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ABSTRACT

The objective of a power system is to supply customer load demand economi

cally and reliably. The ability of a power systemto supply load demand while

the operating constraints are all satisfied is termed reliability in the planning

context and security in the operating context. The constraints may be divided

into steady-state constraints and dynamic constraints after a disturbance. In

steady-state operation, the power generation and the load demand must be bal

anced. This is represented mathematically by the power flow equations. The

solution of the power flow equations can by used to check whether the operat

ing limits are met in the system. The dynamic response of the system after a

disturbance must be stable. In this paper the state-of-the-art and current

research in reliability and security of large interconnected power systems are

reviewed. Reliability evaluation and security assessment involve power flow stu

dies and stability analysis. Recent developments in the-numerical simulation

and analytical studies of power flow and power system stability are first

reviewed in this paper.

This paper was prepared for the invited talk given at the Stocker Conference on Large Scale fn-
terconnscted Systems, Oct. 10-11, 1983, Athens, Ohio. It will be published in Large Scale Systems:
Theory and Applications
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1. INTERCONNECTED POWER SYSTEMS

1.1. Structure

A power system is an interconnected system composed of several utilities'

generating stations which convert fuel energy into electricity, substations that

distribute power to consumers, and transmission lines that tie the generation

stations and distribution substations together. Interconnection allows electric

utilities to share resources, thus reducing overall costs and improving reliabil

ity. The power system is conveniently divided into generation, transmission,

and distribution subsystems. Central to the generation subsystem is the syn

chronous generator. The rotor of the synchronous machine is driven mechani

cally by steam produced in a thermal unit (coal, gas, nuclear), or water from a

hydro unit. The synchronous machine converts mechanical power input to the

rotor into electrical power output of the generator. The transmission subsys

tem is a highly meshed network of high-voltage transmission lines which carry

electric power from the generators to the distribution substations. The distri

bution subsystem receives power from a substation and distributes it to the

customers through a radial lower-voltage network. For study of interconnected

systems, the distribution subsystem is treated as an aggregate load demand at

the substation. The interconnected generation-transmission system with

aggregate load demands is commonly called bulk power system.

Disturbances, small and large, occur frequently on power systems. A typi

cal small disturbance is the load fluctuation. Generators are equipped with a

feedback control system called the automatic generation control (AGC) system

to control the mechanical power input in response to the continuously chang

ing load demand. Short circuit caused by lightning,, for example, is considered

a large disturbance, or fault. Generator failure is also considered a large dis

turbance. Protective relays are placed strategically throughout the system to
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detect the occurrence of a large disturbance and to trigger the opening of cir

cuit breakers so that the affected equipment (e.g., shorted transmission line)

can be isolated.

1.2. Constraints

Power Flow

In steady-state operation the power generated by the generators and the

load demands of the customers must be balanced. The mathematical equations

describing the power balance are called power flow, or load flow, equations. The

system must be operated so that there is no overload on the equipment and no

abnormal voltages throughout the systems. These constraints can be

expressed mathematically in terms of the load flow variables.

Stability

Dynamic response of the generators must be taken into account when dis

turbances are involved. The system has to be stable after a disturbance. Two

types of stability are considered. Small-disturbance stability refers to the

asymptotic stability of the operating point. Transient stability refers to the

stability of the post-fault system after a fault is cleared.

1.3. Operating Objective

The operating objective of a power system is to serve the load demand

economically and reliably, with all the constraints satisfied.

1.4. Failure Events

The failure to satisfy the operating constraints may lead to load curtail

ment (loss of load) or system collapse. Fig. 1 shows major system failure

sequences. The initiating events of system failure are the outage of a generator

or a transmission line (may be caused by lightning). The system failure events

are the loss of load and system collapse. The blocks in between represent
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system response.

System failure events can be roughly divided into two cases, one is due to

violation of steady-state constraints (Fig. 2). and the other due to violation of

dynamic constraints (Fig. 3).

