source area
and the RSDST format string which defines the lower left coordinate and the
length and width of the destination area. The RSSRC sequence appears first only
if the RSCSF boolean is defined. Finally, an ending sequence that is defined by
the RSCPE format string terminates the raster copy sequence.

Graphic Text

MFBCAP supports a single font graphic text. The height and width of the text
font are given respectively by the GCH and GCW numeric capabilities. Graphics
text is displayed with three format strings. A text string with z characters with
a lower left justification at the x,y pixel coordinate is begun with the format
string defined by GTS. This will be followed by the transmission of the z charac
ters and terminated by the format string defined by GTE. The graphic text can
offset from the current graphics position by setting the numeric capabilities
GTH and GTW. The following figure demonstrates the assumed character font for
the two characters "gh". The character "0" marks a pixel in the character font,
and the character "X" marks the x,y pixel coordinate to which the two charac
ters where justified. Note that the GCH, GCW, GTH, and GTW numeric capabilities
must always be non-negative integers.

| .0000.
| 0 0
j 0 0

_ GCH 0 0
I | xooooo
II. o

GTH j . 0
I I o 0
I I .0000.

0. . . .

0

0

0000

0 0

0 0

0 0

0 0

I -GCW- I -GTW-

If the terminal supports rotatable graphic text, then the ROT boolean is present
in the MFBCAP entry. If rotated text is desired the RTS character sequence is
issued prior to the the GTS sequence and defines a rotation of x degrees, where x
is between -360 and 360.

4th Berkeley Distribution 6/21/83 10

MFBCAP (5) UNDC Programmer's Manual MFBCAP(5)

MFBCAP supports two graphic text modes. If the graphic text can be destruc
tive, then the GTR boolean is present in the MFBCAP entry, and the RMO format
string specifies the character sequence for entering the destructive graphic text
mode. If the terminal has graphic text that can overstrike, then the GTO
boolean is present in the MFBCAP entry, and the OMO format string defines the
character sequence for entering the overstriking graphic text mode.

Keyboard Control

For terminals with special keyboard/cursor operations, MFBCAP provides a set
of string capabilities for controlling keyboard input. The keyboard is initialized,
and the current graphics position is moved to the x,y pixel coordinate by the
KYS format string. The current graphics position can be offset upward from the
above x,y pixel coordinate by setting values to the KYX and KYY numeric capa
bilities. The keyboard backspace sequence is defined by the KYB format string
(the is NO default for the backspace format string). The keyboard is uninitial
ized by the KYE format string.

If the terminal does not have the above capabilities, a keyboard input routine,
such as that used in mfb(3), can use the terminals graphic text capabilities to
echo keyboard characters on a command line.

Pointing Device.

If the terminal has a pointing device, then the POD boolean is present in the
MFBCAP entry. If the pointing device has buttons, then the PDB boolean is set,
the number of buttons is given by the NPB numeric capability, and the values
returned by the respective buttons of the pointing device are defined by the BUI
through BU12 numeric capabilities.

The graphics pointing device is initialized with the PDS format string. The PDR
format string places the terminal in a waiting mode until the first graphic input.
When this event occurs, the locator event is decoded by the PDF format string.
The graphic pointing device is uninitialized by the PDE format string.

If the PRI boolean is set, one character is read immediately after the pointing
device initialization sequence PDS and before the pointing device is enabled by
FDR This is useful for terminals that have a cursor and can read its current
position but do not have the capability of a graphic event (i.e., an x,y pixel coor
dinate that is read immediately after a key or button is pushed on the terminal).
The pointing device encoding format string PDF must assume that the pointing
device will send one signature character. After the pointing is activated by the
FDR format string, the first character transmitted from the terminal must be
identical to the first character of the PDF format string. If the characters do
not match, then the MFBDecode routine used by mfb(3) will return the first
character that was transmitted by the terminal.

The PRBON string capability defines the character sequence to enable rubber
banding of the pointing device, and PRBOFF disables the rubber banding.
MFBCAP assumes that the center of rubber banding is the current graphics
position that can be defined by the MPS format string defined above.

