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TIMING RECOVERY IN DIGITAL SUBSCRIBER LOOPS

by

Oscar Agazzi, C-P. Jeremy Tzeng, D. G. Messerschmitt, and D. A. Hodges

ABSTRACT

Tradeoffs in the design of the timing recovery functions in a subscriber loop
receiver are analyzed. The techniques considered are applicable to both hybrid
and burst mode systems. Emphasis is on those techniques that lend themselves
well to implementation in MOSLSI technology, where the objective requirement
is that timing recovery be implemented on a sampled-data signal using the
minimum possible sampling rate.

The wave difference method (WDM) for timing recovery appears to be the
best candidate. A detailed study of its performance is carried out analytically
and by computer simulation for the case of binary and alternate mark-inversion
(AMI) line coding. A closed form expression describing the binary jitter perfor
mance of the WDM and its continuous time counterpart the spectral line tech
nique is used to compare the two techniques. Analytical and simulation results
for recovered phase and jitter are presented for various cable pulse responses
carefully chosen to represent worst-case or nearly worst-case conditions.

Two methods of including frequency detection in the WDM, the quadricorre-
lator and the rotational detector, are also simulated.
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1. Introduction

Timing recovery is one of the most critical functions that must be imple

mented in a digital subscriber loop receiver. Although there has been a lot of

work on timing recovery [4-16], this application poses new problems that

deserve further analysis. Bridged taps, which are not found in the T-carrier sys

tems that motivated much of the earlier work, affect both the recovered phase

and the jitter of the timing signal. The desire to implement the transmitter and

receiver in VLSI technology calls for sampled-data signal processing. If the echo

canceller method [l] is used, timing must be derived from the received signal

after echo cancellation, and the sampling rate must be as low as possible in

order to limit the complexity of the echo canceller. Similarly, in burst mode

systems the signal is also sampled at the front-end niters and equalizers, which

would most likely be implemented in switched-capacitor techniques. In both

cases, it is possible to approximate the continuous time case by increasing the

sampling rate. In the echo cancellation approach this could be done by an inter

polation filter located after the echo canceller but this introduces extra com

plexity.

The subscriber loop application differs from voiceband data transmission in

that both the central office and the subscriber transmitter are slaved to the

central office clock. The fact that transmission is synchronous in the two direc

tions also favors a sampled-data timing recovery scheme. In voiceband data

transmission, the two directions are asynchronous so that it is necessary to

reconstruct a continuous time waveform and resample it synchronously with the

far-end clock, and timing recovery can be performed on the continuous time

waveform.

This paper focuses on timing recovery in discrete time, where the goal is to

minimize the sampling rate. Also considered is sampled-data frequency detec-
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tion in addition to phase detection, to increase the pull-in range of the phase

locked loop and allow the use of low-accuracy voltage-controlled oscillators

(VCOs). Only binary and alternate mark-inversion (AMI) line coding are con

sidered in this paper. Further work is in progress to assess the possible advan

tages of some form of partial-response line coding.

In continuous-time systems, a popular timing recovery technique is the

spectral line technique [4,5]. After a nonlinear operation on the data signal, a

discrete line at the data rate is generated in the signal spectrum. This fre

quency component is separated from the residual continuous spectral com

ponents by using a narrow bandpass filter. The nonlinear operations most com

monly used are squaring and full-wave rectification.

In sampled-data systems, the so called wave difference method (WDM), has

been proposed [3]. However, no detailed analysis of its performance has been

published in the literature, and some questions arise that deserve further study,

namely:

[l] What is the timing phase recovered by this technique in the presence of

severe pulse distortion, as can result for example from bridged taps? The

answer to this question also depends upon the type of equalization used, as

some methods are more sensitive to timing phase than others.

[2] What is the jitter performance of the wave difference method?

[3] What are the tradeoffs in the design of a phase lock loop based on a WDM

phase detector?

[4] How can a frequency detector be designed in the context of the WDM,

increasing the pull-in range of the PLL and decreasing the required free-

running frequency accuracy of the VCO?

In Section 2 phase and frequency detectors which use the WDM are charac

terized analytically. In Section 3, the performance of the timing recovery
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system when operating with imperfections such as bridged taps is evaluated by

computer simulation. In Section 4 tradeoffs in the design of a PLL using a WDM

phase/frequency detector are evaluated, including a design example.

2. Analysis of the Wave Difference Timing Recovery Technique

Several timing recovery techniques have been analyzed in the literature.

They can be classified into continuous-time and discrete-time techniques.

Some of the most common continuous-time techniques are the spectral line

[4,5,11], the threshold crossing [9], the sampled-derivalive [9], the early-late

gate [6,9], and the maximum likelihood estimation [9] techniques. Among the

sampled data techniques, special consideration is given here to the wave

difference [3] (similar to the early-late gate) and baud-rate sampling [7] tech

niques.

In this section, the WDM is analyzed, extended to include a frequency detec

tor, and shown under certain conditions to be the sampled-data equivalent of

the spectral line method.

2.1. The Wave Difference Method

Let

s(0= S xkh(t-kT) (i)

be the received signal in a baseband subscriber loop receiver where h(t) is the

channel response to the input pulse. In subsequent analytical results, binary

line coding will be assumed in which xk is an independent identically distributed

sequence of transmitted data symbols assuming the values -1 and +1. In many

of the simulation results the additional case of AMI line coding will be con

sidered. In this case xk can be considered to be the result of applying a first

difference operation to an independent identically distributed binary sequence

i-OO
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assuming the values 0 and +1.

