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Abstract

As a sequel to [1], this paper presents new analytical and topological guide-

1ines for synthesizing negative-resistance devices. Among other things, these

guidelines can be used to tune the devices by varying the magnitude and dynamic

range of the negative (small-signal) resistance.

Necessary and sufficient conditions are given for a circuit containing only

one bipolar transistor and linear reciprocal passive two-ports (e.g., ideal trans
formers) to exhibit a negative resistance. In the special case where the circuit

contains only one ideal transformer, one transistor, and linear positive 2-termi

nal resistors, an equivalent topological criterion which can be checked b£
inspection is given.

Finally, three canonical negative-resistance one-ports containing two identi

cal bipolar transistors, linear positive 2-terminal resistors, and batteries are

synthesized to exhibit an odd-symmetric (hence active) voltage-controlled or

current-controlled v-i curve.
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1. Introduction

This paper is a sequel to a recent publication [1] which gives a selected
catalog of transistor negative-resistance devices made of two bipolar transistors

and linear positive 2-terminal resistors. Since no internal power supply is

required, all of these negative resistance devices are passive one-ports in the

sense that their v-i curves are restricted to the first and third quadrants

only. Hence the term negative resistance here is used to mean that a portion

of the v-i curve has a negative slope; i.e., it has a negative small-signal

resistance.

The algorithm used in [1] for synthesizing these circuits determines first

a subclass of two-transistor circuits as potential candidates and uses a computer

simulation program (SPICE) to identify those candidates which actually exhibit

a negative resistance over some portion of their v-i curves. Although hundreds

of new negative-resistance devices have been successfully synthesized using this

algorithm, an excessive amount of computer time has been used to eliminate an

even larger number of circuit candidates which turn out to be incapable of

exhibiting a negative resistance.

One of the objectives of this paper is to develop analytical and topological

guidelines (compared to the above cited trial and error elimination approach)

for eliminating candidates which are unlikely to have a negative resistance. The

term "guideline" is used pointedly here to suggest that an extremely small sub

class of the eliminated candidates may in fact yield a negative resistance under

some very stringent conditions—i.e., the resistance values and the transistor

parameters must satisfy a set of inequalities whose feasible solution region in

the parameter space is extremely small. While it is possible to derive some

exact analytical elimination criteria, they inevitably involve solving a compli

cated nonlinear programming problem which would require more computer time than

the above cited simulation approach. Consequently, from the practical synthesis

point of view, we have found it much more useful to derive a number of guidelines

in Section 2. Rather than tuning the resistance parameters by a trial and error

approach, the guidelines in Section 2 will show which resistances must be increased

and which must be decreased in order to enhance the chances of obtaining a nega

tive resistance in each circuit candidate. These guidelines can also be used to

alter the shape of the v-i characteristics for optimum performance.

The analysis developed in Section 2 allows us to shed much light on the

three conjectures posed in [1]. A partial though not complete resolution of
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these conjectures is given in Section 3.

In Section 4, we show that it is possible to obtain a negative resistance

using only one bipolar transistor provided we are allowed to use a linear reci

procal passive 2-port resistor (e.g., an ideal transformer). Necessary and

sufficient conditions for such a circuit to possess a unique d.c. solution is

given. In the special case when the circuit contains only one transistor, one

ideal transformer, and linear positive 2-terminal resistors, an explicit topo

logical criterion is given which allows one to synthesize such negative resis

tance devices by inspection.

In the final Section 5, we investigate a rather specialized but important

class of negative resistance devices; namely, those characterized by an odd-

symmetric voltage-controlled or current-controlled v-i curve. Such devices are

widely used as negative-resistance oscillators (e.g., the classic Van der Pol

oscillator is a case in point [2]). Since an odd-symmetric non-monotonic v-i

curve which exhibits a negative-resistance at the origin of the v-i plane must

necessarily contain points in the second and fourth quadrants in addition to

the first and third quadrants, such negative-resistance devices are active and

hence must have at least one internal power supply. Using the guidelines

developed in Sections 2 and 3, one odd-symmetric voltage-controlled and two odd-

symmetric current-controlled negative resistance devices (using two bipolar

transistors, linear positive 2-terminal resistors, and batteries) are systemati

cally synthesized in Section 5. The first circuit turns out to be identical to

that proposed by Rosenthal [3], possibly derived via an intuitive or ad hoc
t

approach.

Using a systematic though exhaustive analysis, it is possible to show that

Rosenthal's circuit is the only possible odd-symmetric voltage-controlled nega

tive-resistance device (using two bipolar transistors), modulo simple equivalent

circuit transformations. In contrast, the two odd-symmetric current-controlled

negative-resistance devices derived in Section 5 are new and distinct (not modulo
an equivalent circuit transformation). Since all odd-symmetric negative-resis
tance devices containing two identical bipolar transistors can be transformed

into one of the circuits in Section 5, these three circuits are essentially the
only (modulo equivalent circuit transformations) possible two-transistor negative-
resistance devices that exhibit an odd-symmetric negative-resistance v-i curve.

Rosenthal gave no indication on how this circuit was conceived
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2. Parameter Tuning Guidelines for Two-Transistor Negative-Resistance Devices
Lemma A.4 (Appendix B) asserts that the presence of a feedback structure

is a necessary condition for the existence of multiple d.c. solutions for tran
sistor-resistor circuits, and hence it is also necessary for generating a
driving-point v-i curve with a negative-resistance region. Since the feedback
structure requires at least two transistors, the one-port Wto be studied in

this section, and in Section 3, is assumed to contain two transistors, and
possibly some linear positive 2-terminal resistors, but no independent sources.

A. Circuit Properties of Two-Transistor One-Ports

Through computer simulation, numerous two-transistor negative-resistance

devices have been generated and a selected subset has appeared in [1]. Here, we

present some properties of such devices which will be used in the next subsec

tion to derive some parameter tuning guidelines for shaping the associated v-i

curves. Much of these properties depend on previous results due to Willson and

his students which we summarized in Appendix B for ease of reference.

From Lemma A.6 in Appendix B, the driving-point v-i curves of two-transistor

one-ports W can be classified into four types as depicted in Fig. 1; namely,

(1) Monotone-Increasing characteristic

(2) Multivalued characteristic

(3) Type-S characteristic

(4) Type-N characteristic

The following lemma follows directly from Lemma A.4 in Appendix B:

Lemma 1. In order for a two-transistor one-port W to exhibit a

(1) Multivalued

(2) Type-S

(3) Type-N

v-i curve respectively, it is necessary for N to possess a feedback structure

when the driving port is

(1) short-circuited and open-circuited

(2) short-circuited

(3) open-circuited

respectively.

The small-signal conductance G of the one-port N is completely determined

by Eq. (A.12) in Appendix B, where the matrices PQ, Q0, Pg, Qs are determined
by the circuit structure and resistor parameters, T is determined by the tran

sistor parameters, and D is determined by the operating point where G is to be
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evaluated. These matrices themselves are related to each other in a very com

plicated way.

Let (PS»QS) (resp.;(PQ,Q0)) denote the source-free (i.e., set all indepen
dent sources to zero) linear four-port in Fig.A.3which is characterized by the

equation P v = Q i (resp.; Pnv = Qni) when the driving port of Win Fig. A.4(a)
is short-circuited (resp.; open-circuited). For simplicity, we will use the

generic symbol (P,Q) to denote either (PS.QS) or (P0>Qg).
Since (P,Q) is a passive pair [4], det(QD+P) will have the same sign for

any diagonal matrix D with positive elements, henceforth denoted by D > 0.

Also if there exists no feedback structure after the driving port of W is short-

circuited or open-circuited, then by Lemma A.2 (QT,P) is a VL-pair [5] which,

from Definition A.3 (Appendix B), implies det(QTD+P) f 0 for any D > 0. By con

tinuity, det(QTD+p) has the same sign for any D > 0. Since T is a diagonally-

dominant matrix with a positive determinant, it follows that det(QD+P)-det(QTD+P)

> 0 for any D > 0. Hereafter we assume P and Q are chosen such that det(QD+P)

> 0 for any D > 0 if (P,Q) is a passive pair and det(QTD+P) > 0 for any D > 0

if (QJ,P) is a WQ-pair.
Because G(0) in Fig. A.4(c) is the small-signal conductance of a linear

Passive resistive one-port, it follows that G(0) > 0 (excluding the degenerate

case G(0) =0). Moreover, det(Q0D+PQ) >0 and det(QsD+Ps) >0 for any D>0
because (PS>QS) and (Pq.Qq) are passive pairs. Hence we can rewrite Eq. (A.12)
in the form

G=K-det(Q0TD+P0)/det(QsTp+Ps) (1)

where

K=S(0).det(QsD+Ps)/det(Q0D+P0) (2)

and K > 0.

Theorem 1. The driving-point v-i curve of the one-port N is

(1) Monotone-Increasing

(2) Multivalued

(3) Type-S

(4) Type-N

if and only if, the following respective criteria hold:

(1) det(Q0TD+P0) >0 and det(QsJD+Ps) >0 for any D€ V.
(2) det(Q0TD0+P0) <0, det(QsTDs+Ps) <0 for some DQ 6 VQi Ds € V$ and
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VQ(\Vst $, det(Q0TD^+P0) >0, and det(QsTD^+Ps) >0 for any D^ €V- VQ
and D' € V - fl .

~s s

(3) det(Q0Tp+PQ) >0 for any D6P, det(QsTDs+F>s) <0 for some Ds € fl , and
det(Q TDi+Pj >0 for any Dl 6 fl - tT.~~

(4) det(QsJD+Ps) >o for any D€P, det(Q0TD0+pQ) <0 for some DQ €PQ, and
det(Q0TD^+P0) >0 for any^ <• P- Pq.~~

where P = {D|D is a 4 x 4 positive diagonal matrix defined in Eqs. (A.13) and
(A.14) associated with all possible operating points of N} and V$ (resp.; PQ) is
a proper connected subset of P such that the v-i curve in (3) (resp.; (4))

possesses a negative slope for any D$ € P$ (resp.; DQ € Pq).

Proof: The proof follows directly from Fig. 1 and Eqs. (1) and (2). n

Example 1

The two-transistor one-port in Fig. 2(a) can be shown to exhibit a type-S

v-i characteristic and has a d.c. solution located in the negative resistance

region; namely,

v1 =0.629 V v2 = 0.53 V v3 =0.687 V v4 = 0.53 V

with i = 3.5 mA and v = 0.786 V.

