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ABSTRACT

This paper explores the use of commands in a query language as an
abstract data type (ADT) in data base management systems. Basically, an ADT
facility allows new data types, such as polygons, lines, money, time, arrays of
floating point numbers, bit vectors, etc., to supplement the built-in data types in
a data base system. In this paper we demonstrate the power of adding a data
type corresponding to commands in a query language. We also propose three
extensions to the query language QUEL to enhance its power in this augmented
environment.

I INTRODUCTION

Abstract data types (ADTs) [USK74. GUTT77] have been extensively

investigated in a programming language context. Basically, an ADT is an

encapsulation of a data structure (so that its implementation details are not

visible to an outside client procedure) along with a collection of related

operations on this encapsulated structure. The canonical example of an ADT is a

stack with related operations: new, push, pop and empty.

The use of ADTs in a relational data base context has been discussed in

[R0WE79, SCHM78, WASS79]. In these proposals a relation is considered an

abstract data type whose implementation details are hidden from application

level software. Allowable operations are defined by procedures written in a

programming language that supports both data base access and ADTs. One use
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of this kind of data type is suggested in [R0WE79] and involves an EMPLOYEE

abstract data type with related operations hire-employee, fire-employee and

change-salary.

In [ST0N82, ST0N83] we presented an alternate use of ADTs. Instead of

treating an entire relation as an ADT, we suggested that the individual columns

of a relation be ADTs. This use of ADTs is a generalization of data base experts

[STONBO].

In Section II we briefly review our proposal and then in Section III we

introduce QUEL as a data type and indicate desirable operators for this new

type. Section IV turns to a discussion of three extensions to the QUEL language

that are useful in this environment. In Section V we consider optimization issues

related to QUEL ADTs. Lastly, we indicate that several data base problems

including referential integrity, non-first normal form relations, and

generalization hierarchies can be solved by defining QUEL as an abstract data

type. Section VI presents our approach to these problems. Section VH

concludes by summarizing the paper.

H ABSTRACT DATA TYPES

We explain our use of ADTs with an example concerning geometric objects.

In computer aided design of integrated circuits, objects are often made up of

rectangular boxes. For a VLSI data base one would like to define a column of a

relation as type "box". For example, one might create a boxes relation as

follows:

create boxes (owner = i4,
layer = cl5,
box-desc = box-ADT)

Here, the boxes relation has three fields: the identifier of the circuit containing

the box, the processing layer for the box (polysilicon. diffusion, etc.) and a

description of the box's geometry. All fields are represented by built-in types
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except box-desc which is an ADT.

Tuples can be appended to this relation using QUEL [ST0N76] as follows:

append to boxes (owner = 99,
layer = "polysilicon",
box-desc = "0,0,2.3")

The built-in data types are converted to an internal representation and stored in

a data base system. The string "0,0,2,3", represents the box bounded by x=0,

y=0, x=2, y=3 and requires special recognition code. An input procedure must

be available to the DBMS to perform the conversion of the character string

"0,0,2,3" to an object with data type box-ADT. Such a routine is analogous to the

procedure ascii-to-float which converts a character string to a floating point

number.

It is desirable to have special operators for box-ADTs. for example, one

would clip box dimensions as follows:

range of b is boxes
replace b (box-desc = b.box-desc * "0,0,4,1")

where b.owner = 99

The * operator represents box intersection. In this case "0,0,4,1" will be

converted to an object of type box-ADT, and a procedure must be available to

perform box intersection between this ADT and b.box-desc.

In addition, one might want to define new comparison operations. For

example, one might wish to define || as an operator meaning "overlaps". The ||

operator could then be used to return the boxes overlapping the unit square

based at the origin as follows:

range of b is boxes
retrieve (b.box-desc)

where b.box-desc || "0,0,1,1"

Again, a procedure is required for the overlap operator.



