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Abstract

We treat the complete dynamics of the Josephson junction circuit with both
d.c. and a.c. current forcing, with emphasis on the a.c. case. Specifically,
we derive analytically the complete bifurcation diagram of the a.c. forced
Josephson junction. We thus place on analytic grounds the qualitative, exper
imental and simulation work of Belykh, Pedersen and Soerensen; specially chat
which pertains to the regions of chaos. Combining previous results from the
literature with our new results, we provide a comprehensive picture of the total
dynamics of the a.c. forced case; as well as smooth insightful transitions to
the associated I-V characteristics. Explicit asymptotic formulae for the curves
that separate the different regions in the bifurcation diagram are also given.



Section 1. Introduction

We focus on the dynamics of the Josephson junction circuit with both

d.c. and a.c. forcing, with emphasis on the a.c. case. Specifically, we

derive analytically the complete bifurcation diagram of the a.c. forced Josephson

junction, as well as the associated I-V characteristic. We place on firm analytic

grounds the qualitative, experimental, and simulation work of Belykh, Pedersen

and Soerensen [7], specially that which pertains to regions of chaos—the work

of [7] is the most thorough to date. Abidi and Chua [3], Odyniec and Chua

[13, 14] supplied analytic treatment to when the Josephson junction possesses

periodic (rotational) orbits. We utilize their results, as well as ours, to provide

a comprehensive picture of the total dynamics of the a.c. forced case; and smooth

insightful transitions to the associated I-V characteristics.

The key to realizing the afore mentioned program of obtaining the a.c. bifur

cation diagram is to prove analytically the existence of chaos, for certain para

meter values, in the dynamics of the a.c. forced junction. Chaos, i.e. complex

orbital behavior, occurs in many systems of practical interest. In addition to a

huge*volume of simulation evidence, chaos has been analytically shown to exist,

for instance, in the Duffing equations (Greenspan and Holmes [8]), the swing

equations of a power system (Kopell and Washburn [12], Salam, Marsden and Varaiya

[2]). It would appear superficially that the results presented in [2] (evidence

of the Arnold diffusion variety of chaos) which are valid for system equations

associated with the dynamics of forced pendulums, can readily be transcribed

to the present case. Certainly the dynamics of the forced junction are those

of a forced pendulum. The difference, however, Ues in the fact that the damping

associated with these dynamics (their departure from being Hamiltonian) is

not necessarily small—this necessitates several non-trivial modifications in

the theory presented in [10, 9, 1, 2]. We prove the existence of 'Smale

horseshoe' chaos in the dynamics of the Josephson junction using the method of



Melnikov thereby validating the experimental and simulation result of [6, 7, 11]

in the 10-300 GHZ range. We use our results to obtain the complete bifurcation

diagram of the a.c. forced junction.

The outline of our paper and our contributions are as follows: In Section 2

we review the model of the Josephson junction dynamics. We briefly review the

bifurcation diagram of the d.c. forced junction derived in [3,5,7,17] as well as

the I-V characteristic of the d.c. forced junction. We then explain the a.c.

bifurcation diagram of [7] on the grounds of simulation, experiment and qualitative

arguments. We describe the region of the a.c. dynamics which has been studied by

Chua and Odyniec in [13, 14]—they explain essentially the piecewise constant por

tion of the I-V characteristic in the a.c. forced junction.

We point out in Section 2, the need for analytic proofs for the. existence of

chaos in certain parameter ranges to analytically confirm the conjecture of

(7]. To this end, we begin with a brief discussion of chaos and the Melnikov

technique for establishing the presence of a Smale-Birkhoff horseshoe in the

dynamics of a periodically forced nonlinear system. We do not review the results

on the specifics of the chaos associated with the horseshoe here—the reader is

referred to the papers of Kopell and Washbrun [12], Salam, Marsden and Varaiya

[1], Greenspan and Holmes [8], Holmes [10], and the new book of Guckenheimer and

Holmes [9] for this. In Sections 4 and 5we apply these techniques to establish

the existence of chaos in the junction for different sets of parameter ranges-

Section 4 deals with junctions with low conductance values; whereas Section

5 has no such restriction.

We point out here that the treatment of chaos, as it applies to the

Josephson junction, was attempted in [14], The case of large conductance,

corresponding to Section 5 here, was only treated qualitatively as in [7],

The attempt to use the Melnikov technique for the low conductance case

(with also a zero constant current), corresponding to a special case of

Section 4 here,.was technically incorrect, for failure to show the following:

the improper (Melnikov) integrals obtained exist and are finite; and further



they do not equal zero simultaneously. Only in the event that these integrals

can be evaluated explicitly, that these technical questions can be directly

checked. These points will be clarified in the context of Section 4.

In Section 6, we collect all the results to analytically derive the complete

a.c. bifurcation diagram of the junction and the relation between the a.c. and

d.c. bifurcation diagram. We close the section with a discussion of the effect on

our analysis of increasing the amplitude of the a.c. forcing of the junction

beyond its very small value.

For a good description of recent advances in superconducting devices and

circuits see Van Duzer and Turner [16]. Further, the presence of chaos in

the junction dynamics results in increased noise observed at the junction as discussed

in [6, 7, 11]. This is particularly of consequence when the junction is used

in mixer applications.



Section 2 Dynamics of the Josephson Junction

2.1 The Model

The dynamics of a Josephson junction driven by a current source as shown in

Fig. 1 (see ag.D,6,7,11,13,16]) satisfies the following differential equation:

hC d2* hG_ it + IQ Sin* -ig (t) (2.1)
4tre at2 4ire dt

Here h is Planck's constant, e the electronic charge, IQ a threshold current associated

with the tunnelling current, C the junction capacitance, G the junction conductance

and * the difference in phase of the order parameters across the junction. The

junction voltage v is given by

h d*

4ire dt

(2.2)

4irel„ ,.
(2.1) may be rescaled so as to make it dimensionless as follows: set t =» -^r<j c,

aai2LSio — andT (t) -i i ( hG T T) . Their equation (2.1) reads as
0 h G2 s I sv 4reIQ '

- . - (2.3)
B* +• * + Sin* • i (t)

2 3
^th i.i*t ; -i± . The form of the scaling (2.3) is not standard (it is degenerate

* d*' dt2

when G - 0). Sometimes an alternate scaling of (2.1) is useful. Define

T »

i G • 0). Sometimes an alternate scaling oe v^..x; is »««•• -»«**--

W>f e. <-(^"G i -4<*> "T0 4^)'° °btaia
*+d*' +Sin* - i/s (t) (2-4)

(this scaling is degenerate when C- 0). The form (2.4) is useful in some contexts

since d has the physical interpretation of damping. Note that 3of (2.3) is

equal to 1/d2 in (2.4). We will use both models (2.3) and (2.4) as convenient.