When port X-Y is short-circuited (resp.; open-circuited), the associated four-

port in Fig. 2(c) is described by Pv =Qi (resp.; PQv =Q0i) where

9S •

9o =

0

0

R,

0 0

0 0

0 1

2 J

2 J

1 0 0 0

Es"
0

1

1

-1

0 -1

1 0

0 1 0 0

1 0 0 0

?o =
0

0

1

0

0 -1

0 0

__0 1 0 0

Assuming R-, = 200ft, !*2 = 2kft
f(vk) - Is (eK/ '-!) (assume

, D=diag.(d1,d2,d3,d4) where dk =f (vk), and
I =10"'4Af VT =26 mV, of =0.98, af =0.5),

calculated d1 =0.0126, d2 =5~48x10"4, d3 =0.1173, d4 =5.48* lb"4,
det(QnTD+Pn) = 1.25 > 0 and det(QTD+P_) = -491 < 0 as predicted by (3) of
Theorem 1.
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We now introduce a topological structure associated with the feedback

structure which plays an important role in determining the shape of the v-i

characteristics.

Definition 1. A 2-terminal element is said to be in series (resD.; in paral

lel) with the feedback structure iff the feedback structure is destroyed when

this element is open-circuited (resp.; short-circuited).

By Theorem 1, it is required that det(QQTD+P0) >0 (resp.; det(Q TD+P )>0)
for any D e P in order to generate a type-S (resp.; type -N) v-i curve. Since

det(QQTD+P0) >0 (resp.; det(QsTD+Ps) >0) for any D>0 if the feedback struc
ture is destroyed when the driving port is open-circuited (resp.; short-

circuited), it follows that if the driving port is in series (resp.; in parallel)
with the feedback structure in a one-port W, then it is guaranteed that

det^9oIP+?0^ >° (resP-» det(QsI9+?s) >°) for any D>°- 0bserve tnat tne con
verse is not true because even if the feedback structure is not destroyed, it is
still possible that det(QTD+P) > 0 for any D € P since P is only a proper subset
of {D|D is a 4x4 positive diagonal matrix}. Hence it is not necessary that
the driving port be in series (resp.; in parallel) with the feedback structure

in order to generate a type-S (resp.; type-N) v-i curve. However, from the

practical design point of view, it is convenient to exclude the possibility

that det(Q0TD0+P0) <0 (resp.; det(QsJD+Ps) <0) for some DQ >0 (resp.; Ds
>0). ~ ~

Therefore, to generate a type-S (resp.; type-N) v-i curve, we will restrict

our attention in this paper to the class of one-ports which will lose its feed

back structure when the driving port is open-circuited (resp.; short-circuited).
Observe that if the inherent source resistance is included in the driving

source for a one-port which exhibits a type-S (resp.; type-N) v-i curve, then

when the driving port is open-circuited (resp.; short-circuited), the feedback

structure is retained after short-circuiting (resp.; open-circuiting) the
source resistance as shown in Fig. 3. This observation may at first sight

suggest that our restriction above is somewhat severe. However it has been

shown in [1], and will be further justified below, that adding a resistor R > 0
in series or in parallel with the driving port may destroy the negative resis

tance by giving rise to either a monotone-increasing or a multivalued v-i

curve. Hence we must always avoid connecting a resistor in series or in

parallel with the driving port; otherwise we only diminish the possibility for
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obtaining a negative-resistance region in the v-i curve. Hereafter we assume

no resistor is connected in series or in parallel with the driving port.

Another circuit which is excluded by the above restriction is given by the
following example.

Example 2

The one-port in Fig. 4(a) has a type-S v-i characteristic as shown in Fig.

4(b). When the driving port is short-circuited, there exists a feedback struc

ture obtained by short-circuiting R2 and open-circuiting Rl and R3 as shown in

Fig. 4(c). But when the driving port is open-circuited, there exists another

feedback structure obtained by short-circuiting Rl and R3 and open-circuiting

R2 as shown in Fig. 4(d). •

Note, however, that the feedback structure in Fig. 4(d) is different from

that in Fig. 4(c) which has been destroyed by open-circuiting the driving port.

In order not to exclude this class of circuits from our above restricted class,

let us relax this restriction as follows:

Assumption 1. In order to generate a type-S (resp.; type-N) v-i curve using a

two-transistor one-port hi every feedback structure obtained by short-circuiting

(resp.; open-circuiting) the driving port should be destroyed when the driving

port is open-circuited (resp.; short-circuited).

Even with this modification, some counterexamples to Assumption 1 exist as

demonstrated by the following example:

Example 3

Figure 5(a) exhibits a type-N v-i curve as shown in Fig. 5(b). Observe

that a feedback structure still exists when the driving port is short-circuited

as shown in Fig. 5(c). o

Despite the existence of such counterexamples to Assumption 1, our exten

sive simulation results seem to support Assumption 1 in most cases. Also if we

modify Fig. 5(a) by short-circuiting R4, then a type-N v-i curve still exists
but the feedback structure in this case is destroyed when the driving port is

short-circuited, as shown in Fig. 5(d). Hence Assumption 1 entails very little

loss of generality.

It follows from Assumption 1 and Theorem 1 that the inequality

det(QsTDs+Ps) <0 (resp.; det(Q0JD0+P0) <0) for some Ds € Ps (resp.; DQ €PQ)
is sufficient to generate a type-S (resp.; type-N) v-i curve. Let us now
discuss in detail the conditions on the circuit topology or element parameters
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such that this inequality is satisfied.

Following the derivation in [3], we directly expand the determinant

det(QTD+P) to obtain

det(QJD+P) =c1234d1d2d3d4 +c123d.,d2d3 +c124d1d2d4

+c234d2d3d4 +c134d]d3d4 +c12d]d2 +c13d1d3

+c14d]d4 +c23d2d3 +c24d2d4 +c34d3d4

+c1d1 +c2d2 +c3d3 +c4d4 +c° (3)

where D=diag.(d.j ,d2,d3,d4) and each ca denotes the determinant of a matrix
Min C(QT,P) [5], where Mis formed by the columns of QT (corresponding to the

indices in superscirpt a) and P (.corresponding to the remai ni ng columns). For
13 ~

example, c = det M whtre the 1st and 3rd columns of M are taken from the 1st

and 3rd columns of QT, and the 2nd and 4th columns of M are taken from the 2nd

and 4th columns of P.

By Definition A.3 and Lemma A.2 in Appendix B, det(QTD+P) > 0 for any

D>0 if and only if Ncontains no feedback structure. Hence ca _> 0 for any a
if there exists no feedback structure. On the other hand if there exists a

feedback structure, then (QT,P) is not a WQ-pair and there exists some D>0
such that det(QTD+P) <0. Since di >0 for each i, there must exist at least
one ca < 0 in the expansion of det(QTD+P).

Consider the feedback structure shown in Fig. A.2. Throughout this paper,

unless otherwise stated, the voltage v., i = 1, 2, 3, 4, denotes a transistor

junction voltage, and v. > 0 if and only if the corresponding junction is for

ward-biased. It was shown in [3] that one and only one coefficient of ca,s
is negative when the feedback structure is present, and this negative coeffi

cient is related to the feedback structure as follows: ca = c1J < 0 iff there

exists an (i,j)-feedback structure [3], i.e., v., v. are the bottom junction
• J to

voltages in the feedback structure. In the case of Fig. A.2, c < 0.
13

Since c is only one of the sixteen coefficients in Eq. (3), the existence

of a feedback structure is not sufficient to guarantee det(QTD+P) < 0 for any

D > 0. Only those positive diagonal matrices D > 0 with d,, d- much larger
13than d2, d4 could lead to det(QTD+P) <0 because in this case c d,d3 will

dominate all the other terms in Eq. (3).

If follows from this observation that in order to generate a negative-
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resistance v-i curve using a two-transistor one-port W the presence of a feed

back structure is only one necessary condition which involves circuit topology.

In addition, we must require the circuit element parameters to satisfy two

other necessary conditions:

(1) Topological Condition: c3<0with |c13| as large as possible (assume a
(1,3)-feedback structure).

(2) Bias Condition: Both transistors are biased in the forward active region
(Defined in Definition A.l in Appendix A) such that d1 and d3 are as large
as possible; and d2 and d4 are as small as possible; or equivalents,
v-j » v2, v3 » v4; and v, > 0, v3 > 0.

VVT VVT
Remark: Hereafter we say vn » v« and v^ » vA iff e » e andv3/vT v/v 1 Z 3 4
e » e .

Both topological and bias conditions are determined by the circuit struc

ture and element parameters. Our design criterion for generating a negative

resistance v-i curve is to find a circuit structure and a set of element para

meters such that both conditions are satisfied. If both conditions tend to

contradict each other, then we must choose a trade-off between them such that

det(QTD+P) becomes negative for some D > 0.

Since each coefficient ca in Eq. (3) is nonnegative when no feedback struc-
13

ture is present, we may conjecture that c tends to become positive as the

feedback structure tends to be destroyed. This is justified by the following

theorem.

Theorem 2. Consider a two-transistor one-port with the feedback structure

shown in Fig. 6(a). If a new resistor is added to Fig. 6(a) either (1) by

soldering-iron entry in parallel with the feedback structure as shown in Fig.

6(b), or (2) by plier-type entry in series with the feedback structure as

shown in Fig. 6(c), then

det(Q,TD+P') = K,(det(QTD+P)+IC,) (4)

(ca)' =K^+Kg) for each a (5)

where K^ >0, 1^ >0 and Pv =Qi (resp.; P,v =Q'i) characterizes the linear
four-port, across which the transistor pair are connected, before (resp.; after)
the new resistor is added.
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Proof: See Appendix C.l. •

Corollary 1. Let hi be a two-transistor one-port with a feedback structure and

let hi1 denote the same one-port except the resistance value of some of the

resistors which are in series (resp.; in parallel) with the feedback structure

is increased (resp.; decreased). Then

det(Q'TD+P') = K^dettQTD+Pj+Kg) (6)

(ca)' =K^+Kg) for each a (7)

where K, >0 and Kg > 0.

It follows from Corollary 1 that the one-port hi tends to satisfy the topo

logical condition if the feedback structure tends to be preserved as the element

parameters are varied. In this case hi is more likely to possess a negative-

resistance region as long as the bias condition is also satisfied. This is

demonstrated in the following examples.

Example 4.

Figure 7(a) is a two-transistor one-port with the feedback structure shown

in Fig. 7(b), where Rl and R2 are in parallel and R3 is in series with the feed

back structure. The v-i curves for various Rl, R2 and R3 obtained through
computer simulation are shown in Figs. 7(c),(d) and (e). Observe that the v-i

curves tend to lose the negative-resistance region as Rl and R2 are decreased

and R3 is increased because all of these variations tend to destroy the feedback
structure. D

Example 5.