1.5. Reliability and Security

In planning and operation, one is concerned with the ability of the system

to serve load demand in the presence of disturbances. In the planning context

this is called reliability, and in the operation context this is called security.

This double-line of defense is necessary because for planning, a much longer

time period, a large number of possible operating conditions and disturbances

have to be considered, whereas for operation, only the current situation and

imminent disturbances are of concern, and more information about them is

available. However the methods for the analysis of reliability and security are

intimately related.

1.6. Contents of the Paper

This paper reviews the state-of-the-art methods and current research for

reliability evaluation and security assessment of interconnected power systems.

Power flow and stability analyses, which are two major components in reliability

evaluation and security assessment, are also reviewed.

2. POWER FLOW

2.1. Modeling

The steady-state operation of an electric power supply system requires

that the power supply and the load demand must be balanced. This is described

by a set of nonlinear equations known as the power flow, or load flow, equations.

Furthermore, the system has to be operated within the designed limits of the
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equipments. This is described by a set of inequality constraints, sometimes

referred to as the security constraints. The fundamental problem in the

steady-state analysis of power systems is to determine, for a given set of load

demand and generation pattern, whether the system can be operated in such a

way that all the equipments are loaded within their security constraints.

The branches of a power network represent transmission lines, transform

ers, etc., which are modeled as linear time-invariant PLC elements. The nodes

of the network other than the ground node are called buses. They correspond

to generation stations and load-center substations. For steady-state analysis

the network is considered as in sinusoidal steady-state.

Power flow equations

Consider a power network with N + 1 buses. Let [Y] denote the

(N+l)'(N-rl) node(bus) admittance matrix of the network and Y& = Gjd + jB^

be its kith element. Let Ek denote the bus voltage phasor of bus k and

5jb = Pt + jQk denote the injected complex voltages and complex power injec

tions, respectively. For convenience, we introduce a diagonal matrix

[J2] = diagf £lt.ffe EN\. Then we have

s#*[*#][y]E (i)

where superscript * denotes complex conjugate. There are three types of

buses:

(i) Slack bus: a bus whose voltage magnitude-and phase angle are specified;

(ii) I?Q bus: a bus where the injected real and reactive power are specified;

(iii) PVbus.'Qi bus where the injected real power and the voltage magnitude are

specified.

Load buses are modeled as PQ buses. Generator buses are modeled as PV

buses, except one generator bus is chosen as the slack bus. We let subscript 0
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correspond to the slack bus, subscripts (1,2,...,JV^J correspond to PQ buses and

subscripts fA^+1, • •JV} correspond to PV buses. Let Ek = Vkei6k and

&H = 9* "" &«• We may express (1) as

N

S VkVi(G*SM®ki - GkiCosS*) = Qk, k =1,2 Tfy (2)
i >o

2 vtViiG^cos&u +5«sin©«) =Pk% k = 1,2, ••• ,N (3)

where V= (VltV2, •••.Jfy)7 and 9 =(&i,®z, •••,QN)T are the unknown variables

or the state variables, and Q=(Qlt ••• ,QNq)t and P=(Pu •••,PN)T are the

power injections. Equations (2) and (3) are known as the power flow, or load

flow, equations. For ease of later reference we represent (2) and (3) in the form

/(x)=y (4)

where x = (V,8) is the set of state variables and y = (QP) is the set of power

injections.

Decoupled Power How Equations

Suppose that we make the following simplifying assumptions:

(SA1) The line resistances are negligible, i.e., Gki = 0.

(SA2) The phase angles across the branches 0W = &k - 0* are small so

that the second and higher order terms in the series expansions of sin0w and

cos0M are negligible, Le.t cosdMHi,sin0Ma$ibi.