2.2 Constant Forcing foC Analysis)

Equation (2.3) has been studied extensively in the instance that is (t) -p.



(equivalently, i (t) » l,^, as the equation by Andronov, Khaiken, and Vitt [4],

Belykh, Pedersen and Soerensen [7], Abidi and Chua [3], Odyneic and Chua [13] and

in the context of the swing equations of a power system by Arapostathis, Sastry
«

and Varaiya [5]. We review the results briefly: rewriting (2.3) with * » y and

T (t) * p as a first order system we have
s —

• . -y-Sin* + o (2 5}*. y, y --2 g* U.3;

Equation (2.5) is periodic in *. Consequently, the state (*, y) can be viewed

either as an element of IR x IR or S1 x IR where S1 - [0, 2tt] with 0, 2ir identified.

The state space S1 x IR is more natural, but we use both IR x IR and S x IR as

per convenience.

2.2.1 Bifurcation Diagram for the DC Excited Junction

The bifurcation diagram of (2.5) with p,0 as parameters is shown in

Figure 2 (for 8^0). The diagram is symmetric about the S-axis so that we will

discuss it only for positive values of p. In the region (a), equation (2.5) has

two equilibrium points in S* x IR; the one a node and the other a saddle. All

trajectories converge to one or the other equilibrium pointras shown in Figure 3(a).

In the region (c), (2.5) has two equilibrium points and a stable periodic orbit on

S* x IR. As shown in Fig. 3(c), the stable periodic orbit on S1 x IR corresponds to

an unbounded trajectory on IR x IR - such a periodic orbit is known as a rotation.

A trajectory that forms a periodic orbit both on S' x IR and on IR x IR is referred

to simply as an oscillation to distinguish it from a rotation. In che region (f)

(2.5) has only a stable periodic orbit - a rotation, see Figure 3f. The curves

separating regions (a), (c) and (f) are the bifurcation curves - (b): =» {(?,3):

p - pc(6), S > 6o>, (d) - {(p,0) ; p- 1, 8 > Bq} and (e) =• {(<>,S): p - 1, 6 <. 3Q>.

On (b), the phase portrait of (2.5) includes two equilibrium points and a saddle

connection as shown in Figure 3b. On (d), the phase portrait includes a single

equilibrium point obtained by the fusion of the saddle and the node (a saddle-node

bifurcation) and a rotation as shown in Figure 3d. On the surface (e), the saddle

node and saddle connection occur simultaneously as shown in Figure 3e. Note that



the curves (b), (d) and (e) join smoothly at 8Q.

The sequence of bifurcations obtained when P is increased for a fixed value of B

is illustrated by the two horizontal lines (A) and(B) in Figure 2. Line(B) corresponds

to a small value of 8(consequently, large damping djand line(A)to an intermediate

value of 8. Traversing line(A)in the direction of increasing P starting from P - 0,

one successively obtains the phase portraits shown in Figures 3(a), 3(b), 3(c), 3(d),

and 3(f). Traversing line(B)in the direction of increasing P, one obtains the phase

portraits of Figures 3(a), 3(e) and 3(f). We utilize these lines in our discussion

of the I-V characteristics of the junction.

2.^2 I-V Characteristics of the DC-Excited Junction

While the bifurcation diagram of Figure 2 gives the complete portrait

of the dynamics, one is often interested for applications in an I-V characteristic

i.e., aplot of Id (proportional to ^, specifically Idc -Iqp) vs. Vav (proportional
to the time averaged value of y-g, specifically ^ <$ >). Figure 4gives two
such plots: 4(a) and (b) corresponding respectively to the junction with intermediate

and low values of 8. We explain Figure 4 in the context of our bifurcation diagram

(Figure 2) and the phase portraits in Figure 3.

Consider first a junction which has an intermediate value of 8, say, 8 at.

line (A) in the bifurcation diagram of Figure 2. We study the Vav vs. 1^ curve as

I (or equivalents p) is gradually (quasistatically) increased from zero, i.e.,
"dc

we traverse the line{A)in the bifurcation diagram. Initially, we are in region(a);

all trajectories converge to one of the two equilibrium points on S x IR . Since,

y-0at each of these points (of course, it is extremely unlikely that the tra

jectory will converge to the saddle equilibrium point); the steady state value of
the voltage V, or Vay.- 0. When Pincreases above the value Pc(8), we are in region
(c), where there is both a rotation and two equlibrium points on S x IR . However,

in the experiment that is being performed (increasing 1^ gradually), the initial

conditions for the system (2.5) will be (with a positive measure) in the domain

of attraction of the stable equilibrium point and consequently, the trajectory will



converge to the steady state value of zero. (This positive measure is related to

the relative size of the region of attraction of the stable equilibrium point. It

approaches a zero-measure, i.e., the region of attraction of the stable equilibrium

approaches zero area, as papproaches 1.) Finally, when pexceeds 1; the equilibria-

annihilate each other in a saddle-node leaving only the stable rotation. All

trajectories then converge to the rotation (in region (f)) where the average value

of y, i.e., V ,# 0. This explains the jump in the characteristic of Figure 4(a).

In this figure, we show the jump occurring at Idc » IQ (i.e., p^l), though, in an

actual experiment, the jump may occur for Idc < IQ and Idc near IQ.

We now explain the hysteresis in the characteristic of Figure 4(a), corresponding

to gradually reducing Id (and p) from values of p>1(region (f)) along the hori
zontal line(A)in Figure 2. As p is reduced below 1, the two equilibria reappear;

but initial conditions are such as to cause the trajectory to converge (with a

positive measure) to the rotation, now in region (c). The positive measure here

is the compliment of the one associated with the stable equilibrium. It approaches

zero-measure as papproaches PC(B). At p- PC(B), Che rotation is destroyed in a

saddle-node leaving only the equilibria and consequently convergence of all tra

jectories to points where the average value of y - 0. This explains the hysteretic

jump in the characteristic at, or before, 1^ - Idc (8)(i.e., p- Pc(8)). We now

derive an expression for the non-zero I-V curve:

* aJl_ (I / y dt) . Jl-
av 2ire *T o y ' 2ire

From (2.5)

T
V a JL- (k f y dt) - JL. <y>; where T is the period.of the rotation.

dv.^ -y - Sin * 4» p
dt 8

so that by integrating both sides from 0 to T, we have

<y> =» p. Hence,

JL- JL t > I. m (2.6)
*o

V - JL- ±- i > i (8)
av 2ire I dc



The diagram of Fig. 4b correpsonds to a junction with a fixed low value of

8 < 8Q. Consider again the experiment of gradually increasing p (along line(B)

in Figure 2). For P < 1, we are in region (a) and V - 0. For p > 1, we are in

region (f) and V satisfies equation (2.6). For decreasing p; exactly the opposite
a"

takes place and there is no hysteresis—though a jump occurs at I. =» I«. Thus,

the simultaneous occurence of the saddle.node and saddle connection (region(e))

prevents the existence of competing stable steady states, i.e., an equilibrium point

and a rotation, which caused the hysteresis in Figure 4a.