Figure 8(a) is the same as Fig. 7(a) except a new resistor R4 is added in

series with the feedback structure as shown in Fig. 8(b). Note that Rl and R2

are in parallel whereas R3 and R4 are in series with thefeedback structure.

The v-i curves for various Rl, R2, R3 and R4 are shown in Figs. 8(c),(d),(e)

and (f). By Corollary 1, the v-i curves tend to lose the negative-resistance
region as Rl and R2 are decreased and R3 and R4 are increased. Figures 8(d),

(e), and (f) indeed support this prediction. Note, however, that Fig. 8(c)
does not follow our prediction; instead, the v-i curve tends to lose its nega

tive-resistance region as Rl increases. This is because the bias condition

tends to be violated in this case as Rl increases. o

In view of the above discussions and examples, we can now summarize our
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parameter tuning criterion for generating negative-resistance v-i curves as

follows:

Parameter Tuning Criterion: Choose small (resp.; large) resistance values for

those resistors which are in series (resp.; in parallel) with the feedback

structure while ensuring that the bias condition is not violated.

As mentioned before, adding a resistor in series or in parallel with the

driving port will only diminish the possibility of obtaining a type-S or type-

N v-i curve. This observation was proved in [1] via a graphical method which

we reproduce in Fig. 9 for ease of reference. We can also derive this observa

tion by using the results derived in this subsection.

Consider first the case of Fig. 9(a) where the resistor is in seires with

the driving port. By Eq. (1)

G' = K'detjQ^TD+P'J/detfQ^TD+P') (8)

G = Kdet(Q0TD+P0)/det(QsTD+Ps) (9)

if hi exhibits a type-S v-i characteristic, then by Assumption 1, the driving

port as well as the resistor are in series with the feedback structure. Hence

det(QQTD+P0) >0 and dettQATD+Pg) >0 for any D >0 because the feedback struc
ture is destroyed when the driving port is open-circuited. Also by Theorem 2,

det(Q'TD+P!) = K,(det(QJD+PJ+K,) (10)

where K, >0 and Kg >0 because adding a resistor in this case tends to'destroy
the feedback structure. Hence det^TD+P^) tends to become positive as the
series resistance increases. It follows from Theorem 1 that the v-i curve of

hi1 tends to be monotone-increasing, as predicted in Fig. 9(b).

If N exhibits a type-N v-i curve, then by Assumption 1, the driving port

as well as the series resistor must be in parallel with the feedback structure.

Hence det(QsJD+Ps) >0 for any D >0 because the feedback structure will be
destroyed when the driving port of N is short-circuited. With the resistor in

series with the driving port of W , the feedback structure may still exist

because of the series resistor. Hence it is possible that ^(Q^TD+Pg) <°
for some D> 0. Also det(Q0TD+P0) = det(9oI5+?o)* since the series resi'stor
"floats" when the driving port of W* is open-circuited. Hence it is possible

that det(Q^TD0+P^) <0 for some DQ €PQ and det(Q^TDs+P^) <0 for some DS€P$.
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By Theorem 1, the v-i curve of hi* will become multivalued as predicted in Fig.

9(c).

The above observations can be explained in a similar way when the resistor

is in parallel with the driving port, as shown in Figs. 9(d), (e) and (f).

B. Parameter Tuning Guidelines.

So far we have derived a criterion for generating negative-resistance

devices. Another important problem on this subject is how to adjust the circuit

parameters such that the range and slope of the negative-resistance region in

the v-i curve can be "tailored" to fit practical applications. We first list

some characterizing properties of v-i curves of negative-resistance devices

from which some tuning guidelines will evolve.

The v-i curves in Fig. 10, which contain a negative-resistance region can

be partitioned into four regions with three partitioned points called the start

ing, peak, and valley points, respectively. The v-i curve in each region is

characterized by a different operating region for each transistor.

(i) Region I is a high-resistance region where both transistors are cut

off. The resistance in this region is determined by the total series resistance

of the resistors which form a conducting path when both transistors are removed.

If there is no conducting path when both transistors are removed, then the v-i

relation in this region is determined by the transistor leakage current. As the

driving voltage (resp.; current) increases in a type-N (resp.; type-S) device,

one transistor begins to enter its forward active region where the starting

point is located.

(ii) Region II is a low-resistance region where one transistor is in the

forward active region while the other is still cut-off. As the driving voltage

(resp.; current) increases, both transistors tend to become forward active and

det(Q0TD+PQ) (resp.; det(QsJD+Ps)), which is still positive, decreases for a
type-N (resp.; type-S) device until it reaches the peak point where det(QQTD+P0)
= 0 (resp.; det(QcTD+Pc) = 0).

(iii) Region III is the negative-resistance region where both transistors

are forward active and det(Q0TD+P0) <0 (resp.; det(QsTD+Ps) <0) for atype-N
(resp.; type-S) device. As the driving voltage (resp.; current) further

increases, at least one transistor tends to become saturated and det(Q0TD+PQ)
(resp.; det(QsTD+Ps)), which is negative in this region, will tend to increase
for a type-N (resp.; type-S) device until it reaches the valley point where

det(Q0TD+PQ) =0 (resp.; det(QsJD+Ps) =0). In this region, det(Q0TD+PQ)
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(resp.; det(QsTD+Ps)) is a concave function of the driving voltage (resp.;
current) with both end points equal to zero, and the small-signal conductance
is determined by Eq. (1).

(iv) Region IV is a high (resp.; low)-resistance region for a type-N (resp.;
type-S) device. In this region, at least one transistor is saturated and the

small-signal conductance, which is positive due to violation of the bias condi

tion, tends to a constant as the driving voltage (resp.; current) increases.

Let us now discuss the effects on the v-i curve due to changes in the

resistance values. For simplicity, we only qualitatively list two general

guidelines which hold when the bias condition, or the topological condition,

remains satisfied as we tune the resistors.

Paremeter Tuning Guideline 1: (Effects on the negative-resistance magnitude)

Assume the bias condition is satisfied throughout the range of the follow

ing resistance adjustments. In order to increase the negative-conductance

magnitude for a type-S (resp.; type-N) device, adjust the resistances in the

direction such that the topological condition tends to be violated (resp.; pre

served). More specifically, (a) Type-S device: Increase (resp.; Decrease) the

resistance of each resistor which is in series (resp.; in papallel) with the

feedback structure, (b) Type-N device: Decrease (resp.; Increase) the resis

tance of the resistor which is in series (resp.; in parallel) with the feedback

structure.

In order to decrease the negative-conductance magnitude, reverse the above

operations.

Proof: See Appendix C.2.

Parameter Tuning Guideline 2: (Effects on the negative-resistance range)

Assume the topological condition is satisfied throughout the range of the

following resistance adjustments. In order to increase the current (resp.;

voltage) range of a type-S (resp.; type-N) negative-resistance region, adjust

the resistances such that the bias condition tends to be satisfied for an

increasing range of the driving current (resp.; voltage).

In order to decrease the current (resp.; voltage) range of the negative-

resistance region, reverse the above operations.

Proof: See Appendix C.3. °

Remark: The parameter tuning guideline 2 is used mainly in simulation because
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it is usually difficult to check by inspection.

Example 6.

In Fig. 11(a) R, and R4 are in series while R2, R3, and Rr are in parallel
with the feedback structure. Increasing R, and R4 and decreasing R2, R3, and
Re will increase the negative-conductance magnitude as predicted by the para

meter tuning guideline 1(a). This is confirmed in Figs. 11(b), (c), (d), (e),

and (f). •

Example 7.

In Fig. 12(a) R, and R3 are in series while R2 and R4 are in parallel
with the feedback structure. It follows from the parameter tuning guideline

1(b) that decreasing R, and R3 and increasing R2 and R4 will increase the nega
tive-conductance magnitude, as is verified in Figs. 12(b), (c), (d), and (e). °

3. Three Conjectures: Partial Solutions

Among thousands of circuit candidates derived from the algorithms given

in [1], hundreds of two-transistor one-ports which exhibit either a type-S or

a type-N v-i curve have been identified by computer simulation. These simula

tion results seem to support the following three conjectures [1]:

Conjecture 1: For a one-port device containing two bipolar transistors to

exhibit a negative small-signal resistance, it is necessary that in the asso

ciated feedback structure, the two emitters be connected to each other.

Conjecture 2: In order to obtain a two-transistor type-S negative-resistance

device, the two transistors must be complementary, i.e., one is pnp, the other

is npn.

Conjecture 3: In order to obtain a two-transistor type-N negative-resistance

device, the two transistors must be of the same type, i.e., both npn or both

pnp.

A counterexample to Conjecture 1 has recently been discovered by Willson

and his student. This circuit (Fig. 13(a)) has a feedback structure with one

collector and one emitter connected together (Fig. 13(b)), and has been verified

both by simulation and laboratory measurement to exhibit a type-S v-i curve as

shown in Fig. 13(c). In spite of the existence of this counterexample, Conjec

ture 1 remains a valuable tool for generating negative-resistance devices.

Indeed, we will show that the feedback structure stipulated by Conjecture 1

t '. '. '.
Private communication.

-15-



(i.e., with both emitters connected together) has a "much better chance" of
exhibiting a type-N or a type-S v-i curve than any other connections. To be

specific, we will show that for each negative-resistance two-transistor circuit

which violates Conjecture 1, we can derive a negative-resistance circuit satis

fying Conjecture 1 by interchanging the emitter and collector terminals of

one of the two transistors, provided the bias condition remains satisfied.

Consider the feedback structure shown earlier in Fig. A.2. Note that there

are only three distinct interconnections between the emitter and collector

terminal of each transistor, as shown in Fig. 14; namely, (1) two collectors

are connected together; (2) one collector and one emitter are connected

together; (3) two emitters are connected together.

It has been shown in [6] that l-a^'-c^2' <0is anecessary condition
for the above transistor circuits to possess multiple d.c. solutions, where a

denotes the gain of the controlled current source in the upper junction of

transistor T^ Hence, for the three circuits in Fig. 14, it is necessary that
(1) l-aj^-aj2) <0, (2) l-a}1}-aj2) <0, and (3) l-a^-af25 <0respec
tively, in order for the corresponding circuit to possess multiple d.c. solu

tions. Since the reverse current gain a is normally less than 0.5 for bipolar

transistors, the configuration in Fig. 14(a) can never yield a negative small-

signal resistance and hence only the last two configurations in Fig. 14 are

possible candidates for negative-resistance devices.
+

Lemma 2. For the two-transistor one-ports W and W" in Fig. 15, we have

(1) det(QT'D+P) > det(QT"D+P) for any D > 0

where T' = (i)
f

0

-a

-a
(1)
r

1

0

0

and T" = -a
(1)
f

0

(1)
r

1

0

-a

(i)

0

(2)
r

1

-a
(2)
f

1

0

1

(2)

-a

-a
(2) -a

and
(11)

(2) (ca)' > (ca)" for any index a where (ca)' (resp.; (ca)") denotes the coef
ficient in the expansion of det(QT'D+P) (resp.; det(QT"D+P)).