As a result an ADT contains the following elements:

a) a registration procedure to inform the DBMS of the new type, giving the

length of its internal representation.

b) a collection of routines which implement operators for this type and perform

conversions to other types. These routines must obey a prespecified protocol

for accepting arguments and returning results. Once defined by the ADT

implementor, the new type and operators become available to other users of the

DBMS.

c) modest changes to the parser and query execution routines to correctly

parse commands with new operators and call the routines defined by the ADT

implementor during execution.

This abstraction has been constructed in about 2500 lines of code for the

INGRES relational data base system. Implementation details are addressed in

[F0GG82, 0NG82], and ADTs execute with a modest performance degradation

[F0GG82]. Suggestions concerning how to integrate new operators into query

processing heuristics and access methods are contained in[ST0N83, 0NG83].

HI QUEL AS A DATA TYPE

We turn now to utilizing the ADT mechanism to define commands in a query

language as an ADT. Hence, a column of a relation can havevalues which are one

(or more) commands in the data manipulation language, QUEL. We explain our

proposal using the following relations:

BMP (name, salary-history, hobbies, dept, age. bonus)
DEPT (dname, floor)
SALARY (name, date, pay-rate)

SOFTBALL (name, position, average)
MUSIC (name, instrument, level)
RACING (name, auto, circuit)



A tuple exists in the EMP relation for each employee in a particular company.

Employees can have zero or more hobbies. For those employees who have

Softball as a hobby, a tuple in the SOFTBALL relation gives their position and

batting average. If an employee plays an instrument, a tuple in MUSIC indicates

the instrument he plays and his skill level. Lastly, those employees who race

sportcars are listed in the RACING relation along with the type of car they drive

and the circuit they race on.

The SALARY relation contains employees salary histories. Each time the

salary of an employee is modified, a tuple is appended to the SALARY relation

indicating the date of the modification and the new pay-rate. The DEPT relation

contains the floor number of each department. Lastly, the EMP relation

contains three fields, salary-history, hobbies, and dept which are of type QUEL.

The hobbies field holds a query (or queries) which, when executed, will yield

information on the employee's hobbies. The dept field contains a query which

will return the name of the department for which the employee works, and the

salary-history field contains a query that finds all records in his salary history.

An example insert to the EMP relation might be:

append to EMP (
name = "Fred",
salary-history = "range of s is SALARY

retrieve (s.all)
where s.name = "Fred"",

hobbies = "range of m is MUSIC
retrieve (m.all) where m.name = "Fred"
range of r is RACING
retrieve (r.all) where r.name = "Fred"",

dept = "range of d is DEPT
retrieve (d.dname) where d.dname = "toy"",

age = 25,
bonus = 10)

The appropriate additional insertions are:

append to MUSIC(
name = "Fred",
instrument = "piano",
level = "novice")



append to RAQNG(
name = "Fred",
auto = "formula Ford",
circuit = "SCCA")

This collection of inserts will append Fred as a new employee in the toy

department with racing and music as hobbies.

In a later section we will propose an implementation of this data type. In

this section we specify desirable operators this type and their intended

semantics.

The current implementation of ADTs [F0GG82, 0NG82] allows operators to

be overloaded. INGRES currently allows "." as an operator with two operands, a

tuple variable and a column name, e.g E.name. Our first ADT operator overloads

the operator ".". First, we propose that "." allow a left operand which is a field of

type QUEL and a right operand of type column name. For example:

range of e is EMP
retrieve (e.hobbies.instrument)

where e.name = "Fred"
and e.hobbies.level = "novice"

In this case "name" is a column in the relation indicated by e while "level" and

"instrument" are columns in the relation (or relations) specified by the QUEL in

e.hobbies. This command is interpreted as follows:

1) Find all values for e.hobbies which satisfy the qualification "e.name ="Fred".