Special Modes

If the graphics device is to be handled as a TTY, then the TTY boolean must be
present in the MFBCAP entry. If the graphics encoding can produce 8 bit, non-
ASCII characters, then the BBB boolean must be included. If the graphics device
is a TTY and is to be driven in a RAW mode, then the RAW boolean must be

4th Berkeley Distribution 6/21/83 11

MFBCAP (5) UNDC Programmer's Manual MFBCAP (5)

FILES

included. See the manual for tty(4). Typically, this mode is used only if the dev
ice has no keyboard.

MFBCAP supports four ALU writing modes. These are the modes in which a pixel
is updated when written over. The four possible modes are JAM (replace mode),
OR, EOR, and NOR. The sequences for setting these modes are ALUJAM, ALUOR
ALUEOR, and ALUNOR respectively.

Similar Terminals

If there are two very similar terminals, one can be defined as being like the
other but with certain exceptions. The string capability MCE is given with the
name of the similar terminal. The MCE must be the last capability defined in the
entry, and the combined length of the two entries must not exceed 4096 charac
ters. Because mfb routines scan the entry from left to right, and because the
MCE entry is replaced by the corresponding entry, the capabilities given on the
left override identical capabilities defined for the similar terminal. This is useful
for defining different modes for a terminal, or for defining terminals with
different peripherals.

~cad/lib/mfbcap file containing terminal descriptions
SRR ALSO

termcap(5), mfb(3), kic(CADl)
AUTHOR

Giles Billingsley

BUGS

The total length of a single entry (excluding only escaped new lines) may not
exceed 8192.

There is a restriction that allows a simple parser to be used for the MFBCAP file.
The delimiter is assumed to be a comma that is not immediately preceded by a
slash (\) character. String capabilities that terminate with a slash character
(as is the case for the vtl25) must therefore separate the delimiting comma and
the slash character with a padding character.

Not all programs support all entries. There are entries that may not be used by
any program.

4th Berkeley Distribution 6/21/83 12

o Z

/>

F.l

Appendix F

KIC and Related Manual Pages

The Section 1 UNIX manual pages for KIC and all related programs are con

tained in this appendix.

06

CIFTOKIC(CADI) UNIX Programmer's Manual CIFTOKIC(CADI)

NAME

ciftokic - Translate a CIF file into KIC format.

SYNOPSIS

ciftokic [-L micperl] [-1 ciffile] [-ahikns]

DESCRIPTION

Ciftokic translates a CIF file into the hierarchical directory format used by
KIC(CADl). The -L option is used to specify the number of microns per lambda.
The -i option is used to specify the name of the input CIF file. The remaining
options are used to indicate the style of the CIF file:

He The CIF file was created by KICToCIF(l) or STREAMToCIF(l) with stan
dard Berkeley extensions and may include property lists using user
extention 5.

-h The CIF file was created by IGS. An IGS symbol name is a CIF user exten
sion which follows a DS command as in

9 Padln;

-i The CIF file was created by Icarus. An Icarus symbol name is a CIF com
ment which follows a DS command as in

(9 Padln);

—q The CIF file was created by Squid. A Squid symbol name is a CIF user
extension which follows a DS command and specifies the full path name of
the file as in

9 /usr/joe/layout/Padln;
-m The CIF file is compatable with the mextra program which uses the sym

bol rename convention of Berkeley CIF and has the respective layer name
in the label user extension as in 94 Text 1500 -9800 NM;.

—s The CIF file was created by Sif. A Sif symbol name is a CIF comment
which follows a DS command as in

(Name: Padln);
-a The CIF file was created by Stanford. A Stanford symbol name is a CIF

comment which follows a DS command as in
(Padln);

-b The CIF file was created by NCA. A NCA symbol name is a CIF comment
which follows a DS command as in

(Padln);

—n The CIF file was created by none of the above.

Ciftokic will become an interactive program if the command line arguments are
insufficient. Input and output do NOT default to standard I/O. If no command
line arguments are given, ciftokic will first prompt you to identify the style of
the CIF file as one of the options mentioned above. The program will next
prompt you for the number of microns per lambda. Finally, ciftokic will ask the
name of the input CIF file.

If the CIF file was generated by KIC, IGS, Icarus, Stanford, or Sif, each CIF sym
bol will become a KIC cell adopting the name of that CIF symbol. All CIF symbol
numbers must be between 0 and 999 inclusive. The root ceil is the very top of

3rd Berkeley Distribution 5/20/83

CIFTOKIC (CADI) UNDC Programmer's Manual CIFTOKIC(CADI)

the hierarchy and will be the KIC cell named Root.