+Apart from the emitter and collector terminal labels, the two circuits W and
hi" are assumed to be identical.
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Proof: Proof follows directly from the proof of Theorem 5 in [3], upon mter-
(2) (2)

changing cr ' and a\ ' in each term of the coefficients in the expansion of

det(QTD-HP). o

Lemma 2 shows that the topological condition is satisfied by hi" so long as

it is satisfied by W. It follows from Eq. (1) that

G' =K' det(Q0T'D+P0)/det(QsT'D+Ps) (12)

and

G" =K" det(Q0T"D+P0)/det(QsT"D+Ps). (13)

Without loss of generality, suppose Fig. 15(a) yields a type-S v-i curve, then

by Assumption 1, the driving port is in series with the feedback structure.

Since the feedback structure is destroyed when the driving port is open-cir

cuited, it follows that dett^T'D+Pg) >0 and det(Q0T"D+P0) >0.
By Lemma 2, det(Q T'D+P ) > det(Q T"D+P ) implies that if N' possesses a

negative small-signal resistance at some operating point Q, then det(Q T'D+P )

is negative for some D > 0. Consequently, det(QT"D+P) is also negative for

the same D > 0 and hence hi" must also have a negative small-signal resistance

at the same operating point Q. Of course it is unlikely that both circuits will

have the same operating point. However if the bias condition is still satisfied

by W", then hi" will also exhibit a negative-resistance v-i curve. We will now

show that the bias condition is usually satisfied by M" so long as it is satis

fied by N\

Assume the external source values in Figs. 15(a) and (b) are identical.

Then the equations corresponding to KCL, KVL and the element characteristics of

hi* and W" are identical except that a* and a associated with the transistor T2
are interchanged. To simplify our analysis, let us first assume that corres

ponding branch currents of N" and W are identical. It follows from the Ebers-

Moll equation in Eq. (A.4) and (A.5) that

vVVT I v'/VT
13 = Xs(e "1} "^T(e "1} (14)

-Is v'/VT v'/VTiV^(e4 T-D +Is(e3 T-l) (15)
-I. v"/VT v"/VT

13 =ir(e -1)+ !s(e -]) (16)

v2/VT I. v"/VT
11- Is(e 3 -1) "/(e4 T-D- 07)

r
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Equating Eq. (14) with Eq. (16) and Eq. (15) with Eq. (17), we obtain
v;/VT I v'/VT

sx •' a
r

=-/(e3 T-T)
"f

V4/VT+Is(e4 T-l)

ls, V4/VT4(e -1} +hs(e3 T-1)
v"/V,

=Is(e3 T-l)- h vJ/VT

Solving for vjl, we obtain

1/a -a

v3 "v3 +VT ^V^)•

(18)

(19)

Since the operating point of W is assumed to be located in the negative-

resistance region, it follows that vi » vi, and e 3 T becomes the dominant term in
the left hand side of Eqs. (18) and (19). We can therefore neglect the e 4 T
term and approximate Eqs. (18) and (19) as follows:

h V3/VT Js V3/VT vJ/vt
"^ e =-4 e +Ise T (20)

V3/VT V3/VT h V4/VT!se =Ise "^e • - (21)
Multiplying Eq. (21) by a and adding the result to Eq. (20), we obtain

v;/vT , v"/VT(ar-l/ar)Is e3 T=(v J-)ls e 3 T. (22)

(23)

1/<VVHence vi must increase by a small amount, equal to VTa.„(i i „ ) (approximately

28 mV for typical parameter values), in order to offset any discrepancy due to

an interchange between a and a*. By Eq. (21) it can be shown that even though
r T vVVt v!|/Vt .

vj] will increase by a significant amount, the inequality e ° » e ^ 'is

still satisfied. The above analysis represents only a rough approximation

because the branch currents in W and W" are not the same. But simulation

results tend to support its validity, at least qualitatively. The following

example is a case in point.
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Example 8.

The two circuits W and hi" in Figs. 16(a) and (b) are identical except for

an interchange between the emitter and the collector of transistor T2. Both
circuits are driven by an equal input current i = 3.5 mA, which can be shown to

result in an operating point in the negative-resistance region for both circuits.

Figure 16(c) gives a comparison between the voltage and current solutions in

these two circuits. Note that v~ increases only by a small amount as predicted.

Note also that although vJJ and vi[ increase by a rather substantial amount, they
vV/VT v"/VT

can be neglected when compared with vV and v'l because e » e and

V3/VT V4/VT
e » e . Hence the bias condition in W" is still satisfied. a

It follows from the above observations that if the bias condition is still

satisfied, which is true in most cases, then det(Q T"D'+P ) > det(Q T"D"+P )

where D' (resp.; D") corresponds to the operating point Q' (resp.; Q") in N'

(resp.; hi"). Also det(Q T'D'+P ) < 0 because Q' is in the negative-resistance

region. Note that Lemma 2 implies that det(QsT"D'+Ps) <det(QsT'D'+Ps) and
hence

0 > det(QcT'D'+Pc) > det(QJ"D'+Pc) > det(QcT"D"+Pj.

Consequently, if W exhibits a negative small-signal resistance at some operat

ing point Q', then hi" will usually exhibit also a negative small-signal resis

tance at its new operating point Q". In the rare event when the bias condition

is violated, we can adjust the element parameters and/or the external source

of hi" to restore the bias condition and hance obtain a negative small-signal

resistance at some other operating points.

The preceding analysis and observations justify the use of Conjecture 1 as

a practical method for generating new two-transistor negative-resistance devices

Let us now turn to Conjectures 2 and 3 which have so far neither been

proved nor disproved. We will now prove them under the following condition (in

addition to our standing Assumption 1).

Assumption 2. If both transistors are of the same (resp.; complementary) type,

then the driving port is not in series (resp.; in parallel) with the feedback

structure.

Remark: It is shown in Appendix C.4, by exhaustive analysis, that the topolo

gical condition and the bias condition are inconsistent (i.e., they contradict

each other) in the class of circuits which violate Assumption 2.
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We now prove Conjecture 2 under Assumptions 1and 2. Let hi be a type-S

negative-resistance device containing two transistors of the same type. It

follows from Assumption 1 that the driving port of M must be in series with a

feedback structure. But this condition is excluded by Assumption 2. Hence hi

can not exhibit a type-S v-i characteristic. This proves Conjecture 2.

Similarly, we can prove that Conjecture 3 is true under Assumptions 1

and 2. a

4. One-Transistor Negative Resistance Devices

Circuits containing linear positive 2-terminal resistors, independent

sources, and a single transistor can not have multiple d.c. solutions because

no feedback structure can exist in such circuits. It is possible, however, to

obtain multiple d.c. solutions if we allow the circuit to contain a 2-port

resistor. In fact, we will show that this is so even for the simplest class of

2-port resistors; namely, linear, passive, and reciprocal. In particular, we

will derive the necessary and sufficient condition for the uniqueness of d.c.

solution in such circuits. In the special Gase where the 2-port is an ideal

transformer, this necessary and sufficient condition will be shown to be equiva

lent to the existence of a certain topological structure which can be checked

by inspection.

A. Single-Transistor Circuits Containing Linear Passive Reciprocal Two-Ports

Figure 17 shows the general configuration consisting of a transistor con

nected to a linear resistive 2-port W made of linear positive 2-terminal resis

tors, independent voltage and current sources, and linear passive reciprocal

2-ports.

Lemma 3. If M has a short-circuit conductance representation i = Gv + c, then

hi has a unique d.c. solution for all independent source values if and only if G

is diagonally dominant.

Proof: See Appendix C.5. a

Lemma 4. If hi does not have a short-circuit conductance representation but has

a hybrid representation i = Hv + c, then hi has a unique d.c. solution for all

independent source values if and only if (H-jH^) is a Wg-pair, where
l+h12a1 -(h12+a2)

0 0

hn °

L-h12 -l«.* i* and h.i is the ij-th
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component of the hybrid matrix H.

Proof: See Appendix C.6. a

Remark 1: In the case when both Gand Hdo not exist, then (1) v-j and v2,
(2) i, and v2, and (3) v, and i*2 are linearly dependent simultaneously. In
this case, hi can be easily shown to have at most one d.c. solution.

Remark 2. In the special case when W contains no linear passive reciprocal

2-ports, we can verify that hi has at most one d.c. solution without invoking

the feedback structure as follows:

Case 1. When G exists

Since G characterizes a linear passive 2-port, G must be a paramount matrix

[9]. Since G is a 2 x 2 matrix, this implies that G is diagonally dominant. It

follows from Lemma 3 that hi has at most one d.c. solution.

Case 2. G does not exist but H exists

Without loss of generality, let us set all independent sources in hi to zero.

If both v1 and v2 are nonzero, then the non-existence of Gimplies that they
must be linearly dependent, i.e., there exist nonzero constants c, and c2 such
that c,v, + c2v2 =0. Since hi contains only linear positive 2-terminal resis
tors, it follows from the no-gain property [10] that |c-|/c2| <1 and |c2/c-j|<J.
These two inequalities imply that |c,/c2| =1 and |h,2| =1. Hence (Ha,Hb) is
a WQ-pair and by Lemma 4, hi has at most one d.c. solution.

B. Single-Transistor Circuits Containing an Ideal Transformer

In this subsection we derive an equivalent criterion for unique d.c. solu

tion in terms of the circuit topology. For simplicity we restrict N to contain

linear positive 2-terminal resistors, independent sources, one transistor and

only one ideal transformer, which is a special case of a linear passive reci

procal 2-port resistor.

Analogous to the "feedback structure" for two-transistor circuits, we now

define a special topological structure for one-transistor circuits which can be

used to determine the uniqueness of d.c. solution by inspection. In the follow

ing, both the transistor and the ideal transformer are considered as 2-ports.

Definition 2. (Degenerate and Nondegenerate Connection).

The above class of one-transistor circuit hi is said to have a nondegener-

ate connection iff
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(1) no transistor or transformer port is open-circuited and

(2) no transistor or transformer port is short-circuited and

(3) no transistor (or transformer) ports form a loop
after carrying out the following graph operations on hi:^

(a) short-circuit all independent voltage sources and open-circuit all
independent current sources.

(b) short-circuit some resistors (maybe none).

(c) open-circuit the remaining resistors.

hi is said to have a degenerate connection iff it does not have a nondegenerate

connection.