2) For each value found, ignore all commands which it contains except
RETRIEVE and DEFINE VIEW. For each RETRIEVE command which the value
contains, replace the keyword RETRIEVE with the keyword DEFINE VIEW and
execute it to form a legal view. For each view definition which the value
contains, execute it directly to form a legal view. Then, define t to be a tuple
variable which will iterate over the this collection of views. For each one,
execute:

retrieve (tinstrument) where t.level = "novice"
The result of the overall query is the union of the results of the individual
commands executed in step 2.

In general, if X is a tuple variable, Y is a field of type QUEL, and Z is a field,

then X.Y.Z is a field in a collection of views, one for each RETRIEVE and DEFINE



VIEW command contained in a qualifying value for X.Y. Moreover, "." can be

arbitrarily nested and the above semantics apply recursively at each level. Also

note that this use of "." is similar to that proposed in GEM [ZANI83], and we

comment further on the relationship of our proposal to GEM in a later section.

Our second use of "." has a left operand which is a field of type QUEL and a

right operand which is a QUEL statement, e.g.:

range of e is EMP
retrieve (e. salary-history.

retrieve (date, pay-rate) where pay-rate <400)
where e.name = "Fred"

Here. e.salary-history is a field of type QUEL and the inner RETRIEVE command

is the right hand operand for the intervening ".". This use of "." is a short-hand

notation for the equivalent expression:

range of e is EMP
retrieve (e.salary-history.date, e.salary-history.pay-rate)
where e.name = "Fred" and e.salary-history.pay-rate < 400

In this nested retrieval context "." has a similar meaning to the one discussed

above. In particular, the left hand operator evaluates to the collection of views

mentioned earlier, and a range variable, say t, is created to iteratively span this

set. The QUEL command which is the right hand operand in then executed for

each view by appending t as the tuple variable to any field name which does not

have an explicit variable.

When the right hand operand is a RETRIEVE command, the result of this

operator is a collection of result relations. The semantics of "." when the right

hand operand is a QUEL update command are unclear, and we expect to support

this form of nesting only for retrieves.

We now turn to several other operators on QUEL data items. First, all the

normal character string operators can be overloaded. For example:

range of e is EMP
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retrieve (e.name) where e.dept = "range of d is DEPT
retrieve (cLdname) where
(Ldname = "toy""

In this context, "=" simply implies character string equality between e.dept and

the constant string containing the query.

Consider an operator, ==, which has two fields of type QUEL as operands

and returns true if they specify the same collection of tuples. For example,

range of e is EMP
range of f is EMP
retrieve (e.name, f.name) where e.salary-history ==

f.salary-history

This query will return pairs of employees with identical names and salary

histories. A containment operator, «, can be specified similarly for operands

which are fields of type QUEL. Additionally, all operators in a relational algebra

(e.g join, union, intersection) canbe easily defined between fields of type QUEL.

Any relational algebra operators will produce a result of type relation.

Since QUEL allows cascaded operators, we require operators for data of type

relation. It is straight forward to overload all operators for the QUEL data type

to apply to data of type relation. For example to find pairs of employees with

different names and the same salary history, we would execute

range of e is EMP
range of f is EMP
retrieve (e.name, f.name)

where e. salary-history.
retrieve (date, payrate)

== f.salary-history.
retrieve (date, payrate)

Here, == has relations as both operands and returns true if the two relations are

equal.

The last generalization is to allow any operator for fields of type QUEL to be

overloaded to apply to operands which are QUEL statements or tuple variables.

For example, suppose a relation STANDARD contains a collection of dates and



payrates. The following command would find all employees withthe same salary

history that appears in STANDARD:

range of e is EMP
range of s is STANDARD
retrieve (e.name)

where e.salary-history.
retrieve (date, payrate)

== retrieve (s.ail)

Here the right hand operand of == is a simple QUEL statement. A shorthand for

the above statement would have a tuple variable for the right operand of == as

follows:

range of e is EMP
range of s is standard
retrieve (e.name)

where csalary-history.
retrieve (date, payrate)

ss S

Our complete set of proposed operators appears in Table 1. Most can be

applied interchangeably to operands which are fields of type QUEL, tuple

variables, QUEL statements, and relations.