If the CIF file was not generated by any of the above programs, each CIF symbol
will become a KIC cell with the name SYMBOLxxx, where xxx is the number of
the respective CIF symbol

SEE AISO

kic(CADl)t kictocif(CADl), KIC tutorial stored in ~cad/doc/kic.me
AUTHOR

Giles Billingsiey

BUGS

The CIF file may not contain a symbol named Root. If the CIF file was created by
kvctocif(l) with a root hierarchy file named Root, then the CIF file will also con
tain a symbol named Root and will have to be edited for successful conversion.

Ciftokic does not check for duplicate symbol names in the CIF file.

3rd Berkeley Distribution 5/20/83

CIFTOSTRM(CADl) UNDC Programmer's Manual dFTOSTRM(CADl)

NAME

ciftostrm - Create a GDS II STREAM file from a OF file.

SYNOPSIS

ciftostrm [-Xlfile] [-Z libname] [-0 streamfile] [-1 ciffile] [-ahikns]
DESCRIPnON

Ciftostrm translates a CIF file into a GDS II STREAM file. The output STREAM file
will always contain 100 database units per micron.

The -0 and -I options are used to specify the output and input files, respectively.
If the -O option is not employed, the name of the output STREAM file will be the
name of the input ciffile appended with '.str'.

The -X option is used to specify the file name Ifile of the CIF-STREAM layer table.
The structure of the CIF-STREAM layer table is illustrated below:

(number of CIFlayer names)
(CIF layer name 1) (STREAM layer value) (STREAM datatype value)
(CIF layer name 2) (STREAM layer value) (STREAM datatype value)
(CIF layer name 3) (STREAM layer value) (STREAM datatype value)

etc.

The STREAM layer and datatype values must be non-negative integers, and the
CIF layer names should be unique. Comments may be appended to the CIF-
STREAM layer table after the last CIF layer definition.

The name of the STREAM library file may be specified to be Iname with the -Z
option. The default library name is CIFTOSTREAM.

The remaining options are used to indicate the style of the CIF file:

-*: The CIF file was created by KICToCIF(l) or STREAMToCIF(l) with the
standard Berkeley extensions.

-h The CIF file was created by IGS. An IGS symbol name is a CIF user exten
sion which follows a DS command as in 9 Padln;.

-i The CIF file was created by Icarus. An Icarus symbol name is a CIF com
ment which follows a DS command as in

(9 Padln);

-q The CIF file was created by Squid. A Squid symbol name is a CIF user
extension which follows a DS command and specifies the full path name of
the file as in

9 /usr/joe/layout/Padln;
-m The CIF file is compatable with the mextra program which uses the sym

bol rename convention of Berkeley CIF and has the respective layer name
in the label user extension as in 94 Text 1500-9800 NM;.

-a The CIF file was created by Sif. A Sif symbol name is a CIF comment
which follows a DS command as in

(Name: Padln);

3rd Berkeley Distribution 5/20/83

CIFTOSTRM (CADI) UNDC Programmer's Manual CIFTOSTRM (CADI)

-a. The CIF file was created by Stanford. A Stanford symbol name is a CIF
comment which follows a DS command as in

(Padln);
-b The CIF file was created by NCA A NCA symbol name is a CIF comment

which follows a DS command as in

(Padln);

-n The CIF file was created by none of the above.

If the CIF file was not generated by any of the above programs, each CIF symbol
will become a STREAM structure with the name SYMBOLxxx, where xxx is the
number of the respective CIF symbol

Ciftostrm will become an interactive program if the command line arguments
are insufficient. Input does NOT default to standard I/O. If no command line
arguments are given, ciftostrm will first prompt you to identify the style of the
input CIF file as one of the options mentioned above. The program will next
prompt you for the name of the input CIF file. Finally, Ciftostrm will prompt you
for the name of the CIF-STREAM layer table file.

SEE ALSO

strmtocif(CADl)

AUTHOR

Giles Billingsley

3rd Berkeley Distribution 5/20/83

KIC (CADI) UNDC Programmer's Manual KIC (CADI)

NAME

KIC —Graphics editor for layout of an IC mask set.