2.3 Sinusoidal Forcing (AC Analysis)

This is the case of primary interest to us in this paper, namely, equation

(2.3) with T (t) =» P +eSincoT (bias + small sinusoidal forcing). It is the

model for the dynamics of the Josephson junction when used in microwave generators

and mixers [7,13,16]. In standard first order, (2.3) now reads

$ myt y m- y - Sin* +P + e Sinorr (2.7)
8

(2.7) was first studied by Belykh, Pedersen and Soerensen [7]. Their work was

thorough but primarily qualitative (i.e., Analytic details are often absent).

Abidi and Chua [3] studied analytically.the case when 8-0 (zero junction capacitance)

and e not necessarily small—in this case equation (2.3) simplifies to

i » p- Sin* + e SintoT (2«8)

a first order equation periodic in both <j> and t and hence considered as a flow on

a torus. The rotation number technique was then applied (see Pliss [15]). Odyniec

and Chua [13] showed in analytical detail that the conclusions of [3] are valid not

only for 8 » 0 but also for small 8 by using perturbation arguments to show that

the (stable) invariant torus associated with (2.8) is perturbed to a stable invariant

torus (for a sufficiently small 8) which attracts trajectories of (2.8). They

also treated the case when e is small and 8 is large so as to satisfy 8 > 8o and

p > p (8). Such a 8 lies in regions (c) or (f) in the diagram of figure 2,
c



and hence the phase portrait of the dc forced Josephson junction possesses a

stable rotation. Their study was solely to account for the effect that a small

nonzero e produces on the stable rotation: using the integral manifold approach

one concludes that, for sufficiently small e, the (stable) torus on which the

rotation resides, survives to another (stable) torus; on the new torus, one

employs the rotation number technique as in [3].

The work of [3, 13] was contained in the work of Belykh et al [7], though

the latter treats a slightly more generalform of equation (2.7), namely,

J• 7$ y "T [-(! + Y coa<fr)y - Sin* + e Sinwt] (2.9)

While our primary interest is in the instance that y » 0 in equation (2.9) we will

begin by a description of the qualitative results of [7], which are the most complete

to date.

2.3.1 The AC Bifurcation Diagram of Belykh. et al [7]

Figures 5, 6 are reproduced from [7], with the parameter y in (2.9) assumed

non-zero. Figure 5 is a bifurcation diagram in the parameters 8, P (with y fixed)—a

section of the 3-dimensional bifurcation diagram in 8, P, Y. Figure 6 displays

topologicals different portraits (of the Poincare map) numbered corresponding

to different regions of Figure 5. (Since Figure 5 is symmetric across the 8 axis,

it is drawn only for P ^ 0).

To discuss Figures 5 and 6 consider re-writing (2.9) as

y»i (-(1 +Y cos $)y - Sin<{» + pf e+ SinO) (2.10)
8

»

e a o)

9 is assumed to lie not on IR but on an interval [0, 2ir] with 0 and 2* identified i.e.

8 e S1. Now (2.10) is an autonomous system which is periodic in <j>, 8 (with period 2*)

Consider now the map P(Tq): (♦(tq), y(TQ), 6(tq) ) \. ->• (p(rQ + 2jr),

y(TQ + 2rr), 8(tq + 2ff))5 i.e. in the change in <J>, y, 8 during one period of the
0) 0)



forcing. Since the system (2.10) is autonomous the map P(0 is the same for all

xn. Further since 8(t0 + 2jr) • 8(t0) mod 2ir, we need only concentrate on the map
0)

P: (4»(tq), y(TQ)) •• ($(tq +.?£), y(xQ + 2j0) for same tq. This map is referred

to as the peziod-one or Poincare* map. As before we can define the Poincare' map

P either from IR1 x IR1 to itself, or S x IR to itself. The Poincare map

contains all the information about the dynamics of (2.9), e.g. a fixed point of

the Poincare map P: _1R x IR to itself corresponds to an oscillation of the

system (2.9) and a fixed point of the Poincare map P: S x IR to itself

which is not a fixed point of P » IR x IR to itself corresponds to a rotation

of the system (2.9). For further discussion of Poincare maps see, for instance,

[9, 10, 1].

We now discuss the bifurcation diagram of Fig. 5 in terms of the map P.

Consider first traversing the bifurcation diagram 5 along 6 a constant, on line A.

The portrait of the Poincare map P, though of now as a discrete dynamical system

([9]), in region ©is shown in Fig. 6(1).. On S1 xIR ,the map Phas two fixed
+ —

points, a stable fixed point M- and an unstable (saddle) fixed point M . These

are the only critical elements of P and all initial conditions converge to one or

the other of these points. Thus the system (2.9) has only a stable oscillation

(corresponding to M+) and an unstable oscillation (corresponding to M ). The

stable and unstable manifolds of M~ are shown in Figure 6(1). In the region

(|), the map still has only two critical points M and M* on S x IR . However

the 'upper1 stable and 'upper1 unstable manifolds of M~ and its replica intersect

each other transversally once (and hence infinitely often). This intersection

implies the existence of infinitely many (unstable) periodic orbits for the

equation (2.9), referred to as the horse-shoe kind of chaos. (The precise description

physical meaning and interpretation of this kind of chaos is discussed in Section 3,

see also [1, 9, 10, 12]). On the boundary from regions @ to © and regions @ to @,

the intersection between the stable and unstable manifolds of M~ is tangential rather

10



than transversal (this case is not completely understood, see, however, the

book of Guckenheimer and Holmes [9]) Region © is associated with the Poincare

section of Figure 6(3) • It shows a shaded ring shaped region. The ring is

an attracting set which contains infinitely many stable steady state solutions.

According to [7] little is known about the ring and its dynamics*. We will show

in Section 6 that this ring is absent when y in equation (2.9) is equal to zero.

In region @, there are stable and unstable fixed points corresponding to

periodic orbits both of the oscillation and rotation type. Figure 6(4)

shows two fixed points of the rotation type (R~ and R ) and two of the oscilla

tion type (M and M ). In region (3) there are only periodic orbits of the

rotation type. We elaborate on the dynamics in this region:

Figure 6(5) shows the presence of a stable (attracting) invariant curve

containing R and R . This corresponds to the existence of a two dimensional

stable (attracting) invariant surface for (2.9). This surface is periodic in

<$> and 9 and so diffeomorphic to a two-torus . The study of orbital behavior

on a two dimensional torus is treated through Che use of rotation number y

(see Pliss [15]), i.e., the ratio of the number of rotations in $ to the

number of rotations in 8. As before it is easy to verify that <y> is pro

portional to u. The rotation number y is said to be (structurally) stable,

if it remains constant for "sufficiently small" variations of the model,

specifically in our case p. It can be shown [7,13] that the only stable rota

tion numbers are rational, i.e., y * p/q; with p,q e Z - this, of course,,

corresponds to a periodic solution on the torus. For details see [3,13,7].