Define the timing function as

m/l t x*h(t-kT)]] (2)

where /(•) is some convenient nonlinear function, and E stands for expected

value. The timing function w(t) is clearly periodic with period T, and so its spec

trum consists of a set of discrete lines at multiples of the data rate. For the

particular case / (x)=x2t

^(0 =^{[S ** h{t-kT)f\ = £ h*{t-kT) (3)
k *=-«

where we have assumed that the xk are independent and equally likely. If the

data signal is bandiimited to less than -zrHz, the spectrum of w(t) will be

2
bandiimited to less than -=-Hz, and so must be of the form

w(0=4o +ilisin(£22-+90 (4)

For a general f (x), w(t) will have higher order harmonics.

The phase error function in the WDM is defined as

pn =w(nT+r)^w[{n +̂ T+r] (5)

where r is some arbitrary sampling phase. If frequency detection is desired, an

additional quadrature error signal

qn =tu[(n+ljr+r]-itf[(n+|ir+T] (a)

is defined. In a phase locked loop, pn is used to control the frequency of a VCO,

and the feedback acts to force pn to zero. Fig. 1 shows the steady-state sam

pling phases for pn and qn on an eye diagram. It will be specified later how fre

quency detection is performed.

Z&3
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In a practical implementation, the expectation in (2) must be replaced by a

time average, as in

Mt)=^ f(s(t-kT)) (7)

where K is the number of samples in the average. A sampled-data version of

w(t), with sampling rate —, can be computed using a transversal filter with K

taps, all of them of equal weight —as shown in Fig. 2a. In the figure, u^ij) are

the samples of f(s(l)) taken at times nT+T and sn(r) = s(nT+r). It is evident

from (4) that aliasing will result from the aforementioned choice of sampling

rate. The sampling rate can be increased to —, R an integer, by using R such

transversal filters in a time interleaved fashion (Fig. 2-b). In this case r is

~—0 ^ r -& R-l. In the WDM, an oversampling factor /?=2 is used, and the out-
Ri

put samples of the two interleaved filters are subtracted as shown in Fig. 3a.

The subtracter function could also be located at the input of the transversal

filters, in which case only one transversal filter is needed (Fig. 3-b). In general

the output signal, the phase error estimate, is a slowly varying function of time.

A high sampling rate is not necessary, and decimation by a large factor can be

accepted. The storage requirements of the transversal filter are reduced

accordingly. Fig. 3c shows a structure that decimates the signal by a factor U.

In the limiting case M-K, no transversal filter is required at all.

Sometimes it may not be desirable to decrease the sampling rate exces

sively. One such case is when one wants to perform frequency detection, when

the maximum frequency offset allowed in the VCO cannot be larger than half the

sampling rate of the error signals to avoid aliasing. If a large pull-in range is

desired in the PLL, a high sampling rate must be used for the error signals, and

consequently a longer transversal filter is required in Fig. 3c. The storage

coo



Agazzi et. al., Tuning Recovery in Digital Subscriber Loops -7-

requirements can be reduced while keeping the sampling rate high by using a

recursive filter. Since in this application accurate control of the bandwidth is

not necessary, the coefficients of the filter can be approximated by numbers of

the form 2~N or 1—2"^ to avoid multipliers in the case of a digital implementa

tion.

When oversampling by a factor R=2, neither of the two samples in each

period will be taken at the instant of maximum eye opening after Pn is driven to

zero by the PLL. They will instead be located approximately (if the pulse is

T Tapproximately symmetric) at —— and —• relative to that point. Therefore, it

seems that an oversampling factor of at least R=4 is needed, but this increase

in R is costly in receivers employing the echo cancellation technique because

the complexity of the echo canceller grows linearly with R. An approach which

achieves an effective i?=4 without increasing the sampling rate of the echo can

celler uses an interpolation filter at the output of the echo canceller to increase

the effective oversampling factor. This filter must provide negligible distortion

of the signal within the band 0</ < —, and a large alias suppression in the band

/>-=-: In order to satisfy these conditions, a relatively complicated filter is

needed. A simpler solution to obtain an effective /?=4 is the use of a linear

T
phase all-pass network with a delay —- The resulting fractionally-delayed sam-

4

pies can be used in the phase detector, and then one of the original samples will

be located at the center of the eye. A second order all-pass section with a

transfer function

*<,) ='"^f^ (8)
UrCxZ l+C2Z *

has been found to provide satisfactory results in computer simulations with:

*68
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c, = 0.429968

(9)
c2 = -0.048017

Fig. 4 shows a typical example run for the case of a 2 mile gauge 26 line, with a

0.5 mile gauge 19 bridged tap at the center. In this example the sampling rate

was i?=2, but the output was computed 50 times with different values of the

sampling phase, and the outputs plotted together so that the signal appears to

be a continuous time signal. This was done to compare the pulse shapes before

and after the phase shift network. For the same reason the output pulse was

Tdisplaced in time by an amount equal to the delay of the network, namely -p

Although only one example is presented here, many more have been run, with

similar or better results. We conclude that the use of this phase shift network

provides a very simple and practical solution to the sample interpolation prob

lem.