Two circuits with a nondegenerate connection are shown in Figs. 18(a) and

(b), respectively. A circuit with a degenerate connection is shown in Fig.
19(a). Note that unlike the nondegenerate case where only one nondegenerate
connection suffices, here it is necessary to show that no open and/or short cir

cuit combination of R^ and R2 gives rise to a nondegenerate connection, as
demonstrated in Figs. 19(b), (c), (d) and (e), where 0] and J2 denote the tran
sistor port formed by the collector-to-base junction, and the emitter-to-base

junction, respectively.

Theorem 3. The above class hi of one-transistor circuits has a unique d.c. solu

tion for any circuit parameters and any independent source value if and only if

hi has a degenerate connection.

Proof: See Appendix C.7. d

It follows from Theorem 3 that any one-transistor circuit with a nondegener

ate connection has multiple d.c. solutions for some circuit parameters and inde

pendent source values. But just as in the two-transistor case where the

existence of a "feedback structure" is only a necessary but not sufficient con

dition to guarantee the existence of a negative-resistance region for a circuit

with a fixed source configuration, the existence of a nondegenerate connection

in a one-transistor circuit with a fixed source configuration need not give

rise to a small-signal negative resistance. We can apply the following two

guidelines to enhance the chances of obtaining a negative resistance in such

circuits:

Guideline 1: The resistance of each resistor to be short-circuited (resp.;|

"^Conditions (1), (2), and (3) need be satisfied for only one combination of (b)
and (c).
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open-circuited) to obtain a nondegenerate connection should be made as small
(resp.; large) as possible.

Guideline 2: The resistances should be chosen such that the transistor is
biased in the forward active region.

Unfortunately Guidelines 1 and 2 often contradict each other and the class

hi of one-transistor negative-resistance devices is rather small. Nevertheless,

the following algorithm, which is based on the above guidelines, has success

fully generated several one-transistor negative-resistance devices.

(1) Start with one of the three nondegenerate connections shown in Fig. 20

where the turns ratio is chosen such that n > 0 in Figs. 20(a) and (b) and

n > 1 in Fig. 20(c). These choices for n are derived from the proof of

Theorem'3.

(2) Create the driving port by a plier-type entry (resp.; soldering-iron

entry) with any of the three nondegenerate connections in Fig. 20 in order to

obtain a current-controlled (resp.; voltage-controlled) negative resistance

characteristic. Observe that this step guarantees that the nondegenerate con

nection is destroyed when the driving port is open-circuited (resp.; short-

circuited), thereby ensuring a unique solution for each input current (resp.;

voltage), as required by a current-controlled (resp.; voltage-controlled)

characteristic.

(3) Add resistors in accordance with Guidelines 1 and 2.

(4) Derive the small-signal resistance and determine whether it can be made

negative for some input current (resp.; voltage). If not, modify the location

of the resistors and repeat Step (3).

The following examples show two current-controlled negative-resistance

devices generated by the above algorithm:

Example 9.

The circuit in Fig. 21(a) is obtained by connecting resistors R1 (by solder
ing-iron entry), R2 (by plier-type entry), and R~ (by soldering-iron entry) to
the circuit shown in Fig. 20(b). Its small-signal resistance across the driv

ing port (obtained by a plier-type entry) is given by

dv

di

R1 i Y~ i « . Y_ ny..

V^^n^^T"31 ^0+B+ /)
K3
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VT
where r =-?— and I is the collector current at the operating point Q where

c

•^ is evaluated. The negative sign in front of $ suggests that it may be pos
sible to make ^j negative. Four families of current-controlled v-i charac
teristics have been simulated using SPICE with 6=200, I = 10"14 A, and
various choices of element parameters. They are shown in Figs. 21(b), (c), (d),
and (e), respectively. D

Example 10.

The circuit in Fig. 22(a) is obtained by connecting resistors Rl (by plier-
type entry), R2 (by soldering-iron entry), and R3 (by soldering-iron entry) to
the circuit shown in Fig. 20(a). Its small-signal resistance across the driving
port (obtained by a plier-type entry) is given by

dv l _ . X. BR9 , y.
di

1 T P^O 1 Y

V[VRi(1+ir)-ir +>+e+Rr)R2]- (25)
1+6+/ d n

3
i 6R,

Again, the presence of the negative sign in front of -—=• suggests that it may

be possible to make -^ negative. Four families of current controlled v-i charac
teristics have been simulated using SPICE with 6=200, Is =10"14A, and various
choices of element parameters. They are shown in Figs. 22(b), (c), (d), and

(e), respectively. a

Remark: Both examples above gave a current-controlled negative-resistance

device, it can be shown by an exhaustive analysis that it is impossible to

generate a voltage-controlled negative resistance v-i curve using less than

three resistors. In fact, we conjecture that it is impossible for any one-

transistor circuit (containing one ideal transformer) to exhibit a voltage-con

trolled negative-resistance v-i curve.

5. Odd-Symmetric Negative-Resistance Devices

The voltage-controlled odd-symmetric negative-resistance one-port shown in

Fig. 23(a) was first reported by Rosenthal [7]. Using the techniques developed

in the preceding sections, we have synthesized the current-controlled odd-sym

metric negative-resistance one-port shown in Fig. 24(a). Observe that internal

power supplies are required in Figs. 23 and 24 because these two one-ports are

active; i.e., their v-i curves have points in the second and the fourth qua

drants. Our objective in this final section is to show how these two symmetric
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circuits can be systematically synthesized.

Consider first the odd-symmetric voltage-controlled case. Without loss of

generality, we can assume the associated one-port must have the basic circuit

topology shown in Fig. 25 due to the following observations:

(1) A "feedback structure" is required to produce multiple d.c. solutions.

(2) The transistors must be both npn or pnp in order for the circuit to exhibit

rotational symmetry [8]. (3) The driving port must be in parallel with the feed

back structure because each input voltage corresponds to a unique port current.

Consequently the feedback structure must be destroyed upon short-circuiting the

driving port. (4) At least one power supply is required. If possible, it

would be desirable to use a single independent voltage source within the one-

port. (5) Due to the horizontal symmetry requirement, the driving port can only

be applied to both collector terminals by soldering-iron entry. (6) Due to the

rotational symmetry requirement, the single internal voltage source can only be

added across the collector-emitter terminals with the positive terminal of the

voltage source connected to both collector terminals (due to bias condition).

Since the feedback structure in Fig. 25 is destroyed when the internal

voltage source E is short-circuited, it is necessary to add at least two resis

tors R, and R^ as shown in Fig. 26.
Note that the augmented circuit in Fig. 26 is identical to that shown in

Fig. 23(a). Its v-i curve has been obtained by both computer simulation and

laboratory measurements, and is shown in Fig. 23(b). This is the simplest two-

transistor circuit which exhibits an odd-symmetric voltage-controlled negative-

resistance v-i curve. In fact, it can be shown that any other two-transistor

circuit having a similar odd-symmetric voltage-controlled v-i curve can be

reduced to this basic circuit configuration.

Consider next the current-controlled one-port shown in Fig. 24(a). Its v-i

curve has been obtained by both computer simulation and laboratory measurements,

and is shown in Fig. 24(b). This circuit can be synthesized by the same approach

used to derive the voltage-controlled one-port in Fig. 23(a). Note the differ

ences between the two circuit topologies are due to the following observations:

(1) The driving port must be in series with the feedback structure in order

to guarantee a unique d.c. solution for each input port current.

(2) Two internal independent voltage sources are used to avoid a direct

connection between the two emitters. Otherwise the feedback structure will not

be destroyed when the driving port is open-circuited.
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(3) The driving port must be inserted by a plier-type entry between the

two emitters in order to preserve the horizontal symmetry.

Remark: It is possible to trade one voltage source with two resistors as shown

in Fig. 27(a). The resulting v-i curve shown in Fig. 27(b) is similar to that

shown in Fig. 24(b).

Observe that the driving port in Fig. 27(a) is no longer in series with

the feedback structure in view of the additional resistors R3 and R-. Hence
the feedback structure in this case is not destroyed upon open-circuiting the

driving port. However if the resistances of R3 and R^ are chosen to be very
large, then the feedback structure will tend to be destroyed when the driving

port is open-circuited. In this case, it is possible for the circuit to exhi

bit a current-controlled negative-resistance v-i curve.
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Appendix:

A. Bipolar Transistor Model

The d.c. Ebers-Moll circuit model shown in Fig. A. 1 is used to model the

bipolar transistors throughout this paper. Each nonlinear resistor in this

model is characterized by the usual pn junction equation

, VVTjk =IQ (e K '-1). (A.l)
IX

To avoid redundancy, we will consider only the npn transistor model. The pnp

case is similar except that the voltage polarity and the current direction are

reversed. From Fig. A.l(a)

WVT WVTIc =afj2 - j1 =afIE$(e Bt '-!) - Ic$(e BL '-!) (A.2)

vRE/vT vBr/vT
IE =- j2 +arj1 =- IES(e Bt '-!) +arIc$(e BL '-1) (A.3)

where l^ and 1^ are the saturation current for the base-to-collector and base-
to-emitter junction, respectively. The parameter VT is called the thermal vol
tage and is approximately equal to 26 mV at 27°C.

Equations (A.2) and (A.3) can be recast into the following form often used

for computer simulation.

Ic= i$(eBE T-T) -^(eBC T-l) (A.4)

-Ic vRF/vT vRr/vT
lE a (e "^ + !S(e "]> (A'5>

where I$ = afIES = arIc$.
Due to the finite (0.5 V-0.7 V) cut-in voltage, a physical bipolar tran

sistor does not "turn on" or "turn off" when appropriate, junctions are "forward"

or "reversed" biased. From the practical point of view, it is more realistic

to adopt the following definition of transistor operating regions:

Definition A.l. A bipolar transistor is said to be biased at the

(i) Forward Active Region

(ii) Saturation Region
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(111

(iv

Cut-Off Region

Reverse Active Region

iff the base-to-emitter junction voltage VRE is
(i) greater

(ii) greater

(iii) less

(iv) less

than the cut-in voltage and the base-to-collector junction voltage VRC is
(i) less

(ii) greater

(iii) less

(iv) greater

than the cut-in voltage.

B. Background Material

This section briefly reviews some results by Willson, Nielsen

and Lee which are applied in this paper. Throughout this section, we restrict

these results to the class of circuits hi made of two transistors, linear posi

tive 2-terminal resistors and independent voltage and current sources.