The lowest horizontal line B in Figure 5 crosses only two distinct regions

(T), ©. For large values of 8 (corresponding to small values in the damping
-1/2

d « 8 if model (2.7) is used) new regions emerge. Along line C, for small

11



values of p we enter the region (o) Figure 6(0) shows a Poincare1 section for

this region. It can be envisioned as having both the 'upper' and 'lower1

stable and unstable manifolds of the right hand replica of M intersecting,

transversally, the 'upper' and 'lower' unstable and stable manifolds of the

left hand replica of M~ respectively. Note the resemblance to Figure 6(2),

as well as the additional feature of transversal intersection of the 'lower'

stable and unstable manifolds. Further, within this loop of intersecting

manifolds surrounding M there is an alternating sequence of saddles and

stable fixed points of the Poincare map with the manifolds associated with

the saddles intersecting each other transversally. This extremely complicated

form of horseshoe chaos is explained in Section 4 and Figure 11 (see [9]).

We term this chaos as doubly chaotic. This would imply now for larger values

of p, the presence of more critical elements than in Figures 6(2), (4)

corresponding to regions @, ©. Proceeding along the line C we encounter

the regions (55). (^ft) and ^5) which have the same configurations as the

portraits of Figures 6(2), (3) and (4) respectively with the added presence of

an alternating sequence of stable and saddle fixed points surrounding che

stable fixed point as in Figure 6(0). The curves Pq, Pc, p.c, o^ separate

the regions ©, (2?), (3^, (@ and 0 respectively.

The following points about the bifurcation diagram of [7] can be made.

It is obtained by qualitative means; in particular the existence of the

chaotic regions © and @ is not proven analytically. The regions © and

® bave been studied analytically in [13,14], We will, in Sections 4 and 5,

establish rigorously the existence and phase portraits of regions @ and @.

Further for the case when y - 0, we show that region ® does not exist.

12



Using these analytic arguments, we deduce the form of the curves p , p., p.~, p.

in Section 6.

2.3.2 The I-V Characteristic

As in Section 2.2, the complete dynamical picture enables us to obtain

the V vs. I, (Le, bias current) of the a.c. forced junction. Indeed it
av ac

was through a combination of experiments and simulation that [7] obtained the

bifurcation diagram of Figure 5. Figure 7(a), reproduced from [7], shows one

such I-V characteristic corresponding to a junction having an intermediate

value for 8 (the line A in Figure 5).

Before we discuss this characteristic, we make some general comments

about the V vs. I. characteristic, V is proportional to the time averaged
av dc avav ac . av

T

ydt as T •> •), in the steady state. When there are
0

value of y (technically ~

several competing critical elements of the system (2.7), the V observed

can correspond to any one of them, depending on their stability, the size

of their domain of attraction and more importantly, the choice of initial

conditions in the experiment. The experiment that gives rise to Figure 7(a)

consists of gradually increasing I. and measuring V for a function having

an intermediate value of S, i.e., traversing line A of Figure 5 from left Co

right and then decreasing I. . Consider first the case of increasing I, :

In the region (T), almost all initial conditions will converge to the

stable oscillation M with time averaged y • 0. In the region 2 (i.e.,

P > p. )t we have in addition to the oscillations M and M~, an infinite number

of unstable oscillations corresponding to the transversal intersection of

the stable and unstable manifolds of M~. However, since the initial conditions

are close to the stable oscillation of M , with zero average value, we still

get V = 0. The same argument explains, V - 0 in the region (J?. In region ($

13



we have the stable oscillation M as well as a stable rotation R , however,

+
the initial condition causes the junction to stay locked at M with V • 0.

In region 5, the oscillations disappear and the circuits lock onto the stable

rotation R , with non-zero average value of y (proportional to the rotation

number u - p/q). Now as I. increases, the voltage stays constant (since

the rotation is stable), for small variations in 1^ (or p) and changes (jumps)

in rational steps corresponding to changes in the rotation number. This part

of the I-V characteristic is the focus of [3,13,14] shown in Figure 7b as

discontinuous and stepwise constant. Further, the heights of the steps are

rationally related.

We now consider the case of decreasing I. . As p (*dc) is decreased,

we drop from region@to region^ initial conditions will keep the junction

locked to a rotation and yield piecewise constant I-V characteristic as in

region 5 (note the hysteresis in the V -I, characteristic now). Decreas

ing Pinto region (5)1 the circuit locks into the ring of solutions shown in

Figure 6(3) yielding the unstable V -Id characteristic shown hatched in

Figure 7(a). In region @, the chaotic region, the circuit locks into the

infinitely many unstable oscillations associated with the transversal inter

section of Figure 6(2). Each of these have almost identical non-zero,

average voltages. However, since these infinitely many oscillations are

unstable and lie close to the domain of attraction of M the circuit could

jump to the stable rotation M+, resulting in zero Vav. At any rate, there

is a sharp increase in the amount of perceived noise in the junction in this

region. This is particularly deleterious in application of the junction as

a mixer. Some authors show the instability of Vav values in the chaotic

regions Cg). as shaded region in the Vay-Idc curve as shown in Figure 7c

taken from [6].

14



2.4 Our Contribution

We have discussed in Section 2.3 the qualitative and simulation work of

[7] and the limited analytic work of [3,13,14]. In the rest of this paper

we prove rigorously those conclusions of [7] that have not been proven in

[3,13,14]. The model we consider is (2.7) with y • 0. Since the discussion

of regions ©and ^ is more or less complete, we focus in the next four

sections on regions @, ® and ®. We establish the existence of Region (ft)

in Section 4, and Region ® in Section 5. We collect the conclusions of these

two sections in Section 6, where we also establish that region (T) is absent

for y • 0> an<* tne connection between Che a.c. and d.c. bifurcation diagrams.

We would like to emphasize that with these proofs an essentially complete

analytic picture of the dynamics emerges. We start with a brief review of our

major technique: the Melnikov Method.
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Section 3- Chaos and the Melnikov Method

Chaos is a form of complicated behavior in the dynamics of deterministic

non-linear systems. Some varieties of complex behavior are now well under

stood - aperiodic solutions, Berkhoff-Smale horseshoes, strange attractors,

Arnold diffusion, overlapping of resonances, etc. Chaos entails orbital

motion which is reminiscent of noise in that it possesses a broadband spectrum.

A dynamical system undergoing chaos may simultaneously possess countably in

finite numbers of periodic orbits and recurrent motions which are not periodic.