IV EXTENSIONS TO QUEL

There are three main extensions which we propose for inclusion in QUEL to

enhance its power in the ADT environment of Section III. In addition, we endorse

the proposal made in [ZANI83] to have default tuple variables. In this situation,

a command such as:

retrieve (EMP.age) where EMP.name = "Fred"

would be interpreted as:

range of EMP is EMP
retrieve (EMP.age) where EMP.name = "Fred"

This suggestion simplifies many QUEL commands and was inserted into one

version of QUEL[RTI83].



operator description left right
name operand operand

result

referencing field of
type QUEL

referencing field of
type QUEL

ss character

string compa

s= relation
compare

» relation
inclusion

« relation
inclusion

u union

u intersection

JJ natural join

OJ outer join

field-name field

QUEL relation
statement

* boolean

* boolean

* boolean

* boolean

* relation

* relation

* relation

* relation

* denotes a field of type QUEL, a QUEL statement,
a relation or a tuple variable

Proposed Operators

Table 1

In addition to default tuple variables we propose three other extensions.

First, we suggest the possibility of executing data in the data base rather than

retrieving or updating it. The syntax is as follows:

exec (EMP.hobbies) where EMP.name = "Fred"

The target Ust must be a field of type QUEL and instances which satisfy the

qualification are found and executed. In this case, the hobbies which Fred

engages in are returned.
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This extension frees a user from having to know the field names inthe QUEL

in e.hobbies. Also, it allows one to store updates in the data base and execute

them at alater time. Such data base procedures are discussed in Section VI.

Notice that EXEC complicates the extended interpretation of "." in the

previous section. For example, it is reasonable to have a value for e.hobbies

which is an EXEC command. For example, one could change Fred's hobbies to

be the same as John's by the following update:

range of E is EMP
replace e (hobbies =

"range off is EMP
exec (f.hobbies) where f.name ="John"")

where e.name = "Fred"

If Xis a tuple variable, Y is a field of type QUEL and Z is a field and if a qualifying

value for X.Y contains an EXEC command, then the semantics of X.Y.Z from the

previous section must be extended. In particular X.Y.Z canbe a column in an

additional set of views. For each EXEC contained in a qualifying value of X.Y,

replace the EXEC by RETRIEVE and run the command. If the result contains

values of type QUEL, then X.Y.Z must span any views which result from these

values by executing DEFINE VIEW commands, replacing RETRIEVE commands by

DEFINE VIEW comands and recusively applying the above meaning to EXEC

commands.

The second extension is to generalize the range statement. We propose to

allow a tuple variable to range over a collection of one or more relations. Then

we use this facility to support the further generalization illustrated below.

range of e is
EMP.salary-history where EMP.name = "Fred"

retrieve (e.date) where e.pay-rate = 1000

The intent is to allow e to range over the result of a query specification. Because

RETRIEVE is the only reasonable QUEL command to put in a range statement, we

leave it out of the syntax and include only the target list and qualification.
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Moreover, the query specification must return data items of type QUEL. The

purpose of the second extension is to allow the above expression rather than the

less natural equivalent command:

range of e is EMP
retrieve (e.salary-history.date)

where e.salary-history.pay-rate = 1000
and e.name = "Fred"

If X and U are tuple variables and Y a field of type QUEL, then the semantics of

range of U is X.Y where qualification

are the following:

1) Run the query
retrieve (X.Y) where qualification

to find qualifying data items of type QUEL

2) For each RETRIEVE, DEFINE VIEW or EXEC command, perform the steps
indicated earlier to define the appropriate collection of views, CI Cn.

