

Copyright © 1983, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

VERIFICATION OF CIRCUIT INTERCONNECTIVITY

by

R. L. Spickelmeier

Memorandum No. UCB/ERL M83/66

21 October 1983

VERIFICATION OF CIRCUIT INTERCONNECTIVITY

by

Rick L. Spickelmier

Memorandum No. UCB/ERL M83/66

21 October 1983

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Verification of Circuit Interconnectivity

by

Rick L. Spickelmier

October 1933

Electronics Research Laboratory

Cory Hall

University of California

Berkeley, California 94720

ACKNOWLEDGEMENTS

The author wishes to express his sincere appreciation to Prof. A.H. New

ton for his advice, guidance and support in this project. The author would

also like to thank Prof. D. 0. Federson for his advice and guidance In the

preparation of this report. He also gratefully acknowledges the discusions

with, and the support of, John Crawford, Dave Poulsen, Greg Sanguinetti, Ian

Getreu and the Tektronix CAD and IC Design Groups. He especiallywouldlike

to thank the Tektronix CAD and IC Design Groups as for acting as test sites.

The author would also like to thank Peter Moore, Ken Keller and the Electri

cal Engineering CAD group at the University of California, Berkeley for dis

cussions and their help in coding.

The author is especially grateful to Tektronix Incorporated and the

"Wheeler Fellowship for their funding of this project, and the Digital Equip

ment Company, Engineering Systems Group, for major contributions to the

computing environment in which this research was carried out.

TABLE OF CONTENTS

Chapter 1: Introduction ~ _.._._.. 1

Chapter 2: Algorithm M 34

Chapter 3: Data Structures 3B2

Chapter 4: file Formats — 30

Chapter 5: Statistics ~—.. 35

Chapter 6; Summary 37

Appendix A: Wombat Manual Pages ~ —....

Appendix B: CDF Manual Pages _—-.

Appendix C: Example Runs ~-.

Appendix D: Program listing

Appendix E: Glossary of Terms

Bibliography ~»

CHAPTER 1

Introduction

As integrated circuits increase in size and complexity, conventional

verification techniques, such-as hand checking these circuits for errors, can

take hours and sometimes days with no final guarantee of an error-tree cir

cuit Circuits that havetbeen visually checked by designers and layout spe

cialists have been found to have missing contacts when entering the mask

shop. Errors like this one are costly in terms of money and design time.

Computer programs to verify the correctness of these circuits can Teduce

the checking time to minutes or even seconds and guarantee that the circuit

is free of connectivity errors. Such programs compare the schematic net-

list with a netlist extracted from the layout itself and indicate any discrepan

cies. Connectivity verification programs should find the most use in the fol

lowing:

(1) Checking Circuits Laid Out t>y Hand

(2) Checking Circuit Design Aids

Netlist comparison programs can be used to verify that new or modified

circuit design aids (extractors, routers) produce the proper result by

comparing the output of the program with the correct result.

(3) Editing

After a layout/schematic/simulation file has been edited, a netlist com

parison program can be used to compare the original file versus the

edited file to see if the changes that the user intended to make were

indeed what changes that were made.

(4) Parasitics

After an Integrated Circmt has been laid out, the circuit is sometimes

extracted and re-simulated with detailed parasitics included. The

extracted circuit contains circuit element and node names that have no

meaning for the designer, ao he ends up spending time trying to find

name equivalences fbetween fine extracted circuit and his original simu

lation file. Netlist comparison programs can find those equivalences for

the designer and post-processors can place the detailed parasitics in a

simulation file that uses the designers original names.

1.1. The Problem

The problem addressed in this report is the comparison of two represen

tations of a circuit :(ie. simulation file and layout) (1) to verify that the cir

cuits are the same, or (3) -to determine where the circuits differ. In doing

the comparison, the program should take into account that certain pins on

elements can be permuted with no change in the electrical or logical func

tion of the network.

Various programs to meet :the above requirements have emerged over

the past few years, varying from in-nouse programs for a specific task to

commercial programs for the more general problem (PDS, NCA1). Many in-

house programs tend to solve.atspeciflc problem facing the company, such as

comparing two MOSFET net liists, where the permutability (electrical

equivalence) of the source and drain nodes is hard-wired into the program.

Commercial programs, while sometimes being more general, are usually part

1 PDS (Phoenix Data Systems) and NfcA are the major commercial sources of netlist
tenners.

June 6, !StB3

Logic Design Layout

Simulation Loop

Visual Check

Figure 1.1. Typical Design System.

June 6.1983

of a system of programs (input processors. DRCs, ERC's, database manager)

that can not be broken up to be used separately, i.e. can't use the connec

tivity verifier without the input processor and database manager.

The program Wombat, described in this report, is designed to meet most

of the basic requirements mentioned above. Wombat is written in the pro

gramming language C [Ker78a] and runs on a VAX under Berkeley 4.1

VAX/Virtual UNIX2 and DEC VMS 3.0s. Wombat compares two netlists. One is

usually based on the simulator input and the other one is often extracted

from the layout. However, this is not necessarily the case and Wombat makes

no assumptions about the number of pins or the technology of the circuit

elements in the schematics. One can specify how the pins of individual ele

ments permute and an initial correspondence between circuit elements and

nets. Wombat generates a list of corresponding .elements and nets and notes

any differences.

The remaining part of this Chapter presents the various implementa

tions of netlist verification and the problems encountered in netlist

verification. The basic program flow and the algorithms implemented in

Wombat are described in Chapter 2 and the data structures used in Wombat

are presented in Chapter 3. Chapter 4 covers the various files used and gen

erated by Wombat. The results of some example runs are presented in

Chapter 5 and finally Chapter 6 summarizes Wombat and covers

extensions/problems/solutions.

•UNIX is a trademark of Bell Labs.

•VAX end VMS ere trademarks of the DigitalEquipment Corporation.

June 8, 1983

1.2. APPRAISE

The Bell Labs APPRAISE prograni[A1177a] is based on an iterative 2-level

comparison hierarchy. On the first level, elements are compared and bound.

on the next level, nets connected to bound elements are hound. The

interesting features of this approach are its use of signatures and thresholds

and its ability to dynamically change the items used in making up the signa

ture.

1.2.1. Basic How of APPRAISE

repeat until nothing left to bind

repeat for each element in the first circuit

repeat for each element in the second circuit that is of
the same type as the first element

calculate the distance between the two elements

end repeat ofsecond circuit elements

decide whether to bind first circuit element to any of the second
circuit elements

if elements were bound, bind all nonpermutable pins.

end repeat offirst circuit elements

repeat until no pins left to bind

repeat for each pin in the first circuit

repeat for each appropriate pin in the second circuit

calculate the distance between the two pins

end repeat of second circuit pins

decide whether to bindfirst circuit pin to any of the second
circuit pins

end repeat offirst circuit pins

end repeat

June 6, 1983

end repeat

1.2.2. Calculating Distances

The element comparison is considered a pattern recognition problem.

The comparison is based on the distance between signatures of elements. A

signature is a set offeatures for an element. Afeature is a deriuedprqperty

of the element (e.g. fanout). A discriminant function is used to calculate a

distance between the same/eorure of two elements. The distances are then

weighted and summed, and the result is called the distance between the sig

natures of the two elements. The distances between the signature of a single

element in one circuit and the signatures of all the elements with the same

intrinsic properties (e.g. cell type - NAND. NOR) on the other circuit are cal

culated and the two smallest distances are saved.

1-2.3. Deciding whether to Bind

Deciding when to bind or when not to bind is one of the major features oT

this program. By introducing a threshold, binding is impeded until enough

information is gained about an element and an amount of robustness is

added (indifference to errors). The two smallest signature distances are

then compared with a threshold, if both distances are larger than the thres

hold, no binding takes place. If one distance is smaller than the threshold

and the other distance is larger, the two elements that were used to calcu

late the small distance are bound If both distances are smaller than the

threshold, and are sufficiently separated, the two elements with the smaller

distance are bound, if both are not sufficiently separated, no binding takes

place. Sufficiently separated means that the two distances differ by some

fraction of the threshold; the fraction currently used is —.

June 6, 1983

1.3. UVES

The NTT UVES (Logic Interconnection YErification System)

program{Miy81a] treats the two circuits to be compared as graphs and solves

the problem based on graph isomorphism. Elements are considered vertices

in the graph and interconnection wires are directed edges, with the direction

being the direction of signal fiow. The general method of solving the graph

isomorphism problem for graphs with N vertices takes N\ operations. Tor

circuits of 1000 elements, this is 4.0x10s987 operations and for circuits of only

50 elements, this is still 3.0x10°*. Therefore, to solve the graph isomorphism

problem in a reasonable time, the problem must be broken down into

smaller ones. This is done by partitioning the graph.

1.&1. Partitioning

The UVES partitioning algorithm is based on the three following

methods:

(1) Partitioning based on distance

The program characterizes each vertex by the number of -vertices Nlt

Nz, JVg. Nm that are distance 1,2,3 m from it. Distance is defined

as the number of edges along the shortest path between two vertices.

(2) Partitioning based on distance from the terminals

Each vertex is characterized by its distance from each terminal. This

method is used because certain parallel circuits, such as n-bit adders

and registers, have many vertices that have the same characteristics by

method (1).

June 6, 1983

(3) Partitioning based on labels

The two above partitioning methods depended only on topological infor

mation and it is useful to use the label information (type of gate -NAND,

NOR) to further partition the circuit.

The above three methods when combined produce partitions that allow

the graph isomorphism problem to be solved in a reasonable amount of com

putation time. Note that the items used in the partitioning algorithms are

nothing more than a particular form of signature.

However, some assumptions are made for the comparison: {lj -only a

small set of elements are allowed (inverter, nor, nand, and-or-inverter, nor

latch, nand latch, transmission gate and wired-or): (2) unidirectional logic

flow; (3) total permutability of the inputs and total permutability of the out

puts and (4) knowledge of where the terminals are. The program is however,

a good solution for the specific problem.

1.3.2. Error Detection

If the verification result indicates that there is an error(s) in one of the

circuits, the program tries to pin-point the error(s). First, the program

divides the circuit graph into subgraphs; all vertices and edges that belong to

all routes from a particular input to a particular output are considered a

terminal-pair subgraph. Second, the equivalent terminal-pair subgraphs

from the two circuits are checked for isomorphism. All equivalent terminal-

pair subgraphs found to be non-isomorphic, are determined to be in error.

For each subgraph in error, all vertices that also belong to correct sub

graphs are removed. The remaining vertices and edges in the error sub-

June 6. 19B3

S

graphs form the region of the circuit in error. This method works well

except for clusters of errors, where most vertices belong to multiple error

subgraphs and few belong to correct subgraphs. Most error detection

methods fail when errors cluster (spurious errors can occur). In practice

however, connectivity errors tend not to cluster in Integrated Circuit lay

outs.

1.4. Sunulatton *

Another method of circuit verification is to simulate both circuits with a

circuit/logic simulator and compare the outputs of the two simulators. This

method is only as good as the input to the simulator (test vectors) are com

plete.