These motions emanate from certain regions in the phase apace; moreover, they

are extremely sensitive to variations in initial conditions. This extreme

sensitivity is exhibited in the form of an uncertainty - over time, two

initial conditions starting very close may diverge from one another exponen

tially (see [1,9] for further discussion).

The majority of cases in which chaos has been reported in Che literature

are based on simulation or intuitive arguments. One specific form of chaos,

the Smale horseshoe and its generalization, the Arnold diffusions has shown

itself to be well suited to analysis and has been studied in detail [1,8,9,10].

Further, a technique called the Melnikov technique provides an analytic tool

for measuring the presence of the horseshoe chaos in certain periodically

forced non-linear systems. In ingenuous form, it gives information about

the behavior of the perturbed periodic system based on a calculation involving

trajectories of the unperturbed system. We review the method:

Consider the system

x - f(x) + e g(x,t) (3-D

2 2 3where f,g are sufficiently smooth functions; f from IR*6 to Br; and g from !R

to R2 is T-periodic in t. The associated unperturbed system is
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x * f® • (3.2)

Assume that the system (3.2) possesses a homoclinic orbit. xQ(t), i.e., an

orbit that connects a saddle equilibrium point Xq to itself. From [8] it can

be shown that for e small enough, the saddle equilibrium point xn gets per

turbed to a saddle fixed point x of the time-T Poincare map of (3.1) as

shown in Figure 8. Let the perturbed stable orbit of x be denoted xa(t,0
e e * 0

and the perturbed unstable orbit x (t,tQ). Then the following Lemmas are

proven in [8,9].

Lfimma 3.1

xU(t,tQ) **0(t-t0) +exU(t,tQ) +0(e2X uniformly in tfor te]-~,tQ]

Xg(t,tQ) -xo(t-tQ) +exS(t,tQ) +0(e2), uniformly in tfor te[tQ,« [.

Lemma 3.2 (First Variation Equations)

xU(t,tQ) =- Dxf(x0(t-t0)) xlu(C,CQ) +g(x0(t-t0),t) (3.3)
for t e ]-°°,t0]

x3(t,tQ) -Dxf(x*0(t-tQ)) xls(t,tQ) +g(x0(t-tQ),t) (3.4)
for t e [tQ,«[.

by

The separation between x (C,C.) and x (c,c_) (see Figure 8) is measured
e o e o

f(x0(0) A [x^(Vt0) -«^(t0,t0)1
d£<V ; ; o.s)

l«or0(o»|

where stands for the wedge product. The first variation of the distance

17



d (O can be written as
e 0

e M(t )

VVTrTx^oTi +0(e2) (3-6)

where M(tQ) is the Melnikov function given by

M(tQ) -f(xQ(0)) A [xlu(t0,tQ) -xls(t0,t0)] (3.7)

The interest in evaluating the distance between x (t,tQ) and xg(t,t0)

arises from the fact that if they intersect transversely once, they inter

sect each other infinitely often as shown in Figure 9 forming the so-called

Smale horseshoe in the dynamics of the Poincare map with countably many unstable

orbits of different periods as well as a periodic recurrent orbit. (See [1,9]

for a discussion of the Smale horseshoe). This results in a specific kind

of chaos in the dynamics referred to as the Smale horseshoe. The Melnikov

method evaluates M(tQ), the first variation in the distance ^(Cq) scaled by

|f(xQ(0))|. Consequently if the function M(tQ) has transversal zeros, i.a.,

if ^tQ such that

it follows that xu(t,tQ) and xs(t,tQ) intersect transversally once (and hence

infinitely often) resulting in the horseshoe choas. To obtain an expression

for M(tQ) we write (3.5) as

M(tQ) -AU(Vt0) -43(t0,C0) (3.8)
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where

Au(t0,t0): -f(xQ(0))A xlu(t0,tQ),

and AS(t0,t0): -f(xQ(0)) Axis(t0,t0).

The essence of the Melnikov method is to evaluate the scalar constants

u sA (t0,tn) and A (t.,t.) in terms of the given vector fields f and g along the

homoclinic orbit (before perturbation). To that end, one defines

AU(t,tQ): -f(x0(t-tQ))A xlu(t,tQ) for te]—,tQ] (3.9)

and A3(t,tn): - f(xn(t-tn))A xls(t,tn) for te [tn,« ]. (3.10)

Using (3.3) and (3.4), obtaining (3.8) becomes a final (resp. initial) value

u s
problem for the differential equation satisfied by A (tfO (resp A (t,0);

namely

I«/fc * \ e A lu,-A*luA (t,tQ) »f^x +f^x

- [trace Df_(x(3(t-t0)) ]AU + f(x"0(t-t0)) A
x

g(x0(c-t0),t) for c z ) —,tQ] (3.11)

AS(t,tQ) - [trace D^^t-t^)]A3 + f(xQ(t-t0)) A
x

g(x0(t-t0),t) for t e [tQ,«[ (3.12)

Equations C3.ll) and (3.12) are scalar linear time varying differential

equations which can be explicitly integrated to solve the final and initial

u svalue problems respectively. The values A (-«>,Cq) and A (tQ,08) do not

appear in the solutions if Au(t,tQ) approaches zero more rapidly than

rc sexp{ - trace [D-f(x"0(s-t ))]ds} as t -*• -« and A (t,tQ) approaches 0 more

C0
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ft

rapidly than exp{ -

=0

trace D.f(x (s-tQ))ds} as t+

Under this condition, (the fexponential, convergence* condition, see [1]),

we may write, by integrating (3.11) and (3.12) and substituting in (3.8),

M(tQ) -j f(xQ(t)) Ag(3cQ(t), t+tQ)-
ft (3.13)

• exp( - trace Df [x"n(s)]ds]dt .
* t T
C0 X

This is the Melnikov Integral. Note that the exponential convergence condition

is significant only when trace [D^ (x_(s)] is non-zero. When the unperturbed
x

system is Hamiltonian, trace D-0?0(s)) =0 so that the Melnikov integral of
x

(3.13) is valid without any further conditions, furthermore the Melnikov

integral reads

M(tQ) f(xQ(t))Ag(x0(t), c+tQ)dt (3.14)

Generally speaking the Melnikov technique has been used to establish chaos

in periodic perturbations of Hamiltonian systems. In this paper, we will

verify the exponential convergence condition in the Josephon junction cir

cuit model of Section 2, in order to use the Melnikov technique for a non-

Hamiltonian system in a novel fashion, (Section 5).
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Section 4 Chaos in the Josephson Junction Dynamics:

the close to Hamiltonian case.