Definition A.2 [6] (Feedback Structure)

A circuit hi is said to contain a feedback structure iff the structure of

Fig. A.2 is present when some combination of short and open circuits replaces

all resistors, and when each independent voltage (resp.; current) source is

replaced by a short-circuit (resp.; open-circuit). The "transistor-like" symbol

used in Fig. A.2 is meant to denote a transistor which can be either npn or pnp

and can have either of the two possible orientations with respect to its collec

tor and emitter terminals.

Lemma A.l [5]. The d.c. equation of hi can be characterized by

QTf(v) + Py =r (A.6)
where

Py ='Qi + r (A.7)

characterizes the linear resistive four-port with the two transistors extracted

across the ports as shown in Fig. A.3. The equation

-r*f \ (A.8)l = - Tf(v) v '
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characterizes the Ebers-Moll model of the transistors, where

and

T=A

1

0

0

-a
r

1

0

0

0

0

1

-a.

0

0

-a.

f(v) - [f^) f2(v2) f3(v3) f4(v4)]T.

v /V
f,(vj =I0 (e k T-l).
kvvk

(A.9)

(A.10)

(A.ll)

The original definition of a WQ-pair for matrix pair (A,B) is given in [5].
Here we adopt one of its equivalent property as our definition:

Definition A.3 [5]. (WQ-pair)
A matrix pair (A,B) is said to be a WQ-pair iff det(AD+B) is nonzero for

any positive diagonal matrix D > 0.

Lemma A.2 [6]. Let hi be described by Eq. (A.6), then (QT,P) is a WQ-pair if
and only if hi contains no feedback structure.

Lemma A.3 [5], Equation (A.6) has a unique solution for any r if and only if

(QT,P) is a WQ-pair.

Remark: Will son's original theorem says "There exists a unique solution of the

equation Af(x) + Bx = c for any n-dimensional vector c in Rn and any f in the
class of F" if, and only if, (A,B) is a WQ-pair. Here, Fn denotes the collection
of mappings from IRn onto Rn, defined as f € Fn iff there exist for i =1,2,
..., n, strictly-increasing functions f., mapping 1R onto R such that for each

.T , J „x =[x1 x2 ... xj1 1nR , f(x) =[f-^x-j) f2(x2) ... fn(xn)]'." In our case,
the mapping f. in Eq. (A.10) is only a strictly-increasing but not onto func

tion. Hence the solution may not exist for the class of circuits W contained

in this paper. However if the breakdown phenomenon in real transistors is

included in the model, then the solution always exists.

Lemma A.4 [4]. hi has a unique d.c. operating point for any independent source

Lemma A.5 [4]. Let G denote the driving-point small-signal conductance

-29-



evaluated at some operating point Q of the one-port hi as shown in Fig. A.4(a).
Then

G = G(0)det(QnTD+Pn)det(Q D+Pj/det(QcTD+Pjdet(QnD+Pn) (A.12)

where PQy =QQi(resp.; P$y =Qsi) characterizes the linear 4-port to which the
linearized transistor models are connected when the driving port x-y is open-
circuited (resp.; short-circuited) as shown in Fig. A.4(b) and

AD=diag.(d1,d2,d3,d4) (A.13)

dk " fk(vk} k =1, 2, 3, 4 (A.14)

where the v£s are the transistor junction voltages at the operating point Q
with vk >0 when the corresponding junction is forward-biased, G(0) is the small-
signal conductance across the driving port with each controlled source in the

linearized transistor model being eliminated as shown in Fig. A.4(c).

Lemma A.6 [3]. A two-transistor circuit can possess at most three d.c. solu

tions for all possible circuit configurations.

C. Proofs of Lemmas and Theorems

1. Proof of Theorem 2

We first show that Eqs. (4) and (5) hold in the case when (P,Q) (resp.;

(P',Q')) represents (Pq.Qq) (resp.; (P^Qq)).
Let G denote the small-signal conductance of the one-port in Fig. A.5(a)

with its driving port in parallel with the feedback structure and let G' be

the corresponding small-signal conductance in Fig. A.5(b) or (c). Then it

follows from Eq. (1) that

G= Kdet(QTD+P)/det(QsTD+Ps) =M/N (A.15)

G' = K' det(Q'TD+P')/det(Q'TD+P:) = M'/N' (A.16)

where

M = det(QTD+P) (resp.; Ml = det(Q'TD+P')) (A.17)

N=det(QsTD+Ps)/K (resp.; N' =det(Q^TD+P«)/K'). (A.18)

Since the feedback structure is destroyed when the driving port is short-

circuited, it follows that
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det(QJD+P_)>0anddet(Q!TD+P')>0foranyD>0.

HenceN>0andN'>0inEq.(A.18).LetG"denotethesmall-signalconduc

tanceoftheone-portinFig.A.5(d)(resp.;Fig.A.5(e))withthenewlyadded

resistorshort-circuited(resp.;open-circuited).ItfollowsfromEq.(1)that

G"=K"det(Q^TD+PJJ)/det(Q^TD+P^)

=M"/N"(A.19)

whereM"andN"aredefinedsimilarlyasinEqs.(A.17)and(A.18).Sincethe

feedbackstructureisdestroyedinFig.A.5(d)(resp.;Fig.A.5(e))whenthenew

resistorisshort-circuited(resp.;open-circuited),soM">0andN">0for

anyD>0.Applyingthebilineartransformation,wecanrewrite

G'=M'/N'=(M+YM")/(N+YN")inFig.A.5(b)(A.20)

and

G'=M'/N'=(M+RM")/(N+RN")inFig.A.5(c).(A.21)

Therefore

M'=N'(M+YM")/(N+YN")(A.22)

or

M»=N'(M+RM")/(N+RN")(A.23)

SinceY>0,R>0,M">0,N">0,N>0,andN'>0,soM'=^(M+Kg)where
K-,=N7(N+YN")>0andl<2=YM">0or^=N'/(N+RN")>0and1^=RM">0.
Hence

det(Q'Tp+P»)=^(detfQTD+Pj+l^)(A.24)

whereK,>0andK2>0.SinceEq.(A.24)isanidentityforanyD>0,it
followsfromEq.(3)that

(ca)'=K^c^).(A.25)

Thecasewhen(P,Q)represents(PC,QC)canbeprovedinthesamewaywithG

denotingthesmall-signalconductanceoftheone-portinFig.A.5(f)wherethe

drivingportisinserieswiththefeedbackstructure.o

2.ProofofParameterTuningGuideline1

Equation(1)implies

G=Kdet(Q0TD+P0)/det(QsTD+Ps).(A.26)
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In the type-N (resp.; type-S) negative-resistance region, det(QQTD+P0) <0
(resp.; det(QsTD+Ps) <0). If the bias condition is still satisfied when the
resistance of the resistor, which is in series (resp.; in parallel) with the

feedback structure, increases (resp.; decreases) such that the topological con

dition is violated, then |det(QnTD+Pn)| (resp.; |det(Q.TD+Pc)|) decreases.
Hence |G| decreases for type-N but increases for type-S negative-resistance
devices. •

3. Proof of Parameter Tuning Guideline 2

If the topological condition is satisfied throughout the range of variation

of resistances such that the bias condition is satisfied over a larger range of

driving voltage (resp.; current) in type-N (resp.; type-S) negative-resistance

devices, then the negative-resistance voltage (resp.; current) range will

increase because the negative resistance occurs when both transistors are for

ward active (bias condition is satisfied). q

4. Very few two-transistor one-ports can exhibit a negative small-signal resis

tance if both transistors are of the same (resp.; complementary) type and the

driving port is in series (resp.; in parallel) with the feedback structure.

Proof: It has been shown that the bias conditions, d, » d2 and d3 » d» are
required in order to have det(QTD+P) < 0. Hence the following conditions on the

npn transistors are required in order to fulfill the above conditions where the

voltage polarity and current direction on each junction voltage and current are

shown in Fig. A.l.

Condition 1. VRE > VRC and VRE > V„c ;otherwise d, < d2 and d3 < d^.

Condition 2. V„E >0 and VRE > 0; otherwise the transistor will be cut-off

since VRE > VRp and VRE >VRq are required.

Condition 3. Ic < 0 and Ic < 0; otherwise by Eq. (A.5), these inequalities

will lead to (VRC-VRE) >VT*,n(l/af) >0.

Condition 4. Ir > 0 and Ir > 0; otherwise by Eq. (A.4), these inequalities
' Ll L2

will lead to (VRE-VRC) < VT*,n(l/ar) = 18 mV for af = 0.5. Hence Condition 1
implies that 18 mV >(VBE-VBC) >0. Such a bias condition is very tight and
d, » d2 and d3 » d- can no longer be satisfied.

Condition 5. ID > 0 and ID > 0; otherwise the transistors will be cut-off.
Bl B2
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Let us now analyze the following mutually exclusive cases:

Case I: Both transistors are of the same type.

There are three different ways for applying the driving source such that

the driving port is in series with the feedback structure as shown in Fig. A.6.

Here we use the voltage source excitation. The same result applies for current

source excitation.

Case. I.l. The voltage source is located between the two emitters as shown in

Fig. A.6(a).

Several resistors are required as shown in Fig. A.7 in order to fulfill

the bias conditions:

(i) Resistor R, is required; otherwise Condition 1 is not satisfied.

(ii) Resistor R2 is required; otherwise the KCL equation at node C,
(Ir +ID =0) is not satisfied since Conditions 4 and 5 imply Ir > 0 andt] b2 t1

(iii) Resistor R3 is required; otherwise the KCL equation at node E,
(-Ir +ID =0) is not satisfied since Ic < 0 by Condition 3 and I„ > 0 by (i).t1 K} t] R1

(iv) Resistor R. is required; otherwise the KVL equation (VRE +VR =0)
is not satisfied since Vnc > 0 by Condition 2 and VD > 0 by (iii).bt1 R3

(v) Resistor Rg is required; otherwise the KCL equation at node Bl
(Jo +id =0) is not satisfied since ID > 0 by Condition 5 and ID > 0 by (iv).

n R4 Bl R4
(vi) Resistor Rg is required to increase the voltage at node C-.; otherwise

transistor T, will be heavily saturated and Condition 1 will not be satisfied.

Simulation result shows that the bias conditions, VRE » VRq and

VBE >y ^BC * reQ.u1re Ri> R4» and Rs to De very large and R2> R3, and Rg to be

very small as shown in Table A.l. These values tend to destroy the feedback

structure and by Corollary 1 in Section 2, the possibility for det(QTD+P) < 0

for some D € V is extremely small if not zero (as yet we were unable to find

even one example).

Case 1.2. The voltage source is located between B^ and C2 with the positive
terminal of the voltage source connected to B,, as shown in Fig. A.6(b).