3) Replace the range statement by

range of U is Cl,...,Cn

The third extension is to allow update commands to have a generalized

target relation as suggested by the following example:

append to EMP.salary-history
(date ="6/81". payrate = 2000, name ="Fred")

where EMP.name = "Fred"

Currently QUEL only supports a target which is a relation. In this generalization.

the target can also be a column of a relation in the data base which is of type

QUEL

The intent of the third extension is to allow the above expression rather

than the equivalent extended command:

range of e is EMP.salary-history where EMP.name = "Fred"
append to e (date ="6/81", payrate = 2000, name="Fred")

Notice that extended range statements and extended targets automatically

introduce views. The usual semantic problems occur in updating these views.
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V SPECIAL CASES OF QUEL AS A DATA TYPE

Three special QUEL data types will be suggested in this section to allow

either increased performance or a more natural syntax. First we suggest

relations as a special case of the QUEL ADT. Clearly, avalue oftype QUEL can be

a relation, i.e.:

range of R is any-relation
retrieve (R.all)

Since the interpretation of the QUEL extensions in Section IV required that the

query be treated as a view, we must invoke view processing to support such

functions. Adatatype of relation as a special case of a QUEL data type will allow

such operators to be optimized by ignoring the view processing.

The internal representation of a QUEL data type may be anything from a

text string for the command to a machine language procedure containing a

compiled version of the access plan. The choice depends on trading off

efficiency, flexibility and complexity of the underlying DBMS. Alternatively, it is

also possible to precompute the answer to any RETRIEVE command. This

collection of pointers to tuples would be stored as the value of the field. In the

case that at most one tuple qualified, this value would be a pointer to a single

tuple or the null pointer. This representation is exactly the data type "pointer

to a tuple" suggested by Powell [P0WEB3] and by Zaniola [ZANIB3]. More

generally, the value could contain multiple pointers to tuples in different

relations. Consequently, implementing the QUEL data type by precomputing

answers for QUEL queries provides a generalized version of previous proposals.

Storing such physical pointers in the data base has a clear speed advantages

over storing the query. However, it also has the disadvantage that a pointer can

be left "dangling" if the tuple it points to is moved. Moreover, no consistency

guarantee is made if the tuple which is pointed to gets updated. Hence,

precomputing answers should be considered a very dangerous way to obtain
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efficiency.

The third special case of a QUEL data type can be illustrated by appending a

tuple to the EMP relation, e.g.

append to EMP (name = "Joe", dept = "shoe")

In this case dept is a field of type QUEL and we would prefer to simply enter the

value "shoe" and not the remainder of the query. If dept is defined to be a new

ADT which is special version of the QUEL ADT, then the routine which converts

from external to internal format for this ADT can change "shoe" to:

retrieve (DEPT.dname) where DEPT.dname = "shoe"

Consequently, a user need not type all the extra pieces of the QUEL command.

VI USES OF QUEL AS A DATA TYPE

In this section we indicate several uses for the above facilities.

6.1 Unnormalized Relation

There has been much discussion surrounding normalization of relations,

and several recent proposals have advocated unnormalized relations [HASK82,

GUTT82. ZANI83]. One use of a QUEL ADT is to support hierarchical data as noted

in the example use of salary-history.

6.2 Referential Integrity

The notion of referential integrity has been formalized for relational data

bases in [DATES l]. Basically, a data item must take on values from the set of

values in a column of another relation. Notice that our example use of the dept

field in the EMP relation automatically has this property. Although not all of the

options suggested in [DATE81] can be easily supported using QUEL as a data

type, several of the more common ones can be.
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6.3 Variant Records

Our use of queries in the hobbies field corresponds closely to the notion of

variant records in a programming language such as Pascal. Frames oriented

languages such as FRL [R0BE77] or KRL [B0BR77] also allow a slot in a frame to

contain a value of an arbitrary type with arbitrary fields. Our use of QUEL

queries with different ranges supports this notion.