The form (2.3) of the Josephson junction dynamics has the form of the

equations of a damped pendulum, with damping normalized to 1. In this section

we will study the Josephson junction equations where the conductance 6 and the

dc forcing I. are small. The transformation taken of (2.1) to (2.3) is sing

ular in the limit that 6*0. Hence, we will use the scaling of equation 2.6,

viz.

i" + d4£ + sin <fr - i' (t) (*•!)
dt s

i'(t) is of the form e( p+ sin wt) and d- edQJwhere 3- j;and e is a

small parameter. We will show that in this form equation (4.1) possesses a

Smale horseshoe in its dynamics. The parameter ranges studied in this section

correspond to the large 8, small p part of the bifurcation, diagram of Figure 5.

The unperturbed system (for e • 0) is

7*7
(4.2)

7 • - sin <j>

(Notation consistent with Section 3). Equations (4.2) are Hamiltonian wich

(energy) given by

H(y,7) -( |2- cos ?^ . (4-3)

There are two saddle connection orbits for this system as shown in Figure 10

labelled Tu (upper) and Tl (lower): strictly Tu and r are both homoclinic

orbits, when we take into account the 2ir - periodicity of equation (4.2)

in 7, i.e., ? e S rather than R.
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The value of the hamiltonian H(7,7) on these orbits is easily seen to be 1

and the orbits given explicitly by

v(t-tn) - + 2 sech (t-tn)

(4.4)

7(t-tn) - + 2 arc tan[sinh(t-tn)]

u £
where the + sign is for T and the - sign is for V . The Melnikov integral

(3.14) is specialized to this case to be

M(tQ) =• y(p - d y+ sin w(t+tQ))dt

[+ 2 sech t]2dtr pd?- d,

+ ]+ 2 sech fcos uT t dt [sin ojcq. (4.5)

(we have used here —— • y", and the fact that sech t sin u t dt a 0 -

integral of an odd function.) Evaluating (4.5) explicitly yields

M(tQ) » + o 2tt - 8dQ + [tho sech ^-r ]*sin u> tQ (4.6)

For r , the upper homoclinic orbit,the separation

MU(tQ) =» 2irp - 8dQ +R(3) sin oT cQ (4.7)

where R(,<a): a ir u sech ("T")* 0.

For (4.7) Co have a zero, tQ we see that it is necessary to have

|- 2ir p + 8dQ| <_R(w). (4.8)
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It is easy to verify that the zero, t- is transverse when the inequality is

strict for all frequencies 7a.

When (4.8) becomes an equality, the zero t* is nontransverse and this

corresponds to the tangential intersection. The frequencies that correspond

to this case are u • • * —^— .

For I, (: • IQp) values satisfying (4.8), the upper homoclinic curve

TU breaks up as in Figure 6(2) and hence implies the presence of a horseshoe
o

chaos. Analogously for T the lower homoclinic orbit the Melnikov function

MA(tQ) - - 2irp -8dQ - R(u) sin u tQ. (4.9)

For (4.9) to have transversal zeros, it is necessary (and sufficient) Co have

|2if p+ 8dQ| <^R(uD (4.10)

, — , (2n + l)ir . eand at r 7 —*— as before.
z c0

When p is such Chat both (4.8) and (4.10) are simultaneously satisfied for

a fixed uT, we have the complicated phase portrait of Figure 11 (note that

if (4.10) is satisfied, then (4.8) is also satisfied). In addition to the

'doubly chaotic1 intersections of the stable and- uns-table manifolds of Che

saddle, there is within the loop of intersecting manifolds an alternating

sequence of saddles and stable fixed points of the Poincare map with the

manifolds associated with the saddles intersecting each other transversally

(overlapping of resonances) - a more comprehensive description of this

portrait is in, e.g., [9, page 222].

The portrait of Figure (11) persists for a continuum of 'small1 e

values corresponding to small d (or to relate this to Figure 5 -
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-2 -2 —2large 8 * d « s dQ , we set £ - 1, and consider 8 to be large). The

conditions (4.8) and (4.10) enable us to derive the curves p , p_ and pn as
c c u

follows: Equation (4.8) is rewritten as two separate conditions

B~1/2 <| [2tt p+R(o»)] (4.11a)
and

B~1/2 >.£ [2ir p- -R(uO] (4.11b)

Equation (4.11a) is the equation of p" and (4.11b) is the equation of

T

ft - explicitly
c

si^ip +̂ r2" :p; (4'12a>

Si^lP-^f2- •• P* (4'12b)
Since 8i9 assumed positive, p is defined only for a^ j" (equation 4.11b),

and p +"as p+ ~" • Further, at p• 0, p »( J . The curves

p" and p+ are plotted in Figure (12). Since the analysis of this section
c c

is valid only for large and intermediate values of 3, the curves pc, Pc

diverge from those predicted by (4.12) (a) and (b) for smaller values of 8.

Hence in Figure (12), we have shown the actual curves pc» Pc (che solid lines)

diverge from Che curves p", p+ of (4.12) (a) and (b) (che doCted lines) for
c c

small values of 8. The discussion of the onset of chaos in the small 8

case is in Section 5.

We now derive the expression for the curve pQ corresponding to region (0)

- here (4.10) holds, and hence (4.8) does also, and it gives the equation

for Pn as follows: rewrite (4.10) as

1 It seems more appropriate to define fc and P. co be (analytic) functions of
(Tx ,8 ^ 0, from equations (4.11a-b).
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S""1/2 <j [-2irp +R(ZT)] (4.13a)

8"1/2 >j [-2tt p- R(3) ] . (4.13b)

The inequality (4.13b) is useless since the right hand side is negative

(for positive p) since R(u) > 0. Equation (4.13a) yields

IT ' <*

Equation (4.14) is defined only for p <^ itt' and pQ -»• • as p

Further at p• 0, p.Q *(R(—\ ) f i.e., it coincides with the curve p at

p * 0. The curve pQ is plotted in Figure (12) also.

Thus, we have shown that for intermediate and large 8, we have (horse

shoe) chaos for Q ~ p parameter values between the curves p and p and
c c

tioubly chaotic' for 8 - p parameter values above the curve p . These

correspond to the regions identified qualitatively in [7] (see Figure 5)

and are labelled in Figure 12. The other curves p , p of Figure 5 can also
h P

be obtained at least qualitatively, if not explicitly, using the Melnikov

technique to obtain conditions (i.e., inequalities) for the occurrence of

the resonance of periodic orbits about the stable fixed point of the Poincare

section as shown in Figure 6(0) or Figure (11). The usage of the Melnikov

technique in the case of resonances is treated in [9], for instance.