Then the power flow equations (2), (3) become the decoupled power flow

equations:

fc =&(V): =-^ f, BtiVi, k=1.2, ••• ,NQ (5)
1 = 0

Ph =J**(V.O): =Vk f, BtiVii^ -0<), k=1.2, •••,N.
i =0

(6)
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Real Power Flow Equations

For the analysis of real power flows during transient, the sine term in Eq.

(6) is retained. Indeed the following nonlinear real power flow equations are

used in transient stability studies:

Pb = Vh S Bki ViS\n(Bk - ®i), k = 1,2. • • • JV (7)
i = 0

Eq. (7) may be obtained from Eq. (3) by assuming transmission lines are lossless

(Gw = 3). A further approximation of Eq. (6) is obtained by assuming that the

voltage magnitudes are all constant equal to one, the resulting equations are

called DC load flow equations:

Pb = S *«(©* - ©i). * = 1.2. ' ' ".* (8)
t = o

2.2. Numerical Simulation

The conventional approach to the steady-state analysis of power systems is

to solve the power flow equations numerically and then check whether the

security constraints are satisfied. Newton-Raphson [l] and Fast Decoupled [2]

methods are the two commonly used solution algorithms. A comprehensive

reviewof the numerical simulation approach'to the power flow study is provided

by Stott [3], The convergence properties have been analyzed from both numer

ical-studies [3] and a few theoretical investigations [4-5]. Fifteen hundred or

two thousand bus system power flows are routinely solved in industry [3].

The application of multiprocessors for power flow solutions has been inves

tigated by Pottle et. al. [6-7].

2.3. Analytic Studies

The conditions for the existence of power fiow solutions was studied by

Galiana [6-9], who has also studied other aspects of analytic properties of

power flow equations. An example of multiple solutions using realistic system
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data was given by Johnson [10]. More examples of multiple solutions can be

found in [11-12].

For the real power flow equations (7), the non-uniqueness of solution was

observed by Korsak [13]. Power flow solution of a three-node network was first

studied by Tavora and Smith [14]. The real power flow equations (7) are

analyzed more thoroughly by Arapostathis, Sastry, Varaiya [15-17], Bailiieui,

Byrnes [18-20].

Consider again the power flow equation (4),

«x) = y (9)

The system in steady-state has to be operated without equipment overload and

abnormal voltages. These constraints may be expressed in terms of inequali

ties:

g(x) * 0 (10)

Wu and Kumagai [21] defined the steady-state security region (Fig. 4) for ;

the given system configuration to be the set of y for which there exists a solu

tion to the power fiow equation (9) satisfying the security constraints (10). By

the application of analytic degree theory, they have obtained explicit expres

sions for the steady-state security regions. Previously the steady-state secu

rity regions using the linear dc load flow equations are obtained [22-24].

2.4. Related Topics

Power Flow Approximations

An analytic study of various approximations (decoupled power flow, linear

ized decoupled power flow, adjoint-network sensitivity equations) of the power

flow equations is presented by Kaye and Wu [25].
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Power Flow Ecternal Equivalents

Usually for power flow analysis, one is interested in the response in ones

own area, however, because of the interconnection, the external system has to

be included in the study. A comprehensive review of external network modeling

for power flow studies is provided by Wu and Monticelli [26].

Optimal Power Flaw

The optimal power flow problem concerns with the search of a power flow

solution by varying the generation pattern so that the total system production'

cost, or transmission losses, is minimized [27-30]. Nonlinear programming for

mulations have been applied.

3. STABILITY

3.1. Modeling

In studying the stability of a power system, the dynamics of synchronous

machines and their interaction with the power flows in the network must be .

considered. For toe electrical interaction with the power network, the simplest

model of the synchronous machine for stability analysis is the so-called classi

cal machine model, consisting of a voltage source in series with an impedance.

The synchronous tnachine is an electromechanical energy conversion device.