2.2. WDM Frequency Detector

The WDM lends itself to the implementation, with little increase in complex

ity, of a frequency detector. This is potentially attractive because of the

increase in the pull-in range of the PLL. In order to minimize jitter, very narrow

loop bandwith is required, which results in a limited pull-in range. This is no

problem when accurate crystal-controlled VCO's are used, but the use of

cheaper low-precision crystals, or even non-crystal VCO's is an economically

appealing possibility. The latter, in particular, would enable the monolithic

integration of all the components of the VC0 on the transceiver chip.

For frequency detection, an oversampling factor R=2 is not sufficient

because aliasing distortion would not permit the distinguishing of positive and

negative frequency offsets. The minimum oversampling factor depends on the

maximum frequency offset allowed for the VC0. Since #=4 can be achieved

bob
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without an increase in complexity of the echo canceller using the all-pass filter,

assume /?=4 in the subsequent analysis of the frequency detector.

The basic difference between a phase and frequency detector is that the

former measures the phase error modulo T, whereas the latter can keep track

of cycle slips and therefore phase errors larger than T. This difference is illus

trated in Fig. 5. Fig. 5a shows the characteristic of a phase detector, and Fig. 5b

and 5c those of frequency detectors. In the case of Fig. 5b the error charac

teristic is linear over a large number of cycles, whereas in Fig. 5c, the charac-

Tteristic saturates for phase errors 19c | => —-r A way to make a phase detector

into a frequency detector is to keep track of the number and the sign of the

cycle slips. With an oversampling factor of i?=4, the in-phase and quadrature

error signals pn and qn defined in (5) and (6) can be used to detect these cycle

slips.

A rotational detector [16] detects a cycle slip whenever the vector (pn,qn)

(Fig. 6) passes between the upper and the lower half-plane. The direction of the

passage indicates whether the slip was positive or negative. Thus a crossing

from quadrant 1 to 4 or from 3 to 2 indicates a negative cycle slip, whereas a

crossing from 4 to 1 or from 2 to 3 corresponds to a positive slip. The rotational

detector lends itself to a simple implementation as shown in Figure 7a, and has

been found to perform satisfactorily in computer simulations.

Another frequency detector is based on the quadricorrelator [16], and

shown in Fig. 7-b. The quadricorrelator works on nearly the same principle as

the rotational detector. The output of the hard limiter indicates whether the

(jPnSti) vector is in the upper or the lower half plane, and the derivative of pn

indicates whether the vector is moving from the left to the right half plane or

vice-versa. Thus the sign of product of both signals represents the sign of fre

quency error (direction of rotation). The main difference is that the rotational

968
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detector counts only integral numbers of slips, whereas the quadricorrelator

generates a proportional error signal.

Results of computer simulations of both the rotational detector and the

quadricorrelator in the specific case of a subscriber loop receiver using WDM

timing recovery are reported in Section 4.

Unfortunately, any non-crystal VCO that can be integrated on a monolithic

chip in MOS technology without trimming will have large errors in its center fre

quency. Errors of ±50% can be realistically expected. Frequency errors of this

magnitude cannot be corrected with a continuously running frequency detector

as described above. However, preliminary work indicates that it is possible to

use a monolithic non-crystal VCO if an initial half-duplex startup sequence is

used. During that sequence, pulses are sent from the central office at a much

lower rate than the nominal, for example . A systematic sequence like

+ 1,—1. + 1,—1, + 1,... is sent. At this low speed, all input filtering and equalization

circuitry can be bypassed (obviously this circuitry needs an accurate clock,

since it works on sampled data, so it cannot be used until the frequency of the

clock has been adjusted). A simple threshold device generates a square wave

from the received waveform, which can be used to adjust the VCO frequency

using some of the standard digital frequency and phase detection techniques

[6]. After frequency lock has been achieved, the operation is switched to full

duplex and the WDM phase detector takes over the control of the VCO. The loop

lock range must be large enough to allow tracking of frequency drifts caused by

temperature variations during the operation of the VCO. Due to the large initial

error in the VCO center frequency, a very large VCO dynamic range in fre

quency^1^ is required. This is of the order of 10a:l, or about 20 bits. The com-

*• ^In a digitally controlled VCO, the frequency can be adjusted only in steps. Dynamic range of
the VCO is defined as the ratio of the total tuning range to the smallest frequency step that can be
generated.

Lb b
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plexity of an analog-digital implementation would be roughly equivalent to a 20

bit DAC, although it seems that if appropriate interpolation techniques are used,

the system can be implemented in a reasonable amount of silicon area. Since

frequency lock is achieved in this case during the startup sequence, another

continuously running WDM frequency detector is not required.

In summary, frequency detection may be advantageous whenever a lower

accuracy free-running frequency for the VCO is desired, as would be obtained

from using a cheaper crystal. If monolithic non-crystal VCO's are used, a con

tinuously running WDM frequency detector does not provide enough pull-in

range, and frequency acquisition must be achieved during an initial startup

sequence.

2.3. Timing Tone and Jitter Analysis

In this subsection, closed form expressions for the power of the liming Lone

and the jitter generated by pulse overlap in WDM are derived.

Consider a data signal s(t) as in equation (1). If the channel is possibly

nonlinear and its impulse response has finite duration NT , where N is the

number of periods over which the channel impulse response is nonzero, it is

shown in [l] that the signal can be represented as

sn(r) =s(nT+^-) =xS-bfy) (10)

where

*n ~ (l.^ai^i-l. ' * • ,Xn-H+\.XnXn-X.XnXn-2.%
(ID

is the 2?-dimensional "augmented transmitted symbol vector", (assuming the

data symbols are binary), and

bbb



Agazzi et. al.. Timing Recovery in Digital Subscriber Loops -12-

h(r) = (A0l7i1(01r)lfcl(lir)i • • • ./^(tf-l.r),

• • • ,/iz(0,l,r)f/i2(0,2.r), • • • ,/i2(JV-2,JV-l.r), • • • ,hN(r))T

is the 2^-dimensional nonlinear channel impulse response vector.