Nj-.Aq,

LN-_/V

Figure 1.2 Verification by simulation

June 6, 1983

10

1.5. Problems in NetlistVerification

Both the UVES and the APPRAISE programs suffer from common prob

lems found in netlist verification. These problems are the treatment of

hierarchyend the treatment of parallel paths.

1.5.1. Hierarchy and Pin Interchangeability

Most netlist verifiers output that the two circuits shown in Figure 1.2 are

the same4 That result is correct; the two inputs to the nand gate (fee) are

permutedin the second circuit

Circuit 1

cella nand2
cellto xx
celte yy

XX

b

c '
yy

a b c
b
c

Circuit 2

cella nand2 a c b

cellb xx b
cellc yy c

yy

c

b

XX

Figure 1.3. Nan-expanded NAND gates

4 Throughout this report, Wombat input format will be used to describe example circuits.
The format is described in detail in Chapter 4 and Appendix A. In general, a circuit element is
described by.a statement of the form:

InslmnceName dllTypa NitNam* NstNama ...

Comments are preceded by a semicolon (;).

June 6, 1963

11

However, if these two circuits are expanded to the transistor level, the

two circuits in figure 1.3 are produced. These circuits are logically end

electrically the same, but different from a connectivity verifiers stand-point.

Circuit 1

;expanded nand gate
xOOl dep vdd a a
x002 enh a b 1
x003 enh 1 c gnd

ceUb xx b

cellc yy c

Circuit 2

; expanded nand gate
xOOl dep vdd e a
x002 enh a c 1

x003 enh 1 s> end

ceUb xx b

cellc yy c

a

Figure 1.4. Expanded NAND gates

To handle the problem, the connectivity verifier must recognize higher-

level cells out of the interconnection of lower-level ones or it must check the

circuits in a hierarchical fashion. Checking a circuit in a hierarchical way

requires that both of the circuits have the same hierarchy, which is not

aways true. Layout designers tend to construct circuits using a different

June 6, 1983

12

hierarchy than the hierarchy used by the circuit designers. Layout

designers create hierarchies for drawing simplicity and circuit designers

occasionally create hierarchies for logical or electrical simulation simplicity.

If the hierarchies happen to be the same, hierarchy can be exploited in the

netlist verification process.

1.5.2. Parallel Paths

If a circuit contains parallel groups of elements, individual elements in a

path always have exactly the same properties as one or more elements in the

other parallel paths. None of the algorithms described above treat parallel

paths efficiently. The only ways to handle such paths, are (l) to label ele

ments in the parallel paths, or (2) to arbitrarily bind elements in the parallel

paths.

June 6, 1983

{>

• \

D

D

D

D

^>

D

Figure 1.5. Parallel Paths

June 6. 1983

13

5>

CHAPTER 2

Algorithm

The basic algorithms in Wombat are based on the signature comparison,

end element and net binding algorithms in APPRAISE.[AH77a] The discrim

inant functions in APPRAISE measure distance between signatures, while

most of the discriminant functions in Wombat are ternary, that is the func

tions can return one of three values: less than, equal and greater than.

2.1. Basic Program Flow

read-in the datafiles and setup the data structures.

repeat{

calculate a signature for each element.

bind elements with the same unique signatures.

bind the nets of the elements bound on this iteration.

I until (nothing left to bind or no more unique signatures can be found)

The Wombat program is divided into three major sections: readln, com

pare, and bind

2.2. Readm

Wombat reads in two circuit files, and the following optional files: Cell-

Descriptor TUe. User-Binding Tile, Node-Alias file. This section of the pro

gram takes up a large part of the CPU time in a run; up to 80% of the time for

small circuits (see Chapter 6 for ways to reduce this time).

14

15

2.2.1. Cell-Descriptor File

The routines yylex and yyparse, readin and parse the Cell-Descriptor

file (CDF1). Each cell definition in the file must have only one cell record,

zero or more pin records, zero or one ichng record, and only one endc

record. A file may have any number of cell definitions. The cell record

specifies the cell name. The pin records specify the pin numbers and names.

The pin number specifies the pins ordering in the cell definition used for

simulation. The ichng record specifies how the pins may be allowed to per

mute; not all the pins must be specified in this record, only the ones neces

sary to specify all the allowed permutations. These three record types are

used to build the permutability templates for each cell type. The permutabil

ity templates themselves are stored in a binary tree of templates.

Each time an element is read in from one of the netlist files, the permu

tability template tree is searched and a copy of the template for the cells

type is placed in the elements data structure. If a permutability template

did not exist for the elements type, one would be created that specified that

no pins were permutable.

Chapter 6 presents ways to reduce the time spent in parsing large CDF

files.

2.2.2. Circuit Files

As Wombat reads lines from the circuit files it builds the element and

net data structures. The routine that does this is named getelement. As

each element is read, an element structure is dynamically allocated and ele

ment information is placed in the structure. Nowthe routine lookper is called

1For a:ore iaforsnaiion onthe CDF file format, referto Appendix 3.

June 6, 1983

26

to search the permutability^template tree to see if a pin-permutability entry

exists for the element type.Tf an entry exists, a local copy is allocated and a

pointer is set to its location. If an entry does not exist, the routine addperis

called and a non-permutable template is created for the element type. It is

then placed in the permutability template tree, and as in the first case, a

local copy is allocated. For the net data structure, as each net en the ele

ment is read in, the routine addnet is called to search the net tree to see if

the net already exists; if it does, the element count of the net entry is incre

mented and the current element is placed on the clement list for the net

entry. If the net does not exist in the tree, a new net entry is created; and if

necessary, the tree is rebalanced.

Ways to reduce the readin time for the circuit files will be presented in

Chapter 6.

2.2.3. User-Binding File

The routine user_pind m used to readin and use user generated element

and net binding information. As each line in the user-binding file is read in,

the two element/net data structures are scanned for an occurrence of the

items specified on the line. If both %ems:are found and both are not bound,

the items are bound. If either one is not found or if either one is bound to

something other than the other one specified in the input line, an error is

output. In finding nets in the first ^circuit, if a net is not found in the net

tree, the node-alias list is searched to see if the name is an alias of a net in

the net tree. Elements bound by user-binding are marked as hard-bound In

the comparison section of the program, if errors are found* sometimes

bound elements must be unbound. However, elements marked as hard-

•lune 6. 1083

bound can not be unbound. This gives the user the option of being always

right. This option can be overriddenon the command line.

2.2.4. Node^liasFile

The routine getalias handles the readin and data structure creation for

the Node-Alias file. As each node alias line is readin, the alias list is searched

to see if the entry already exists, if it does not, an entry is allocated and

placed at the end of the list with the information contained on the line. The

information from the node-alias file is -used only during the user-binding

phase of program execution; this allows the user to use labels that he is fami

liar with (some of which may have been deleted from the first circuit input

when dummy elements were deleted).

2.3. Comparison and Binding

The combination of comparison and binding is an iterative procedure.

By making it iterative, ambiguous information (non-unique signature) is

bypassed until more information is built up by net binding to resolve the

ambiguities.

2.3.1. Signature Calculation

Signatures are composed* of information about an element. Currently

Wombat uses fan-in, fan-out, element type (NAND, NOR, Enhancement MOS

FET. ALU), and bound nets connected to the element. Wombat does not com

bine the individual pieces of information about each element into a single

entity, but leaves them separate and compares them individually in the sig

nature comparison routine compkey. Note that on each iteration, more is

June 6. 1983

18

Imown about .some of the nets connected to the elements and therefore a

snore precise signature ibr some of the elements rcan be used tm the next

iteration.

2.3.2. Signature Comparison

Wombat uses the rotitine creoferree to create a tree of elements from

the first-circuit with the left and right branches determined by the elements

signature. A counter is set to tlhe number of elements with that signature.

Then the routine lookup is saUed to compare elements in the second circuit

against the various nodes in !the tree (following the child pointers) imtil a

match is made or a deadrend is reached (child pointer in the direction indi

cated by the signature comparison is NU^. A match is made when the signa

tures of the two elements,are identical and the element count-at that node is

1,'ie. the signature is unique. If the element at that node has already been

bound, a connectivityerror is reported and the elements are unbound.

The above is repeated using the remaining elements (elements not suc

cessfully matched or found totbe m error in a previous iteration) until all ele

ments are matched or found in error, or no change occurs in an iteration.

The dynamically changing signature comparison functions of APPRAISE

were tried in Wombat, but made the {program much too complex, and for the

circuits tried, did not improve the performance of the program.

2.3.3. Latency

Wombat utilizes latency (actiutty) in the iterative compare and bind

phase of execution. Since on any given iteration, new information is gained

only for elements connected to nets bound on that iteration, only those ele-

June 6, 1983

19

ments are used in the next iteration. This results in a savings for loosely

connected circuits and circuits fthat have'fewelements/nets bound on each

iteration. However, for strongly connected circuits and circuits that bind

quickly, the execution time has been found to increase due to the overhead

cf mamtaining an active elements list The program tries to use latency for

as long as it helps and then turn if tiff. Use oflatency can also be turned off

on the command line.

The circuit shown in Figure 2.1 shows*the fcest improvement that can be

achieved by exploiting latency. »0n the first iteration only two elements look

different than the others, the first one (fan-in cf 0) and the last -one (fan-out

of 0). These two elements are bound to their counterparts in the other cir

cuit and the four nets connected to them are also be bound to their counter

parts. On the next iteration, only the two elements connected to the ele

ments bound on this iteration have-enough information to be bound; there

fore, looking at more than just these two would be a waste of time. The first

entry in Table 2.12 shows this sort of improvement for a 1000 clement

inverter chain.

ooo o —

Figure 2.1. inverter Chain

*Throughout the report, all timesend memory requirements ore for aVAX 11/780 comput
er witha FPA andrunning the UNIX 4.1BSD operatingtsystem, unlessotherwise noted.

•June 6. 1983

elements nets
cpu time (sec)

w/Latency w/o Latency

1000
1000
B194
2336

1001
1003
2826
1374

45
59

323
68

470
490

440

210

20

Table 2.1. Latency

2.3.4. Error Detection

Errors occur when a signature in one circuit does not occur in the other

circuit, or more than one element in one circuit has a signature that is

unique in the other circuit.

2.4. Binding

Elements with the same unique signature are bound by the program and

put on a list. At the end of each iteration, the routine bind is called to bind

the nets of the elements on this list taking into account the pin-

permutability information stored with the element.

2.5. Degenerate Cases

Circuits like the inverter chain shown in Figure 2.1 are considered

Ndegenerate. For an N element chain —iterations are required to bind all

elements and nets.

2.6. Memory Management

Since Wombat creates an entirely new comparison tree on every itera

tion, using a memory allocator that maintains a list of free and used memory

October 13. 1933

21

blocks would be inefficient, not only in terms of searching the list when allo

cating, but also in terms of freeing the data at the end of each iteration.