The power output from the voltage source in the machine model and the

mechanical power input to the machine are related to rotor dynamics. The

dynamic equation describing the motion of the rotor is called the swing equa

tion of the machine;

Mi6)i+ diQi = Pi -Pet (11)

where

Mi : .generator inertia constant
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and

&i = 0i : generator speed with respect to the synchronous speed

a\ : generator damping coefficient

Pi : mechanical power input

P« =S^^fcSinO, -0fc) - ^G^cos^-©*) (12)

is the sum of real power flows to the network from the generator.

A differential equation describing the dynamic response of the voltage % of

the classical machine model (effect of field flux decay) may be added. More ela

borate machine models include the differential equations representing the

effect of damper windings, rotor iron currents, etc.. The dynamic response of

control devices, Le., excitation systems, turbine-governor systems, etc., are

included for more detailed models. The power network is usually represented

by the power-flow equations. For more details on machine modeling, the

readers should consult ref. [31].

At any rate the resulting dynamic model of the power system may be

represented by a nonlinear vector differential equation.

x = F(x,y) (13)

where y is the set of injections or power generation and load demand, and x is

the set of state variables, including ®i,oit etc.

The equilibrium points, or the operating points, of (13) are the solution of

F(x.y) = 0. In fact, the operating point is a steady-state solution; or a solution

of the power fiow equations f(x) = y.

Small-Disturbance Stability

Small disturbance such as load fluctuation, happens all the time on a

power system. An operating point, therefore, is required to be asymptotically

stable, which is called small-disturbance (SD) stable in power literature.
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Transient Stability

Suppose that a large disturbance (a fault) occurs on the system. The

result of a fault may be short-circuit on a transmission line. In the pre-fault

configuration, the power system is in a steady-state condition. The fault occurs

say at t = 0 and the system is then in the fault-on condition for a fixed time

period t, during which the state of the system changes dynamically. The fault

is then "cleared" by protective relay system operation, which opens the circuit

breakers to disconnect the faulted line, thus moving the system to its post-fault

configuration. The state of the system then changes according to different

dynamics, the initial condition of which is the value of the fault-on state, at the

instant of fault clearing. If this initial state of the post-fault system is in the

region of attraction of the post-fault equilibrium operating point, then the sys

tem is transiently stable.

The pre-fault system is described by the power flow equations:

«i(xo) = y. (14)

The fault-on system is described by a set of differential equations from 0 to t,

where t is the switching time,

ii = Fjbtei.y). (15)

The post-fault dynamics are

is =F;(x2,y). (16)

3.2. Numerical Simulation

Detailed model of synchronous machine and the associated control sys

tems are normally used for numerical simulation. For the analysis of small-

disturbance stability, eigenvalues of the linearized state equations (13) are cal

culated [32-33]. For the analysis of transient stability, time-domain step-by-

step solution of the state equation (13) is computed. Implicit trapezoidal
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formula is the most popular algorithm in use. A complete survey of transient

stability simulation is provided by Stott [34]. Programs with capability of han

dling two thousand buses three hundred generators are routinely used. Typi

cally ten to forty runs may be required for a plan and CPU time may be 15

minutes for a typical run. The analysis of results is done by engineering judge

ment. The recent trend is to simulate a longer time period, hence dynamics of

boiler, etc. are included [35].

The application of multiprocessing to transient stability simulation has

been investigated by Van Ness, Brasch et. al. [36-37].

3.3. Analytic Studies

Very simple models are used for analytic studies of dynamic behavior of

power systems. Swing equation (ll) for synchronous machine and decoupled

real power flow equation (7) for the network are normally used.

Small-disturbance stability

The stability of the equilibrium points, which are the solutions to the real

power flow equations (7) have been studied [15-20, 38, 56]. Wu and Liu [39] have

included the reactive power flow equations (2) into the model (with G^ = 0) for

small-disturbance stability analysis.