6.4 Aggregation and Generalization

QUEL as a data type can support both generalization and aggregation as

proposed in [SMIT77]. For example, consider:

PEOPLE (name. phone#)

where phone# is of type QUEL and is an aggregate for the more detailed values

area-code, exchange and number. A simple append to PEOPLE might be:

append to PEOPLE (name = "Fred", phone# =
"retrieve (area-code = 415,

exchange = 999,
number = 9911)")

Generalization is also easy to support. If all employees have exactly one hobby,

then the hobbies field in the EMP example relation will specify a simple

generalization hierarchy. In fact, our example use of hobbies supports a

generalization hierarchy with members which can be in several of the

subcategories at once.

6.5 Data Base Procedures

Stored commands are easily supported with the facilities described above.

For example, suppose an employee is allowed to have only one hobby and we

want a general data base procedure to change the hobby of an employee from

playing Softball to playing a musical instrument. Call this procedure "softball-

to-music" and add it to a relation PROCEDURES as follows:
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append to PROCEDURES(
name = "softball-to-music",
code = "delete SOFTBALL where SOFTBALLname = $1

append to MUSIC (name = $1,
instrument = $2,
level = $3)

replace EMP (hobbies =
"retrieve (MUSIC.all)
where MUSICname = $1")

Now suppose we define a new ADT operator, WITH, that will substitute a

parameter list given as the right hand operator into a query which is the left

hand operator. With this operator we canmake Fred play the violin at skilllevel

novice as follows:

exec (PROCEDURES.code WITH (Fred, violin, novice)) where
PROCEDURES.name = "softball-to-music"

In this way we can store collections of QUEL commands in the data base and

execute them as procedures.

6.6 Triggers

Triggers have been widely suggested as a possible mechanism for

implementing consistency constraints and for producing side effects for

commands. They can be supported by using the features discussed in previous

sections. Consider a relation:

TRIGGER (if, relname, command, then)

The field "then" is of type QUEL while "if' is of type QUEL qualification. Both

"relname" and "command" are ordinary character string fields.

Currently INGRES performs deferred update [ST0N76] and writes a "side

file" containing proposed changes to the data base as phase 1ofa command. In

phase 2 the side file is processed and the changes are installed. Consider

modifying the side file tobe arelation SIDE and interrupting query processing at

the end of phase 1 to perform:
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exec (TRIGGERthen) where TRIGGERif
and TRIGGER, command = user-command
and TRIGGERrelname = relation-from-user

Here, user-command is the type of command run by the user (e.g. replace,

delete) and relation-from-user is the name of the relation being updated. These

constants are readily available from the run time DBMS.

An example tuple in the TRIGGER relation might be:

append to TRIGGER(
if = "SIDE.TID = EMP.TID and EMP.name = "Fred"

and SIDE.age > EMP.age",
relname = "EMP",
command = "replace",
then = "append to ALARM

(message = "Fred got older")")

The TRIGGER relation is used to provide an alerting capability when Fred

receives an update. Since TRIGGER may have a large collection of tuples, we

require indexing on relname and command to restrict the set of TRIGGER.if

terms that must be evaluated. It may be reasonable to have other extra fields in

TRIGGER to provide further efficiency in TRIGGER selection.

6.7 Storing Data as Rules

Consider the requirement that all employees over 40 years old must receive

a bonus of 1000. The relation in Section H showed both "age" and "bonus" as

explicit data and an integrity constraint could easily be defined to enforce this

constraint, e.g.:

range of e is EMP
define integrity E where E.bonus = 1000 or Rage <= 40

However, an alternative representation would be to remove "bonus" as a

stored field in EMP and add the following rule to TRIGGER:

append to TRIGGER(
relname = "EMP"
then = "replace SIDE( bonus = 1000)

where SIDE.TID = EMP.TID and
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EMP.age > 40"

If the QUEL parser was changed to allow queries that retrieve fields which are

not stored, then this trigger will return the correct data by updating SIDE.