Several resistors are required as shown in Fig. A.8 in order to fulfill the

bias conditions:

(i) Resistor R, is required; otherwise Condition 1 is not satisfied since

VBC2 >VBE2-
(ii) Resistor R2 is required in order not to heavily saturate T-j.
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(iii) Resistor R3 is required; otherwise the KCL equation at node E, or E2
(IF +IF =0) is not satisfied since Ir < 0 and Ic < 0 by Condition 3.

1 2 tl ^
(iv) Resistor R4 is required; otherwise the KCL equation at node C2,

(I„ +Ir =0) is not satisfied since Ir > 0 by Condition 4 and ID > 0 by (i).
1 2 ^2 Kl

(v) Resistor Rg is required; otherwise the KCL equation at node C,
(Ir +IR +IR =0) is not satisfied since Ir > 0 by Condition 4, ID > 0 by

1 2 4 l °1
5, and ID > 0 by (iv).

R4
(vi) Resistor Rg is required in order not to heavily saturate T2-
Simulation result shows that the bias conditions require R-i, R2, and Rg

to be \tery large and Rg, R4, and Rg to be very small as shown in Table A.2.
These values tend to destroy the feedback structure and by Corollary 1 in
Section 2, the possibility for det(QTD+P) <0 for some D6V is very small if
not zero.

Case 1.3: The voltage source is located between B, and C2 with the positive
terminal of the voltage source connected to C2, as shown in Fig. A.6(c).

Several resistors are required as shown in Fig. A.9 to fulfill the bias

conditions:

(i) Resistor R-j is required; otherwise T, is cut-off.
(ii) Resistor Rg is required; otherwise the KCL equation at node B,

(IR +I„ =0) is not satisfied since I0 > 0 by Condition 5 and ID > 0 by (i).
Bl Kl Bl Rl

(iii) Resistor R3 is required; otherwise the KCL equation at node C,
(Ic +Ijj +IR =0) is not satisfied since Ic >0 and IR >0 by Condition 4

and 5, and ID > 0 by (ii).

(iv) Resistor R- is required; otherwise the KCL equation at node E, or E2
(Ic +IC =0) is not satisfied since Ic < 0 and Ic < 0 by Condition 3.t1 t2 e1 Eg

(v) Resistor Rg is required; otherwise the voltage VRE may not be suffi
ciently large because VCE is limited to the junction voltage VRF, and

VCE =VR + VBE where VR« >° by (i1)"
Simulation result shows that the bias conditions require R1 and Rg to be

very large and R2, R3, and R- to be very small as shown in Table A.3. These
values tend to destroy the feedback structure and by Corollary 1 in Section 2,

the possibility for det(QTD+P) < 0 for some D € V is extremely small if not

zero.
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Case_n. One transistor is npn; the other is pnp.

Similarly to Case I, let us choose a voltage source excitation. Note that

there are six different ways to apply the voltage source, such that it is in

parallel with the feedback structure as shown in Fig. A.10. For simplicity,

we only discuss two cases in Figs. A.10(a) and (c), the other cases follow

similarly.

Case II.1. The voltage source is across the collector and emitter as shown in

Fig. A.10(a).

Several resistors are required as shown in Fig. A.11 in order to fulfill

the bias conditions:

(i) Resistor R, is required; otherwise the KVL equation (VEC +VRE =0)

is not satisfied since by Condition 1 VEC >0 for the pnp transistor and

VBE >°by Condit1°n 2- 2
(ii) Resistor R2 is required; otherwise the KCL equation at node Eg,

(-Ir +IR =0) is not satisfied since I£ <0 by Condition 3 for the pnp tran
sistor and ID > 0 by (i).

Kl
(iii) Resistor R3 is required; otherwise the KVL equation (VR2+VER =0)

is not satisfied since VR >0 by (ii) and V£R >0 by Condition 2 for the pnp
transistor.

(iv) Resistor R- is required; otherwise the KCL equation at node B«.

(IR +IR =0) is not satisfied since IR >0 by (iii) and Condition 5 implies

ID > 0 for the pnp transistor.
B2

A simple analysis of Fig. A. 11 shows that the inequality R3/R4 > R2/R-i must
be satisfied; otherwise Condition 2, which implies that VER >0 for the pnp

transistor, is not satisfied. But this inequality will, impose a constraint on

the resistances which tends to destroy the feedback structure. Hence, by Corol

lary 1 in Section 2, the possibility for det(QTD+P) < 0 for some D € V is very

small if not zero.

Case II.2. The voltage source is across the collector pair as shown in Fig.

A.10(c).

Several resistors are required as shown in Fig. A.12 in order to fulfill

the bias conditions:

(i) Resistors R, and R2 are required; otherwise the KVL equations
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(VCE +VEB =0 and VEC +VgE =0) are not satisfied since by Condition 1

" \ >0andVEg2>0.
(ii) Resistors R3 and R^ are required; otherwise the KCL equations

VC£ >0 and V

(IR +IR =0 and IR +I0 =0) are not satis
Bl R2 B2 Rl ,

by Condition 5, and ID > 0 and ID > 0 by (i).
Kl *2

Asimple analysis of Fig. A.12 shows that the inequality R]/R4 >R3/R2 must
be satisfied; otherwise VR >VR and VR - VB =VB£ +V£R <0, which vio
lates Condition 2. But the resistances satisfying the above inequality would
tend to destroy the feedback structure. Hence, by Corollary 1 in Section 2,
the possibility for det(QTD+P) < 0 for some D € V is very small if not zero. n

fied since ID > 0 and ID > 0
lB B,

5. Proof of Lemma 3

From Fig. 17, the 2-port W is described by

i = Gv + c

where i =
_ir A vl A Cl „ A

V = C = G =

J2_ -v2- -c2_

911 912

L 921 g22 J

(A.27)

and g^ = g^i because Wis reciprocal. Substituting the transistor equation

i = - TF(v) (A.28)

A
" 1 -"2" A

-f,^)-
where T = f(v) =

--al 1 .f2(v2)._

into Eq. (A.27), we obtain

Tf(v) + Gv + c = 0 (A.29)

Since ?A') is strictly increasing, by Lemma A.3, (T,G) is a WQ-pair if and only
if Eq. (A.29) has a unique solution for any c. Since det T = 11 - a-iou > 0 and

since det G=9ii922 " 9i? - ° (because Nis passive), it follows that (T,G) is
a WQ-pair if and only if

-36-



'12
det

-a
1 u22

= 922 + al912 - ° and

det

912

-O-

= g-j-j + 02912 1 0.

Since a-j and a2 may assume any real value between 0 and 1, it follows that

911 + a2912 - ° and g22 + alg12 - ° 1f and only if 911 - lg12l and g22 - l9^'
or equivalently, G is diagonally dominant. d

6. Proof of Lemma 4
A-

The two-port W is described by the hybrid representation

y = Hx + c

where y =
M A

x =

v1 A
c =

c1
H^

Lv2 J L12 J LC2J
•n

Lh21

'12

'22 J

(A.30)

Then h22 =0 (otherwise Whas a Grepresentation) and h,2 =- h2, (hi is recipro
cal). Substituting Eq. (A.28) into Eq. (A.30), we obtain

1+h12al ""(hi2+ot2^

0 0 f2(v2)

'n

-h
12

—\ "m "^ r— —V

0 vi
+

cl

-1 v2 c2

= 0

By Lemma A.3, Eq. (A.31) has a unique solution for any c if and only if

h.1+h12al "(ni2+a2)

0 0

7. Proof of Theorem 3

(Only if) This part is equivalent to showing that if hi has a nondegenerate

connection, then there exists a .set of element parameters and independent source

values such that hi has multiple d.c. solutions.

By Definition 2, there exists a combination of short circuits and open cir

cuits for the resistors in hi such that the resulting circuit has exactly two

possible structures after each independent source is eliminated as shown in

Figs. 20(a) and (b).

'11

-h
12

0

-1
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(a) Common-Base Configuration

As shown in Fig. 20(a), hi has no G representation but has an H representa

tion

"0 -iP

(A.32)
1

LV2J 0
L'2J

1-na, n-a.

Since

n -1
is not a WQ-pair if and only if

(na,-l )(oun-n ) < 0. It follows from Lemma 4 that if we choose n > — or

0 < n < otg, then the circuit in Fig. 20(a) has multiple d.c. solutions for some
independent source values.

(b) Common-Emitter or Common-CoHector Configuration

As shown in Fig. 20(b), M has no G representation but has an H representa

tion

*"" 1

Si nee

1

LV2j

0 -n/n+1

n/n+1 0

i _JL _EL
1' n+1 al n+1 " °2

0 0

n x2

1

L l2J

0

n

n+1

0

-1

(A.33)

is not a WQ-pair if and only

if (f^rr ct-j-l )Cc«2 t^tt- (f^r) 1<0- It follows from Lemma 4 that if we choose
n 1 n

n+T >cT or ° < n+T <a2' then the Clrcult in Fl9* 20(b) has multiple d.c. solu-
n 1

tions for some independent source values. The inequality-rn- > —- implies that

n < -1 and hence the structure in Fig. 20(c) must be used.

Figures 20(a), (b), and (c) are obtained by short-circuiting and/or open-

circuiting the resistors. We can choose the turns ratio as required by the

above inequalities and make the resistances of the short-circuited (resp.; open-

circuited) resistors as small (resp.; large) as possible in order to obtain the

nondegenerate connection in Fig. 20. By continuity, the limting circuits in

Fig. 20 must also yield multiple d.c. solutions.

(if) If hi has a degenerate connection, then any possible combination of
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short circuits and/or open circuits for the resistors would result in (1) some

open ports, or (2) some shorted ports, or (3) transistor (or transformer) ports

forming a loop. Figure A.13 lists all possible structures of circuits having

a degenerate connection (with independent source eliminated).

Note that WD and WD in Fig. A.13 are made of linear positive 2-terminal
Kl **2

resistors. The three circuits in Figs. A.13(b), (c), and (d) behave in an

identical way because no current flows inthe wire connecting the two subcir-

cuits. Hence, they can be reduced to the equivalent circuit shown in Fig.

A.14(b) where R is the input resistance looking into AL and n is the turns

ratio. Figure A.13(a) can be reduced to the equivalent circuit shown in Fig.

A.14(a), as proved in Appendix C.8, where R > 0.
A

Since one branch of each transformer in Fig. A.14 becomes floating and

therefore has no effect on the d.c. solution, they can be eliminated without

changing the solution. Since the remaining circuit consists of a single tran

sistor and linear positive 2-terminal resistors, it must have a unique

solution. a

The one-port to the left of AA1 in Fig. A.13(a) can be reduced to the

equivalent one-port to the left of AA' in Fig. A.14(a).