The notation in (10) allows for nonlinearities in the transmission channel,

although in practice most channels are linear or very approximately linear. This

notation, nevertheless, is useful to represent the nonlinear operation deli

berately performed on the signal in order to generate a timing tone. If the func

tion /(•) is such a nonlinear operation, it is shown in [l] that f(sn(r)) can be

expressed as

<"»(*•) = /Mr))=^fiHr)] = *Jg(r> (13)

where p£h(r)] is a 2^-dimensional nonlinear transformation induced by /(•) on

the vector h(r) and

g(r)=W)] (14)

In Appendix A a method to compute g(r) for a given h(t) and / (•) is shown.

If the samples ^(r) are placed at the input to R time interleaved niters

with unit sample responses i>r(A:), (Q^r<R), as in Fig. 2-b, Appendix B shows that

the power of the output signal is

E\y*{r)\ = a0(r) \g0(r)\* + gr(r)Mg(r) (15)

where

2

*o(r) = (16)

and M is a 2?-dimensional square matrix which depends on the filter response.

The first term in (15) represents the power of the timing tone at the output of

the r"1 filter, whereas the second term represents the jitter power, or the vari

ance of the timing signal.



Agazzi et. al.. Timing Recovery in Digital Subscriber Loops -13-

Not all practical filters can be represented by an interleaved structure as in

Fig. 2b. However one important case which can is when the unit sample

response of the filter (at a sampling rate -=) can be expressed as:

v{r+nR) = P(n)Q(r) (17)

The response of this filter for an input X(n) is:

y{n) = 2 S v(r+mR) \{n-mR-r)
mr=0

=tf£p(m)Q(T)Kn-mR-B) (18)
mr=0

= '£P(m)z(n-mR)
m

This can be represented by a transversal prefilter with unit sample response

RQ(r), (O^r^R) and sampling rate -=r; followed by R interleaved finite impulse

response (FIR) transversal filters with the same responses P{m) and sampling

rates —(Fig. b). Sometimes the output can be decimated, and not all the R

interleaved FIR filters are required. One example of a filter of this kind is the

WDM filter. If only phase detection is performed, /?=2 and

G(0 = (-Dr. r = 0.1

P(n)=±r, O^n^K-1 (19)
J\

P(n) = Q, n<0om2> K

and if frequency detection is needed, i?=4 and

£(r) = (-l)2, r=0orr=2
Q(r) = 0, r=lorr=3

P(n) = y- O^n <K
(20)

P(n) = 0, n<0 or n^K

For phase detection only one of the R interleaved FIR filters is needed. For fre

quency detection we need two, to generate the in-phase and quadrature signals.

uub
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For the WDM filters, equation (15) is still valid if we replace g(r) by g(0)-g(l) in

the case of phase detection alone, and by g(0)-g(2) and g(l)-g(3) respectively

for the in phase and quadrature signals in the case of phase and frequency

detection. The appropriate M matrix is computed in Appendix B.

For the sake of comparison, it is interesting to consider the case when the

filter is a resonator with unit sample response

an

J?t/(n) = 2 Rsin ur

R
(21)

This case is slightly more involved because the filter does not have the structure

of (17). However, it can be split into two filters with responses

and

us(n) =."^""fr (a)

each with a structure as in (17), and the outputs combined. The results are

further simplified if we consider a resonator centered at the data rate, that is

w=2tr. The details of the calculation are left to the reader, but, the final result is

E\yS(r)i =*o IGo(2rr)|2 +a0 lm(Gi(27r)e~ * ) +
J4TTT * '

G(-27r)MG(27r)+Im[G(27r)MG(27r)e" * ]

where a0 and M are defined in Appendix B, and G(«) is the discrete Fourier

transform of vector g(r), (0<=r<J?-l). The first two terms in (24) represent the

timing tone, and the last two represent the jitter.

This discrete time resonator can be easiiy generalized to continuous time

by letting /?->*>, and then can be used to compute the jitter performance of the

spectral line method. In computer simulations (24) was used with a large value

of R (Z? =100).
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Using these results, the jitter was evaluated for a number of practical cable

configurations whose pulse responses were obtained from a computer line

modelling program. The results are shown in Table II and further described in

Section 3.

2.4. Comparison of the WDMwith the Spectral line Method

In the spectral line method, the timing tone obtained after the nonlinear

operation on the data signal is recovered by a narrowband filter. Instead of

using a bandpass filter centered at the data rate, a lowpass filter of equivalent

bandwidth can be used if the filtering operation is preceded by a frequency

translation of the spectrum down to dc. This frequency conversion can be

achieved by multiplication of the timing signal by a sinusoidal reference signal

with frequency nominally equal to the data rate. This is the operation usually

performed when the timing tone is filtered with a phase locked loop, where the

reference signal is the output of the VCO. Any departure of the frequency of the

reference signal from its nominal value will create a beat tone at the output of

the lowpass filter which can be used to control the VCO that generates the refer

ence signal. If the timing tone is Asin(ut-r<p) and the reference signal is

sin(wr£), demodulation will create the tones ^-cos((q—or)t+<p) and

—£-cos((w+&v)£+^>).