Hence, the trigger mechanism can support storing data items as rules. Of

course, the efficiency of this implementation is questionable, and it is awkward

to ask questions about what rules are in effect.

6.8 Complex Objects

There has been substantial discussion concerning data base support for

complex objects [L0RI83, ST0N83]. Suppose a complex object is composed of

text, lines, and polygons. It would be possible to construct the following

relations:

OBJECT (Oid, description)
LINE (lid, description, location)
TEXT (Tid, description, location)
POLYGON (Pid, description, location)

Here, the LINE, TEXT and POLYGON relations hold descriptions of individual

objects and can make use of the abstract data types described in [ST0N83].

Then, the description field in OBJECT would be of type QUEL and contain queries

to assemble the pieces of any given object from the other relations. This

representation allows clean sharing of lines, Text and Polygons among multiple

higher level objects by allowing the same query to appear in multiple object

descriptions.

Materializing an object from the OBJECT relation will be slow since it

involves executing several additional QUEL queries. Hence, it may be desirable

to precompute the value of frequently used objects and store the result in the

OBJECT description field. This has the same costs and benefits which were

discussed in the context of storing tuple identifiers instead of queries in the

preceding section.
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6.9 Transitive Closure

The facilities of this paper can be used to support transitive closure

operations such as found in the "parts explosion" problem. Suppose one creates

a PARTS relation as follows:

PARTS (pname, composed-of)

Consider a car which is made up of a drivetrain and a body. These are made up

in turn of other smaller parts. The car would be inserted as follows:

append to PARTS(
pname = "car",
composed-of = "retrieve (pname = "car")

exec (PARTS.composed-of)
where PARTS.pname = "drive-train"

exec (PARTS, composed-of)
where PARTS.pname = "body"")

The command

exec (PARTS.composed-of) where PARTS.pname = "car"

will find all the parts that make up a car.

VII IMPLEMENTATION

If INGRES had been designed to support internal multitasking, then it would

be a simple matter to implement EXEC by stacking the INGRES processing

environment and executing the new command in a single INGRES process.

However, at this point it would be very costly to change our code to be reentrant

and support this kind of recursion. Other systems (e.g. System-R [ASTR76]) do

not have this shortcoming.

Hence, our operational code to implement EXEC spawns a separate copy of

the INGRES code and passes the QUEL command to the spawned version for

execution. Returned data is redirected through the INGRES which did the

spawning to the user who ran the originalcommand. Since the passed command

can be another EXEC, the total number of spawned INGRES's can increase
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without bound. Currently, the command is passed to the spawned process as a

character string and all query processing steps are performed at run time by

the second process.

We are currently implementing QUEL as an ADT. This data type is internally

represented as a character string. Storing a preprocessed version of the

command would entail a great deal more code. Operators which return a result

of type relation will store the result in the data base and return the name of the

object. This result can be involved in further processing or returned to the user.

In the latter case, it is the responsibility of the internal-to-external conversion

routine to accept the relation name, access the data base and return tuples to

the calling program or user.

No thought has been given on how to optimize QUEL commands extended

with the operators of Table 1. Integrating these new functions into query

processing heuristics is left for future research. The design of a programming

language interface supporting the objects generated by our proposal also

remains to be studied.

VIII CONCLUSIONS

This paper has proposed a novel use of abstract data types and extended

QUEL with three additional features. These extensions support added power,

referential integrity, variant records, data base procedures, generalization and

aggregation in a single facility.

Our proposal has points in common with GEM which supports newdata types

corresponding to "pointer to a tuple" and "set of values". Moreover,

generalization hierarchies are supported and range variables can conveniently

be defined over entities in this hierarchy. Our proposal effectively supports both

of GEMs new data types as special cases of the QUEL ADT. Moreover,

generalization is cleanly supported. Only GEM's use of range variables is not
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contained in our proposal.
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