Therefore Wombat allocates memory as one contiguous chunk and maintains

pointers in to this block for the beginning, end and current locations in

memory. When a chunk of memory is asked for, the current pointer is

returned and is then advanced the size of the block asked Tor. "Freeing

memory is simply setting the current pointer to the beginning. If the

current pointer passes the end pointer, the system is asked for more

memory, which is assumed to be contiguous to the last block asked for.

There are panic checks in the allocator (malloc) to guarantee that memory

is contiguous.

June 6, 1983

CHAPTER 3

DataStructures

Each subsection of this Chapter contains a description of each Wombat

function and the contents of the data structure and a listing of it from the

program. It is assumed that the reader of this Chapter is familiar with the C

programming language.

3.1. Net

The net data structures are composed of two AVLtrees1, one for each

circuit (first->net, second->net). The trees are created as the circuits are

read in. AVL trees were chosen because normally nodes read in from

extracted circuits come in numerical order, which leads to highly degenerate

trees. The AVL trees significantly reduce the lookup time over normal binary

trees. The net data structure was also implemented as a hash table rather

than AVL tree, but no significant improvement was noticed. As a net is read

in, the net tree is searched to see if the net already exists, if it does the ele

ment count (el_count) is incremented and the current element is placed on

the nets' element list (eljist). If the net does not exist in the tree, a new net

entry is created, and if necessary, the tree is rebalanced.

XAVL trees are height balanced trees with a height mismatch of no more than l.[Hor76a] In
other words, the two subtrees at any node of the tree can not differ in height by more then 1.

22

/

23

/• ,,®(#)neth9.43/21/B3M •/

struct nettype (
STRING njiame; /• name of the net •/
NET *Qjeft; /* pointer to the left subtree */
NET *n_right; /* pointer to the right subtree •/
int n_fc>al; /* avl tree balance factor */
int n_el_count; /* number of elements connected to this net*/
ELLIST •n_e\Jist; /• list of elements connected to this net */
NET *n_|)ound; /* whichnet is it bound to in the other circuit */

struct net_node {
NET *net; /• pointer to net •/
NETUST *next; /* pointer to the next entry in the list V

Figure 3.1. Net Data Structure

3.2. Clement

The element data structures are composed of two linked lists (first-

>element, second->elernent), one for each circuit representation. As each

element is read in, an element structure is dynamically allocated and ele

ment information is placed in it Now the pin-permutability template tree is

searched to see if a permutability entry exists for the element type. If one

exists, a local copy is allocated and a pointer in the element structure

(ptree) is set to its location. If one does not exist, a non-permutable tem

plate is created for the element type and it is placed in the permutability

template tree, and as in the first case, a local copy is allocated.

June 6. 1983

\

24

/• °®(#)element.h 9.23/16/83" */

struct eltype J
STRING e_name; /* name of the element */
ELEMENT *ejiext; /• next element in the list •/
int e_fanout; /* number of output pins tied to the element*/
int e_fenin; /* number of input pins tied to the element*/
int e_fanbi; /* number of bi-directional pins ties to the element*/
T!T.T!MENT *e.J>ound; /* corresponding element in the other rep*/
STRING e_type; /* type of the element, Le. nand3, inv,...*/
LOGICAL e_giardbound; /* element is hard bound */
LOGICAL e_connecterror: /* is the element connected incorrectly*/
LOGICAL elective;/* is the element active (latency)•/
NODE *e_ptree; /• pin permutability tree - netlist */

3:

struct cl_nodc J
ELEMENT *elelement; /• pointer to element */
ant el_checked;
ELLIST ^eljiext; /* pointer to the next entry in the list*/

J:

Figure 3.2. Element Data Structure

3.3. Element T^pe String Table

To save space, the element types for both circuits are stored in a string

hash table. The table is 203 entries long, this size is based on running many

cell names through the hashing function and coming up with as small of a

size as possible, while keeping the number of collisions small. It is common

for small circuits of 20 cell types to have zero or one collision and large cir

cuits of over 70 cell types to have only two to five collisions (see Table 3.2).

The hashing function iB:

key- 0;
while (^string .'= ' ') [

key = (key *83+ *srrino++; %HASHTABLESIZE;

June 6. 1983

string kev

nand4 1
or 28

bob 89
inv 135

nand 139

and 145
alu4 150

nor 160

xor 172

Table 3.1. Hash Function Examples

number collisons

11
20
56

0

1
5

25

Table 3.2. Number of Cell Types and Number of Collisions

3.4. NoderAliases

The node-alias data structures make up the node-alias list. This list con

tains equivalence information for various nodes in the first circuit. This

equivalence information is usually due to the deleting of wired-or's, mired-

and's and delay elements from the first circuit.

June 6. 1983

X

26

/• M0(#)alias.h 9.23/16/83" •/

/* node alias structure •/
struct alias {

STRING main_name; /• name on the layout •/
ALIAS •next; /• pointer to the next alias entry •/
struct othername 'aliases; /* list of aliases of main_name */

struct othername f
STRING name; /* net alias */
struct othername •next;/* pointer to the next alias of main_name •/

J:

extern ALIAS *aliasjist; /• list of all aliases and names */
extern FILE •fpalias; /• alias file •/

Figure 3.3. Node Alias Data Structure

35. Key

The key data structure contains the data used to compare elements.

The information in this data structure is also called the signature.

/• "©(#)key.h 9.12/16/83" •/

struct key {
STRING string; /• string key (cell type) •/
int fanout;
int fanin;
int fanbi;
NODE *ptree:

J:

Figure 3.4. Comparison Key Data Structure

3.6. Comparison Tree

The comparison tree data structure is composed of a single binary tree

(tree). Each node in the tree represents a particular key and the element in

the first circuit that has that key is pointed to. If there is more than one

June 6, 1983

27

element that matches the key, a count is kept.

/• "0(#)tree.h 9.33/24/83" •/

struct tnode J
KEY *key; /* lookup key •/
TREE *left; /• left pointer •/
TREE •right; /• right pointer •/
int count; /* number of elements containing the key*/
ELEMENT *el; /• element for key •/

figure 3.5. Comparison Tree Data Structure

3.7. Permutability

The permutability data structures are composed of a global permutabil

ity template tree that contains pin permutability trees for each element

type. Each node of the tree is made up of a celltree structure. The celltree

structure contains the name of a cell type, a pointer to its premutability

tree, and child pointers to more celltree structures. The permutability

(c_prree) tree is an m-way tree that is organized in a way that specifies the

permutability and non-permutability of the pins that make up the element.

Each node in the permutability tree is either a permutable (P). non-

permutable (N) or leaf (L) node. Permutable and Non-Permutable nodes

point to more m-way branches, leaf nodes point to pin^entry structures. The

pvn_entry structures contains the name and number of the pin (as in the CDF

file) and a pointer to the net that it connects to.

/• "®(#)cdf.h 9.44/8/83" •/

struct celltree (
char •cjiame; /• name of the cell type •/
struct node •c_ptree; /• pointer to the permutability tree •/
struct celltree •cjeft; /• left child pointer •/
struct celltree •c_rignt; /• right child pointer •/

June 6, 1983

28

I:

struct cellentry j
char •name; /* name of the cell type */
struct node *ptree; /• pointer to the permutability tree •/

struct pin_entry j
char •name; /• name ofthe pin in the CDF file •/
int number; /* number of the pinin the CDF file •/
NET *net; /• pointer to the net that the pinconnects to •/
char pjype; /• type ofpin(B I 0) •/

*»

struct node \
int no^ype; /• type of node (P NL) •/
mt checked;
union {

struct mway •mway; /• ptr to more nodes (types Por N) */
struct pinentry pin; /• pointer to a pin (type L) •/

J ptr;

J*uct

structmway *next; /• nexTnode •/

struct mway {
NODE *node; /* pointer to a node •/

i:

struct pinjist {
struct pin_entry p_gntry;
struct pinjist *next;

/• types of pins •/

/• input pin •/
#define INPUT T

/• output pin •/
^define OUTPUT '0'

/• bidirectional pin •/
#define BIDIRECTIONAL 'B'

/• feed through •/
#define FEEDTHRU T

/• types of nodes •/

/• leaf node - a pin •/
#define LEAF 'L*

June 6, 1983

29

/• permutable node - pins below this can permute •/
tfdefinePERM'P' '

/* non-permutable node - pins below this must stay in order*/
^define NON 'N* '

extern CELLTREE •celUree; /• main permutability template tree •/
extern FILE •fcdf; /• cdf file •/

Figure 3.6. Permutability Tree Data Structure

June 6. 1983

CHAPTER 4

file Formats

4.1. Circuit flies

Circuit files contain a network description (specified by -ns and

flags) and are of the form:

<htstance Name> <Cell Type> \<Net Name>l+

£xamples:

xOOl nandS out inl in2

tndriuer Enhancement drain gate source

This format is simple and programs to convert from other formats

(SPICE[Vla81a] SPUCE[Sal83a] M0SSlM[Fit81a]) have been written in

minutes.

4.2. User-Binding File

The user-binding file (specified by the -eb flag) contains the initial ele

ment and net equivalences, usually derived from labels on the layout.

Entries in this file are of the form:

e\n <Name of Item in First Circuity <Name of Item in Second arcuit>

Examples:

e mdriuer m004

n output n0027

lines Starting -with a semicolon (;) are considered consents in all flies.

30

31

4.3. Node-Alias TUe

The node-alias file (specified by the -aa flag) contains which node names

in the first circuit are equivalent The information from this file is used when

a dummy element (wired-or, urired-und) is deleted and the user has specified

a node in the user-binding file that has disappeared from the first circuit.

Entries in this file are of the form:

<Node Name> [<Miases>l+

Example: A B C D

Figure 4.1. Node Alias Entry

4.4. Cell-Descriptor TUe

The cell-descriptor file (specified by the -cd flag) specifies how the pins

of an element can permute. This particular file format is a simplified version

of one developed at Tektronix for an internal IC/CAD system. See appendix B

for a detailed description. Permutability entires are only a small part of the

entire file; Wombat only uses the cell, pin, ichng and endc records when it

creates the permutability tree.

The following are simplified examples of the cell, pin, ichng and endc

records:

June 6. 1983

cell oof

pin i (A 1)
pini(BS)
ptni(C3)
pini(D4)
pin o (E 5)
ichng ((A B) (CD))
endc

Figure 4.2. AND-OR-INVERT gate

cell nor4
pin i (A 1)
pin i (B 2)
pin i (C 3)
pin o (D 4)
ichng (A B C)
endc

Figure 4.3. NORgate

4.5. Correspondence TUe

The correspondence file (specified by the -ec flag) contains the element

and net equivalences that the program has found, including any initial

equivalences from the user-binding file It is in the same format as the

user-binding file.

4.6. Error TUes

There are two types of error output files that the user can request

(specified by the -EM and -EDflags). One of the the error files contains all all

elements and nets from the first and second circuits that are either unbound

June 6. 1983

33

or in error. The other error file contains a list of all elements in the second

circuit that are unbound or in error. The format of the second error file is

the same as the circuit input files.