Nonlinear behavior

The application of bifurcation theory to the swing-equation reai-power-flow

model of power system [15,19-20,40-41] have revealed interesting properties of

the model. Abed, Tsolas, Varaiya [40-41] have shown, using Hopf bifurcation

theorem that an operating point can lose its stability due to a number of fac

tors. Kopell and Washburn [42] have shown the presence of chaotic motion in

the three-machine model. More general case is studied by Abdel Salam,

Marsden and Variaya [43].
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Direct method for transient stability evaluation

The application of Liapunov direct method for transient stability evaluation

of power system has been suggested for some time, see Fouad [44], Pai [45],

Ribbens-Pavella and Evans [46]. The work by Athay, Podmore, Virmani [47]

using the so-called transient energy funtion demonstrated the practical feasi

bility of the approach. Michel, Fouad and Vittal [48] pushed the idea further by

suggesting the use of individual machine energy functions. By introducing

frequency-dependent load," Bergen and Hill [49-50] have developed a sound

foundation for the energy approach. Narasimhamurthi [51] has proposed a

Liapunov function that would allow the inclusion of the reactive power flow

equations into the model.

Dynamic security regions

Transient stability refers to the stability of the post-fault system. Kaye

and Wu [52] define a region in the pre-fault injection (power generation and

load demand) space, called dynamic security region (Fig. 5), to be the set of

injections for which the post-fault system will be transiently stable. A method is

proposed to derive dynamic security regions.

3.4. Related Topics

A reduced order dynamic model of the external system is called a dynamic

equivalent. It is observed in practice that certain machines tend to react as a

group, called coherent group. The utilization of coherent groups for dynamic

equivalents has been suggested by Podmore and Germond [53-54], Wu

Narasimhamurthi, Tsai [55-57], Sastry and Variaya [58], Gallai and Thomas [59],

DiCaprio [60] have conducted analytic studies on coherency and suggested

alternative algorithms. A more general decomposition and aggregation

approach based on the concept of coherency was proposed by Kokotovic,

Avramovic, Chow and Winkelman [61-65].

-13-



4. SECURITY

4.1. Deterministic Steady-State Security Assessment

The concept of power system security was introduced by Dy Liacco [66-68].

Security is considered to be an instantaneous time-varying condition that is a

function of the robustness of the system relative to imminent disturbances

[69]. A working definition of security introduced by Dy Liacco employs a deter

ministic framework in which the robustness of the system is tested, using the

steady-state model, with respect to a set of selected disturbances, or con

tingencies. A system is said to be secure if it is in a normal operating state and

none of the next contingency would cause a transition to an energency state.

The major components of security assessment software for real-time power

control center application include state estimation, contingency selection,

external network modeling and contingency evaluation (Fig. 6). Missing and

erroneous data occur frequently in the real-time environment. State estima

tion uses weighted least square method to estimate the state variables of the

power system based on the telemetered data. A list of contingencies is

selected, which should, in the ideal case, be based on their likelihood of

occurrence and the consequence they would entail. The contingency evalua

tion uses a on-line power flow to assess the effect of contingencies. In doing so,

a model of the external system which is not monitored is needed. More detail

description on the state-of-the-art of these topics can be found in the review

papers by Dy Liacco [67-68], or Taiukdar and Wu [70]. Most modern power sys

tem control centers are equipped with some sort of steady-state.security

assessment capability.
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4.2. Probabilistic Dynamic Security Assessment

As we have stated in Sec. 1.4, there are two aspects of system failure events

that should be considered in security assessment, namely, load curtailment and

system collapse. The steady-state security assessment addresses primarily to

the question of the adequacy of generating and transmission capacity to meet

load demand. To address the question of the avoidance of uncontrolled cascad

ing tripouts that lead to system collapse, dynamic response of the system fol

lowing a disturbance should be considered. Furthermore, because of uncer

tainty inherent in the prediction of "imminent disturbances," a probabilistic

framework for security assessment is more appropriate. Thus there is a need

to extend the deterministic steady-state security assessment to probabilistic

dynamic security assessment.