SYNOPSIS

kic [-gxx] [-d device] [CellNames]
DESCRIPTION

KIC is an interactive graphics program for laying out IC mask sets. Currently,
KICuses the terminal independent graphics package mfb(3) and may therefore
be used on a variety of graphics terminals. The data model is that of CIF with
several enhancements that are described below in the NOTES section.

To learn how to use KIC, obtain a copy of the tutorial in ~cad/doc/kic.me. Then
log in at one of the several graphics terminals listed below. If you are on an AED,
type

kic

or if you are at another graphics terminal, type
kic -gxx

where xx is any one of the two character terminal identifiers listed below.

ID Terminal Description
A2 AED 767 with standard release ROM set
AS AED 512 with standard release ROM set
AE AED 512 with Evans Hall ROM set
hO hp2648
hi hp2648 with three button mouse
t2 Tek 4113 with thumbwheels
t3 Tek 4113 with four button mouse
tb Tek 4105

ml Metheus Omega 400 with four button mouse

If you want KIC to send graphics output to a terminal other than the one at
which you invoked KIC, you can use the -d device option. Device is the name or
full pathname of the respective TTY to receive graphics output from KIC.

The program ciftokic translates a CIF file into KICformat.

The program kictocif creates a CIF file from a KIC celL

FILES

"-cad/doc/kic.me

SEE AISO

ciftokic(CADl), kictocif(CADl), KIC tutorial stored in ~cad/doc/kic.me
AUTHOR

Giles Billingsley
Ken Keller

BUGS

The known bugs are listed in the KIC tutorial.

NOTES

The wire geometry in KIC is assumed to be a square-ended wire that extends a
half wire-width beyond its endpoints. In the conversion from KIC to CIF, wires
are converted to CIF-like wires that are round-ended.

3rd Berkeley Distribution 5/20/83

KIC(CADl) UNDC Programmer's Manual KIC(CADi)

The user extensions that may appear in a AZCcell are described below:

1 ARRAY NumXDXNumYDY;

This user extension declares that the next symbol call in the KIC cell is to
be arrayed. NianX is the number of instances in the untransformed
array in the positive X direction. NumYis the number of instances in the
untransformed array in the positive Y direction. The spacing between the
bounding boxes of the individual cells of the array in the positive X and Y
directions is DXand DYrespectively.

5 Value String;

User extension five defines a property value that is to be assigned to the
next primitive in the KICcell. Value is a defining integer of the property,
and String is the character string extension. Property .values 1 through
127 and 7000 through 70100 may be created by the strmtokic conversion
program and have special meaning to the kictostrm conversion program.

9 Name;

User extension nine defines the name Name of the instance to be placed
by the next symbol call in the KICcell. If the extension appears before a
DS command, it redefines the •name of the symbol.

94 Text XY;

This user extension is used to define a text element or label and is con
sidered to be a primitive element as well as a box, wire, polygon, or sym
bol call. Text defines the contents of the label and can not have embed
ded spaces or control characters. X, Yis the lower left coordinate of the
label.

3rd Berkeley Distribution 5/20/83

KICTOCIF(CADI) UNDC Programmer's Manual KICTOCIF (CADI)

NAME

kictocif - Create a CIF file from a KIC cell.

SYNOPSIS

kictocif [-L micperl] [-0 ciffile] [-1 kicfile] [-T style] [-ads]
DESCRIPTION

Kictocif translates a hierarchical layout created by bic(l) into a CIF file. The -L
option is used to specify the number of microns per lambda. The -O and A
options are used to specify the output and input files, respectively.

The -T option is used to specify the desired style of CIF. By default, kictocif will
produce Berkeley CIF. The valid arguments for style are as follows:

k The CIF style is Berkeley CIF. A symbol name is a CIF user extension
which follows a DS command as in 9 Padln;. This is the default.

a The CIF style is Stanford. A Stanford symbol name is a CIF comment
which follows a DS command as in (Padln);.

b The CIF style is NCA A NCA symbol name is a CIF comment which follows
a DS command as in (Padln);, and layer names are converted to integers.

e The CIF style is Berkeley CIF with property list extensions. A symbol
name is a CIF user extension which follows a DS command as in 9 Padln;.
User extension 5 is used for property lists.

fa. The CIF style is IGS. An IGS symbol name is a CIF user extension which
follows a DS command as in 9 Padln;.

i The CIF style is Icarus. An Icarus symbol name is a CIF comment which
follows a DS command as in (9 Padln);.

m The CIF is compatable with the mextra program which uses the symbol
rename convention of Berkeley CIF and has the respective layer name in
the label user extension as in 94 Text 1500-9800 NM;.

s The CIF style is Sif. A Sif symbol name is a CIF comment which follows a
DS command as in (Name: Padln);.