4.7. Pin-Permutation TUe

The pin-permutation file contains a list of the elements in the second

circuit and how their pins were permuted from the first circuit (specified by

the -ap flag).

It has the following format:

<histanceName> <CellType> [<FirstCktPin>:<SecondCktPin>i+

bob and4 5:5 1:4 2:3 3:1 4:2

Figure 4.4. Pin Permutation Example

4.6. Output TUe

The output file (standard output) contains the following information:

June 6. 1983

34

>Initial element and net counts.
>Initial number of elements and nets bound by the user.
•Warning and error messages.
»Number of items bound and errors found on each iteration (verbose-mode).
>Total number of elements and nets bound.
>Total number of errors found in the circuits.
•Computer usage (user time, system time, memory used, page faults).
>listing of elements and nets in error.

June 6, 1963

CHAPTER 5

Statistics

5.1. Results

This section summaries the performance of Wombat on circuits of vary
ing size and complexity. Some of the examples are used to bring out certain
points and others are used just because they happened to be around when

the programwasbeing developed.1

Table 5.1 shows the execution time and memory used by Wombat for a
few example circuits. Note that the CPU time is approximately 0(elements)
when the circuit fits into physical memory. When the circuit is too big to fit
in physical memory, the performance of Wombat degrades because the pro
gram psuedo-randomly accesses its data, reducing the effectiveness of page
replacement strategies.

element

8194

2336

1088

1000

127

76

nets

2826
1374
335

1001 j
2S4 j
117 j

iterations

26

45
24

500

4

3

memory
(Mbytes)

3.7

1.3
0.4
0.5

0.1
0.05

Teblefc.l.

323

83

30

bj

6
3

cpu time (sec)
total j readin j compare

181

60

23

5
p

142

22

9
28

1

1

1Unless o*.herw>« steed, c** ate -s'-c* tre '^- *. V:v i • ••?• * *• • •* \< --v— m v • imemory ruM!^ the 3c.-ke.ey 4.£-sSux5c i^v^ ^: -' ' --b^es °' P1**"2

35

38

5.2. Circuits Used

This section details why the circuits in Table 5.1 were used. The first cir

cuit is a transistor level digital circuit of 8194 elements; it is used because it

just fit into the physical memory of our VAX.1 The 2336 element circuit is a

transistor level ALU and is used to show the effect of latency on execution

time (see Table 2.1). The third circuit contains 1088 elements at the transis

tor level and is used as an example in a large number of projects from the

Electronics Research Lab. The 1000 element circuit is a inverter chain and is

used to show the effects of latency (see Table 2.1) and degeneracy. The final

two circuits are gate arrays of approximately 100 gates and are included as

examples of the types circuits that Wombat was originally designed to pro

cess. The original purpose of Wombat was to work in a gate array system

where the number of elements would be in the 50 to 200 gate range.

1VAX 11 /7B0 with 7 Megabytes of physice! memory.

June 6. 1983

CHAPTER 6

Summary

6.1. Summary of Wombat

Wombat is a program for determining if two circuits are the same or

different, and if different, where the differences are. It determines whether

elements in the two circuits are the same by calculating signatures for every

element and matching unique element signatures between the two circuits.

The signature calculation and matching process is an iterative process. -On

each iteration, signatures are calculated and the elements with unique signa

tures are bound. At the end of each iteration, the nets connected to the ele

ments bound on the iteration are bound: this gives new information that can

be used in the next iterations signature calculation. This process ends when

either there ere no more elements left to bind or there are no more unique

signatures. This program has been used successfully in an industrial design

situation.

In the following sections of the report possible extensions to Wombat are

suggested. These extensions deal with the interface the user sees and with

the internal algorithms.

6.2. Interface to a Graphical Design System

Interface Wombat to the Hawk Viewport Manager and the Squid Data

base Manager1. With Wombat interfaced to Hawk, the user will be able to run

'The Hawk Viewport Manager and the Squid Database Manager are part of Ken Keller's Ph.D
project under the direction of Professor Richard Newton.

37

38

Wombat until it is done, needs more input, or is interrupted. At this point

the user could interactively scan the layout (using pan and zoom, with bound

elements and nets highlighted) and graphically bind or unbind elements and

nets. Then the user could continue execution of Wombat.

Interfacing Wombat to Hawk will have an added advantage, one of

decreased readin time. The netlist information will be stored in a format

that can be directly mapped into the Wombat data structures. This will save

the very expensive readin and parsing step.

6.3. flashing "Rather Than Trees

Changing the comparison tree to a hash table could possibly decrease

the memory requirements of the program and could speed up the com

parison (a single calculation of the hashing function and table index versus a

search of the tree). However, since no gain was made when the net trees

were changed to hash tables, it is not clear that changing to a hash table

would improve overall program performance.

6.4. Treatment or Hierarchy

If hierarchy were used in Wombat, at each level of the hierarchy a rela

tively small number of cells would have to be looked at and cells used multi

ple times would have to have their insides looked at only once. This would

cause the execution time and memory usage to decrease. It is expected that

this will be taken care of when Wombat is interfaced to Hawk.

June 6, 1983

39

6.5. True Signature Function

Using a true signature function (compressing the key data structure

into a single integer) can decease the memory requirements of the program,

and possibly speed up the element comparison (a single integer comparison

and signature calculation rather than the N comparisons now being done).

One disadvantage of this technique is that some method of handling collisions

must be devised.

6.6. Other Signatures

Currently Wombat uses the features/properties fanin, fanout, cell type

and bound nets connected to the element in its signature. There are many

other features that could be used in a signature. The LIVESprogram[Miy8la]

uses distances from vertices and distances from terminals in its signatures

function. However, the more information that is used about distant elements

and nets, the more likely that spurious errors can result early in the com

parison process. Later, when elements have been localized, distance could

be employed effectively.

6.7. Local verses Global Features

There are many factors to consider when choosing discriminant func

tions and items to be used in a signature (features). The features2 used in

the signature determine the type of discriminant function and the weighting

of the function in relation to the other functions.

Features can be roughly broken up into two types, Local and Global.

Local features consist of the set of features that can be used to describe an

In this section, features refers to both derived and intrinsic properties.

June 6. 1963

40

element, without any knowledge of the rest of the circuit. Features that fit

into this set are cell type and number ofpins. The discriminant functions Tor

local features are usually binary; that is, the output of the function is either

TRUE (the two features are exactly the same) or FALSE (the two features are

different, with no measure of the distance between them). Global features

consist of the open set of features than can be used to describe an element,

considering the rest of the circuit and how this particular element interacts

•with the circuit. Features that fit into this set are /an-fri. fan-out, types of

the elements connected to the element and the number of elements that are

N connections away from, the element. The discriminant functions for these

types of features must not only return that two features differ, but by how

much. When a discriminant function for global features returns that two

features are not exactly the same, this does not mean that the two elements

associated with the two features are different. Differing global features can

be caused by errors in the circuit that are up to N connections away, if the

features take into account the elements interactions with the circuit N con

nections away.

Since errors in one part of the circuit could cause errors in the feature

calculations for elements in another part of the circuit, the output of the glo

bal feature discriminant functions must be weighted to take this into

account. The weighting of global feature discriminant functions should be

inversely proportional to the distance covered in the calculation. If a feature

consists of the number of elements N connections away from the element,

the weighting factor for the discriminant function should be —. By progres

sively decreasing the weighting factor as features use information farther

and farther removed from the element, the area of spurious errors is limited

June 6, 1983

\

41

to the area around the element actually in error, rather than up to If con

nections away.

6.8. Demand Loading of Cell-Descriptor Entries

If a circuit contains only a fraction of the number of different cell types

specified in the cell-descriptor file, a lot of time can be wasted in reading in,

parsing and setting up data structures for unnecessary cell-descriptor

entries. For example, in gate-array systems, the cell-descriptor file usually

contains all of the cell-descriptor entries for the entire gate-array library,

but only 15—20%of the entries are ever used in any given circuit Since up to

80% of the entire run time is taken up in the readin phase for small circuits,

and cell-descriptor file readin, parsing and data allocation can be a large

fraction of this, this could result in significant savings. This problem could

be solved by reading through the file and only storing what cells are in the

file and the location in the file. Then in the permutability lookup routine, the

program could search the tree, and if the entry exists but is not loaded, the

program could fault on the entry and force it to be readin from the file and

parsed.

6.9. Compiling and Dynamic Loading of the Cell-Descriptor Entries

The problem of parsing CDF files could be eliminated by writing C rou

tines that create permutability data structures for each type of cell type.

These C routines could be compiled and put into a library, and then dynami

cally loaded and executed when a permutability data structure needs to be

created. These routines need not be written by the user, but could either be

generated from the cell layout, or generated from the simple pin permutabil-

June 6, 1983

-42

ity ichng record currently used.

6.10. Better Algorithm for Dealing with Fin Permutability Trees

The algorithms used for dealing with pin permutability are far too com

plex than should be; efficient and theoretically sound tree compare algo

rithms should be investigated.

6.11. Identical and Non-Identical Parallel Paths

Non-identical parallel paths are like identical parallel paths, but a small

number of the elements differ from path to path. For circuits that contain

non-identical parallel paths, signatures like the ones used in UVES can be

used to differentiate between the elements in the paths. But for circuits with

identical parallel paths, none of the signature functions described in this

report can uniquely define elements in the paths. The simple solution to this

problem is to force the user to label some of the elements in parallel paths,

but connectivity verifiers should be able to work with no initial information

about correspondence between the two circuits wherever possible. Ran

domly binding the first elements in each one of the paths seems to be the

best approach to the problem.

June 6. 1983

\

APPENDIX A

Wombat Manual Pages

This appendix contains the UNIX/VMS1 manual pages for Wombat.

*UNZX is a Trademark of Bell Laboratories and VMS is a trademark of the DigitalEquipment
Corporation.

\

V

WOMBAT(CAD) UNIX Programmer's Manual .WOMBAT(CAD)

MAHE

wombat — compare the connectivity of two networks
(aprogram that eats, roots, and leaves)

SYNOPSS

wombat -ns netl -ox net2 [-cd cdfjile] [-ab bJUe] [-el [-©] [-aa ajile] [-ac
cjile] [-eppjfMe] [-QI errorJMe] [-ED errorjite] [-v] f-w] frron^e] [-*] [-u]

UKHNITION

Wombat (ibmbarus Cfesmus): aburrowing, nocturnal, herbivorous marsupial.
PREDATORS

Super-users

DESCRIPTION

:netl specifies a file containing a network description.

Format (formats are in Backus-Naur format where applicable):

instance name> <cell type> (<net name>}+

Examples:

xOOl buffer dataout detain clock
celll nand4 output input1 input2 input3 inputs
invl inv out in

Note: any line beginning with a ';' is considered a comment

net2 specifies a file containing a network description.

-c&cdfJUe
specifies the file containing the pin permutability information for the
cell types in the network description. Cell types not specified in the
file are assumed to have no permutable pins.

-ebb_/fte specifies the file containing net and element equivalences between
the two networks. These elements are considered to be hard bound.