Because of heavy computational burden, on-line stability simulation does

not seem viable. Recent research in the development of tools for on-line

dynamic security assessment proposed by Ribbens-Pavella et. al. [71], and

Fouad et. al. [72], is largely focused on the approach of the direct method.

Wu and Tsai [73,74] have developed a comprehensive framework for power

system security assessment which incorporates probabilistic aspects of distur

bances and system dynamic responses to disturbances. Standard mathematical

models for power flow analysis and transient stability analysis are used. A

linear vector differential equation is derived whose solution gives the probabil

ity distribution of the time to insecurity. The coefficients of the differential

equation contain the transition rates of system structural changes and a set of

transition probabilities defined in terms of the steady-state and the dynamic

security regions, defined in the space of power injections (Sec. 2.3 and 3.3).

4.3. Security Control
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The traditional approach to secure control, or security enhancement, is

again based on the list of next contingency [75]. The objective is to schedule

generation so that the system will operate with the operating constraints

satisfied for all contingencies. Linear programming has been used as a tool for

the security rescheduling, see Stott et. al. [76-77]. A nonlinear programming

approach to security assessment incorporating transient energy considerations

is proposed by Chandraskehkar and Hill [78].

Kaye and Wu [79] have proposed a security control scheme based on the

framework of probabilistic steady-state and dynamic security assessment. Con

cepts and techniques from stochastic optimal control are utilized.

5. RELIABILITY

5.1. Generation System Reliability

In the classical generation system reliability evaluation, it is assumed that

the transmission system is capable of carrying power flows from generation

sources to load points within an area whenever needed. Therefore, the con

straint on power balance, namely, the power flow equations, is replaced simply

by the requirement that the available total system generation capacity is

greater than the load demand. Because of possible failure (called forced

outages) of the generators, the available total system generation capacity is a

random variable, whose probability distribution function can be computed by

the convolution formula using the probability of failure for each unit. The pro

bability that there is inadequate generation capacity to meet the load demand

is called the loss-of-load probability (LOLP), and the method is commonly used

in industry [80.81].

Quite often system planners are interested in assessing the benefits of

interconnection among areas. An area refers to a utility company or a

-16-



geographic region within a utility. The power transfer between two areas is lim

ited by the capacities of the tie lines that connect the areas. The objectives of

reliability studies of such multi-area power systems are to evaluate the

enhancement of reliability due to interconnection and to identify interconnec

tions whose improvement is most effective in increasing the system reliability.

The multi-area interconnected power system can be modeled as a capacitated

network with probabilistic arc capacities. Clancy, Gross and Wu [82] have

developed a solution method for the evaluation of the reliability of such net

works for power systems. The method uses the state space decomposition

scheme for probabilistic flow networks proposed by Douliiez and Jamoulle [83].

5.2. Bulk System Steady-State Reliability

Historically utilities have evaluated bulk system reliability based on a large

number of power flow analysis and stability studies. Only recently have

attempts been made to apply quantitative or probabilistic approaches to bulk

system steady-state reliability. Several different approaches have been pro

posed [84].

The Monte Carlo approach has been popular in Italy and France [85,86].

Instead of relying on random number generators to draw cases, as in the Monte

Carlo approach, an enumeration method using a list of contingencies has been

proposed. It is called contingency enumeration method. The basic idea of the

method is to add the probabilistic element to the approach described in Sec. 4.1

for steady-state security assessment. It employs a contingency selection sub

routine to generate a set of sample points (cases) for reliability calculation.

The probabilities and frequencies of failure cases are then added up. Marks,

Mikolinnas et. al. [87,88] have demonstrated the feasibility of contingency

enumeration method for realistic systems.

-17-



Alternative approaches have been proposed [89-91]. Moslehi and Wu [92-

93] have suggested a set decompositionmethod for bulk system reliability

evaluation without solving a power flow, even though the dc load flow model is

incorporated in the formulation.