R(oD
2*
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Section 5 Chaos in the Josephson Junction Dynamics -

the non-Hamiltonian case

We consider here the model of (2.7) with y » 0 and no small parameter

assumptions except on the magnitude of the periodic forcing. The unperturbed

system with e * 0 is given by

4- — — 7 - Sin T + 0 re i\T * y, y-- «* | . (5.1)

Let p - P (8) i.e., the constant forcing is chosen such that the autonomous

system has a homoclinic orbit as in Figure 3b . The Melnikov integral

in this case is given by

M(tQ) -J [7(t-tQ) •isin tut ]exp(|\dt. (5-2>

(Note that the presence of the term expf — j necessitates checking the ex

ponential convergence condition of Section 3 - this is done in the Appendix 1)

This may be simplified at

M(tQ) -iJ[J y(t)eC/S sin o>t dt] cos ucQ

7(t)et/6 cos aitdt| sin o> CQ i (5.3)

If che integrals in the square bracket exist, are finite and are not both

zero, then one can easily show that transversal zeros exist (two in each

period, —, in tQ) for all but a discrete set of values in cu (i.e., fre

quencies at which the inequality becomes an equality), see, e.g., Kopell and

Washburn [12], Salam, et al [27].). Our Cask is Co show chaC chese integrals

do exist and are finite. Consider the integrals:
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I^oj): 7(t)et/Bsin cot dt and I0(a)): = f 7(t)et/Scos cut dt. (5.4)

Since y(t) is a bounded smooth function with y(t) -»• 0 as t -*• + «, it is

— t/8
enough to show that y(t)e •*• 0 fast enough as t -»• + • for the integrals

(5.4) to be finite. Now y(t) is a component of xQ(t) the homoclinic orbit

of the unperturbed system. Hence for t values close to + «, the rate of approach

of y(t) to the saddle xQ is given by the eigenvalues of the linearization

of the vector field of the unperturbed system close to the saddle equilibrium

xQ » (T0fO) i.e., the eigenvalues of

1 x 1
-8COS*0 "I

(5.5)

where $n satisfies p • sin <frQ. The eigenvalues of (5.5) are respectively

x«..i+l t(V2 +4(1.,2)1/2 j-l/2>0
(5.6)

where Xs is the negative (stable eigenvalue and X the positive (unstable)

eigenvalue of the saddle- equilibrium point xQ. As c+ «, y(t) approaches 0
Xst — Xut

as e ; while as t+-« y(t) approaches 0 as e . Thus the quantity

y(t)e is of the order of e^X +1'8)c as t-»• • and of the order of

e(X +1/8) C as t^. . o>% From (5#6) lt follows chat y(t)eC/8 goes to zero

exponentially as t •*• + «». Hence the integrals in (5.4) are well defined

and finite. The Melnikov integral of (5.3) is thus well defined. The only

thing that needs to be shown is that I-,(w) and I-do) are not both zero at all

but discretely many frequencies. This follows from the analyticity of the
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two integrals in co. Precisely, I~M + il|(w) is the Fourier transform

— t/8
(an analytic function of co) of a function y(t)e which is not identically

zero (for all t), see [12]. We have thus shown that the Melnikov integral

M(tQ) - j [I^uOcos cotQ + I2(co)sin cotg]

has transversal zeros (two in every period) at all but a discrete set of cofs.

Two difficulties were overcome in using the Melnikov approach in this case

(low 8 case): (1) The validity of the formula for M(tQ) has to be verified

by verifying the exponential convergence condition (Appendix), (2) The con

vergence of the specific Improper integral (5.2) has to be verified and then

examined for transversal zeros. Such questions must be addressed in any

application of the Melnikov integrals. (Only question (2) arises in the

Hamiltonian case)• We have shown the presence of the horseshoe chaos for

P * ft (8). Since the horseshoe is structurally stable, chaos persists for
c

small variations in p and 8 about {(8,p): p* PC(S)» 81 BQ}. The curve
.. .4.

0 is shown dotted in Figure 12 relative to p , p ; and as expected it lies
•"C c c

between p~ and p . For large values of 8 Che analysis of Section 4
c c

established chaos. For smaller values of 8 close to 8Q; one can only say that

a neighborhood of the curve p exhibits the horseshoe chaos and the boundaries

of chaotic region (T) differ appreciably from the p~ and p of 4.12a and

4.12b. We expect that the neighborhood of the curve p where chaos is

encountered shrinks as 8 •+• BQ« Since smaller values of 8 (large values of

damping d) increase the rate of convergence of trajectories starting off the

saddle connection (of the unperturbed system) to the stable equilibrium point

(below the saddle connection), see Figure 3b.

28



Section 6. Conclusions: Transition from the d.c. to the

a.c. bifurcation diagram

In this section we combine the results of Sections 4 and 5 with those of

[3, 13, 14] to establish the transition from the d.c. to the a.c. bifurcation

diagram. To do so, we compare equation (2.5) the (dc-forced model) and (2.10)

with y*0 (the ac-forced model). Since (2.5) is only two dimensional we augment

it with 9-w with 8e S1 as in (2.10) - this augmentation is called suspension of

(2.5) . It is equivalent to assuming that the autonomous system is periodic

with arbitrary period. Phase portraits of the suspended system (2.5; consist

of the ($, y) portraits ot Fig. 3-replicated identically for all 8e S1. As be

fore period-one or Poincare maps for the augmented autonomous system can be

defined.

We study the transition from the d.c. bifurcation along line (A) of figure

2, to line A of Figure 5. For low values of p, we are in region(a) of Figure 2

corresponding to one stable equilibrium ooint and one saddle (both hynerbolic).

Under small periodic perturbation (e small) it is elementary (see [9]) to show

that the stable equilibrium point changes to a stable oscillation and the saddle

equilibrium to a saddle oscillation (both hyperbolic). The average value of y

on both these orbits is zero. (Corresponding to zero average voltage in the

steady state).

For p > p (8) a stable (hyperbolic) rotation appears in the d.c. dynamics
c

both in the interior of regions (c) and( f) as shown in Figure 3c and 3f. For the
1 1 1

augmented dynamics of (2.5) with (<fr,y, 9) e S x IR x S this rotation appears

as a stable (hyperbolic) two-dimensional invariant surface diffeomorphlc to a

two torus. Applying sufficiently small periodic perturbation (e small) to the

augmented dynamics (equivalently equation (2.10)with Y*0), only deforms this in

variant surface diffeomorphically (it is, in turn/ diffeomorphlc to a two Corus,
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i.e., it is periodic in $ and 9). As studied in [13, 14] trajectories on this

perturbed torus are conveniently studied using rotation numbers of orbits on

the torus, and as discussed in Section 2.3.2. The structurally stable orbits

are those corresponding to a rational rotation number u * p/q (and is also at

tracting) , see [13]. The average voltage is proportional to these rational

numbers (as evidenced by the step-wise I-V characteristic of Figure 7b). When

the rotation number u is not rational the periodic orbits are unstable or non

existent. For these rotation numbers, any one of a set of average voltages may

be observed in an experiment - in figure 7(a); from [7], a single diagonal line

connecting the steps was observed; in Figure 7(b; of [13], which is obtained

theoretically, nothing is filled in between steps; and in Figure 7(c) of [6] the

space between steps is shown shaded. This situation corresponds to regions 4

and 5 of Figure (12).