Format:

<type> <first rep> <second rep>

Where <type> is e for elements and n for nodes.

Examples:

e inverter e0045

n clock 004

Note: any line beginning with a ';' is considered a comment

—e tells the program to equate all elements with the same name. These
elements are considered to be hard bound.

7th Edition (#)wombat.l 9.8 4/24/83

V

WOMBAT(CAD) UNIXProgrammer's Manual WOMBAT (CAD)

allows the user to over-ride hard binding (i.e. if the program deter
mines that a user bound elements should not be bound, this option
allows the program to unbind the elements.)

affile specifies the file which contains the node alias information. Used pri
marily for collapsing wired-OR's.

Format:

<name> }<alias>}+

Example:

nodea nodeal nodea2

Note: any line beginning with a';' is considered a comment

-ac affile specifies the file generated by the program that lists all of the ele
ment and node correspondences between the two representations.
Its format is the same as the 'b^file1.

—t\pp_fUe specifies the file generated by the program that lists the pins of each
element permuted between the two representations

Format:

<element name> <element type> (<pins>}+

<pins> -> '<namel>:<name2> <unique>'

<namel> is the pin name in the first representation.
<name2> is the pin name in the second representation.
<unique> is '•' if the pin is not connected and ' *if it is.

-v tells the program to produce lots of output.

—EH errar^ile
specifies the file generated by the program that contains the
unbound and incorrectly connected elements.

-ED errorJlle
specifies the file generated by the program that contains the
unbound and incorrectly connected elements and nets.

-w tells the program to suppress warning messages.

~r range sets the fanout (fanout, fanin and fanbi) comparison accuracy. Used
for getting rid of non-essential error messages.

-R reverses the order of comparison.

7th Edition (#)wombat.l 9.8 4/24/83

\

WOMBAT(CAD) UNDC Programmer's Manual WOMBAT(CAD)

—u supresses the use of activity.
DIAGNOSTICS

The program informs the user of differences between the connectivity of the two
networks. The program also informs the user of bad CDF file, bad command line
flags, no memory, bad or non-existent input files, etc.
Error messages are of the form:

TYPE: message (routine)

Where TYPE is either ERROR (fatal) or WARNING, message is the error message
itself and routine is the routine which issued the message.

A 'kill -ALRM pid' on WOMBAT will cause the program to fiush its output buffer
and print the current program status.

KEEPER

Rick L Spickelmier
University of California at Berkeley

SEE ALSO

Spickelmier, Rick L Verification of Circuit Interconnectivity
cdf(5)

UMTS

line length in all files must be less than or equal to 512 characters.
Word length in all files must be less than or equal to 32 characters.
The number of words per line in all files must be less than or equal to 128.

OTHER

WOMBAT works on the inverse Carver Mead principle:

- Regularity is bad
- Random logic is good

BOGS

The VMS version does not do runtime cpu and memory usage statistics properly.

7th Edition (#)wombat.l 9.8 4/24/83

APPENDIX B

CDF Manual Page

This appendix contains the UNIX/VMS1 manual page for CDF.

,UNDC is a Trademark of Bell Laboratories and VMS is a trademark of the Digital Equipment
Corporation.

\

CDF(UCB) UNIX Programmer's Manual CDF(UCB)

HAHE

cdf —cell descriptor file

SYNOPSS

Provide pin type and permutability information for WOMBAT
DESCRIPTION

lilecontents: celldescr*

celldescn header datarecord* endrecord

header: "cell" modelname

modelname: STRING

datarecord: pin | ichng

pin: "pin" pintype pinname pinnumber

pintype: •T'|"o"|"b"|"ip"|"op"|"bp"
pinname: STRING

pinnumber: NUMBER

ichng: "ichng" group

group: pinname+ | "(" group+ ")" | "[" group+ "]"
endrecord: "endc"

Cell descriptions start with a cell header, have a set of data records and are
ended with an endc record. A "pin" record (there are usually several of these)
consists of the pintype, pinname, and pinnumber. The pintype is Input ("i").
Output ("o"). Bi-directional ("b"), Input Pad ("ip"). Output Pad ("op"), or Bi
directional Pad ("hp"). The pinnumber determines the pin order. The "ichng"
record contains pin interchangeability information. Pins or groups of pins at a
given level of nesting are (are not) mterchangeable if enclosed by parentheses
(brackets). For example, ([a b] [c d]) indicates that pins 'a' and 'b* are not
interchangeable, pins 'c* and 'd' are not interchangeable, but the groups 'a b*
and 'c d' are interchangeable.

AUTHORS

Tektronix MCE CAD group
Simplified by Rick Spickelmier (UC Berkeley)

SEE ALSO

Spickelmier, Rick L Verification of Circuit Interconnectivity
PRODUCED BT

hand

7th Edition (#)cdf.5 9.1 4/24/B3

APPENDIX C

Example Runs

This section gives two detailed example runs of Wombat, one with two

circuit files that are equivalent and one with two circuit files that are

different (te. there is an error in one of the circuits). All examples shown

were generated by the UNIX version of Wombat.

\

Normal Run

wombat-vnsga.sim-nxga.ezt -acga.cor>&ga.out

Smiulation File (ga.sim)

; example simulation input file for WOMBAT
cntrO tl5 nl09 nl09b hi nl09b nlll nllO
cntrl tl5 nlOB nlOBb hi nl05 nlll nllO
cntr2 tl5 nl07nl07b hi nl04 nlll nllO
cntr3 tl5 nl06 nlOBb hi nl02 nlll nllO
amorl03 t08h gOOOOOl nl05 nl08 g000002 n2
smorl02 t06h g000003 nl04 nl07 g000004 nl03
xnorlOl t06h g000005 nl02 nl06 nl03 nl07
orlOl tor2h nl03 n2 nlOB
invlOl tinv2h n2 nl09b
orl04 tor2h nl24 n2 nlOBb
orl05 tor3h nl23 nl09 nl08b nl07b
orl06 tOlh nl25 gOOOOOB nl09 nlOB nl07 nlOB
gatelOl t04h g000007 nl27 nl07 nl08 nlOBb nlOl
muxlOl otmux20h outl nl09 gOOOOOB g000009
muxl02 otmux20h out2 nl25 nl07 nlOl
muxl03 otmux20h out3 nlOB nl09b nlOl
muxl04 otmux20h out4 nlOB nl23 nlOl
muxl05 U2h nl21 gOOOOlO nl07 nl08 nlOl
clock tl5 nl34 dmyl nl21 nl34 nlll nl24
aync t09 nl33 dmy2 gOOOOll nl27 g000012 nl32
invl02 tinvlh nl32 nlll
inlOl itbuflh nlOl mode
inl02 itbuf2h nllO ldarrayb
inl03 itbuf4h nO dclk
inl04 itbuf4h nl dclk
inl05 itbuf4h nlll dclk
outl05 otbufl5h out5 nl33
outlOB otbufl5h outB nl34
chrcoior tl5 nllB nllBb nllB nllB nlll nl23
opaque tl5 nll9 dmy3 nll5 nll9 nlll nl23
blankO tl5 nl2 dmy4 nll4 nl2 nlll nl23
andorlOl t05h g000013 nl20 nll2 nll9 nll2b nllBb
orl09 tOlh nil g000014 nll2 nll9 nll3 nl2
muxlOB otmux20h out7 nl37 nl40 nlOl
muxl07 tl2h nl3 g000015 nl20 nll2 nlOl
muxsel t09 nl3B dmy5 gOOOOlB nl3 g000017 nlll
ovrlay t09 n5b n5 gOOOOlB nil g000019 nlll
blankl t09 nl37 dmy7 g000020 nl2 g000021 nlll
inlOB itOl nll3 g000022 cursor nll2 nll2b char
inl07 itbuflh nl!4 blank
in 108 itbuflh nll5 opaque
inl09 itbuflh nllB chrcoior
outlOB otbuf20h outB nl36

June 6. 19B3

orllO tnor2h nl3B nB nl37
«atel02 t04h nl39 g000023 nl37 g000024 nB g000025
test tl5 nl40 dmyBnl39 nl3B nlll datll
in209 itbuf2h n233 ovrlyblu
in216 itbuf2h n234 ovrlygrn
in20B itbuflh n214 mapOO
in207 itbuflh n213 maplO
in206 itbuflh n210 mapOl
in205 itbuflh n209 map11
in204 itbuflh n206 map02
in203 itbuflh n205 map12
in202 itbuflh n202 map03
in201 itbuflh n201 map13
out204 otbuf15h dacO n216
out203 otbufl5h dacl n212
out202 otbufl5h dac2 n208
out201 otbuf15h dac3 n204
flop201109 n203 dmy9 g000026 n201 g000027 nO
mux201 tl2h dat3 g000028 n203 n202 n4
flop202 tl5 n204 dmylO n233 dat3 nO n5
flop203109 n207 dmyll g000029 n205 g000030 nO
mux202 tl2h dat2 g000031 n207 n206 n4
flop204 tl5 n208 dmy12 n233 dat2 nO n5
flop205109 n211 dmy13g000032 n209 g000033 nO
mux203 tl2h datl g000034 n211 n210 n4
flop206 tl5 n212 dmyl4 n233 datl nO n5
flop207109 n215 dmyl5 g000035 n213 g00003B nO
mux204 tl2h datO g000037 n215 n214 n4
flop20B tl5 n21B dmyl6 n233 datO nO n5
in215 it08 n230 map04 g000038 n229 map14 g000039
in214 itOB n226 map05g000040 n225 mapl5 g000041
in213 itbuflh n222 map06
in212 itbuflh n221 maplB
in211 itbuflh n218 map07
in210 itbuflh n217 map17
out208 otbuf15h dac4 n232
out207 otbuf15h dac5 n22B
out206 otbufl5h dacB n224
out205 otbuf15b dac7 n220
flop209 t09 n219 dmyl7 g000042 n217 g000043 nO
mux205 tl2h dat7 g000044 n219 n21B n4
flop210 tl5 n220 dmyIB n234 dat7 nl n5
fiop211109 n223 dmy19 g000045 n221 g000046 nO
mux206 tl2h dat6 g000047 n223 n222 n4
flop212 tl5 n224 dmy20 n234 datB nl n5
flop213 t09 n227 dmy21 g000048 n225 g000049 nO
mux207 tl2h dat5 g000050 n227 n226 n4
flop214 tl5 n228 dmy22 n234 dat5 nl n5
flop215 t09n231 dmy23 g000051 n229 g000052 nO
mux208 tl2h dat4 g000053 n231 n230 n4
fiop216 tl5 n232 dmy24 n234 dat4 nl n5
in305 itbuf2h nB ovrlyred
in304 it06 n314 map08 g000054 n313 map IB g000055