The -s option is used if only symbolic layers are to be translated to CIF, and the
-d option is used if mask layers are to be translated. The -a option is used if all
layers are to be translated and is the default option.

If the -O option is not employed, the name of the output CIF file will be the name
of the input kicflle appended with '.cif.

Kictocif will become an interactive program if the command line arguments are
insufficient. Input and output do NOT default to standard I/O. If no command
line arguments are given, kictocif will first prompt you for the number of
microns per lambda. The program will next prompt you for the name of the
Root cell of the kic layout. The Root cell is the very top of the hierarchy.
Rnally, kictocif will ask you if it should convert symbolic layers or only detailed,
nonsymbolic layers.

SEE ALSO

kic(CADl), ciftokic(CADl), KIC tutorial stored in ~cad/doc/kic.me
AUTHOR

Giles Billingsley

3rd Berkeley Distribution 5/20/83

KICTOSTRM (CAD1) UNDC Programmer's Manual KICTOSTRM (CAD1)

NAME

kictostrm - Create a GDS II STREAM file from a KIC cell hierarchy.

SYNOPSIS

kictostnn [-X lffle] [-L micperl] [-Z Iname] [-0 sffle] [4 kicfile] [-M dbu] [-*TC] [-ads]
DESCRIFnON

Kictostrm translates a hierarchical layout created by kic (CADI) into a GDS II
STREAM file. The -L option is used to specify the number of microns per lambda.
The -O and -I options are used to specify the output and input files, respectively.
If the -O option is not used, the name of the output STREAM file will be the name
of the input kicfile appended with .str .

The -s option is used if only symbolic layers are to be translated to CIF, and the
-d option is used if mask layers are to be translated. The -a option is used if all
layers are to be translated.

The -M option is used to specify dbu as the number of STREAM database units per
micron in the output STREAM file; the default is 100 database units per micron.

The -X option is used to specify the file name Ifile of the CIF-STREAM layer table.
The structure of the CIF-STREAM layer table is illustrated below:

(numberof CIF layer names)
(CIFlayer name 1) (STREAM layer value) (STREAM datatype value)
(CIF layer name 2) (STREAM layer value) (STREAM datatype value)
(CIF layer name 3) (STREAM layer value) (STREAM datatype value)

etc.

The STREAM layer and datatype values must be non-negative integers, and the
CIF layer names should be unique. Comments may be appended to the CIF-
STREAM layer table after the last CIF layer definition.

The name of the STREAM library file may be specified to be Iname with the -Z
option. The default library name is KICTOSTREAM.

If the -N option is used, kictostrm will expect layer names such as those pro
duced by default by the strmtokic program. These layer names will consist of
four digits; the first two digits represent the STREAM layer value, and the next
two digits represent the STREAM datatype. For example, the layer 1234 would
represent STREAM layer 12 and STREAM datatype 34.

It may be undesirable to have symbol definitions of standard library cells placed
in the output STREAM file. If the -C option is used, kictostrm will place a symbol
definition in the output STREAM file if and only if the symbol exists in the
current working directory.

Kictostrm will become an interactive program if the command line arguments
are insufficient. Input and output do NOT default to standard I/O. If no com
mand line arguments are given, kictostrm will first prompt you for the number
of microns per lambda. The program will next prompt you for the name of the
Root cell of the kic layout. The Root cell is the very top of the hierarchy.
Finally, kictostrm will ask you if it should convert symbolic layers, detailed, non-
symbolic layers, or all layers.

3rd Berkeley Distribution 5/20/83

KICTOSTRM (CADI) UNIX Programmer's Manual KICTOSTRM (CADI)

SEEAI£0

kic(CADl), strmtokic(CADl), strmlyrtbl(CADl).
KIC tutorial stored in "-cad/doc/kic.me

AUTHOR

Giles Billingsley

NOTES

Kictostrm will accept several property extensions for the purpose of modifying
the output STREAM file. The following extensions are relevant only to a symbol
definition and must physically appear before the DS command in the KIC cell.