For p * p (8) and small or Intermediate values of 8, the d.c. dynamics show
c

a saddle connection, Figure 3(b). We have shown how small periodic perturbations

of this saddle connection result in the presence of the (houseshoe) chaos in

Section 5, and the appearance of region 2 in Figure (12).

For 8 large and p small, the d.c. dynamics are near the Hamiltonian that

has the phase protrait of Figure 10. We showed how small periodic perturbation

of this case results in the appearance of regions 0, 20, 40 in Section 4, we

derived analytic expressions for p". p and p also. The geometric picture is
ceo °

that the periodic perturbation "splits" the curve p (8) of Figure 2 into the

curves p and p , allowing the region of chaos to emerge as shown in Figure (12).

Region(d)of the d.c. dynamics corresponding to pal translates to a saddle-

node bifurcation of the stable and saddle oscillations of the a.c. forced system.

Finally, we consider region(e)of the d.c. dynamics corresponding to the

simultaneous saddle connection and saddle-node bifurcation*(p^l, Q<Q ). First

for 8«»0, the system (2.7) reduces to a two-dimensional system which exhibits no
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complicated behavior - and using singular perturbation theory [13] it is readily

verified that this behavior persists for 8^8 <8n. Thus, the saddle-node of the
^m s u

d.c. dynamics translates to a saddle-node of oscillations in the a.c. dynamics:

and the emergence of a limit cycle by saddle connection translates to the cor

responding behavior in the a.c. dynamics. The region 8 < 8 < 8 is not susceptible

to easy analysis by the Melnikov technique since the saddle connection Involves

non-hyperbolic equilibrium points. We conjecture that since the curves p~, p start
c c

2
off as analytic functions of p (see (4.12) (a)and(b)), they should extend to part

of the component of region c as shown dotted in Figure (12).

This completes the transcription of the d.c. bifurcation diagram of Figure 2

to the a.c. bifurcation diagram of Figure 12; since every one of the regions(a) -(f)

was studied under periodic perturbation. The transcription is exhustive and the

region of the "ring" 3 of Figure 5 did not appear. We thus conclude that the

ring does not exist for Y-0, (and of course for y small - since our conclusions

are all structurally stable).

Finally we state the following extensions in che form of two remarks. First;

the qualitative, simulation and experiments based, study of Belykh, Pedersen and

Soerensen [7], as well as of [6] and [11], gives the range of the periodic pertur

bation parameter e which extends to (comparatively) large values - at these values

the analytic tools available all become Invalid. However, the physics literature

contains numerous experimental and simulation studies which show that properties

such as chaos persists and "strengthen" as e extends beyond its analytic range

(see [18]) . This experimental work had focused on near Hamiltonian Systems and

chaos generated by nonanalytic e is refered to as "Strong Stochasticity", where as

for analytic e the term "Weak Stochasticity" is used. It is reasonable to believe

that chaos "strengthens" for larger e; since the restriction on the analytic e is

primarily to ensure the validity of the measuring technique, namely, the Melnikov

method.

2 Analytic functions of 8 ,3^0; see footnote 1.
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The second remark concerns the applicability of our results to power systems;

namely, the 3-machlne case as in Kopell and Washburn [12], and also in Salam,

Marsden, and Varaiya [2]. In [12], the power system model is transformed to one

that is identical to model (2.4), with damping d set to zero and iWx)- p+c sinOor)
S

- Hamiltonian. The authors concluded the presence of chaos in this Hamiltonian

system, then they offered qualitative arguments to allow the chaotic dynamics to

survive the addition of small (positive) damping d. Our result of section 5 sup

ports, in an analytic rigor, their qualitative arguments;moreover It allows for

larger amount of damping.
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Appendix 1 Existence of the Melnikov Integral (5.2)

Recall that

AU(t, tQ) «f(xo(t-to)) Ax1U(t, tQ)

Since x satisfies afbounded)linear time varying differential equation, i.e.,

f

.lu, Nx (t, tQ)
-|cos *Q(t) "J

xlu(t, tQ) +
0

~? sin coC

lu
we have chat x (t, t ) is bounded for t e] —», t 1. On the other hand,

o o*

f(xo(c-tQ) tends exponentially to zero at the rate of exp(Xut) as t + —»,

where X > 0 is the*unstable'eigenvalue of che saddle defined in equation (5.6).

Further trace Df (x. (t)) 5 -^ so that Au(t, t )exp(-t/8) tends exponentially
X O tJ O
o

to zero as t -*• ».

Similarly, note that

As(t, t)- f(x (C - c )) A xls(c, t)
Q O O O

wich x (c, Cq) bounded on [c ,•[. Further, f(x (t - t )) tends exponentially

to zero at the rate of exp(Xst) as t -»» », where Xs < - —, is the'stable'eigen-
8

value of the saddle defined in equation (5.6). Hence, AS(t, t ) exp (- -§•) Cends
o d

exponentially to zero as t + ».

This establishes the exponential convergence condition of Section 3,

and validates the formula (5.2).
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Figure 1. Josephson junction circuit model

0

Figure 2. Bifurcation diagram for (2.5)



Figure 3a. The completely stable case

Figure 3b. The saddle connection bifurcation



Figure 3c. One stable rotation and two equilibrium points

(d)

Figure 3d. Saddle-node bifurcation

4>



(e)
Figure 3e. Simultaneous saddle-node and saddle connection bifurcation

(f)
Figure 3f. Single rotation and no equilibrium points
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Figure 4. I-V charactristics of the Josephson junction: (a) hysteresis

curve corresponding to line (A) in the bifurcation diagram of Figure 2.

(b) no hysteresis curve corresponding to line (B) of Figure 2.



Figure 5. Ac bifurcation diagram of [7]

Figure 6. Portraits of che Poincare map for differenc regions of Fig. 5
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(a)
Figure 7a. I-V characteristic of an ac forced Josephson junction from [7],

On the I. axis the extent of the regions 1,2,3,4,5 of Figure 5
dc

are shown.
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'dc

(b)
Figure 7b. Showing stepwise discontinuous and piecewise constant characteristic

in region 5
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Figure 7c. Shaded regions In che v"av-Idc =u*ve of [6].

Chaos was observed via simulations for 0 * 0.7155, 6
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Figure 8. Showing the perturbation of the homoclinic orbit and the

definition of d(t )
o



Figure 9.

SA - Saddle
ST- Stable

The Poincare map of a perturbed homoclinic orbit showing infinitely

many intersections of the stable and unstable manifolds

Figure 10. Phase portraits of the unperturbed unforced Hamilconian system



Figure 11. Small periodic perturbation of the Hamiltonian system of Fig, 10—

corresponding to the junction with high and intermediate values of 6,

64/R (u)

Figure 12. The bifurcation diagram of system (2.9) when y = 0
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