5.3. Bulk System Dynamic Reliability

Again the bulk system steady-state reliability addresses only to the ques

tion of adequacy of generation and transmission capacity to meet load demand.

The bulk system dynamic reliability addresses to the question of the avoidance

of instability leading to system collapse. Traditionally, a large number of stabil

ity runs are studied for that purpose. The inadequacy of such an approach and

the importance of considering probabilistic aspects of the disturbances and the

system response (particularly the response of the protective system) are

pointed out by Billinton and Kuruganty [94]. Anderson et. al. [95-96] have

attempted to apply Monte Carlo approach, coupled with the direct method, for a

probabilistic approach to dynamic reliability evaluation. Tsai and Wu [97] have

extended their probabilistic dynamic security assessment approach to the

dynamic reliability evaluation problem. The resulting mathematical model is a

nonstationary continuous-time Markov chain. Formulas for the limiting aver

age frequency, duration, and probability of system failure are derived.

5.4. Reliability Planning

Normally in system planning different plans are studied, results of reliabil

ity evaluation are compared. Fischi et. al. [98] have suggested an automated

transmission system planning method in which the dc load flow model is used

and reliability constraints are incorporated.

6. CONCLUSION
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The ability of a power system to supply load demand while the operating

constraints are all satisfied is called reliability in the planning context and

security in the operating context. This paper reviews the state of the art and

current research in the analysis of reliability and security of bulk power sys

tems. The reliability evaluation and secure operation of distribution systems

are not considered in this paper.

There are two other aspects of power system planning and operation which

are also related to reliability and security of power systems, but are not con

sidered in this paper. One concerns with the situation when a system is capable

of meeting the load demand. In such cases, the focus is then shifted to

economics. Economic operation of a power system involves many topics, in

addition to the optimal power flow (economic dispatch) that are mentioned in

Sec. 2.4, there are unit commitment [99,100], hydro scheduling [100,101], etc.*

The other situation is when a system is incapable of supplying the demand

without violating operating constraints. This is the time when emergency

actions are called for. Zaborzsky et. al. [102-104] have developed a theory for

emergency control.

The basic steps in the conventional approach to the analysis of bulk sys

tem reliability and security consist of the following:

1) Select a list of contingencies

2) Simulate system response for each contingency

3) Analyze the result by engineering judgement

Usually worst case scenarios are studied in the conventional approach.

Concordia [105] has suggested that there is a certain arbitrariness in the con

tingency selection. Dandeno [106] has pointed out that based on statistical

data the standard criteria for fault selection are too severe. On ther other

The references cited in this section are the ones which reflect the most recent developments
in that particular subject, they are not necessarily the representative references.
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hand, the results from the analysis of major disturbances indicate that it is

nearly impossible to predict in advance all the events which could trigger a

major disturbance [107]. What is needed here, we believe, is a balanced

approach to reliability and security analysis that takes into account the proba

bility and frequency of contingency occurrence and severity of consequence.

This can be achieved only through a probabilistic approach. Furthermore, the

recent economic and regulatory constraints are corroding the enormous

redundancy previously built in the system. Walraven [108] has remarked that

the severity of future system problems may dictate that the system be planned

to allow pre-arranged failure events (load interruption, islanding) to occur. In

such an environment, the conventional analysis methods would be inadequate,

whereas probability methodology could provide a more objective and consistent

means for comparing different system designs.

The numerical simulation approach for the analysis of reliability and secu

rity of power systems has its inherent limitations. For large systems with a

great number of cases to study, new approaches based on analytic understand

ing of the problem are needed. The review in this paper of current research in

the analytic aspects of power system models has shown that in the last few

years great progress has been made. As a matter of fact, most theoretical

breakthroughs occurred within the last three to five years. However it has also

been pointed out in the paper that the models used in the analytic studies so

far are still too simplistic and some proposed methods in their embryonic form

impose heavy computational burden. We believe that much more research is

needed before we can enjoy the fruit of today's planting.
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