5 7000 num;

This property extension defines num as the Calma GDS II version number
of the output STREAM file.

5 7002 name;

The property value 7002 defines the property string name as the name of
the STREAM library.

5 7032 f ontl f ont2 f ont3 f ont4;

The property value 7032 declares that the property string contains from
zero to four STREAM textfont file names. These file names are meaningful
only to the GDS II system.

5 7034 generations;

This property extension defines generations as the number of generations
or previous versions to be maintained by GDS II. This number is meaning
ful only to the GDS II system.

5 7035 attribute_file;

The property value 7035 declares the the property string attribute_file
contains the name of the GDS II attributes file. This file name is meaning
ful only to the GDSII system.

The following extensions are relevant to geometries and would physically appear
before the respective object in the KIC cell.

5 7033 PATHTYPE type;

The property 7033 is used to define the type of a wire. If the integer type
is zero, the next wire defined in the KIC cell will have square ends that are
flush with the endpoint. If type is one, the wire will have rounded ends.
By default, wires will be pathtype two which are square-ended and extend
one half wire-width beyond the endpoints.

5 7012 WIDTHw PRESENT p PTYPE t MAG m ANGLE a REFLECT r;

Property 7012 will always precede the KIC label extension number 94, and
is used to modify the label declaration. The integer w defines the line
width of the label in lambda units, p is the presentation bit mask, and t is
the pathtype as defined above.

3rd Berkeley Distribution 5/20/83

KICTOSTRM (CAD1) UNDC Programmer's Manual KICTOSTRM (CADI)

5 value string;

This extension is used to attach a STREAM attribute to an object. The
integer value is between 1 and 127, and string is a character string.

3rd Berkeley Distribution 5/20/83

SCALE(CADl) UNDC Programmer's Manual SCALE(CADl)

NAME

scale —Scale a KIC cell hierarchy.

SYNOPSIS

scale [-a numerator] [-b denominator] [RootFile]
DESCRIPTION

Scale will change the resolution of a hierarchical layout created by kic(l). The
scaling factor is a ratio of two integers that are specified on the command line
and that default to unity. The -a option is used to specify the numerator of the
scaling factor, and the -b option is used to specify the denominator of the scal
ing factor. RootFile is the filename of the top (root) cell in the layout hierarchy.

Scale will become an interactive program if the command line arguments are
insufficient. Input and output do NOT default to standard I/O. If no command
line argument is given for the top of the cell hierarchy, scale will prompt you for
the file name.

SEE ALSO

kic(CADl), KIC tutorial stored in ~cad/doc/kic.nie

AUTHOR

Giles Billingsley

BUGS

Integer overflows may occur if the scaling factor exceeds 100.

3rd Berkeley Distribution 5/20/83

STRMLYRTBL (CADI) UNIX Programmer's Manual STRMLYRTBL (CADI)

NAME

strmlyrtbl - make CIF-STREAM layer table from STREAM file

SYNOPSIS

strmlyrtbl [-id] tablefile streamfile

DESCRIPTION

strmlyrtbl is an interactive program that will determine all layers and
corresponding datatypes in a STREAM file streamfile and will request from the
user through the standard input the CIF layer name for each layer-datatype
pair. From this information, strmlyrtbl will create a CIF-STREAM layer table
tablefile.

The structure of the CIF-STREAM layer table is illustrated below:

(number of CIF layer definitions)
(CIF layer name 1) (STREAM layer value) (STREAM datatype value)
(CIF layer name 2) (STREAM layer value) (STREAM datatype value)
(CIF layer name 3) (STREAM layer value) (STREAM datatype value)

etc.

The STREAM layer and datatype values must be non-negative integers, and the
CIF layer names should be unique. Comments may be appended to the CIF-
STREAM layer table after the last CIF layer definition.

After creating th CIF-STREAM layer table strmlyrtbl will also generate a file
called .KIC in the current directory; this .HC file can be used with the conver
sion program kictostrm or the layout editor kic. Note that the CIF layer name
and the corresponding KIC layer name are identical. See kic(CADl) and
kictostrm(CADl).

AUTHOR

Giles Billingsley

S£ ALSO

kictostrm(CADl), strmtokic(CADl), ciftostrm(CADl), strmtocif(CADl)

7th Edition 5/20/83

STRMTOCIF(CADI) UNIX Programmer's Manual STRMTOCIF (CADI)

NAME

strmtocif - Create a GDS II STREAM file from a CIF file.