June 6, 1983

in303 itOB n310 map09g00O058 n309 mapl9 g000057
in302 itOB n30B mapOlO g00005B n305 mapllO g000059
in301 it08 n302 mapOll gOOOOBO n301 maplll gOOOOBl
cut304 otbuf15h dacB n316
out303 otbufISh dac9 n312
out302 otbufl5h daclO n30B
out301 otbuf15h dacll n304
fiop301109 n303 dmy25 g000062 n301 g000063 nl
mux307 tl2h datll g000064 n302 n303 n4b
fiop302 tl5 n304 dmy26 datll nB nl n5b
fbp303109 n307 dmy27 g000065 n305 gOOOOBB nl
mux30B tl2h datlO g0000B7 n306 n307 n4b
flop304 tl5 n30B dmy28 datlO nB nl n5b
13op305109 n311 dmy29 gOOOOBB n309 g000069nl
mux309 tl2h dat9 g000070 n310 n311 n4b
fiop306 tl5 n312 dmy30 dat9 nB nl nob
flop307109 n315 dmy31 g000071 n313 g000072 nl
mux310 tl2h dat8 g000073 n314 n315 n4b
fiop308 tl5 n316 dmy32 datB nB nl n5b
in306 itbuflh n319 maprdb
in307 it06 n317 maprdb ovrlygrn n31B maprdb ovrlyblu
mux302 tl2h n4b n4 nB n2 n319
mux306 til n323 datO dat4 datB n5b hi n31B n317
mux305 til n322 datl dat5 dat9 nil hi n31B n317
mux304 til n321 dat2 datB datlO nl2 hi n31B n317
mux303 til n320 dat3 dat7 datll nl3 hi n31B n317
out305 otbufl5h data3 n320
out306 otbuf15h data2 n321
out307 otbuf15h datal n322
out30B otbuf15h dataO n323
inv301 tinvlh hi g000074

June 6, 1983

Extracted TUe (ga.ext)

x0t05h 0 123 45
xl tl5 6 7 B 6 9 10

x2t09 11 12 13 6 14 9

x3 tl5 15 5 16 15 9 10

x4 tl5 17 IB 19 17 9 20

x5 tl5 2122 23 22 9 24

xB tl5 25 26 23 27 9 24

x7115 26 29 23 30 9 24

xB tl5 31 32 23 33 9 24
x9109 34 35 36 37 38 39

xlO tl5 40 41 42 43 39 44

xllt09 45 46 47 48 49 39
Xl2 tl5 50 51 42 52 39 44

xl3109 53 54 55 56 57 39

xl4 tl5 58 59 42 60 39 44

Xl5109 6162 63 64 65 39
xl6 tl5 66 67 42 68 39 44

xl7109 69 70 7172 73 39
xlB tl57475 76 77 7B 44

xl9 t09 79 80 81 82 B3 39

x20 tl5 84 85 76 86 78 44
x21109 87 BB B9 90 91 39

x22 tl5 92 93 76 94 76 44

x23 t09 95 96 97 98 99 39

x24 tl5 100 101 76 102 78 44

x25 t09 103 104 105 106 107 78

x26 tl5 108 109 110 111 78 112
x27 t09 113 114 115 116 117 78
x28 tl5 118 119 120 111 7B 112

x29109 121 122 123 124 125 7B

x30 tl5 126 127 128 111 78 112

x31109 129 130 131 132 133 78
x32tl5 134 135 136 111 78 112
x33 t04h 137 13B 28 25 32 139

x34 t04h 140 141 11 142 111 143

x35 itbuflh 139 144
x36 itbuf2h 24 145
x37 itbuf4h 39 146
x38 itbuf4h 7B 146
x39 itbuf4h 9 146

x40 itOl 147 146 149 2 4 150

x41 itbuflh 8 151

x42 itbuflh 152 153
x43 itbuflh 16 154

x44 itbuflh 37 155

x45 itbuflh 156 157

x46 itbuflh 46 158

x47 itbuflh 159 160

x48 itbuflh 56 161

x49 itbuflh 162 163

\

x50 itbuflh 64 164

x51 itbuflh 165 166

x52 itbuf2h 42 167

x53 itbuflh 72 168
x54 itbuflh 169 170

x55 itbuflh 62 171
x56 itbuflh 172 173

x57 itOB 174 175 176 90 177 17B
x5B itOB 179 180 161 98 162 163
x59 itbuf2h 76 184

x60 it06 185 166 187 106 168 189
x61 it06 190 191 192 116 193 194
x62 it06 195 196 197 124 198 199
x63 it06 200 201 202 132 203204

xB4itbuf2hlll205
x65 itbuflh 206 207

x66 it06 20B 207 1B4 209 207 167
x67 tinv2h 210 22
x6B tinvlh 211 9

x69 tinvlh 23 212

x70 otmux20h 213 21 214 215
x71 otmux20h 216 217 28 139
x72 otmux20h 218 25 22 139

x73 otmux20h 219 31 10 139
x74 tl2h 19 220 28 31 139
x75 otmux20h 221 11 222 139
x76 tl2h 223 224 1 2 139

x77 tl2h 43 225 34 156 226
x78 tl2h 52 227 45 159 226
x79 tl2h 60 22B 53 162 226
xBO tl2h 68 229 61 165 226
xBl tl2h 77 230 69 169 226
x82 tl2h 86 231 79 172 226
x83 tl2h 94 232 87 174 226
xB4 tl2h 102 233 95 179 226
xB5 tl2h 234 226 111 210 206
xBB til 235 43 77 110 22323 209 208
xB7 til 236 52 86 120 6 23 209 208
xBB til 237 60 94 12B 238 23 209 208
x89 til 239 68 102 136 112 23 209 208
x90 tl2h 110 240 185 103 234
x91 tl2h 120 241 190 113 234
x92 tl2h 128 242 195 121234
x93 tl2h 136 243 200 129 234
x94 t09 244 245 246 223 247 9
x95 t!5 3 248 152 3 9 10
x96 tor2h 249 210 25

x97 tor2h 20 210 26
x9B tor3h 10 21 26 29
x99 tOlh 217 250 21 31 26 25

June 6. 1983

xlOO tOlh 238 251 2 3 147 6
xlOl tnor2h 252 111 11
xl02 otbuf15h 253 254
xl03 otbuf15h 255 17
xl04 otbuf20h 256 244
xl05 otbuf15h 257 40
xl06 otbufl5h 258 50
xl07 otbuf15h 259 58
xl08 otbuf15h 260 66
xl09 otbuf15h 261 74
xl 10 otbuf15h 282 B4

xlllotbufl5h263 92
xll2 otbuf15h 264 100

xll3 otbuf15h 265 108
xll4otbufl5h266 118
xl 15 otbuf15h 267 126

xll6 otbuf15h 268 134
xll7 otbufl5h 269 235
Xll8otbufl5h270 236
xll9otbufl5h271237
xl20 otbuf15h 272 239
xl21109 112 44 273 238 274 9
xl22109 254 275 276 138 277 211
xl23 tl5 222 278 140 252 9 110
xl24 t06h 279 33 31 249 28
xl25 t06h 280 30 28 261 249
xl26 t06h 282 27 25 2B3 210

June 6. 19B3

\

Output Tile (ga.out)

verbose mode set
simulation file: ga.sim
extracted file: ga.ext
cell and node correspondence file: ga.cor

WOMBAT 8.1 run for ga.sim ga.ext on Tue Dec 14 17:50:01 1982

reading in the first network file
reading in the second network file

number of elements in first file = 127
number of elements in second file = 127
number of nets in first file = 284
number of nets in second file = 2B4
number of initially bound elements = 0 (0.00%)
number of initially bound nets = 0 (0.00%)
setting up the fans

comparison loop
using activity

iteration count = 1
bin count = 61
number of bound elements = 51 (40.16%)
incremental bound elements = 51
number of bound nets = 122 (42.96%)
incremental bound nets = 122
connectivity error count = 0

iteration count = 2
bin count = 38
number of bound elements = 88 (69.29%)
incremental bound elements = 37
number of bound nets = 197 (69.37%)
incremental bound nets = 75
connectivity error count = 0

iteration count = 3
bin count = 33
number of bound elements = 121 (95.2B%)
incremental bound elements = 33
number of bound nets = 278 (97.89%)
incremental bound nets = 81
connectivity error count = 0

iteration count = 4
bin count = 6
number of bound elements = 127 (100.00%)
incremental bound elements = 6

June 6, 1983

number of bound nets = 284 (100.00%)
incremental bound nets = 8
connectivity error count = 0

number of iterations = 4

total number of elements = 127
total number of bound elements = 127 (100.00%)
total number of nets = 284
total number of bound nets = 284 (100.00%)

connectivity error count = 0

hard binding breaks = 0
hard binding skips = 0

number of collisions = 1
maximum bin count = 81

maximum allocated memory = 106764

maximum resident set size = 302

total number of major page faults = 6
total number of minor page faults = 31
total number of swaps = 0

total real time = 6 seconds
total user time = 5.25 seconds
total sys time = 0.65 seconds
system utilization ((utime+stime)/real_$ime) = 0.9833
parse user time = 0.00 seconds
parse sys time = 0.00 seconds
•element readin and setup user time = 4.43 seconds
element readin and setup sys time = 0.37 seconds
user bind and node alias user time = 0.00 seconds
user bind and node alias sys time = 0.00 seconds
create user time = 0.17 seconds
create sys time = 0.07 seconds
lookup user time = 0.37 seconds
lookup system time = 0.02 seconds

June 6, 1983

V

Element/Net'Correspondence Hie (ga.cor)

; element and node correspondence
;"file for ga.sim ga.ext
; written by WOMBAT 8.1 on
; Tue Dec 14 17:50:07 1982
e inv301 x69
eout308xl20
eout307xll9
eout306xll8
«out305xll7
e mux303 x86
e mux304 x87
e mux305 x88
e mux306 x89
c mux302 x85
ein307x66
e in306 x65
eflop308x32
e mux310 x93
eflop307x31
eflop306x30
e mux309 x92
eflop305x29
efiop304x28
emux308x91
e flop303 x27
e fiop302 x26
e mux307 x90
eflop301x25
eout301xll3
eout302xll4
eout303xll5
eout304xll6
e in301 x60
e in302 x61
e in303 x62
e in304 x63
e in305 x64

efiop216x24
e mux208 x84
e flop215 x23
e fiop214 x22
e mux207 x83
e flop213 x21
eflop212x20
e mux206 xB2
eflop211xl9
efiop210xl8
e mux205 xBl
e flop209 xl7
e out205 xl09

e out206 xllO
eout207xlll
e out208 xll2
e in210 x53
ein211x54
e in212 x55
e in213 x56
e in214 x57
e in215 x5B
e flop20B xl6
e mux204 xBO
e fiop207 xl5
e fiop206 xl4
c mux203 x79
e fiop205 xl3
efiop204xl2
e mux202 x78

eflop203xll
e flop202 xlO
e mux201 x77
e flop201 x9
e out201 xl05
e out202 xl06
e out203 xl07
e out204 xl08
e in201 x44
e in202 x45
e in203 x46
e in204 x47
e in205 x48
e in206 x49
e in207 x50
e in208 x51
e in216 x59
e in209 x52
e test xl23
e gate 102 x34
eorl10x101
e outlOB xl04
e inl09 x43
e in108 x42
e inl07 x41
e in106 x40
e blank1 x2
e ovrlay xl21
e muxsel x94