Proof: Assume the resistive two-port WD in Fig. A.13(a) has a hybrid represen-

tation

1

LV2J

Since

' hn hi2

-h12 h22j

vl

L12

vl =V v2 = nVx' and \ " i1 = ni2»

combining Eqs. (A.34) and (A.35),we obtain

R =^ = '22

X \ h^h^h^+n) 2 -
> 0.
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Figure Captions

Fig. 1. Four types of driving-point v-i characteristics exhibited by two-tran

sistor one-ports: (a) Monotone-Increasing; (b) Multivalued; (c) Type-S;
(d) Type-N.

Circuit for Example 1.

The inclusion of the source resistance R prevents the feedback struc

ture from being destroyed.

Circuit for Example 2.

Circuit for Example 3.

Adding a resistor (b) in parallel or (c) in series with the feedback

structure.

Fig. 7. (a) A two-transistor one-port for Example 4; (b) Feedback structure

for (a); (c) v-i curve for R-j = 100, 200, and 400, R2 = 10k, and
R3 =300; (d) v-i curve for R^ =200, R2 =5k, 10k, and 20k, and R3
=300; (e) v-i curve for R1 =200, R2 =10k, and R3 =300, Ik, and 5k.

Fig. 8. (a) A two-transistor one-port for Example 5; (b) Feedback structure

for (a); (c) v-i curve for R^ =100, 200, and 400 and Rg =10k,
R3 =300, and R4 =2k; (d) v-i curve for R-, =200, R2 =5k, 10k, and
20k, R3 =300, and R4 =10k; (e) v-i curve for R-j =200, R2 =10k,
R3 =300, Ik, and-5k, and R4 =5k; (f) v-i curve for R1 =200, R^lOk,
R3 =300, and R4 =5k, 10k, and 15k.

Fig. 9. (a) One-port W in series with a positive resistor to form a composite

one-port hi'. (b) The v-i curve of hi1 tends to be monotone-increasing

for larger R if W exhibits type-S v-i curve, (c) The v-i curve of W

tends to be multivalued for larger R if hi exhibits type-N v-i curve,

(d) One-port W in parallel with a positive resistor to form a composite

one-port N'. (e) The v-i curve of W tends to be multivalued for

smaller R if W exhibits type-S v-i curve, (f) The v-i curve of N* tends

to be monotone-increasing for smaller R if hi exhibits type-N v-i curve.

Fig. 10. (a) Operating regions in a type-S characteristic, (b) Operating regions

in a type-N characteristic.

Fig. 11. (a) A two-transistor one-port for Example 6; (b) v-i curve for R, = 12k,

15k, and 30k, Rg = 100k, R3 =2k, R4 =20k, and R5 = Ik; (c) v-i curve
for R1 = 15k, R2 =40k, 100k, and 120k, R3 =2k, R4 =20k, and Rg = Ik;
(d) v-i curve for R, =15k, R2 =100k, R3 =Ik, 2k, and 2.5k, R4 =20k,
and R5 = Ik; (e) v-i curve for R. = 15k, R2 = 100k, R3 =2k, R4 = 15k,

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.



20k, and 50k, and R5 = Ik; (f) v-i curve for R1 =15k, R2 =100k,
R3 =2k, R4 =20k, and R5 = 300, Ik, and 1.5k.

Fig. 12. (a) A two-transistor one-port for Example 7; (b) v-i curve for R-. =200k,

500k, and 5M, R2 =200k, R3 =100, and R4 = 10k; (c) v-i curve for
R] =200k, Rg =5k, 20k, and 100k, R3 = 100, and R4 = 10k; (d) v-i
curve for R, =200k, R2 =20k, R3 =100, Ik, and 5k, and R4 =10k;
(e) v-i curve for R] =200k, R2 =20k, R3 =100, and R4 =200, 3k,
and 10k.

Fig. 13. Counterexample to Conjecture 1.

Fig. 14. Three possible connections for a feedback structure; (a) two collectors

are connected together; (b) one collector and one emitter are connected

together; (c) two emitters are connected together.

Fig. 15. Two one-ports which differ only in an interchange between the collector

and the emitter terminal in transistor T2.
Fig. 16. An example demonstrating little changes in the bias condition due to

an interchange between the collector and the emitter of one transistor.

Fig. 17. General configuration of single-transistor circuits containing linear

passive reciprocal two-ports.

Fig. 18. Circuits with a nondegenerate connection; in addition to eliminating

the independent sources, (b) is obtained by short-circuiting R-, and

open-circuiting R2 from (a); (d) is obtained by short-circuiting R,
and open-circuiting R2 from (c).

Fig. 19. (a) Circuit with a degenerate connection; (b) when the independent vol

tage source is short-circuited, L, is open circuited, and J, and J2
form a loop upon open-circuiting R-j and R2; (c) L-. is open-circuited
and J, is short-circuited upon open-circuiting R, and short-circuiting

R2; (d) L, and L2 form a loop, and J, and J2 form a loop upon short-
circuiting Rn and open-circuiting Rg; (e) L, and L2 form a loop and
J, is short-circuited upon short-circuiting R, and Rg.

Fig. 20. Three fundamental structures for nondegenerate connection circuits;

(a) common-base configuration; (b) common-emitter (or collector) confi

guration with n > 0 ; (c) common-emitter (or collector) configuration
with opposite dot direction and n > 1.

Fig. 21. (a) A one-transistor"one-port circuit for Example 9; (b) v-i curve for
R, =100, Ik, and 10k, R2 =50k, R3 =8k, and n =10; (c) v-i curve for
R, =Ik, R2 =10k, 50k, and 200k, R3 =8k, and n =10; (d) v-i curve
for R, =Ik, R2 =50k, R3 =Ik, 8k, and 30k, and n =10; (e) v-i curve
for R-, = Ik, Rg =50k, R3 =8k, and n =5, 10, and 20.



Fig. 22. (a) A one-transistor one-port circuit for Example 10; (b) v-i curve

for R, = Ik, 10k, and 50k, R2 =4k, R3 = Ik, and n =2; (c) v-i curve
for R, = 10k, Rg = Ik, 4k, and 20k, R3 = Ik, and n =2; (d) v-i curve
for R, = 10k, Rg =4k, R3 =300, Ik, and 5k, and n =2; (e) v-i curve
for R, = 10k, Rg =4k, R3 = Ik, and n = 1, 2, 1.5, and 8.
A voltage-controlled odd-symmetric negative-resistance one-port.

A current-controlled odd-symmetric negative-resistance one-port.

Essential circuit topology for voltage-controlled odd-symmetric nega

tive-resistance one-ports.

Fundamental circuit for voltage-control led odd-symmetric negative-

resistance one-ports.

A current-controlled odd-symmetric negative-resistance one-port with

one internal voltage source.

Ebers-Moll circuit model for (a) npn (b) pnp bipolar transistor.

Feedback structure.

Two transistors connected to a linear 4-port described by Pv = Qi + r.

(a) A two-transistor one-port; (b) linear small-signal equivalent cir

cuit of (a); (c) eliminating all controlled sources from (b).

Fig. A.5 (a) A two-transistor one-port with driving port in parallel with the

feedback structure; (b) inserting a resistor, with conductance Y > 0,

by soldering-iron entry in parallel with the feedback structure;

(c) inserting a resistor, with resistance R > 0, by plier-type entry

in series with the feedback structure; (d) short-circuiting the resis

tor in (b); (e) open-circuiting the resistor in (c); (f) a two-tran

sistor one-port with driving port in series with the feedback structure.

Fig. A.6 Three ways for applying the driving port such that it is in series with

the feedback structure.

Fig. A.7 Essential circuit configuration for fulfilling the bias conditions in

Case I.l.

Fig. A.8 Essential circuit configuration for fulfilling the bias conditions in

Case 1.2.

Fig. A.9 Essential circuit configuration for fulfilling the bias conditions in

Case 1.3.

Fig. A.10 Six ways for applying the driving port such that it is in parallel

with the feedback structure.

Fig. 23.

Fig. 24.

Fig. 25.

Fig. 26.

Fig. 27.

Fig. A.l

Fig. A.2

Fig. A.3

Fig. A.4



Fig. A.11 Essential circuit configuration for fulfilling the bias conditions in
Case II.1.

Fig. A.12 Essential circuit configuration for fulfilling the bias conditions in
Case II.2.

Fig. A.13 All possible configurations for circuits having a degenerate connection.

Fig. A.14 Equaivalent circuits of Fig. A.13.



Tables

Table A.l Bias conditions in Fig. A.7 for various resistances with driving

voltage source value v = 3V.

Table A.2 Bias conditions in Fig. A.8 for various resistances with driving
voltage source value v = 3V.

Table A.3 Bias conditions in Fig. A.9 for various resistances with driving

voltage source value v = 3V.



Ohm Volt

Rl R2 R3 R4 R5 R6 Vbei VBC] ^ VBCg
Ik Ik 100 10k 10k 50k 0.628 -0.499 0.672 -0.631

100 Ik 100 10k 10k 50k 0 -0.18 0.676 -1.873

Ik 10k 100 10k 10k 50k 0.582 0.156 0.665 -0.884

Ik Ik Ik 10k 10k 50k 0 -1.392 0.667 0.544

Ik Ik 100 Ik 10k 50k 0 -2.025 0.676 -0.046

Ik Ik 100 10k 100k 50k 0 -2.210 0.676 0.157

Ik Ik 100 10k 10k 10k 0.666 0.264 0.688 0.029

Table A.l

Ohm Volt

Rl R2 R3 R4 R5 R6 \ VBCl VBEg VBCg

10k 10k 100 100 100 10k 0.705 -0.43 0.677 -0.211

Ik 10k 100 100 100 10k 0.705 -0.343 0.672 -0.028

10k Ik 100 100 100 10k 0.725 0.636 0.089 0.016

10k 10k Ik 100 100 10k 0.666 -0.072 0.637 -0.023

10k 10k 100 Ik 100 10k 0.706 -0.593 0.66 0.572

10k 10k 100 100 Ik 10k 0.683 0.605 0.077 0.004

10k 10k 100 100 100 Ik 0.701 -0.091 0.696 0.4

Table A.2



Ohm Volt

Rl R2 R3 R4 R5 \ VBCl VBEg VBCg

Ik 100 Ik 100 10k 0.66 -0.086 0.639 -2.184

TOO 100 Ik 100 10k 0.25 -0.25 0.499 -2.5

Ik 10k Ik 100 10k -0.412 -2.394 0.703 -1.645

Ik 100 10k 100 10k 0.27 -0.027 0.297 -2.703

Ik 100 Ik 10k 10k 0.47 -0.143 0.594 -1.449

Ik 100 Ik 100 100 0.588 -0.133 0.706 -1.557

Table A.3
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