SYNOPSIS

strmtocif [-BE] [-Xltable] [-Csname] [streamfile [ciffile]]
DESCRIPTION

Strmtocif translates a GDS II STREAM file into a Berkeley style CIF file.

If the -B option is used, polygons with manhattan edges (i.e„ all angles of the
contour are integer multiples of 90 degrees) will be decomposed into boxes. If
the -E option is present, all errors and diagnostic messages will be printed in a
file named strmtocif.err rather than at the standard error output device.

The -C option is used to specify sname as the name of the symbol that is at the
top of the STREAM hierarchy. This symbol is called outside of all symbol
definitions in the output CIF file, and the default is the first symbol that appears
in the STREAM file.

The input STREAM file can be specified on the command line as streamfile. The
default input is stdin. The output CIF file can be specified on the command line
as ciffile only if the input STREAM file has been specified. The default output is
stdout.

The -X option is used to specify the file name Ifile of the CIF-STREAM layer table.
The structure of the CIF-STREAM layer table is illustrated below.

etc.

The STREAM layer and datatype values must be non-negative integers, and the
CIF layer names should be unique. Comments may be appended to the CIF-
STREAM layer table after the last CIF layer definition.

If no CIF-STREAM layer table is specified, the CIF layer names will be printed as
strings of four digits; the first two digits represent the STREAM layer value, and
the next two digits represent the STREAM datatype. For example, the CIF layer
1234 would represent STREAM layer 12 and STREAM datatype 34.

SEE ALSO

ciftostrm(CADl)

AUTHOR

Giles Billingsiey

3rd Berkeley Distribution 5/20/83

STRMTOKIC(CADl) UNDC Programmer's Manual STRMTOKIC(CADl)

NAME

strmtokic - Translate a GDS II STREAM file into KIC format.

SYNOPSIS

strmtokic [-Lmicperl] [-BE] [-C sname] [-R rootfile] [-Xlffle] [streamfile]
DESCRIPTION

Strmtokic translates a GDS II STREAM file into the hierarchical directory format
readable by KIC(l). The -L option is used to specify the number of microns per
lambda. If the -B option is used, polygons with manhattan edges (i.e., all angles
of the contour are integer multiples of 90 degrees) will be decomposed into
boxes. If the -E option is present, all errors and diagnostic messages will be
printed in a file named strmtokic.err rather than at the standard error output
device.

The -R option is used to specify the name of the Root cell. The Root cell is the
top of the hierarchy, and the default name is Root. The -C option is used to
specify sname as the name of the symbol that is at the top of the STREAM
hierarchy. This symbol is called by the Root cell and the default is the first
symbol that appears in the STREAMfile.

The input STREAM file can be specified on the command line as streamfile. The
default input is stdin.

The -Xoption is used to specify the file name Ifile of the CIF-STREAM layer table.
The structure of the CIF-STREAM layer table is illustrated below:

(number of CIF layer names)
(CIF layer name 1) (STREAM layer value) (STREAM datatype value)
(CIF layer name 2) (STREAM layer value) (STREAM datatype value)
(nW lavpr name P.S /3TPRAM lavor traliioN /QTPtfAX/ ^o^Kma 1»l,-.<3\

etc.

The STREAM layer and datatype values must be non-negative integers, and the
CIF layer names should be unique. Comments may be appended to the CIF-
STREAM layer table after the last CIF layer definition. The CIF-STREAM layer
table can be created by the strmlyrtbl program.

If no CIF-STREAM layer table is specified, the CIF layer names will be printed as
strings of four digits; the first two digits represent the STREAM layer value, and
the next two digits represent the STREAM datatype. For example, the CIF layer
1234 would represent STREAM layer 12 and STREAM datatype 34.

SEE ALSO

kic(CADl), kictostrm(CADl), strmlyrtbl(CADl),
Kic tutorial stored in ~cad/doc/kic.me

AUTHOR

Giles Billingsley

BUGS

Text labels in KIC are not allowed to have embedded space characters.
Strmtokic will convert all spaces in STREAM text elements to underscores.