e muxl07 x76

e muxl06 x75
e or109 xlOO
e andorlOl xO

June 6. 1983

e blankO xl

e opaque x95
e chrcoior x3
e out106 xl03

e out105 xl02

e in105 x39

e inl04 x38

e inl03 x37

e inl02 x36
e in101 x35

e invl02 x88

e sync xl22
e clock x4

e muxl05 x74

e mux104 x73

e mux103 x72

c muxl02 x71

e mux101 x70

e gate101 x33
e or106 x99

e or105 x98

e or104 x97

e invlOl x67

e orlOl x96
e xnorlOl xl24

e xnorl02 xl25

e xnorl03 xl26

e cntr3 xB

e cntr2 x7

e cntrl x6

e cntrO x5

n blank 151

n char 150

n chrcoior 154

n cursor 149

n dacO 260

n dacl 259

n daclO 266

n dacll 265

n dac2 25B

n dac3 257

n dac4 264

n dac5 263

n dac6 262

n dac7 261

n dacB 268

n dac9 267

n datO 68

n datl 60

n datlO 120

zi datll 110

n dat2 52

n dat3 43

n dat4102

n dat5 94

n dat6 86
n dat7 77

n dat6 136

n dat9 128

n dataO 272

n datal 271

n data2 270
n data3 269

n dclk 146

n dmyl 16
n dmy1041
n dmy1146
n dmy1251
n dmy1354
n dmyl4 59
n dmy1562
n dmyl6 67
n dmyl7 70
n dmylB 75
n dmy1980
n dmy2 275
n dmy20 85
n dmy21 88
n dmy22 93
n dmy23 96
n dmy24 101
n dmy25 104
n dmy26 109
n dmy27 114
n dmy28 119
n dmy29 122
n dmy3 248
n dmy30 127
n dmy31 130
n dmy32 135
n dmy4 7
n dmy5 245
n dmy7 12
n dmy8 278
n dmy9 35
n gOOOOOl 2B2
n g0000022B3
n g000003 280
ng000004 281
n g000005 279
n g000006 250
n g000007 137
n gOOOOOB 214
ng000009 215
n gOOOOlO220
ng000011276

June 6. 19B3

\

g C
D

C
O

C
D

C
O

a
d

b
O

Q
m

n
o

o
o

o
o

o
o

o
o

o
o

o
S

O
)

C
D

C
O

C
O

1
0

•-
»

•-
*

*>
O

O
O

-
J
U

i

d
d

d

o
o

o
o

o
o

o
o

o
o

o
o

c
d

e
n

e
n

t-
»

O
C

D

I-
*

»
-»

l-
»

0
9

0
0

C
O

tO
-
J
4

^

d
d

d
O

Q
O

Q
O

Q
o

o
o

o
o

o
o

o
o

o
o

o
e
n

e
n

e
n

a
x

o
t

»
-
»

»
-
»

»
-
»

to
c
o

to
C

O
C

O
->

l

d
d

d
0

0
0

0
w

o
o

o
o

o
o

o
o

o
o

o
o

o
i

e
n

e
n

C
n

£
-C

0
C

O
C

O
C

O
g

o
C

O
c
o

c
o

d
d

d
0Q

0Q
0

0
o

o
o

o
o

o
o

o
o

o
o

o
C

«
e
n

e
n

c
o

•-
»

o

C
O

C
O

M
C

O
-
4

C
O

r
o

d
d

d
0

0
0Q

O
Q

o
o

o
o

o
o

o
o

o
o

o

d
d

d
d

O
Q
0
Q
O
Q
0
Q

O
O
O
O

O
O
O
O

O
O
O
O

o
o

o
~

C
D

-
4

to
c
d

r
o

c
s

•-
»

C
O

C
O

C
O

d
d

d
d

d
0Q

0
0

O
Q

0Q
0Q

d
d

d
O

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o

C
D

-
J

C
D

r
o

c
o

c
o

C
O

C
D

C
D

e
n

d
d

p
0

0
0

0
O

Q
o

o
o

o
o

o
o

o
o

o
o

o
C

O
C

O
C

O
M

O
C

O

t
o

*
*

r
o

t
o

-
J

d
d

d
d

d
d

O
O

0
0

O
Q

O
Q

0
0

0
0

o
o
o
o
o
o

o
o
o
o
o
o

o
o
o

o
o
o

o
o
o
o
o
o

C
O

C
O

C
O

C
O

C
O

C
O

-
j

o
j

en
•£

co
co

r
o

e
n

e
n

r
o

c
n

e
n

c
o

e
n

c
o

c
o

^
ie

n
C

O
C

D

o
o

o
o

o
o

o
o

o
S

o
o

c
o

»
-»

o

^
1

h
*

|_
*

M
•-

»
l-

»
-»

I
-<

1
O

B
C

D
C

O
O

)
C

O
»-

*

o o
o

o
o

o
c
o

c
o

C
O

C
D

d
d

d
O

Q
0

0
0

0
Q

O
O

o
o

o
o

o
o

o
o

o
a

t
o

r
o

•£
e
o

d
d

d
O

Q
0

0
o

o
o

o
o

o
o

o
o

o
o

o
o

o

13
53

8

d
d

d
d

d
d

d
d

O
O

O
Q

O
Q

O
Q

O
Q

O
o

O
O

O
Q

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

c
o

c
d

-
4

c
d

e
n

*»
•

c
o

c
o

r
o

r
o

r
o

r
o

r
o

C
o

o
r
o

j
e
s
s
e
s

3
c
o

c
o

»
-
»

c
d

*
>

c
o

g a C
D

C
O

C
D

C
O

s
p

d
d

d
d

d
d

d
d

d
d

d
d

d
d

d
d

d
d

C
O

a
m

«<
v<

v<
eo

*
i

o
o

e
r

c
o

n>
"
i

s*
e
n

a
-

d
c

o
j

o
c
d

c
d

en
*

-^

o
o

c
e

0
»

2
C

O

-j
cd

en
*

co
co

»-
*,

o
L

lh
,E

M
M

«
*

,«
>

"
-^

,"
«

'-
»

v
J
W

'i
i-

w
tv

r
-w

w
»

.-
.v

.w
.^

«
.w

r
-T

-v
..

v
^
^
w

—
,.

_
_-

co
co

co
co

co
co

to
g

^
h

»
e
p

c
s
c
o

c
o

c
o

c
o

c
o

c
o

c
o

i-
*

h
*

5
o

^
t:

tt
K

K
^
*

^
tt

M
tt

K
ti

K
^
fe

ti
S

9
^
S

8
S

^
^
S

ro
en

en
•-

*
h»

»-
»•

-*
fl>

m
j£

co
co

c
o

c
o

o
o

o
co

c
o

o
c
o

c
o

c
o

co
c
o

m
h»

co
i-

*
o

o
c
d

o
c
d

c
o

o
e
n

-
J

cd
c
o

-
j

>
io

^
c
o

^
c
D

e
n

c
D

c
o

c
D

^
c
o

o
c
o

c
D

M
e
n

^
c
D

c
o

o
C

D
a

a
c
o

e
n

c
D

o
co

*
»

-»
e
n

c
o

to
a

)0
5

c
O

|_
4

e
n

c
o

d
d
d
d
d
d
d
d
d
d
d
d
P
P
P
d
d
d
d
d
d
d
d
d
d
d
d
d
P
P
P

s
a

a
d

d
d

d
d

d
d

d
d

d
d

d
d

d
d

d
d

d
d

d
d

d
d

d
d

d
d

d
d

d
d

d
d

d
d

o
S

en
en

^^
eo

cp
co

co
co

co
co

co
co

u
co

co
co

co
co

co
co

co
co

co
u

'
"
^

r
O

r
O

M
N

H
M

M
H

H
M

K
H

M
M

O
O

O
O

O
O

O
O

O
C

O
U

C
J
U

U
N

N
N

N
N

C
O

C
O

H
'O

C
O

O
^
O

C
n

*
C

O
C

O
H

*
O

C
O

C
D

-<
lC

D
C

fl
*

C
O

C
O

i-
-'

if
>

tC
O

C
O

»
-*

O
C

O
C

D
-<

>
lC

D
C

n

/

Run with Errors

The following run simulates a missing contact on the layout. Node 28

(nl07 in the simulation file) has been split into nodes 28 and 999 (28 changed

to 999 on element x99). Note: all elements marked as connected incorrectly

are the only ones connected to node 28. Also, warning message at beginning.

wombat -v -as ga.sim -nx err. ext -ac err.cor >& err.out

Extracted file (err.ext)

x0t05h0 12345

xltl5 678 6 9 10
x2 t09 11 12 13 6 14 9
x3t15 15 5 16 15 9 10

x4tl5 17 1819 17 9 20
X5U5 2122 23 22 9 24
x8 tl5 25 26 23 27 9 24
x7 tl5 2B 29 23 30 9 24
xB tl5 31 32 23 33 9 24
x9 t09 34 35 36 37 38 39
xlO tl5 40 41 42 43 39 44
xll t09 45 46 47 48 49 39
X12U5 50 5142 52 3944
xl3109 53 54 55 56 57 39
xl4 tl5 58 59 42 60 39 44
xl5109 61 62 63 64 65 39
x!6 tl5 66 67 42 68 39 44
xl7 t09 69 70 71 72 73 39
xlBtl5 7475 78 77 78 44
xl9 t09 79 80 81 B2 B3 39
x20 tl5 84 85 76 86 78 44
x21109 87 88 89 90 91 39
x22 tl5 92 93 76 94 78 44
x23109 95 96 97 98 99 39
x24 tl5 100 101 76 102 78 44
x25 t09 103 104 105 106 107 7B
x28 t!5 108 109 110 111 78 112
x27 t09 113 114 115 116 117 78
x2B tl5 118 119 120 111 78 112
x29 t09 121 122 123 124 125 78
x30 tl5 126 127 12B 111 78 112
x31109 129 130 131 132 133 78
x32 tl5 134 135 136 111 78 112
x33 t04h 137 13B 28 25 32 139
x34 t04h 140 141 11 142 111 143

x35 itbuflh 139144
x36 itbuf2h 24 145
x37 itbuf4h 39 146
x38 itbuf4h 78 146
x39 itbuf4h 9 146
x40 itOl 147 148 149 2 4 150
x41 itbuflh 8 151
x42 itbuflh 152 153
x43 itbuflh 16 154
x44 itbuflh 37 155
x45 itbuflh 156 157
x46 itbuflh 48 158
x47 itbuflh 159 160
x48 itbuflh 56 161
x49 itbuflh 162 163

x50 itbuflh 64 164
x51 itbuflh 165 166
x52 itbuf2h 42 167
x53 itbuflh 72 168
x54 itbuflh 169 170
x55 itbuflh 82 171
x56 itbuflh 172 173
x57 it06 174 175 176 90 177 178
x58 it06 179 180 181 98 182 183
x59 itbuf2h 76 1B4

x60 it06 185 186 187 106 188 189
xBl itOB 190 191 192 116 193 194
x62 itOB 195 196 197 124 198 199
x63 it06 200 201 202 132 203 204
x64 itbuf2h 111205
x65 itbuflh 206 207
x66 it06 208 207 184 209 207 167
x67 tinv2h 210 22
x6B tinvlh 211 9
x69 tinvlh 23 212