The demodulation of the timing signal can be performed in continuous time

or in sampled data fashion. Assume in the latter that the sampling rate is

exactly twice the frequency of the reference signal. Then, if the departure of Qr

from its nominal value o is smaller than ur, the frequency difference tone will be

adequately represented without aliasing distortion. The sum frequency tone will

be aliased down to -r-cos(w—or)£, and will reinforce the difference frequency

tone. Clearly, it is not possible to distinguish whether the frequency error is

oub
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positive or negative, and therefore no frequency detection is possible with a

sampling rate twice the reference frequency. With the sampler locked to the

VCO as assumed here, the samples of the reference signal have only two values

+sin^ and -sinV', where f is the relative phase between the sampler and the

VCO. If i*=-p the samples are +1 and -1. The phase detector is then effectively

computing the difference between the even and odd-order samples of the timing

signal. If, in addition, the low-pass filter is an averaging filter (that is, the output

samples are computed as the average of a certain number K of input samples),

this sampled-data version of the spectral line technique becomes exactly

equivalent to the WDM as described in Subsection 2.1.

So far we have considered that the timing signal consists of a purely

sinusoidal tone at the data rate, with no harmonics and no continuous spectral

components. When the nonlinear operation performed on the data signal is a

square-law operation, no harmonics of the discrete timing tone are generated,

but there are continuous spectral components. If the nonlinear operation is

other than a square-law operation, there will be both higher order harmonics of

the tuning tone and continuous components. The WDM is no longer exactly

equivalent to the spectral line technique because the phase error signal will

include the effect of the do aliases of the higher order harmonics of the timing

tone and the phase recovered by the WDM then is different from the phase

recovered by the spectral line technique. Furthermore, the jitter is expected to

be different even in the case of a square-law operation, because of the aliasing of

continuous components above the data rate.

3. Performance of the WDM

The performance of the WDM when operating on real telephone lines has

been studied using channel impulse responses computed by a cable modelling
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program [17]. This program models the line sections, gauge discontinuities,

bridged taps, transformers, transmit and receive filters, and an equalizer. The

transmit and receive filters used were all-pole minimal intersymbol interference

niters [18], and the equalizer frequency response was

^M^O <25>
where a and 6 are the zero and the pole locations. (Usually 6 is fixed and a is

adjustable).

A large number of cable configurations were analyzed to determine how

cable imperfections affect the system performance. Although the amount of

pulse distortion would increase using more than one bridged tap, only a few lines

have multiple taps and thus that case is not considered here. Model program

output showed that the transmission path (unlike the echo-path) impulse

response is almost completely insensitive to the location of the bridged tap, and

thus a center location was assumed. The reflection originates at the open end of

the bridged tap, and the longer the tap the longer the delay of the reflection

with respect to the main pulse and the smaller its relative height.

The pulse distortion generated by a bridged tap depends on the transmit

and receive Alters used. Severe bandlimiting of the signal causes the reflection

from the bridged tap to merge with the main pulse. The only observable effect

may be simply a widening of the pulse, particularly for lower data rates, for

example 80 Kb/s, and for gauge 26 bridged taps. WTien the data rate is

increased, causing a corresponding increase in the bandwidth of the transmit

and receive filters, the reflections from bridged taps start to be resolved, caus

ing more concern about the phase of the recovered timing. Clearly, the inten

sity of the reflection is also strongly dependent on the bridged tap gauge. Gauge

26 bridged taps have been found in the modelling to cause very little observable

effect in bandiimited systems, even at data rates as high as 144 Kb/s. Because

VUb
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of the larger instantaneous data rates involved, burst mode systems may be

more susceptible to sampling phase offsets caused by bridged taps.

The typical configuration presented here consists of a 2 mile gauge 28 cable

with a bridged tap at the center. The wire gauge of the bridged tap is 19 and its

length is varied from 0.1 to 0.5 miles. A gauge 19 bridged tap was used in order

to minimize the attenuation of the reflected wave, and thus present the worst

case. Fig. 9a shows the impulse response of the five different cables considered

at a data rate of 144 Kb/s, whereas Fig. 10a shows the same response at 256

Kb/s.

Another computer program was written to evaluate timing function (1). It

was assumed that the impulse response length was 57" , and consequently the

average was computed over the 32 possible sets of overlapping data bits. The

sampling phase recovered by the WDM was found solving the equation:

w(t-£)=w(t +£) (26)

This phase is shown in Figs. 9a and 10a, whereas the timing function is shown in

Fig. 9b for 144 Kb/s transmission, and in Fig. 10b for 256 Kb/s transmission.

The phase recovered by the WDM is very close to the maximum of the pulse even

in the presence of strong bridged tap distortion.