3rd Berkeley Distribution 5/20/83

STRMTOKIC (CAD1) UNDC Programmer's Manual STRMTOKIC (CAD1)

At the present time, KIC has no notion of symbol magnification. All STREAM sym
bol or structure calls must therefore have a unity magnification factor.
Strmtokic will warn the user if it encounters a symbol call with a non-unity
magnification.

NOTES

Strmtokic will generate several property extensions in the KIC cells that are
meaningful to the strmtokic program. The following KIC extensions are relevant
to a symbol definition and would physically appear in the KIC cell before the D5
command.

5 7000 num;

This property user extension defines num as the Calma GDS II version
number of the STREAM file from which the KIC cell was extracted.

5 7002 name;

The property value 7002 defines the property string name as the name of
the stream library from which the KIC cell was extracted.

5 7032 fontl font2 font3 font4;

The property value 7032 declares that the property string contains from
zero to four STREAM textfont file names. These file names are meaningful
only to the GDS II system.

5 7034 generations;

This property extension defines generations as the number of generations
or previous versions to be maintained by GDS II. This number is meaning
ful only to the GDS II system.

5 7035 attribute_file;

The property value 7035 declares the the property string attribute_file
contains the name of the GDS II attributes file. This file name is meaning
ful only to the GDS II system.

The following extensions are relevant to geometries and would physically appear
before the respective object in the KIC cell.

5 7033 PATHTYPE type;

The property 7033 is used to define the type of a wire. If the integer type
is zero, the next wire defined in the KIC cell will have square ends that are
flush with the endpoint. If type is one, the wire will have rounded ends.
By default, wires will be pathtype two which are square-ended and extend
one half wire-width beyond the endpoints.

5 7012 innraw PRESENT pPTYPEt MAG m ANGLE a REFLECT r;

Property 7012 will always precede the KIC label extension number 94, and
is used to modify the label declaration. The integer w defines the line
width of the label in lambda units, p is the presentation bit mask, and t is
the pathtype as defined above.

5 value string;

This extension is used to attach a STREAM attribute to an object. The
integer value is between 1 and 127, and string is a character string.

3rd Berkeley Distribution 5/20/83

R.1

References

[1] K H. Keller and A R Newton. KIC2: A Low-Cost Interactive Editor for

Integrated Circuit Design, Digest of Papers, IEEE Compcon 82 Conf., San

Fransisco. California, February 22-25, 1982, pp. 302-304.

[2] K. H. Keller. KIC, A Graphics Editor for Integrated Circuits, Masters

Report, Department of Electrical Engineering and Computer Science,

University of California, Berkeley, Ca., June 1981.

[3] B. W. Kernighan and D. M. Ritchie, The C Programming Language,

Prentice-Hall, Englewood Cliffs, New Jersey, 1978.

[4] C. A Mead and L. Conway, Introduction to VLSI Systems, Addison-Wesley,

Reading, Mass., 1980.

[5] R. Hon ad C. Sequin, A Guide to LSI Implementation, Xerox PARC Techni

cal Report SSL-79-7, 1980.

[6] W. M. Newman and R. F. Sproull. Principles of Interactive Computer

Graphics, McGraw-Hill, NewYork, 1977.

[7] J. D. Foley and A Van Dam, Fundamentals of Interactive Computer Graph

ics, Addison-Wesley, Reading, Mass., 1982.

R.2

[8] M. H. Arnold and J. K. Ousterhout, LYRA: A New Approach to Geometric

Layout Rule Checking, Proc. 19th ACM IEE Design Automation Conf. Las

Vegas, Nevada, June 14-16, 1982, pp.530-536.

[9] Programming in VAX-llC, Digital Equipment Corporation, P.O. Box

CS2008, Nashua, New Hampshire. 03061

[10] KJC2 under VAXA^S is also distributed by the Engineering Systems

Group of Digital Equipment Corp., 2 Iron Way, Marlboro, Mass. 01752

[11] STREAM is a proprietary description format for graphic data that is

licensed by Calma, Inc. The conversion programs between KIC and Calma

STREAM were developed at Tektronix, Inc., and the Electronics Research

Laboratory with the permission of Calma and may be released by the

Electronics Research Laboratory only to licensed customers of Calma.

	Copyright notice 1983
	ERL-83-62 (1 of 3)
	ERL-83-62 (2 of 3)
	ERL-83-62 (3 of 3)