June 8. 1963

\

x70 otmux20h 213 21214 215 xl23 tl5 222 278 140 2529110
x71 otmux20h 216 217 28 139 xl24 t06h 279 3331 24928
x72 otmux20h 218 2522 139 xl25 tOBh 280 302B281249
x73otmux20h 219 31 10 139 xl26 t06h 282 2725 283 210
x74 tl2h 19 220 28 31 139
x75 otmux20h 22111 222 139
x76 tl2h 223 224 1 2 139
x77 tl2b 43 225 34 156 226
x78 tl2h 52 227 45 159 226
x79 tl2h 60 228 53 162 226
x80 tl2h 68 229 61 165 226
x81 tl2h 77 230 69 169 226
x82 t!2h 66 231 79 172 226
x83 tl2h 94 232 87 174 226
x84 tl2h 102 233 95 179 226
xB5 tl2h 234 226 111 210 206
x86 til 235 43 77 110 223 23 209 208
x87 til 236 52 86 120 6 23 209 208
x88 til 237 60 94 128 238 23 209 208
xB9 til239 66 102 136 11223 209 208
x90 tl2h 110 240 165 103 234
x91 tl2h 120 241 190 113 234
x92 tl2h 128 242 195 121 234
x93 tl2h 136 243 200 129 234
x94 t09 244 245 246 223 247 9
x95 tl5 3 248 152 3 9 10
x96 tor2h 249 210 25
x97 tor2h 20 210 26
x98 tor3h 10 21 26 29
x99 tOlh 217 250 21 31 999 25
xlOO tOlh 238 251 2 3 147 6
xlOl tnor2h 252 111 11
xl02 otbufl5h 253 254
xl03 otbufl5h 255 17
xl04 otbuf20h 256 244
xl05 otbufl5h 257 40
xl06 otbuf15h 258 50
xl07 otbufl5h 259 58
xl08 otbuf15h 260 66
xl09 otbufl5h 261 74
xllO otbuf15h 262 64

xlllotbufl5h263 92
xl 12 otbuf15h 264 100
xll3 otbuf15b 265 108
xll4 otbuf15h 286 118
xll5 otbuf15h 267 126
xll6 otbuf15h 268 134
xll7otbufl5h269 235
Xll8otbufl5h270 236
xll9otbufl5h271237
xl20 otbufl5h 272 239
xl21109 112 44 273 238 274 9
X122 t09 254 275 276 138 277 211

June 6. 19S3

Output Tile (err.out)

verbose mode set
simulation file: ga.sim
extracted file: err.ext
cell and node correspondence file: err.cor

WOMBAT 8.1 run for ga.sim err.ext on Tue Dec 14 17:53:12 1982

reading in the first network file
reading in the second network file
WARNING: net counts differ (main)

number of elements in first file = 127
number of elements in second file = 127
number of nets in first file = 2B4
number of nets in second file = 285
number of initially bound elements = 0 (0.00%)
number of initially bound nets = 0 (0.00%)
setting up the fans

comparison loop
using activity
connectivity error - element (2) xl25: tOBh
connectivity error - element 12) xl24: t06h
connectivity error - element (2) x99 : tOlh
connectivity error - element (2) x74 : tl2h
connectivity error - element (2) x71: otmux20h
connectivity error - element (2) x33 : t04h
connectivity error - element (2) x7: tl5

iteration count = 1
bin count = 61
number of bound elements = 44 (34.65%)
incremental bound elements = 44
number of bound nets = 112 (39.44%)
incremental bound nets =112
connectivity error count = 7

iteration count = 2
bin count = 45
number of bound elements = 81 (63.78%)
incremental bound elements = 37
number of bound nets = 187 (65.85%)
incremental bound nets = 75
connectivity error count = 7

iteration count = 3
bin count = 33
number of bound elements = 114 (89.76%)
incremental bound elements = 33

June 6, 1983

N

number of bound nets = 268 (94.37%)
incremental bound nets = 81
connectivity error count = 7

iteration count = 4

tan count = 6
number of bound elements = 120 (94.49%)
incremental bound elements = 6
number of bound nets = 274 (96.48%)
incremental bound nets = 6
connectivity error count = 7

number of iterations = 4

total number of elements = 127
total number of bound elements = 120 (94.49%)
total number of nets = 284
total number of bound nets = 274 (96.48%)

connectivity error count = 7

hard binding breaks = 0
hard binding skips = 0

number of collisions = 1
maximum bin count = 61

maximum allocated memory = 106712

maximum resident set size = 302

total number of major page faults = 6
total number of minor page faults = 31
total number of swaps = 0

total real time = 8 seconds
total user time = 5.15 seconds
total sys time = 0.67 seconds
system utilization ((utime+stime)/real_time) = 0.7271
parse user time = 0.00 seconds
parse sys time = 0.00 seconds
element readin and setup user time = 4.37 seconds
element readin and setup sys time = 0.42 seconds
user bind and node alias user time = 0.00 seconds
user bind and node alias sys time = 0.00 seconds
create user time = 0.15 seconds

create sys time = 0.08 seconds
lookup user time = 0.35 seconds
lookup system time = 0.02 seconds

first element list

June 8, 19B3

muxl05 tl2h: not bound
muxl02 otmux20h : not bound
.gate101 t04h: not bound
orl06 tOlh: not bound
xnorlOl t06h : not bound

xnorl02 t06h : not bound
cntr2 tl5: not bound

first net list

^000003: not bound
g000004: not bound
g000005: not bound
g000006: not bound
g000007: not bound
gOOOOlO: not bound
nl04: not bound
nl07: not bound
nl25: not bound
out2: not bound

second element list

xl25 t06h: connected incorrectly
xl24 t06h : connected incorrectly
x99 tOlh : connected incorrectly
x74 tl2h : connected incorrectly
x71 otmux20h : connected incorrectly
x33 t04h : connected incorrectly
x7 tl5 : connected incorrectly

second net list

137: not bound
216: not bound

217: not bound
220: not bound

250: not bound
279: not bound
28: not bound

2B0: not bound
281: not bound
30: not bound
999: not bound

June 6. 19B3

APPENDIX D

Program Listing

Wombat consists of approximately 4000 lines of code and comments in

the C programming language.lKer78a] The code consists of 63 routines; with

16 for pin-permutability. The program runs under UNIX 4. IBSD and VMS 3.01

For a program listing/tape8 or a copy of this report contact Pamela

Bostlemann at following address:

Pamela Bostlemann
c/o Industrial liaison Program
Electronics Research Lab
499 Cory Hall
University of California at Berkeley
Berkeley, CA 94720

1UNDC is a Trademark of Bell Laboratories and VMS is a Tradeacari of DEC.

•Be sure to specify the operating system you irishthe programrun on (UNIX orVMS).

APPENDIX £

Glossary of Terms

This appendix contains definitions ofterms used in this report.

AVL trees

AVL trees are height balanced trees with a height mismatch ofno more

than 1. In other words, the two subtrees at any node of the tree can not

differ in height by more than 1.

bound

when two items (nets, elements) are found to be equivalent, the items

are bound. Two items are equivalent when each one has the «ame

unique signature.

CDF see cell-descriptor file.

cell-descriptor file

a file that among other things, contains information on how the pins on

an element can be allowed to permute with no change in the electrical

or logical function of the element. See Appendix B.

circuit

a collection of elements connected together by nets.

degenerate circuit

Nan Nelement circuit that takes ^-iterations to bind all elements. An

inverter chain is an example of this.

discriminnnt function

a function used to calculate the distance between two features.

distance

a measure of the difference between two signatures or features.

DRC design rule checker. Used to verify that spacing requirements on an

Integrated Circuit layout are met

ERC electrical rule checker. Used to verify that electrical rules on an

Integrated Circuit layout are met

element

a black box that is connected to other black boxes via nets and pins. In

the context of this report an element is an instance of a cell (NAND Gate.

MOSFET. ALU).

feature

a derived property of an item (ie. fanout, elements/nets connected to

it). As opposed to intrinsic properties (cell type).

hard-bound

element or net bound by the user (as opposed to bound by the pro

gram). Usually from labels found on the layout. This information is

specified in the user-binding file.

June 6, 1983

second graph.

net a means of connecting elements together. A collection of pins.

non-identical parallel paths

two or more groups of elements that are almost the same.

permutable

electrical/logical equivalence. Examples of this are the source and

drain equivalence of MOSFETS. and the equivalence of the inputs to a

NAND gate.

pin the place where an element connects to other elements through nets.

The inputs and outputs of the element

signature

a set of features for an element; the information used in comparisons

with other elements (fanin, fanout, type). Possibly in condensed form.

June 6. 1983

identical parallel paths

two or more groups of elements that are totally identical

Identical Parallel Paths

intrinsic Property

a property of an item that stays the same no matter where the item is in

the circuit e.g. cell type, number of inputs.

isomorphism

two graphs are isomorophic if there is a one-to-one correspondence

between the vertices of the two graphs such that for every edge in that

connects two vertices in the first graph, there is a corresponding edge in

the second graph that connects the two corresponding vertices in the

June 6. 1963

Bibliography

References

Ker7Ba.

B.W. Kernighan and D.M. Ritchie. The C Programming Language,

Prentice-Hall, Englewood Cliffs. New Jersey (1978).

A1177a.

RM. Allgair and D.S. Evans, "A Comprehensive Approach to a Connec

tivity Audit or a Fruitful Comparison of Apples and Oranges." The

Proceedings of the Design Automation Conference 33 pp. 312-321 (1977).

Miy81a.

N. Miyahara, T. Watanabe, M. Endo, and S. Yamada, "A New CAD System

for Automatic Logic Interconnection Verification,*' The Proceedings of

the IEEE International Symposium on Circuits and Systems, pp. 114-

117 (1981).

Hor76a.

Ellis Horowitz and Sartaj Sahni. Fundamentals of Data Structures, Com

puter Science Press, Potomac, Maryland (1976).

VlaSla.

A. Vladimirescu, K. Zhang, A.R. Newton, D.O. Pederson, and A.

Sangiovanni-Vincentelli, SPICE Version 2G User's Guide, Department of

Electrical Engineering and Computer Science. University of California.

Berkeley, California (August 1981).

SalB3a.

H.A. Saleh. J.E. Xleckner, and A.R. Newton, SPLICE Version l.€ Users

&iide, Department of Electrical Engineering and Computer Science,

University of California, Berkeley, California (April 1983).

nteia.

Dan Fitzpatrick, MEXTRA' A Manhattann Circuit Extractor, Computer

Science Departmemnt University of California, Berkeley, California (May

1981).

June 6, 19B3

	Copyright notice 1983
	ERL-83-66