Another timing recovery technique, the baud rate sampling technique [7],

would allow a further simplification of an echo canceller. For symmetric

received pulses the sampling phase determined by this technique is the same as

that of WDM and coincides with the maximum of the pulse. However, when the

phase determined by the baud rate technique employing the timing function

w(t)=h(t-T)-h(t +T) (27)

was calculated, a strong dependence on pulse shape was observed. The timing

functions for the five different configurations are shown in Figs. 9c and 10c, and

3 U U
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the corresponding sampling phases, computed as the solutions of w(t)=0, are

shown in Figs. 9a and 10a. The sampling phases of both WDM and baud rate sam

pling are also summarized in Table I. For cases of severe pulse distortion, for

example when the bridged tap length is 0.4 or 0.5 miles, the baud rate sampling

technique yields a completely erroneous sampling phase unless line coding is

modified from the binary or AMI code considered here. However, even with

binary or AMI coding, baud-rate sampling is not ruled out completely, since com

puter simulations showed that in bandiimited systems operating on lines with

gauge 26 bridged taps the pulse distortion is negligible, and thus baud rate tim

ing recovery may be appropriate.^

The final conclusion on baud rate timing recovery requires a statistical

study of the telephone lines deployed in the field, to determine the percentage

on which the system can be expected to work properly. If this information is not

available, a more conservative approach like the WDM seems advisable.

The jitter performance of WDM when operating on the same example lines

was studied using the theory developed in Section 2, which applies directly to

binary line coding. For comparison, the jitter performance of the continuous

time spectral line method was also computed using nonlinear functions xz, \x\,

and x\ In order to make the examples more directly comparable, the averaging

filter of the WDM was replaced here by a recursive filter with a unit sample

response e-0*1, while in the spectral line method a resonator centered at the

data rate, with an impulse response eH*+jc»)' was used. The transmission speed

was 144 Kb/s, and the filter bandwidth was in both cases B = -—= 3.6 Hz. The
CI7T

jitter power was computed after adjusting the signal level to yield a normalized

timing tone amplitude with a unity peak value in order to compare with the

results of the PLL simulation of Section 4. The PLL bandwidth depends on the

' 'If equalization is performed at a sampling rate R=2, sampling phase is non-critical. Howev
er, for this case there is no strong motivation to use baud rate timing recovery.

3U b
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phase detector gain, which in turn depends on the timing tone intensity. If T is

also normalized to 1, the jitter power can be expressed in dB, and directly com

pared with the output of the PLL in Section 4.

The jitter power for WDM is given by:

P = 7T5r(g7,(l)-g7,(2))M(g(l)-g(2)) (28)

and for the spectral line by the two last terms of (24). A computer program

read the line impulse response and computed the Hadamard matrix (Appendix

A), g(r), C(m), and finally the jitter. The results are shown in Table IT. The WDM

yields a performance comparable or superior to the spectral line method for

most cable configurations. The absolute value function in the latter not only is

the easiest to implement, but also gives the best results in most cases. The

worst performance is associated with bridged taps of an intermediate length,

Tsuch that the delay of the reflected pulse is about —. When the delay increases

to T, the jitter decreases.

4. An Example of Timing Recovery Design

In this Section the conclusions of the previous Sections are appled to the

practical design of the timing extraction block of a subscriber loop receiver.

Both phase and frequency detection are used. For the latter, one of the exam

ples uses a rotational detector, and the other a quadricorrelator. A proportional

plus integral (PI) loop filter for the phase error signal, and an integral only filter

for the frequency error are used, as recommended in [16]. In the case of the

rotational detector, the integral of the frequency error is computed simply by

counting slips, a technique that introduces a very coarse quantization in the

filter output signal. This is advantageous since, once in lock, the frequency

detector does not disturb the phase locked loop. In the quadricorrelator, the

frequency detector is always active, even in lock, and the fluctuations of the fre-
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quency error signal introduce an extra jitter in the recovered clock.

Block diagrams of the two approaches are shown in Figs. 7a and 7b. The

sampling rate of both the in-phase and the quadrature error signals p and q was

chosen equal to XkHz in order to allow relatively large initial offsets in the VCO.

Clearly the offset cannot be larger than half the sampling rate of the error sig

nals. Prior to the decimation of p and q, a lowpass filtering was performed using

a recursive first order filter with a unit sample response e ~an .The bandwidth was

B = T =100 Hz in the case of the rotational detector, and £?=500 Hz in the

case of the quadricorrelator.

The complete timing recovery systems were simulated for the same five

example lines considered in Section 3. Simulations for both binary and AMI line

codes indicated that the jitter performance is quite similar, and only results for

the AMI case are presented here. The convergence transients for an initial VCO

offset of 2000 ppm or 288 Hz are shown in Figs. 11a, lib, 12a, and 12b for the

rotational detector and the quadricorrelator, resp. Figs. 11a and lib show the

phase, and Figs. 12a and 12b the output of the phase detector. Only one case,

corresponding to a 0.5 mile BT is shown here, but similar results were obtained

for the other cases. Lock was acquired by the rotational detector in less than

14400 cycles, which corresponds to 100 ms, in all the cases. A tradeoff between

speed of acquisition and residual jitter exists in the case of the quadricorrelator.

Using a large gain in the frequency loop, acquistion can be speeded, but the

extra jitter introduced by the frequency error signal under lock conditions is

higher. In the simulations shown here a longer acquisition time than was

obtained for the rotational detector was deliberately accepted to decrease

somewhat the steady state jitter. However it seems that the overall perfor

mance is poorer, and thus the rotational detector is to be preferred.

BUb
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The steady state phase after lock coincides with that shown in Fig. 9a for

the WDM. The jitter performance was also simulated and the results, shown in

Table III, are seen to agree closely with the analytical results of Table II for the

case of the rotational detector, and are significantly worse in the case of the

quadricorrelator.

5. Conclusions

Timing recovery techniques applicable to digital subscriber loop receivers

have been analyzed, with emphasis on those techniques suitable to integration in

MOS monolithic technology. Of particular interest is the wave difference method,

which has been studied both analytically and by computer simulation.

Alternatives for the implementation of frequency detectors have also been

discussed. The advantage of using frequency loops in addition to phase loops is

an increased pull-in range, would allow the integration of a non crystal VCO on

the same chip as the rest of the receiver.

A closed form expression for the timing tone to jitter ratio has been

derived. This expression is valid for arbitrary channel impulse responses, non

linear tone generating functions, and timing filters. Computer simulations have

shown that the recovered phase is very satisfactory even in the presence of

severe pulse asymmetry due to bridged taps. In these simulations, realistic

examples of impulse responses for very unfavorable cable configurations were

used. The jitter performance of the WDM when working on these lines has also

been reported.

Finally, a possible implementation of the timing recovery function has been

described. The sampling rate is twice the sampling rate, thus permitting the

use of a relatively simple echo canceller, but a second order all pass linear

T
phase network is used to generate a -—delayed version of each sample, increas-
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ing the effective data rate to four times the data rate. At this sampling rate

both frequency and phase detection can be performed.

Presently some additional work is being performed on modifying the line

coding to improve the performance of the baud rate sampling technique, and

the results will be reported in a future paper.
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APPEKDDCA

It has been shown [2] that a nonlinear function of N bits f{z^zXl ' ' ' ,«jv-i)

can be expanded in the form^

N i n 1

/(«0.2l. ' ' ".2/V-l) = C0 + Jj cl(k)zh + S c2(^1.^2)Zjb.«Jb2 +
fe=0 felafc8s0 {A-l)

• • • + GNzklzkfi • ' • zkN

A simple technique was given in [l] to compute the coefficients c0, cx(k), .... cN

when the bits zk can assume the values 0 and 1. In the more practical case

when the zk assume values +1 and -1, the only way to compute the coefficients

of (A-l) is to solve a system of 2N equations with 2N unknowns (the coefficients).

Although it may seem that solving that system is cumbersome, it is actually

trivial, because the matrix of the system is orthogonal, and in a convenient

representation, it is also symmetric, so that it is its own inverse.

In the inner product notation of equation (10), expansion (A-l) can be

expressed

/(*0.*l."-.*iV-l) = zT • c (A-2)

Define a 21 -dimensional vector f whose components are the values of the non

linear function / for all the 2^ combinations of the variables z0 zN-x

jTf+1, +1, +1 +1)'
/M, +l, +l,..., +l
/{+1,-1, +1 +1
/(+1.+1.-1..... + 1

/(+1. +1. +1 -1)
f _ /(-1,-1, +1 +1)
r"~ /(-1. +1.-1..... +1)

/(-1. + 1.+1 -1)

/(-1.-1.-1 +1)

/(-1,-1,-1,...,-1)J

(A-3)
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When the vectors z are also formed for all the combinations of values +1

and —1 of the binary variables zk, a set B of 2N vectors Zi,...zg^ is obtained. We

will show that B is an orthogonal basis of the ^-dimensional vector space R2^

(the space of all 2N-tuples of real numbers). To prove this, consider any two vec

tors x and y in B and form their inner product:

x y = l+a?ol/o+«iyi+ * ' • +Sjv-i2/jv-i+ • • • +a?o*i ' ' ' ^N-iyoVi ' ' ' Vn-i , *

= (l+*oyo)(l+^iVi) ' *• (l+ar//-i2/jv-i )

It is clear that this inner product is non-zero only if xk-yk for all k=0,...,N—1,

which occurs only if x=y. Any two vectors in B are orthogonal, and B is an

orthogonal basis of R2 as claimed. The norm of a basis vector is 2JV/2.

The matrix

M= L, z8, ••• ,ZgA- (A-5)

is orthogonal, and

WE? = 2N I (A-6)

where I is the 2^ by 2N identity matrix. Also note that all elements of M are

either 1 or —1. Orthogonal matrices whose elements are 1 or —1 are called

Hadamard matrices, and have been used in other fields of signal processing, like

image encoding [19].

If the ordering of the basis vectors is chosen as the one which results from

the same ordering of the bits z0t zlt...,zN-x as in (A-3), M is also symmetric, and

so, and from (A-6), it is its own inverse. This ordering was used in writing (A-3).

These properties of M are useful in computing the coefficients of expansion

(A-l) when it is written in terms of a binary variable which assumes values 1 and

—1. To compute the coefficients of (A-l) we must solve the system of 2^ linear

equations

o lb
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VLTc = f (A-7)

which admits the closed form solution

c=^r-Mf (A-B)

Expression (A-8) allows the direct calculation of the coefficients of the expansion

once the values of / for all possible sequences of N bits are known. It is at the

same time another proof of the validity of expansion (A-l) since H, being orthog

onal, is always nonsingular, and so system (A-7) can always be solved.

APPENDIX B

If Un{r) given by (13) is placed at the input of R interleaved transversal

niters with unit sample responses vT(n), each sampling at the data rate, the out

put of the r**1 filter will be

Vn(r) =Y>vr(k)v<n-k(r) =2>r(fcW-*g(r) (B-2)
K K

and the power of the output signal will be

ElV%r)l =gV> ' [ 2 »V(*i> "r(&2> £!*,-*, •Jn-kJ] • tfr)
*i-*a

=eT(.r)l'£ t fr(fc)vr(fc+m)A(m)]g(r)
k TO =-»

where

A(m)=tf|a»*IVmJ (B-4)

is a 2^x2^ matrix. Because component 0 of vector x^ is always 1 , element

4oo(ra) is 1 for all m. The other elements of A(m) are either 0 or 1 and all van

ish for |m \>N. Thus we can express
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where

A(ra)=B+C(m)

B=

10 0

0 0 0

0 0 0

0 0 0

(B5)

(B-6)

and C(m) is identically 0 for \m\^N but is different from 0 for \m\<N. It is

interesting to note also that C(m) depends only on N, and so a universal table of

C(m) matrices could be computed as a function of N.

In the special case when the basis vectors defined in Appendix A are taken

in the order of (A-3), matrix C(m) has the form

Now

where

QJ(m) = C>,t(m) =<5J.2mi(l^i^2JV-ni-l , l^'^-l)
Co.o(m) = 0

(B-7)

£,h/n8(7-)i =«o(r)|flro(r)|2 +g7,(r)[ tf 0m(r)C(m)] g(r) (B-8)
m=-JV+l

(B-9)

«ofr)= S Pm(r) =
\2

E "r<*) (B-10)

The first term in (B-8) represents the power of the timing tone at the output of

the r"1 filter, whereas the second term represents the jitter power, or the vari

ance of the timing signal.

If we define

v v 0
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Pm -

ao = 1

If Ky>N, H can be approximated as

= 1? An(r)C(m)

equation (15) results.

For the special case of WDM with an averaging filter of length A" as in (19) or

(20), we have

(K-\m\)
K2 (\m\<K)

0 (\m\>K)

M=(-k *£* C(m)
A m=-JV+l

For a reasonator centered at o=2ir,

and

M =

v(n) = e

ftn ~ l-e-2«

ao = (l-e"tt)2

If we assume, as is usually the case, that the resonator has very small

bandwidth, then a«l, and M can be approximated as

N-l

l-e~Za
S C(m)

m=-yv+i

-28-

(B-ll)

(B-12)

(B-13)

(B-14)

(B-15)

(B-16)

(B-17)
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Figure Captions

Figure 1. Eye diagram and the steady state sampling phase for pn and qn.

Figure 2-a. Averaging transversal filter with K taps.

Figure 2-b. Time interleaved averaging filter.

Figure 3-a. WDM using two interleaved filters.

Figure 3-b. WDM using one transversal filter.

Figure 3-c. WDM using one transversal filter with decimation.

TFigure 4. All pass filter approximation to a —- delay: comparison of input

and output with input appropriately delayed. For an ideal delay, the two
waveforms would be identical.

Figure 5-a. Characteristic of a phase detector.

Figure 5-b. Characteristic of a linear frequency detector.

Figure 5-c. Characteristic of a nonlinear frequency detector.

Figure 6. Rotational detector detects a cycle slip whenever the vector
(Pm9n) passes between the upper and lower half plane.

Figure 7-a. Rotational frequency detector.

Figure 7-b. Quadricorrelator frequency detector.

Figure 8. Interleaved structure of a filter with unit sample response
expressed as i/(r+ni?)=P(n)£(r).

Figure 9-a. Timing phase obtained by WDM and the baudrate sampling tech
nique at 144 Kb/s.

Figure 9-b. Timing function of WDM at 144 Kb/s.

Figure 9-c. Timing function of the baudrate sampling technique at 144 Kb/s.

Figure 10-a. Timing phase obtained by WDM and the baudrate sampling
technique at 256 Kb/s.

Figure 10-b. Timing function of WDM at 256 Kb/s.

Figure 10-c. Timing function of the baudrate sampling technique at 256
Kb/s.

Figure 11-a. Transient behavior of the sampling phase acquired by the rota
tional detector.

Figure 11-b. Transient behavior of the sampling phase acquired by the qua
dricorrelator detector.
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Figure 12-a. Phase detector output of the rotational detector vs. time.

Figure 12-b. Phase detector output of the quadricorrelator detector vs.
time.

Table 1. Sampling epoch of the timing recovery systems.

Table 2. Timing tone to jitter power ratio in dB without frequency detector.

Table 3. Timing tone to jitter power ratio in dB with frequency detector.
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TABLE I

Sampling Epoch of Timing Recovery System

Bridged Tap

Length

WDM Baud Rate Sampling

144 Kb/s 256 Kb/s 144 Kb/s 256Kb/s

O.IMile 26.39/xs 23.08/xs 26.60^.s 22.54/xs

0.2 27.08/xs 22.26/is 27.l5fts 23.59/i.s

0.3 25.35/as 22 30/xs 27.84/i.s 24.02/is

0.4 25.71/i.s 22.42/xs 28.54^.s 21.64/xs

0.5 25.37yu.s 22.69/i.s 28.82/iS 21.56/xs



TABLE n

O.IM 02 M 0.3 M 0.4M 0.5M

WDM

X2 61.79 64.08 46.45 58.64 54.05

1x| 62.42 64.71 47.23 57.91 54.16

X4 61.12 61.69 50.86 54.40 54.28

Spectral
Line

x2 57.36 57.01 53.35 59.59 61 .43

Ixl 55.96 56.00 51.79 58.76 59.27

X4 60.83 61.33 58.29 58.85 63.47



TABLE HE

O.IM 0.2M 0.3M 0.4M 0.5M

rotational

detector
62.52 64.56 46.41 55.56' 52.85

quadri -

correlator 42.98 40.35 31.08 44.16 40.87
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